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I.  INT RODU CTION

Many problems in structural analysis have an axisymmetr ic  confi gurat ion .
However, there are other problenis which , while they are almost axisynunetric ,
have non-symmetric features which render purely axisymmetric solutions inap-
plicable. One approach to solving these types of problems would be to use
a three-dimensional finite element formulation . However , if some advantage
can be taken of the fact that these geometries will yield solutions somewhat
similar to the axisyminetric cases, some efficiency could be gained over the
purely three-dimensional approach . Consequently, a method that makes use of
two-dimensional axisyminetric analysis , but also yields first order non-sym-
metric effects, is an appealing alternative.

This paper attempts to develop an analysis of the stress and displace-
ment field of slightly non-axisymmetric bodies. This is done by obtaining
the axisymmetric displacemen ts for various parts of the body, and then
forcing the displacements to match at certain points through a perturbation
analysis. The axisymme tric displacements together with the perturbation
displacements combine to yield the total displacements for each section of
the body . Once the displacemen ts are known , it is a simple matter to cal-
culate stresses and strains at any desired point in the structure.
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II. METHOD OF ANALYSIS

The purpose of the present investigation is to develop an approximate
method of analysis of elastic configurations whose geometry is almost
axisyminetric, but has pronounced geometrical changes in the circumferential
direction. The method of analysis which is proposed is based on the finite
element numerical approach, and will attempt to make some use of the
geometrical aspects of the two-dimensional axisymmetric anaiysis .C1)’ (2)*
Although it is not necessary for the proposed method , let us for the purpose
of discussion assume that the geometry repeats at some regular intervals in
the circumferential direction and therefore, only one portion of the total
structure need be considered. Of course, if there is no repetitions then
the total structure would be analyzed. Consider now one such portion as
illustrated in Figure 1. For the purpose of analysis the configuration
shown in Figure 1 is divided into a set of finite elements whose quadrila-
teral shape is defined in the r-z piane.C2) At this point direct use can
be made of a suitable mesh generation procedure in a two-dimensional plane.~On each face of this segment the finite element nodes are assumed to corres-
pond to the nodes in the adjacant segments.

The first step is to obtain the axisymmetric solution for each of these
segments. In addition, the stiffness and force matrices for the non-axisym-
metric solution are calculated and stored . In general, the displacements
generated by the axisymmetric solution will not be compatible with the dis-
placements generated for an adjacent segment. Consequently, some changes
need to be made in these displacements to obtain the real situation . The
total displacement is now represented by two components. If we call the
displacement u we can write:

{u} = {ua} + {u} (1)

whereCua}is the displacement from the axisymmetric solution and{u~}is theadditional perturbation displ acement.

For each side of a segment the perturbation displacements are expressed
as follows:

U a1 + a
2
r + z(a

3 
+ a

4
r)

u = a5 + a6r + z(a
7 
÷ a

8
r) (2)

u0 a9 
+ a

10
r + z(a

11 
+ a

12r)

where subscripts r, z, S refer to coordinates in Figure 1.

* Superscripts refer to references

A
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Similar expressions can be written for the other side of the segment .

If the total displacements are forced to match for two adjacent segments
at four nodal points, a sufficient number of equations to be able to solve
for the coefficients of the perturbation displacement equations will be ob-
tam ed. These nodes, where the solutions match are called connecting nodes.
Then for each segment:

{u
~ 

} = [RI 1:p} (3)
p

where ~ UC I is the perturbation displacement at the connecting nodes, [RJ is
matrix o?the connecting nodal coordinates, and tp} is the unknown perturba-
tion coefficients. Solving for {p} yields :

~p} = (Rj 1 {u
~ 1 (4)

p

Also , for each quadrilateral element in the segment:

{u~} = [CI ~p} (5)

where [G]is the matrix of nodal coordinates for the element . Substituting equa-
tion (4) into equation (5) yields:

{ u }  = [C) [R} 1 {u } (6)

Also for each element:

{f} = [S
1] (~~U }  + {u }) (7)

Where[S1]is the non-axisyminetric stiffness matrix and(f}is the internal forcevector. Now, applying the principal of virtual work to equation (7) gives:

isu~
T {f} ~~~~ [S11({u

} + {u }) (8)

