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COMPUTING THE CORE OF A MARKE T GAME

by

Gerald L. Thompson
Carnegie-Mellon University

ABSTRACT

The assignment market game was defined by Shapley in 1955 and received

a very full treabnent by Shubik and Shapley in 1972. The present paper con-

tains the following extensions: (a-~ the assignment game is generalized to a

market game; (-b) the two distinguished core points found for the assignment

game are also shown to exist for the market game; (c) in the non dual degen-

erate case it is shown that the skeletons of the buyer and seller cores are

isomorphic k-graphs; and (d) an algorithm is presented for computing skeletons

of the buyer and seller cores of a market game.

The results are illustrated with examples . At the end some remarks

are made on the limiting sizes of cores.
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Computing the Core of a Market Game

by

Gerald L. Thompson

1. INTRODUCTION

The assignment market game was introduced by L. S. Shapley in 1955

and later received a very full treatment by Shapley and M. Shubik [7] in

1972. The present author became interested in these games and their general-

izations while writing a paper on auctions (lii .

The basic observation in [7] was that  the extrem e points of the core

of an assignment game can be found by computing all basic solutions to the

dual of an assi gnment problem . In the present paper i t  is shown that  the

core of a market game can likewise be found by computing all basic solutions

to the dual of a transportation problem. In each case it was found that the

size of the core was increased by primal degeneracy and decreased by dual

degeneracy of the corresponding assignment or transportation problem . We are

thus led back to the degeneracy questions in such linear programming models

which occupied Charnes and Cooper [2], Dantzig [4] and Orden [6] in the early

days of linear programming .

Shapley and Shubik (7] show that the core of an assignment game has

two distinguished points. We extend that result to market games , and show

in Section 4 that the degeneracy prevention technique of Orden (6] can be

used to easily compute these two points . In Section 4 it is also shown that ,

if the transportation problem associated with the market game is not dual

degenerate , and the basic solution of the primal transportation problem has

k + 1 basic cells on which there is zero shipment , then every extreme point

of the buyer or seller core has exactly k neighbors. If we let the skeleton

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of the core be the graph consisting of the extreme points and edges of the

core then we can reformulate that result simply as: the skeleton of the

~~y~r or seller core is a k-graph (i.e. every vertex has degree k).

In Section 5 an algorithm is given for computing the skeletons of the

buyer and seller cores . As a by-product of the algorithm we also prove:

the skeletons of the buyer and seller cores are isomorphic.

Some ntmierical examples of the application of the algorithm are given

in Section 6 together with some remarks on the variation in the size of the

core as the tuanber of players increases . Although some preliminary observa-

tions are made it is clear that the full answer to the latter question requires

another paper.

The existence of current f ast codes [1, 5, 9] for solving transportation

problems makes finding a single solution to a very large market game easy.

However the possible existence of a huge number of extreme basic dual solutions

makes it unlikely that anyone will compute all the extreme points of the core

of a market game having many players except in the case in which

the problem is highly dual degenerate. In Section 6 it is suggested that the

computation of the two distinguished extreme points , together with a few

“threads ,” i.e., paths on the skeleton, connecting these two extreme points ,

will probably suff ice for large problems having “fat” cores .

2. NOTATION FOR MAR KE T GAMES

We denote the index set of the sellers by

I = (1,2,... ,m) (1)

and denote the index set of the buyers by

.3 [l,2,...,n) (2) - 

-~~~~~~~~~~~~~~~~~~ - - - -~~ ~~~- --- - -~~~~~~~~~~~~~~ -~~~~ 
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We assume that  seller id has

a~~> O  (3)

units of a good to sell , and that buyer jcJ wants to buy

b~~> O  (4)

units of the good. We let

Cj J
>_ O (5)

be the bid of buyer j for one unit of seller i’s goods. The nonnegativity

requirement in (5) means that seller i can dispose of his goods without

charge in case no one bids a positive amount for it.

We make the same economic assumptions as do Shapley and Shubik [71

in their treatment of the assignment market game, namely:

(a) Utility is identified with money

(b) Side payments are permitted

(c) The objects of trade are indivisible

(d) Supply and demand functions are inflexible.

The remarks they make about these assumptions are pertinent here and will

not be repeated.

As in the assignment game [7], the only profitable coalitions are

those containing some buyers and some sellers . Also , because of assumption

(5) and the side payment condition (b), the only important coalition is the

all-player coalition S = I U J. We shall concentrate on evaluating v(S)

for this coalition only, since the same techniques can be used , if desired ,

for any other coalition.

