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I
ABSTRACT

-‘---‘l’

In this report we explore the precision that can be obtained
in locating a point on the earth’s surface by analyzing the Doppler
shift in the signals from a near—earth satellite. When we limit
the discussion to the use of techniques that have been demonstrated
in the laboratory but that may not have been introduced into field
use, we find that the precision obtained by using the data from a
single pass of a satellite should be about 18 cm. It should be
possible to improve the precision by using data from more than one
pass in the usual statistical fashion.
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I. BACKGROUND

Suppose that a source of sound waves is located at the
point S1 

in Figure 1 and suppose that a listener is located at

the point R1. In some number of seconds, t say , the listener
receives some total number of waves or cycles of sound, W say.
The frequency that he hears is W/t cycles per second, or W/t
hertz , and this is the same as the frequency 

~T sent out by the
source. That is, 

~T 
= W/t.

S2 S1 A 2 R1

W~A M JVW~M1WWW~
4 ~ r J ’ I 4 &—~~~~

Fig. 1 The Origin of the Doppler Shift. A source of sound located at S1 sends out
a wave train that is received at R1, and a certain number of waves are received
at R1 in time t. If the source moves from S1 to S2 during the time t, moving
a distance ~r away from R1, the wave train that formerly extended to R1
now extends only to A 2, and the listener fails to receive all the waves con-
tained in the distance ~r in the time t. Thus he hears a lower frequency if
the source is moving away from him.

Now suppose that the source moves from the point S1 to the

point S2 during these t seconds , so that the source increases its

range r from the receiver by the amount tsr. The wave front that
just reached R1 in the first case now reaches only to the point

which is the distance t~r from R
1
. The listener in this case

does not receive the waves that lie in the distance t~r during the
time t. If each wave has a wavelength A , the number of waves that

— 7 —
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he fails to receive is L~r / A , the number of waves that he does re—
ceive is W — (L~r / X ) ,  and the frequency 

~R 
that he hears is this

number divided by t. Let ~ denote the rate at which the range r

is changing, so that = (~r/t). Then

= 
~T 

- (~ / x ) .  (1)

This is the basic equation of the Doppler shift. If a
source of sound is moving away from the listener, the frequency
that he hears is shifted downward by an amount proportional to

the velocity t~ of the source. If the source is moving toward

the listener, ~ is negative, and the frequency is shifted upward.

Little has been written about the history of the Doppler
principle, but I believe that the following is basically correct:
The principle had long been recognized in its application to
sound. In 1842, the Austrian physicist Christian Johann Doppler
published a paper in which he pointed out that the same principle
should apply to light, and this is the contribution which led to
our naming the effect after him. It is possible that he also
changed the principle from a qualitative one to a quantitative - 

-.

one by deriving Equation 1 or its equivalent.

In the case of sound, the effect perceived is a shift to
a lower pitch if the source is receding and to a higher pitch if
the source is approaching. In the case of light, the perceived
effect is a shift of color toward the red if the source is reced-
ing and toward the blue if the source is approaching. In the
case of radio transmissions, which we can neither see nor hear,
we do not have the physiological sensations of pitch and color.
We simply say that the received frequency 

~R 
is decreased or in-

creased , as the case may be.

Light and radio transmissions are different examples of
electromagnetic radiation, and the same relations apply to both.
Equation 1 is not correct for light, because of quantum and rela-
tivistic effects. The most important quantum and relativistic - -

effects are two in number :

1. If the source and the receiver are not at the same
gravitational potential, a quan tum of rad iation
changes its energy as it passes from one to the
other. This is usually called the gravitational red
shift, because in astronomy we usually deal with the
light emitted from the surface of a star. As the

— 8 —
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quantum climbs out of the gravitational potential well
of the star, it loses kinetic energy; losing kinetic
energy for a quantum means that fre quency decreases and
its color shifts towards the red. However, the shift
is toward the blue if the receiver is deeper in a po-
tential well than the source is. In precise work with —

radio signals received on the surface of the earth
from an artificial satellite, this effect must be taken
into account , and it is in fact a “blue ” shift .  That
is, the signals increase in frequency as they fall f r om
satellite altitudes to the surface.

2. Even if the source and receiver are at the same gravi—
tational potential, the exact form of Equation 1 is
not correct because it is not consistent with the way
that we must combine velocities in relativity theory.

These effects are the same general size for near—earth
satellites and they are of opposite sign. For satellites in the
orbits that have been used in the Doppler navigation system, the
combination of the two effects changes the received frequencies

by about 2 parts in 1010 of the transmitted frequency . It is thus
necessary to take the effects into account when we do Doppler work
of high precision. However, it is not necessary to consider them —

in order to understand the principles and capabilities of Doppler
location. In almost all of the remaining discussion , then , I
shall assume that Equation 1 is correct.

When we derived Equation 1, we assumed that the source was
travelling directly away from the receiver. However, since the
wave fronts are spherical as they spread away from the source,
the number of waves that do not reach the receiver depends only
upon the amount by which the range changes in the time t .  Hence

the quantity ~ that appears in Equation 1 is to be interpreted as
the range rate, regardless of the details of the motion which
cause the range to be changing.

In some studies, however, it is convenient to look at the
details of the motion. Figure 2 helps us to do this. Here £
is the range vector from the receiver R to the source S at some
instant, and z is the velocity vector of S at the same instant.
The angle ct is the angle between the two vectors, as drawn. The

range rate is obviously equal to v cos o. We let denote the

amount of the Doppler shift, in the sense of received minus trans-
mitted frequency. At the same time, we replace the wavelength A
by c/f T, in which c is the velocity of light. This gives

— 9 —
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= 

~R 
— 

~~T 
— (v/c) 

~T 
COS ~

= — (i/c) 
~T 

~ (2)

Fig. 2 Relationships between Range, Velocity, and Range Rate. The vector , r, points
from the receiver, R, to the source, S. and S has the vector velocity, v. Then
the range rate, r, equals v cos a, In some studies, it is convenient to write
the Doppler shift in terms of v and a rather than of r.
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H. THE PRINCIPLE OF DOPPLER LOCATION

There are several ways of looking at the process of locat-
ing a position by means of the Doppler shift. Different ways of
looking at ~he ,rocess lead to understanding different aspects
of it.

Suppose that an artificial satellite in a near—earth orbit
comes over the observer ’s horizon. At this time the range vector
r is almost in the opposite direction to the velocity vector x~so that the angle a is near 1800 . From Equation 2, we see that
the doppler shift 

~D is large and positive. As the satellite
comes closer, a decreases . It becomes 900 when the satellite is
at the point of closest approach , where ~ = 0, and f inally, as
the satellite goes over the horizon, the angle a is nearly zero.
The interval from the time the satellite appears over the horizon
to the time it disappears is called a pass. The variation of
with time during a pass is shown schematically in Figure 3.

We suppose that the position of the satellite is known as
a function of time, so that we know where it is at the time when

= 0 in Figure 3. Since a = 90° at this time, the observer is

in the plane that passes through this position and that is per-
pendicular to the velocity vector z at the same time. In the
usual case, which is the only one we shall consider , the observer
is also on the surface of the earth. Thus he lies on the curve
which the plane cuts from the earth ’s surface.

Imagine for the moment that the satellite passes directly
through the observer’s position . In this case , a remains 1800
until the satellite reaches his position and then changes abruptly
to 0°. The slope of the curve where = 0 in Figure 3 is thus

infinity if the “miss distance” is zero. The slope is finite for
any real miss distance, and it becomes steadily smaller as the
miss distance increases. Thus there is a one—to—one relation
between the slope of the curve at closest approach and the

miss distance. Since we already know that the observer is on a
particular curve in space, knowing the miss distance locates him
at one of two points. Typically, the points are separated by
thousands of kilometers, so the observer immediately knows which
of the two points applies to him. Thus, by using the time of
closest approach, and the slope or derivative of the Doppler
curve at the same time, the observer can locate himself.

— 11 —
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Fig. 3 The Schematic Variation of the Doppler Shift fD with Time during a Pass
of a Satellite above the Observer ’s Horizon. An observer on the surface of
the earth can find his position from the position of the satellite at the time
when fD = 0 and from the time derivative of f0 at the same time. This time
is usually called the time of closest approach, since the range r is a minimum
at this time.

We can view the process of location in a different way by
looking at Figure 2 again. If we measure f~ at some instant, we
can calculate a from Equation 2. The observer therefore lies on
a cone whose vertex is at S and whose axis is the direction of v.
This cone intersects the earth ’ s surface in some curve . Measur-
ing 

~D 
at a different time gives another curve cut from the

earth’ s surface , and the observer lies at the intersection of
these two curves. Thus we see that the observer can locate him—
self by measur ing only two points on the Doppler curve of Fig-
ure 3. Measuring more than two points on the curve provides
redundancy and therefore increased accuracy .

