“ AD=A063 588 SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGE==ETC F/6 9/2 ‘ii\\

THE MESSAGE HANDLER OF ACS.1.(U)
JAN 79 D SAGALOWICZ N00014=77-C=0308

UNCLASSIFIED TR=16 NL

1
v
END i
DATE
FILMED
| DoC

'\
|
J

l

|

Iﬂ:‘»""“\
240, | }
% fg 1 f 4“} :
3? | S b o i ’ d
r ¥ 1 i r:._lr o
k4 W
";4- - W”‘d
il -~ Vo ey

| THE MESSAGE HANDLER | .
|OF ACS.1.

7 Technical Repert 16

1
SRI Pro; 289 ‘
Contraét Ng./N00014-77-C-0308
&2/
January:1979 _ (

By:' Daniel/Sagalowicz;" Computer Scientist
Artificial Intelligence Center
Computer Science and Technology Division

Prepared for:

ADAO 63 588

Office of Naval Research .-/
Department of the Navy
Arlington, Virginia 22217

Attention: Marvin Denicoff, Program Director
Contract Monitor
Information Systems Branch

DOC FILE COPY,

- st
e e el btk

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

SRI International

333 Ravenswood Avenue
Menlo Park, California 94025
(415) 326-6200

Cable: SRI INTL MNP

TWX: 910-373-1246

Unclassified

e ——— i - o

Technical Report 16 /

i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE e e e
1. REPORT NUMBER 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

The Message Handler of ACS.!1

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORI(s)

Daniel Sagalowicz

8. CONTRACT OR GRANT NUMBER(s)

N00014-77-C-0308 ¥

9. PERFORMING ORGANIZATION NAME AND ADDRESS
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research

NR 049-308
12. REPORT DATE 13. NO. OF PAGES
January 1979 60
15. SECURITY CLASS. (of this report)
Unclassified

14. MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office)

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

1 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Management, knowledge-base, modularity, planning, replanning coordination,
organization, model process model, demons., and communications.

pleted operations.

20. X_é‘TRACT (Continue on reverse side if necessary and identify by block number)

‘This report describes the Message Handler, a component of the experimental
1 system Automated Command Support (ACS.l). ACS.l1 is intended as a vehicle to
develop techniques for building knowledge-based systems that will provide
intelligent support to a manager in the areas of planning operations, adminis-
tration and monitoring of approved plans, and retrospective analysis of com-

DD."\-1473

EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

oA AP

|
|

Unclassified

_SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19. KEY WORDS (Continued)

20 ABSTRACT (Continued)

Viewed from the top level, ACS.l can be regarded as an assembly of modules
called "schedulers" and "planners.'" The planners create detailed plans to meet
specified objectives, including the timing of all required tasks and the
assignment of all necessary resources. The schedulers coordinate resources,
whether people, equipment, supplies, or facilities, so that conflict with
other plans or expected events is avoided.

The planners and schedulers work independently. Each has models of its
respective tasks and relationships with each other. Global plans are created
when these modules communicate with each other via messages. A special com-
ponent, the Message Handler, routes all the messages, and is at the system's
core. Because of its special position, the Message Handler of ACS.1 plays an
important role in ACS.1l; the user may utilize the message handler to signifi-
cantly modify the system's behavior. The central idea is to implement a data
structure, called the Message Table, which would contain the knowledge of the
Message Handler. With this table, this component can modify the messages
exchanged by the ACS modules and therefore, totally change the system's
behavior.

In this report, we describe the message handler and ways the user can
modify the system with it.

EDITION OF 1 NOV 65 IS OBSOLETE

DDI g::“;al473(BACK) Unclassified

i sl

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

e - — - ﬂﬂww.mwmﬂma1

AT — e

CONTENTS

AESTRACT b b
LIST OF ILLUSTRATIONS 5 0
LIST OF TABLES 5 g
ACKNOWLEDGMENTS S
1 INTRODUCTION o %
II SYSTEM DESIGN ST

III MESSAGE HANDLER REQUIREMENTS

IV DESIGN AND IMPLEMENTATION OF
v AUXILIARY FUNCTIONS e
VI KOUTING FUNCTIONS by

THE

VII MESSAGE MODIFICATION FUNCTIONS

VIII USER INTERFACE FUNCTIONS .

IX CONCLUSIONS e
REFERENCES S
APPENDICES

A Auxiliary Functions . .
E Routing Functions v e
C Message Modification Functions
D User Interface Functions .

iii

.

MESSAGE HANDLER

ii

iv

vi

35
37
43

49

emyeyerer ey

o - > ” r—— o
e T L

) e i

ILLUSTRATIONS
1 Block Diagram of ACS.1 il ven e i ot s SR e e e T 6
2 Process Model for Flying a Mission R T s S I S 9
iv

TABLES

Typical Assignment Request Message oo
Typical Message in Response to an Assignment
Message Switching Example S S e
Message Modification Example ST RPN
Message Table Example T e S RS C I D
User Entry of a Message
User Interaction with PRINT.TTYMES 5
Example of a User Reply

Example of Message Forwuarding Interaction .

Request

13
15
18

22

26
28
29
30

ACKNOWLEDGMENTS

The work described here has been done in collaboration with
Marshall Pease. Early contributions to this work were made by Richard
Fikes. Jack Goldberg is project supervisor. This research was
supported by the Office of Naval Research, Department of the Navy,

Arlington, Virginia 22217, under contract N0O0O14-77-C-0308.

vi

Pt

A A

I INTRODUCTIOCN

This report describes the Message Handler, a component of the
experimental system Automated Command Support (ACS.1). ACS.1 is
intended as a vehicle to develop techniques for building knowledge-based
systems that will provide intelligent support to a manager in the areas
of planning operations, administration and monitoring of approved plans,

and retrospective analysis of completed operations.

Viewed from the top level, ACS.1 is a system of autonomous modules,
some of which are called "planners" and some "schedulers," communicating
with each other via messages. The planners have the responsibility of
planning specified types of activities. The schedulers are responsible
for coordinating the use of particular types of rescurces, which may be
people, equipment, supplies, or facilities. The messages sent by the
various modules are routed by a special component called the Message
Handler, Besides Jjust sending messages to their appropriate
destination, the Message Handler may also modify them, in a way
specified by the user. The purpose of giving the Message Handler such
an active role is to provide the user with a powerful tool to modify
drastically the system behavior, This report addresses the design of
the Message Handler, describing the other components of the system only
to the extent necessary to understand the requirements for the Message

Handler,

ACS.1 has operated in the simulated environment of a naval air
squadron, although 1its techniques lend themselves to a wide variety of
applications. The principal operations being planned and managed are
flight missions. This requires coordinating such various resources as
pilots, aircraft, maintenance crews, deck crews, launch facilities and
crews, and recovery facilities and personnel, The wuse of these

resources is further limited by such things as the need of personnel for

T e rT———r T T

e T S .]

rest, or of equipment for maintenance. Still unexpected other events
can limit the availability of certain resources. For example, a pilot
may become sick or an aircraft may require unexpected maintenance. Thus
the development and maintenance of a plan to meet specified conditions

requires taking into account extensive, complex constraints.

ACS.1 can handle an arbilrary number of resources and an arbitrary
number of operations using them, In our current system, the models for
these resources and operations are contained in virtual memory, and
therefore the main system's limitation is the size of the address space.
On PDP-10, the maximum size is 250 pages of 512 words of 36 bits each.
The system could easily be extended to store those models on secondary
storage, thereby providing for an unlimited number of resources and

operations,

Each different application requires appropriate specific design,
taking into account different 1levels of detail and different policy
constraints. The tailoring of the system is obtained by specifying the

appropriate models.

Some constraints are imposed by limitations in the various types of
resources. Other constraints occur when other commitments for these
resources are made. The schedulers coordinate the use of these
resources. Technical Report 14, "The Schedulers of ACS.1" [2] describes

the detailed design of the schedulers of ACS.1.

Other constraints, imposed by the complexities of the operation
being planned or administered, are the responsibility of the planners,
whose detailed design has been described in Technical Report 15, "The

Planners of ACS.1." [3].

Note that the constraints interlock. Although a planner seeks to
accommodate those constraints caused D0y the complexities of the
operation, it must do so without conflicting with other ccmmitments made
for the required resources. Further, the planner may not recognize that
a potential conflict exists until it has completed much of the planning

process., Resolution of the resultant conflict by a scheduler may

invalidate part of the previously developed plan. The planner must then
revise accordingly. Thus developing a complete plan involves not only
the ability to meet its internal constraints, but also the ability to
respond to unexpected external conditions that may force replanning of

all or part of the plan.

In ACS.1 each module--planner or scheduler--enforces its own set of
constraints independently. The overall planning operation is obtained
by having the modules communicate with each other via messages. The
message handler's chief function 1is to route the messages from one
module to another. 1In this implementation, ACS.1 imitates quite closely
the way a human organization operates, the Message Handler taking the
role of the telephone switching system. However, the message handler
performs an additional function--namely to facilitate the capabilities
of the decision maker to maintain, modify and expand the system's

behavior.

This additional function permits the user to have full control of
the system operations and the system itself the possibility of modifying
its own behavior, This last possibility is not used in the current
system; however, we plan to use it 1in our future research so that
"higher level" components can direct the system to adapt itself
automatically to new circumstances--environmental changes such as
weather, or others such as the existence of other cooperating systems.
Those components will be able to wuse the Message Handler to

automatically modify the system's behavior.