Let X
j j  be the number of units i sells to 

~~~
. The value v(I U .3)

is obtained by solving the linear program:

L
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Maximize Z Z ~~~ C~
j et je J

Subject to (6)

E x . < a.
jeJ ~~ 

—

E x~ < b .
iCI ~

X
jj ?. °

The nonnegativity requirement on X
jj 

means that the exchange of property

is from seller i to buyer j. The maximization objective in (6) means

that we seek a set of transactions that maximizes the total gain of the

coalition I U .3 of all sellers and buyers (see Shap ley and Shubik [7]).

If b~ = 1 for jeT the problem is called a semi-assignment market

game. If, in addition, a~ = 1 for i~I the problem is called an assiEnxnent

market game. 
-

The dual linear programming problem to (6) is easily written as

Minimize E a . u . + E b v.
1 ] .  . j Jj ei

Subjec t to (7)

U
1 

+ V
j 
>.-c1j for id , jcJ

u. > O  for id

V~~~~ O for J€J

where u~ and V
j 

are the dual variables associated with the first and

second cons traints in (6), respectively .

The core of the marke t game is the se t of all solutions to the dual

problem (7). This was argued in [7] for the assignment case , and the same

result holds here. Because of the non-negativity conditions (3), (4), (5)

and well-known linear programming results , the core is a bounded convex poly-

hedral set.

II. 
_ _ _ _ _  _ _ _ _ _ _ _  

_ _ _ _
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We can turn (6) into the class ical transpor tation problem of linear

programming by adding a dummy seller (m+ l~ and dummy buyer fn+fl giving

extended seller and buyer index se ts

I’ = I U [m+1) (8)

.3’ = .J U (n+l~ (9)

We define the bids of these dummy players to be

= 0 for je J ’ (10)

~~~~~ = 0 for id ’ (11)

and note that (10) can be interpreted as a “free gift” option for the buyers

and (11) can be interpreted as a “free disposal” option for the sellers . To

determine the amount sold by the dtmmiy seller and the amount bought by the

dummy buyer , we firs t def ine

E a~ (12)
i €I

~ b~ (13)
j eJ

and then define

a~~ 1 =~~ [ l T - S I + ( T - S ) ]  (14)

b~+1 =~~ [!s - T I + ( S - T)] (15)

as the amount sold by the dunuity seller and the amount purchased by dummy

purchaser , respectively . It is easy to see that at least one (and possibly

both) of am+1 and b
~+i is 0. In any case we retain both dummy p layers

in the transportation problem for reasons that will become clear later.

We now use the above definitions to state a transportation problem

from which the solution to (6) can be obtained .
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Maximize Z ~ x c
i€ I ’ j€J ’ ~~i

Subject to (16 )

~ x. . = a. for let ’
jeJ ’ ~~

z x = b  for jeJ ’
id ~~

X
jj ~~ 

0

The dual. probl em to (16 ) is

Minimize Z a . u. + Z b v .
id ’ 

~ ~ ~~~~~~~ 

j 
~

Subject to (17)

+ V
j ? c1~ for iel ’, jeJ ’

Clearly the only difference between (7) and (17) is the nonnegativity

requirements on the dual variables which are present in (7) but missing

in (17).

It is well known that the set of dual solutions to (17) is unbounded ,

since given any solution u~, v?, we can get infinitely many others from

it by the transformation u? + 8 for id ’, v? - 8 for j€J ’, where 8 is

an arbitrary number. Also, if the c..’s are chosen arbitrarily then there

may be ~~ nonnegative solutions to (17). However, given assumption (5)

that C
jj ? 0 we will be able to show that the set of nonnegative solutions

to (17) is non-empty and bounded , and we will, give a constructive way of

generating all extreme solutions. Hence we impose the nonnegativity constraints

U
j ~~~. 0 for iII’ and V

j 
0 for jeJ ’ (18)

on the solutions to (17).

As indicated in [7] when the market game is an auction the inter-

pretation of the u1,
’s are the selling pr ices received by the sellers for

-— -.- — -- — ——------—
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their goods and the v ,~’ s are the buyer surplues at tained by the sel lers.

For elaboration of these interpretations , see [7].

3. PRELIMINARY RESULTS

We concentrate on the solution to the t ransportat ion problem (16 )

and its dual (17), bringing in the nonnegativity constraints (18) when

appropriate.