Still a third way to look at the process of location is to
use what is often called “integrated Dopp ler” . In order to measure
the Doppler frequency , the observer must have an oscillator of
known frequency ; for the moment let us suppose that its frequency
is exactly equal to The observer beats his local oscillator

against the received frequency , and the difference Is f 0. Instead

— 12 —
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of attempting to measure at two or more instants, the observer
counts the cycles of the beat note and measures the time required
for the beat note to go through some number N of full cycles; N
is a number that the observer chooses for convenience .

Suppose that the count of N cycles begins at t ime t1 and
ends at time t

2
. Between these times , the satellite moves from

point S~ to point S2 in Figure 4. Now N is the number of cycles -j
that the observer fails to receive if the source is moving away
from him or the extra number that he does receive if the source
is moving toward him. In either case , NA is the change in the
distance to the satellite; that is, it is the difference between
the distances to the points S~ and 

~~~
The di~ ference in distances defines a hyperboloid of revo-

lution whose foci are the points S1 and S2, so the observer lies

on this hyperboloid in Figure 4. Thus he lies on the curve of
intersection between the surface of the earth and the hyperboloid .
If he repeats the counting process , he generates a second curve ,
and he lies at the intersection of the two curves.

This way of looking at Doppler location brings out the re— J
lation between Doppler location and location by ranging . In lo—
cation by ranging , a satellite emits t ime signals at times t1 and

say, as measured on its own clock. The observer receives the kl.
signals at later t imes, say at t1 + ~~~ and t2 + ôt~ , as measured
on his own clock . The differences tSt

1 and 5t 2 place the observer
on the surfaces of two spheres whose centers are the correspond—
ing satellite positions , and if the observer Is on the surface of
the earth , these spheres determine his location.

Suppose that we want an accuracy of 10 cm in position .
Since the time signals travel 3 x io8 

meters per second , both
clocks must have errors of less than one third of a nanosecond.
This exceeds the present capabilities of measuring time on an
absolute basis and therefore ranging by this method cannot be
done. Instead , the observer must time at least three signals
sent from the satellite and use the information to determine the
offse t  between his clock and the satellite clock at the same t ime
that he determines his position. Thus the observer does not ac—
tually measure the range at any t ime . Instead , he measures the
amount by which the range changes between two times, and he re—
peats this measurement as often as he needs to.

— 13 —
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Si.

E

Fig. 4 Location by Integrated Doppler. The observer counts the total number of
cycles in the Doppler shift while the satellite moves from S1 to S2. This
number, times the wavelength, is the difference between the distances from
the observer to S1 and S2, and the observer is therefore on a hyperboloid
of revolution whose foci are S1 and S2. At the same time, he is on the
surface of the earth, which is represented by the circle whose center is E.
The observer is therefore on the curve of intersection of the hyperboloid
with the earth. A second count of cycles then locates the observer.

Thus , contrary to a widespread belief, Doppler and ranging
systems measure the same thing, which is the change in range be—
tween two times. Hence both systems supply exactly the same kind
of information; the ranging systems do not have an innate super-
iority in the kind of information that the user obtains.* If the
kind of information is the same, Doppler systems have an innate
engineering superiority .

*If the observer can use several satellites at once , instead of be-
ing restricted to one satellite, there may be a difference in the
kind of information supplied by Doppler and ranging systems. Mul-

tiple satellites can provide a small amount of extra information
if their clocks are synchronized to the necessary precision. It
should be clear that a ranging system in this context means a one—
way system. It does not mean a two—way system such as radar.

— 14 —
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If we use “information” In the technical sense that it has
in information theory, we may say that a measurement of a range
difference amounts to a transfer of a certain number of bits of
information from the satellite to the observer. The precision of
the measurement is directly related to the number of bits trans-
ferred , which in turn is proportional to the amount of energy
transferred. Hence, if a Doppler system and a ranging system
provide the same precision of location from a single pass, the
energy transferred is the same, the time is the same, and the
average power transmitted is the same. In the Doppler system,
the average power and the peak power are the same. In the rang-
ing system, the peak power exceeds the average power by orders
of magnitude, and the efficiency is necessarily lower.

In other words , if the same power and the same levels of
technology are used in both systems, the Doppler system is in—
herently more precise than a ranging system.

—15 —
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I
HI. THE PRACTICE OF DOPPLER LOCATION

In the preceding section, we assumed that the observer uses
a local frequency equal to the transmitted frequency, and that he
measures 

~D 
by beating the received frequency against his local

frequency. He would encounter severe difficulties if he actually r
did this, because the beat frequency would pass through zero at I~the time of closest approach in Figure 3. It is difficult to
maintain precision if this is allowed to happen, because the dy-
namic range required of the measuring apparatus becomes infin5te.

In all Doppler satellite systems that have been used to
date, the observer chooses his local frequency so that it differs
from 

~T 
by more than the possible amount of the Doppler shift

A satellite in a near—earth orbit has a speed of about 7000 meters

per second, or slightly more, so that v/c is about 2,4 x or
about 24 parts per million. Hence, according to Equation 2, the

maximum value of is about 2.4 x 
~~~~~~~~~ so that the received

f requency 
~R 

cannot differ from 
~T 

by more than this amount. The

observer therefore sets his local frequency , say f5, so that it

differs from 
~T 

by more than 24 parts per million. An offset of

about 50 parts per million, or perhaps somewhat more, has proved
• to be convenient.

When this is done, the beat frequency, which is what the
observer directly measures, can never go through zero. After he
measures the beat frequency (or Counts its cycles in the inte-
grated Doppler method), the observer calculates the Doppler fre-
quency (or the Count of its cycles) by using the difference f

5 
—

I shall use 
~A 

(from the German abstand) to denote this

difference.

In order to find his position with high precision, the ob-
server needs to know the difference with high precision, but

he does not need to know either or f5 with high precision. It

is sufficient to know only nominal values of the two individual
frequencies.

— 16 —
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In finding his position, the observer does not actually use
the simple approaches described in the preceding section, except
perhaps in simple demonstrations or expositions. Unless he uses
the method of integrated Doppler , he starts by measuring the beat
frequency at a set of times t~ . I shall denote the resulting set

of measured frequencies by f1.

Let us assume that the observer has a map which gives his
distance from the center of the earth as a function of his lati-
tude i~ and his longitude A. If so, he knows fully his position
with respect to the center of the earth once he finds the two co-
ordinates ~ and A. Since he knows the orbit of the satellite, he
could calculate the Doppler frequency 

~D 
at the times t1 if he

knew r) and A. In other words, 
~D 

at the time t . is a function of

~~, 
A , and t1. Further , the frequency 

~~ 
measured at the time t~

equals 
~D 

plus 
~A’ except for experimental error. That is,

+ 
~~D 

(n ,  A , t
i
) f~~ (3)

for each value of i. The observer then uses statistical proce-
dures to find the values of r~ and A that give the best fit In
Equation 3, using any definition of “best fit” that he chooses.

If he uses the method of integrating the Doppler frequency ,
the observer starts to count cycles at some measured time and
counts continuously until the end of the pass. He then reads
the time t1 at which the count takes on a convenient set of val-

ues. As in the frequency method , he can calculate what the count
should be as a function of 

~A’ r~, A , and t~ and he proceeds as

before to find the values of ~ and A that make the measured val-
ues best fit the calculated ones. For simplicity, most of the
discussion of this paper will be based on the frequency method
of Equation 3, but the reader should remember that all the dis-
cussion applies equally to the integrated Doppler method , if ap-
propriate modifications are made to the terminology .

Only cost limits the number of parameters that can be found
in this way. For example, the observer may have a local oscillator
whose frequency is not known accurately . In this case, he may
simply take 1A’ along with r~ and A , to be an unknown parameter that
he finds from Equation 3. The parameter 5, is strongly determined
by the measurements.

— 17 —
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In a more complicated example , the observer may not know
his distance from the center of the earth (knowing this distance
is equivalent to knowing his altitude). The altitude must be
taken as another unknown parameter. The difficulty in doing

• this comes from the fact that the time of closest approach and
the range at closest approach are the geometric parameters most
strongly determined by the data. Suppose that there are two ob-
servers, both at the same range at closest approach . Suppose
further that they are at different altitudes, so that they are
at different horizontal positions if they are at the same range.
Under these conditions, there is almost no difference in their
measured frequencies (for the same Hence it is not possible

to solve accurately for both the altitude and the horizontal po-
sition by using the data from a single pass.

Al]. that the observer needs to do in order to find all
three coordinates is to use two passes. These can be two dif-
ferent passes of a single satellite, or they can be single passes
of two different satellites. If his position is, say , on the
port side of the satellite in the first pass, he should choose
the second pass to be one in which he is on the starboard side.
The range lines at the two closest approaches then cross at a
strong angle, and all coordinates are strongly determined .

A still more complex problem comes from the need to know
the orbit of the satellite. In order to find the orbit , we need
a network of tracking stations, suitably distributed at known lo—
cations over the surface of the earth, and we measure the Doppler
shift at each station for each pass over some convenient interval,
say two days. The six parameters which define the satellite orbit
are then chosen so that they give the best fit to the resulting set
of data. If necessary, we can also find a separate value of for

each pass observed at each station. However, if we have atomic
frequency standards at the stations, and if we have a crystal os-
cillator of high quality in the satellite, we may assume that all
station frequencies are known while the transmitted frequency
varies with time in some simple way , such as quadratically .

