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Radiative Transfer in an Atmosphere-Ocean System :
A Matrix Operator Approach

George W. Kattawar, Terry J. Humphreys , and Gilb ert N. Plass

ABSTRACT

It is the purpose of this paper to demonstrate how the matrix operator

method can be effectively implemented to couple the radiation fields of the

atmophere and ocean. Azimuthally averaged radiances and irradiances are presented as

a function of optical depth for a conservative Rayleigh scattering medi um of total

optical thickness 1000 wi th a dielectric interface placed at optical

depths of 0.01 , 0.1 , 1.0, and 10.0, and for various solar incident angles.

INTRODUCTION

In order for us to understand the effect of changes in optical properties

of either the atmosphere or ocean on the radiation field , we must be abl e to

perform accurate radiative transfer calculations for this coupled system. It

is important for researchers in the remote sensing area to know not only what

regions of the spectrum are affected but to what degree they are affected by

known changes in the optical properties of the medium. One area of extreme

importance is the remote sensing of phytoplankton in a body of water since

these organisms essentially determine the effective productivity . In addition

to the radiation in vitro for remote sensing purposes one is also interested

in the radiation in situ for biological purposes since the i rradiance is an

important factor in photosynthesis.

To perform a radiative transfer calculation at any particular frequency,

we need only two quantities , namely ~(o) (the volume scattering function

in units of m~ sr~~) and c (the attenuation coefficient in units of m
a).

Now if the medium is inhomogeneous , then we must speci fy these quantities

at each depth within the medium . Other useful quantities derivabl e from

these two are:

The authors are with the Texas A&M (Jniversity , Physics Departm ’nt. Coll ?qe
Station , Texas 77843.
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b (scattering coefficient) = 2n
0f~~( 0 ) sin ~~ ,

— - (1)

p (° ) (phase function) = 

~
( o )/b, (2)

where

21T
~
f
~ 
P( 0 ) sin 0 do = 1 , (3)

I
a (absorption coefficient) = c-b (4)

~~~~ 

(s ingle Scd t. ering al be do) b/c , (5)

and

t (optica l depth bet~:eeri layers at z 1 and z2) c ciz. (6)

It should be emphasized that all of the optical parameters as given are

for all constituents w ithin the sample being considered .

If we let I(t ,p,q ) denote the radiance then the equation of transfer

assumes the following form

(p ~~~
-- + 1)1 (T , p ,~~) = 

~~ 
f 1

1 
f ~~ P(T ,p,~~;p ’ ;$’) I (T ;p ;$ ’)d L1 ’d~ ’ (7)

where we have adopted the convention that ~i > 0 denotes downward moving radia-

tion and p < 0 denotes upward moving radiation. It is the purpose of this

article to demonstrate that quite accurate solutions to this equation can be

obtained by the matrix opera tor technique subject to various boundary cond i-

tions.

BASIC THEORY

The historical development of the matrix operator theory can be found

In Pl ass , et.al), and we will not go Into the details of discretization

I
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I
or Fourier decomposition. The fundamenta l problem arises when we couple the

atmosphere to the ocean through a dielectric interface. Let us assume that

we have a discrete set of N cosines of the polar angle 0 < 8 ~ ir/2 for the

ocean such that p .  = cos > 0. Similarly we will have a set of points

-cos 01 < 0 which will label the upper hemisphere (see Fig. 1). Out

of the set of N points for the ocean only M of them can be mapped into the

atmosphere i.e., those for which p
1 

> cos where is the critical angle

defined by sin = 1/n where n is the refractive index of water. The

rema ining U—M points ~rc restricted to the ocean and cannot be mapped into

the atmosphere . These po ints spec i fy the reqion of total intern al reflection.

The relationship connect ing ~ to e is simply Snell ‘ s law , namely

or 

sin = n sin e~ 
(8)

(1 - (1 - 2 )1/2 (9)

where cos C~ j .  The selection of the quadrature mapping is the most

crucial aspect of the matrix operator approach. The constraints placed on

the selection are as follows . First we must be abl e to properly normalize

a phase function for the atmosphere due to the aerosols as in Eq. (3).

Secondly we must be able to conserve the energy reflected from and trans-

mitted through the interface. Finally we must be able to properly normalize

a highly asynvietric phase function due to the hydrosol scattering in the

ocean. Our sol ution to thi s problem has been enormously successful and it

proceeds as follows. We first consider a Gaussian quadrature of order ti

for the atmosphere which is mapped into the half-space i.e., 0 ~ ~ I

and of course 0 ~ ~ 2~i. The order of the quadrature used Ic determirn’d by
~1

I
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the condition that it must be sufficient to normalize the aerosol phase

function to within 0.1%. To handle the second condition , consider a

- radiance stream I(c~,p) striking the interface at some angle ~ and entering

the ocean at the refracted angle 0. For the case of a continuum of radiation

I(~ ,4) striking the interface from above, the radiance just below the interface

is given by

= I(c~,~ ) t (~
) ~~~ (10)

where t(~ ) 1 — r(~ ) and r(u) is the J rusnel reflection coeff ici ent for

unpoluriLed radiation iven by

r(~ ) = [tan2 (~ _ o ) / tan2 (crF r~) + sin2 (~ —~) /s1n2 (u+0)] /2 (11)

This result holds for oblique incidence , i.e. ~ / 0. For norma l incidence
• Eq. (11) reduces to

r(~) (::~ 
1)2 (12)

Using Eq. (8) , Eq. (10) can be written as

1(0,4) = I (2 ,+)t (ci)n2 (13)

a result first noted by Gershun
2
. Now in the discrete approx imation Eq. (10)

becomes

F~. C~I(o.,~) 
= I (ct.,~)t(u.) ~~ 

—
~~~~ (14)

