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Radiative Transfer in an Atmosphere-Ocean System:
A Matrix Operator Approach

% George W. Kattawar, Terry J. Humphreys, and Gilbert N. Plass

ABSTRACT
\3

It is the purpose of this paper to demonstrate how the matrix operator

method can be effectively implemented to couple the radiation fields of the

atmophere and ocean. Azimuthally averaged radiances and irradiances are presented as

a function of optical depth for a conservative Rayleigh scattering medium of total

optical thickness fijx)— 1000 with a dielectric interface placed at optical

depths of 0.01, 0.1, 1.0, and 10.0, and for various solar incident angles.

; I }yTRODUCTION

In order for us to understand the effect of changes in optical properties\
of either the atmosphere or ocean on the radiation field, we must be able to
perform accurate radiative transfer calculations for this coupled system. It
is important for researchers in the remote sensing area to know not only what
regions of the spectrum are affected but to what degree they are affected by
known changes in the optical properties of the medium. One area of extreme
importance is the remote sensing of phytoplankton in a body of water since
these organisms essentially determine the effective productivity. In addition
to the radiation in vitro for remote sensing purposes one is also interested
in the radiation in situ for biological purposes since the irradiance is an
important factor in photosynthesis.

To perform a radiative transfer calculation at any particular frequency,
we need only two quantities, namely g(0) (the volume scattering function

L sr']) and ¢ (the attenuation coefficient in units of m']).

in units of m
Now if the medium is inhomogeneous, then we must specify these quantities
at each depth within the medium. Other useful quantities derivable from

these two are:

~ 7 The authors are with the Texas A&M Un1ver91ty. Phys1cs Departmvnt College
Station, Texas 77843.
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b (scattering coefficient) = Znof"s(o ) sin eu‘i
P (o) (phase function) = g(o )/b, (2)
vihere
m .
2n 1" P(0) sine do =1, (3)
a (absorption coefficient) = c-b (4)
vy (single scatiering albedo) = b/c, (5)
and
=2
1 (optical dcpth between layers at zy and 22)= /. ¢ dz. (6)
1
It should be emphasized that all of the optical parameters as given are
for all constituents within the sample being considered.
If we let I(t,11,¢) denote the radiance then the equation of transfer
assumes the following form
& 1)1 (rane) = o) o 2T Plranesnt36") T (tiuse’ )du'de! (7)
. dT sHy@ o _] o sHs@P ’ sHy

where we have adopted the convention that p > 0 denotes downward moving radia-
tion and u < 0 denotes upward moving radiation. It is the purpose of this
article to demonstrate that quite accurate solutions to this equation can be
obtained by the matrix operator technique subject to various boundary condi-

tions.
BASIC THEORY

The historical development of the matrix operator theory can be found

in Plass, et.al.], and we will not go into the details of discretization
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_or Fourier decomposition. The fundamental problem arises when we couple the
atmosphere to the ocean through a dielectric interface. Let us assume that

we have a discrete set of N cosines of the polar angle 0 < 6 < /2 for the

ocean such that iy = cos 0, > 0. Similarly we will have a set of points
My = -COS 0 < 0 which will label the upper hemisphere (see Fig. 1). Out
of the set of N points for the ocean only M of them can be mapped into the

atmosphere i.e., those for which Wy > COS 6. where 8. is the critical angle

defined by sin 0C = 1/n where n is the refractive index of water. The

vemaining N-M points are restricted to the ocean and cannot be mapped into
the atmosphere. These points specify the region of total internal reflecction.