Given a non-empty mode set N and edge set E of pa irs ( i,j)

of nodes i ,jcN we let C = (N ,E) be the graph with nodes in N and

edges in E. A tree is a connected graph with no cyc les.

DEFINITION 1. A basis B consists of a subset of m+n+l cells of

, I I I
I x J such that the graph C = (I U J , B) ~.s a tree.

A pendant node of a graph is one that is incident to a single edge.

It is well known that every tree having one or more nodes has at least one

pendant node. Given any basis B, we can solve for a primal solution X (B)

satisfying the first two constraints in (16) by the following well-known

procedure: find a pendant node i; solve for the x1,~ corresponding to

edge (i,j) incident to i; eliminate edge (i,j); repeat until m+n+l

values for x ‘s are determined; all other x. . ‘s are set equal to zero .
ii 1J

(Note that this process may give some negative x.. values.)

DEFINITION 2. Given a basis B let X(B) be the corresponding

solution for the x
e

’s satisfying the first two constraints in (16). If

all the x~~ values in X(B) are nonnegative then B is said to be primal

feasible. If X(B) solves the optimization problem (16) then B is said

to be primal optimal.

Given a basis B, we can solve for a one parameter family of solutions

U(B) and V(B) to the dual problem (17) by the following procedure: selec t 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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any u. or v~ arbitrarily and give it the value 8; say u
1 

= 8; then

determine the values of the dual variables v . , v • ,. .. ,v . corresponding
~1 ~ 2

to basis cells (l ,j1
), (1,j2),.. ,(1J~ ) in row i; next find the values

of the dual variables not yet determined in rows corresponding to basis cells

in the columns 
~1’~~••’

3k just used; etc.; repeat until all dual variables

are determined.

DEFINITION 3. Given a basis B let U
8

(B) and V
6
(B) be the cor-

responding solutions for the u~,’s and v . ’s, depending on the parameter 8.

If these u~,’s and v~ ’s satisfy the constraints of (17) then B is dual

feasible. If U
5

(B) and V
8
(B) solve the optimization problem in (17) 

*then B is dual optimal. If B is dual optimal and there is a value 8

of 8 such that the dual solutions U
8~

(B) and V
8~
(B) are nonnegative ,

i.e., they satisfy (18), then B is said to be non-negative dual optimal.

LEMMA 1. Given the nonnegativity assumption (5) each primal optimal

basis B is also nonnegative dual optimal.

PROOF. Given a primal optimal basis B let X(B) be the optimal

primal solution and U
8

(B), V
6
(B) the optimal dual solutions . Then we

have

+ v~ >~ c .~ > 0 for i~I
’, jeJ ’ (18)

Suppose s~,me u~ is negative; choose the most negative one , say it is u1.

Then

U
1 

+ V
j 

> 0 for j  cJ ’ implies v,~ ? - u
1 ~ 

0 for i eJ ’

