~ AD=A063 616 CARNEGIE=-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 9/2 4
THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.M==ETC(U) \"\
NOV 78 P N OLEINICK NO0014=77=C=0500
UNCLASSIFIED CMU=CS=78-151 NL

| o 2

. cEEREEEEENEE
ERREANEAEEEEER
_ | =[]

Ne)
]
_ﬁc
(np)

r O
&
<t
e
<
f>-
) =
=)
AO
|
—l
i
()
=
(=

o

k

CMU-CS-78-151

LEVEL

A057?7

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS
ON C.MMP

P.N. Oleinick

November 1978

DEPARTMENT
of

COMPUTER SCIENCE

This document has besn approved

i 4 1. men cnd sales
| for public rel end sale;
| distribution is unlimited.

|5

Carnegie-Mellon University

Ja

e e o s At AT S b S Moy —

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS
: ON_CMMP

b ZBN. Oleinick

Computer Science Department

Carnegie-Mellon University
[}) | Novemsweto?s /
\ /7 j

Keywords: performance evaluation, multiprocessors, synchronization, parallel algorithms,
cooperating processes.

The research described here was supported by the Defense Advanced Research Projects

Agency (Contract: F44620-73-C-0074, monitored by the Air_Force Office of Scientific

Research), and in part by the Office of Naval Research (Co?lrs!‘h; Nﬂﬂﬁld-??—C—dSUQ;, L.
/15|

F44(2 -
Sooe | i

1 ABSTRACT

\

\l ' |

.- This-dissertation demonstrates the implementation and evaluation of parallel algorithms on
C.mmp, a multiprocessor computer system. Initial attempls to demonstrate the performance of

% simpI; parallel algorithm yielded unexpectedly large performance degradations from the
; ~ theoretical calculations. This unexpected result spawned a study of the C.mmp system to
discover and measure the ‘major sources that perturbed the performance of the parallel

algorithm. The performance study was conducted at several levels:

- Basic hardware measurements,
- Runtime performance of Hydra, C.mmp’s operating system , a..c

- Overall performance of a particular application: a parallel rootfinding algorithm.

The results of this study identified six major sources of performance pertl*;ation. The six
sources, in order of importance, were:)

- Variations in the compute time to perform the repetitive calculation , K
- Memory contention caused by finite memory bandwidth

- The operating system’s scheduling processes can become a bottleneck

- Variations in the individual processor speeds
- Interrupts associated with 1/Q device service routines .. <

- Variations in the individual memory bank speeds. <

The effects that synchronization can have on the performance of a parallel algorithm were
examined apart from the sources mentioned above. Several alternative synchronization
primitives were studied. For each, the speed in performing the basic semaphore operations
as well as the effect on the performance of the rootfinding algorithm were measured. The
type of semaphore primitive selected to perform the synchronization of the rootfinding
processes drastically affected the performance of the algorithm. A threshold for the practical
application of each semaphore was determined from the measurements of the roottinding
algorithm.

This insight into the C.mmp environment was applied toward a more complex application--
the HARPY speech recognition system. Parallelism was incorporated into the algorithm by

decomposing the large task info a sequence of computationally smaller sub-tasks. Each
sub-task was implemenled as a collection of indentical cooperating processes.

Inefficient allocation of work to processes, and synchronization between sub-tasks resulted
in under utilization of the processors. Performance of the algorithm was improved in three
subsequent refinements to the initial implementation. The contribution to performance from

each enhancement was disscused and measured separately.

The final implementation of HARPY on C.mmp was compated to a version of the algorithm
developed for a DEC PDP-KL10 uniprocessor. At maximum parallelism, eight processes, the
C.mmp implementation performed the speech recognition task 307 faster than the
uniprocessor.

Acknowledgement

I would like to thank Sam Fuller, my advisor, for his constant encouragement during the
development of this work. His guidance and support were invaluable. | also want to thank
Anita Jones for her insight and especially for her blue pencll. | am grateful for the time she
gave to polish my prose and to augment my arguments by playing devil's advocate. The
comments from the other members of my committee, Bill Wulf and Don Thomas, helped me
define the organization of this thesis. Judy Rosenberg’s assitance let me go home early.

I am especially grateful to my best friend Barbara McKissock who read this thesis eight
times and didn’t complain once.

o

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP

Table of Contents

1. Introduction

2. An Introduction to C.mmp and The Rootfinding Algorithm

2.1 An Introduction to C.mmp
2.2 Description of the Rootfinding Algorithm

3. Sourceas of Performance Fluctuation

3.1 Introduction
3.2 The Variation in the F(x) Calculation
3.3 The Variation in Performance of Individual Hardware Elements
3.3.1 Processor Related Variations
3.3.2 Memory Related Variations
3.3.2.1 Technology Differences
3.3.2.2 Memory Bandwidth and Memory Interference
3.4 Operating System Related Performance Fluctuations
3.4.1 Introduction
3.4.2 The Kernel Tracer
3.4.3 1/0 Devices and Interrupts
3.4.4 Kernel Processes and Special Functions
3.5 Summary

4. The Effect of Sychronization on Performance

4.1 Introduction
4.2 Description of Synchronization Primitives
4.2.1 The Spin Lock
4.2.2 The Kernel Semaphore
4.2.3 The Policy Module Semaphore
4.3 The Impact of Synchronization on Performance
4.3.1 Introduction
4.3.2 Comparison of Primitives When Compute Time ~ Synchronization Time
4.3.3 Comparison when Compute Time is Much Greater Than Synchronization
Time
4.4 Summary of Results: The Useful Range for Various Semaphores

5. An Example Implemeniation

5.1 A Brief Description of the HARPY Speech Recognition System
5.1.1 Representation of Knowledge
5.1.2 The Recognition Process
5.2 The Decomposition of the HARPY Algorithm
5.3 The Initial Implementation .
5.3.1 Constraints on the Implementation of the HARPY system
5.3.2 Control Structures and Data Sharing
5.4 Performance of the First Implementation
5.4.0.1 The Performance of the Forward Step
5.4.0.2 The Performance of the Pruning Step

PAGE 1

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP

5.5 Refinements to the Initial Implementation
5.5.1 The First Refinement
5.5.2 The Second Refinement
5.5.3 The Third Refinement
5.6 Summary
5.6.1 Comparing the Four Versions of the Algorithm
5.6.2 A Final Comparison-- The Uniprocessor Algorithm

6. The Results and Contributions of lhis Investigation

6.1 A Summary of the Measurements and Resuits
6.1.1 The Initial Investigation-- The Rootfinder
6.1.2 The Implementation of a Compiex Task-- The Harpy Speech Recognition
System
6.2 The Task Force Approach to Parallel Programming
6.3 Areas for Further Research

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 1

l. Introduction

The purpose of this research is to demonstrate how to write parallel programs that
effectively use the muitiple computers in a muitiprocessor. Developing strategies for
incorporating parallelism into algorithms has been an area of intense interest for quite some
time, e.g., [Avriel and Wilde 66], (Karp and Miranker 68], [Rosenfeld and Driscoll 69], [Heller
76), [Thompson and Kung 76}, [Baudet, Brent and Kung 77] and [Baudet 78]). However, until
‘ very recently, only simulation and analysis techniques were available for demonstrating the
effectiveness of a parallel algorithm.

With the emergence of multiprocessor computer systems that provide users with the

1 the verification of an

facilities for constructing parallel algorithms, CMt and C.mmp
algorithm’s performance is in its implementation. Initial attempts to demonstrate the
performance of a simple parallel algorithm [Fuller and Oleinick 76] yielded unexpectedly large
degradations in the algorithm’s performance. These degradations were not the result of an
error or inefficiency in decomposing the problem into cooperating processes. Rather, several
non-algorithmic sources were determined to be the source of the degradations. This result
indicates that in order to develop effective parallel algorithms for muitiprocessors, it is

necessary to be aware of the target machine’s performance characteristics.

Presently, the task of writing effective parallel software is an ad-hoc procedure of
constructing code for a unique machine. Since multiprocessors are almost as different from
one another as they are from uniprocessors, it is difficuit to apply insight gained from writing
parallel software for one multiprocessor to another machine. However, by documenting the
performance of various implementations of several algorithms on one machine, we can
demonstrate the effectiveness of various strategies at capturing parallelism.

One style of parallel programming for multiprocessors invoives tightly coupled cooperating
processes. Several decomposition strategies exist that use this approach, among them
pipelining and partitioning [Jones 78] In both cases, simultaneously executing processes
must interact frequently. Since interprocess communication constitutes an overhead, tightly
coupled systems exhibit performance degradations proportional to the amount of process
interaction among the processes. Thus, in order to maintain high performance, one must
reduce both the overheads of interprocess communication and the amount of proéess

interaction.

1C mmp and CM¢ are multiprocessors developed st Carnegie-Mellon University. [Jones 78), [Fuller 78], [Wulf and Bell
72), [Swan, Fuller, and Siewiorek 77]

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 2

The user has little power to reduce the overhead of interprocess communication. Since
processes are created and maintained by the operating system, interprocess communication is
permitted in only a few well defined ways. The user is given a selection of primitives
provided by the operating system with which he can build his own communication
mechanisms. However, the performance of the communication mechanism is directly
influenced by the performance of the operating system’s primitive.

Moreaver, writing effective parallel software requires an awareness of more than just the
overheads involved in interprocess communication. We a:dopted the following two phase
strategy for uncovering the major influences on performancé:

1. Develop a simple parallel algorithm as a vehicle for conducting a performance
study on C.mmp.

2. Use this test program to measure the effects on performance stemming from
both the hardware and the operating system.
A brief introduction to the C.mmp environment, both hardware and operating system is
contained in chapter two. In addition, chapter two contains the development and theoretical
performance calculations for the simple parallel algorithm.

The investigation into the sources of performance perturbation is presented in chapter
three.

Since synchronization is a fundamental parallel programming issue, chapter four is devoted
entirely to studying the effects of synchronization on performance. The performance of
various synchronizaton primitives is conducted at two levels: the speed in performing the
basic synchronization operations and the impact each primitive has on the performance of the
rootfinding algorithm.

In chapter five, we apply the insights gained from the initial investigation toward
developing complex tightly coupled systems. By decomposing a complex task into a sequence
of simpler sub-tasks, and then implementing these sub-tasks as task forces[Jones 78] of
cooperaling processes, we efficiently focus compute power to speed up the execution of the
task. To demonstrate the effectiveness of this approach we use it to implement a parallel
version of the Harpy speech recognition system[Lowerre 76].

An initial decomposition of the algorithm is successively refined in three implementations.
In each iteration, some aspect of performance is improved. This incremental enhancement of
the algorithm enables us to measure the performance improvement contributed by each

enhancement.

e ——— ey A

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 3

Chapter six contains a summary of the measurements and results of this investigation. The
initial measurements of the multiprocessor and the results to come out of the rootfinder study
are summarized. The performance of the task force approach to parallel programming is
evaluated based on the results of the various implementations of the Harpy algorithm.

Finally, areas for further research are discussed.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 4

2. An Introduction to C.mmp and The Rootfinding Algorithm

2.1 An Introduction to C.mmp

. The basic structure of C.mmp, as shown in the PMS diagram of figure 1, is that of the
canonical multiprocessor. A detailed description of C.mmp is provided in the original article
on C.mmp by Wulf and Bell [1972], but the following description should provide a sufficient
backgraund for this investigation.

C.mmp is organized as a system of 16 central processors (Pc’s) that share a centrally
located large primary memory that presently consists of 2.5 Megabytes. The 16 Pc’s are
completely asynchronous computing elements: 5 are PDOP-11/20’s and the remaining 11 are
PDP-11/40’s. They are connected to the shared primary memory through a 16 x 16
crosspoint switch. The operation of the switch is similar to a 16 port memory in that up to
16 memory transactions can be performed simultaneously. [/O devices, unlike memory, are
associated with an individual processor. Thus, for example, an 1/0 request to a device on
Pc[0], perhaps a disk, is performed by the requesting Pc by sending an interprocessor
interrupt to Pc[O] causing initiation of the appropriate 1/0 interrupt service routine on Pc[0]

Hydra is C.mmp’s general-purpose muitiprogramming operating system [Wulf et al, 1973;
Levin et al, 1975]. It is a collection of basic or kernel mechanisms such as memory
management, process dispatching, and message passing. Upon this core, an arbitrary number
of systems created from these mechanisms can co-exist simultaneously. Hydra is organized
as a set of re-enterant procedures that can be executed by any of the processors. In fact,
several processors can simuitaneously execute the same procedure. This concurrency is
accomplished by placing locks around the operating system’s critical data structures. These
locks maintain mutual exclusion where necessary.

2.2 Description of the Rooffinding Algorithm

The purpose of this study is to present quantitative performance results for implementing
parallel algorithms on a multiprocessor. Rather than attempting to measure a broad spectrum
of problems, we have chosen to study various implementations of a single problem in order to
observe and measure in depth the performance tradeotfs in the implementation process.

Two criteria that our case study problem had to meet were: the problem must be complex
enough to have interesting implementation tradeoffs and simple enough to permit the focus of
attention on implementation issues rather than algorithm issues. The candidate problem we

Mp(15)

Mp(14)

Mp(13)

Mp(0)

Dmap

B

N

o]

N

\ 15

i
[

L -
- s

e S

it N
rppmR RS

\
N
Dme
1

<1
S

p| |Dmap{ |Dmap
|

Pc(0)
11/20

Pc(2)
11/40

Pc(4)
11/20

Pc(6)
11/40

Pc(8) Pc(10)
11/20 11/40

Pc(12)
11/40

Pc(14)
11/20

.__{ Miocal I

__l Miocal l .

t—{ Mlocal | ._[Mloci]

| [MioaaT]

Pe()
11/40

Pc(3)
11/40

Pe(5)
11/80

Pc(7) Pc(9) Pe(11)
11/40

t1/a0 ||| 11780

Pe(13) Pc(15)
11/40 11/20

i

— Miocal |

Miocal | |'

2k

—

._.i Miocal l

| —{Miocal | | [—{Miocal] [{-—{Miocal |

e

1_;&_] Eibi [«ibi | | i

] (o] [&

{—{Mpaging] | L —Mpeging|

o] [for]] (5o

RS
F‘v (ke] [xei] [] [l]

Note: Kibi stands for
K(infer-bus interface)

Pinmuﬂ_—l l_t Kclo:kj

Figure 1 PMS Diagram of C.mmp (1977)

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 8

finally selected is the rootfinding task.

We have chosen to consider this problem not because it particularly well-suited for parallel

solution, but rather because it is a relatively straight forward task that requires a significant

amount of inter-process communication. According to Stone{1973], algorithms like the
rootfinding algorithm that exhibit speed-up gains proportional to the logarithm of the number
of processes fall into a class of problems at best considered poor candidates for parallel
processing. However, the underlying control structure present in this procedure, that of the
synchronous parallel algorithm, is representative of many parallel decompositions of
otherwise serial algorithms. For this reason, it is worthwhile to understand the nature of the
control structure and to study the influences on its performance.

Specifically, we wili consider the problem of finding the root of a monotonically increasing
function in a bounded region. If we assume no special information about the behavior of the
function, the best procedure for a uniprocessor under these circumstances is a binary search.
An obvious decomposition of the binary search into n parallel processes on a multiprocessor
is to evaluate the function simultaneously at n equidistant points within the bounded region.