The relationship connecting o to ¢ is simply Snell's law, namely

in o. = i 8
sin o, = n sin 6, (8)
or
g5 = (1- (1-u)n?)1/2 (9) |
l ; where £j 7 €OS . The selection of the quadrature mapping is the most

crucial aspect of the matrix operator approach. The constraints placed on
the selection are as follows. First we must be able to properly normalize
a phase function for the atmosphere due to the aerosols as in Eq. (3).
Secondly we must be able to conserve the energy reflected from and trans-

mitted through the interface. Finally we must be able to properly normalize

a highly asymmetric phase function due to the hydrosol scattering in the

ocean. Our solution to this problem has been enormously successful and it

proceeds as follows. We first consider a Gaussian quadrature of order M
for the atmosphere which is mapped into the half-space i.e., 0 < ¢ < 1

and of course 0 2 ¢ < 2n. The order of the quadrature used i< determined by




the condition that it must be sufficient to normalize the aerosol phase

function to within 0.1%. To handle the second condition, consider a

. radiance stream I(a,¢) striking the interface at some angle a and entering

the ocean at the refracted angle 6. For the case of a continuum of radiation
I(a,¢) striking the interface from above, the radiance just below the interface

is given by

1(0,0) = I(ase)t (a) E5EG0 (10)

where t(a) = 1-r(«) and r(a) is the Fresnel reflection coefficient for

unpularized radiation given by

2
(

2(

r(a) = [tan a-o)/tanz(a+n) + sin m-o)/sinz(u+0)]/2 (11)

This result holds for oblique incidence, i.e. o # 0. For normal incidence

Lq. (11) reduces to
rlo) = (5-D? (12)

Using Eq. (8) , Eq. (10) can be written as

1(6,¢) = I(as0) t (o) n? (13)

a result first noted by Gershunz. Now in the discrete approximation Eq. (10)
becomes

A

¢

&
. i
1(6;44) = I(nim)t(ui) ;-,1 E-q (1a)

el




where C? and C? are the weights for the atmosphere and ocean respectively

associated with the quadrature integration. Comparing Eq. (14) with Eq. (13)

we can now determine the ocean weights C? uniquely, namely

o (15)

Now uy = (1-Q1- gf)/nz)]/2 where 0 < £ 8 1 and Mo < Mg S 1 where

' (1- 1(92)1/2. The function &/p is shown in Fig. 2b. The important
aspert of this function is that it is bounded and has bounded derivatives

of all orders. It is ideally suited for Gaussian quadrature integration

since the error term for an nth order Gaussian quadrature is proportional

to the 2nth derivative of the function. Since the phase function is decom-
posed in a series of lLegendre polynemials, we must be able to integrate these
polynoimials with high accuracy with our mapped points and weights for the
ocean. Let us now consider ﬂl ukdu for the ocean; where k is an intcger.

C
In the discrete approximation this becomes
{;

k0.1
]“ici‘nz i

neMm =
T
|
—
b9

1] AT OO (]6)

5 1 B

1

It should be noted that if k is odd then Eq. (16) shows that we are effectively
integrating a polynomial of degree k in the atmosphere and this result will be
exact as long as k < 2m-1. However if k is even then we no longer have a
finite polynomial since the function we are integrating is proportional to
g[1-(1- 52)/n2](k’])/2. However this function is quite well behaved and has

bounded derivatives of all orders and again Gaussian quadrature should do




quite well. We have tested these ideas using an 8th order Gaussian quadrature
and for 0 < k < 15 the worst error we encountered, which was for k = 0, was
2 parts in 10]2. A1l odd values of k were exact. Even for k = 49 the error
was only 2 parts in 104. The next logical question to be asked is what errors
are encountered if one uses Gaussian points within the critical angle for the
ocean and maps them into the atmosphere? This was the technique used by
Tanaka and Nakajimd3. We will now show why this method has serious defects.
With this method the atmospheric weights C? are determined from the ccean
weights C? by 2

ch - fif_.c? (17)

where the ocean weights are determined by using Gaussian quadrature mapped into

the region B 5B S 1. If we again consider fé Ekdg then in the discrete

approximation we get

S T RS T 0

ii] £y Ci iil £ ny Ci (18)
For k = 0 we show a plot of the function /¢ as a function of u in Fig. 2a.
Not only is the function unbounded at yp = Ve but it has unbounded derivatives

at this point and therefore quadrature integration should produce large ervors.
In general one will be integrating u[1 - nz(]— u2)](k-l)/2 which should be vaci
for odd values of k up to 2m-1. However for k=2 the function becomes bounded
but it still has unbounded derivatives and quadrature will produce relatively
large errors. For even values of k > 2 the function is bounded and has bounded
derivatives. We tested this scheme with an 8th order Gaussian quadrature.