Henc e if we set 6* = -u1 
we have

Uj + 6 ?. 0 all id ’ and V
j 

- 6 ~ 0 all jeJ ’ -

~~~~~~~~
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so that U
8~

(B) and V
8~

(B) are op timal , nonnegative dual solutions .

A similar argument holds if some v~ is negative.

REMARK 1. Because of Lemma I we can drop the adjectives “primal” and

“nonnegative dual” before the words “optimal basis. ” We shall just speak

of an optimal basis .

REMARK 2. Because of assumption (5) and (18) we know that there is

no “more for less” transportation paradox , since the existenc e of such a

paradox requires u. + V .  to sometimes be positive and sometimes negative;

see Charnes and Klingman [31 , Szwarc (121 , and Srinivasan and Thompson [8].

THEOREM 1. Given assumption (5) the dual problems defined by (16),

(17) , and (18) have solutions X(B), V(B) and V(B) with u~~,1 = 0 and

V
41 

= 0. Restricting these solutions to the index sets I and 3 give (not

necessarily basic) solutions to the dual problems defined by (6) and (7).

PROOF. Solve (16) and (17) by one of the standard transportation

methods such as the MODI method . Let B be the optimal basis so obtained .

Use the method of Lemma 1 to get nonnegative, optimal dual solutions U(B)

and V(B) for some 6 (which we do not designate). Since Ci n+l 
= 0 for

all id ’ we have u. ÷ v > c , 0 for all id ’ and , because
i. n+l —

there is at least one cell (i*,n+l) ~ B, it follows that u. + Vn+l =

Since u. > 0 and v > 0 we have u. v = 0. A similar argumentn+l — i

shows u~~,1 = 0. 
-

It is clear that restricting X(B), U(B), and V(B) to I and .3

give optimal solutions to (6) and (7) since (16) and (17) were derived from

them by adding slack variables . These optimal solutions will be basic for

(6) and (7) only if B restric ted to I x J is also a basis.

In the example worked in Section 6 some restricted solutions are basic

and others are not basic .
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DEFINITION 4. (a) Problem (16) (and (17)) is primal degenerate if

there are two bases B1’ # B
2 

such that X(B~’) = X(B2) .

(b) Problem (17) (and (16)) is dual degenerate if there are two

bases B1’ 
# B

2 
such that both U

5 
(B1’) = U

6 
(B2) and V . (B’) = V

8 
(B2).

1 2 ~l 2
The next two lemmas give alternate characterizations of primal and

dual degeneracy . These results are well-known , hence the proofs are not

given.

LEMMA 2. (a) Problem (16) is primal degenerate if and only if there

is a feasible basis B with solution X(B) such that x
,~ 

= 0 for some

(i,j) e B.

(b) Problem (16) is primal degenerate if and only if there are subsets

~ I and ~ 3, with at least one of Il, J1 a proper subset , such

that -

~ a. = Z b.
i€i 1 jcJ 1 ~

LEMMA 3. (a) Problem (17) is dual degenerate if and only if there is

a feasible basis B, with dual solutions U(B) and V(B), such that

- u~, - V
j 

= 0 for some (i , j)  ~ B.

(b) Problem (17) is dual degenerate if and only if there is a cycle

~) such that

E c . 0.
(i,j)~Q 

ij

(Note: A cycle 0 is a se t of cells (arcs) (i,j) e I x .3 such that each

row and each column of the matrix c contains either no cells or exactly

two cells of 0.) 

-- —~~~~~~ -- ~~~~~~~ -~~~~-
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REMARK 3. If (16) is not primal degenerate then there is a one to one

correspondence between optimal bases and optimal primal solutions X(B).

Similarly , if (17) is not dual degenerate then there is a one to one cor-

respondence between optimal bases B and optimal dual solutions U(B), V(B).

REMARK 4. Some problems are both primal and dual degenerate. For

instance, suppose m = n = 2 , c = I , a
1 

= a
2 

= b
1 

= b
2 

1. Then the

corresponding problem given by (16) and/or (17) has the following tableau:

o 0 1

0 0
1 o i.

O 0 0 0

1 1 0

An optimal basis B consists of the two circled cells together with any

three of the four cells (2,1), (2,3) ,  (3 ,1) and (3 ,3). For each of these

four bases the optimal primal and dual solutions are:

(a) x11 = x22 = 1, all other x , . = 0

(b) u v = 1 all other u.’s and v .’s = 0.1 2

In the remainder of this paper we will work with problems (such as

assignment problems) which are highly primal degenerate , but assume (for

expositional purposes) they are not dual degenerate in order to make the

description of the algorithm for finding all dual solutions easy. As is

well known a small perturbation of the c, . ‘s is sufficient to insure dual
2.3

nondegeneracy.

4. CHARACTERIZATION OF THE CORE

In (71 Shapley and Shubik charac terized the core of an ass ignment 

-~~~~~~~ -— - - ~~~~~~~~~ - ---~~~ -~~~~~~~~ -“- - —- ---~~~~~~~~~~~~~ -
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market game as the set of nonnegative dual solutions to an assignment problem ,

and showed that there were two distinguished points , one that maximizes seller

surplus and another that maximizes buyer surplus . Here we extend their re-

sults to general market games , and provide theorems that provide computational

techniques for the algorithm of the next section.

DEFINITION 5. The core of the market game (6) is the set of all non-

negative solutions to its dual problem (7); i.e., the core is the set of all

solutions to (17) and (18). We denote the core by C = (C( U ) , C ( V ) )  wher e

C(U) is the set of row dual solutions U which we call the seller core,

and C(V) is the set of column dual solutions V which we call the buyer core.

R EMARK 5. From Theorem 1 it follows immediately that the core is non-

empty. From standard linear programming theory we know the core is a bounded

convex polyhedral set having a finite number of extreme points .

DEFINITION 6. Given a market game the maximum seller surplus u
’
~

for seller i is given by

= Maximum u. (19)
U e C(U) ~‘

The minimum seller surplus ~~~ is defined by replacing the word Maximum

by the word Minimum in (19). The vectors U and u~ with components u~

and u~1 are the maximum and minimum seller surplus vectors .

DEFINITION 7. Given a market game the maximum buyer su~ lus v’~ for

buyer j is given by

*v , = Maximum v , (20)
‘ V e C ( V ) ~

The minimum buyer surplus V
*j 

is defined by replacing the Maximum by the

word Minimum in (20). The vectors v and v,~ with components v~
’ and

are the maximum and minimum buyer surplus vectors.
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*ThEOREM 2. Given a market game (6), the vector pairs (u , v
~

) and

*(u*, v )

(a) are in the core;

(b) are the furthest distance apart of any two vec tors in the

core;

(c) individually and collec tively maximize, or minimize , buyer or

seller surpluses .

PROOF. (a) Let B be any optimal basis for (16) and (17) and let

u
i