1 1 1 p
1

1

I
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I
where C~ and C? are the weights for the atmosphere and ocean respectively

associated with the quadrature integration . Comparing Eq. (14) with Eq. (13)
• we can now determine the ocean weights C? uniquely, namely

I = ____ 

. (15)

I 1

Now ~~ (1 — (1 - ~~)/n
2)1”2 where 0 < ~ 1 and ~c ~ 

p,~ ~ 1 where

I = (1 - 1/n2)~
”2. The function E/p is shown in Fig. 2b. The important

I 
asper.t of this function is that it is bounded and has bounded derivatives

of all orders. It is ideally suited for Gaussian quadrature integration

since the error term for an nth order Gaussian quadrature is proportional

to the 2nth d~’rivative of the function . Since the phase function is decom-

I posed in a series of Le~jendrc polynomials , we must be able to integrate these

polynomials wi tli high acc uracy wi t h  our mapped points arid weig hts for the

ocean. Let us nc~-i consider ? pk t p for the ocean; where k is an integer.

J In th~ discrete approx iim~tion this becomes

I k O  1 k-l A
i~l ~ 

C 1 = 

~ ~~~~~~ 
~ ~-i c 1 . (16)

It should be noted that if k is odd then Eq. (16) shows that we are effectively

I integrating a polynomial of degree k in the atmosphere and this result will be

exact as long as k ~ 2m-1 . However if k is even then we no longer have a

I finite polynomial since the function we are integrating is proportional to

i 
- (1- ~2)/fl2]

0(_~~hl2
• However this function Is qu i te well behaved and has

bounded derivativ es of all orders and again Gaussian quadrature should do

‘ I I
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I
quite well. We have tested these ideas using an 8th order Gaussian quadrature

and for 0 ~ k ~ 15 the worst error we encountered , which was for k = 0, was

2 parts in 1012. All odd values of k were exact. Even for k = 49 the error

was only 2 parts in ~~~~~~~~ The next logical question to be asked is what errors

are encountered if one uses Gaussian points within the critical angle for the

ocean and maps them into the atmosphere? This was the technique used by

Tanaka and Nakajimd 3. We will now show why this method has serious defects .

With this method the atmospheric weights C~ are determined from the ocean

wei ghts C? by 2

~~~~ c~ (17)

where the ocean weights are determined by using Gaussian quadrature mapped into

the region p~ ~
- p ~ 1. If we again consider 1 rkdE then in the discrete

approxir’iation w~ get

M k C. y 
~~~

. C. (18)
i~l 

1 1 1-1 1 1 1

For k = 0 we show a plot of the f u n c t i o n  i’ll. as a function of p in Fi g. 2a.

Not only is the function unbounded at p = PC 
but it has unbounded derivatives

J at this point and therefore quadrature integration should produce large er~ors .

In general one will be integrating ~[l - n
2(1 - ~2)](k_l)/’2 which should b ~~~

for odd values of k up to 2m-l. However for k= 2 the function becomes bounded

but it still has unbounded derivatives and quadrature will produce relativel y

large errors. For even values of k > 2 the function is bounded and has bounded

derivatives. We tested this scheme wi th an 8th order Gaussian quadrature .