For k=0 the error was 4.6% and for k=2 it was 1 part in ]05 and becomes




better for higher values of k(even). The error for k=49 was of the same

order as the carlier method described, namely 2 parts in 104. It should now

be clear that this latter method would be particularly bad if one is considering
Rayleigh scattering for the atmosphere which is the dominant mude of scattering

for the earth's atmosphere in the visual region of the spectrum.

MATRIX OPERATOR CONSTRUCTION

We will now show how to construct the appropriate matrices from the opera-
tors associated with the atmosphere, ocean, and interface. Throughout the
sequel we will only consider azimuthally averaged quantities which involve only
the first term in the Fourier decomposition of the phase function (see Plass,

et.al.]). The extension to the complete decomposition is straightforward.
A A
ij
RA for the atmosphere for radiation incident on top of the layer. This matrix

Let RA(gi,gj) = R;. = R" be the matrix representation of the reflection operator
has dimension MxM where M is the order of quadrature for the atmospherc. Simi-
larly IA is the matrix associated with the transmission operator for the layer.
It also has dimensions MxM. Tor the ocean withcut the interface we have the
corresponding matrices Ro(ui,uj) = R?j = Bo and TO(Pi’“j) = T?j = IO of
dimensions NxN. The reflection matrix RAw going from air to water is diagonal
and simply consists of the Fresnel reflection coefficients defined by Eq. (10).
Similarly the transmission matrix from air to water T = E - Ry where E is
the identity matrix and both have dimensions MxM. Howcver to formalize our
matrix products, IAN must have dimensions NxM, we must insert zeros for all

elements in rows M+ 1 through N. Now the reflection matrix from water to
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air BWA is again diagonal and the first M elements along the diagonal are
again the Fresnel reflection coefficients whereas the remaining N-M elements
are all unity corresponding to total internal reflection. Similarly the
transmission matrix from water to air is INA =E » BNA‘ It should be noted
that this matrix has all zero entries in rows M+ 1 through N. Therefore
this matrix can be reduced to dimension MxN. We can now use the matrix
operator formalism to set up the reflection and transmission matrices for the
combined system, namely, atmosphere, interface, and ocean. %
To illustrate the adding algorithm (see P]ass], et.al.) the matrices for 5

the combined interface and ocean are
o -1
Rio = Raw * Twua(E - RoRyad ™ RoTay (19)
- -1
IIO 5 Io(g = BNABO) IAN (20)

It should be noted that the matrix operations encountered in Eqs. (19) and (20)

are at least dimensionally consistent. The matrix R;, has dimensions MxM

whercas the matrix IlO has dimensions NxM. The physical interpretation of
equations (19) and (20) is extremely sinple if we consider writing the expression

(E- BORNA)-] formally as a power series, nawely

(6« Bl.Y" = E+R

E - RyRyp + RR o RR

o%wa * BoBunlofua * - - - (21)
' Thereforez using the first term in Eq. (21) and rcading Fq. (19) from right
to left, we see that IAN transmits the radiation through the interface, next
BO reflects it from the ocean and finally IWA transmits it back through the

interface and into the atmosphere. Now the second and higher order terms in
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Eq. (21) simply give all orders of reflection between interface and ocean
before emergence. Eq. (20) has a similar interpretation. It should also be
pointed out that one can also obtain the radiation field at any interior
point in the medium simply by having the reflection and transmission matrices

for the medium both above and below the interior point.

PHASE FUNCTION TRUNCATION

One of the major difficulties encountered when solving the transfer
equation in the ocean is the strong asymmetry in the phase function from the
hydrosol scattering. To perform a normalization on such a strongly peaked
function would require quadratures of extremely high order. One therefore
has to consider the possibility of sacrificing some accuracy for savings
in computer costs. We have adopted a technique used by Potter4 to eleviate
some of the difficulties associated with a strongly peaked phase function.
The technique is basically the following. Let P (0 ) be a strongly peaked
phase function subject to the normalization condition in Eq. (3). Also let
y = cos ©6. Now in the delta function approximation the diffraction peak is

treated as a Dirac delta function and one approximates P(y) by
Ply) = Rs(1-v) + P'(y) (22)

where P'(y) ic a phase function whose diffraction peak has been removed.