From equation (6), it can be seen that:
TT 

= ~~ 
T [R}~~ (CI

T (9)p

Substituting this into equation (8) and summing the contribution of all the
elements in the segment, defines the following :

T T
W I 

= 
T Z([ RF’ [GI T[S1]{u } + [R] 1 [G} T [s i }[R )

_
~~Iu~ }) (10)

p p

Also , there is contributions from the external forces . This can he written
as:

óu = &j~ { r 1} ( 11)

5
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where {p
1} is the external force vector for an individual element. The same L

process of substitution and summing over all the elements defines the following:

W
E 

= 
T ~ [R]

_lT 
{G]

T {P
1
} (12)

Also there will be a contribution from the concentrated loads . This contribu-
tion can be stated as:

Su
E

T 

~~~ 
= 

T {g} (13)

where {g} is the concentrated force vector for the element . Then, for the
whole segment:

W
c 

= du
c
T ~[R]

_1T 
[Al

T 
{g} (14)

where [A] is a matrix relating the perturbation displacements at the nodes
where the concentrated forces are applied to the perturbation coefficient
matrix. That is:

1:u } = [A] {p} (15)

at nodes where concentrated forces are applied.

Balancing the virtual work done by all  the forces gives:

W
E 

+ W
C 

= W
I (16)

Here, the following subs t itut ions can be made :
T

FE = [R] ’ (~ [G] T {P
1

} + [Al
T {g})

[SK I = [R] 1 
(X [G ]

T [Sl ] [ G I ) [ R ] ~~
l ( 17)

{F
1

} = [R]~~ 
T 

~u })

where the [RI_i T has been brought outside the summation since i t  is constant
for the entire segment, and the summation is over all the elements in the
segment. The terms in the summation can be easily calculated during the
axisymnietric solution and later he multiplied by the [R] 1 t erms . Then
[SKI , and {F1} can be stored for each segment. These substitutions give :

[SK I {u } + {F
1

} = ~F~~} (18)

()
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Since it is the total displacements that must match at the connecting nodes ,
equation (18) can be written as:

[SKI (u } - [S
KI{u 

} + ~F 1
} = {F

E
} (19)

CT a

where {u I is the axisyininetric displacement at the connecting nodes and ~U }
is the C a total displacement at the connecting nodes. Everything is know~~

’

except {u 1. Combining terms in equation (19) yields :
C
T

[SK ] {u } = { F }  (20)

where {F I is a combination of (F
E
}, {F

1
}, and [SKI ~

Uc I. There will be
one matr~x equation for each segment. Now 

~~K
1 can 

a be assembled into
a banded global stiffness matrix for the overall structure. Then appropriate
boundary conditions can be applied to restrict the rigid body motion , preserve
symmetries, or comply with external restraints. Then equation (20) can be
solved for the {u I vector, giving the total displacements at all of the con-
necting nodes. CT

Now it is a simple matter to work back from this point to obtain the
stresses and strains for each element in each segment. For a given segment

~u I and {u I are known and therefore, {u } can be calculated from:c c cT a p

{u I = tu } — fu 1 (21)
c~ CT C

Then knowing tu I and [R~
4
, tp} can be obtained from equation (4). Then

for each C~ element the perturbation displacements {u0} can be obtainedfrom equation (5). Then knowing tu I and tu 1, it is easy to get tu} from
equation (1). a

At this point, simply apply the base finite element equations :

tc} = [B] {u}
(22)

{o} = [D] {c}

where [B] and [D] were calculated and saved from the axisymmetric solution ,
to obtain the stresses and strains for each element.

III. NUMERICAL RESULTS

The first test of this method is that if the body is indeed completely
axisymmetric , the perturbation analysis should give the original axisynmetric
answers. This was tested on two examples ; a spinning disk with a hole in the
center , and a disk under internal pressure. In both cases the axisymmetric
solution was duplic ated.

The next example was a non-axisymmetric disk under internal pressure.
The answers for this example were compared to answers obtained from a plane