The system design and one specific implementation have been
described in Technical Report 13, "ACS.1: An Experimental Wanagement
Tool"™ [1], and also in Mr. Pease's paper which has been published in
the IEEE transactions on Systems, Man, and Cybernetics [4]. In those
two publications, the relationship of this work to other research in
artificial 1intelligence and 1in optimal scheduling is discussed. That
material will not be repeated in this report, although a brief overview
of the system design is given in Section II to place the requirements

for the message handler in context.

ey vy

In Section III, a general discussion of the requirements for the

Message Handler is given in order to define more precisely what is
needed. In Section IV, the detailed design of the message handler is

presented, followed in Sections V to 1IX by a detailed description of

each of the major subroutines.

II SYSTEM DESIGN

The system design of ACS.1 is shown in Figure 1 in block diagram.
The main elements of the system are modules called planners and
schedulers, each of which is responsible for a well-defined part of the
system's operation--a planner for planning a specific type of activity
and a scheduler for coordinating the planned use of a specific type of
resource, Interactions among the modules are handled entirely through
messages passed through a unit called the message handler, All
communications to or from a user, or to or from the data system, also
pass through the message handler. The message handler helps maintain
the autonomy of the separate modules and provides a central switch for

user control of the system's operations.

Between the user's terminal and the message handler 1is the user
interface which provides a pseudo-natural language capability. This
interface uses a language facility called LIFER developed by the
Artificial Intelligence Center of SRI International. The user interface

: *
accepts requests or commands in natural language format.

At this time, the data system is 1in rudimentary form. It as
intended to be more than a simple repository of data and will monitor
the execution of approved plans, checking that required tasks are
started and completed according to plan, and that needed resources are
available. When a conflict occurs, the data system will initiate the
appropriate system action, such as replanning or advising the user of

the situation.

Each planner and scheduler uses a body of knowledge unique to it, a

body that defines how it 1is to exercise its responsibilities. The

Information about LIFER may be found in "LIFER: A Natural Language
Interface Facility," by Gary Hendrix, Technical Note 135 of the SRI
Artificial Intelligence Center,

User

T

USER INTERFACE

MESSAGE DATA
HANDLER SYSTEM
0 []
.
o
it
PLANNER PLANS SCHEDULER scRaLL
TABLE t
PROCESS RESOURCE
MODEL MODEL.
o °
. °
° .
(One for each (One for each
process and subprocess resource type ‘
being planned) being scheduled) I
SA-6289-1 [

FIGURE 1 BLOCK DIAGRAM OF ACS.|

computer representation of such a body of knowledge incorporated by a
planner or a scheduler will be referred to as a "Model" in the rest of
this report. The model used by a planner describes the process for
which it 1is responsible to a specified level of detail. It identifies
the tasks that compose the process at the given level of detail, and the
kinds of resources that must be assigned. It describes the constraints
among the tasks--for example certain tasks must be completed before
others can be started. It describes the relationship between the
assignments of resources and the tasks, such as that an assignment must
span the times during which certain tasks are being done. It also
includes how an assignment can be obtained, or a plan for a task
requested. That is, the model knows how to make requests of the
schedulers and other planners, and it knows the 1identities of other

models it must consult to generate a complete plan.

A subtask recognized by a rplanner as a component in the planner's
task may itself require planring. 1f so, some other planner has the
responsibility for planning the subtask, perhaps decomposing it further
into subtasks and obtaining additional assignments. The system of
planners, in responding to some particular requirement, may be
structured into a hierarchy of modules operating at various levels of
detail., Different hierarchies may be required in response to different

requirements.

Each scheduler coordinates a tyre of resource, whether people,
equipment, supplies, or facilities. When asked for one of the resources
of its type to be assigned for some future interval of time, the
scheduler first determines a resource's availability. If more than one
is available, and 1if the scheduler has been given the authority, it
selects one and returns the name. It also enters the commitment into
its own data structure in which it maintains its updated knowledge of
the resource commitments., If the scheduler has not been given the
authority, it sends the relevant information to the manager for his
decision. If no resource is available, the scheduler will either return
the closest available assignment or refuse the request, depending on the

responsibility given to it.

{
|
|
|

For example, consider the application that has been studied--the
command of a naval air squadron. The principal activity that needs
planning is flying a mission., The commander may specify the mission's
exact departure from and return to the ship. The requirement is
accepted by the planner in charge of planning missions. The process
model for that planner--i.,e. the computer representation of the
knowledge incorporated in that planner--may decompose the activity as
shown in Figure 2, The tasks the Mission Planner recognizes are the
aircraft's preflight preparation, the pilot's briefing, the flight
itself, the aircraft's postflight servicing, and the pilot's debriefing.
The process model also includes the fact that a pilot and an aircraft
must be assigned. The sequential constraints among the tasks, and the
concurrency constraints between the assignments and the tasks that are

indicated in Figure 2 are also contained in the process model.

The process model suggested by Figure 2 implies a particular level
of detail. The task of preflight preparation of the aircraft, for
example, may be further decomposed by another planner into the transfer
of the aircraft to the flight deck, its preflight service, arming,
fueling, and its launching. Additional resources, such as maintenance
personnel, may be required during some of these subtasks, and that

information would also be included in the process models.

A generated plan will be returned to the commander for his approval
or modification, only after all tasks and subtasks have been planned and

all resources needed during any %task or subtask have been assigned.

Several features of the system design are considered vital for an
easy user interface--both for the system's use and for the model's
definition. These features, which have dominated the design of the
experimental system, have been significant components of the research.
They can be summarized as follows:

® The division of responsibilities among the planners and

schedulers should correspond to the division of
responsibility in the comparable human organization. This
division facilitates the user's understanding of the
system's operations, and permits an orderly growth of the

system. It also facilitates the transfer of responsibility
between the system and the human organization when needed.

8

NOISSIW V ONIAT4 HO4 130O0W SS300dd

Z-6829-VS

i e R e

AY3S " /v

10|14 0O 1aWuUbissy

Z 34N9OI4

1jesday J0 1udwubissy

Move 173

g
|
|
|
_
_
_
_
_

ke

4314830 "'107d

139HVL 1V @——

1Nn0 "114

e

d3dd " J/V

s c— — — — — — —— — — —— —

43148 "107d

* The models contained by the planners and schedulers should
be explicit and accessible for modification without major
revision of the system. This 1is necessary to permit
adapting the system to changing needs, It also permits
introducing new planners or schedulers through
specification of the applicable models. This feature
permits the rapid expansion of the system or its transfer
to new environments.

®# The operation of each planner or scheduler should be
sufficiently simple to make it readily understandable by
the human user. The complexity of system operation should
be the result of interactions among the modules, rather
than contained within any module. Again, this facilitates
growth and adaptation, and permits rapid modification to
meet exceptional conditions.
ACS.1 has been implemented on a PDP-10 using INTERLISP under 10PS-
20, It wuses a simulated clock in an interactive mode in order to

simulate an operational environment.

Further details of the system design, and of the techniques that
have been used to implement it, have been given in Technical Report 13
[1] cited earlier., In the next section, we consider the requirements

for the message handler in greater detail.

10

v gy

BN A

T

Y YT

T T—

-

III MESSAGE HANDLER REQUIREMENTS

The principal system function served by the Message Handler is to
route messages from one component of the system to another, i.e. from a
planner to a planner or a scheduler, or from a scheduler to a planner.
For this function to be executed properly, each message explicitly
contains information about where it is coming from, where it is going
to, what its main purpose is, and when it is expected to be received by
its destination. However, since the DMessage Handler occupies such a
central position in the overall system architecture, it becomes possible
to change the way the system behaves by influencing the way the Message

Handler acts.

The easiest way to modify the system behavior is to change the

contents of the various messages allowing the following possibilities:

* The destination of some messages may be changed. By doing
so, one can easily

dynamically replace a module by a new one., All messages
sent to the old module will be sent to the new one,

replace a module by the user., This allows the user to
test new 1ideas, without having to program them or
intervene in exceptional circumstances. All messages
sent to the module are now sent to the user, who answers
them as if he were the new module,

implement a complete or partial trace of some or all of
the modules. Messages to some or all of the modules are
sent to a "tracer-module" which logs them on some logging
file(s), then forwards them to their previous
destination.

* The text of some messages may be changed. This may be
useful

to temporarily modify a module's behavior, For example,
if a new, 1inexperienced crew replaces an old one, one
could increase all expected timings for that particular
crew alone and avoid introducing a new process model
corresponding to that crew alone,

1

|
|
|

to ease the modifications to the system, Let us assume
that a module, say module A, is to be replaced by a more
sophisticated one, module A', which takes into account
new information not available to module A. Then, 1in
classical system design, one would first have to replace
all modules which call on A to provide that additional
irformation, or at least provide the corresponding
default values. With our design, we can either replace
all the other modules one by one, and suppress the
additional information from messages going to A, until
all the modules have been implemented--at which point we
replace A by A'. Or, we could start by replacing A by
A', and add to all messages going to A' the default
values for the missing pieces of information. Clearly,
that technique will allow the progressive, dynamic
modification of the whole system as required.