Using £q. (22) and Eq. (3) we can evaluate A by

A=gy [P - Py = - - 11 P (v)dy (23)

Therefore
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bl L
[y Py)dy = 5- - A . (24)

We can now define a properly normalized scaled phase function Ps(y) by j

p(y) = Tl (25)

To insure equality in the volume scattering function p(y) it is easy to see

that

bg = b(1 - 2nA) (26)

where the subscript S is used to denote parameters invelving the normalized

truncated phase function. The optical depth, 1, and single scattering albedo,

w., transform as follows:

0!

g = (bs+-a)r/(b+-a) (27)

Wog = wo(] -27A)/(1 - 2'nAw0) (28)

This method has been tested by Potter4 and he found that for solar incidence
angles <84° the irradiances were accurate to within 1%. A comparison between
azimuthally averaged radiances for the reflected radiation agreed to within
1% for engles <87°. The tranacmitied radiance was also accurate to the

same order except in the renion of the incident beam and for small optical
thicknesses. Once the optical thickness is large enough for sufficient

photon diffusion, the larger discrepancies disappear.




COMPUTATIONAL RESULTS

To demonstrate the power and versatility of the matrix operator
method we have considered a model whose total optical thickness it 1000.
We also assume conservative (wo = 1.0), Rayleigh scattering throughout the
region. To explore the effects due only to an interface we have placed
the interface at various optical thicknesses within this region. The
interface is assumed to have a refractive index of 1.338 characteristic
of ocean water at visual wavelengths. The following optical quantities
are computed at many points both above and below the interface and we will
use the subscripts U and D to denote upwelling and downwelling radiation

respectively.

Io(u)(azimuthally averaged radiance) = {3" I(u,0)de (29)
HU,D(upward or downward irradiance) = {: IE,D(“)“d” (30)

1

hU D(upward or downward scalar irradiance) = b IS D(u)du (31)

There are other quantities derivable from these which have important
physical meaning. The quantity d(HD- HU)/dr = (1- wo)(hD+ hU) is propor-

tional to the heating rate in the medium. Also if the medium is conservative

(wo = 1.0) then HD- HU is a constant at all depths and this is a good test
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of numerical stability for an algorithm used to solve the equation of

transfer. The quantity hD+ hU is proportional to the energy density in
the medium. The ratio of hD/HD or hU/HU gives an indication of the degree
l of anistropy of the radiation field and is always greater than or equal
to unity. This result is obvious from Eqs. (30) and (31). If the radia-

tion field is isotropic then hU/HU or hD/H = 2.0. JIf the field is highly

D
peaked in a certain direction say u' then hU/HU or hD/HD R VATRN
In Table 1 we present various optical quantities as a function of

optical depth for a medium of optical thickness = X 1000 with con-

ma
servative Rayleigh scattering throughout. No interface exists in this
medium. Three solar incident angles are considered namely £o ~ 0.980,
0.592, and 0.0199 corresponding respectively to solar zenith angles of

o = 11.5°, 53.7°, 88.9°. The first thing to note is that HD- HU is constant

for each €0 and for all optical depths and represents the downward ir-

radiance exiting the bottom of the medium. We have also assumed a perfectly

absorbing bottom. An extremely important aspect to these calculations

can be observed in the irradiances HU and HD' In the vicinity = = 10.0
for b = 0.980 both HU and HD exceed their values at t=0 by more than 20%,
however for £e's 0.592 a very weak maximum is reached in the vicinity of
t=0.1 whereas for 56 " 0.0199 we found no maximum. This irradiance
increase is a purely three dimensional effect and does not occur in one
dimension. A detailed study of this phenomenon will appear in a future
publication. The ratio hD/HD at t=0 is simply 1/50, since the input is
monodirectional, but by t=10 sufficient diffusion has taken place so that
the internal radiation field is quite isotropic and therefore hD/HD = 2.0.
The quantity hU/HU at 1=0 shows significant departure from an isotropic

l distribution, however, at t=10 it shows the same isotropic behavior as
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the downward radiance. The reason for this is that at the top of the
layer there is always a significant component of the radiance due to
single scattering which of course for Rayleigh scattering is anisotropic.
Once we get deep into the medium, enough scatterings have occurred that
photons lose memory of their direction of entrance and thus take on an
isotropic character.