The optimal placement of the n processes on the interval is known [Kung 1976], but to
minimize the complexity of the algorithm in order to focus on the synchronous control
structure, we will use the less than ideal, but good, technique iliustrated in tigure 2. The n
parallel processes perform function evaluations at the n points that divide the interval into
n+] equal subintervals. Since our function, F(x), is a monotonic function, the sub-interval that
contains the root is the sub-interval with opposite signs for F(x) at its end points. The other
sub-intervals are discarded and the procedure repeats this basic iteration until one of the
function evaluations is within €, i.e. an acceptably small interval close to zero, of the
zero-crossing. '

For the measurements presented here, the function we are evaluating is the normal

integral:
1 @ 9
Fix) = = [exp(-1/2t%) dt - n @2.1)
For z < 2.32 the following truncated power series was used to evaluate F(x):
x3 xs x7 x9) 2 2)
(x+3+3—€+3*5*7 +3*5*7*9.+...) - h (2.

and for larger » we used the continued fraction:

1/ ¢ 261/ 3627 23/ ¢ 26...3))) - B @2.3)

We selected this normal integral because it is an important transcendental function that
exhibits two characteristics important to our measurement studies: it requires an extensive
amount of computation, and the type and length of computation are data dependent.

First Iteration:

Second Iteration:
_ i,

Third Iteration: X
3 Pl X2 3

Fourth Iteration:

Figure 2 Rootfinding Program Using three Processors

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 8

In order to evaluate the performance of our implementations of the rootfinding algorithm,
we first calculate the theoretical, or overhead-free, performance curves.

The basic cycle in the rootfinder is the independent evaluation of the function by each of
the cooperating processes and, upon finishing, the communication of each process with the
other processes by posting the results of its function evaluation. Notice that the new
interval is not located until all of the processes have posted their resultsl. When the last
process finishes its function evaluation, it assumes the jobs of finding the new root-containing
interval and waking up all of the waiting processes. This basic cycle we call a STAGE.

Under ideal conditions the cooperating processes in the rootfinder would exhibit the
execution behavior found in figure 3. Each process performs a function evaluation
independently. They all finish at the same instant and, after a very brief bookkeeping
calculation, perform a new F(x) calculation on an interval reduced by 1/(n+1). In praclice, we
seldom find this to be the case. The fluctuations in performance stem from sources intrinsic
to the multiprocessor as well as the rootfinding program.

17he new interval is located as soon as the sub-intervsl is bounded, but sgsin we have opted for e more
siraightforward sigorithm in order to focus on {he implementation issues.

T

wyjo8jy Buipuijjooy ayy jo ssuewniojiad [ewndg g aindig

$355300¥d N 3H1 ONIHOLvdSIa3y
ONVY ONISSOYI-0Y¥3IZ IHL SNIVINOD LVHL TWAY3ILINI 3HL ONILVOOT &

NOJAYINDTVD ()4

NOLLYINITVI (<34

] NOLLYINIIVD (x4

ooo

-]
©
©

oo0oo0

-]
(-]
L]

NOLLYINDIVD (*)4

NOILVINDTVY ()4

~H wouvinowy 04

NOIIVINJTVO (%)d

NOLLYINOTVD ()4

H nouvinowva o3

000

coo

©co00

NOLIVINDIVD ()4

NOILYINDTYI (X)d

2k

NOLIVINDIVD (*)4

co0oo©

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 10

3. Sources of Performance Fluctuation

3.1 Introduction

Three distinct sources of performance fluctuation are: the variation in the amount of
computation required to perform a function evaluation, the individual hardware elements’
performance characteristics, and the operating system. We will identify the nature and
measure the magnitude of each of these sources starting with the variation in the F(x)

calculation since it is the most straight forward of the three.

3.2 The Variation in the F(x) Calculation

The elapsed time to perform a function evaluation is data dependent. The distribution of

* the compute time is shaped approximately Normal as shown is figure 4. The mean is about

100 milliseconds with almost an equal number of samples on each side of the meanl. Thus,
we might model the expected finishing time for a process performing an F(x) calculation to be
a random variable with a Normal distribution. As other functions would have other compute
time distributions, we derive the theoretical performance for the constant and exponential

cases also.

Let the time taken by the ith stage in the rootfinding procedure be the random variable T;.
Since all of the processes are performing the same calculation, each process executes for a
random amount of time, t (see figure 5), taken from some distribution. Since all of the
processes must finish their function evaluations before the new sub-interval is located

'I‘i=MAX(tl’ t2, t3, <Ll tn) (3.1)
From elementary order statistics the expected value of the largest order statistic in random
samples of n from a parent distribution with continuous strictly increasing cumulative
distribution function P(x) is

@ -1 -
E(X)) = [Tonx{ P(x) 177 dP(x) (3.2)

If we know nothing about the distribution of the t; other than the mean u and standard
deviation s, the expected value of the largest order statistic T;, reduces to

n-1
E(Ti) Su+m*d (3.3)

10n an 11/20 processor

(s SAMPLES)

130
120
110
100
90
80
70
60
50
40
30
20

10

number of samples = 1000

| -
e K o ----..-_-_--.._-___'.___--_---_q

490
samples

510
samples

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Figure 4 Distribution of the Time to Calculate F(x)

(ELAPSED TIME in ms.)

cecamenied

swi) uonejndwo? (x)4 8yj ui uoljelsep o) an(] uoljepelsaq aduewsoyad G aindi4

$35S3004d N 3HL ONIHO1VdSIa3Y
AONV ONISSO4O-043Z 3HL SNIVAINOD LVHL TVAHILNI 3HL ONILYOOT @ >

cooNoVIDWO (g] Al G | orscass i i NOLLVINDWD ()3 ___© 00
e
© © oNOIIVINDIVD (M3 | - NOIL¥INDIVD ()4 X NOLYINDWD (M3 oo
o o (-] o
o (-] (-] o
o o o o
. = i o 3 =
© 0 oNOIIYINDTYD ()3 -} 1 NOLLYINDTYD ()4 F— {___nouviowoyy _oee
© 0 onolvINOWR (M3 DX] _NOLIYINDIVD (%) N NOLIVINDWD ()3 __© 00

© 0 oNOIYINDIYD ()4 |- —{ NOLLYINDIYD (*)4 —1 NOLIYINDWD ()4 ©G O

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 13

This bound can be replacledA in the exponential case by the equality

n-
ECT)=o) Y _end (3.4)
n & j 2
=0 (j+1)

For the Normal case we consult Teichroew's[1956] tables for the expected value of the
largest order statistic drawn from the N(Q,1) distribution.

When the expected value of the compute time is a constant, equation 3.3 is replaced by the
simple equality E(T;) = u.

If we are interested in the performance speedups obtained when we put more processes
to work finding roots, we need to estimate the average time to locate a root as a function of
the number of processes. Since every ileration in the rootfinding procedure reduces the
interval of uncertainty, [, by a factor of n+! it takes Ceiung(Logml L) iterations to locate the
root in a bounded interval of length L. Thus, in our example let R; denote the number of
iterations necessary to arrive within € of the root using i processes. For our choice of ¢,
R={54, 34, 27, 23, 21, 19, 18, 17, 16, 16, 15, 15,..} iterations. It takes the same number of
iterations to locate the root using nine and ten or eleven and twelve processes because the
number of iterations to locate the root must be an integer. Thus, little is to be gained by
incorporating many processes in the procedure. In this study the maximum number of
processes we will use is nine.

We can estimate the runtime of the rootfinder to be the following:

R
n

Runtime (n) =Z Tk = Rn * E('I‘n) (3.5)
k=1 ;
Often we will be interested in the speedup achieved through parallelism. We will use the
following formula to caiculate speedup:

speed up(n) = Runtine(l)

Runtime (n) (3.6)

Figure 6 is a plot of the speedup vs. number of processes for the following three
distributions:

Distribution Mean Standard Deviation
Constant 1000 0
Normal 1000 278
Exponential 1000 1000

The curves are not smooth because the Ceiling function in the equation for the number of
iterations to perform yields an integer value.

—.

3'50F

Speed up

3.25}

3.00¢}

2.75}+

2.50t

2.25}

2.00t

1.75¢

1.25}

Constant Distribution

Normal Distribution

Exponential Distribution

—0

J

1 .OO'i

7 8 9
Number of Processes

Figure 6 Speed up vs. Number of Processes for Ideal Muitiprocessor

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 1%

This figure contains calculated no-overhead performance curves for three sample F(x)
distributions with standard deviations ranging from O to u. The performance range is from
negligible speedup when the compute time for the function evaluation is exponentially
distributed to more than a factor of 3.3 speedup for nine processes when the distribution of
the F(x) calculation is a constant. The Normal curve between these extremes closely
approximates the actual F(x) distribution and is included for comparison.

Another way to view this data is to plot speedup for the nine processes case vs. the ratio
standard deviation/mean as was done in figure 7. This figure clearly shows the impact of the
variance on the performance of the rootfinding procedure. When the coefficient of variation
is much greater than one, no speedup can be obtained by incorporating multiple processes in
the rootfinding task.

Now we compare the calculated no-overhead performance of the rootfinder to measured
data observed on the machine. In order to measure performance as a function of the
distribution of the 'F(x) compute time a synthetic rootfinder was developed because we did
not want to limit our investigations to particular distributions too early in the experiment.
The nature of the calculation was still the real function evaluation; however, the length of
time spent computing was adjustable to reflect the distribution under consideration.

Figure 8 graphs performance in terms of elapsed time as a function of the number of
processes for three distributions of the F(x) calculation. In each case we compare theoretical
performance to measured data. Since the means of the three distributions were not identical,
the data points for the single process instantiation do not coincide. Thus, in this graph
comparisons across distributions can be only relative approximations.: What is important here
is how close the measured curves are to their theoretical curves.

For each single process instantiation the measured and theoretical curves are far apart.
This discrepancy is because any perturbation the process experiences will be additive and
will lengthen the basic cycle time.

As we incorporate more processes the constant distribution diverges the most from the
theoretical while- the exponential diverges the least. The reason for this behavior is that
perturbations experienced by the processes will tend to increase the variance of the
underlying distribution. However, a small change in the variance of the constant distribution
will be a much larger relative change than a similar change to the exponential distribution.

That the observed data doesn’t agree closely with the caiculated curves is evidence that
‘other influences on performance exist in addition to the distribution of the compute time. In
the following sections we discuss measurements that uncover the other factors influencing

2.75

2.50

2.25

2.00

1.75

1.50

1.25

1.00}

0.75}

0.50¢

0.25¢

s 1 z 3 4 6 6 7 8 ® 10
Standard Deviation/Mean
Figure 7 Speed Up vs. Coefficient of Variation for Nine Processes

Elapsed Time (Sec.)

Q Calculated

X Measured

/——\

Exponential Distribution

g3
\n
\-
1 ~.
25 " Sy
.\- .\\\
\~ ‘\‘
\
w._ i
e “~Xe,
L \.\‘
‘G\.\ s X
\'\‘ Normal Distribution
100 . -
Tx SRR
L = ~o.._
K i
D R
75 ' LS.
Q.
""" Constant Distribution
"
50 A A A A)
7 4 - 7 8 9

Number of Processes

Figure 8 Measured Performance Compared to Calculated Performance

RS A e

TN 1. T R S

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 18

performance.

3.3 The Variation in Performance of Individual Hardware Elements

The fluctuations .in performance caused by the hardware will always be present because
Hydra allocates C.mmp’s resources dynamically. While a user cannot accurately predict the
exact performance of his processes, he can estimate the magnitude of the fluctuation in
performance by measuring the variation in the performance of the individual hardware
elements.

3.3.1 Processor Related Variations

C.mmp is a multiprocessor constructed from PDP-11 model 40 and model 20 minicomputers.
In table 1 we have summarized the basic performance difference between the processors by
comparing their execution of the F(x) calculation without the presence of Hydra. Each
processor performed the calculation 100 times in the same memory port. The number of
MSYN's! was counted and the elapsed time measured. These figures appear in the first and
second columns. The third column of figures is the processor speed relative to Pc[0].

Pc Model Elapsed Time (sec.) kMsyn’s [sec Relative to Pc[0]
0 11/20 15559 4433 1.000
1 11/40 10.413 662.4 -1.494
2 11/40 9.985 690.8 1.558
3 11/40 9.745 707.8 1.596 -
q 11/20 16.144 427.2 0.963
5 11/40 10.060 685.7 1.546
6 11/40 10.238 673.7 1519
7 11/40 9.829 701.8 1.582
8 11/20 14.867 463.9 1.046
9 11/40 10.022 688.3 1.552

10 11/40 : 10.173 678.0 1.529

11 11/40 10.001 689.7 1.555

12 11/40 10.129 681.0 1.536

13 11/40 10.005 689.4 1.555

14 11/20 14.965 : 460.9 1.039

15 11/20 14.999 459.9 1.037

Table | Speed Variations Among C.mmp’s Processors

Naturally, a process on an 11/40 should execute faster than a similar process on an 11/20.

lMSVN is the DEC neme for the signal that indicates o request is being made for the UnbUlTM. Since only the
processor is making requests the number of MSYNs is {he number of memory requestis made by the processor.

. e . _____J i

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 19

Notice that even among processor of the same type there can be more than a 57 difference
in speed.

Because two types of processors are used in C.mmp, the strategy of dynamically assigning
processes to processors is complex. It is not sufficient to schedule a “ready” process to the
best processor available. The following scenario demonstrates why.

Suppose the rootfinding processes are performing their function evaluations and are
finishing at random times. After several have finished one would expect to find some idle
11/40's and compuling 11/20’51. A good scheduler should handle its resources better. The
idie 11/40’s should “steal” the processes computing on the 11/20’s. Naturally, this
philosophy assumes that a context swap can be performed quickly. Process stealing is the
scheduling policy on C.mmp.

3.3.2 Memory Related Variations

3.3.2.1 Technology Differences

C.mmp’s centrally located primary memory is also a source of fluctuation in performance.
The memory is divided into 16 modules, or banks. Each bank can service memory requests
independently. However, the relative spéeds of the banks are different because they contain
different types of memory. At the time of this study, five banks contained semiconductor
memory and 11 contained magnetic cores. Table 2 summarizes the speed differences of the
memory banks. In this experiment Pc[15] performed the F(x) calculation 100 times in each
memory bank. The elapsed times appear in the table.

lDurin‘ the course of cur study the number of processors running in the system varied day to day. The processor
configuration during the experiment with the synthetic rootfinder was 10 PDP-11/40'e snd 3 POP-11/20's. Since we
never used more than nine processors to perform the F(x) calculation, all of our processes ren exclusively on the
11/40's. However, the problem is real. If we could have incorporated more than ten processes into ihe rootfinding
procedurs we would have had to deal with it. Later experiments in this psper messure the impact of the
non homogenous processor configuration ss the number of available 11/40's frequently was less then nine.

“THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 20

Mp Technology) Time (sec.) kMsyn's/sec Relative to Mp[O]
0 core 15.243 : 4525 1.000
1 core 14.943 461.6 1.020
2 core 15.127 456.0 1.007
3 core 14.999 459.9 1016
q core 15.087 457.2 1.010
5 semiconductor 15.950 432.4 0.955
6 core 15.272 a451.6 0.998
7 core 15.402 447.8 0.989
8 semiconductor 15.887 434.2 0.959
9 semiconductor 15.858 434.9 0.961

10 semiconductor 15.860 434.9 0.961
11 semiconductor 15.855 . 435.0 0.961
12 core 15.070 457.7 1011
13 core 15.155 455.1 1.005
14 core 15.034 458.8 1.013
15 core 15.013 459.4 1.015

Table 2 Speed Variation among C.mmp’s Memory Banks

Even among memory banks of the same technology, speed varies. These variations are
small however, and are caused primarily by variations in the length of cable connecting a
memory bank to the crosspoint switch and in the timing circuitry for individual memory

modules.