The above list 1is not exhaustive, but gives an 1idea of the

possibilities of this architecture.

This message modification capability has been implemented in the
Message Handler. The user fully controls which messages are modified
and how they are modified by indicating them explicitly in the "Message

Table," as will be explained in section IV.C .

The next section describes the design of the Message Handler and

lists the functions used to obtain the desired behavior.

12

|
|
|
|

IV DESIGN AND IMPLEMENTATION OF THE MESSAGE HANDLER

The Message Handler, as described here, is intended to operate in
conjunction with the planners and schedulers as described in references
[2,3]. Hence, all the functions detailed 1in thoses references are
assumed to be available. In particular, the functions used there for
manipulating A-lists--i.e., lists of property-value pairs--are freely
used here, without description.

A message is an A-list of the form

[(MES.ID . <integer>)
(FROM . <module-name>)
(TO . <module-name>)
(MES.FUNCTION . <function-name>)
(TIME . <integer>)...]
Table 1 shows a sample message taken during an ACS.1 session, and

the content of a typical message addressed to the pilot scheduler.
Table 1

Typical Assignment Request Message

MES.ID 5

T0O PILOT.SCHEDULER

FRCM MISSION.MODULE

MES. FUNCTION SCHEDULER.ASSIGN.MES
TIME 0

RETURN.MES.TO RESOURCE.ASSIGNED
ARGS (NAME START END)

EET (850 (PRIORITY . 2))
LST (380 (PRIORITY . 1))

In this example the message contains the following information:

MES.ID is the message number--in this case, this was the fifth
message handled by the message handler,

13

TO is the destination of the message--here the pilot
scheduler.

FROM is the source of the message--here the mission module.

MES.FUNCTION 1is the function that should handle this message
for the destination module--here it is a request for a
resource assignment. HNote that the same module may have
several functions, For example, a scheduler is in charge
of a specific resource type, but may still perform
several functions associated with the assignment of
resources, such as resource assignments, resource status
reporting, resource status saving on file, and so on.

MES.FUNCTION indicates what function is expected.

TIME 1is the simulated ¢time when the message should be
delivered--here it is 0, i.e., immediately.

RETURN.MES.TO is the function to notify in the sending module.
This will become the value of the property MES.FUNCTION
in the reply. In this case, the function to be called in
the mission module when the reply comes is
RESOURCE, ASSIGNED,

ARGS is the list of variables that the mission module expects
to see in the reply--here, the name, starting and ending
times of the assigned pilot. EET and LST are the
earliest ending time and latest starting time demanded
for the pilot to be assigned. Other possible indications
could be given, such as EST, LET, NAME, START and END
which are respectively the earliest starting time, latest
ending time, name, suggested actual start time and
suggested actual end times., In the present example these
were not given and therefore do not appear at all in the
message.

Finally, other information may be contained in the message, either
for the benefit of the destination module, the benefit of the source
module, or just for comment purposes. For reasons of simplicity, we

have not included them here,

Table 2 presents the ‘typical response message which corresponds to

the previous request for an assignment:

14

Table 2

Typical Message in Response to an Assignment Request

MES.ID 8

TO MISSION.MODULE
F ROM PILOT.SCHEDULER
TIME 0

MES.FUNCTION REQUEST. ASSIGNED
IN.RESPONSE.TO ((MES.ID . 5) (TO . PILOT.SCHEDULER) (---))

NAME ABLE
START 380
END 850

The only significant part which is different from the previous
message is IN.RESPONSE.TO. This 1is a pointer to the data structure
representing the original message--in this case message number 5. When
it is printed, the whole previous message is printed, but it should be

understood that only a pointer is actually part of the reply message.

Until delivery time, the messages are stored in a message queue,
which 1is a priority queue. The delivery time is the priority; and in
case of equal delivery times, the value of MES.ID becomes the priority.
Before delivery, the messages are modified according to the
specifications contained 1in the message table, as indicated in section
I1L.

15

LIS " P

V. AUXILIARY FUNCTIONS

The next sections describe the most significant functions which are
part of the message handler package. We start with two auxiliary
functions, MES.GETP and MES.PUT, which are the equivalent of GETP and
PUT for the message A-lists, They take as message input either an A-
list or an ID number, in which case the corresponding message A-list is
found in the corresponding element of the array MES.HARRAY, MES.GETP
gets the value of a property in the message, whereas MES.PUT either puts
a new property-value pair or modifies the value of an existing property.

The complete definition of these functions is given in Appendix A.

16

VI ROUTING FUNCTIONS

In this section, we present the functions which represent the
routing role of the message handler. They are CREATE.MES, QUEUE.MES,
DEQUEUE.MES and MES.PROCESSOR.

The first function, CREATE.MES, 1is used to create the message A-

list., It takes as input a list of the form

(PKOP1 VAL1 ... PROPn VALn),
and creates the corresponding message A-list

[(MES.ID . <integer>)(PROP1 . VAL1)...(PROPn . VALn)],
generating the value of MES.ID automatically. This function also
creates an entry in the array MES.HARRAY so that from then on, the
message may be retrieved by its ID alone, All the message handler
functions may then take as argument either a pointer to the message or
the ID of the message--in which case they retrieve the message pointer
from MES.HARRAY.

The function, QUEUE.MES, stores the message in the message queue,
MES.QUEUE. The message will be processed later by MES.PROCESSOR.

The function DEQUEUE.MES is the inverse of the last one: it removes
the message from the message queue, if it has not yet been processed by

MES.PROCESSOR. Otherwise, it just prints an error message.

Finally, the 1last function, MES.PROCESSOk, is in fact the message
handler. It is called by the monitor whenever a module releases
control. MES.PROCESSOR checks whether any message is in the queue. If
so, 1i%t modifies it using the message table, as explained in section
IV.C, then sends it to its destination. The message is then deleted
from the message queue and MES.HARRAY is updated to indicate that the

message has been sent.

17

Table 3, which presents an extract from an ACS.1 session, shows the
routing function of the message handler. In this example, the user asks
the system to plan for a mission to start in 3 hours.

Table 3

Message Switching Example

(1) <MONITOR>ttymes)

PLEASE SPECIFY THE MESSAGE PROPERTIES AND VALUES:

TO mission.module
MES. FN enter.value
MODEL . NAME mission
PLAN.ID 1
TYPE tasks
NAME flt
PROP start
VAL 500
PRIORITY
PRINT.SUP.FLG

THANK YOU.

(2) QUEUE FN.MES MESSAGE 2 TO MISSION.MODULE

(3) GOING RACK TO MONITOR.

(4) SEND FN.MES MESSAGE 2 FROM TTY: TO MISSION.MODULE

(5) QUEUE PLAN.TASK.MES MESSAGE 3 TO A/C-PREP.PLANNER

(6) SEND PLAN.TASK.MES MESSAGE 3 FROM MISSION.MODULE TO
A/C-PREP.PLANNER

In the *able, the characters typed by the wuser are in small
letters, The rest 1is typed to the user by the system-~either for

informat ion purposes or for requesting neaded data from the user.

First the user specifies that he wants to send a message to the
mission module (from line 1 to line 2). Then, the user is notified that
the message has been queued--using QUEUE.MES (line 2). The TTY module
then releases control, and the monitor calls on MES.PROCESSOR, i.e. the
message handler (line 3). The message handler sends the message to the

mission module--i.e. the control is transferred to the mission module

18

TS e e ey

(line 4). That module queues a message which is due to go to the
aircraft preparation planner (line 5), and the scenario will repeat
itself, i.e., the message handler sends the message to the aircraft
preparation module which then takes control and queues another message

to another module, and so on,

The function definitions of all the routing functions are given in

Appendix B.

19

VII MESSAGE MODIFICATION FUNCTIONS

We now present the functions used to modify the messages. The
first one, MES.MODIFY, is called by MES.PROCESSOR. It checks whether
entries in MES.TABLE apply to the message.. If so, the message 1is
modified accordingly. Actually, the checking is done by
MATCH.MES.WITH.TABLEENTRY, and the message modification is done by
MES,.APPLY ,ENTRY .

MATCH.MES.WITH.TABLEENTRY ¢tries to decide whether the message
matches with an entry in MES.TAELE. The entry has the following format:

(<condition> <change specification>)

The role of MATCH.MES.WITH.TABLEENTRY 1is %o check that the message
matches the <condition> part of the entry, which has the following
format :

<condition> := (<cond.prop> <cond.val>)
or (AND <condition> ... <condition>)
or {OR <condition> ... <condition))
or (NOT <condition>)
or (NULL <condition>)

A match between a message and a condition of the type
(<cond.prop><cond.val>) occurs if one of the following is true:

{cond.prop> is the atom ::

or
the message has a property <cond.prop> and <cond.val> is ::
or
the message has a property-value slot equal to (<cond.prop>.
<cond.val>)
or

the message has a property <cond.prop> and the value slot is a

list whose CAR is ::. In this case, tne CDk of the list is EVALED.

- The entries in MES.TABLE are prepared by the user. Although we have
not done it, functions could be written to help the user set up
MES.TABLE.

20

Then the message may be modified, or side effects may occur,

The extension to the conditions of the type AND, OR, NOT, or NULL
is obvious.