In Table 2 we considered the case where a dielectric interface of
refractive index 1.338 is placed at Ty = 0.01 from the top of the medium

of total optical thickness 1

e 1000. The first thing to note is that

both HU and HD increase by roughly a factor of two across the interface
with the exception of g = 0.0199. The reason for this anomaly is that
the direct beam is the major contributer to the downward irradiance just
above the interface and at this low sun angle most of the radiation is
specularly reflected upwards rather than being transmitted through the
interface. For the higher sun angles a substantial part of the direct
radiation is transmitted through the interface. Another factor to be
considered is that the upwelling radiation beneath the interface, which lies
outside the acceptance cone, gets internally reflected and therefore the
interface, in a sense, acts like a trap which only allows a certain
portion of the upwelling radiation to escape while the remainder gets
continually recycled. Another interesting feature of this case is that
hU/HU at t=0 and just above the interface shows significant departure
from the case where no interface is present. This is due to the fact
that we are now getting a significant specular component in the upwelling
radiation which tends to drive this ratio more towards l/go. Also by

the time t=10 is reached the radiation field becomes isotropic once

again; however the irradiances still maintain higher values at equivalent




-15-

optical depths compared to the case where there is no interface.

In Table 3 we present results for the case where the interface is moved

to Ty s 0.1. For this case HU and HD again increase across the interface

I for all values of 50. The anomaly now disappears for low sun angles since
the major contribution to the downward irradiance just above the interface
is due to the diffuse component and not the direct beam, resulting in more
radiation transmitted through the interface. It should also be noted that
ratios of quantities are basically the same at corresponding optical depths
below the interface regardless of their position.

In Table 4 the interface has been moved to Ty = 10.0. At this optical
depth the effect of the interface can not be seen at the top of the medium
since all the computed quantities are essentially the same compared to the
case where no interface is present. Again we note the irradiance increase
across the interface for all values of £o and then the monotonic decrease
as we move to larger optical depths.

As an additional aid to understanding the results just discussed, we
can consider Figs. 3-5. Here we have plotted the diffuse component of
the azimuthally averaged radiance i.e., all radiation which has undergone

2 at least one scattering, for the case where the interface has been placed

' at Ty = 0.01. In Fig. 3a we show the upward diffuse component of radiance
as a function of u for various optical depths. The results have been
normalized to the maximum value of the radiance at each optical depth. We
first note that both at the top and just above the interface the upward
diffuse radiance is darkened towards the horizon but as we cross the
interface its character changes markedly. Now as we move deeper into the
medium where single scattering effects become negligible the radiation field

I becomes isotropic. In Fig. 3b we show the diffuse downward radiance for

| |
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the same £o Just above the interface the radiance is highly peaked near

the horizon. To visualize the contribution at an interior point one must
realize that for the downward radiance there are two components to consider.
First there is transmission of the external source through the layer above
the detector and then there is reflection of the upwelling radiance from

the same layer above the detector. Similar reasoning also applies to the
upward radiance at an interior point. Now as we cross the interface the
largest contribution to the downward radiance is coming from the radiation
traveling upward below the interface. Therefore for 0 < u < Me the upwelling
radiance is totally internally reflected in the downward direction whereas
for Mo <M< 1 the upwelling radiance is modified by the reflection coefficient whict

is close to unity for u - Me but falls rapidly for u > u Thus the rapid

c
fall-off for u > Me is simply due to the reflectance properties of the inter-
face. Again we notice as we move deeper into the medium this strong asymmetry
gradually disappears and when we reach t = 10 the radiation field is isotropic.
In Figs. 4a and 4b we give similar results for iy 0.592. The results are
qualitatively similar to the previous case. Now in Figs. 5a and 5b we have

a very low sun angle; namely &g = 0.0199 and we see a radical change in the
distribution of the radiation. The upward diffuse radiance at the top of

the atmosphere is now a maximum at the horizon. This phenomenon is due
primarily to two effects. First we note that the downward radiance just

above the interface (Fig. 5b) is peaked near the horizon. This radiation is
specularly reflected into the upward stream since the reflection coefficient

is high for grazing incidence. Secondly, there is more scattered radiation
reaching the detector which has never penetrated the interface due to the

larger optical path lengths along the directions of incidence and emergence.