stress analysis. This example is basically a plane stress problem in the
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r-O plane. The configuration that was analyzed is shown in Figure 3. Due
to symmetry only one quarter of the total body was divided into six segments
for the analysis, numbered as shown in Figure 3. The predominan t stress for
this example is a~~. Results of the perturbation analysis, plane-stress
analysis and the ~xisyinmetric analysis for all segments are shown in Table 1.
It can be seen that the perturbation analysis gives close agreement with the
plane stress solution.

The next example tested was a tube that was axisynunetric for half its
length and had a cross-section as shown in Figure 3 for the other half of
its length. The only test of accuracy that could be made on this example
was to see if the answers tended to the known limit solutions at each end.
That is that near the end of the tube the answers for the nonaxisymmetric
part tended to those presented in Table 1, and at the other end the answers
tended toward the axisymmetric solution . These results for all segments
are presented in Table 2. From this we can see that the stresses vary from
end to end and that they are approaching the limiting values for the case
of the tube having no variation in the z direction.

IV. CONCLUSION

From the test examples used , it can be concluded that this method of
solution can handle non-axisynune-tric geometries. Also , the accuracy seems
to be sufficient for bodies that have geometry varying in the r-O plane,
the r-z plane or both. Therefore, this method presents a simpler alterna-
tive to a purely three dimensional analysis, and for a large class of
problems this would appear to have a great advantage in terms of saving in
the computer execution time.

8
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TABLE 1. Stress from various methods of analysis of a disk with
internal pressure; p = 1000 Pa.

STRESS

Radial Dis tance Perturba tion Plane Stress Axisynunetric

6.25 1164 1216 857
8.75 505 540 491 Segment 1

11.25 208 215 345
13. 75 46 20 271

6.25 1168 1205 857
8.75 505 558 491 Segment 2
11.25 207 217 345
13.75 45 11 271

6.25 1175 1178 857
8.75 507 612 491 Segment 3
11.25 206 209 345
13.75 42 8 271

6.25 1065 1130 1198
8.75 916 868 764 Segment 4

6.25 1074 1133 1198
8.75 909 865 764 Segment 5

6.25 1078 1133 1198
8.75 906 864 764 Segment 6

1()
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TABLE 2. Stress a from perturbation analysis for a nonaxisyminetric
under in~ernal pressure ; p = 1000 Pa.

STRESS

Radial Axisymmetric end Nonaxisynunetric end
Distance TuWe Disk Tube Disk

6.25 934 857 1010 1164
8.75 486 491 503 505 Segment 1
11.25 301 345 284 208
13.75 205 271 108 46

6.25 909 857 1043 1164
8.75 484 491 505 505 Segment 2
11.25 314 345 270 208
13.75 229 271 143 46

6.25 847 857 1105 1164
8.75 480 491 511 505 Segment 3
11.25 339 345 244 208
13.75 273 271 97 46

6.25 799 857 1067 1078
8.75 456 491 878 906 Segment 4
11.25 328 345 . 

-

13.75 265 271

6.25 757 857 1127 1078
8.75 485 491 832 906 Segment 5
11.25 394 345
13.75 354 271

6.25 755 857 1155 1078
8.75 479 491 811 906 Segment 6

11.25 386 345
13.75 345 271

- 
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Fi gure 1 . Conf iguration to be analyzed is divided into segments byplane sections in the r-z plane.

12

-~~~~~~~~~~--~~~~~~~~~~~~
-
~~~~~~ ~~~~~~~~~~~~~



j fl ~~~~~~~ 
-, . —. —, .,— —. —

F ~~~~~~~~~~~~~~~~~~~ 
- .

~~
-.

r~~~~

,/

Figure 2. Division of a typical segment into a finite-element grid.
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Figure 3. End view of monaxisymmetrjc tube showing segment
numbering system.
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APPENDIX A

1. SEGMENT CONTRO L CARD

Format (2 110)

Columns 1-10 NTYPS (Number of different types of segments;

4 maximum)

11-20 NTOTS (Number of to ta l  segments;  8 maximum )

2. SEGMENT DATA CARDS

One card for each type of segment .