(B) and v~(B) be the components of the optimal dual solution . Then

u~ (B) + v~ (B) > c ,. for i€I ’ and j€J ’ (21)

Since (21) holds for all optimal bases we have from (19)

u~ + v~ (B) ~ c~~ for i€I ’ and jeJ ’ (22)

Since u1 
is a constant, we have from the definition of v,~. that (22)

is true for each optimal basis B. Hence

*u. + v . > c . . for id ’ and jeJ (23 )
2, *3 ” ~ 13

*and it follows that (u , v
~
) is in the core. A similar argument holds

*for (ut, v ).

(b) If (u, v) is any vector in the core then u~~ < u~, < u*

for id ’ and v
*j ~~. v~ ~ v for j~J

’ so that the euclidean distance

between any two vectors in C must be less than the distance between (u*, v
~
)

and (ut, v ). As Shap ley and Shub ik point out, the same minimum distance

result also holds for any other distance function between two points whose

definition depends only on the absolute differences of vector components.
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(c) Definition (1.9) shows that in the core , u~ maximizes the surplus

of buyer i surplus as an individual; if we add together the components of

* *u , that is , we compute S = D.i~, , it follows that the collective surplus

* *is also maximized at u . Similar remarks hold for u,~, v and v,~.

Theorem 2 characterizes the two “end points” of the core. The next

theorem shows how these two distinguished core solutions can be calculated

by making use of well-known perturbation techniques for the transportation

problem.

We def ine two kind s of perturbation (P1) and (P2), by the following

transformations , where the arrow “-‘“ means “is replaced by”:

a. -. a. for id , a~~1 
a~~1 

+ n~

(P 1) b
1 

— b~ + e for j~J, b~~1 
b 41

1where 0 < € < 2(n-fl )

ai
-.a

~~
+€ fo r ieI, a~~1

— a ~~1

(P2) b . -. b
1 
for jeJ , bn+j bn+l + m~

1where 0 < € <

As shown in Orden , (6] or Dantaig [4] either of these perturbations , when

applied to a transportation problem , gives a primal non-degenerate problem.

Srinivasan and Thompson (10] showed that , given integer rim data , the

primal solution X(€) to the perturbed problem , when sc ientifically rounded ,

yields an optimal integer primal solution T(X(c)) to the original problem.

We make use of this fact in the proof of the next theorem.
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THEOREM 3. Let (6) be a market gam e with integer rim data and let (16)

and (17) be the corresponding transportation problem; we assume (for con-

venience) the latter is dual non-degenerate.

(A) The dua l solutions to (16), (17) after applying perturbation (P1)

*give the core vector pair (u , vt).

(B) the dual solutions to (16), (17) after applying perturbation (P2)

give the core vec tor pair (ut, v*).

PROOF. (A) Perform (P1) to the data for the dual problems (16) and (17)

and solve; call the solutions X(€), iJ(~ ), V(e) and let B(c) be the optimal

basis. By Theorem 1, u~~1 
= 0 and V ÷l = 0 at the optimum , so that the

dual problem (17) can be written as

Minimize E a.u. + 2 b v .  + € (  v.)
id 

2. 1 y 
j€J (24)

Subject to u~, + v1 
> c~~ for ieI’, lcJ ’

Let T(X(e)) be the vector of scienti fically rounded values of X(c); by

Theorem 2 in (10] T(X(s)) is an optimal integer solution to the unperturbed

problem (16) with the same basis B(€) as X(€). Since the dual solution

to (24) depends only on the basis B(€) we see that U and V solve both

the perturbed and unperturbed versions of (17). Hence 
~ a.u. + ~~ 

b .v . = K ,
j€~T ~

where K is the value of mutual objective values of unperturbed problems (16)

and (17). We see that (24) becomes

Minimize € ( 2 v
1
) + K )

j€J (25)

Subjec t to U
j + V

j 
> for ieI’, jcJ ’ J

and , since K can be ignored and £ > 0, the solutions to this problem
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must minimize the sum 2 v1. By Theorem 2 the vector pair of the core
I CJ

that solves (25) is (u*, v~
).

The proof of part (B) is similar .

The computational importance of Theorem 3 is immediately obvious .

For by solving just two transportation problems it is possible to find the

* *two distinguished extreme points of the core (u , v
~
) and (ut, v ) . By

using one of the current transportation codes [1, 5, 9] this computation

can be made in a few seconds or minutes , even for problems having hundreds

of buyers and sellers . Since the core tends to be long and thin with the

other points in the core usually lying quite close to the line segment between

these two extreme points , finding them already gives a very good idea of what

the core is like . The examples in Section 6 will illustrate this point .

The next theorem to be proved shows how to move from a given extreme

point of the core to its neighboring extreme points. However , before we can

state that result we mus t recall some notation and concepts from other papers .

We put these as a series of remarks.

REMARK 6. Let B be a basis and C = (I’ U J’,B) the corresponding

bas is graph. Let (p,q) be any cell in B, which is also an arc of G.

If (p,q) is removed from B giving an arc set B ’ = B - ((p,q)) then

= (I ’ U J ’,B ’) has two connected components G~ and G~ where p

belong s to the node set of G~ and q belongs to the node set of G~~.

Let I~ and be the sets of indices of the rows and columns in G~ ;

also let I~ and J~ be the se ts of indices of the rows and columns in G~ .

Then I~ U I~ = I’ and I~ fl I~ = 0, that is I~ and I~ partition I’.

Similarly J~ and J~ part i t ion 3’. Because of the rim positivi ty assump-

tions (3) and (4) it is easy to show that no set in any of these partitions
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is empty . The “scanning” routine on p. 218 of (81 can be used to find

these partitions .

REMARK 7. If (pa’, q~
’) and (p2, q2) are two different cells of B

(neither of which is (m+l , n+1)) then (I~)
1 
~ (I~)2 and (J~)]. ~ (J~)

2
.

For suppose 
~
‘R~ 

= ; then 
~‘C~ 

(I a ) . But suppose we remove

both (p~’, q~
’) and (p 2 , q 2 ) from B. The resulting graph has three

components with p 1’ and p
2 

belonging to the same component and q~
’ and

to each of the others. From this it follows that (I~)~
’ fl (I~)

2= 0, which

together with (I~)~
’ = (I~)2 implies that both sets are empty, contradicting

the result in Remark 6.

REMARK 8. Define

= - Maximum (c.. - u - v ) (26)
f .  4 \  T ’V T 1 1.3 i j
‘ ‘~‘~~c R

As shown in [8 , p. 2311 the set I~ x has no basis cells in B. Because

of this and the fac t that we assume (17) to be non dual degenerate, it follows

that p~ > 0. Let (r,s) be the cell in I~ x at which the ma ximum in

(26 ) is taken on.

REMA RK 9. As shown in (8, p. 2411 the set B* = B - [(p,q)) +

is a basis.

REMARK 10. By “zero shifting” we mean a change in the basic solution of

the following kind: 
~~~~ 