For k= 0 the error was 4.6% and for k= 2 It was 1 part In 10~ and becomes

I 
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better for higher va l ues of k(even). The error for k=49 was of the same

order as the earlier method described , namely 2 parts in l0~. It should now

be clear that this latter method would be particularly bad if one is considering

Rayleigh scattering for the atmosphere which is the dominant mjde of scattering

for the earth ’s atmosphere in the visual region of the spectrum.

I
MATRI X OPERATOR CONSTRUCTION

‘ 
We will now show how to construct the appropriate matrices from the opera-

tors associated with the atmosphere , ocean , and interface. Throughout the

sequel we will only consider aziniutha lly averaged quantities which involve only

the first term in the Fourier decomposition of the phase function (see Plass ,

et.al.1) . The extension to the complete decomposition is straightforward .

let ~~~ = ~~ = be the matrix representation of the reflection operator

RA for the atmosphere for radiatio n incident on top of the layer. This matrix

has d imension N~ -1 whcre M is the order of quadrat ure for the iitmo~phere . Sim i-

larly ~~ is the matrix associat ed w ith the tra nsmission operator for the layer.

It also has dimensions MxM. For the ocean w ithout the interface we have the

corresponding matrices R°(~1~~~) = R?~ 
= and ~~~~~~~ = T?. = T° of

dimensions ~xN. The reflection matrix 
~AW 

going from air to water is diagonal

and simply consists of the Fresnel refl ection coefficients defined by Eq. (10).

Similarly the transmission matrix from air to water - 

~AW 
where E is

the identity matrix and both have dimensions MxM. However to formalize our

matrix products , TAW must have dimensions NxM , we must insert zeros for all

elements in rows ri+ 1 through N. Now the reflection matrix from water to

1



I

ai r RWA is again diagonal and the first M elements along the diagonal are

again the Fresnel reflection coefficients whereas the remaining N-M elements

are all unity corresponding to total internal reflection . Similarly the

transmission matrix from water to air is = - 

~wA~ 
It should be noted

that this matrix has all zero entries in rows M+ ~ through N. Therefore

this matrix can be reduced to dimension MxN . We can now use the matrix

operator formalism to set up the refl ection and transmission matrices for the

combined system , namely, atmosphere, interface , and ocean.

To illustrate the adding algorithm (see Plass 1 , et.al.) the matrices for

the combined interface and ocean are

~IO 
= 

~AW 
+ TWA (E - ~O~WA~ ~O1AW (19)

110 = iO~ 
- BWA~O

) ‘AW (20)

It should be noted that the matrix operations encountered in Eqs. (19) and (20)

are at least dimensionally consistent. The matrix has dimensions MxM

whereas the matrix has dimensions NxM . The physical interpretation of

equations (19) and (20) is extrenruly s~npl e if we consi der wri ti ti c ; the exprcs~ ion

~ ~~~~ 
fonitally as a power series , nait~ely

- 

~o~w~~
1 

= E + 
~0~WA + 

~~~~~~ 
+ . . . (21)

Therefore , using the first term in Eq. (21 ) and reading Eq. (19) from right

to left , we see that transmits the radiation through the interface , next

reflects it from the ocean and finally ‘WA transmits it back through the

interface and into the atmosphere. Now the second and higher order terms -in

I 
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Eq. (21 ) simply give all orders of reflection between interface and ocean

before emergence. Eq. (20) has a similar interpretation . It should also be

pointed out that one can also obtain the radii’tion field at any interior

point in the medium simply by having the reflection and transmission matrices

for the medium both above and below the interior point .

PHASE FUNCTION TRUNCATION

One of the major difficulties encountered when solving the transfer

equation in the ocean is the strong asymmetry in the phase function from the

hydrosol scattering. To perform a normalization on such a strongly peaked

function would require quadratures of extremely high order. One therefore

has to consider the possibility of sacrificing some accuracy for savings

in computer costs. We have adopted a technique used by Potter4 to eleviate

some of the difficulties associated wi th a strongly peaked phase function.

The technique is basically the fol lowi ng . Let P (0 ) be a strongly peaked
phase function subject to the normalization condition in Eq. (3). Also let

y cos 0 . Now in the delta function approximation the diffraction peak is

treated as a fli rac delta function and one ap p roxim a tes P(y) by

Ph) A~(1 — ~
) 4 P’h) (22)

where P’(y) a phase function whose diffraction peak has been removed.

Using Eq. (22) and Eq. (3) we can evaluate A by

A = f ~ [ P ( 1)  - P’(y)]dy = - P’(y)dy . (23)

Therefore

I
• .‘ - - - • -~~~~~wfla q~.g-w -, 
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.r~ P’(y)dy = - A . (24)

We can now define a properly normalized scaled phase function 
~~~~ 