3.3.2.2 Memory Bandwidth and Memory Interferanca

The previous experiments show the rates at which individual processors and memories can
communicate. Another important characteristic is the maximum bandwidth of a memory bank.
This rale will determine how many processors can compete for cycles in a single memory
bank before the bank is saturated with requests. In this experiment all of the processors
simultaneously executed the tight loop in the same memory bank. Two banks of different
types were chosen to be representative of their respective technologies. :

The resuits in table 3 indicate that gerfarmance degradation will occur if more than two or
three processors are competing for cycles in a memory bank. This result implies that sharing
code, a common practice to conserve memory space, will result in slower execution.

Semiconductor 1.4921 06 memory refs/sec.
Core 1.712106 memory refs/sec.

Table 3 Maximum Memory Bandwidth

T T

Sl shaae o L

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 21

In tables 4 through 6 we illustrate the performance degradation that results from sharing
code. All of the measurements were performed on Pc[0] In each case 100,000 total cycles
were sampled. The first column, Memory Cycle Length, is the elapsed time from MSYN to

SSYNI, a complete memory cycle.

Table 4 is the control sample where we monitored the memory accesses while the system
was idle. Although the vast majority of cycles were in the 500ns. to lus. range there were
some cycles that were greater than]4us. This difference occurs because a processor fhat
doesn’t have a process to execute runs a task called the "idle job". The idle job consists of a
WAIT instruction followed by the code that checks to see if a process is available to execute.
This piece of code contains a critical section guarded by a mutual exclusion busy-wait loop.
Since all of the processors are sharing this code and trying to gain exclusive access to the
critical section, a great deal of memory contention occurs and the memory cycle lengths grow
longer. We will use this table to compare the performance of the rootfinding processes when
they execute from one common code page and when each has a private code page.

Table 5 contains the results for when each of the processes executes from a private code
‘page. Comparing this table to table 4 we make two observations: while the average memory
cycle length has increased sslightly, reiatively little difference exists between the two tables;
the one category where a noticeable change does occur is the long (> 5.0 us.) cycles. Less
than half as many long cycles now occur because the processors are kept busy executing the

rootfinding processes.

Compare these two tables to the results in table 6 where all of the processes share one
common code page. Again we make {wo observations: the average memory cycle length has
dramatically increased by 3007; more important still is that the percentage of long cycles (>
5.0 us.) has increased from .0867 in table 4 to 15.6%, over two and one-half orders of
magnitude more. This degradation in the basic cycle time will offset and eventually reverse
speedup obtained by incorporating muitipie processes in the rootfinding procedure.

1SSYN is the DEC name for the signal that indicates the completion of » bus transfer. It is the signal the memory
module uses to tell the processor that the memory access is completed.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 22

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 -05 0 0 0 0

05 -1.0 65652 7787 14089 902

1.0 - 20 9470 1926 8 0

20 -5.0 63 6 2 0

5.0 -14.0 63 6 10 0
14.0-50.0 5 2 0 0

> 50.0 0 0 ' 0 0

Table 4 Histogram for Idle System

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 -05 0 0 0 0

05 - 1.0 65827 7461 11024 822

1.0 - 2.0 12705 1133 38 0

2.0 - 5.0 894 54 10 0

5.0 -14.0 28 3 0 0
14.0-50.0 1 0 0 0

> 50.0 0 0 0 0

Table 5 Histogram with Private Code Pages

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 -05 0 0 0 0

05 - 1.0 52784 6504 9404 761

10 -20 10810 689 102 0

20 -5.0 3059 201 84 0

5.0 -14.0 14291 843 287 0
14.0-50.0 174 q 3 0

> 50.0 0 0 0 0

Table 6 Histogram with Common Code Page

Figure 9 captures the impact of the finite memory bandwidth problem on the rootfinding
procedure. We have graphed the elapsed time to locate S0 roots ws. the number of
processes for two impiementations of the rootfinding procedure. The dashed curve results
when a single copy of the code page is shared. The solid curve is the performance when the
cooperating processes each have a copy of the code in a private memory bank.

This graph also can provide some insight into the speed vs. space tradeoff. If we compare
the speedup over the single process instantiation for both the shared and no-sharing
versions of the rootfinder, we find that the no-sharing version has a maximum speedup of
'2.60 using nine processes while the shared version’s performance peaks at 1.53 using three

325,

i
3
Q
(2]
N
[
£ 300} P
~ A
.- 4
a
5 /

/
S 275} ;

250} /

! 225} !

200 Shared Code Page P'

1754

150

125

1700

Private Code Pages

1 2 3 4 5 6 7 8 9
Number of Processes
Figure 9 Performance Degradation Due to Finite Memory Bandwidth

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 24

processes. Neglecting the single global data page we have a achieved a 1707 increase in
speed at the cost of a 3007 increase in size. In this study memory is plentiful ahd we
squander space for speed.

One solulion to the speed vs. size tradeoff is to interieave the central memory on the low
order bils rather than the high order bits. This solution would tend to scatter memory
requests more evenly across the 16 banks. To maintain availability it might be necessary to
‘organize the store as four banks of 4-way interleaved memory. A second solution is to give
each processor a cache to work with. This solution is currently being implemented on C.mmp.

3.4 Operating System Related Performance Fluctuations

3.4.] Introduction

The operating system also perturbs the performance of the rootfinding procedure.
Although C.mmp was intended to be a multi-user multi-programming facility, it is possible to
use the machine in a dedicated single user mode. In this mode of operation, the user can
minimize any interference from Hydra by simply not doing anything that requires operating
system assistance. Most of the measurements in this study were made in this way. However,
certain functions, i.e. scheduling of processes and 1/0 interrupts, must be performed by Hydra
and cannot be avoided. The contribution to performance fluctuation from these basic
operating system functions is measured and discussed in the following sections.

3.4.2 The Kernel Tracer

The Kernel Tracer is a software monitor that can obtain information about significant
activity on C.mmp under the Hydra operating system. Since it is a software monitor, the
Tracer does perturb the timing data it attempts to measure. However, this perturbation can
be compensated for in the post-processar software.

The Tracer can monitor such things as: context swaps which occur when a processor
changes from executing one process to executing another, semaphore activity, process starts
and stops, operating system requests (Kernel Calls) and a multitude of other events. Events
defined by user programs also may be traced.

The data is collected in real time and later processed off-line. Numerous post-processing
programs produce various forms of output: process or processor dumps, time-line execution
histories, and various statistical analysis packages.

All of the Tracer data that follows is in the form of a processor time-line execution history.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 25

We use various symbols in the trace to encode events in order to compact the data. Table 7
contains these symbols and their meanings. Each row of the trace represents the activity on
a processor. The time in seconds appears along the bottom edge. We will discuss in detail
the first trace that captures the impact of 1/0 interrupts on performance.

3.4.3 1/0 Devicas and Interrupis

Random interrupts from /O devices and processors contribute to performance fluctuations
in the rootfinder processes. Unlike the memory, 1/0 devices are not centrally located and
accessable through an n x m crosspoint switch. Devices are associated with a particular
processor. Thus, for example, a read or write from a disk on Pc[0Ts Unibus must be
performed by processor O regardless of which processor initiated the request. Since
interrupts are serviced by stealing cycles from the currently executing process, large
fluctuations in compute limes can be found for processes running on processors with 1/0

devices.

In figure 10, interrupts associated with 1/0 perturb the performance of the rootfinding
processes. C.mmp’s processor configuration during this trace was Pc[0, 3, 4,5, 6, 7, 8, 9, 11,
12, and 13]. The processors appear from left to right as columns of the trace. Pc[O, 4, and
8] are PDP-11/20s and the rest are PDP-11/40s. Processes(35, 43-50) are the nine
rootfinding processes. Process 29 and the DAEMON are other processes that happened o be
awake at the time. These two processes are doing things that cause a substantial amount of
1/0. The following discussion describes how this I/O activity perturbs the rootfinding

processes.

A previous iteration finishes at 0.612 seconds into the trace. Process 50, P(50), on Pc[11]
‘was the last to finish its calculation (the activity on Pc[6] is P(29)) and begins to wake its
sleeping companions by unlocking their semaphores. One by one the processes wake up and
begin to perform the next iteration. P(50) finishes waking up all the processes (P(49) was
the last to wake up at .641) and begins its own function evaluation. One by ore the
processes finish their calculations and post their .results, after which they "P" their
semaphores and wait for the beginning of the next iteration. When they block on the
semaphore they are removed from the processor (e.g. CSW for P(45) on Pc[5] at .700). Four
of the processors have large chunks of time shaded between brackets. This shading and
brackels denotes an interrupt service routine performing 1/0 to a device on that Pc's Unibus.
Interrupt service routines can consume between 1| and 15 milliseconds of time. This causes
the rootfinding process on that Pc to arrive at the synchronization point late, thus
lengthening the STAGE time.

N R AT

PROCESS N
- CSW -
10T aX
KALL =X
RET X

n

: PROCESS =N IS RUNNING
: A CONTEXT SWAP
: SPECIAL TYPE OF KERNEL KALL

KERNEL KALL =X

: RETURN VALUE FROM A KERNEL KALL

: START OF AN INTERRUPT AT LEVEL N

: INTERRUPT SERVICE ROUTINE EXECUTION .
: END OF AN INTERRUPT

: USER DEFINED EVENT X OCCURS

: P OPERATION ON A SEMAPHORE

: V OPERATION ON A SEMAPHORE

. OPERATING SYSTEM PROCESS

: IDLE TIME

Table 7 Tracer Symbols

na WA VAL AL, ey oo mmmetiesees menas i doa 0 = 20 - N
co meemaeim b e et o N=44444:!44444444444404444144114” 3

CHLdESEE L

" .u. VYYTITIINITIVENROSY
oo ———— ! s o i e i - CE=CTTsoTSssSS
geastt tn =canoll = §E & E=cEererrrErEs=s
SRS R EETT e b s U et | 5 R H
ISR 333330 A I 1133335 IR REIRAEARTSST 5 & T sEiEmaTaaviises
MOANOASLACAANAALIOASSAALAS KA AU VIBAL UM RRSKLEUY. e e e e o e e e e [T e el o o S B o i v
v l” ““‘3“‘3“3“‘.‘I““““‘““““““““.‘“.‘.““"““m. m e m«’ﬂﬂ“
.
S& - oot = o —- B ¢ ESEEIIE
S T ST ER R R A ke gEsi¥ce U-— - ugEs
o 593331313 131 3 - 3 T T . oiakSERRIR2
VLA R A 43
wog . - CI) nmomm.litiuﬁ ee m 2 ®= s e s o s cgec
>35> > 22> 5> > " I 2> 3> 3> 3> > > » > a
B B F F B ESeiE s | |[SEEEseEEe e I S TR B EF EE BB EEE
. s = G R e e e e
. . u‘ ” TITIIVIVI O CE I Qedgee e A A A AR R R A R A A R A A R A A A R A A) H . - —_ —
———— a [= = ® anlf - -
————— _.ﬂlm 3 oo~ U-
VS ECEesisasey cerTRIfasEss] jesionit IR RTINS 5 1
XX TXX: 1 E000E=SEEELTTIT | i ST e e T 199CCE23030
£ | AL AL A R A A e e A A A A A e A A e a e A A A A A A S S R A A Lol ull||||’ - —— - ——— - u‘l - gveee
(i daasssagaddiadacddigeddnsds o * annl T S S ==
333333303533353355333333533355), - =3 > e E=
' e bR mos O onL U] — ---- (5. 045t ee

13 Lt oo ~e]
- cesnsssssmsmssnssaansssas Seasaa>)
[[=3 - 3 r~ [

- ————— Wd R At s st s AR s e s s a2 e A a2 RA R AR 2}

37

me. 122EMERIIRT

. e NGRS P

A VW §§¢§§.§§"é§é - s mmenie o i hasassiasi sl g
OLAOOT DOO=_0O0 DO POCODO vcggssgvsovsﬁ& ©C 0 00 00000V VOOCOVOO0 DOVVOOOOITOVOO000 ©OOODOLOVOO0. u "
e 6ee Teve Zies Zee Sevsss DY SLr sttt eeeeeaceatereticcieues Sscettaicetneteisitetnerte sscseas sssee 3 CessRis Tesssascense L [EE—— —]
B b Chid G b At DdID - VW)) Aot b, 2, . 4o At it e bnd o b e, s
T Is3 -ty - b3 =Ty = TIIIT-IITIIL Ttae A T | DR
TIXTITILILT TXIIXTLIITLLIILL I T I T IIE TII I TOI T ST T T o
Bk carivarsahnansl E v: OO XX 0 KOO X WIS 4O Kv-vsﬂ..xnmﬂnE. S TR

X T T T T | Gt Y TV I YUY OO YT Y ST O T eUUIU VISV IV I ITI VYUY I T Y Y Ie O UTE ! = T T T T | MOONCLERR L SR BRSNS T RIS S IER

@ P i T§§334§224200443444:4-4‘4-44444436‘«“‘ . WA e PR SR TR ol Thbhbh bbb bbb
O— s .

= i - eanlf e

cazceal - Uss ISl IS e gl n SN 3t IR o U ————— - . —.“lnﬂ

Q00000 RN RN NRHEIERNENNNNEINNGNR Sesessssssamanss so] MR T IR sepsen

i l..ljv,._u_,l = inm

" PRI SRR e

TV T T T T T T T T T T T T T T TV Y VT T PV YT T VI F U T TPV SO v o v H e e e e - - ———a — e o “ “ WU IIW W WAWNWWHY VRV WA Ty
S rd . e

pnalf - -~ 7 o - =see R ——]

——

BB BE: L6 6 et SO0 D OO D608 DO 6 OGO BOOO OO SIS e et ok SR e S Ts SO DD OO0 Ee 6600008600608t LOe
..... B i e e, U B R R T

— . laaxopadd

[TTINIINY shsbssces

1 ewey T s 008348 _530333305580000008 |~ T) N
?h“ Qiuu:..&.. y iu):“o “..4..“ 4444444444444444 9 w-.....:.. - S s s s
HO] o ¢ <ones- o P ——— = . v e Susn e S e S e — -
VWT |(lm“ IR ¥ 9t o oo "‘mm B00) JoCOD0O0ORGE0OC000| : At i s .

v n.an_ [¢ » N

=

e g e
e R SRR 1Y3YY B
L X B

sene
—————— e | TSR
LT

G | [— R —
"
]

Figure 10a Perturbations from Interrupts

ca.nuuuﬂan‘dn.n«ﬂnmu ELLLFLELYE 2f Cooad TreTTeeen mnw ll!“.t..”till!“ ..nln:W«d s TIVeTIIITINYTY oumnduoana!-«4««4u«uu«.:¢«a«=««uacn-«
srm——men =] |====u- | |] = I e
13333 113 g SEo00S bt am. - ‘ ——————— e e m——— ..Dpr?ﬂmﬂlcuzu-Mﬂﬂﬂ CECEeBEEEEd mnnwﬂnﬂnﬁﬂn l"ﬂﬂ"ﬂ.n"

BRI 33338 n sssassitesesas| __Jeassss sasssssisensasss nnm' sssssss
...........3..................Ilim- S e T = i it i “..unmnod«««u«...««««u«u«...u«u«uuuu«««unuuu«uu«u««.«uu«um-
bbby

asall - N H .