(p,q) 6 B be a cell such that Xpq 
= 0; let

~~~~~~ 1c~ ~~~ 
3C’ p., B , and (r ,s) be as defined in Remarks 6-9; then carry

out the following transformations (see [8], p. 232):

B — B* = B - [(p ,q ) ~ +
*x - .x = x

_ _ _
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u. -
~~ u + p. for iel ’, u. -. u. for id ’

2. i R 3. 1 C

* 

v. - v
1 

- p. for j 6J~~, v~ — V
j 

for 

* * *Let U and V be the transformed dual solutions . Then X , U and V

are alternate optimal solutions to (16) and (17). The proof is contained in

the above cited reference.

THEOREM 4. Assume (17) is not dual degenerate and let X be a basic

prima l solution to (16) with basis B. Let k+l be the number of cells (i , j)

in B such that x~1 
= 0. Then every extreme point of C(U) and every

extreme point of C(V ) has exactly k distinct neighbors ; each of these can

be found by the “zero shif t ing” process of Remark 10.

PROOF . For each x~~ 0 and (i ,j) c ~ (excep t for cell (m+l , n+l))

calculate as in Remark 8 and carry out the zero shif t as in Remark 10

creating new dual solutions U. . and V... By the results in Remarks 6 and 7

the partitions induced in both I’ and 3’ are different. Since > 0,

see Remark 8, the new dual solutions are distinc t, comp leting the proof.

DEFINITION 8. The skeleton of the core is the graph (P , E) where P

is the set of extreme points and E the set of edges connecting adjacent

extreme points determined as in Theorem 4.

DEFINITION 9. A k-grap h is a graph in which every vertex is connected by

k edges to adjacent vertices .

Using these two definitions we can reformulate the results of Theorem 4

in the following succinct fashion .

THEOREM 5. Consider a market game for which the associated dual

problem (17) is not dual degenerate; then the skeletons of the row and column

cores , C(U) and C(V), are k-graphs .