The next function, MES,APPLY.ENTRY, modifies the message according
to the <change specification> part of the entry. More precisely, the
<change specification> is a list of the form:

(... (<prop> <vald>) ...)
If <prop> is NIL, <val> is evaluated--using TABLE.ENTRY.GET-- and the
message is not modified directly: presumably, we are only interested in
the side effects of evaluating <val>, which may modify the message
indirectly. Otherwise, a new slot 1is added to the message, with
property name <prop>, and value the value returned by TAELE.ENTRY.GET .

Finally, TAELE.ENTRY.GET evaluates the entry element, i.e., the

<val> part of the <change specification>, <Val> may be one of the
following:

an atom, in which case it 1is simply returned
or

a list whose first element is not ":", in which case the list

is returned
or

a list starting with ":", in which case each element of the list

is evaluated, and the last value is returned.

As an example of message modifications, consider table 4 which
represents an actual session with a user,

21

Table 4

Message Modification Example

(1)<MONITOR>ttymes)
PLEASE SPECIFY THE MESSAGE PROPERTIES AND VALUES:

TO m,m
MES. FN enter.value
MODEL . NAME mission
PLAN.ID 1

TYPE tasks
NAME . flt
PROP start
VAL 500
PRIORITY

PRINT.SUP.FLG

#*

THANK YOU.

(2) QUEUE FN.MES MESSAGE 4 TO M.M

Going back to MONITOR.

(3) SEND FN.MES MESSAGE 4 FROM TTY: TO MISSION.MODULE

(4) QUEUE SCHEDULER.ASSIGN.MES MESSAGE 5 TO PILOT.SCHEEDULER

(5) SEND SCHEDULER,ASSIGN.MES MESSAGE 5 FROM MISSION,MODULE TO TTY:

(6)SCHEDULER.ASSIGN.MES MESSAGE 5 RECEIVED FROM MISSION.MODULE

Here, the same conventions are used as in the previous table: the
user's input is presented in small letters. The user prepares a message
to be sent to "m.m" (between 1lines 1 and 2). The message to m.m is
queued (line 2). The message handler sends the same message to the
mission module, i.e., the message has been modified by replacing m.m
with mission.module (line 3), The mission module queues a message to
the pilot scheduler (line 4), The message handler sends that message to
TTY:, i.e., to the user (line 5). Here again, the message was modified,
replacing PILOT.SCHEDULER by TTY: . Finally, the TITY: module, which is
the user interface, notifies the user that a message has been received
(line 6).

22

In Table 5, we present the message table which gave rise to those

two modifications:

Table 5

Message Table Example

(1) [(((TC M.M))
(2) ((TO MISSION.MODULE)))
(3 ([(NOT ((TO TTY:)))

(4) (NOT ((TO MISSION.MODULE]
(5 ([ORIGINAL.TO (:(MES.GETP MES (QUOTE TOQ]
(6) (TO TTY:]

This message table has two entries. The first entry applies to all
messages addressed to M.M (line 1), and modifies them by replacing the
TO part of the message by MISSION.MODULE (line 2). The second entry
applies to all messages which are not addressed to either the user (line
3) or the mission module (line 4),. It modifies those messages by
replacing the TO part by TTY: (line 6), and by adding an CRIGINAL.TO
part which will contain the original value of the TO part, i.e., the

original destination of the message (line 6).

These two entries correspond to a typical case where a user,
testing a module alone (here: MISSION.MODULE), wishes to receive all
messages coming from this module (second entry), and also wishes not to
write out the complete module name everytime he sends a message to it
(first entry). Since this case is so typical 1in system development, a
function could be written to create two such entries automatically for

any module, and any alias the user would wish to use.

As another example, let us consider the aircraft launch process,
and let us assume that it takes one minute to launch an aircraft in good
weather, and three minutes in bad weather, The problem is how %o

implement both conditions easily in ACS.1.

There are basically three ways of achieving this result in ACS.1

First, the wuser can change dynamically the process model which

23

corresponds to the flight task. In good weather, that model would
indicate that the launch takes one minute; in bad weather the user would
modify it to make the launch three minutes long. The only disadvantage
of that solution is that the user has to change the models constantly

instead of having them prepared in advance.

The second solution is to have both models prepared in advance, and
have in essence two flight modules--one which uses the original model,
the other the modified model. Then, the user would implement the change
of weather by making an entry in the message table which would indicate

to what module the flight task belongs--given the current conditions.

The third solution is in the same spirit as the second, but simpler
in realization. The basic idea 1is that whenever a message is sent to
the launch facility scheduler by the flight module, the time to be
reserved will be increased by two minutes., This solution can again be

easily implemented by making an entry in the message table.

We give the definition of all the functions involved in the message

modification role of the message handler in Appendix C.

This completes the presentation of the message handler per se.
However, we believe that its usefulness can mainly be justified by its
advantages to the user., To emphasize this point, section V presents the

functions we have developed so far as part of the user interface.

24

VIII USER INTERFACE FUNCTIONS

The wuser's primary need in the user interface 1is to be able to
specify a message to be sent. This need is met by the function TTYMES.
It asks the user for the destination of the message and the function
requested. Then, it automatically asks for the values of the arguments
that the function needs. Finally, it asks the user whether he wants to
add any more attribute/value pairs to the message. It then creates the
message and sends it via the message handler. When the message arrives
at 1its destination, it is handed to the function FN.MES, which in a
sense is part of the user interface although used inside the other
modules. FN.MES knows how to call the appropriate function from the
content of the messages created by TTYMES. Essentially, it finds in the
property ARGS of the message the list of arguments to be part of the

function call, and under each argument name finds the appropriate value.

Table 6 presents an example of the use of TTIMES.

25

Table 6

User Entry of a Message

<MCNITOR> ttymes)

PLEASE SPECIFY THE MESSAGE PROPERTIES AND VALUES:

TO mission.module
MES.FN enter.value
MODEL .NAME mission
PLAN.ID 1

TYPE tasks

NAME flt

PROP start

VAL 500

PRIORITY

PRINT.SUP.FLG

comment {this is a message asking that a mission flight
start at 500]
THANK YOU.

The first two questions (TO and MES.FN) are always asked by TTYMES.
ENTER.VALUE is a function which has eight arguments, namely MODEL.NAME,
1D, TYPE, NAME, PROP, VAL, PRIORITY and PRINT.SUP.FLG . Those arguments
are requested by TTYMES once it is told which function is being invoked.
Finally, TTYMES checks to see if the user wants any more information in
the message, and in the example, the user added a COMMENT. In this
example, TTYMES created the following message:

26

v

TO MISSION,MODULE

F ROM TTY:

MES.FUNCTION FN.MES

MES.FN ENTER.VALUE

MODEL . NAME MISSION

ID 1

TYPE TASKS

NAME FLT

PROP START

VAL 500

PRIORITY NIL

PRINT.SUP.FLG NIL

COMMENT (THIS IS A MESSAGE ASKING THAT A MISSION FLIGHT
STARTS AT 500)

ARGS (MODEL.NAME ID TYPE NAME PROP VAL PRIORITY

PRINT.SUP.FLG COMMENT)

After receiving this message, the mission module will call FN.MES,
since this is the value of the MES.FUNCTION property in the message. It
gives FN.MES the message as an argument, In turn, FN.MES will call
ENTER.VALUE (the value of the MES.FN property in the message) and give
it as argument values the values of the arguments listed in ARGS. Note
that the value of the COMMENT property will be given to ENTER.VALUE
which will not see it since it only takes eight arguments. 1In this
case, we can consider that COMMENT--and other extra property/value

pairs--are ignored.

The next function, PKINT,TTYMES, is called whenever a message for
the user 1is received. It briefly describes the message, and then asks
the user what he wishes to do, Depending on the user's answer, one of
several functions which will take the appropriate actions may be called.

We first show in Table 7 an example of an interaction with PRINT.TTYMES.

27

Table 7

User Interaction with PRINT.TTYMES

(1) SCHEDULER.ASSIGN.MES MESSAGE 5 RECEIVED FROM MISSION.MODULE

(2) WHICH ACTION DO YOU WISH TO TAKE? <?>

ONE OF:

REPLY TO IT

FOKWARD IT

PRINT IT

SUSPEND PLAN AND SAVE MESSAGE

DEFER ANSWER (MESSAGE SAVED AND PLAN CONTINUED)

PYPASS QUESTION (PLAN CONTINUED BUT MESSAGE LOST)

<CR> MAY ALSO BE USED INSTEAD OF "R" TC KEPLY TO THE MESSAGE.

(3) WHICH ACTION DC YOU WISH TO TAKE? pRINT IT

IT CONTAINS TEE FOLLOWING INFORMATION:

MES. ID 3]

F ROM MISSION.MGDULE
TC TTY 2

TIME 0

4
E
MES.FUNCTION SCHEDULER.ASSIGN.MES t
RETURN.MES.TO REQUEST . ASSIGNED $

ASK.TO.TTY REQUEST. ASSIGN.FROM. TTY ;
ARGS (NAME START END) ;
EET (850 (PRIORITY . 2)) 1
LST (380 (PRIORITY . 1))

(4) WHICH ACTION DO YOU WISH TO TAKE? sUSPEND

ID FOR SAVED MESSAGE: 1

The wuser is first notified tha*t a message was received (line 1),
Then, he asks wha® his options are by typing a question mark--which is
not echoed back (line 2). Knowing his options, he then asks to see the
complete message (line 3). Finally, he asks that the planning operation

be suspended, and the message saved (line 4). Then, the system asks for

an id number for the message--in this case, the user types 1.