33333t iiiiisdisiiiiiiiiiiiii 1= U—— e —— B SCEErO S Es et o BESSE Lo EEbE50EESE.
HEHHHHHHHHEHHE TR ol R T HHH HHHH RS
ety 2‘;“ VRS DA m.b F——— .M S e i e i WO " 4n‘ﬁlﬁﬂ.qﬂ“«dﬁ“444..4.4dd¢404¢cq.aaatnanacao;,d‘uﬁ

e = et e

R e | oo oo o R I T
ppissssatriirbbbibbibbariarisst - . . 5 H. w .n...nul.“l - H.IIH.I,.. ‘ W: . gii&un“"gu.ﬂs:t.ﬁzz\iﬁﬂnﬂﬂﬂw.aﬂm m Ml.»"l...n
- care cves - - a " &= o -. -

e T T T e I N i OB e T UL O R SRS VB ESE RS ELE SEEEE ———
SEEEEHENINNEEEEEEEEES Vo T e e R s n R V- —-

““““.‘ d“”.“‘““““‘ﬁ . e WC l"l TITVIIIIvT O YY VITTT ANV I IV TP VTR TI T IO oY
® s oma a "m =
e L& = e
R HH RN R R H A R HeIHY
SRS RIS RN e D I T T e A AR AR S R S & G AR AR AR LS -
HWM BB s e e e PR S55555Y Mmﬂg 0000000000000000000000000008000000 o ston, oot - -
— ST -u e B e] e e et Sop——
fEETETE R 133753133 I T R B
- ovw TTTeTeY LD * IHVH“Pv”H“”HH..rul..H ” ; .) W"“;;“j . = = - oo “ v .4‘:”!‘“‘;::‘43‘4‘“ -
See——— — ——— e 4
e = uall - -—~- === M M MMM MM 3 >O>» Ea B ==t
TR Sy U S EE EE F & §F B

[el s i i i s 1 car N

Figure 10b Perturbations from Interrupts

xR

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 29

For example, P(49) on Pc[8] is interrupted at .681 for 13 milliseconds and then again at
.707 for 4 more milliseconds. Notice however, that P(49) on Pc[8] switches to Pc[6] at .709
and finishes its function evaluation at .728 uninterrupted. Since it is the last process to
finish, it assumes the jobs of finding the new root containing sub-interval and dispatching the
processes to perform the next iteration.

In this example the interrupted process was delayed enough to become the last process to
finish, thus lengthening the STAGE time. However, P(46) on Pc[13] was also interrupted
during its function evaluation for approximately 21 milliseconds yet it was not the last to
finish and did not cause the STAGE time to lengthen. This is another advantage the
multiprocess implementation of the rootfinding procedure has over its uniprocess counterpart.
In the single process instantiation the interrupt time is additive and each occurence lengthens
the iteration. In the muitiprocess version, only the interrupt time associated with the last
process to finish is additive. '

3.4 4 Kernel Procasses and Special Functions

Operating system requests are frequently handled by special high priority Kernel
processes and as such perturb the cooperating rootfinder processes by stealing processors.
Of particular interest are the processes that perform scheduling. Because synchronization of
communicating processes can involve rescheduling the processes, the special scheduler
processes can become bottlenecks causing performance degradations.

During the trace of figure 11, C.mmp’s processor configuration was Pc[0, 2, 4, 5, 6, 7, 8, 9,
10, 11, 12, and 13] Of these, 4 and 8 are 11/20’s (so is Pc[0]) and are the third and seventh
blank columns with no execution histary. Since enough processors of the prefered (11/40)
type were available the 11/20°s were never used. Similarly Pc[12] was not needed.

In this trace processes i8; 19, 20, 21, 22 are rootfinding processes. Processes 1 and 2
are Kernel scheduling processes, and process 14 is the Tracer process.

P(22) on Pc[10], the iast process to finish the previous function evaluation, initializes the
necessary paramelers for the next iteration. At 285 ms. into the trace (.285) it begins to V
its sleeping companion processes, and at .309 it begins its own function evaluation (event
#372). !

Meanwhile P(2) on Pc[6], scheduling process, wakes up CSW at .293 and begins to perform
the task of actually waking up the processes that process 22 has just V-ed. It is a relatively
painful task involving several semaphore operations and several Kernel calls per process.

S ...c ® o o
aes -y e
TR v 2t ik ot e e e o o B o e N S e A A e vax.. » %
: wk § B Fk
..u...an o v - o.v A el : veer roramtel m‘-l.!t.-iv!-:.”“.x-lxl-(x.,
w X35> 3> > vv e §§ YT YT TTY [
o MI"..(OG B Ty Tt =4
e T} aa a AssoALAANSAARAS aaaa e
..... W 1!1 -~ nooonTTesnsceTnone0e
%% L)
m c}!:unucc!n R SBLOLOLUSaE gﬁtﬁﬂeﬁg
"" "" ""i' v‘
II'LIW-IIOOOO !i'-ll!'i'll.}!‘lllllli wl.ln..il..!.luuls..l
tlll.l-m!.-vv-lvvvvvv.r«vv.cm > 2R 3> > ..r..vvvummu-Mvv-vvv vv.thv....m-vvv-rvvvvv .r..vvuuuuu Lc
TS kw R mﬂumﬂﬂ EE¥ § ESE nmmmﬂuﬂﬁmmnmmﬂﬂumﬂﬂm ol it

1= e " @ o e
3 T Goooenes 8 TR EREET R !...sﬁ
a [(TTTERYY O ““Hr-..-an 3 % as > aa > B ., Sesnses “ “ AR DD AR D> BUtss Ssssssesey .nLU 28 D> aa > m ooooooooo

Vs ¢ feEmEmammnE b EEREREE b G b

T =55 e : TR

: — e S s s o - wé

i e e T T U R Rae RS
: | 3 :
‘ ;

Figure 11a Perturbations Induced by Operating System Processes

— S AR Rt ST _&?E:KFKEKEFWNEKEEExiE:Fc

. . : ; mals S s "J-_-. --
’ : el o Pt e e e s e e i S N R A R R J U UUdUUUGUEU UUMMUL S UGG AU IUUULU AU UM UU ULy b aud

e L] L J O BruD-—eetan
P Semaurean

e - -

cuﬂﬁﬁi e e e ® .

sg = e IOOPP> D M M MM R T

R T et e A et T A e O S o AP A R A SO S e AP Oy~ A Oow o (oo

.5, c BB BOCOLLEH OO0 0 EbOE S BEBDAOBBPEOE00 GO0 UBLEBLELEULEEOBEoERoOBOoObE SO0 Coo6 0! OO o0 Goun s red

ok ssvesae - wesw SrasEenmbacLASEE A ELSPALS S acAL D AR T T It T E E E E E E2xzeenes
ANaASAsAAASEASASSSSALLALSALS ettt eat NS Ansssana saas AssssesssccansscanasaM . sesassa

o — C—— —- e S S - et — ll.|.'| B e L e T T LT T VU —— m ‘- - -. . °
- e e i (TS S R e e L e G R Surar
R e e e e e e P e e e e S _.mtm an > aaa 3> dHLLh
s e R A5 b e R S i S R e] el
izt B OEOE OB SR

~C -
|
{
+
i

Figure 11b Perturbations Induced by Operating System Processes

pHasss © © l'o"”lll’l ll'"ail. ® o~ i i S e g
—a Bl o R anad l‘ulv’
T 0 5O ama > LID) LLYS eana 3> aan DHDLLIDD> L45S 0a 3> asa >> LD LM
%.Wﬂl’u m&u -LLL-I &) e l.lv" é
I FF OEESE EECSF E F OE S5F B F F OF EIE EBZD
: Iz
- ..*En.anm.
. B 1D0O0OOO)
o 0 O ® o o o L e & o m
Wv-vvv-p-vava-va-s. ——— ——
8 O8RS SRt -
fEE EEEN EE EEE , o
b - T o s - J
. % 3 e i
"eh
ses :
LLL)
T A .\r i A . i P s A A - A A A e ——

soe
s.ss8 |
9.889

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 32

Finally process 18 (the first to be V-ed) wakes up and begins its function evaluation at .348,
approximately 60 ms. after process 22 performed the V operation.

To expedite the costly wake up procedure, processes | and 2, the scheduling processes,
cooperate to start and to stop the rootfinding processes. Moreover, by the time they get
around to starting process 21, the last process that is to wake up, three of the other

rootfinding processes have already finished their function evaluations and have gone back to

sleep (P followed by CSW). A full 130 ms. have transpired since process 22 performed the V
to wake process 21.

Another side effect related to the operating syste}n that can affect the performance of
cooperating processes is the round-robin scheduling of processes under Hydra. This
traditional policy is implemented using the notion of "time-sliced” intervals of execution to
provide equal service to all tasks. Occasionally a process exhausts its time slices and must
ask for more. This request can take more than 150 milliseconds to execute. Whether or not
the time-slice end anomaly will perturb the performance of the cooperating processes
depends upon the average duration of the function evaluation and the frequency of the
time-slicé end condition. In this study a process must consume 10 one half second slices
before encountering the time-slice end condition.

Figure 12 is the distribution of the elapsed time to perform an F(x) calculation in the
presence of Hydra. The long tail in the distribution is a result of the time-slice end condition
occurring for the process performing the function evaluation.

3.5 Summary

The sources of performance fluctuation we have discussed can be classified into one of
three types-- application, hardware, or operating system related. In the table below we rank
the sources of perturbation by their potential for causing performance fluctuations. Each
source is measured and the observed range calculated by dividing the maximum measurement
by the minimum observed value. The larger the range, the more potential for performance
fluctuation.

In the next section we eliminate several sources of perturbation in order to measure the
performance of various synchronization primitives. We do this by carefully selecting
processors and memory banks to execute the rootfinding program.

S—

(= SAMPLES)

130
120
110
100
90
80
70
60
.50
40
30
20

10

~
1
|
)
|
'
|
\
1
Al
)

number of samples = 1000 : g
i '
et {
1
1
1
]
F |
]
[
|
¢
'
o
]
]
)
)
'
mean ——i
]
|
'
: 510

| samples
!
'

490
| samples

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 or grester
(ELAPSED TIME in ma)

Figure 12 Distribution of the Time to Calculate F(x) in the Presence of HYDRA

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 34

Rank Type Source Measurement Range
1 Application F(x) Calculation Function Evaluation 1:34
2 Hardware Memory Contention Average Cycle Length 1:30
3 Operating System Kernel Processes Bottlenecking of 1:28
. Scheduling Processes
q Hardware Processors Speed 1:1.6
5 Operating System, 1/0 Devices and F(x) Calculation 1:13
Interrputs Degradation
6 Hardware Memories Speed 1:1.07

Table 8 The Sources of Performance Perturbation

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 35

4. The Effect of Sychronizaﬁon on Performance

4.1 Introduction

Newell and Robertson{1975] identified seven programming issues for multiprocessor
computer systems. One of these, synchronization, is a fundamental ‘problem with cooperating
processes in any environment. Since it has great impact on the performance of a parallel
algorithm, we will measure the perfogmance and discuss the tradeoffs of the various
synchronization mechanisms available to the C.mmp user.

Until now, we have used a very simple form of "busy-waiting” loop to synchronize the
cooperating processes. Although synchronization using this method is extremely fast,
undesirable side effects can cause serious performance problems. We will discuss several
alternative synchronization mechanisms, describe their operation and side effects, compare
their performance in the context of the rootfinding algorithm, and present the range of
usefuiness for each.

4.2 Description of Synchronization Primitives

We first examine the nature of the synchronization problem tor the rootfinding processes.
In figure 13 we present a more detailed view of the STAGE time and in particular focus on
the mechanics of synchronization. The segment labeled FIND is the time spent locating the
new root containing sub-interval. The V(i?s correspond to waking up each of the rootfinding
processes. One quickly notices that the overhead of synchronization can be a significant part
of the STAGE lime in certain instances. Because we have used a spin lock, a form of busy
waiting, to synchronize the processes, the overhead of synchronization has been negligible.
However, it is not always desirable to implement synchronization with this mechanism.

4.2.1 The Spin Lock

Of the three synchronization primitives considered in this study, the spin lock is the most
rudimentary. This primitive is actually implemented independently of any Hydra support and
is only a tight loop in which fhe process continually tests a semaphore until it can set it
successfully. The P and V operations are the following PDP-11 code sequences:

™

e T o

T

swl] 3DV IS 8Y} Jo maip paje}sq y ET 94314

|
|
I
o JNWI1 39V1S J
]
. I
" I
' |
i I
. 1 Nouwinowd (x4 } " {owoieoe
- : ve 553208d
] : o . |
——{nouvinowo (4 | e[eew] e R T @n] o] gupg | NOLLYIND VD (X4 coco
" .. 1-us 553008d
L L
ooo Jur] guy | NOLLYIND YD (X)4) {___ nouvimowo i e e°
Z-vs 553008d
(-] -]
(-] o
(-] o
1 NOLLYINDI¥D (X)4 _} { Nonvinowo (03 ©© ©
€+ 553204d
{ " Nouvinoiva x4 F o —{ nNovinDwo 03 e °
Z* 553208d
e T
coo |- | NOLLYINDIVD (X)4 il {_owomwg ©°°

(awy sip1)

s S53008d

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 37
P: CMP SEMAPHORE, #1 ;SEMAPHORE = 1 ?

BNE P jloop until it is = 1

DEC SEMAPHORE idecrement SEMAPHORE

BNE P iif SEMAPHORE neq O then go to P
Vi MOV #1, SEMAPHORE ireset SEMAPHORE = 1|

The repeated polling of the semaphore, although extremely fast, has two very nasty
characteristics.

The first is that when the process completes its function evaluation and starts to poll the
semaphore while waiting for its counterparts for finish, the processor is not free to perform
useful work.

The second major drawback is that the polling process consumes many cycles in the
memory bank that contains the semaphore. As more processes finish their function
evaluations and begin to poll the semaphore, the bandwidth of the memory bank is quickly
consumed. The process that has its code page located in the bank with the semaphore will
be campeting for cycles with many busy processors. This second problem can be
circumvented by inserting a tiny delay loop in the semaphore code, i.e., decrement a register
to zero before checking the semaphore. This delay will decrease the frequency of memory
requests in the semaphore memory bank, but not siow the sychronization primitive
appreciably. However, the primary problem still remains: a "spinning” process prevents a
processor from doing useful work.

4.2.2 The Kernel Semaphore

The Kernel semaphore (K-SEM) is implemented by the Hydra operating system. 1t is the
low level synchronization mechanism used by system processes. When a process blocks or
wakes up, a state change for that process is made inside the Kernel. Because it is
implemented within the domain of the Kernel, the user evokes operations on the semaphore
(P and V) by issuing Kernel calls. If the process blocks while trying to P the semaphore, the
Kernel swaps the process from the processor and places the process in the semaphore’s
blocked-queue, where it remains until another process Vs the semaphore. When the process
can proceed again, it is swapped back onto an available processor and continues execution
from the point where it was blocked. The important attributes of the Kernel semaphore are:

- A blocked process is swapped from a processor.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 38

- When a process blocks, ils pages are kepl in primary memory. Keeping the
pages in primary memory ensures that the process will quickly resume execution
when it is swapped back onto a processor.