We find the most complex problem when we list the other
things we must know in order to calculate the satellite orbit; I
shall now leave the relatively trivial frequency problems to one
side. We assumed in the preceding paragraph that we know the co—
ordinates of all the tracking stations . Further , we tacitly as—
sumed that we know all the parameters that enter into determining
the force field acting on the satellite. Actually , of course ,
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there are uncertainties in our knowledge of station coordinates
and force field parameters. If we trace out the effect of these
uncertainties upon the location of points, we find that there is
a limit to the accuracy of location. In the present state of af—
fairs, this limit is a moderate number of meters.

In making this statement, I deliberately said “location”
instead of “Doppler location”. We find the same limit, in the
sense in which the word has just been used, with all uses of sate].—
lites. In finding this limit, it does not matter whether we mea-
sure the Doppler shift, the range, or the optical position. It
does not matter whether we use the one—way Doppler system, the
two—way radio systems such as radar or the NASA range/range—rate
system, ti~ie most precise camera systems, or laser systems. Fur-
ther, the same limits apply to surveying systems that are purely
ground—based or that use ranging between aircraft and ground sites.

The reason for this comes from the connection between the
shape of the earth and its gravity field. By the shape of the
earth, we mean the shape of the surface called mean sea level.
This surface is the shape of the actual ocean surface, after we
average out the waves and tides , when we are at sea . On land ,
we extrapolate the ocean surface inland by means of bubble tubes
on our levels; the bubble tubes always give us the direction that
the water surface would have if the water could percolate freely
into the continents.

Except for small effects  that we must account for in prac-
tice , but that we can ignore in this general discussion , the sur-
face called mean sea level is a surface on which the potential
energy (including the centrifugal potential due to the earth’ s
rotation) of a kilogram mass is a constant. Thus , if we knew
the parameters of the gravitational force field exactly, we would
know the shape of the surface at sea level. Conversely, if we
knew the shape of the surface , we could calculate the parameters
of the force field.

We specif y the shape of the sea level surface by giving the
local earth radius at any point . That is , at a given latitude and
longitude , we give the number of meters from the center of mass of
the earth to the surface at that point. At present , the uncer—
tainty in the local earth radius is a moderate number of meters .
If there is an uncertainty in the shape of the surface , there must
also be an uncertainty of the same general amount in locating
points on the surface. This uncertainty is a characteristic of
the surface and of our knowledge , and it does not depend upon the
method we use to measure position .

____ - -

. 

- 19



Ii
THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUREL MARYLAND

The limit on positioning that Is imposed by our ignorance IIof sea level will be called the geodetic limit. In the next sec-
tion, I shall try to assess the near—term effect of the geodetic
limit. This means trying to answer the question: Can we decrease
this limit by further research, or are we too near some minimum
limit that is imposed by basic geophysics? The geodetic limit
is co~~on to all systems of location. In later sections, I shall
try to assess the near—term level of all factors that are known
to limit the accuracy of location by Doppler methods using arti-
ficial earth satellites.

I
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IV. THE GEODETIC LIMIT

In discussing the geodetic limit on the accuracy of lo-
cation, we must distinguish between the global problem and the
local problem. In the preceding section, I was tacitly talking
about the global problem, which is: For any given latitude and
longitude, what is the uncertainty in the earth radius? As I
have said, this is a moderate number of meters. I refrain from
stating a specific number, because different research centers
make different estimates. All current estimates, however, are
of the order of 5 or 10 meters.

Now pick a specific latitude and longitude A 0. Let r0
be our current estimate of the earth radius at this point . Sup-
pose that further research ultimately shows that r0 

is, say, too

large by 5 meters. We express this by saying that the error is
+5 meters.

Next let us move away from this point by 00.01 in some di-
rection; 00.01 is about 1 kilometer. If the error in the earth
radius is +5 meters at the first point, can we put limits for
the error at the second point? The answer is provided by the di-
rection of the sea—level surface.

The same information that lets us calculate the gravita-
tional force field and the sea—level surface also lets us calcu-
late the direction of the sea—level surface at any point. At
present, the uncertainty in this direction is a few tens of sec-
onds of arc. For the sake of illustration, let us use 20” as the
uncertainty at the point with coordinates no and A0; this is
about l0~~ radians. If we predict the radius at a poi nt 1 kilo-

meter away, the uncertainty is thus about l0’~ kilometers, which
is about 10 centimeters. Thus if the error in the earth radius
is +5 meters at the first point, it must be between +4.9 and +5.1
meters at the second point. In other words , we can find the rela-
tive position of two neighboring points much more accurately than
we can find the position of either point individually.

Finding the relative positions of neighboring points is
the local problem and finding the position of any point with re-
spect to the center of mass of the earth is the global problem.
The geodetic limit is much greater for the global problem than
for the local problem at present , and it has also been much
greater throughout the past.

— 21 —



THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUHLL MARV LA NU

The first artificial satellite was launched on 4 October
1957. At that time, the global accuracy of location was a few
hundred meters. Only a few areas had been the subjects of in-
tensive local surveying. They included Europe, the contiguous
Unit ed Sta tes  p lus southern Ca nada , Aust ralia , and some other
smaller areas. Within one of these areas, the local accuracy
was a few tens of meters, but the accuracy of locating the areas
with respect to each other was hundred of meters. Now the global
accuracy has been improved by an amount that is close to two
orders of magnitude. Several p rog rams ha ve contr ibuted to th is
progress , but we can safely say that the dominant new contribu-
tions have been made by satellite programs .

La rge ext rapolat ions  a re always da nge rous , but a mode r ate
extrapolation is usually safe .  On the basis of p resent knowledge ,
it is s af e  to say that the geodet ic  limit ca n a lmost certai n l y  be
decre ased by anothe r order of  mag n itude , to the poi nt that it is
a f ew tens of centimeters on the global basis and less on a local
basis. Perhaps it is bet ter  to say that  improving geodetic accu— j
racy to this level is more a political problem than a technical
problem . The improvement mentioned is within reach of p r esent
technology, but it will take money . Whether the necessary pro-
grams are to be funded is a matter of national priorities and
political decisions.

We can be rather sure of our ability to improve the geo—
detic limit because there are no physical effects that might in-
terfere whose existence has even been suspected. If there were
any effects that might interfere , it is almost certain that they
would have given us some premonitions of their existence. How-
ever, in order to achieve an improvement by an order of magni—
tude, we shall have to revise our ideas and approaches in two
important ways.

1. The adoption of a new reference surface. Until the
present time, we have assumed that the physical surface of the
ocean is a surface of fundamental physical Importance , namely a
surface of constant potential . If the waters of the oceans were
at rest , this assumption would be correct. Actually, the waters
are not at rest , and the assumption is incorrect. The waves and
tides quickly average to zero, and they do not affect the valid-
ity of the assumption . However, there are well known currents
which are permanent or nearly so, and they must be driven by
physical forces. Since the forces cannot exist unless there are
differences in potential , the ocean surface cannot be a surface
of constant potential. Estimates of the forces required to
drive the currents are difficult to make, but there is general
concurrence that the mean ocean surface departs from a surface
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of constant potential by amounts that may range up to a meter.
Hence we shall probably have to abandon the ocean surface as our
ref erence surface and learn how to use a constant potential sur-
face in its place, if we are to improve the geodetic limit by an
order of magnitude.

2. The introduction of time—dependent coordinates. Even
at the present level of accuracy, it is no longer possible to
speak of the latitude and longitude of a place as if they were
constant . The North and South Poles each move rather irregularly
over an area about the size of a baseball infield, and the polar
motion changes both latitudes and longitudes. Doppler location
already provides a standard method of following the poles (Ref-
erence 1). The earth tides also change the coordinates of points
by amounts that will have to be included if we are to speak of
accuracy exceeding a meter. Most importantly , we know that por—
tions of the earth’s crust move with respect to other portions
at rates of a few centimeters per year. In order to cope with
this phenomenon, we must abandon the idea of defining a coordi-
nate system by the use of one or more “fixed” points such as the
Greenwich Observatory. We must learn to define an “earth—f ixed”
coordinate system even if all the points in the system are in
motion (Reference 2). The coordinates of an identifiable point
such as a brass marker must then be given as functions of time
in this system.

Reference 1. R. 3. Anderle, “Determination of Polar Motion from
Satellite Observations,” Geophysical Surveys, Volume 1, 1973 ,
pp. 147—161.

Reference 2. R. R. Newton, “Coordinates Used in Range or Range—
Rate Systems and Their Extension to a Dynamic Earth,” Reference
Coordinate Systems for Earch Dynamics, Proceedings of Inter—
national Astronomical Union Colloquium No. 26, 26—31 August
1974, pp. 181—200.
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V. ATMOSPHERIC DRAG ON A SATELLITE

Two forces that are not gravitational in ori~~in a f f e c t  the
motion of a satellite. One is the drag produced by ci~e residual
atmosphere that is still found at satellite altitudes ; the other
is the force produced by the pressure of solar radiation.