28

In the above example, the user asked that the planning operations
be suspended and the message saved. This saving was done by SAVE.MES,

which stored the message in an array named MES.SAVED.HARRAY.

Instead of suspending the planning operations, the user could have
replied to the message. Also, after having suspended the planning, the
user may resume it by answering the saved message. The example in Table

8 presents such an interaction,

Table 8

Example of a User Reply

(1) <MONITOR> reply.mes(1)

(2) NEED AN ASSIGNMENT OF A PILOT FCR MISSION NUMBER 1.
CURRENT REQUIREMENTS ARE AS FOLLOWS:

LATEST START TIME DESIRED: 380.

EARLIEST END TIME DESIRED: 850.

(3) ENTER NAME OF PILOT ASSIGNED,
OR <CR> TO DEFER ASSIGNMENT: able

(4) AKRE THE LATEST END AND EARLIEST START TIMES OK? yES
(5) DC YOU WANT TC ADD ANYTHING ELSE TO THE MESSAGE? NO

(6) QUEUE REQUEST.ASSIGNED MESSAGE 45 TO MISSION.MODULE
GCING EACK TC MONITOR.

The user says that he wants to reply to the message saved under ID
1 (line 1). Then, a brief summary of the message is presented to the
user (between 1line 2 and line 3), This is done using the function
REQUEST.ASSIGN.FROM.TTY which was indicated in the message in Table 7 as
the value of the ASK.TO.TTY part. Then, REQUEST.ASS1GN.FROM.TTY asks
the user for the name of a pilot (line 3) and the acceptability of the
indicated times (line 4), Finally, the wuser is asked for other
property/value pairs to be added to the message (line 5); he does not
add any., The message is then built and sent to the mission module (line
6).

29

The definition of REPLY.MES will be given in Appendix D, followed
by REQUEST.ASSIGN.FROM.TTY as an example of one such "specific function"
which may be used to simplify the user interface, Without this
function, the wuser could have built the message directly in a more

tedious fashion,

Finally, the user may want to forward the message to either the
original destination or a new one. This can be initialized either when
the message is first received by the user interface, or later, after the
message had been saved. Table 9 presents such an example taken from an

ACS.1 session.

Table 9

Example of Message Forwarding Interaction

(1) QUEUE PLAN.TASK MESSAGE 3 TO A/C-PREP.PLANNER
(2) SEND PLAN.TASK.MES MESSAGE 3 FROM MISSION.MODULE TO TTY:
(3) PLAN.TASK.MES MESSAGE 3 RECEIVED FROM MISSION.MODULE

(4) WHICH ACTION DO YOU WISH TO TAKE? fORWARD IT
(5) TO: a/c-prep.planner
(6) DO YOU WANT THE ORIGINATOR OF THE MESSAGE TC BE TTY:? yES

(7) QUEUE PLAN.TASK MESSAGE 3 TO A/C-PREP.PLANNER
(8) SEND PLAN.TASK MESSAGE 3 FROM TTY: TO A/C-PREP.PLANNER
The mission module sends a message to the aircraft preparation
planner (line 1). The message is rerouted by the message handler to the
user (lines 2 and 3). PRINT.TTYMES informs the user that a message was
received (line 3) and asks for further instructions (line 4). The user
asks that the message be forwarded (line 4) to the aircraft preparation
planner (line 5), and that the user be indicated as the origin (line 6)
so that the message will not be rerouted to the user again, but will go
instead to the planner itself (line 7 and 8). The function which asks
the questions on lines 5 and 6 is FORWARD.MES which also will build the

new message.

30

R P i =)

Appendix D gives the definitions of all the user interface

functions.

31

IX CONCLUSIONS

The message handler of ACS.1 has added new possibilities for
helping the user maintain, modify, and extend the planning and
scheduling system. Its main role was originally to imitate the
functions of a switching network such as the telephone system, mostly to
provide a true asynchronism and independence between modules. However,
it has been extended to allow the dynamic modification of messages. As
has been explained in the previous sections, this allows for a dynamic,
gradual modification of the system behavior., It 1is believed that this
component will facilitate the development and maintenance of a complex
planning/scheduling system, at the same time giving the user confidence

in using the system, knowing that he can modify its behavior.

For the future, the message handler could become the main tool for
a system to modify itself., "Higher level" modules could apply their
knowledge of a situation and modify automatically the message table.
Also, 1in a distributed, cooperative system environment the message
handler could use its own model of the cooperative modules to

"understand" and "translate" the messages to and from the local system.

The idea of a message handler is not new; however the expanded role
it plays with 1its message modification possibilities suggests such a
component will to help management perform their functions more

efficiently.

32

REFERENCES

[1] Pease M,, "ACS.1: An Experimental Management Tool," Technical Report
13, Computer Science Laboratory, SRI International, 1977.

[2] Pease M., "The Schedulers of ACS.1," Technical Report 14, Computer
Science Laboratory, SRI International, September 1977.

[3] Pease M., "The Planners of ACS.1," Technical Report 15, Computer
Science Laboratory, SRI International, November 1977.

[4] Pease M,, "ACS.1: An FExperimental Management Tool," IEEE

Iransactions on Systems, Man, and Cyberpetics, Vol. &, No. 10, pp.
725-735, October 1978,

33

Appendix A

Auxiliary Functions

e e ey

Appendix A

Auxiliary Functions

(MES.GETP
[LAMBDA (MES PROP)
(CoND
((LISTP MES) (* It is an A-list)
(A® ,GETP MES PROP))
((A.GETP (GETHASH MES MES.HARRAY) (* It is not: get the)

PROP]) (* A-list in the array)
‘.1
!
(MES.PUT §
[LAMBDA (MES PROP VAL) |
(COND |

((LISTP MES)
(A%, PUT MES PROP VAL)) j
((A.PUT (GETHASH MES MES.HARRAY) |
PROP VALJ)

39

Appendix B

Routing Functions

Appendix B

Routing Functions

(CREATE.MES

[LAMBDA

(PROG

LP

X

(* This is a LAMBDA nospread function,

Function: creates an a.list, generates an id, enters
the id into the a.list; input: CREATE.MES
(prop1;valuel;prop2;value2;...); output: returns an
a.list as a value such as ((mes.id . <integer>)
(prop1 . valuel) (prop2 . value2) ...) .

If called with no arguments, the value would have
the form ((mes.id . <integer>)).)

(* An association between a pointer to a message
and the id of that message is stored in the hash
array called MES.HARRAY such that the pointer is
retrievable by the id.)

(MES (M1 1)
(M2 2)
(TO 0)
T1)
[SETQ MES (LIST (CONS (QUOTE MES.ID)
(SETQ T1 (TRACE.GEN.ID,.TEMPORARY]
(PUTHASH T1 MES MES.HARKAY)

(if X = TO
then (RETURN MES)
else (NCONC1 MES (CONS (ARG X M1)
(ARG X M2)))
(SETQ M1 (IPLUS M2 1))
(SETQ M2 (IPLUS M1 1))
(SETQ TO (IPLUS TO 2))
(GO LPJ])

(QUEUE.MES

[LAMEDA

(PROG

(MES)

(* Takes as input either a message A.list or an

ID of a message, stores that message in the

message queue and then returns the ID of the message
just stored into the message queue.)

(TO T1)

37

.

[coND
((NOT (LISTP MES)) (* First get)
(SETQ MES (GETHASH MES MES.HARRAY] (* the A-list)
(SETQ T1 (MES.GETP MES (QUOTE MES.ID)))

(* Then check if the time is there.
If not: assume immediate delivery)

(COND
((NULL (A.GETP MES (QUOTE TIME)))
(A.PUT MES (QUOTE TIME)

S.CLOCK)))

[SEM.TRACE Queue ((MES.GETP MES (QUOTE MES.FUNCTION)))
message
(T1)
to
((MES.GETP MES (QUOTE TO]

(* Traces the message if so required)

(ADD.QUEUE (QUOTE MES.QUEUE)
MES)

(* Finally, adds it to the message queue)

(RETURN T1])

(DEQUEUE.MES
[LAMBDA (MES)
(* Takes either a message a.list or a message id.
If the message is not deleted then returns the
deleted id else returns the message that the id
is already deleted,)
(PRCG (T1)
[COND
((NOT (LISTP MES)) (* First, get the A-list)
(SETQ MES (GETHASH MES MES.HARRAY]
(SETQ T1 (MES.GETP MES (QUCTE MES.ID)))
(COND
((EQUAL (GETHASH (QUOTE MES.QUEUE)
SYSTEM.QUEUE)
(DEL.NODE (QUOTE MES.QUEUE)
MES))
(COND
((EQ (QUOTE YES)
S.TRACE)

(* The message has already been processed or deleted)

38

S 101 # s

i R e i S e

(PRIN1 "THE MESSAGE WHOSE ID IS L]

(PRIN1 T1) (* Say so if tracing)

(PRINT?

" HAS ALKEADY BEEN DELETED FROM THE MESSAGE GQUEUE.")))

(RETURN T1))
(T (* delete this message)
(COND
((EQ (QUOTE YES)

S.TRACE) (* and say so if tracing)

(PRIN1 "THE MESSAGE WHOSE ID IS ")
(PRIN1 T1)
(PRINT1

" HAS BEEN DELETED FROM THE MESSAGE QUEUE.")))