by

hII
p ( 

~ 
— r

S ~~‘ 
- 

1 - 2nA

To insure equality in the volume scattering function 1~(~ ) it is easy to see

that

bs = b(l - 2,~A) (26)

where the subscript S is used to denote parameters involving the normalized

truncated phase function . The optical depth , T , and single scattering albedo ,

transform as follows :

t s = (b5+a)T/(b+a ) (27)

WOS m
~
(l - 2iiA)/(l - 2iiAw0) (28)

4This method has been tested by Potter and he found that for solar incidence

angles <84° the irradiances were accurate to within 1%. A comparison between

azimuthally averaged radiances b r  the reflected radiation agreed to within

l~ for crig les <87°. The tran~-m itLed r~diance wa s also accut ’ate to th2

same order except in the re~~oi~ of the incident beam and for small optical

thicknes ses. Once the uptical thickness is large enough for sufficient

photon diffusion , the larger discrepancies disappear.

I
I
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COMPUTATIONAL RESULTS

To demonstrate the power and versati l i ty of the matrix operator

method we have considered a model whose total optical thickness = 1000.

We also assume conservative (w ~ 
= 1.0), Rayleigh scattering throughout the

region. To explore the effects due only to an interface we have placed

the interface at various optical thicknesses within this region . The

interface is assumed to have a refractive index of L338 characteristic

of ocean water at visual wavelengths. The following optical quantities

are computed at many points both above and below the interface and we will

use the subscripts U and 0 to denote upwe lling and downwe lling radiation

respectively.

I°(p)(azimuthally averaged radiance) = ~~ I(p, c~)dq (29)

H
~~0

(uPward or downward irradiance) = 
~~~~ 

I~~0(p)pdp (30)

hU D (upward or downward scalar i rradiance) = .
~~~ I~,~(P)dP (31)