- The Kernel semaphore is approximately two orders of magnitude slower than the
spin lock.

4.2.3 The Policy Module Semaphore

The policy module semaphore (P-SEM) is implemented by the scheduling subsystem called
the Policy Module (PM). This primitive is intended as the user’s primary mechanism for
performing synchronization. ' :

Since the synchronization is performed within the context of a system process, more
flexibility is available in handling a blocking/waking process. The first policy that was
adopted to handle blocking/waking processes was the following:

- Two PM processes would cooperate to perform synchronization operations for

users; one would start and stop processes and the other would handle
communication between the Kernel and user. ’

- When a process blocked on a semaphore it would be context swapped from the
processor.’

- Any ‘dirty’ pages belonging to the process would be updated on secondary
storage. :

- When a process was to wake up it would be restarted by one of the PM
processes after all the swapped out pages belanging to the process were
brought back into central memory.

This policy has evolved into a much faster arrangement of multiple processes in the
current version of the PM.

One modification to the PM that was found to improve performance substantially was to
delay the updating of a process’ dirty pages onto secondary storage. Often a process is
blocked for very short amounts of time and will quickly resume execution after only several
milliseconds of waiting for a certain condition to be true. However, when a page is to be
updaled onto secondary storage it is written onto one of several fixed head disks that will
take at least 32 milliseconds per page. The swapping disks revolve once every 16.67
milliseconds. It takes two revolutions to update a page: one to write it out and the second
to perform a read-check operation to validate the copy. Thus, it is quite possible for a
process to spend most of its time blocking and unblocking if the inter-synchronization interval

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 39

is small enough. The problem would be even more severe if there were a task force of
cooperating processes, e.g. the rootfinding processes, blacking and unblocking every few
milliseconds.

The current version of the PM initializes the delay time parameter, ¢, to 300 milliseconds.
Table 9 is a summary of the time it takes to perform the basic semaphore operations on the

various primitives.

Measurement Spin Lock K-SEM PMO PMI1(€=0) PM1(¢=300)
Time for a process
to do a V (us.) 30 3000 6000 5000 5000
Time till a process
wakes up from a V (us.) 30 5000 55000 50000 13000
Time from P to CSW (us.) na 3000 9000 6000 6000

Time spent in F’M while
waking a process (us.) na - na 62000 20000 0

Tabie 9 Comparison of Execution Times for
Semaphore Primitive Operations

4.3 The Impact of Synchronization on Performance

4.3.1 Introduction

Now that we have described the functionality and presented the individual performance
statistics for the basic primilive operations, we can observe the impact of synchronizstion on
the performance of the rootfinder. We have eliminated most of the overheads associated
with synchronization by using the spin lock primitive. The remainder of the paper examines
the roolfinder’s performance as we employ the aiternative synchronization primitives.

4.3.2 Comparison of Primilives When Compute Time ~ Synchronization Time

The first graph, figure 14, compares the performance of the various implementations of the
rootfinder using different primitives to perform the process synchronization. We have
plotted the elapsed time to find 50 roots as a function of the: number of processes. This data
was generated by the authentic, not synthetic, rootfinder. The distribution of the Fix)

Elpased Time (Sec.)

550r

500

450

400}-

380

300}

250

200

150

PM1(e=300) Sm;:o/a
- -

1 OOrp Kerne! Semaphore
Spin Lck
50 s L i { R— W— s)
1 2 3 4 5 6 7 -] 9

Number of Processes
Figure 14 A Performance Comparison of Synchronization Primitives

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 41

computation is approximately Mormal with mean 72 milliseconds and standard deviation 18
milliseconds!. We compare the performance of four alternative synchronization primitives:

spin lock, K-SEM, PM1(¢=300), and PMO semaphores.

The curve for the PMO semaphore implementation exhibits degradation as we increase
parallelism. The reason for this behavior is that the overhead of synchronization is greater
than the average compute time. A process spends more time synchronizing than computing.
In this instance we would be better off using a single process.

The curve for the PMI1((=300) semaphore implementation depicts substantially better
performance than ils predecessor. Performance reaches a maximum speedup of 2.00 at six
processes. No additional speedup is gained by employing more processes. Moreover, a
noticeable degradation occurs at nine processes. This sudden degradation occurs because of
the non-homogenous processor configuration (NHPC). During this experiment C.mmp’s
processor configuration was eight 11/40’s and one 11/20. Thus, when we incorporated the
ninth process, it ran on the slower 11/20 type processor. The STAGE time lengthed, thus
yielding an overall slower performance.

The K-SEM implementation has its peak performance of 2.4 at eight processes. It too is
affected by the NHPC problem and performance degrades slightly at nine processes. The
overall performance of the K-SEM implementation is about midway between the PM1(€=300)
and the spin lock versions.

The spin lock implementation has by far the best speed up maximum of about 2.8 for eight
processes. The NHPC problem causes a much more severe performance degradation for this
semaphore than for the others!. The reason is that the processes blocked on the spin lock
semaphore remain on their processors, whereas the other implementations free the faster
11/40 type processors to steal the process that is still running on the slower 11/20
processor.

4.3.3 Comparison when Compule Time is Much Greater Than Synchronization Time

In the previous experiment the overhead of synchronization was in some cases a
considerable fraction of the STAGE time. If we make the compute time for the function
evaluation much larger, thus reducing the percentage of time spent synchronizing, the

10n an 11/60 processor

lTh' PMO implemeniation performance curve hss a gresler degradation than lhe spin lock version. However, the
reason ia not merely the NHPC problem The primary reason is thal the two PM processes that perform the semephore
operafions are simost constantly running.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 42

performance differences between the various implementations is also reduced. Figure 15
graphs performance in terms of speed up as a function of the number of processes. We used
the synthetic rootfinder again to generate F(x) computations that take 375 milliseconds to
compute with the distribulion a constant. The dashed curve is the performance obtained
using the PMO semaphore and the solid curve the performance obtained using the spin lock.

We expected the curves to be closer together, yet the spin lock version outperforms the
PMO semaphore 2.8 to 2.1 at maximum speed up. The reason for the large ditference is that
the PM processes must perform the semaphore operations serially, each V operation taking
about 55 milliseconds. Thus the n!" rootfinder process is not started until 55sn milliseconds
into the STAGE time. In this manner the ninth rootfinder process does not compléte its
function evaluation until 870 milliseconds have past. Similarly, when the rootfinder processes
complete their F(x) calculations, the PM processes again serially perform the P operations on
the semaphores causing still further performance degradations.

The severe performance degradation that occurs at eight and at nine processes for the
spin-lock implementation is another instance of the NHPC problem. This time, with only seven
11/40 type processors, performance peaks at-seven processes, declines slightly at eight, and
then plummets from a speed up of more than 2.7 to slightly more than 2.0. The performance
of the two implementations is nearly identical at nine processes.

However, in figure 16, where the distribution is exponential, relatively little difference
exists between the performances of the two implementations. Because the distribution of the
compute phase causes the processes to arrive at random times, the PM does not become a
bottleneck when the processes finish their work. When they are restarted, the last one to be
started is still delayed by 55sn milliseconds. However, since the distribution is exponential,
| the process that must compute the function evaluation with a compute time that lies in the
‘ long tail of the distribution always finishes last. Thus the overhead of synchronization is

again hidden by the MAX function that governs the STAGE time.

4.4 Summary of Results: The Useful Range for Various Semaphores

In figure 17 we have summarized the results of this investigation by graphing the useful
range for each of the synchronization primitives. We have graphed the performance of the '
rootfinder using each primitive as we vary the size of the computation phase between
synchronization points. For each point, five cooperating processes pertormed 1000 total
function evaluations to find 50 roots. The distribution of the function evaluation was a
constant and ranged in size from 2 milliseconds to 375 milliseconds.

The NO-OVERHEAD curve is the ideal performance we would see if no degradation occured

4

Speed Up

3.00,

2.75

2.50

2.25

2.00

PMO Semaphore

1.75¢

1.50

1.25

L e ST S A ST
Number of Processes

Figure 15 Comparison of Two Synchronization Primitives

1.00

1.25

Speed Up

/ PMO Semaphore

A

0.75

A

A A - — A A J
2 3 4 5 6 7 8 9

Number of Processes

Figure 16 Comprison of Two Synchronization Primitives

1000,

ﬂ
v

N~

c

9

0

Q

-

E

N

[

&

~

g PMO Semaphore

b " » ;
N = = =
c

[}

A\

&

3

u’; 100t PM1(e=0) Semaphore

L e
b

£

©

4 PM1(e=300) Semaphore
A

¢

3 Homrecmems e
Q

10}
17 . .)
1 10 100 1000

Compute Time per Inter-Synchronization Interval (milliseconds)

Figure 17 The Range of Usefulness for the Various Semaphores

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP

PAGE 48

due to hardware, operating system or synchronization overheads.

The 507 line represents our threshold for adequate performance. It paralleis the
MNO-OVERHEAD curve but represents exactly half of the performance that would be achieved
in the best case. The point at which a performance curve crosses the 507 line is the
threshold of usability for that synchronization primitive.

From these results we see that the spin lock is the only primitive that performs adequately
when the length of the compute phase is less than 15 ms. At the other extreme, all of the
primitives with the exception of the initial version of the policy-module semaphore, become
indistinguishable beyond 400 ms. In the region between these two endpoints the user can
select the appropriate primitive to match the length of the computation phase. The
cross-over points for the various semaphores appear in the table below.

Semaphore Type Cross-over Point (msecs.)
Spin Lock 2
K-Sem 18
PM1(e=300) 33
PM1(¢=0) 80
PMO 200

Table 10 Cross-over Points for the Various Semaphores

e ——

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 47

5. An Example Implementation

One technique to decompose a task for parallel execution is to portion the work into
. independent partitions for simultaneous processing. This method is applicable to problems
| involving the repeated evaluation of a sequence of functions on a stream of data, e.g. integer
programming and matrix manipulations. The perallelism results from simultaneocusly
performing the function evaluations on different data elements in the stream.

Two overheads are associated with decomposing an algorithm into parallel processes using
the partition approach: 1) the cost of partitioning the data and 2) the cost of synchronizing
the processes. To successfully capture parallelism using this approach, these two overheads
must be minimized. Thus, problems involving minimum communication between the processes
and a long data stream composed of independent dala elements are favored as good
candidates for decomposition using the partition approach.

However, not all tasks that exhibit potential parallelism are simply the repeated application
of a function on a stream of data. Connected speech recognition systems exhibit a great deal
of parallelism [Lesser 75], but have complex control structures that can constitute a large
synchronization overhead. In order to efficiently implement algorithms of this type, it is
necessary to restructure the algorithm so that the overhead of process synchronization has
only minor impact on the aigorithm’s performance.

! Often, minimizing the overhead of synchronization can be accomplished by decomposing a
large, complex task into a series of smaller, simpler sub-tasks. While this introduces new
synchronization poinls into the algorithm, it also increases the potential for parallelism if the
sub-tasks can be performed simultaneously.

To demonstate the effectiveness of the partition approach we have chosen a complex task,
the Harpy speech recognition system developed at Carnegie-Mellon University [Lowerre 76],
for decomposition into cooperating processes. This chapter describes the algorithm,
demonstrates a series of implementations, and discusses the performance that results from i
each refinement to the algorithm.

5.1 A Brief Description of the HARPY Speech Recognition System

HARPY is a speech recognition system that can recognize phrases and sentences from lti
many speakers based on a finite vocabulary within a constraining task [Lowerre and Reddy

77). Two important features of any speech recognition system are its representation of
kr'\owledge and the search and match techniques that convert the passive knowledge into an

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 48

active process for understanding the spoken utterance.

5.1.1 Represantation of Knowledge

HARPY represents all legal sentences within a task in a finite state graph structure. Figure
18 is a graph of a simple grammar. The knowledge is organized as a network of nodes where
each node holds a word in the vocabulary. The nodes are interconnected such that any path
through the word network constitutes an acceptable sentence.

Many words have more than one pronunciation. Alternative pronunciations can be
represented as a separaté network of phonemesl. Each path through this type of network
represents an acceptable pronuncialion of a word. For example, the southern pronunciation
of the word "tell” is an op't_ional path through the phoneme graph in figure 19.

By replacing every node in the ward network with its pronunciation network, we produce a
new finite state graph, figure 20, where each path is a pronunciation of an acceptable
sentence.

A separate knowledge network is compiled for each task. Pre-compiling the network
eliminates the need for dynamic interpretation of knowledge during the search and match
phase of the recognition process.

5.1.2 The Recognition Process

HARPY’s recognition process consists of three separate phases: the pre-processing of raw
speech, the heuristic search through the knowledge network, and the backtrace through the
network that yields the connected sentence of speech. The heuristic search is by far the
most interesting and computationally intensive phase of the recognition process, but we will
include discussion of the other two phases for completeness.)

The pre-processing phase starts when the utterance is input to the computer. The
utterance is digitized and segmented into acoustical units, figure 21. These segments are
analyzed to determine their segmental features and parameters. At this point, an attempt is
made to match each segment of speech with one of the possible phonemes. Since an absolute
assignment cannot be made reliably, the system calculatas a match probability for each
phoneme based on the acoustic information in each segment, figure 22.

The goal of the heuristic search phase is to find an optimal sequence of phonemes

Iphonemes are the smallest units of speech that distinguish one word from anothsr, e.g, the *m" in mat and the "b" in
bat are {wo English phonemes.

Jewwes sjdwiS e Joj Nom}SN PiOM ¥ 8] oindiy

et = = L -
e g a

B e B 87 e - R — -

et i R SR SR

Figure 19 Pronunciation Network for the Word "TELL"

H4OMISN P4oM BY) Oju] psjesodiodu] HJomjaN uoleldunuold OZ ©4ndi4

$1UN 213sN0dY oju) pejuswbos yseads pezibig 12 eunbiy

.”._. K 7 an
. s0
14 }

seweuoyqd payodejag o3} bujpuodsesio) spiogs zz vanbyy

»~YNIHD 1NO8VY 171V 3JW 1131, P4eay |

NI s bk T 1

e _§<_§__;_i_ Wl ,_...;_.._.:H__
T T AR

b..t..: rap._:_.._:_._zi_, m_._»r:.uﬁ

Ty

YNIW)

2

R e

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 54

satisfying two criteria: the sequence must represent a legal path through the knowledge
network, and the sequence should consist of phonemes with high acoustic match probabilities.

HARPY uses a beam search to locate this optimal sequence of phonemes. This technique

involves searching: a few of the best paths simultaneously, eliminating the need for
backtracking.

The search is performed by creating and dynamically pruning a tree structure of
phonemes. Each ply in the tree represents one segment of the digitized utterance.

For example, HARPY begins the search by placing all the legal phonemes for the start of a
sentence in the recognition tree, figure 23a. Next, a path probability is calculated for each
candidate. The path probability is a cumulative probability based on the path probability of
the previous node and the acoustic match of the current node, figure 23b. The path with the
best probability is determined and the remaining candidates are compared with it. Those that
fall below a threshold of acceptability are pruned from the recognition tree, figure 23c.