The structure of the upper atmosphere is highly complex ;
it varies drastically with latitude , longitude , a l t i tude , and
time (Reference 3).  To describe the matter loosely , solar heat-
ing “boils” matter up from the lower atmosphere , and it also dis-
sociates many of the molecules found in the lower atmosphere into
their constituent atoms. The atoms, being lighter and perhaps
more heated , then d i f fu se upwar d , so that much of the atmosphere
at satellite altitudes is atomic rather than molecular. This
process of producing upper atmosphere is continually being op-
posed by the tendency of the atoms to recombine into molecules.

From this fact, we expect the density of the daytime at—
taosphere to be greater than that of the nighttime atmosphere ,
and measurements show that the ratio of day to night densities
at altitudes of 1000 kilometers or above may be an order of mag— -j
nitude . However , the “hot spot ” is not directly under the sun;
because of time lag in the diffusion process, the hot spot is
somewhat east of the subsolar point .

Most of the solar spectrum is not e f fec t ive  in boiling up
the upper atmosphere. Because a key ef fec t  is molecular disso-
ciation, the far ultraviolet is most effective. While most of
the solar spectrum is extremely stable, the intensity of the far
ultraviolet varies over a large amount. It varies with the sun-
spot cycle, whose period is about 11 years, but it also varies
sporadically from day to day . The fa r  ultraviolet is completely
absorbed by the upper atmosphere , so i ts strength cannot be moni—
tored at ground level. However, it is highly correlated with
both the solar spectrum in the microwave region (wavelengths of
10 to 20 centimeters) and the magnetic activity of the sun, which
can be monitored at ground level. Thus we can monitor the tem-
poral variations of the upper atmosphere with reasonable accuracy
by ground—based observations.

Reference 3. L. G. Jacchia, “Static Diffusion Models of the Upper
Atmosphere with Empirical Temperature Profiles,” Smithsonian
Contributions to Astrophysics, Volume 8, Number 9, 1965.
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Under typical conditions, experience with the satellites in
the Navy Navigation Satellite System shows that the upper atmosphere

may give them a drag acceleration of about l0
_6 

centimeters per sec2.
Over a period of 14 orbital revolutions, about one day, this dis-
places the satellite in the direction of its orbital motion by about
100 meters; I shall use the latter value as a standard to which all
other drag results will be normalized. In spite of the size of this
displacement, the drag limit on the accuracy of location is cer-
tainly no more than 10 centimeters on a global basis, as I shall
now show.

To star t with , we can determine the parameters of the satel—
lite orbit by using the data over an interval of one day. The or-
bital period found this way is the average period over a day, and
the simple fact of letting the period be fitted to the data cuts
the maximum drag error by a factor of 6. However, we are not re-
stricted to this action. On the basis of much experience with the
satellites in the navigation system, we have calibrated Jacchia’s
theory (Reference 3) so that it yields the actual drag experienced
by the satellites with considerable accuracy. When the satellites
are used for real—time navigation, it is necessary to use a pre-
dicted value of drag in the orbital calculations. When the satel-
lites are used for precise surveying, however, we can analyze the
data after the fact and use the monitored values of solar activity.

More simply, and probably more accurately, we can take the
calibration constant for Jacchia ’s theory , or some equivalent param-
eter, as an unknown to be determined from the tracking data at the
same time that we determine the other orbital parameters. When we
do this, the orbit is determined as accurately as the data and our
geodetic knowledge allow, and the drag does not impose any limit to
the accuracy of the process.

In writing this , I have assumed that the atmospheric density
does not change markedly with time during the tracking interval.
If the density does change with time , in a way that we cannot fol-
low in detail , we must ask what limiting accuracy may result.

Suppose that the density function changes linearly by a fac-
tor of 2 within the tracking interval of ~ day , and that we find
the orbit by using the average density that gives the best fit.
The change in density puts a cubic function into the displacement
of the satellite, and the cubic is antisytnmetric about the middle
of the interval. Thus it is effective for only half of the inter-
val , since the average is removed by the t racking process , and the
average is the value at the center of the span. Since the vari-
ation is as the cube of the time , it is small during most of the
interval. Further , the orbital period found for the satellite
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automatically adjusts to give the best straight line fit to the
cubic, and this reduces the residual effect even farther. The
algebra to find the residual effect is trivial, and I shall give
no details.

The result is the following : If the average density has
the value needed to give a total displacement of 100 meters in a
day , if the density varies by a factor of 2 within the day, and
if the average density is found by a fitting process, the standard
deviation of the residual error is 43 centimeters.

This does not represent the limit, however, because it is
the error that is present when we make no attempt to eliminate i t .
We can reduce the error in either of two ways: (a) Since we can
monitor the solar activity, we can take the time derivative of the
density from the monitored activity, and fit Out the average in
the process of finding the orbital parameters. This would surely
leave no more than about a fourth of the error, or about 10 centi-
meters. (b) If we cannot satisfactorily remove the error , for
reasons that we cannot foresee, we can still take advantage of the
fact that changes by a factor of 2 in one day are rare. Since we
do not have to use all of the data in a research program , we can
simply omit data gathered during a day when solar activity is
changing rapidly.

In conclusion, it seems safe to say that the global limit -j
imposed by drag acting on the uatellires is less than 10 centimeters.
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VI. RADIATION PRESSURE

At an altitude of 1000 kilometers, the electromagnetic pres-
sure exerted by solar radiation is about 10 times the drag pressure
exerted by the residual atmosphere. If the forces acted in the
same way, the resulting perturbation would be 1000 meters in a day,
and a perturbation of this size might pose a serious problem. Luck-
ily radiation pressure acts in quite a different way, which we can
see with the aid of Figure 5.

Solar radiation

Fig. 5 Radia .~on Pressure Acting on a Satellite. The smaller circle whose center is
E repres~rits the eart h, and a sat ellite travels around it on the circle ABC .
Solar radiation impinges from the right. The earth ’s shadow is shown by
the hatched region , and there is no radiation pressure wit hin this region.

The solar radiation arrives from the right in Figure 5. If
the satellite is symmetrical about this direction, the resulting
force acting on it is directed toward the left, away from the sun.
If the satellite is not symmetrical about the direction to the sun,
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the resulting force may also have a component perpendicular to the
direction H~ the sun (Reference 4). In order to account for solar
radiation accurately, one of three conditions must be satisfied .
The satellite must be symmetric or, if not symmetric, it must ro-
tate so rapidly that it seems symmetric on the average over a rea—
sonable time. If it meets neither of these conditions, we must
know its configuration and its orientation in space at all times.
Under any circumstances, the force component away from the sun is
considerably larger than the perpendicular component. In this er-
ror analysis, we can consider only the component away from the sun.

The component of force that is tangential to the orbit is
largest when the sun lies in the plane of the orbit; this is the
condition shown in Figure 5. The smaller of the two circles whose
center is E represents the earth, and the earth ’s shadow is the
hatched region to the left of the earth. Within this region, there
is no radiation pressure.* The satellite emerges from the shadow
at point A, and from there to point B the tangential component of
force is opposed to the velocity. From B around to C, where the

• satellite enters the shadow again, the tangential component is in
the same direction as the velocity . If the orbit is circular , the
net displacement in a full revolution is zero.

The distance from A to B is about a third of a revolution,
but the tangential component is small over much of this distance.
If we say that the radiation force opposes the velocity for a
fourth of a revolution, we shall have the right size of the ef-
fect. In 14 revolutions, the perturbation would be 1000 meters
if the force were actually tangential. In a fourth of a revolu-

tion, the di.placement is only (1/56)
2 x 1000 meters, and this is

about 40 centimeters. That is, the displacement is about 40 centi-
meters when the satellite reaches B , but this is cancelled by the
time it reaches C. ~1e can surely calculate this high—frequency
effect with reasonable accuracy, and therefore it imposes no ap-
preciable limit upon the accuracy of location , even on a global
basis.

If the orbit is not circular , the time spent between A and
B need not be the sane as the time between B and C, and there may
be a net displacement during a full revolution and over a day .

Reference 4. R. R. Newton, “A Satellite Determination of Tidal
Parameters and Earth Deceleration ,” Geophysical Journal of the
Royal Astronomical Society, Volume 14, 1968, pp. 505—539 , gives
an extensive study of the force due to radiation pressure.

*In highly precise work, we must also include the pressure of the
thermal radiation emitted by the earth ; see Reference 4.
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This displacement is of the order of 1000 meters times the eccen-
tricity of the satellite orbit. For satellites used in naviga—
tion or other processes of location, we deliberately make the
eccentricity small, and the eccentricities of the satellites in
the navigation system are about 0.01. Hence the cumulative ef—
fect of radiation pressure over a day is about 10 meters, about
a tenth of the effect of drag. By taking suitable precautions,
we expect to cut the residual effect of drag to less than 10 cen-
timeters. Since the radiation pressure, being almost constant in
time, is more tractable, we can expect to cut its residual effect
to less than 1 centimeter.
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VII. ELECTRICAL NOISE

There are several sources of electrical noise in a system
of Doppler location. We have phase jitter in the satellite’s os—
cillator and in the observer’s oscillator, we have ambient radio
frequency noise at the observer ’s antenna, and we have internal
noise in the observer’s receiver.