(RETURN T1])

(MES.PROCESSOR
[LAMBDA (MES)

(PROG

(* Input: either A.list form of a message or an id

form of the message; output: message id which has

been processed; function: receives a message and
applies the module specified by the A.list value
corresponding to the property TO, to the message passed
to the module. I.e., it sends the message to the module
whose name is contained in the slot corresponding to

" TO")

(* After it has processed MES, it puts it into a trace
file (mes.trace) and changes the hash array
(MES.HARRAY) entry of the message processed into NIL.)

(¥ It also checks the MES.TABLE to modify the message
before sending it)

(MES.ID MES.TO MESSAGE TO.WHOM TO.LOCK,LIST MES.LIST)
[coND
((NLISTP MES) (* we HAVE the message id, get
the whole message A-list)
(SETQ MES (GETHASH MES MES.HARRAY]

(* Check if the message matches any entry in MES.TAELE.
MES.MODIFY will do both the checking and the
modifications if needed)

(SETQ MES (MES.MODIFY MES))

(SETQ MES.LIST (CDR (GETHASH (QUOTE MES.QUEUE)
SYSTEM.QUEUE)))

39

L3

(SETQ MES.ID (MES.GETP MES (QUOTE MES.ID)))
(SETQ MES.TO (A.GETP MES (QUOTE T0)))

(* trace the message processing if required)

(SEM.TRACE Send ((MES.GETP MES (QUOTE MES.FUNCTION)))
message
(MES.ID)
from
((MES.GETP MES (QUOTE FROM)))
to
(MES.TO))
(SETQ S.TRACE.LEVEL 3)
(SETQ TO.WHOM (MES.GETP MES (QUOTE IN.RESPONSE.TO)))
(COND
[(OR (NULL (SETQ TO.LOCK.LIST
(GETPROP LOCK.LIST MES.TO)))
(MEMB TO.WHOM TO.LOCK.LIST))
[COND
(TO.LOCK.LIST (PUTPROP LOCK.LIST MES.TO
(REMOVE TO.WHOM TO.LOCK.LIST]
(DEL.NODE (QUOTE MES.QUEUE)
MES)
(SETQ MESSAGE (RESUME MONITOR (EVAL MES.TO)
MES))

(* This in effect sends the message to destination)

(COND
((NULL MESSAGE)
(PUTPROP LOCK.LIST MES.TO NIL))
((EQ (CAR MESSAGE)
(QUOTE #))
(PUTPROP LOCK.LIST MES.TO (2ND MESSAGE)))
((AND (EQ (CAR MESSAGE)
(QUOTE ADD))
(EQ (CAR (2ND MESSAGE))
(QUOTE *)))
(for EACK.MES in (2ND (2ND MESSAGE))
do (ADDPROP LOCK.LIST MES.TO EACH.MES)))

((EQ (CAR MESSAGE)
(QUOTE ADD))
(ADDPROP LOCK.LIST MES.TO (2ND MESSAGE)))
[(AND (EQ (CAR MESSAGE)
(QUOTE DELETE))
(EQ (CAR (2ND MESSAGE))
(QUOTE *)))
(for EACH.MES in (2ND (2ND MESSAGE))
do (PUTPROP LOCK.LIST MES.TO
(REMOVE EACH.MES (GETPROP LOCK.LIST

40

MES.TO]

((EQ (CAR MESSAGE)
(QUOTE DELETE))
(PUTPROP LOCK.LIST MES.TO
(REMOVE (2ND MESSAGE)
(GETPROP LOCK,LIST MES.TO]

(T

(* Do not send a message; pass over the locked out
message and consider the next message on the queue.)

(COND
((SETQ MES (CAR MES.LIST)))
((PRINT1
"No more message to be served. Error in the system.")
(HELP)))
(SETQ MES.LIST (CDk MES.LIST))
(GO L3)))
(SETQ S.TRACE.LEVEL 0)
) (RETURN MES.ID])

41

o e e e e T e i e

e br e e - “
s e B I L e S

Appendix C

Message Modification Functions

L

Appendix C

Message Modif'ication Functions

(MES.MODIFY
[LAMEDA (MES)

(* Check if any entry in MES.TABLE applies to the
message: if yes does the modifications and loops
back; if no, returns the final result)

(PROG ((NEWMES MES)
(MES.TABLE.PTR MES.TAELE)
MES.TABLE.ENTRY)

LOCP (COND
(MES.TABLE.PTR (* more entries in the table:
check the next one)
(SETQ MES.TAEBLE.ENTRY (CAR MES.TAELE.PTR))
(COND
((MATCH,MES.WITH.TARLEENTRY NEWMES
(CAK MES,.TABLE.ENTRY))
(SETQ NEWMES (MES.APPLY.ENTRY
NEWMES
(CADR MES.TABLE.ENTRY)))
(SETQ MES.TABLE.PTR MES.TABLE)
(* Now we loop back, and
start all over again)
(GO LOOP)))
(SETQ MES.TABLE.PTR (CDR MES.TABLE.PTR))
(GO LOOP))
(T

(* That's it! NEWMES is the new message; it will be sent
to the module contained in its TO slot by MES.PROCESSCH)

(RETURN NEWMES])

(MATCH.MES .WITH.TABLEENTRY
[LAMBDA (MES MATCHLST ORFLG)

43

e

(PROG

(* Tries to match the message with the list in MATCHLST.
If ORFLG is T, only one element of the matchlist has to
match; the matchlist may start with AND, OR, NOT or NULL
in which case the appropriate recursive call is made)

(VAL PROP)
(RETURN
(CCND
[MATCHLST (* There is something to match
with: let us try it out...)
(COND

[(EQ (CAAR MATCHLST)
(QUOTE AND))
(* The match list starts with an AND: we must match
everything inside the AND list)
(COND
(ORFLG
(* we were called with ORFLG=T, then we must either match
everything in the AND list, or match some element in the
OR list--of which the AND list is only one!)
(OR (MATCH.MES.WITH.TAELEENTRY MES
(CDAR MATCHLST))
(MATCH.MES.WITHTABLEENTRY MES
(CDR MATCHLST) T)))
(T
(* otherwise: we were part of another AND list: we must
match EVERY thing)
(AND (MATCH.MES.WITH.TABLEENTRY MES
(CDAR MATCHLST))
(MATCH.MES.WITH.TABLEENTRY MES
(CDR MATCHLST]
[(EQ (CAAR MATCHLST)
(QUOTE OR)) (* We go through the same
type of thing for an OR list)

(COND
(ORFLG
(* we were part of an OR list: we must either match this
OR list, or any other element of the upper Ck list!)
(OR (MATChH.MES.WITH.TABLEENTRY
MES (CDAR MATCHLST) T)
(MATCH .MES.WITH.TAELEENTRY
MES (CDR MATCHLST) T)))
(T
(* we were part of an AND list: we must match at least one
element of this OR list, and all the other elements of the
upper AND list)
(AND (MATCH.MES.WITH.TABLEENTRY
MES (CDAR MATCHLST) T)
(MATCH.MES.WITH.TABLEENTRY MES
(CDR MATCHLST]

Ly

T T —————— TTE——————— ey

[(OR (EQ (CAAR MATCHLST)
(QUOTE NULL))
(EQ (CAAR MATCHLST)
(QUOTE NOT)))
(* This is a NULL or NOT list)
(COND
(ORFLG
(* We were in an OR list: either we do not match the
element of this NULL list, or we match some other element
of the upper Ok list)
(OR (NULL (MATCH.MES.WITH.TABLEENTRY
MES (CADAR MATCHLST)))
(MATCH.MES.WITH. TABLEENTRY
MES (CDR MATCHLST) T)))
(T
(* We were in an AND list: we must not match the element of
the NULL list, and we must match all the other elements of
the upper AND list)
(AND (NULL (MATCH.MES.WITH.TABLEENTRY
MES (CADAR MATCHLST)))
(MATCH.MES .WITH.TABLEENTRY
MES (CDR MATCHLST]
[(OR (EQ (SETQ PROP (TABLE.ENTRY.GET
(CAAR MATCHLST)))
(QUOTE ::))
(AND (EQ (SETQ VAL
(TABLE.ENTRY.GET
(CADAR MATCHLST)))
(QUOTE ::))
(MES.GETP MES PROP))
(EQUAL (MES.GETP MES PROP) VAL)
(AND (LISTP VAL)
(EQ (CAR VAL) (QUOTE ::))
(EVAL (CADR VAL))))

(* we finally get to the check itself., It will match in any
of the following cases: 1.0 the slot name is :: -- this
indicates that this part must always match... 2.0 or the
slot must exist in the message, and the value in the match
list is :: -- this means that we are only checking for the
existence of the slot. 3.0 the values of the slots
match in the message and the match list. 4.0 the value of
the slot is a list starting with :: then we just execute

the CDR of the list.
Then, if we were in an OR list: we are through. Otherwise,

we must test the other elements of the upper list.)