There are other quantities derivabl e from these which have important

physical meaning. The quantity d(HD
_ HU)/dT 

= (1 - w0)(h0+ hu) is propor-

tional to the heating rate in the medium. Also if the medium is conservative

= 1.0) then H0- H~ 
is a constant at all depths and this is a good test

I

_ _ _ _ _ _  _ _ _ _ _

~~~

--— --m••-•-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • - -



-13- 
-

of numerical stability for an algorithm used to sol ve the equation of

transfer. The quantity h0+ h~ 
is proportional to the energy density in

the med ium. The ratio of h0/H0 or hu/Hu gives an indication of the degree

of anistropy of the radiation field and is always greater than or equal

to unity . This result is obvious from Eqs. (30) and (31). If the radia-

tion field is isotropic then hü/H~ 
or hD/HD 

= 2.0. ~f the field is highly

peaked in a certain direction say ti ’ then hu/Hu or h0/H0 
-

In Table 1 we present various optical quantities as a function of

optical depth for a medium of optical thickness Tmax 
= 1000 wi th con-

servative Rayleigh scattering throughout. No interface exists in this

medium. Three solar incident angl es are considered namely 
~ 

= 0.980,

0.592, and 0.0199 corresponding respectively to solar zenith angles of

= 11.5° , 53.7°, 88.9° . The first thing to note is that H0 _ H
~ 

is constant

for each and for all optical depths and represents the downward ir-

radiance exiting the bottom of the medium. We have also assumed a perfectly

absorbing bottom. An extremely important aspec t to these calculations

can be observed in the iYradiances Hü and H0. In the vicinity -r = 10.0

for = 0.980 both Hu and HD exceed their values at t =O by more than 20%,

however for = 0.592 a very weak maximum is reached in the vicinit y of

-r= 0.1 whereas for 0.0199 we found no maximum. This i rradiance

increase is a purely three dimensiona l effect and does not occur in one

dimension . A detailed study of this phenomenon will appear in a future

publication. The ratio h0/H0 at T O  is simply l/F~0, since the input is

monodirectional , but by t = 10 sufficient diffusion has taken place so that

the internal radiation field is quite isotropic and therefore hD/HD 
= 2.0.

The quantity h
~
/H
~ 

at -r = 0 shows significant departure from an isotropic

distribution , however , at -t = 10 it shows the same isotropic behavior as

I 
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the downward radiance. The reason for this is that at the top of the

layer there is always a significan t component of the radiance due to

single scattering which of course for Rayleigh scattering is anisotropic.

Once we get deep into the medium , enough scatterings have occurred that

photons lose memory of their direction of entrance and thus take on an

isotropic character.

In Table 2 we considered the case where a dielectric interface of

refractive index 1.338 is placed at = 0.01 from the top of the medium

of total optical thickness tmax = 1000. The first thing to note is that

• both H~ and H0 increase by roughly a factor of two across the interface

wi th the exception of = 0.0199. The reason for this anomaly is that

the direct beam is the major contributer to the downward i rradiance just

above the interface and at this low sun angle most of the radiation is

specularly reflected upwards rather than being transmi tted through the

interface. For the higher sun angles a substantial part of the direct

radiation is transmitted through the interface. Another factor to be

• considered is that the upwelling radiation beneath the interface , which lies

outside the acceptance cone , gets internally reflected and therefore the

interface , in a sense, acts like a trap which only allows a certain

portion of the upwelling radiation to escape while the remai nder gets

conti nually recycled . Another interesting feature of this case is that

at T = 0 and just above the interface shows significant departure

from the case where no interface is present. This is due to the fact

that we are now getting a significant specular component in the upwe lling

radiation which tends to drive this ratio more towards ~~~ Also by

the time 1=10 is reached the radiation field becomes isotropic once

again; however the irradiancec still maintain higher values at equivalent

I
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I
optical depths compared to the case where there is no interface.

In Table 3 we present results for the case where the interface is moved

to -r~ 
= 0.1. For this case H

~ 
and H0 again increase across the interface

for all values of 
~~~~~~ 

The anomaly now disappears for low sun angles since

the major contribution to the downward i rradiance just above the interface

is due to the diffuse component and not the direct beam, resulting in more

radiation transmitted through the interface . It should also be noted that

ratios of quantities are basically the same at corresponding optical depths

below the interface regardless of their position .

In Table 4 the interface has been moved to -r~ 
= 10.0. At this optical

depth the effect of the interface can not be seen at the top of the medium

since all the computed quantities are essentially the same compared to the

case where no interface is present. Again we note the i rradiance increase

across the interface for all values of and then the monotonic decrease

as we move to larger optical depths.