The oscillators used so far in the navigation satellite
system are quartz crystals in multiple—walled Dewar flasks, with
active temperature control in the space between the outer pair of
walls. The oscillators used in both the satellite and the ground
system are basically the same. Since the frequency of a crystal
oscillator is a function of temperature , the operating temperature
is chosen to be the temperature at which the derivative of fre-
quency with respect to temperature is a minimum. For the crystal
cuts used, the operating temperature has been about 50°C.

The noise of the oscillators (sometimes called phase jitter)
has been measured by comparing two oscillators with each other.
For example, we can start counting cycles of both oscillators at
some instant and end the count of both at some later instant. The
time interval over which the count is measured is called the aver-
aging interval. We then divide the difference between the counts

— by the time interval to get a frequency difference , and we further
divide this by the operating frequency to get the relative fre-
quency difference. Finally, we find the standard deviation of the
relative difference from zero.

For the oscillators used in the navigation satellite system,
the noise level found in this way (Reference 5) is typically 60

parts in io12 . Since two oscillators are involved in the measure-
ment, the noise contribution of each oscillator is this number

divided by V~. I shall round this quotient to 40 parts in iol2 .
These numbers are for an averaging interval of one second.

We routinely measure the noise level of the data obtained
by the Doppler tracking stations, of which there are two types.
One type uses a simple whip antenna, while the other uses a helical
antenna with a gain of about 10 dB. In a recent sample, for an

Reference 5. R. R. Newton, “The U.S. Navy Doppler Geodetic System
and Its Observational Accuracy ,” Philosophical Transactions of
the Royal Society of London, Volume A262, 1967, pp. 50—66.
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averaging interval of one second, the first kind showed a noise

level of 81 parts in iol2 while the second kind showed a level
of 57 parts in iol2 . Since the noise measured this way includes
the effects of two oscillators, one in the satellite and one in
the station, the noise measured with the helical antenna is al—
most exactly that expected from the oscillators alone. If this
is so, it means that the receiver noise is small compared with
the oscillator noise, and it further means that the helical an-
tenna reduces the ambient noise to the point that it is also
negligible compared with the oscillator noise.

The noise generated in the receiver itself is probably
about the same in both types of station, so the difference be-
tween the two noise levels should be mostly the result of ambient
radio noise. It seems that the helical antenna provides about as
much gain as is useful with the present type of oscillator.

With the aid of computer simulations , Guier and Weiffenbach
(Reference 6) have developed the following semi—empirical formula
for the position error E caused by noise:

13 -½E = 2.5 x 10 N ~
, centimeters. (4)

In this equation , v is the noise level for one—second averaging,
and N is the number of seconds for which data are obtained. It
is explicitly assumed that Equation 4 applies to the data obtained
during a single pass of a satellite, and that we attempt to find
only two coordinates from that pass. However, we do not need to
make any substantial change if we derive all three coordinates,
provided it is understand that at least two passes must be used
if we do this. It is also assumed that the satellites have an
orbital altitude of about 1000 kilometers.

Under these conditions, N is about 625 for a single pass.
If we use this value,

E = 1012 v centimeters. (5)

Thus a noise level of 60 parts in io12 produces a location error
of about 60 centimeters for a single pass.

Reference 6. W. H. Guier and G. C. Weiffenbach , “A Satellite
Doppler Navigation System,” Proceedings of the Institute of
Radio Engineers, Volume 48, 1960, pp. 507—516.
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There have not been many chances to test Equation 5 experi-
mentally, because other sources of error outweigh the noise under
most conditions of use. However, for a few days during the spring
of 1971, we did have the opportunity to operate two Doppler re—
ceivers simultaneously at the Applied Physics Laboratory. We were
able to obtain data from nine satellite passes in which the two
receivers had a common antenna but separate local oscillators. We
were also able to obtain data from eleven passes in which the re-
ceivers had a common antenna and also a common local oscillator .
The results of these 20 passes are summarized in Table I.

Table I

Comparison of two Doppler receivers
at the same location operating simultaneously

Measu red
No. of Points No. of Separation a

Oscillator Deleted Passes (cm) (cm)

Separate 0 4 32 95

1—3 5 177 205

Common 0 4 15 39

1—2 7 69 113

In order to understand the table, we must know what is meant
by the number of deleted points in the second column of the table.
The sets were of the integrated Doppler type, in which the count
of cycles was read about every 25 seconds, with about 30 counts
being obtained during a single satellite pass. In a time series
of measurements, especially those obtained by radio apparatus,
there will frequently be some readings that are not valid measure-
ments. A burst of external noise, a line transient, or the like,
may cause a reading that is characteristic of the noise rather than
of the phenomenon being studied . In order to find such readings,
we first find the parameters that give the best fit to the series
of readings. We then find the standard deviation of the residuals
and try eliminating all residuals that are more than three standard
deviations. We repeat the process with the remaining series, and

NI
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continue in this way until the process stabilizes. If no more than,
say, 10 per cent of the series are deleted in this way, we usually
accept the remaining readings and use them.

It is not clear that this acceptance is valid. If a reading
is deleted, it indicates some sort of malfunction, using the term
in a very general way. It may be that the malfunction was confined
to the time interval in which the deleted reading was made, but it
may well have had some existence outside the interval at a level
too low to be detected. Hence, the best choice may be to ignore an
entire series if even one reading or point is deleted.

We have tested this idea in Table I. The table gives statis-
tics both on the measurements obtained with separate oscillators in
the two sets and on the measurements obtained with a common oscil-
lator for both sets. For each of these conditions, we first exhibit
those passes in which no point was deleted from the series obtained
with either receiver. We then exhibit those passes in which somc
points were deleted, perhaps from only one set or perhaps from both .
In this sample, out of about 60 readings obtained by both sets dur-
ing a pass, the total number of deleted points ranges from 1 to 3
when the oscillators were separate and from 1 to 2 when the oscil-
lators were common. This difference must surely be an accident ;
there is no fundamental reason why more points should be deleted in
the first case.

From each pass, we infer a position for each receiver and
subtract the positions to find the measured separation. The sepa-
ration is a vector , and the table gives the magnitude of the aver-
age vector separation. It also gives the standard deviation of
the magnitude, taken about zero rather than about the mean.

The difference in performance between the passes with no de-
letions and those with one or more deletions is quite striking.
From the table, we may tentatively draw two conclusions:

1. In precise work, we should delete an entire pass if we
delete even one point from either receiver; doing so
pays off more rapidly than using all passes and relying
upon statistical improvement.

2. When we use only passes in which no points are deleted ,
the error produced by noise is some tens of centimeters,
in accordance with Equation 5.

As we expect, the noise is greater with separate oscillators than
it is when we have a common oscillator in both ground sets. In
view of the small sample, attempts at more detailed analysis of
the data are probably not warranted.
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In summary, theoretical considerations indicate that the
noise contribution to Doppler location from a single pass in which
no points are deleted is of the order of, say , 50 centimeters,
even when we use only a whip antenna. The small amount of experi-
mental data that is available confirms this estimate reasonably
well, but it is desirable to obtain more data.

If we accept this figure, we should ask how many passes we
need in order to reduce the error to 10 centimeters. The answer
is about 25, and we can use about half of the total passes. Thus
about 50 passes will be needed. This is the number of passes ob-
tained in 4 or 5 days.

The preceding discussion applies to the oscillators that are
now in service. Since 1975 we have been testing a new type of
oscillator called NP4. The tests performed so far indicate (Ref-
erence 7) that the noise level of these oscillators is an order of
magnitude below the level of the oscillators now in service. If
this laboratory improvement can be carried over into field equip-
ment and satellites, the noise contribution will fall to about 5
centimeters for a single pass.

Reference 7. J. R. Norton, “An Ultrastable , Low—Power 5—MHz Quartz
Oscillator Qualif ied for Space Usage,” Proceedings of the 30th
Annual Frequency Control Symposium, 1976.
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VIII. OSCILLATOR DRIFT AND TIMING ERRORS

We saw in Section III that the user may determine 
~A’ 

the

difference between his local frequency standard and that in the
satellite, at the same time that he determines his position. If
necessary, he can make a separate determination of for each

pass that he uses. We must now ask how sensitive the inferred
position is to errors in 

~~ 
For example, suppose that he uses

a satellite frequency supplied by the operators of the satellite
system, that he measures his local frequency by some means inde-
pendent of the satellite system, and that he combines the two
frequencies to find 

~A’ 
instead of inferring it from the Doppler

data. What error in location will he make?

The error depends somewhat upon the exact relative geometry
of the observer to the satellite orbit, but we can calculate a
representative error by averaging over all geometries. The re-
sult is the following rule of thumb :

131 part in 10 in frequency = 1 centimeter in position. (6)

Equation 6 is not new. On the contrary, it has been considered
standard for so long that I do not know where it originated.