(OR ORFLG (MATCH.MES.WITH.TABLEENTRY MES
(CDR MATCHLST]

(ORFLG

45

- . oy Ta—— 1

|
s
t
I

(* the match failed, but we were in an OR list: try
the other elements)
(MATCH.MES ,WITH.TABLEENTRY MES
(CDR MATCHLST) Tl

(ORFLG
(* There is no more to match with, and we
were in an OR list: the match failed)
NIL)
(E
(* There is no more to match with, and we
were in an AND list: the match succeeded)
T1)
(MES.APPLY .ENTRY

[LAMEDA (MES PROPVALLST)
(* Creates the new message properties given in PROPVALLST)
(¥ Each element of PROPVALLST is a list of 2 elements: a

slot name, and a slot value, If the slot name is NIL,
the slot value is still evaluated, but no new message

slot is created -- supposedly in this case, we are only
interested in the side effects of evaluating the slot
value...)

(PROG (PRGP VAL (LOOPLST PROPVALLST)
(NEWMES MES))
L OOP (COND

(LOOPLST (SETQ PROP (TABLE.ENTRY.GET (CAAR LOOPLST)))
(SETQ VAL (TABLE.ENTRY.GET (CADAR LOOPLST)))
(AND PROP (MES.PUT NEWMES PROP VAL))
(SETG LOOPLST (CDR LOOPLST))
(GO LOOP))

(T (RETURN NEWMES])

(TABLE.ENTRY.GET
(LAMEDA (ELT) (* Evaluates the entry element)
(COND
((OR (ATOM ELT)
(NEQ (CAR ELT)
(QUOTE :)))

(* If the element is an atom: return it, If it is a list

whose first element is not a : return it too., Otherwise,
evaluate each element of the list)

46

ELT)
(T (PROG ((ELTLST (CDR ELT))
RESPONSE)
LOOP(COND

(ELTLST (SETQ RESPONSE (EVAL (CAR ELTLST)))
(SETQ ELTLST (CDR ELTLST))
(GO LoOP))

(T (RETURN RESPONSE])

47

R0 8 i 5 A B SR L 1 ¥ e bt e

R P o

i i

Appendix D
User Interface Functions

Appendix D

User Interface Functions

(TTYMES
[LAMBDA NIL
(PROG (MES ARGS PROP FN LOOPLST NUM)
(SET.I.FLAG T)
(TERPRI)
(PRINT1 "Please specify the message properties and values:")
(TERPRI)
[SETQ MES (LIST (QUOTE TO)
(PROGN (TERPRI)
(SPACES 3)
(PRIN1 "“TO")
(SPACES 13)
(PEEKC NIL T)
(CAR (READLINE)))
(QUOTE FROM)
(QUOTE TTY:)
(QUOTE MES.FUNCTION)
(QUOTE FN.MES)

(* FN.MES is a function which knows how to call other
functions It receives its arguments in a message where
MES.FN is the name of the function to call; and it calls
that function with the appropriate arguments.)

(QUOTE MES.FN)
(PROGN (SPACES 3)
(PRIN1 "MES.FN")
(SPACES 9)
(PEEKC NIL T)
(SETQ FN (CAR (READLINE]
(SETQ ARGS (ARGLIST FN))
(SETQ LOOPLST ARGS)
(¥ ARGS is now the list of arguments of MES.FN)

LOOP (SPACES 3)
(COND
(LOOPLST (SETG PROP (CAK LOOPLST))
(PRIN1 PROP)
(* this prints the argument name)

(SPACES (COND

((IGREATERP 14 (SETQ NUM (NCHARS PROP)))
(IDIFFERENCE 15 NUM))

CT 1)

(PEEKC NIL T)

49

A

|
1

N

(SETQ LOOPLST (CDK LOOPLST))
(SETQ MES (APPEND MES (LIST PROP)))
[SETQ MES (APPEND MES (COND
((KREADLINE))
(* we get the argument value from the user)
(T (LIST NIL]

(GO LOoP))
((SETQ PROP (PROGN (PEEKC NIL T)
(READLINE)))
(* we check if the user wants to add to the message)
(SETQ MES (APPEND MES PROP))
[OR (CDR PROP)
(SETQ MES (APPEND MES (LIST NIL]
[SETQ ARGS (APPEND ARGS (LIST (CAR PROP)
(* if yes: we add it and its value to the message)
(GO LOOP)))
(TERPRI)
(TERPRI)
(PRINT1 "Thank you.") (¥ it always pays to be polite)
(SETQ MES (NCONC1 MES (QUOTE ARGS)))
(SETQ MES (APPEND MES (LIST ARGS)))
(TERPRI)
(QUEUE.MES (APPLY (QUOTE CREATE.MES)
MES))
(* finally the message is created and queued)
(RETFROM (QUOTE USEKEXEC])

(FN,MES
[LAMEBDA (MES)
(PROG [LIST (ARGS (MES.GETP MES (QUOTE ARGS]
LOOP (COND
(ARGS [OR (EC (CAR ARGS)
(QUOTE MES.FN))
(SETQ LIST (NCONC1 LIST (MES.GETP MES

(CAR ARGS]
(SETC ARGS (CDR ARGS))
(GO LOOP)))
(APPLY (MES.GETP MES (QUOTE MES.FN))
LIST]
(PRINT.TTYMES
[LAMBDA (MES)
(PROG (ID)
(WRITE (MES.GETP MES (QUOTE MES.FUNCTION))
"message"
50
il i

ERRET R C =N

(MES.GETP MES (QUOTE MES.ID))
"received from"
(MES.GETP MES (QUGCTE FROM)))
(TERPRI)
(TERPRI)
LOOP(SETQ ID (ASKUSER NIL NIL
"
Which action do you wish to take? "
(QUOTE ((R "eply to it
" RETURN (QUOTE R))
(F "orward it
" RETURN (QUOTE F))

(P Yrint it
" RETURN (QUOTE P))
(S "uspend
" RETURN (QUOTE S)
EXPLAINSTRING

"Suspend plan and save message")
(D "efer answer
" RETUKRN (QUOTE D)

EXPLAINSTRING
"Defer answer (message saved and plan continued)")
(B "y-pass
" RETURN (QUOTE B)
EXPLAINSTRING
"By-pass question (plan continued but message lost)")

(%
"Reply to it
" NOECHOFLG T RETURN (QUOTE R)
EXPLAINSTRING "<CR> may also be used to reply to the message.")))
T))
(COND
((EQ ID (QUOTE P))
(* the user wants to see the message: show it to him)
(WRITE "It contains the following information:")
(TERPRI)
(for ELEMENT in MES do (WRITE (CAR ELEMENT)
(CDR ELEMENT)))
(GO LOGP))
((EQ ID (QUOTE R))
(* the user wants to reply to the message: call REPLY.MES)
(REPLY.MES MES))
((EQ ID (QUOTE S))
(* the user wants to suspend planning: call SAVE.MES)
(SAVE.MES MES))
((EQ ID (QUOTE B))
(* the user wants to by-pass the question: call REPLY.MES
to send back a null answer)
(REPLY.MES MES T))

51

((EQ ID (QUOTE F))
(* the user wants to forward the message: call FORWARD.MES)
(FORWARD ,MES MES))
((EQ ID (QUOTE D))
(* the user wants to defer the answer: call SAVE.MES to save
the message, then REPLY.MES to send back a null answer)
(SAVE.MES MES)
(REPLY.MES MES T])

(SAVE.MES (* saves the message for later use.
asks for an ID under which it will

save the message, or generates one.)
[LAMBEDA (MES)

(PROG (ID)
LOOP[SETQ ID
(ASKUSER NIL NIL "ID for saved message: "
(QUOTE (($ EXPLAINSTRING

"a number needed to save the message: this number may then be used
in REPLY.MES and FORwARD.MES later on.")
(%
"" RETURN NIL EXPLAINSTRING
"<CR> may also be used: then, the ID is automatically generated"
NOECHCFLG T]
[coND
((NULL ID)
(PRINT1 (SETQ ID (SETQ MES.SAVED.ID (ADD1 MES.SAVED.ID]
(COND
((NUMBERP 1D)
(PUTHASH ID MES MES.SAVED.HARRAY))
(T (PRINT1 "2")
(GO LooP])

(REPLY.MES
[LAMBDA (MES FLG) (* builds a reply message to MES)
(PROG (TTYFLG NEWMES ARGS)
[COND
((NUMBERP MES)
(SETQ TTYFLG T) (* first get the saved message)
(SETQ MES (GETHASH MES MES.SAVED.HARRAY]
(COND
(FLG (GC END)))
(* if FLG is set, we just want to send a NULL message to
continue the operations)
[COND
((SETQ ARGS (MES.GETP MES (QUOTE ASK.TO.TTY)))
(* a "specialized" function exists: use it)

52

(SETQ NEWMES (APPLY* ARGS MES))
(SETQ ARGS)
(COND

([ASKUSER NIL NIL

Do you want to add anything else to the message? "