Also for the detectors just beneath the interface there is less separation
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in the downward radiance ratio between the horizon and zenith than for the

cases of higher sun angles.

CONCLUSION

We have demonstrated that the matrix operator technique can be used to
give highly accurate results for the equation of transfer when coupling an

atmosphere and ocean system. The advantages of the method are as follows:

1. Results for all solar incident angles are obtained in a single
computer run.

2. Any type of ocean bottom can be used provided one knows its
reflection properties. If one assumes a Lambert type reflecting
surface then results can be obtained for many different bottom
albedos in a single computer run.

3. One can easily incorporate internal detectors where all relevant
physically measurable quantities can be calculated.

4. Large numbers of inhomogenous layers can be coupled to give a

: completely realistic representation of the atmosphere-ocean system.
5. One can also easily obtain results, from the same computer run, for
an ocean whose depth can be altered by successively placing the

bottom at each internal detector location, therefore one can explore

bottom effects which are relevant to coastal zones.

the computation time was approximately 30 sec on an Amdahl 470V-6.
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Table 1. Computed optical quantities as a function of optical depth t for a homoge-
nous system of optical thickness Ty = 1000. Rayleigh scattering is assumed every-

where and w, = 1.0. The input solar flux is assumed to be unity in a plane perpen-

dicular to the incoming beam.

L & HU HD HD~ HU HU/HD hU/HU hD/HD hU-+h

0 0.980 .978 .980 .63-3 0.998 .87 1.02 2.83
0 0.592 .591 .592 .42-4 0.999 .00 1.69 2.18
0 0.0199 .98-2* .99-2 .18-5 0.999 .28 50.4 .06
.01 0.980 .983 .984 .63-3 0.998 .87 1.07 2.90
.01 0.592 .592 .592 .42-4 0.999 2.00 1.75 .22
.01 0.0199 .61-2 .61-2 .18-5 0.999 3.00 38.8 0.675
0.1 0.980 .01 .01 .63-3 0.998 .90 1.30 3.24
0.1 0.592 .595 .596 .42-4 0.999 2.01 1.96 2.36
0.1 0.0199 .96-3 .97-3 .18-5 0.999 2.10 3.59 5.67-2
1.0 0.980 19 16 .63-3 0.999 .97 1.84 .40
1.0 0.592 .57¢ .576 .42-4 0.999 2.02 2.09 2.37
1.0 0.0199 .97-3 .99-3 .18-5 0.999 .01 2.06 .65-2
10 0.980 1.21 el .63-3 0.999 .00 2.00 .84
10 0.592 « 551 «952 .42-4 0. 999 2.00 2.00 =4
10 0.0199 .76-3 .78-3 .18-5 0.999 .00 2.00 .51-2
20 0.980 .20 .20 .63-3 0.999 2.00 2.00 .80

L 20 0.592 .546 .546 .42-4 0.999 2.00 2.00 .18
20 0.0199 .68-3 .69-3 .18-5 0.999 2.00 2.00 3.47-2

I 500 0.980 0.611 .613 .63-3 0.997 2.00 2.00 .45
500 0.592 0.278 .279 .42-4 0.997 2.00 2.00 1
500 0.0199 .43-3 .44-3 .18-5 0.997 2.00 2.00 772

*The notation -2 indicates the power of ten to be multiplied by

the preceeding number.