As an additional aid to understanding the results just discussed , we

can consider Figs. 3-5. Here we have plotted the diffuse component of

the azimuthally averaged radiance i.e., all radiation which has undergone

at least one scattering, for the case where the interface has been pl aced

at = 0.01. In Fig. 3a we show the upward diffuse component of radiance

as a function of p for various optical depths. The results have been

normalized to the maximum value of the radiance at each optical depth. We

first note that both at the top and just above the interface the upward

diffuse radiance is darkened towards the horizon but as we cross the

interface its character changes markedly. Now as we move deeper into the

medium where single scattering effects become negligible the radiation field

becomes isotropic. In Fig. 3b we show the diffuse downward radiance for

I
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the same 
~~~~~~ 

Just above the interface the radiance is highl y peaked near

the horizon. To visualize the contribution at an interior point one must

realize that for the downward radiance there are two components to consider .

Firs t there is transmission of the externa l source through the layer above

the detector and then there is reflection of the upwe lling radiance from

the same l ayer above the detector. Similar reasoning also applies to the

upward radiance at an interior point. Now as we cross the interface the

largest contribution to the downward radiance is comi ng from the radiation

traveling upward below the interface. Therefore for 0 < p~ the upwelling

radiance is totally internally reflected in the downward direction whereas

for < p < 1 the upwelling radiance is modified by the reflection coefficient whic~
is close to unity for ~ - but falls rapidly for ~ > p~ . Thus the rapid

fall-off for ~ > is simply due to the reflectance properties of the inter-

face. Again we notice as we move deeper into the medium this strong asymmetry

gradually disappears and when we reach I = 10 the radiation field is isotropic.

In Figs. 4a and 4b we give similar results for = 0.592. The results are

qualitatively similar to the previous case. Now in Figs . 5a and 5b we have

a very low sun angle; namely 
~, 

= 0.0199 and we see a radical change in the

distri bution of the radiation . The upward diffuse radiance at the top of

the atmosphere is now a maximum at the horizon . This phenomenon is due

primarily to two effects. First we note that the downward radiance just

above the interface (Fig. Sb) is peaked near the horizon . This radiation is

specularly reflected into the upward stream since the reflection coefficient

is high for grazing incidence. Secondly, there is more scattered radiation

reaching the detector which has never penetrated the interface due to the

larger optical path lengths along the directions of incidence and emergence.

Also for the detectors just beneath the interface there is less separation

I 
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I
in the downward radiance ratio between the horizon and zenith than for the

I cases of higher sun angles.

CONCLUS ION

• We have demonstrated that the matrix operator technique can be used to

give highly accurate results for the equation of transfer when coupling an

atmosphere and ocean system. The advantages of the method are as follows :

I
1 

1. Results for all solar incident angles are obtained in a single

computer run.

2. Any type of ocean bottom can be used provided one knows its

reflection properties . If one assumes a Lambert type reflecting

surface then results can be obtained for many different bottom

al bedos in a single computer run.

I 3. One can easily incorporate internal detectors where all relevant

physically measurabl e quantities can be calculated .

4. Large numbers of inhomogenous layers can be coupled to give a

1 completely realistic representation of the atmosphere-ocean system.

5. One can also easily obtain results , from the same computer run , for

I an ocean whose depth can be altered by successively placing the

i bottom at each internal detector location , therefore one can explore

bottom effects which are relevant to coastal zones. -

I 6. Computations are quite fast. For each case presented in the paper

the computation time was approximately 30 sec on an Amdahl 47OV-6.

I
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Table 1. Computed optical quantities as a function of optical depth -r for a homoge-
nous system of optical thickness -rmax 

= 1000. Rayleigh scattering is assumed every-
where and = 1.0. The input solar flux is assumed to be unity in a plane perpen-
dicular to the incoming beam.

Hu HD H0 
- Hu Hu/HD hu/Hu hD/HD hu + h0

• 0 0.980 0.978 0.980 1.63-3 0.998 1.87 1.02 2.83

0 0.592 0.591 0.592 7.42-4 0.999 2.00 1.69 2.18

o o.oi~ 1.98_2* 1.99-2 1.18-5 0.999 3.28 50.4 1.06

.01 0.980 0.983 0.984 1.63-3 0.998 1.87 1.07 2.90

.01 0.592 0.592 0.592 7.42-4 0.999 2.00 1.75 2.22

.01 0.0199 1.61-2 1.61-2 1.18-5 0.999 3.00 38.8 0.675

0.1 0.980 1.01 1.01 1.63-3 0.998 1.90 1.30 3.24

0.1 0.592 0.595 0.596 7.42-4 0.999 2.01 1.96 2.36

0.1 0.0199 9.96-3 9.97-3 1.18-5 0.999 2.10 3.59 5.67-2

1.0 0.980 1.15 1.16 1.63-3 0.999 1.97 1.84 4.40

1.0 0.592 0.576 0.576 7.42-4 0.999 2.02 2.09 2.37

1.0 0.0199 8.97-3 8.99-3 1.18-5 0.999 2.01 2.06 3.65-2

• 

. 

— 10 0.980 1.21 1.21 1.63-3 0.999 2.00 2.00 4.84

10 0.592 0.551 0.552 7.42-4 0.999 2.00 2.00 2.21

10 0.0199 8.76-3 8.78-3 1.18-5 0.999 2.00 2.00 3.51-2

20 0.980 1.20 1.20 1.63-3 0.999- 2.00 2.00 4.80

20 0.592 0.546 0.546 7.42-4 0.999 2.00 2.00 2.18

20 0.0199 8.68-3 8.69-3 1 .18-5 0.999 2.00 2.00 3.47-2

500 0.980 0.611 0.613 1.63-3 0.997 2.00 2.00 2.45

500 0.592 0.278 0.279 7.42-4 
- 
0.997 2.00 2.00 1.11

500 0.0199 4.43-3 4.44-3 1.18-5 0.997 2.00 2.00 1.77-2

1~ The notation -2 indicates the power of ten to be multipl ied by the preceeding number.

~~~ 1
1
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Table 2. Computed optical quantities as a function of -r for a medium of total optical
thickness -rmax = 1000 with a dielectric interface at -r

1 
= 0.01. Rayleigh scattering

is assumed both above and below the interface and = 1.0. The input solar flux is
assumed to be unity in a plane perpendicular to the incoming beam.