The requirement in Equation 6 is so stringent that the user
who wants precise results must probably infer 

~A 
from the satel-

lite data, even if he is a user who can afford an atomic frequency
standard.

Since the user does not need an absolute knowledge of ei—
ther his frequency or that in the satellite, the next limitation
comes from a drift in the frequency of either oscillator. When
the Doppler navigation system was designed, atomic standards were
still rather exotic, so the system was designed to use crystal
standards both for ground observers and in the satellites. The
worst oscillator that has been used in the system has a drift

rate (Reference 5) of about 1 part in 1010 per day. A pass lasts
about 15 minutes, or about 0.01 day, so that the frequency change
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12during a pass is about 1 part in 10 . According to Equation 6,
this gives a position error of about 10 centimeters if no attempt
is made to counteract the error. This is the worst case. The
error is about 1 centimeter in the best case.

It is simple to counteract the drift error. The frequen-
cies of the oscillators in both the satellites and the ground
equipment can be monitored and the average drift rate can be de—
termined. If necessary, the measured drift rates can be used in
the calculations of position. The question is then not the size
of the drift but the amount that the rate over an interval of 15
minutes can depart from the average. We have not attempted to
make measurements of this sort, but there can be little question
that the deviations should be considerably smaller than the aver—
age. Thus the drift contribution to location error should probably
be measured in millimeters rather than centimeters.

Let us now look at the requirements on the accuracy of mea-
suring time. The satellites in the Doppler navigation system move
somewhat lees than 1 centimeter in 1 microsecond ; for simplicity,
let us say that the rate Is exactly 1 cmhisec. Obviously, then, a
timing error of 1 microsecond means a position error of 1 centi-
meter.

The ground stations in the Doppler navigation system main-
tain local atomic time and frequency standards. At appropriate
intervals, a portable cesium clock is transported from the Naval
Observatory to each ground station in turn and back again, and
this serves to keep all the clocks in the system accurately set.
At the time of the resetting provided by the visits of the por—
table clock, the errors are typically 10 microseconds. Thus an
observer who kept exactly the time of the Naval Observatory would
make an error of 10 centimeters in his position on a single pass.
This error would average to zero almost immediately, however, for
the reason that will now be explained.

We remember from Section II that the observer first locates
himself in the plane normal to the satellite orbit and passing
through the position of the satellite at the time of closest ap—
proach. He then finds his distance from the satellite at the same
time by using the slope of the Doppler curve at closest approach.
If his clock is correct while the one used by the satellite sys-
tem is in error, he makes an error in the position of the plane
but not in his distance from the satellite. In order to simplify
the discussion, let us suppose that the observer is at the Equator.
A mistake in the position of the plane means an error in latitude;
there is no error in longitude under these assumptions.
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Now let us supppose, for example, that the observer at the
Equator uses the satellite on a pass when it is going north. Let
us further suppose that the timing errors are such that he puts
himself 10 centimeters too far north. Later he observes the sat-
ellite when it is going south. On this pass, he puts himself 10
centimeters too far south. His average position is correct in
spite of the timing error. The same ionclusion holds for any
position of the observer, but the language involved is more com-
plicated if he is not at the Equator.

This conclusion should not be taken to mean that timing er-
rors are unimportant and that they can be allowed to take on any
size. There are second order effects of timing that may not aver-
age out and that can be serious if they are too large. However,
if the timing errors are 10 microseconds or less, the second order
effects are less than 1 centImeter.

We have seen that the error in the time used within the
Doppler navigation system is of the order of 10 microseconds.
It is this large because there has been no requirement to keep
it smaller. If there were such a requirement, there is little
question that we could hold the time error to 1 microsecond or
less.

Any user can maintain the same error if he wishes to take
the trouble. However, we must consider the user who has only a
crystal frequency standard and clock. If the reliability of his

frequency standard is 1 part in 1010 per day, his time can drift
by 10 microseconds per day. If he is going to maintain a timing
accuracy of 10 microseconds, he must calibrate his clock almost
daily.

There are various ways in which he can do this. If he is
going to use the satellites in the Navy Navigation Satellite Sys—
tern (the Doppler system), his simplest procedure is to use the
satellites themselves. Each satellite in this system transmits a
timing signal every 2 minutes. The timing signals are controlled
by a clock which in turn is controlled by the same oscillator that
controls the transmitted frequency. The timing signals are moni-
tored by four stations in the ground system which are equipped
with cesiwn time and frequency standards , and the clock in each
satellite is reset every 12 hours on the basis of the monitoring
data. Thus the errors in the satellite clocks are held to a few
microseconds.
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We must now ask about the precision with which a ground
station can compare a timing signal with its own local clock. Ten
years ago, this precision was (Reference 5) 21 microseconds for
the timing signals obtained during a single pass. Since 10 passes
or more can be received in a day, the timing error can be reduced
to about 7 microseconds. This leads to a location error that Is
actually somewhat less than 7 centimeters for a single pass. Be-
cause of the automatic averaging that results from the satellite
motion, this quickly reduces to 1 centimeter or less, as we ex-
plained above. j

.4

II
j

.11

I
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IX. REFRACTION

We now turn to the processes which affect the radio signals
as they travel between a satellite and a user on the ground . Since
the space between a satellite and the ground is never a vacuum, the
signals interact continuously with the matter that is encountered
along the signal path. At altitudes above, say, 100 kilometers,
the dominant interaction is with the electrons that make up the
ionosphere. The positive ions found there affect the signals much
less than the electrons , because they are much more massive; the
neutral material is too rarefied to have an appreciable effect. In
the troposphere, however, the neutral molecules provide the dominant
interaction.

Hence we need to consider refraction in the ionosphere and
refraction in the troposphere. The nature of the refraction is
quite different in the two regions, but there is a certain general
principle that applies to both; this principle is the subject of
this section.

Let n denote the index of refraction of the material that
is found at any point between the satellite and the ground. The
index n is a function of the properties of the material and, since
these properties (such as density) change continuously with posi-
tion, n is also a continuous function of position. Further, since
the properties at a specific point in space obviously change with
time, n is also a function of time. However, the time scale of the
temporal changes in n is usually long compared with the duration of
a satellite pass. Hence we shall neglect the time dependence of n.

Suppose that the satellite is in a certain position. We as-
sume that the radiation which it emits from this position is propa-
gated according to Fermat ’s principle, and we construct the wave
fronts that result from applying this principle. At any point, we
say that the ray direction is the direction that is perpendicular
to the wave front at that point. We then trace the ray path that
leads continuously from the satellite to the user on the ground .

Now let s be the coordinate which measures length along the
(curvilinear) ray path. Since the index of refraction ~s a func-
tion of position, it can now be regarded as a function n(s) along
the ray path. The quantity called the optical path length is the

— 39 —
—



________________ -- - ..

~~~~~~~ £ — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUREL MARYLAND

integral of n(s) with respect to s. When we review the discussion
of Section I, we see that the quantity called the range is actually
the optical path length. That is, all the considerations of Sec—
tion I remain valid provided that we define r as

r = f n(s) ds. (7)

The index of refraction between a satellite and the ground
is always close to unity, and its maximum deviation from unity is

between l0~~ and l0~~. Thus the ray path is always close to the
straight line between the catellite and the receiver. This means
that the difference Ar between the optical path length and the
straight line distance is, to first order

Ar f [n(i) — 1] d~ , (8)

in which d9~ is an element of length along the straight line.

Since the optical path actually follows a curved path
rather than the straight line, there is a contribution to Ar
that is proportional to the difference in length between the
curved path and the straight line; this contribution is of the 1order of [n(s) — 11

2. Still other contributions involve higher
powers of the parameter n(s) — 1. Thus the quantity r can be
expanded as a power series In this parameter.
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X. REFRACTION IN THE IONOSPHERE

At any point in the ionosphere, there is a certain density
N of electrons. For a given value of N, the index of refraction
n can be written in the form

n = 1 + 
~~i”~T~~ 

(9)

i=2

Note specifically that there is no term proportional to 
~T ’  al-

though all other negative powers of 
~T 

are present. The coeffi-

cients do not depend upon the frequency, but they do depend

upon several other things. They depend upon the electron density
N, and therefore they depend implicitly upon position. Some of
them depend upon the magnitude of the magnetic field, and these
depend implicitly upon position also. Those which depend upon
the magnetic field alsc depend upon the angle between the magnetic
field vector and the ray direction, and they further depend upon
the polarization of the radiation (Reference 8).

The two independent components of polarization are the cir-
cular components, namely the right—hand and the left—hand ones.
If a signal is transmitted with, say, only a right—hand component,
it will have only a right—hand component all the way to the point
of reception. At any point along its path, it will have an index
of refraction 

~r’ 
say. If the signal starts with only a left—hand

component, it will arrive with only a left—hand component, and it
will have an index ni, say.

Now suppose that the signal is transmitted with linear po-
larization. If there were no ionosphere, the polarization would
remain linear and the observer could receive it readily with a
linear antenna such as a whip. However, the linear polarization
consists of right—hand and left—hand components of circular polar-
ization with equal strengths. Since these components have differ-
ent indices of refraction, they travel with different velocities.

Reference 8. K. G. Budden, Radio Waves in the Ionosphere, Cambridge
University Press, Cambridge, 1961, provides an extensive survey of
ionospheric refraction.
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When the components are recombined at the receiver, the result is ]
that the direction of the resulting linear polarization is con-
stantly rotating, so that the polarization is sometimes aligned
with a whip and is sometimes normal to it, and the signal strength
falls to zero at the latter times.

Thus, if an observer uses a simple linear antenna, the sig— p
nal strength will vary from a maximum all the way down to zero un-
less the transmitted signal has only a single component of circular
polarization. Therefore the se~~llite antennas should be designed
so that they transmit circularly polarized radiation. Since they
cannot do so and simultaneously transmit equally in all directions,
they must have favored c~iections of transmission. This in turn
means that their orientation with respect to the earth must be
controlled with a moderate amount of accuracy, in order that the
favored direction of transmission may be pointed at the earth.

Now we suppose that only a single component of circular po-
larization is transmitted, so that we are concerned with only a
single index of refraction ii; this single index is, however, a
function of position. We saw in the preceding section that the
optical path length equals the straight line distance, £ say, plus
a power series in the parameter n — 1. We see from Equation 9
that this power series becomes a series in inverse powers of

that starts with 
~~~~ 