-
~~~ - -

-19-

In Section 6 we present two examples: a 2x2 assignment market game in

which these skeletons are 2-graphs , and a 3x3 assignment market game in

which these skeletons are 3-graphs (cubic graphs).

5. ALGORITHM FOR COMPUTING THE CORE

The results of the preceeding section permit us to state an algorithm

for computing all the extreme points and edges , that is , the skeleton of the

*buyer and seller cores . The algorithm starts at the point (uk, V ) and

works its way “upward” through the buyer core. To measure the “upward”

direction we compute s = 2 U
i 

for each solution and choose new solutions
i €1

in such a way that s never decreases . Three lists are maintained; L, the

list of extreme points computed but not all of whose neighbors have been com-

puted; P, the list of all extreme points whose neighbors are fully computed;

and E , the list of all edges in the skeletons . The precise statement of the

algorithm is now given.

A~ggrithm for finding the skeletons of the buyer and seller cores.

Let X be the fixed primal solution . For each optimal basis B let

S = [B, u, v, s ’} where u and v are the dual solutions and s = 2 u..

* 
id 

1

(0) Use perturbation (P2) to calculate S1 
= [B1,u~,v ,s~~).

Set L = [5), P ~ 0, and E = 0.

(1) Find Si € L with smallest sum Si.

(2) Suppose there are t unmarked cells (p,q) in B~ such that

Xpq 0. For each 3 1,... ,t calculate by shifting

the zero at (p,q) as in Remark 10. Put edge (S., S~ ) in E.

(a) Is S
1 

in L? If yes go to (b). If no go to (c).

(b) Mark the zero cell just shifted in S
1
. If all cells in

S
1 

are marked , take S
1 

out of L and put it in P.
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(c) Put S
,~ 

in L after marking the zero-cell just shifted .

(3) Take S~, out of L and put it in P. If L = 0 go to (4).

Else go to (1).

(4) List P contains all the extreme points and list E contains

all the extreme edges of the buyer and seller skeletons . Stop .

A by-product of this algorithm is the fact that we compute extreme

points and edges of both cores simultaneously and there is a 1-1 correspondence

between them explicitly exhibited by the steps of the algorithm . We summarize

this by the following theorem .

ThEOREM 6. The skeleton graphs of the buyer and seller cores are

isomorphic .

It is possible to app ly this algorithm even when the market game is

dual degenerate (as is the 3x3 example on p. 122 of [71.) All that changes

is that there are fewer extreme points to compute , and the degrees of each

point are not necessarily the same.

6. EXAMPLES

We present two examples to illustrate the ease with which the algorithm

can be applied .

The first is the 2X2 assignment market game whose tableau is given by

2 1

1 1

The optimal primal solution is marked . The complete set of tableaus for  the

various solutions constructed by the algori thm of the preceeding section is 

— --~~~~—~~~~~~~~~~~
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shown in Figure 1. The skeletons of the buyer and seller cores are shown

in Figure 2. The isomorphism (in this case even the congruence) of these

two figures is evident by making a 1800 rotation of either figure.

The core was also computed for the following 3x3 assignment market

game .

6 5 1

3 4 1

1 2 ®
l 

1

1 1 1

The skeleton of the seller core for this example appears in Figure 3. Note

that it has 20 vertices , 30 edges and 12 faces; these numbers are the same

as for the dodecahedron. However this figure is clearly not a dodecahedron

because it has 3 faces with 4 sides , 3 faces with 6 sides , and 6 faces wi th

5 sides, whereas a dodecahedron has 12 five sided faces . The actual extreme

points for both buyer and seller cores are listed in Figure 4. The extreme

edges can be found in Figure 3.