(QUOTE ((Y "es
" RETURN T)
(N "o
E " RETURN NIL)
(%
"NO
" NOECHOFLG T RETURN NIL EXPLAINSTRING
"{CR> may also be used to say no,"]
(GO LooP))
(T (GO END]
(COND
((SETQ ARGS (MES.GETP MES (QUOTE ARGS)))
(* no specialized function: let us do it the hard way)
(PRINT1 "Please, specify the following values
"))
LOOP[COND
(ARGS (SPACES 3)
(* for each property in ARGS, ask a value to the user) :
(PRIN1 (CAR ARGS))
(SPACES (COND
[(IGREATERP 15 (NCHAR3 (CAR AKGS)))
(IDIFFERENCE 15 (NCHARS (CAR ARGS]
(T 15)))
(PEEKC NIL T)
(* and put the property value pair in the message)
(SETQ NEWMES (APPEND (LIST (CAR AKGS)
(CAR (READLINE)))
NEWMES))
(SETQ ARGS (CDR ARGS))
(GO LOOP))
(T (SPACES 2)
(* then ask for more property/value pairs)
(PRIN1 n&w)
) (PEEKC NIL T) ‘
; (COND i
((SETQ ARGS (READLINE)) |
(SETQ NEWMES (APPEND ARGS NEWMES))
(SETC ARGS)
(GO LOOP]
(* we build the complete reply message)
END (SETQ NEWMES (APPEND (LIST (QUOTE TO)
(MES.GETP MES (QUOTE FROM))
(QUOTE FROM)
(OR (MES.GETV MES (QUOTE

53

ORIGINAL.FROM))
(QUOTE TTY:))
(QUOTE MES.FUNCTION)
(MES.GETP MES
(QUOTE RETURN.MES.TO))
(QUOTE IN.RESPONSE.TO)
MES)
NEWMES))
(QUEUE.MES (APPLY (QUOTE CREATE.MES)
NEWMES))
(* and queue the result)
(COND
(TTYFLG (RETFROM (QUOTE USEREXEC])

we now give, as an example, the definition of
REQUEST,ASSIGN.FRONM.TTY which is the "specialized" function used in the

ACS session of section V.,

(REQUEST.ASSIGN.FROM.TTY
[LAMBDA (MES)
(PROG ((MODEL.NAME (MES.GETP MES (QUOTE MODEL.NAME)))
(ID (MES.GETP MES (QUOTE REQUEST.ID)))
(RES.NAME (MES.GETP MES (QUOTE RES.NAME)))
(START (MES.GETP MES (QUOTE START)))
(END (MES.GETP MES (QUOTE END)))
(EST (MES.GETP MES (QUOTE EST)))
(LST (MES.GETP MES (QUOTE LST)))
(EET (MES.GETP MES (QUOTE EET)))
(LET (MES.GETP MES (QUOTE LET)))
X Y Z LST1)
(TERPRI)
(MAPPRINQ ("Need an assignment of a " RES.NAME " for "
MODEL .NAME " number "
ID "." TERPRI
"Current requirements are as follows: "
TERPRI))
[COND
((LISTP START)
"Start time: "
(CAR START)
" " TERPRI]
[conD
((LISTP END)
(MAPPRINQ ((TAB 5)
"End time: "
(CAR END)
" % TERPRI]
[COND
(EST (MAPPRINQ ((TAE 5)
"Earliest start time desired: "
(CAR EST)

54

pe—

" " TERPRI]
[coND
(LST (SETQ LST1 LST)
(MAPPRINQ ((TAB 5)
"Latest start time desired: "
(CAR LST1)
" " TERPRI]
[COND
(EET (MAPPRINQ ((TAE 5)
"Earliest end time desired: "
(CAR EET)
w " TERPRI)
[COND
(LET (MAPPRINQ ((TAB 5)
"Latest end time desired: "
(CAR LET)
" " TERPRI]

(TERPRI)
(MAPPRINQG ((TAB 10)
"Enter name of " RES.NAME " assigned," TERPRI

(TAB 10)
"or <CR> to defer assignment: "))
[SETQ X
(CAR (ASKUSER NIL NIL ""
(QUCTE ((%

NIL RETURN NIL EXPLAINSTRING "<CR> to defer assignment")
($ NIL RETURN ANSWER EXPLAINSTRING
"name of a resource"]
[COND

((NULL X)

(RETURN NIL))
[(AND (LISTP START)

(LISTP END))
(COND
([ASKUSER NIL NIL "Are the start and end times QK? "
(QUOTE ((Y "es

" RETURN T)

(N "o
" RETUKN NIL)

(%
"yes

" RETURN T NOECHOFLG T EXPLAINSTRING "<CR> may also be used for yes"]

(SETQ Y (CAR START))
(SETQ Z (CAR END))
(GG L]

((AND (NULL (LISTP START))
(NULL (LISTP END))
LST EET)

(COND
([ASKUSER NIL NIL

59

"Are the latest end and earliest start times 0K? "
(QUOTE ((Y "es

" RETURN T)
(N "o
" RETURN NIL)
(%
"yes
" RETUKN T NOECHOFLG T EXPLAINSTRING "<CR> may also be used for yes"]
(SETQ Y (CAR LST))
(SETQ Z (CAR EET))
(GO L]
(MAPPRINQ ((TAB 10)
"Enter start time of assignment: "))
(SETQ Y (READ))
(MAPPRINQ ((TAE 10)
"Enter end time of assignment: "))
(SETQ Z (READ))
L (RETURN (LIST (QUOTE NAME)
X
(QUOTE START)
Y
(QUOTE END)
z1)

(FORWARD .MES (* forward the message)
(LAMBDA (MES)
(PROG (TTYFLG NEWMES)
[COND
((NUMBERP MES) (¥ first get the message itself)
(SETQ TTYFLG T)
(SETQ MES (GETHASH MES MES.SAVED.HARRAY]
(PRIN1 "To: ")
(PEEKC NIL T) (* get the destination from the user)
(MES.PUT MES (QUOTE TC)
(CAR (READLINE)))
[COND
((ASKUSER NIL NIL
"Do you want the originator of the message to be TTY:? "
(QUOTE ((Y "es

" RETURN T)

(N "0
" RETURN NIL)

(%
"Yes

" NOECHOFLG T RETURN T EXPLAINSTRING
"<CR> may also be used for yes.")))
T)
[MES.PUT MES (QUOTE ORIGINAL.FROM)
(OR (MES.GETP MES (QUOTE ORIGINAL.FROM))
(MES.GETP MES (QUOTE FROM]

56

(MES.PUT MES (QUOTE FROM)
(QUOTE TTY:]
(* add an ORIGINAL,TO
(QUEUE.MES MES)
(COND

(TTYFLG (RETFROM (QUOTE USEREXEC])

and a FROM part, then queue it)

57

DISTRIBUTION LIST

Defense Documentation Center 12 copies
Cameron Station
Alexandria, Virginia 22314

Office of Naval Research 2 copies
Information Systems Program

Code 437

Arlington, Virginia 22217

Qffice of Naval Research 6 copies
Code 102IP
Arlington, Virginia 22217

Office of Naval Research 1 copy
Branch Office, Boston

495 Summer Street

Boston, Massachusetts 02210

Office of Naval Research 1 copy
Branch Office, Chicago

536 South Clark Street

Chicago, Illinois 60605

Office of Naval Research 1 copy
Branch Cffice, Pasadena
1030 East Green Street

New York Area Office 1 copy
715 Broadway - S5th Floor
New York, New York 10003

Naval Research Laboratory 6 copies
Technical Information Division

Code 2627

Washington, D.C. 20375

Pr. A. L. Slafkosky 1 copy
Scientific Advisor

Commandant of the Marine Corps

Code RD-1

Washington, D.C. 20380

Office of Naval Research 1 copy
Code 1455

Arlington, Virginia 22217

Office of Naval Research 1 copy
Code 458

Arlington, Virginia 22217

58

Naval Ocean Systems Center

Advanced Software Technology Division
Code 822

San Diego, California 92152

Mr. E. H. Gleissner

Naval Ship Research & Dev, Center
Computation and Mathematics Dept.
Bethesda, Maryland 20084

Captain Grace M., Hopper

NAICOM/MIS PLANNING BRANCH (OP-916D)
Office of Chief of Naval Operations
Washington, D.C. 20350

Mr. Kin B, Thompson

Technical Director

Information Systems Division (OP-91T)
Office of Chief of Naval Operations
Washington, D.C. 20350

Director

National Security Agency

Attn: Mr. Glick

Fort George G. Meade, Maryland 20755

Naval Aviation Integrated Logistic
Support Center

Code 800

Patuxent River, Maryland 20670

Professor Omar Wing

Columbia University in the
City of New York

Department of Electrical Engineering
and Computer Science

New York, New York 10027

Mr. M. Culpetter

Code 183

Naval Ship Research and
Development Center

Pethesda, Maryland 20084

Mr. D. Jefferson

Code 188

Naval Ship Research and
Development Center

Rethesda, Maryland 20084

99

copy

copy

copy

copy

copy

copy

copy

copy

copy

RWAE e

Robert C. Kolb, Head
Code 824
Tactical Command Control and

Navigation Division
Naval Ocean Systems Center
San Diego, California 92152

Defense Mapping Agency Topographic
Center

Attn: Advanced Technology Division

Code 41300 (Mr. W. Mullison)

6500 Brookes Lane

Washington, D.C. 20315

Commander, Naval Sea Systems Command
Department of the NAvy

Attn: PMS 30611

Washington, D.C., 20362

Professor Mike Athans

MIT

Dept. of Elec. Eng. & Comp. Science
T7 Massachusetts Avenue

Cambridge, Massachusetts 02139

Captain Richard L. Martin

Cmd. Officer, USS Francis Marion
LPA-249

FPC, New York 09051

60

copy

copy

copy

copy

copy