That is,

r = ~ +

By Equation 2, the Doppler shift 
~D 

equals — (
~
/c)fT. Hence

has the form

= — (i/c) 
~T 

+ 
~~i”~T~~ 

(10)

If we knew the electron density at all points between the
satellite and the ground for all times during a pass, we could
evaluate the coefficients in Equation 10 theoretically . On

the basis of present knowledge, we cannot hope to calculate the
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with sufficient accuracy by using measured values of the elec-

tron density. However, by using various measurements of density
as a function of position, we can reach an important conclusion:
At the frequencies that interest us, the next largest term (Ref-

erence 9) after 
~l
’
~T 

is the term c
~3

/ f T
3. Specifically, the term

is small compared with the cubic term.

The frequencies used in the Doppler navigation system are
150 and 400 megahertz. If an observer uses the higher frequency,
and makes no attempt to correct for refraction in the ionosphere,
he may easily make an error that is in the range of hundreds of
meters. In order to reduce this to 10 centimeters, the observer
would have to know the electron density at all relevant points

with an accuracy better than 1 part in l0~ , and this is not pos-
sible with methods known at present.

In order to reduce the ionospheric refraction error to a
tolerable level, we make use of two coherent frequencies, which
are 150 and 400 megahertz in the navigation system, as we have
just said. Then we assume that we can neglect all terms in Equa-
tion 10 above the term 

~l’~T 
The equation then contains two un-

known parameters, namely 9./c and nj. Let f1 and f 2 denote the

Doppler shifts measured with the frequencies 150 and 400 mega-
hertz, respectively, and let the megahertz be the unit of fre-
quency. Then

= — l50(~/c) + (a1/150),

= — 400(~/c) + (cx1/400).

From these, we find

— (3/8)f
1 

= — 343.75(~./c). (11)

The left member of this relation is a measured quantity, and we
calculate 9./c at each instant during a pass from it. The quantity
i/c in turn is the quantity that we use to infer position, by any
of the methods described in Section II.

Reference 9. J. F. Wiliman and J. F. Doyle, “Ionospheric Refraction
Errors Measured in the Doppler Shift of Radio Transmissions from
Artificial Earth Satellites,” Defense Research Laboratories (Uni-
versity of Texas), Research Report Number 4)1, 1963.
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In order not to degrade the accuracy when we find the dif-
ference f2 

— (3/8)f 1, we must take two important precautions:

1. Both frequencies transmitted from the satellite must
be controlled by the same oscillator, and all frequen-
cies involved in the ground equipment must be controlled
by a common oscillator.

2. Instead of measuring f1 and f 2 independently and forming
— (3/8)f

1 
by calculation, the frequency f1 must be

multiplied by 3/8 by means of phase—locked multiplying
circuits, and the results must be beat against f2 

in
order to form the difference.

The beat frequency is then directly measured.

If the electron density were a function of altitude only,
with no gradients in the horizontal direction, the effect of re-
fraction upon r would be symmetrical about the point of closest
approach. This means that the refraction would not affect the
value that we measure for the time of closest approach, and that
it would affect only the value of the range at closest approach.
However, the ionosphere varies systematically with latitude, and
the electron density therefore does have a horizontal gradient.
In order to study this problem, as well as other ionospheric
problems , several early satellites were equipped with three or
more coherent frequencies. This allows us to solve for coeff i—
cients beyond a1 

in Equation 10. Because of limitations in ac-

curacy, it has been possible to find only one coefficient in this
way. Since theoretical studies show that a3 is the most important

coefficient after a1~ 
work with multiple frequencies done so far

is based upon the assumption that Equation 10 contains only the
terms in a1 and a~ , with other coefficients being set equal to
zero.

Much of this work has been done by Willman and Doyle (Ref-
erence 9) at Austin, Texas. The question studied in their work is
the following: If we eliminate the coefficient a1 by using Equa-

tion 11, what is the remaining error in position because of higher
coefficients? There are two main conclusions:

1. The standard deviation of the remaining error is 2
meters, although one instance was found in which the
error was 20 meters.
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2. Because of the latitude dependence of the electron den-
sity, the error parallel to the satellite motion is
often as large as the error in the range at closest
approach. Further, the error parallel to the satellite
motion is not necessarily equal and opposite for north-
bound and south—bound motions of the satellite. Instead,
the error tends to introduce a bias in the latitude of
the observing station.

In spite of these results, ionospheric refraction does not
impose an important limit upon the accuracy of Doppler location.
The satellites in the Doppler navigation system were basically de-
signed in 1960, when it was not possible to contemplate a frequency
higher than 400 megahertz in a satellite system that had to achieve
routine operational status within a few years. Now there would be
no difficulty in going to frequencies at least three times as high.

Since most of the error in Equation 11 comes from the term

the error in location varies as 
~T

4 when we use Equation 11. If

we triple the operating frequencies, we divide the error by 81.
This reduces the standard deviation of the error from 2 meters to
about 2 centimeters.
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II
XI. REFRACTION INTHE TROPOSPHERE

In the part of the troposphere that is in line of sight of
a particular ground observer, the index of refraction at a partic-
ular time is usually a function of altitude only. If there is a
weather front within line of sight, this condition may be violated,
and we have sometimes detected the presence of weather fronts by
analyzing the Doppler data from a satellite. However, we can tell
independently when a front is close to a station, such occasions
are moderately rare, and thus we can afford to ignore data obtained Junder conditions when the weather is not suitable. With this under-
standing, then, we can say that the index of refraction in the
troposphere is independent of horizontal position and depends only
upon altitude.

Refraction is severe when the satellite is near the horizon,
and we therefore avoid the use of data obtained at low elevation
angles. In most location work that we have done at this Laboratory,
we have adopted the following rules:

1. We do not use any data from a pass unless the satellite
attains an elevation angle of at least 15°.

2. We discard all data when the elevation angle is less
than 10 0 , and we use this “cut—off” for all passes
that are retained under rule 1.

When we adopt these rules, the worst error that arises from tropo-
spheric refraction (Reference 5) is about 30 meters, and the stan-
dard deviation of the error is about 20 meters. The error never
falls below about 12 meters.

The errors just quoted are those found when we make no at-
tempt to eliminate the effects of tropospheric refraction, other
than eliminating data obtained at low elevation angles. Since the
index of refraction in the troposphere depends but little upon the
frequency at radio frequencies, we cannot proceed as we did with
ionospheric refraction. In the present state of knowledge, we can
attempt to eliminate tropospheric refraction only by calculating
it theoretically.

1
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Hopfield (Reference 10) has made the most intensive study
of the effects of tropospheric refraction on radio signals from
satellites, and the following discussion is based upon her work.
We must start by dividing the refraction into a “wet” component,
due to the water vapor in the troposphere, and a “dry” component,
due to all other constituents. Except perhaps under extreme con-
ditions, the dry component predominates over the wet component.
For purposes of illustration, we may say that the effect of the
dry component is 20 meters and the effect of the wet component is
50 centimeters.

To high accuracy, the index of refraction at any point in
the troposphere is a function of pressure, temperature, and rela-
tive humidity. The goal of Hopfield’s work has been to measure
these quantities on the ground at the observer ’s location and to
see how the refraction effect can be calculated from the measured
quantities, using thermodynamic principles to calculate the vari-
ation of the index of refraction with altitude. She then compares
the integrated effect of the index with the effect calculated from
detailed measurements of tropospheric properties made by balloons.
The balloon data are obtained from the National Climatic Center , a
part of the National Oceanic and Atmospheric Administration.
Hopfield has made these studies at sites as diverse as Samoa,
Dulles International Airport, and a weather ship in the North
Atlantic.