Format (F1O.S, 110)

Columns 1-10 THETA (Angle subtended by segment)

11-20 NST (The number of segments of each

type ; S maximum)

3. SEGMENT NUMBERING CARDS

One card for each type of segment .

Format (51 10)

Columns 1-10 NUM S (1) (Reference numbers for segments of

each type in

41-50 NUMS (5) global numbering system; there can be

one to f ive  numbers per card depending

on how many segments there  are of each

type.)

15
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CONNECTING NODES CARDS

One card for each segment . These cards must be in order according to the

global numbering system for segments.

Format (8110)

Columns 1-10 NPC (1) (Nodal number for connecting nodes

according to the axisymmetric

71-80 NPC (8) grid for the segment) .

Cards 5-18 must be repeated for each different type of segment . These

are the contro l cards for the axisymmetric solution .

5. TITLE CARD

Fo rmat (20A4)

Column s 1-80 TITLE (Title for particular case)

6. CONTRO L CARD

Format (615 , F S .O , 515)

Columns 1-5 NNLA (Number of nonlinear approximations ; NNLA = 1

for this version of the program)

• 6-10 NUMTC (Number of temperature cards ; if -2 , a

constant temperature is specified)

11-15 NIJM?vIAT (Number of d i f ferent  mater ia ls ;  6 maximum)

16-20 NUMPC (Number of boundary pressure cards ; 200 maximum)

21-25 NUMSC (Number of boundary shear cards; 200 maximum)

26-30 NUMST (N umber of boundary shear cards in tangent ia l

direction ; 200 maximum)

31-35 TREF (Reference temperature)

36-40 INERT (This paraneter decides if inertia loads

w i l l  be present , INERT = 0 me an s zero va lues  o f ax ia l

ac ce l e r a t i on , and angular acceleration and velocity

for each load increment)

k.1..1 ~~~~~~ —— - 
-
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51-55 INCF (If  INCF = 0 , then surface loads for each time

• increment w i l l  be the sane as for first increment)

56-60 IPLOT (Plot parameter , 1 if plot  required)

7. MESH GENERATION CONTROL CARD

Format (515)

Column s 1-5 MAXI (Maximum value of I in mesh;  25 maximum )

6-10 MAXJ (Maximum value of J in mesh; 100 maximum)
11-15 NSEG (Number of l ine segment cards)
16-20 NBC (Number of boundary condition cards)

21-25 NMTL (Number of material block cards)

8. LINE SEGMENT CARDS

The order of line segment cards is immaterial except when plots are

requested ; in this case , the line segment cards must define the perimeter of
the solid cont inuously .  The order of l ine segment cards def ining internal

st rai ght li nes is always i rrelevant .
Format (3(213, 2F8.3), IS)

Col umn s 1-3 I coordinate of 1st point
4-6 J coordinate of 1st point
7- 14 R coordinate of 1st point

15-22 Z coo rdinate of 1st point
23- 25 I coordinate of 2nd poin t

26-28 J coordinate of 2nd point
29-36 R coo rdinate of 2nd point
37-44 Z coordinate of 2nd poin t

45-47 I coo rdinate  of 3rd point
48-50 J coordinate of 3rd poi n t

51-58 R coordinate of 3rd point

59-66 Z coo rdinate of 3rd point
67-71 Line segment type parameter

if the number in column 71 is
0 Poin t  ( input  only  1st p o i n t )
1 st r ai ght l ine  ( input  onl y 1st and 2nd points)

2 st r aig h t l i n e as an internal diagonal (input only

1st an d 2 n d po in t s )

5 ci r cu l a r  arc spec i f i ed  by 1st an d 3rd poin ts a t the

- -~~~- - -~~~~~---~~~~~~ -- -~ ~‘ i ~~~A~~~~ •
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ends of the arc and 2nd point at the mid-point

of the arc

4 circular arc specified by 1st and 2nd points at

the ends of the arc with the coordinates of the

center of the arc given as the 3rd point (delete

I and J for 3rd point)

S straight line as a boundary diagonal  for wh ch I
of 1st point is minimum for i ts  row and/or I of
2nd point is minimum for its row (input only 1st

and 2nd points)

6 straight line as a boundary diagonal for which I

of 1st point and/or 2nd point is maximum for its

row (input only 1st and 2nd points)

NOTE : In specif ying a circular arc , the points are ordered such that  a counter-
clockwise direction about the center is obtained upon moving along the

boundary .