The surviving candidates are expanded based on the information in the knowledge network
and the search continues, figure 24a. The path probabilities are calculated, the best path
determined, and unpromising alternatives are pruned, figure 24b. The heuristic search
continues, expanding the recognition tree and saving those connections that satisfy the
threshold until the end of the utterance .is reached.

The final phase of the recognition process is a backtrace through the recognition tree
along the path with the highest probability. This backtrace is purely a lookup operation, and
does not involve any search. The final output of the backtrace is the sequence of words that
correspond to the optimal path.

5.2 The Decomposition of the HARPY Algorithm

The first step in decomposing HARPY’s search algorithm is to isolate sub-tasks, independent
functions that operate on a data stream. No restriction exists on the number of sub-tasks
- that, when combined, accomplish the task. Moreover, performance may be improved by
decomposing a complex sub-task into a series of simpler tasks.

HARPY is a three phase recognition system; in this study, we will decompose only the
heuristic search phase since it is the most complex and computer intensive of the three. We
can identify three sub-tasks in HARPY's heuristic search. The three sub-tasks and the names
of the routines which perform them appear below and in figure 25.

CHECKNEXT A candidale state is expanded into a list of successor states. Each item

0oz-

asuanbag uonuBooay ayy ul sda)g aasy| js44 o'qegg @indiy

©)

3L

L9
[l]
" JAID
1 CHI

- e e e e e e e e T EEEE T e ®®E®EEm®E®EEEEE®eEE - - -

0c-

Ge-

ce-

(@)

73l

3AID

\V//

ENG)
CHI

D L I ettt e e T R

(e)

731

3AID

\/

3AID
cHI

e e o Tl

aAl4 pue uno4 sda)g aouanbag uonudoday qeyg aindiy

31

I R
[}
St- _1__!
P Sl]
¢t 1131
[}
01— _EvV_»
M3L ,
0 1
oe-
3NIO
= 9 /
3IND &
1- CHI
" -

SR

(@

]
]
!
'
!
'
'
U
'
]
]
1
]
!
L]
]
!
!
'
]
)
'
!
]
!
]
!
'
'
|}
'
'
]
!
'
'
!
'
]
|
'
]
|
|
]
'
U
'
]
'
'
1
]
'
!
'
1
|
]

17131
13
(e)
3L
EVY
ML
1
3L
0z-{ 1
3AID
) /
3AID &]
2HI
i 3N9
w--@--u
ot dendidd]
1 3AID
1\
' cHl

CHECK

(SUB-TASK 1) >\ NEXT
Candidates(seg i)
(F,S) pairs
CHECK
(SUB-TASK 2) STATE +
(F,S) pairs '" |.
States(seg i) States(seg i+1)
pruned states
SAVES -
(SUB-TASK 3) * STATES >
(F,S) pairs. ‘ !

Candidates(seg i+!)

States(seg i+l) L
: . BESTP

Figure 25 A Flow Diagram of Harpy's Search Algorithm

BESTP

e e

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 58

in the list is a father and son (F,S) pair.

CHECKSTATE The probability of transitioning from father to son is calculated. If the
value is greater than the current probability in the successor state, this
value is updated; otherwise it is not. The best probability during this
current segment also is saved, (BESTP), and is used later in the pruning
phase.

SAVESTATES A threshold is determined, based on the current best probability. All
sons that have transition probabilities higher than the threshoid become
next generation candidates; all those below the threshold are discarded
as unlikely paths.

In the uniprocessor implementation of the algorithm, the total compute time was divided
among these routines in these proportions:

CHECKNEXT 21.57
CHECKSTATE 46.07
SAVESTATES 2857
OTHERS 4.07
TOTAL 1007

Table 11 Compute Time Proportions

We therefore wiil attempt to speed up the algorithm by concentrating compute power in
the form of task forces of cooperating processes to perform the three major routines--
CHECKNEXT, CHECKSTATE, and SAVESTATES.

5.3 The Initial Implementation

5.3.1 Constraints on the Implementation of the HARPY system

In the implementations that follow, we have divided the heuristic search into two phases:
the forward steb, where lthe recognition tree is expanded; and the pruning step, ;where
unlikely paths are removed from the tree. Hence, the forward step consists of the two
routines, CHECKNEXT and CHECKSTATE, while the pruning step is performed by SAVESTATES.

Two decisions were made prior to the design of the first implementation: the first, because
of the nature of the algorithm; and the second, to simplify the data structures.

- Because the pruning step cannot begin until BESTP is found, the forward step
must be completed before the pruning step can begin.

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 59

- For simplicity, the forward step will not begin until the previous pruning step is
completed. This decision was made because the forward step modifies the
STATE vector, which is input lo the pruning step. To maintain the data’s
integrity, it would be necessary to add an additional dimension to the STATE
vector indicating the speech segment for which the state’s path probability is
calculated®.

5.3.2 Control Structures and Data Sharing

The original version of HARPY combined the two sub-tasks, CHECKNEXT and CHECKSTATE,
forming the forward step of the algorithm. The initial C.mmp implementation is a parallel
version of the uniprocessor algorithm.

Since the pruning step cannot begin until the forward step is completed, we use a
synchronous control structure® to sequence the pruning step after the forward step.
Similarly, another synchronous control structure sequences the forward step to process
speech segment(i+1) after the pruning step completes processing speech segment(i).

The cooperating processes in the forward step :tuu'callya allocate the candidate states
among themselves. Each process is assigned an equal number of candidates to work on: the
process first expands a candidate into a list of successor states and then calculates the
probability of transitioning to each of these states from the candidate. When a process
exhausts its supply of candidate states, it must wait for the other task force member
processes to finish before the pruning step can begin.

lll would be possible 1o immediately expand candidates into (F,S) pairs as soon as they sre crested by the
pruning step, but this implementation is not discussed here.

2" sub-lask(j) takes ss inpul the output of sub-fesk(i), and if sub-task(j) cannot begin until sll processing ot
sub-task(i) is finished, then the control struciure {o sequence sub-task(j) after sub-task(i) is » synchronous control
siructure.

3Data is allocated statically in @ lask force if the processes do no compele for the dats items. Instesd, ssch process
has a private partition of the date.

o

THE IMPLEMENTALION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 60

In the pruning step, work units are dynarnic:nuy4

allocated from a data stack. A process
takes the top element on the stack, a successor state, and performs a calculation to determine
if the siale’s path probability is above the pruning threshold. If it is, the state is saved and
becomes a candidate for expansion in the next iteration of the forward step. If the path

probability falls below the threshold, the state is discarded.

5.4 Performance of the First Implementation

The performance of this implementation is presented in two perts: the forward step and
the pruning step. In both cases, three measurements were performed:

Elapsed time to process fitteen utterances.!

Speedup relative to the single process instantiation as the number of cooperating
processes in the task forces is increased.

Pc utilization as the number of cooperating processes in the task forces is increased?.

5.4.0.1 The Performance of the Forward Slep

In figure 26, the elapsed time to perform the forward step of the algorithm decreases from
52.89 seconds in the single process instantiation, to 18.143 seconds when éight processes are
incorporated into the algorithm. This improvement corresponds to a relative speedup of only
2.914.

In figure 27 we compare the algorithm’s relative speedup, as a function of the number of
processes, to linear speedup. Theoretically, if n processes cooperate to perform the
algorithm’s forward step, the elapsed time to perform the task should be reduced by a factor
of n. Unfortunately, the speedup exhibited by the algorithm is substantially less than linear.

Figure 28, which graphs process utilization as a function of the number of processes, sheds

some light on the reason for less than linear speedup. In this graph, process utilization

E decreases rapidly as the number of processes increases. At eight processes, only 27.57 of
I the available processing power is being used. The under-utilization of processing power

indicates that allocation of data to the processes is the source of the performance problem.

aDah is dynamically sllocated in » iask force if the processes compete, or share, ail the date. There is no
pre-sssignment of data lo specific processes.

I These uitersnces came from the Aritificisl Intelligence information retrieval lask [Lowerre 78], see Appendix.

zTho processor utilization measurement does nol include operating sysiem relsted effecis on ulilization such as:
confext swaps, time-slice end rescheduling, and interrupts from [/O devices.

Elapsed Time (sec.)

55,

501

45}

40}

35}

30}

25+

Version #1

15}

10

I i |' - | ol

=
3

A

3 4 5 ; 7 8 o

Q%
-y
N

Number of Processes
Figure 26 Decomposition of the Forward Step-- Version #1

Q
=)
3
)
@
7r Linear Speed Up
61
5t
41
i |
Version #1
2
71
(0] I T i - L L 1 1 il
o 17 2 3 4 5 6 7 8 9
Number of Processes

Figure 27 Decomposition of the Forward Step-- Version #1

100,

90}

Percent Utilization

80}

701

60}

50

T

40t

30t

Version #1

20+

3 4 5 5 7 8 9
Number of Processes
Figure 28 Decomposition of the Forward Step-- Version #1

o9
-l
N

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.MMP PAGE 64

In order to understand the reason for this poor behavior, we must look more closely at the
work units and the way they are allocated to the processes.

For the synchronous control structure to perform well, the processes must arrive at the

synchronization point together. Any one process that lags behind will cause the entire task
force to wait.

Although each process receives an equal number of candidate states to work on, this
method does not guarantee that each process will receive an equal share of the total
computation. Figure 29, which is a graph of distribution of compute time for expanding a
candidate state into the list of successor states, shows that while most candidate states can
be expanded in less than five milliseconds, occasionally the expansion can take as much as
thirty milliseconds to perform. In addition, the distribution of the time to perform the
transition probability calculation is bimodal, figure 30. The first peak, at 800 microseconds,
corresponds to performing the transition probability calculation and not updating the STATE
vector. The second peak, which is centered at 1200 microseconds, corresponds to
performing the calculation and also updating the STATE vector with the new value.

If the number of candidate states each process received were very large, the variation in
the compute time would have small impact on the performance of the forward step.
Unfortunately, this is not the case. Figure 31, which is the cumulative distribution of the
number of candidate stales per segment of speech, shows that the average number of
candidate states per segment is small; 657 have fewer than ten candidate states, and 247
have but a single candidate.

Thus, although the current method allocates an equal number of candidate states to each
process, those processes that receive many ‘prolific’ states will perform more computations
than those processes that receive mostly ‘barren’ candidate states. The net result is
under-utilization of the processes caused by an unequal allocation of work.

5.4.0.2 The Performance of the Pruning Step

The performance of the pruning step is much better than the forward step. In figure 32,
the elapsed time to process the fifteen utterances is reduced from about 28 seconds to less
than six seconds when eight processes are incorporated into the algorithm. In figure 33,
where the speedup of the pruning step is plotted as a function of the number of processes,
almost a fivefold improvement is realized when eight processes cooperate to perform the
pruning step. Although less than linear speedup is exhibited, the performance of the pruning
step is substantially better than the forward step. The successful implementation of the
pruning step stems largely from two sources.

e o ———— e

5000 E

Number of Samples
N
o
(@)
S
T

4000}

3000}

2500t

2000} : |

T

1500

.

1000

500}

T - A R + + /"\w -
5 o 15 20 25 30
f Compute Time (milliseconds)

Figure 29 Distribution of tha Compute Time to Expand Candidates

0
(0]

Number of Samples

T

20000

1

=

18000

16000¢-

14000

T

12000}

10000

T

38000

T

6000} i

T

4000

2000

T

TSR NS VIS U, LS il abeibesibesibomnibinsibmmmid. _k e

(4] %
.0 S5 1.0 1.5 2.0 - 2.5

“3.0

Compute Time (milliseconds)
Figure 30 Distribution of Transition Probability Compute Time

Probability

1.00,

o
©
o

0.80}

0.70¢

0.60}

0.50}

0.40¢}

0.30¢

0.20t

0.70¢

0.00,

Cumuiative Distribution Function

17

Figure 31 Distribution of Candidates per Segment of Speech

700

Number of Candidates

Elpased Time (sec.)

W
o
1

N
~N
T

N
LY
L.

21

18

15

12

d H 'l 1 1 J

o

1 2 3 4 3 6 7 8

Number of Processes
Figure 32 Elpased Time to Perform the Pruning Step

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 70

First, processes dynamically acquire work units, father and son (F,5) pairs, from a data
stack.! Thus, even though the distribution of the compute time to perform the threshold
calculation on an (F,S) pair is bimodal, figure 34, the processes arrive at the synchronization
point almost simultaneously. Since the last process 1o finish can hinder the rest of the task
force by at most one candidate state’s processing time, high process utilization results, figure
35.

Second, the pruning step’s data stream contains more work units than the forward step’s
data stream. The cumulative distribution of the number of (F,S) pairs per segment of speech
can be found in figure 36. The table below summarizes the difference between the two data

streams.

Work Units per Segment CANDIDATES (F,S) PAIRS
1-10 65.7% 38.07

10-100 30.37% 3207

100-1000 4.07 28.07

>1000 07 27

Unlike the distribution of candidate states, the number of (F,S) pairs per segment of speech
spans more than three orders of magnitude. More than 307 of the segments have grester
than one hundred (F,S) pairs; less than 407 have only ten or fewer pairs.

In summary, the dynamic allocation of data in the pruning step is the key to its successful
implementation. When a synchronous control sturcture is used to synchronize cooperating
processes it is imperative, in order to maintain high process utilization, that the processes
arrive at the synchronization point together. Dynamic allocation of data ensures that high
process utilization will occur, as processes do not develop a backiog of unstarted work units,

while other processes are idle due 1o a lack of work.

5.5 Refinements to the Initial Implementation

In this section, three refinements to the initial implementation are presented. In each, only
the implementation of the forward step was enhanced. The performance of the initial
implementation will serve as the baseline for measuring the performance improvement each
refinement contributes. As it is possible 10 measure the performance of the forward step
separalely from the algorithm as a whole, measuring the performance improvement of the

10n the average, less than 30 microseconds of overhead is sssocialed with obteining ® work unit from the stack.

8
Q,
&7
h -]
Q
(1]
Q
(7)
7+ Linear Speed Up
*I
5 —
4
3
2+
71
(0] 1 s 1 1 1 L 1)
(0] 1 2 3 4] 6 7 8
Number of Processes

Figure 33 Speed Up During the Pruning Step

20000+

18000

Al

Number of Samples

16000

T

14000}

—

12000

10000

T

8000

T

6000}

4000

T

L]

2000

[7 | I N R S W ST S SO TERNL, | (- SR SRR N (ST (R S R |

.0 .5 1.0 1.5 2.0 2.5
Compute Time (milliseconds)
Figure 34 Distribution of Compute Time During Pruning Step

100,

90}

Percent Utilization

80}

60}

50t

40}

30}

20}

' L 'l

— |

(1)

gy -

1 2 3 4 5 6 7

8

Number of Processes

Figure 35 Processor Utilization During the Pruning Step

-

Probability

1.00,

o
©
Q

0.80}

0.70}

O.SOL

0.40}

0.30¢}

0.20}

0.70}

0.00

Cumulative Distribution Function

1

Figure 36 Distribution of (F,S) Pairs per Segment of Speech

70 700 7000 70000
Number of (F,S) Pairs k

et i et i

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 74

forward step is sufficient to evaluate the refinement.

5.5.1 The First Refinement

In the initial implementation, the key to the success of the pruning step and the failure of
the forward step was the allocation of work to the processes. During the forward step, the
work units were allocated statically, by number instead of by amount of computation. This
method resulted in an unequal distribution of work among the processes in the forward step
task force.