The dry component proves to be quite amenable to theoret— 4icai. treatment. Since the total effect of the dry refraction de—
pends upon an integral taken through the entire troposphere, it
turns out that the dry component depends upon the surface pressure
only, being independent of surface temperature. Hopfield ’s theory,
based upon a value of surface pressure measured at the time of each
pass , gives a refraction effect that is correct within about 1 part
in 500. Thus the remaining error due to the dry component is about
4 centimeters. Since the error seems to be random from pass to
pass, so far as we can tell from the available data, the error can
be further reduced by using multiple passes. It seems safe to take
1 centimeter as the limit on Doppler location imposed by the dry
component, on the basis of present knowledge.

The wet component is not as amenable to theoretical treat—
ment on a relative basis, but we can afford a larger relative er-
ror since the wet component is smaller to start with. Hopfield ’s
current methods give an error of about 25 per cent in dealing

Reference 10. H. S. Hopfield , Radio Science, Volume 6, 1971,
p. 357.
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with the wet component. This means that the residual error is
about 12 centimeters for a single pass. Again the error seems
to be random. If we used 6 passes, which is about the number of
passes that we can obtain in a day, we would apparently reduce
the error to l2/v’~ = 5 centimeters, but this calculation is prob—
ably illusory. It is plausible that the error is a function of
the weather, and the weather is not likely to change in a day.
Thus we probably have about the same error for all the passes ob—
tam ed during a single day, and we can reduce the error statisti-
cally only by using passes for which the weather is uncorrelated.
This probably dictates operations over several days.

The estimates of the refraction error are those that apply
on a global basis. On a local basis, it is only the difference
in refraction between two neighboring points that matters. We do
not have detailed information about the local variation of the re—
fraction effect. However, for points that are within 100 kilo-
meters of each other, say, it seems implausible that the differ-
ence should be more than 10 per cent of the total. Tentatively,
then, we shall say that the local limit is a tenth of the global
limit.

-48 - 1



- ~~~
‘—

~~

THE JOHNS HOPKINS UNIVERS ITY
APPUED PHYSICS LABORATORY

LAUREL . MARYLAND

XII. SUMMARY AND DISCUSSION

In the preceding sections, we have studied all the known
factors that affect the accuracy of locating a point by measuring
the Doppler shift in the radio transmissions from a near—earth
satellite. Table II summarizes the limiting accuracy imposed by
each source, provided that we take full advantage of present knowl—
edge and techniques. The table does not include the limit imposed
by fundamental knowledge of the earth’s shape and gravity field;
that limit will be discussed separately.

Table II
Limits on the accuracy of Doppler location from a single pass ,

due to all factors exc ept geodetic ones. (It is assumed that the
satellite orbits are determined dai ly.)

Limit
Source (cm)

Satellite motion

Atmospheric drag 10

Radiation pressure 1

Instrumentation

Noise 5

Oscillator drift 1

Timing 7

Propagation effects

Ionosphere 2

Dry troposphere 4

Water vapor 12

Resultant 18

I
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In preparing the table, I have assumed that the observer
uses satellite orbits that have been determined from orbital data
taken over a period of a day. I also assume that he uses data
covering a span of a day in his clock calibration. Otherwise, I
have assumed that he uses only data gathered from a single pass
of a satellite.

The largest single error in the table is 12 centimeters
from the unpredictable part of the refra~’tion due to humidity in
the troposphere. The next largest error is 10 centimeters from
the unpredictable part of the drag acting upon a satellite. The
resultant of all the errors listed in the table is 18 centimeters.

Although the table is based upon current knowledge and tech—
niques, it is not always based upon current practice. The only two
errors for which this point is important are those due to noise and
to ionospheric refraction. The limit imposed by noise in the pres—
ent Doppler navigation system is about 50 centimeters rather than
5 centimeters, and we believe that the noise level is set by the
oscillators used in the system . The design currently used for the
oscillators is about 15 years old. Oscillators that have been
tested in the Laboratory but not used in the field are better by
an order of magnitude. However , until we have actually used these
oscillators in both satellites and ground equipment, we cannot know
for sure that the improvement assumed in Table II can be achieved
in field use.

The current limit imposed by ionospheric refraction, on the
basis of a single pass, is about 200 centimeters rather than 2 cen-
timeters as it is listed in the table. However, this limit varies
inversely with the fourth power of the operating frequencies, and
it is now feasible to use frequencies at least three times as high
as those we are using. Thus is seems safe to say that the effect
of ionospheric refraction can readily be reduced by two orders of
magnitude simply by increasing the operating frequencies.

With one possible exception, all of the errors listed in
Table II are random. The possible exception is the error pro—
duced by ionospheric refraction. The electron density is a func-
tion of latitude, and the residual refraction that is not removed
by the two—frequency technique tends to produce a bias in the
latitude of the observer. However, it should be possible to
learn the average latitude dependence of the electron density
and hence the average bias left by the two—frequency method.
Subtracting the average bias should then leave only a random
error.
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Thus it should be possible to reduce the errors far below
the limits shown in Table II simply by using many passes. It is
probably not safe to say that the errors can be made as small as
we like by using enough passes, because we do not know what corre-
lations and biases there may be at error levels far below those in
the table. However, it seems safe to say that the errors could be
reduced to 5 centimeters by using multiple passes. This requires
using 13 passes, if ordinary statistics apply ; this is about the
number of passes received in a day from the satellites in the Navy
Navigation Satellite System.

Next, we turn to the geodetic limit. We concluded in Sec-
tion IV that the acquisition of additional data, without requiring
any new observing techniques, would allow us to lower the geodetic
limit to a few tens of centimeters on a global basis and consider-
ably less than this on a local basis. Let us use 50 centimeters
as the geodetic limit that we can achieve in the foreseeable future
on a global basis, and let us ask what is the limit in locating two
neighboring points relative to each other.

The geodetic errors become uncorrelated for two points that
are separated by about 90° on a great circle; this is 10 000 kilo-
meters in distance. For two observers separated by 10 000 kilome-
ters, then, the geodetically induced error in their relative posi-
tion is 70 centimeters. This is approximately the product of 50
centimeters, which is our estimate of the global limit in locating
a single point, by Ii, since two points are involved in a relative
location. For two observers separated by 0 kilometers, the geo-
detically induced error is 0 centimeters. It should be a reason-
able approximation to say that the error grows as the square root
of the separation. Hence, for two points separated by L kilome-
ters , the geodetic limit G in finding their relative location is
approximately

G = 0.7 ~‘i: cm. (12)

The limit C is the same for all methods of location, whether they
depend upon Doppler techniques or not, as we saw in Section IV.

Finally, let us estimate the total error involved in the
relative location of two points if we use the Doppler observations
that are obtained in 1 day. We estimate that the non—geodetic
factors contribute 18 centimeters error in the location of a sin— - -

~

gle point if we use only the data from a single pass. If we ob—
tam 13 passes in a day, we expect to decrease this error to 5
centimeters. However, since two points are involved in a rela-
tive location, we multiply this by ~ obtaining 7 centimeters,
approximately.
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The total error in a relative location is then the square
root of the sum of the squares of 7 centimeters and of G centime—
ters from Equation 12. The total error E is plotted as a function
of L in Figure 6. For separations less than 100 kilometers, E is
dominated by the non—geodetic contribution of 7 centimeters, which
is characteristic of the Doppler method . For greater separations,
E is dominated by the geodetic contribution G, which is the same
for all methods of measurement.
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Fig. 6 The Estimated Error E in the Relative Location of Two Points as a
Function of their Separation L. The geodetic error is estim ated to be
0.7 ~‘tcm and is independent of the method of measurement. The other
error component , whic h is estimated to be 7 cm for the observations
obtained in a sing le day, is characteristic of the Doppler method of location.
The error probably does not incre ase for separations greater than 10 000 km ,
although the figure sugg ests that it does.



St

THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSI CS LABORATORY

LAUREL MARYLAND

In many applications, however , the error E is not the error
that interests us. Often we are interested only in relative mo-
tion. For example, we may be interested in the relative motion
of points separated by the San Andreas fault or by other major
fault lines in the earth’s crust. For another example, we may be
interested in the relative motion of points in a region where
there has been extensive removal of water, oil, or other mater-
ials from below the earth’s surface. For such applications, we
want to know the minimum change in separation that we can detect
over an interval of, say , one year.

The geodetic limit G for any two points is a bias that has
the same value for measurements made now and a year from now. Thus
it does not contribute to the minimum detectable separation, which
depends only upon the non—geodetic factors. We saw in Table II
that the non—geodetic factors contain a contribution of 2 centime-
ters from ionospheric refraction, and that this may be in part a
bias in latitude. The bias part is independent of time and thus
it does not affect the minimum detectable m otion. However, it
contributes a negligible amount whether it is a bias or not, and
we can ignore it. The other non—geodetic factors are random, so
far as we know. If they are random, their contribution should be
l8/~&, in which N is the number of passes used. Thus the use of
324 passes , which can be obtained in about 30 days, should leave
a net contribution of 1 centimeter to the minimum detectable mo-
tion. However, only experimentation can determine whether the
minimum can be reduced to this level by averaging over many ob-
servations, or whether there are biases that we have so far been
unable to determine.
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