' Table 2. Computed optical quantities as a function of 1 for a medium of total optical
thickness Faae ® 1000 with a dielectric interface at e 0.01. Rayleigh scattering ]

' is assumed both above and below the interface and iy 1.0. The input solar flux is 1
assumed to be unity in a plane perpendicular to the incoming beam.
b 0 Hy Hp p- iy Mgy Mgty Byl +hy
0 .980 .978 .980 .57-3 0.997 1.79 1.02 2.75
0 0.592 0.590 .592 .42-3 0.998 1.83 1.69 2.08
0 .0199 .98-2 .99-2 .60-5 0.999 19.1 50.4 .38

A*

0.01 .980 0.981 .984 .57-3 0.997 1.78 1.07 2.80
0.01A 0.592 0.591 .592 1.42-3 0.998 1.81 1.74 2.10
0.01A .0199 1.81-2 .81-2 .60-5 0.999 31.0 35.1 .20
0.01B .980 1.82 .82 .57-3 0.999 1.98 1.88 7.03
0.01B .592 1.09 .09 1.42-3 0.999 2.01 2.04 4.41
0.01B 0.0199 1.24-2 .24-2 .60-5 0.999 2.01 2.08 5.10-2
0.1 0.980 1.83 .83 .57-3 0.999 1.98 1.89 1.07
0.1 .592 1.09 .09 1.42-3 0.999 2.01 2.04 4.40
0.1 0.0199 1.24-2 .24-2 .60-5 0.999 2.01 2.08 5.08-2
1.0 .980 1.88 .88 .57-3 0.999 1.99 1.94 7.41
1.0 0.592 1.07 .08 .42-3 0.999 2.00 2.02 4.33
1.0 .0199 1.21-2 .21-2 .60-5 0.999 2.01 2.03 4.90-2
10 .980 1.91 .91 .57-3 0.999 2.00 2.00 7.64
10 .592 1.05 .06 1.42-3 0.999 2.00 2.00 4.22
10 .0199 1.19-2 .19-2 .60-5 0.999 2.00 2.00 .75-2
20 .980 1.89 .89 .57-3 0.999 2.00 2.00 .56
20 .592 1.04 .04 .42-3 0.999 2.00 2.00 .18
20 .0199 1.17-2 .18-2 .60-5 0.999 2.00 2.00 .70-2

, 500 .980 0.964 .966 .57-3 0.997 2.00 2.00 3.86

‘ 500 .592 0.533 .534 1.42-3 0.997 2.00 2.00 2.13
500 .0199 5.99-3 .01-3 .60-5 0.997 2.00 2.00 2.40-2

*Superscripts A and B refer to detectors placed just above and just below the interface

l respectively.

ke Nt . (I




] l Table 3. Same as Table 2 except L B 0.1.
¥ 0 u D Hp-Hy WMy /My b/l iy
0 .980 .977 .980 2.60-3 0.997 1.85 1.02 2.81
0 .592 .590 .592 1.41-3 0.997 1.95 1.69 Z-15
0 .0199 .98-2 .99-2 2.21-5 0.999 3.35 50.4 1.07
0.01 .980 .981 .984 2.60-3 0.997 1.86 1.07 2.88
0.01 .592 .591 .592 1.41-3 0.998 1.95 1.75 2.19
0.01 .0199 .61-2 .61-2 2.21-5 0.999 3.08 3.88 0.676
0.1A 0.980 .01 .01 2.60-3 0.997 1.87 1.29 3.20
0.1A .592 .593 .594 1.41-3 0.998 1.93 1.95 2.30
0.1A .0199 .01-2 .01-2 2.21-5 0.998 2.98 3.60 6.65-2
0.1B 0.980 .86 .86 2.60-3 0.999 1.98 1.90 .21
0.1B .592 .08 .08 1.41-3 0.999 2.01 2.04 4.37
O.lB .0199 .69-2 .69-2 2.21-5 0.999 2.01 2.04 .84-2
1.0 .980 .91 .91 2.60-3 0.999 1.99 1.95 .52
1.0 .592 .07 .07 1.41-3 0.999 2.00 2.02 .30
1.0 .0199 .67-2 .67-2 2.21-5 0.999 2.00 2.02 71-2
10 .980 .93 .94 2.60-3 0.999 2.00 2.00 .74
10 .592 .05 .05 1.41-3 0.999 2.00 2.00 .19
10 .0199 .64-2 .64-2 2.21-5 0.999 2.00 2.00 .56-2
20 .980 .91 .92 2.60-3 0.999 2.00 2.00 7.66
20 .592 .03 .04 1.41-3 0.999 2.00 2.00 4.14
20 .0199 .62-2 .62-2 2.21-5 0.999 2.00 2.00 .49-2
500 .980 0.976 0.979 2.60-3 0.997 2.00 2.00 3.91
500 0.592 .528 .530 1.41-3 0.997 2.00 2.00 2
500 .0199 .27-3 .30-3 2.21-5 0.997 2.00 2.00 .31-5