We will altempt to allocate work units equally by dynamically allocating candidate states to
the forward step task force. Now, as in the pruning step, a process takes a work unit from
the stack of unstarted work only when it is ready to start processing the new work unit. All
other aspects of the algorithm will remain the same.

We compare the elapsed time to perform the forward step under the two work allocation
strategies in figure 37. From the two process case on, the dynamic ailocation method
outperforms the static method. At eight processes, the maximum measured parallelism, a 167
performance improvement resulls; the elapsed time to perform the task reduced from 18.15
seconds to 15.20 seconds.

Similarly, greater speedup is achieved by dynamically allocating work to the task force.
Speed'up as a function of the number of processes is graphed in figure 38 for both
implementations. In all measurements, dynaﬁic allocation of work yields higher performance
than static allocation. For eight processes, a speedup of 3.47 was achieved using the dynamic
strategy, compared to only 2.91 for the static method.

An improvement in process utilization also resulted. In figure 39 process utilization under
the two allocation strategies is graphed as a function of the number of processes. For the
eight process instantiation, a 32.77 utilization was achieved using dynamic work aliocation,
compared to 27.57 process utilization when the work was statically allocated to the
processes. The table below summarizes the comparison of the two implementations for the
eight process, maximum measured parallelism, case.

Performance Measure Version #2 Version =1
Elapsed Time (secs.) 15.206 18.148
Processor Utilization 32.77 27.467

Speedup 3.471 2914

Elapsed Time (sec.)

40

35}

30t

25}

20

15

10

o

- - - - 4Version #1

— Version #2
~x

1 1 1 1) i 1)] J

1 2 3 4 5 6 7 8 9
Number of Processes
Figure 37 Decomposition of the Forward Step-- Version #2

Q
pa}
B
@
o
Q
1]
7L
6}
5!
4l
3L
25
1L
o

0

Linear Speed Up

1
Version #2

+ Version #1

- —— - L . 1 1 1 1 j
2 3 4 5 6 7 8 9
Number of Processes

Figure 38 Decomposition of the Forward Step-- Version #2

Percent Utilization

100

90}-

80

70

60

50

40

30}-

20

10

o9

X
\\’\
Y \\\.
A " version #2
“Vers:on #1
=

1 = 1 L 1 1 1 1 J
1 - N 4 5 6 7 8 9

Number of Processes
Figure 39 Decomposition of the Forward Step-- Version #2

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 78

In summary, swilching from static work allocation to dynamic work allocation resulted in a
167 performance improvement. The performance improvement is smell because there are not
enough work units in the data stream. The small number of work units causes two problems:
1) a large variance in the amount of computation a process performs; and 2) often, processes
do not receive even a single work unit. Together, these performance problems cause low
process utilization during the forward slep.

5.5.2 The Second Refinemant

In this version of the forward step we solve the problem of low process utilization by
decomposing the forward step into the two sub-tasks CHECKNEXT and CHECKSTATE. By
making CHECKSTATE a separate sub-task, any process may now perform the transition
probability calculation on an (F,S) pair-~- not just the process that created the pair. In this
way we have increased the number of work units in the data stream by breaking large units
into many smaller ones.

As in the previous implementation, the CHECKNEXT task force begins processing the speech
segment by taking candidate states from a stack and expanding them into a list of (F,S) pairs.
However, instead of performing the transition probability calculation as each (F,S) pair is
produced, the processes place them in another data stack that supplies the CHECKSTATE task
force with input.

When all the candidate states have been expanded, the processes synchronize and the
CHECKSTATE task force begins to execute. Thus, we initially will use the synchronous control
structure to sequence the CHECKSTATE sub-task after the CHECKNEXT sub-task.

The elapsed time to perform the forward step is compared to the two previous versions in
figure 40. In the single process instantiation, the latest version of the forward step is more
than 207 slower than the two previous versions. This penalty results from the CHECKNEXT
sub-task storing, and the CHECKSTATE sub-task retrieving the (F,S) pairs from a data stack.
In the previous implementations, the storing and retrieving was unnecessary since the (F,S)
pairs were not placed in a common pool; the process that created the pair also performed the
transition probability calculation on it.

As the parallelism increases the elapsed time to perform the forward step is reduced from
66.69 seconds to 14.96 seconds. Thus, this version outperforms the initial implementation
from the three process case on, and the first refinement from the six process case on,
despite incurring the large initial overhead associated with storing and retrieving the (F,S)

pairs.

Elapsed Time (sec.)