Hu HD HD 
- Hu Hu/H0 hu/Hu h0/H0 hu + h0

0 0.980 0.978 0.980 2.57-3 0.997 1.79 1.02 2.75

0 0.592 0.590 0.592 1.42-3 0.998 1 .83 1.69 2.08

O 0.0199 1.98-2 1.99-2 1 .60-5 0.999 19.1 50.4 1.38

A*0.01 0.980 0.981 0.984 2.57-3 0.997 1.78 1.07 2.80

o.or~
’ 0.592 0.591 0.592 1.42-3 0.998 1.81 1.74 2.10

• 0.0199 1.81-2 1.81-2 1.60-5 0.999 31 .0 35.1 1.20

0.980 1 .82 1.82 2.57-3 0.999 1.98 1.88 7.03

0.018 0.592 1 .09 1.09 1.42-3 0.999 2.01 2.04 4.41

0.0199 1.24-2 1.24-2 1.60-5 0.999 2.01 2.08 5.10-2

0.1 0.980 1.83 1.83 2.57-3 0.999 1.98 1.89 7.07

0.1 0.592 1.09 1.09 1.42-3 0.999 2.01 2.04 4.40

0.1 0.0199 1.24-2 1.24-2 1 .60-5 0.999 2.01 2.08 5.08-2

1 .0 0.980 1.88 1.88 2.57-3 0.999 1.99 1.94 7.41

1.0 0.592 1.07 1.08 1.42-3 0.999 2.00 2.02 4.33.. 1.0 0.0199 1.21-2 1.21—2 1.60-5 0.999 2.01 2.03 4.90-2

10 0.980 1.91 1.91 2.57-3 0.999 2.00 2.00 7.64

10 0.592 1.05 1.06 1.42-3 0.999 2.00 2.00 4.22

10 0.0199 1.19-2 1.19-2 1.60-5 0.999 2.00 2.00 4.75-2

20 0.980 1.89 1 .89 2.57-3 0.999 2.00 2.00 7.56

20 0.592 1.04 1.04 1.42-3 0.999 2.00 2.00 4.18

20 0.0199 1.17-2 1.18-2 1.60-5 0.999 2.00 2.00 4.70-2

500 0.980 0.964 0.966 2.57-3 0.997 2.00 2.00 3.86

500 0.592 0.533 0.534 1.42-3 0.997 2.00 2.00 2.13
500 0.0199 5.99-3 6.01-3 1.60-5 0.997 2.00 2.00 2.40-2

*Superscripts A and B refer to detec tors placed just above and just below the interface

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~—
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Table 3. Same as Table 2 except -r
1 

= 0.1.

C0 Hu MD H0 
- Mu HulK0 hu/Hu hD/HD hu + hD

0 0.980 0.977 0.980 2.60-3 0.997 1.85 1.02 2.81
0 0.592 0.590 0.592 1.41-3 0.997 1.95 1.69 2.15
O 0.0199 1.98-2 1.99-2 2.21-5 0.999 3.35 50.4 1.07

0.01 0.980 0.981 0.984 2.60-3 0.997 1.86 1.07 2.88
0.01 0.592 0.591 0.592 1.41-3 0.998 1.95 1.75 2.19
0.01 0.0199 1.61-2 1.61-2 2.21-5 0.999 3.08 3.88 0.676

0.980 1.01 1.01 2.60-3 0.997 1.87 1.29 3.20
0.592 0.593 0.594 1.41-3 0.998 1.93 1.95 2.30
0.0199 1.01-2 1.01-2 2.21-5 0.998 2.98 3.60 6.65-2

0.980 1.86 1.86 2.60-3 0.999 1.98 1.90 7.21
0.18 0.592 1.08 1.08 1.41-3 0.999 2.01 2.04 4.37
0.18 0.0199 1.69-2 1.69-2 2.21-5 0.999 2.01 2.04 6.84-2

1.0 0.980 1.91 1.91 2.60-3 0.999 1.99 1.95 7.52
1.0 0.592 1.07 1.07 1.41-3 0.999 2.00 2.02 4.30
1.0 0.0199 1.67-2 1.67-2 2.21-5 0.999 2.00 2.02 6.71-2

10 0.980 1.93 1.94 2.60-3 0.999 2.00 2.00 7.74
10 0.592 1.05 1.05 1.41-3 0.999 2.00 2.00 4.19
10 0.0199 1.64-2 1.64-2 2.21-5 0.999 2.00 2.00 6.56-2