The author has also used the algorithm to solve the 3x3 assignment

game solved by Shapley and Shubik on p. 122 of [71. Because of dual degeneracy

the cores of that game have 6 extreme points each instead of the twenty of

the examp le in Figure 3.

Although the computations of the algorithm are elementary and can be

done very quickly, the number of extreme points of the core increases very

rapidly wi th  the number of players in a non-dua l degenerate case.  Therefore

it is doubtful that anyone will ever completely compute the core in that

case for games having more than 10 or 20 players .

~ 
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The algorithm of Section 5 can easily be modified to compute a

“thread” on the surface of the skeleton of the core , by simply computing

for each extreme point only a single neighbor in the “upward” direction.
I

For mos t purposes, the knowledge of the two distinguished extreme points

and a few threads connec ting them will  provide a su f f i c i en t ly  accurate

idea of the core.

Although there are a number of important economic models for which

it can be proved that the core size shrinks as the number of participants

tends to infinity , nothing like that can be proved here. In [7] Shap ley

and Shubik discuss this problem to a certain extent. We make here only

the following two remarks, leaving a fuller discussion of the problem for

another paper. Let the core size be the number of extreme points of the

core.

(A) In a market game the core size varies directly with the degree

of primal degeneracy and inversely with the degree of dual

degeneracy (when such degrees are suitably defined .)

(B) It is possible to construct market games having arbitrari ly

many p layers with either (i) single element cores or (ii) maximal

size cores .

_ _  -~~- - -~~~~~~ --- --- ~~~~~~~- - --
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0 0 0

~ 
~~~l 2 0 u* = (3 ,3,0)

3 ~ 
~~~ 0 v~ = (0 ,0,0)

0 2 0 0

3 ©
1 

2 0 2 0
1 ©o o

1 ©o ®
l 

0 3 1 01 0

0 0 00 0 o ®~ 
~~~o

1 0 3 2~~ 0

2 01 2 0 0 0
1 0 ~ 00

0 ®
1 

00 1 1 0

0 0 0 00 0 0 o

3 0

O 2 00 u
~ 

= (0 ,0,0)

0 1 01 00 v~ = (3 ,3 ,0)

0 0 0

FIGURE 1. Algorithm computations for 2x2 example 
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* *

(0 1) 

~~3~~~~~~~~~~~~(3 ,3) 

(0 ,2)

3,1)

(0,0) (2 ,0) (O ,0 (1,0)

Seller Core C(U)  Buyer Core C(V)

FIGURE 2. Skeletons of the Buyer and Seller

Cores for 2x2 Example
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/J
/ (l1’

~ ~~~~~—~..-—.-.-.———-(l3T / I “l~’I / /
/ /  I ’!/ /  / / V I

/ /  / I ‘ I /
/ / /• l..._.( ,_

~
•
~( /

/ ‘

/ /
iv / / /

/ / /
“ - -‘ I / /

/ / /
/ ‘ /

I 
/ /

J / /
/ /

Vertices = 20

/ 
/
/ Edges = 3 0

I /
/

I Faces = 12

1 3

FIGURE 3. Skeleton of the Seller Core for

the 3x3 Example 
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Extreme Points

Number Seller Core Buyer Core

1 (0 ,0,0) (7 ,7,7)

2 (0 ,1,0) (7 ,6,7)

3 (0 ,0,2) (7 ,7,5)
4 (0,1,2) (7 ,6,5)

5 (1,0,3) (6 ,7,4)
6 (4,0-,0) (3 ,7,7)
7 (4,0,3) (3,7,4)
8 • (6 ,2 ,0) (1,5,7)

(4 ,5,0) (3 ,2,7)

10 (6 ,5,0) (1,2,7)
Il (7 ,3,1) (0 ,4,6)

12 (7 ,6,1) (0 ,1,6)
13 (6 ,7,2) (1,0,5)

14 (5 ,4 ,7) (2 ,3 , 0)

15 (7 ,3,6) (0,4,1)
16 (5 ,6,7) (2 ,1,0)

17 (7 ,7,2) (0,0,5)

18 (7 ,4,7) (0,3,0)

19 (6 ,7,7) (1,0,0)
20 (7 ,7,7) (0,0,0)

FIGURE 4. Extreme Points of the Buyer and

Seller Cores for the 3x3 Example.
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