70,

65}

GO}

55}

45\

35}

30}

25}

el g
20} e, e
+ Version #1

e N Vv
~~~~~~ S erzion #2
15} R "R Version #3

10}

O

1 ' 1 1 - ]

1 2 3 4 5 6 7 8 9
Number of Processes
Figure 40 Decomposition of the Forward Step-- Version #3

oS

R




Percent Utilization

1700 X

90 LT N

.
N
.
.
. .
v .
. N
. .
. .
70} . )
. .
. & o
L .
Y .
& \
N

.

L .

D
. .
‘ \
. .
o . .
. .
¥ .
4 .
.
. N ~
¥ .
~
.

Version #3
\\\
Y X “x
50}
+ "l‘
40}
~ “‘
~" 2
T 3
d ™ Version #2
30}
\*Version #1
20|-
10}
O 1 1 1 1 1 1 1 1 J
0 1 2 3 4 5 6 7 8 9

Number of Processes
Figure 41 Decomposition of the Forward Step-- Version #3




THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 81

Although the elapsed time to perform the forward step has not been significantly reduced,
the process utilization has dramatically increased, as shown in figure 41. At maximum
parallelism, eight processes, this version exhibits a 537 process utilization, compared to 32.7%
utilization for the first refinement, and only 2757 for the initial implementation. The -
substantial improvement results from sharing the (F,5) pairs more equally among the
cooperating processes.

We compare the speedup of the three implementations, relative to the single process
instantiation of the initial implementation, in figure 42. The latest version of the forward step
is initially slower than the two previous versions-- a speedup of 0.79. However, as the
parallelism increases, the latest version outperforms the two previous implementations; at
eight processes a speedup of 3.535 compared to 3.479 for the first refinement, and 2.915 for
the initial version.

To summarize, the latest enhancement to the algorithm, splitting the forward step into the
two sub-tasks CHECKNEXT and CHECKNEXT, resulted in an initial overhead in the form of @
207 increase in elapsed time, caused by the additional manipulation of the (F,S) pairs. This is
the cost we pay lo share the (F,S) pairs equally among the task force. However, as the
parallelism increased, a small improvement over the two previous versions was realized due
to a substantial increase in process utilization. The table below compares the performance of
the three versions when eight processes are in the task force.

Performance Measure Version #3 Version 82 Version 1
Elapsed Time 14.966 15.206 18.148
Processor Utilization 52.997 32.707 27.467
Speedup 4.456 3.471 2.94

5.5.3 The Third Raefinement

In the previous implementation, the two sub-tasks CHECKNEXT and CHECKSTATE were still
performed sequentially despite their being identified as separate sub-tasks. Any
performance improvement obtained was achieved by sharing the computational load more
equally among the cooperating processes. In this final refinement to the original
implementation, we will perform the two sub-tasks of the forward step in parallel, obtaining
still greater peformance improvement.

In this implementation, we sequence CHECKSTATE after CHECKNEXT with an asynchronous




T

]

Speed Up

N

Linear Speed Up

Version #3

"7 Version #2

+ Version #1

A 4

—

T 2 3 4 5 6 7 8 )
Number of Processes

Figure 42 Decomposition of the Forward Step-- Version #3




TP T T T

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 83

control structure.! This allows the CHECKSTATE task force to begin calculating transition
probabilities for the (F,5) pairs before the CHECKNEXT sub-task is completed. Thus,
processes. that cannot find any candidate states for expansion no longer become idle, waiting
for their companions to finish. Instead these processes immediately begin to perform the

transition probability calculation on the (F,5) pairs already produced. We can allow this type

of parallelism because the CHECKNEXT task force only adds new (F,5) pairs to the
CHECKSTATE task force’s input stack; they do not modify any pairs already on the stack.

The elapsed time to perform the forward step for all four alternative implementations is
compared in figure 43. The latest version of the algorithm outperforms the three previous
versions from the three process instantialion on. The elapsed time is reduced from 65.3
seconds to 12.3 seconds at maximum parallelism-- more than two and one-half seconds faster
than the next best version.

Performing the two sub-tasks in parallel has substantially increased the forward step’s
performance by maintaining higher process utilization. In figure 44, the process utilization of
this version is compared to the three previous ones. Al maximum parallelism, the finai
version of the forward step maintains a process utilization of 63.77%, compared to 537, 32.77%
and 27.57 for the earlier implementations.

In figure 45 we compare the four implementations of the algorithm in terms of speedup.
The final version of the algorithm is initially slower than the first version due to the extra
storing and retrieving of the (F,5) pairs from the data stack. However, as the paralielism
increases, the final version of the algorithm outperforms the three previous versions,
speeding up the execution of the algorithm by a factor of 4.29, compared to 3.54, 3.48, and
2.92 for the previous versions.

Again, performance has been improved by increasing process utilization. In this version,
the increase in utilization was achieved by sequencing the two sub-tasks asynchronously
instead of synchronously. Thus, not only were individual sub-tasks performed in parallel by
task forces of processes, but also two sub-tasks were processed simultaneously. If e
process could not find work to perform in the CHECKNEXT task force, it looked for work to
perform in the CHECKSTATE task force.

Unfortunately, this method of enhancing performance by increasing parallelism only
partially solves the problem of not enough data in the data stream. Those processes that

"" sub-{ask(j) fakes as inpul the oulput of sub-task(i), end if sub-task(j) does not have to wait for sub-task(i) to
be complaled before it can begin, then the control struciure sequencing sub-task(j) after sub-task(i) is an asynchronous
control structure.




Elapsed Time (sec.)

70[

GOt

55}

50}

40}

30

20j|-

o®

oA
O AX 4
+

-+ Version #1

\ “~--:::’ --‘_ Version #2
s - - AVersion #3

e P AVo.-rsu(m #4

L&

Il 1 — 1 1 i e 3
4

1 2 3 5 6 7 8 9
Number of Processes

Figure 43 Decomposition of the Forward Step-- Version #4

s S




Percent Utilization

100 L
n
e,
T
90} )
' :
s X
80}
+ R
S %
7oL L . \
. &Y , \ Version #4
LY \
s x
. x . \0
60} . s
: « x\ Version #3
s L} T
50} : .
‘. ‘n
40} &
‘Q “\
.
s 5 I
®version #2
30{- ; 3
*Version #1
20}-
10}
0 1 1 1 L l 1 1 1 3
0 1 2 3 4 5 6 7 8 9

Number of Processes

Figure 44 Decomposition of the Forward Step-- Version #4

kioamedl




®

Q
D
°
[T]
Q
Q
%)
7 Linear Speed Up
G}
5
Version #4
4 /
Version #3
------- *
- Version #2
3
+ Version #1
2
1 /
o L A " 1 A 1 i 1 )
(0] 1 2 3 4 5 6 7 8 9

Number of Processes

Figure 45 Decomposition of the Forward Step-- Version #4




THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 87

cannot find any work to perform in the CHECKNEXT task force are not guaranteed to find
work by becoming part of the CHECKSTATE task force. In addition, although further
subdividing the forward step inlo smaller sub-tasks will increase process utilization by
creating more waork units, it will also introduce new overheads in manipulating the data items.
At some point, the overheads in manipuiating the new work units will outweigh the
performance improvement resulting from higher process utilization. This investigation, to
locate the optimum number of sub-tasks, is beyond the scope-of this study.

The performance of all four versions of the forward step is summarized in the table below.

Measure Version #4 " Version #3 Version 82 Version &1
Elapsed Time 12.339 14.966 15.206 18.148
Pc Utilization 63.697 52.997. 32.707 27.467
Speedup 5.295 4.456 3.471 294
5.6 Summary

5.6.1 Comparing the Four Versions of the Algorithm

The performance of the initial implementation was discussed in detail, uncovering several
problems limiting the performance of the algorithm. In the three subsequent implementations,
enhancements to the algorithm were directed towards eliminating the performance problems
of the initial version,

In the initial parallel version of the algorithm, statically pre-allocating an equal number of
candidate states to each process resulted in under utilization of the processes for two
reasons: the compute time to process a candidate state was not a constant, and the number
of candidates per segment of speech was quite often less than the number of processes.

The first enhancement to the algorithm was to dynamically allocate the candidate states
among the processes. This prevented one process from developing a backlog of unstarted
work while other processes were forced to remain idle. A 167 reduction in the elapsed time
to perform the torward step of the algorithm resuited. This technique solved the preblem of
unequal workload allocation only when there were many candidate states to be processed.

When the number of candidates was small, almost two-thirds of the speech segments had less.

than ten candidate states, under utilization of the processes still resulted.

In the second enhancement lo the algorithm, the sub-task performing the forward step was
split into two smaller sub-tasks in order to increase process utilization. Dividing the




THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 88

computation into two separate phases increased process utilization by breaking the relatively
small number of computationaly large work units into many smaller, less complex units.
Although process utilization increased by 207, the additional overhead in sharing the new
data items and in synchronizing the processes between the two sub-tasks, eliminated any

substantial elapsed time improvement.
®

In the final implementation, the control strategy synchronizing the processes between the
two sub-tasks was changed trom synchronous to asynchronous. Processes that could not find
a candidate state for processing in the CHECKNEXT sub-tasks, migrated to the CHECKSTATE
sub-task to start processing the (F,S) pairs without waiting for the rest of the task force to
finish {he CHECKNEXT sub-task. This enhancement increased process utilization to
approximately 647. However, unlike the previous implementation, a sizable improvement in
the elapsed time to perform the forward step was realized; a 17.5% reduction to 12.3
secands.

5.6.2 A Final Comparison-- The Uniprocessor Algorithm

Up to this point we have confined our performance comparison to the alternative
implementations of HARPY on C.mmp. To conclude this investigation, a comparison between a
parallel version of the algorithm written for Cmmp and the uniprocessor version of the
algorithm written for a DEC KL10 is presented.

In figure 46, the performance of the two machines is compared in terms of the elapsed
time to recognize fifteen utterances. The KL1O recognizes the fifteen utterances in
approximately 49 seconds. The single process instantiation of the C.mmp version performs
the same task in approximately 144 seconds, aimost three times siower than the KL1O.
However, as additional processes are incorporated into the algorithm, the elapsed time to
perform the task is sharply reduced. At four processes, C.mmp outnerforms the KL10O,
requiring only 46 seconds to perform the task. At seven processes, maximum measured
parallelism, C.mmp is recognizing the fifteen utterances in only 33 seconds, over 307 faster
than the large uniprocessor.




o 150¢
E
b [
b .
Q \
- \
Q \
= \
“ \
\
125} \
‘l
\
\
\'
\I
\
\l
\I
100} \
\
\l
‘.
\
“
\ C.mmp
\0
5
75 - |\.
\
\
\
\l
\~
\n
\'\
.\*\
50} KL10 - < -+
"~
S
X Real Time O g —’
25£
... Tm ...........................................................
% 3 3 4 5 5 7

Number of Processes

Figure 46 C.mmp vs. KL10 Harpy 1000 Word Task (LAAX05)




. AD=-A063 616 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 9/2
THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C.M==ETC(U)
NOV 78 P N OLEINICK NODO].II--T"-C-OSOO
UNCLASSIFIED CMU=CS=78-151

2'F2
END




THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 90

6. The Results and Contributions of this Investigation

6.1 A Summary of the Measurements and Results

6.1.1 The Inilial Investigation=-= Tho Rootfinder

In order to transform a parallel algorithm into an effective running program on a
multiprocessor, one must be aware of the ways the system can affect the performance of the
program. To uncover the major sources of performance perturbation, a simple program, a
parallel rootfinding algorithm, was developed to act as a vehicle for conducting the study.

The performance of the program was perturbed by a variety of sources. Performance
perturbations stemming from the hardware, both the processors and the memories, were
identified and measured. Speed variations of individual processors and memories had only a
secondary effect on performance. The greatest hardware related perturbation was a 3007
performance degradation that was found to be a direct result of central memory bandwidth
limitations.

Operating system performance perturbations arose from two sources: interrupts from 1/0
devices affected the program’s performance by randomly interrupting the cooperating
processes for short periods. These interrupted processes arrived at the synchronization
point later than their uninterrupted counterparts, delaying the entire collection of processes
from proceeding. The effect was graphically illustrated with a sampie execution trace
produced by a software monitor within the operating system. Bottlenecks in the operating
system’s scheduling processes also caused serious performance degradations in certain
situations.

A third source of variability is the function evaluation. The computation time for
performing the function evaluation is not a constant, but instead varies with the selection of
the evaluation point. Because the processes must synchronize after every iteration, the
elapsed time for an iteration is determined by the process with the maximum computation
time. Thus, the variance in the distribution of the coinputation time for performing the
function evaluation will greatly affect the performance of the rootfinding processes. A large
variance results in only a small speed up, whereas a small variance results in a larger speed

up.

Special attention was paid to the synchronization of the cooperating processes because it
is a fundamental programming issue in the multiprocessor environment. Our investigation

. [ A e e - e e

|
|




THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 91

consisted of a detailed measurement of the performance of several alternative
synchronization primilives. We then incorporated each primitive into the rootfinding
procedure to perform the necessary inferprocess communication. By measuring the
performance of the rootfinding program, a range of usefulness was determined for each
synchronization primitive. The inler-synchronization time thresholds when a particular
primitive became useful varied from 200 milliseconds to 2 milliseconds.

6.1.2 The Implemantation of a Complex Task-~ The Harpy Speech Recognition System

Using the insight into the C.n\mp environment acquired during the initial rootfinding study, a
more complex task, the Harpy speech recognition system, was developed on the
muitiprocessor. Harpy, an.algorithm that recognizes connected speech from a variety of
‘speakers, was initially developed at CMU for a uniprocessor. A parallel version of the
algorithm was developed by decomposing Harpy into simpler sub-tasks, and then
implementing these sub-tasks as task forces of identical processes. The task forces of
identical processes speed up the algorithm by dividing the work into independent partitions
~ for simultaneously processing. '

In any decomposition involving cooperating processes, two implementation issues arise:
how the processes acquire and share data, and how the processes are sequenced and
controlled. Data can either be allocated statically, if the processes are given private
partitions of data prior to their execution, or dynamically if the processes compete for or
share all the data. Similarly, two alternatives for process control are synchronous and
asynchronous sequencing. If all the cooperating processes must arrive at the synchronization
point before the next step or sub-task can begin, then the processes are sequenced by a
synchronous control structure. If, a process is not required to wait for its companions at the
synchronization point, then the processes are sequenced by an asynchronous control
structure. For both of these issues the two alternatives were discussed and measured in the
implementations of Harpy’s cooperating processes.

Four aiternative implementations of Harpy were investigated. Rather than examining the
variations in performance stemming from algorithmic modifications, this investigation measured
and evaluated the performance variations arising from modifications related to only the
implementation of one aigorithm. The performance of the four implementations is compared in
chapter tive. Refining the algorithm in four implementations gave us the opportunity to
observe and measure the performance ramifications of several implementation decisions.

The performance of the four implementations varied substantially, demonstrating the
importance of an effective implementation. In the initial implementation a straightforward




THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 92

decomposition of the uniprocessor algorithm, the elapsed time to perform the task was
reduced from 52.89 seconds to 18.15 seconds when eight processes were incorporated into
the algorithm. This corresponds to a speed up of only 2.92. In the final implementation this
elapsed lime was reduced to only 12.33 seconds, which corresponds to a speed up of 4.29.
The improvement resulted from an increase in process utilization, the percentage of time a
process is performing useful work. Balancing the computational work load across all
processes increased the process ulilization from 27.57 to 647.

The best multiprocessor implementation of the algorithm was compared to a sequential
implementation of the algorithm designed for a large uniprocessor, a DEC KL10. Initially, the
KL10 outperformed a single process instantiation of the multiprocessor implementation by
almost a factor of three. However, as more processes were incorporated into the task forces,
the C.mmp version outperformed the uniprocessor at four processes and was observed o be
307 faster at the maximum measured parallelism, seven processes.

6.2 The Task Force Approach to Parallel Programming

The measurements and resuits presented in this investigation demonstrate that the task
force approach to writing parallel programs is an effective method for capturing parallelism.
As with any programming technigue, certain benefits and drawbacks are associated with its
use.

The programming effort required to write parallel programs is not much more than the
effort needed to write serial programs. By introducing parallelism through replication, the
programmer is required to write only a single program, not n different programs. The
sharing of data and the synchronization of cooperating processes are well understood
problems easily solved without special programming language parallel constructs. Harp.y was
implerented entirely in BLISS-11, without any special language constructs to coordinate the
data sharing, sequencing, or synchronization of the processes.

The task force technique is a general approach to parallel programming; its application is
not restricted to only a few special situations. Those tasks that involve the repeated
.application of functions on data are ideally suited for parallel implementation using the task
force approach. The rootfinding algorithm and the Harpy speech recognition system are two
dissimilar representatives of this large class of algorithms.

However, the most important aspect of the task force technique is that it is effective at
introducing linear speedup into an algorithm. Although linear speedup of the Harpy algorithm
was nol demonstrated, portions of the data streams were processed by the task forces n
times faster than it performed by a single process. Only when work was unavailable to keep

g ey TR 2




THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 93

all the processes busy did performance drop below linear speedup. The task force technique
tends to favor data streams composed of many elements over those with only few elements
in them. Thus, performance can be improved, and in fact can approach linear speedup, simply
by increasing the number of work units in the data streams. For example, Harpy's
performance could be improved by increasing the complexity of the grammar from which
utterances are constructed.

The major drawback to using this approach is that for it to be successful, the programmer
must be aware of several primitive "time-constants”, i.e. the algorithm’s inter-synchronization
times, and the synchronization primitive’s elapsed times, that characterizes the hardware, and
the operating system, and his own algorithm. This requirement runs counter to the popular
idea of programming without the need to know about the underlying environment.

6.3 Areas for Further Research

One aspect of the implementation of parallel programs not addressed in this study is the
performance degradations, caused by a small address space. Despite the fact that the central
memory supports up to 32M bytes of primary memory, the PDP-11 is a 16-bit minicomputer
and as such limits addresses to only 16 bits. Thus a process can directly address only 64K
bylés of primary memory at a time. Initially, it was felt that the small address space
limitation would be offset by the ability to create multiple processes, each addressing only a

“small portion of the total address 'space. This assumption about the organization of parallel

programs is not always true.

For example, in our implementations of Harpy we totally ignored the impact of the small
address space problem on the algorithm’s performance. If a data item resided outside the
process’ addressable region, we simply payed the overhead to make it addressable, i.e. a
relocation register load. In an early investigation to measure this overhead, we observed in
one case a factor of three degradation In the algorithm’s performance.

One technique to minimize this small address space problem is to construct data structures
so that memory locations tend to be accessed either sequentially or in small clusters. We
would expect some improvement in Harpy’s performance if we allocated storage for the
transistion network such that directly related states were close together.

Obviously, the entire issue of the small address space can be avoided in future multiple
computer systems by using larger address space machines as the central processors.

Another area for future research is the investigation of the performance of the
multiprocessor when it functions as a general computing facility for multiple users. It was




THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON C MMP PAGE 94

felt that one important mode of operation would be for C.mmp to support the simultaneous
execution of many single process tasks from mulliple users. It has been suggested that the
‘multiprocessor is best suited for this type of parallelism. However, little evidence exists to
substantiate this claim.

In conclusion, this investigation is only one of the first of many such studies to assess the
effectiveness of the multiprocessor. The primary contributions of this study are that it
provides several initial data points in the measurement space of multiprocessors, and that
some aspects of the implementation of parallel programs are illuminated through the analysis
of several example programming efforts.

-




Arpendix

Artificial Intelligence Information Relrieval Task (LAA)

1. Please help me

. What should I ask

. What can the system do

. The first two

. Give me one more please
. Thank you I'm done

. Stop transmitting please

. Who wrote it

© 0 N O 00 b W N

. Who was the author

k 10. What was its title

11. When was it published
12. What about Minsky
13. Which is the oldest
14. What facts are stored
15. Please list the authors
16. Print the next one

17. Where does he work
18. What is her affiliation
19. What about formal semantics

20. What about program verification

L~ e - ek e e | —




BIBLIOGRAPHY

[Avriel and Wilde 66] Ayriel, M, and Wilde, D.J, "Oplimal Search for a Maximum with
Sequences of Simultaneous Function Evaluations,” Management Science,
12, 1966, pp. 722-731.

[Baudet, Brent and Kung 77] Baudet, G., Brent, R.P, and Kung, H.T.,, "Parallel Execution of a
Sequence of Tasks om an Asynchronous Multiprocessor,” Carnegie-Mellon
University, Computer Science Dept., Tech. Report. June 1977.

[Baudet 78] Baudet, G, "The Design and Analysis of Algorithms for Asynchronous
Multiprocessors,” Ph.D. Thesis, Carnegie-Mellon University, Computer
Science Dept., April 1978.

{Fuller and Oleinick 76] Fuller, SH. and Oleinick, P.N, "Initial Measurements of Paraliel
Programs on a Multi-Mini-Processor,” IEEE Fall Compcon 76, pp. 358-363.

{Fuller 1978] Fuller S.H, Ousterhout JK., Rubinfeld P.l, Sindhu P.J, Swan R.J,
"Muiti-Microprocessors: An Overview and Working Exampie,” Proc. IEEE
Vol.66, No.2, February 1978, pp. 216-228. i

[Heller 76] Heller, D., "A Survey of Parallel Algorithms in Numerical Linear Algebra,”
Carnegie-Mellon University, Computer Science Dept., Technical Report,
1976.

[Jones 78] Jones, ALK, Chansler, R.J, Durham, 1, Feiler, P.H, Scelza, D.A, Schwangz,

K. and Vegdahl, S.R, "Programming Issues Raised by a Muitiprocessor,"
Proc. of the IEEE, Vol 66 No.2, February 1978, pp. 229-237.

[Karp and Miranker 68] Karp, RM, and Miranker, W.. "Parallel Minimax Search for a
Maximum,” J. Comb. Theory 4, 1968, pp. 19-35.

{Kung 1976] Kung H.T., "Synchronized and Asynchronous Paraliel Algorithms for
Multiprocessors, Algorithms and Complexity: Recent Results and New
Directions,” ed. JF.Traub 1976, pp. 153-200.

[Lesser 75] Lesser, V.R, “Parallel Processing in Speech Understanding Systems,”
Speech Recognition 1975, pp. 481-499,

[Levin 1975] Levin R, Cohen E., Corwin W, Pollack F., Wulf W.A,, "Policy /Mechanism
Separation in HYDRA," Proceedings of the ACM/SIGOPS Symposium on
Operating Systems Principles, Austin Texas, November 1975, pp.
132-140.

{Lowerre 76] Lowerre, B, "The HARPY Speech Recognition System,” Ph.D. Thesis,
Carnegie-Meilon University, Computer Science Dept., 1976.

{Lowerre and Reddy 77] Lowerre, B. and Reddy, R., HARPY Speech Understanding System
(1977), produced at Carnegie-Mellon University. An 18-Minute
16mm./Color/Sound Film describing the HARPY SUS developed by
Lowerre and Reddy.

[Newell and Robertson 1975] Neweli A, and Robertson G., "Some Issues in Programming
Mulfi-Mini-Processors,” Tech. Rep., Computer Science Dept,,




C e i s s et e

THE IMPLEMENTATION AND EVALUATION OF PARALLEL ALGORITHMS ON CMMP PAGE 97

Carnegie-Mellon University, Pittsburgh, Pa., January 1975

[Rosenfeld and Driscoll 69] Rosenfeld, J.L. and Driscoll, G.C., "Solution of the Dirichlet Problem
on a Simulated Parallel Processing System,” Information Processing 68,
Norlh:-Holland Publishing Co., Amsterdam, 1969, pp. 499-507.

[Stone 1973] Stone H.S., "Problems of Parallel Computation, Complexity of Sequential
and Parallel Numerical Algorithms,” ed. J.F. Traub, Academic Press 1973,
pp. 1-16.

[Swan, Fuller and Siewiorek 77] Swan, R.J, Fuller, S.H. and Siewiorek, D.P.,, "CMs: A Modular
Multi-microprocessor,” Proc. AFIPS 1977, National Computer Conference,
Vol. 46, 1977, pp. 637-644.

[Teichroew 1956] Teichroew D., "Tables of Expected Values of Order Statistics and Products
of Order Statistics for Samples of Size Twenty or Less from the Normal
Distribution,” The Annals of Mathematical Statistics 27,2, June 1956, pp
410-426.

[Thompson and Kung 76] Thompson, C.D. and Kung, H.T., "Sorting on a Mesh-Connected
Parallel Computer,” Proc. 81" Annual ACM Symposium on Theory of
' Computing, 1976, pp. 58-64. Also to appear in Communications of the
ACM.

[(Wulf and Bell 1972] Wulf W.A,, and Bell C.G, "C.mmp -- A Multi-Mini-Processor,” Proceedings
AFIPS 1972, FJCC Vol 41. AFIPS Press, pp. 765-777.

(Wult 1974] Wulf W.A., Cohen E., Corwin W., Jones A, Levin R, Pierson C., Pollack F.,
"HYDRA: The Kernel of a Multiprocessor Operating System,”
Communications of the ACM, 17,6, 1974, pp. 337-345.




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

V. REPORT NUMBER 2. GOVT ACCESSION NO.

CMU-CS-78-151

RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

THE IMPLEMENTATION AND EVALUATION OF PARALLEL

- TYPE OF REPORT & PERIOD COVERED

Interim

ALGORITHMS ON C,MMP

PERFORMING ORG. REPORT NUMBER

7. AUTHORC(s)

PETER N, OLEINICK

CONTRACT OR GRANT NUMBER(s)

N00014-77-C-0500

9. ’.ERFORMING ORGANIZATION NAME AND ADDRESS
Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

1. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Researg:h

REPORT DATE
November 1978

Arlington, VA 22217

NUMBER OF PAGES
1035

T4, MONITORING AGENCY NAME & ADORESS(!! dliferent from Controlling Olfice)

Same as above

. SECURITY CLASS. (of this report)

. UNCLASSIFIED

-~

18a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release:- distribetion unlimited

17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, !I different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide if necessary and identify by block number)

ity by block number)

20. ABSTRACT (C on o0 side if y and |

EDITION OF | NOV 65 IS OBSOLETE
S/N 0102-014+ 6601 |

DD ,an'ss 1473

ED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)