20 0.980 1.91 1.92 2.60-3 0.999 2.00 2.00 7.66
20 0.592 1.03 1.04 1.41-3 0.999 2.00 2.00 4.14
20 0.0199 1.62-2 1.62-2 2.21-5 0.999 2.00 2.00 6.49-2

500 0.980 0.976 0.979 2.60-3 0.997 2.00 2.00 3.91

500 0.592 0.528 0.530 1.41-3 0.997 2.00 2.00 2.12

500 0.0199 8.27-3 8.30-3 2.21-5 0.997 2.00 2.00 3.31-5

~~~1
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Tabl e 4. Same as Table 2 except T

I 
= 10.0.

C0 Hu H0 U0 Mu KU/MD hu/Hu h0/H0 hu + h0

O 0.980 0.977 0.980 2.89-3 0.997 1.87 1.02 2.83
0 0.592 0.590 0.592 1 .32-3 0.998 2.00 1.69 2.18
O 0.0199 1.98-2 1.99-2 2.09-5 0.999 3.28 50.4 1.06

0.01 0.980 0.981 0.984 2.89-3 0.997 1.87 1.07 2.89
0.01 0.592 0.591 0.592 1.32-3 0.998 2.00 1.75 2.22
0.01 0.0199 1.61-2 1.61-2 2.09-5 0.999 3.00 38.8 0.675

0.1 0.980 1.01 1.01 2.89-3 0.997 1.90 1.30 3.24
0.1 0.592 0.595 0.596 1.32-3 0.998 2.01 1.96 2.36
0.1 0.0199 9.45-3 9.97-3 2.09-5 0.998 2.10 3.59 5.67-2

1.0 0.980 1.15 1.15 2.89-3 0.997 1.97 1.84 4.39
1.0 0.592 0.575 0.576 1.32-3 0.998 2.02 2.09 2.36
1.0 0.0199 8.96-3 8.98-3 2.09-5 0.998 2.01 2.06 3.65-2

0.980 1.20 1.20 2.89-3 0.998 2.00 2.00 4.80
• ioA 0.592 0.546 0.548 1.32-3 0.998 2.00 2.00 2.19

0.0199 8.69-3 8.71-3 2.09-5 0.998 2.00 2.00 3.48-2

0.980 2.15 2.15 2.89-3 0.999 2.00 2.00 8.59
108 0.592 0.978 0.980 1.32-3 0.999 2.00 2.00 3.91

0.0199 1.55-2 1.56-2 2.09-5 0.999 2.00 2.00 6.22-2

20 0.980 2.13 2.13 2.89-3 0.999 2.00 2.00 8.51
20 0.592 0.968 0.970 1.32-3 0.999 2.00 2.00 3.88
20 0.0199 1.54-2 1.54-2 2.09-5 0.999 2.00 2.00 6.16-2

500 0.980 1.085 1.088 2.89-3 0.997 2.00 2.00 4.34
500 0.592 0.494 0.495 1.32-3 0.997 2.00 2.00 1.98
500 0.0199 7.85-3 7.88-3 2.09-5 0.997 2.00 2.00 3.15-2
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I
FIGURE CAPTIONS

Fig. 1. Geometric representation of angular variables used in the atmosphere-

ocean system.

Fig. 2. a) Function transformation used for mapping ocean angular variables

into atmospheric angular variables. b) Function transformation used

to map atmospheric angular variables into ocean angular variables.

Fig. 3. a) Upward diffuse azimuthally averaged radiance 10 versus p for a

conservative Rayleigh scattering medium of total optical thickness

max = 1000 with a dielectric interface at = 0.01 for optical

depth values of 0, o.oi’~, 0.01
8, 1.0, and 10.0. Superscripts A and

B refer to detectors just above and just below the interface res-

pectively. The solar incident angle is C0 
= 0.980 (cz = 1.5°) and

the results are normalized to their maximum va l ue at each optical

depth . b) Same as a) except results are for the downward diffuse j0•

Fig. 4. a) Same as 3a except C~ 
= 0.592 (~ = 53.7°). b) Same as 3b except

Co 
= 0.592 (c~ = 53.7°).

Fig. 5. a) Same as 3a except C0 
= 0.0199 (~ = 88.9°). b) Same as 3b except

= 0.0199 (a 88.9°).
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