9. BOUNDARY CONDITION CARDS

Each card assigns a particular boundary condition to a block of ele-

ments bounded by Ii , 12 , Ji , J2. For a line Ii = 12 or Jl = J2. For a point

Ii = 12 and Ji = J2.

Format (415 , 110 , 3F10.O)

Columns 1-5 Mininum I

6-10 Maxi mum I
11-15 Minimum J
16-20 Maximum J

21-30 Boundary condition code

31-40 Radia l  bo undary cond i t i on  code , XR

41-SO 1xial boundary condition , N
• 51-60 Tangential boundary condition XT

I f  the nu mber in Columns 2 1-30 is
XR is  the  spec i f i ed  R- lo ad  and

0 x: is the specified :-Ioad and

XI i s  the specified T-load

XR is t h e  spe cified R-displacem ent and

15
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1 XZ is the specif ied 2-load and

XT is the specif ied I-load
XR is the specified R-load and

2 XZ is the specified Z-displacement and

XT is the specified T-load
XR is the specified R-disp lacement and

3 XZ is the speci f ied  2-disp lace men t an d

XT is the specified T-load
4 X2 is the specif ied Z- load and

XT is the specified T-disp lacemen t

XR is the specified R-disp l acement  and

S XZ is th e specified Z- load and
XT is the specified T-displacement

XR is the specified R-load and

6 XZ is the specified Z-displacement and

XT is th e specified I-displacement
XR is the specif ied R-displacement and

7 X is the specif ied 2-disp lacement  and

xi is the specified 1-displacement

NOTE: All loads are considered to be total forces acting on one radian segment.

10. MATERIAL BLOCK ASSIGNMENT CARD

Each card assi gns a material definition number to a block of elements

defined by the 1 , J coordinates.

For mat (5 15 , 2F 10.0 , 2 15)

Column s 1-5 Material definition number (1 through 6)

6-10 Minimum 1

11-1 5 Maximum I

16—20 Minimum J
21-25 Maxi mum j

26-35 Material principal proper ty i n c l i n a t i o n  ang l e  BETA
in R-:  p la n e

56—45 Materi al p r i n c i pa l p r op er ty  i n c l i n a t i o n  ang le  ALP HA
in \-T 1)1~~

1fle
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46-50 lAN G (If lANG = 0 , then ALPHA is same for total
material block . If lAN G = 1 , the ALPHA varies
in sign in the I direction from element to

element every NANG elements. This will allow

for equal but opposite helical angles.)

51-55 NAN G (Number of elements in the I direction with

the same ALPHA).

11. PLOT TITLE CARD*

Format (20A4)

Columns 1-80 Title (Title printed under each plot)

12. PLOT GENERATION INFORMATION CARD*

Format (2FlO.0)

Column s 1-10 RMA X (Maximum r coordinate of mesh)
11- 20 ZMA X (Maximum z coordinate of mesh) F

*NOTE : Use 
~~~~ 

j f IPLOT = 1 (plot required)

13. TEMPERATURE FIELD INFORMATION CARDS

If NUMTC in columns 6-10 of the CONTROL CARD is greater than 1 ,

the temperature field is given on cards. One card must be supplied for each

point for which a temperature is specified .

Format (3F10.O)

Columns 1-10 R coordinate

11-20 Z coordinate

21-30 Temperature

If NIJMTC in columns 6-10 of the CONTROL CARD is -2, a constant temperature field

is specified ; the value is given on a single card .

Format (FlO.0)

Columns 1-10 Temperature

20
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14. MATERIAL PROPERTY INFORMATION CARDS

The following group of cards must he specified for each material

(ma ximum of 6 ) .
a. MATERIAL IDENTIFICATION CARD

Format (215, 2F10.0)

Column s 1-5 Material  iden t i f i ca t ion  number
6-10 Number of temperatures for which properties

are g iv en (12 ma x imu m )

11-20 Mass density of material (if required)

21-30 Thermal expansion parame ter (If 1 , free

thermal expansions on the material property

cards; othe rw ise , coefficien ts of thermal

expansion are on the material property cards.)

b. MATERIAL PROPERTY CARDS

Two cards are required for each temperature.
Fi rst Card
Format (7F10.0)

Columns 1-10 Temperature
11-20 Modulus of elasticity , EN
21-30 Modulus of elasticity, E

~
31- 40 Modulus of e l a s t i c i t y ,  E 0
41-SO Poisson ’s ratio ,

51-60 Poisson ’s ratio ,

61-70 Poisson ’s ratio , 
~se

Seco nd Ca rd

Format (oFJO.0)

Columns 1-10 Shear Modulus , GNS
11-20 Shear Modulus , Gse
21-30 Shear Modulus , G8~
31-40 a T o r ctn n
41-SO cz5T or