o

Table 4. Same as Table 2 except Ty 10.0.

T 0 U Hp Hp-Hy  Hy/Mp  hy/Hy  hp/Hy by +hy
0 0.980 .977 0.980 2.89-3  0.997 .87 .02 2.83
0 592 .590 0.592 1.32-3  0.998  2.00 1.69  2.18
0 .0199 98-2  1.99-2  2.09-5  0.999 3.28  50.4 1.06
0.01 .980 .981 0.984 2.89-3  0.997  1.87 1.07  2.89
0.01  0.592 591 0.592 1.32-3  0.998 .00 .75 2.22
0.01 .0199 61-2 61-2  2.09-5  0.999 00  38.8 0.675
0.1 .980 1.01 1.01 2.89-3  0.997  1.90 .30  3.24
0.1 592 .595 .596 1.32-3  0.998 2.0 1.96  2.36
0.1 .0199 .45-3 .97-3  2.09-5  0.998  2.10 350 . 5.67-2
1.0 .980 18 1.15 2.89-3  0.997 .97 1.84  4.39
1.0 592 \575 0.576 1.32-3  0.998  2.02 2.09  2.36
1.0 .0199 .96-3  8.98-3  2.09-5  0.998 2.0 2.06  3.65-2
1 0.980 .20 1.20 2.89-3  0.998 .00 2.00  4.80
100 0.592 546 0.548 1.32-3  0.998 .00 2.00  2.19
100 .0199 .69-3  8.71-3  2.09-5  0.998 .00 2.00  3.48-2
108 ,980 8 2.15 2.89-3  0.999  2.00 2.00  8.59
108 592 .978 .980 1.32-3  0.999  2.00 2.00  3.91
108 0.0199 .55-2  1.56-2  2.09-5  0.999  2.00 2.00  6.22-2
20 ,980 13 2.13 2.89-3  0.999 .00 2.00  8.51
20 592 .968 .970 1.32-3  0.999  2.00 2.00  3.88
20 .0199 .54-2 .54-2  2.09-5  0.999  2.00 2.00  6.16-2
500 980 .085 1.088 2.89-3  0.997 .00 2.00 4.3
500 592 .494 0.495 1.32-3  0.997 .00 2.00 1.98
500 .0199 .85-3  7.88-3  2.09-5  0.997 .00 2.00  3.15-2
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Fig. V.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

FIGURE CAPTIONS

Geometric representation of angular variables used in the atmosphere-

ocean system.

a) Function transformation used for mapping ocean angular variables
into atmospheric angular variables. b) Function transformation used

to map atmospheric angular variables into ocean angular variables.

a) Upward diffuse azimuthally averaged radiance 1° versus p for a
conservative Rayleigh scattering medium of total optical thickness
B ™ 1000 with a dielectric interface at L 0.01 for optical
depth values of 0, 0.01A, O.OIB, 1.0, and 10.0. Superscripts A and
B refer to detectors just above and just below the interface res-
pectively. The solar incident angle is Ry = 0.980 (o = 1.5°) and
the results are normalized to their maximum value at each optical

depth. b) Same as a) except results are for the downward diffuse 1.

0.592 (a = 53.7°). b) Same as 3b except

]

a) Same as 3a except £o

£ = 0.592 (a = 53.7°).

a) Same as 3a except £q 0.0199 (a« = 88.9°). b) Same as 3b except

g = 0.0199 (a = 88.9°).
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