~~~~~ ~TT or

21
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15. INERTIA LOAD CARD

Format (3FlO.O)

Starting with this input card and including the boundary force cards ,

this data is to be inputted as a block for each load step , that is

NLINC times. There are the following exceptions to this:

a) If INERT = 0, then this card is to be omitted completely

(no inertia load).

b ) If INCI = 0, then this card is not repeated , but appears

in first block only (the inertia loads are constant for

each load step).

c) If INCF = 0, then the following boundary pressure and shear

cards are to be given only for the first block and not re-

peated again (the pressure and shear loads are constant for

each load increment).

Columns 1-10 ACELZ (axial acceleration

11-20 ANGVEL (angular velocity)

21-30 ANGACC (angular acceleration)

16. BOUN DARY PRESSURE CARDS

One card is required for each boundary element which is subjected to

a normal pressure , that is the number of these cards is NUMPC for

each load increment.

Format (215 , FlO.O )

Columns 1-S Nodal point NI

6-10 Nodal point N

11-20 Normal pressure

As shown in the figure below , the boundary element must be on the left

when progressing from M to N. Surface normal tension is input as a

negative pressure.

,
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17. BOUNDARY SHEAR CARDS

One card is required for each boundary element which is subjected

to surface shear , that is , the number of these cards is NUMSC for

each load increment .

Format (215, F10.O)

Columns 1-5 Nodal point M

6-10 Nodal point N

11-20 Surface shear

As shown in the figure below , the boundary element must be on the

left when progressing from M to N. The positive sense of the
shear is from M to N.

I
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18. BOUNDARY TRANSVERSE SHEAR CARDS

One card is required for each boundary element which is subject

to transverse shear, that is , the number of these cards is

NUMSC for each load increment .

Format (215 , F10.0)

Columns 1-5 Nodal point M

6-10 Nodal point N
11-20 Surface transverse shear

2 1
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19. BOUNDARY CONDITION CONTROL CARD

Format (IS)

Column s 1-5 NRDF (Number of boundary conditions)

20. BOUNDARY CONDITION CARDS

There are NRDF of these cards.

Format (110, F1O.0)

Columns 1-10 NREQ (The number of the equation to be modified

in the assembled matrix) .

11-20 U (The actual boundary condition valve).
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APPENDIX B

File Number Useage

1- 2 Used in axisynunetric solution

3 Saves product of [GI
T 
[S11 

for each element

from one part of axisynunetric solution for later

use.

7-14 These files are used sequentlially for each

different segment (i.e. data for segment 1 is

stored in file 7; for segment 2 in file 8, etc.).

Data saved are {FE}, {FI}, [SK] and {u }, for

use in the perturbation analysis

17 Saves the axisymmetric displacement vector and

nodal point connections for each type of segment

j (i.e. data for segments type 1 is stored in file

17 first . Then data for segment type 2 is stored

in file 17, etc.).

21-24 Saves [G], [CRZ], and [BS 1) for each element of

the segment. Data for each different type of

segment goes in a different file. This data

is used to calculate stresses and strains when

the total displacements are known .

25 Saves [R
1}

1 for each different segment in order .

1R~CLD1ZG PAGE bLANK..NOT FIQ.,~~
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