
AD—A063 588 SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGE—ETC FIG 9/2 N

THE MESSAGE HANDLER oc ACS.1.(tj)
JAN 79 D SAGALOW ICZ N0001’ —77—C—03fl

UNCLASSIFIED TR—tb NI.

itlIU ________
in

__

~~ 9 i

a _ _ _ _ _

__ -. —
— -. a

L~~
”

~~
’

-4
THE MESSAGE HANDLER) i~’

~OF A .S.1~

Technical Rep~ ’t 16
~1’

SRI Proj~~L5289
Contr~~1

~
j N00014-77-C-0308

H Janue~ ’-1979 (j
cY~ ~~~~1

By:’ Daniel/Sagalowicz/ Computer Scientist
Artificial Intelligence Center
Computer Science and Technology Division

Prepared for: /
Office of Naval Research I
Department of the Navy
Art~ngton, Virginia 22217

> Attention: Marvin Denicoff , Program Director
Contract Monitor
Information Systems Branch ~~~~~~ (“

ui
cH\ ~-

~ ~~~ ~Y

Distribution of this document is unlimited, it may be released to the
Clearinghouse , Department of Commerce, for sale to the general public.

SRI International
333 Ravenswo od Avenue
Menlo Park , California 94025

415~ 326-6200

/77’ I “~\ Cable: SRI INTL MNP
TWX: 910-373-1246

•
,, T ..

’ .._I• ~ —

‘~~
j ,

~~~~~~
,
~~~~~ :~~~

‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Unclass ified
SECURITY CLASSIFICATION OF THIS PAG E (When Data Entered)

____________________________________ i
REPORT DOCUMENTATION PAGE BEFORE COMPLE TING FORM

1 . REPORT N U M B E R 2. GOVT ACCESSION NO. 3. RECIPIENT ’S CATALOG N U M B E R

Technical Report 16 /

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

The Message Handler of ACS.1

6. PERFORMING ORG. REPORT N U M B E R

7. AUTHOR(S)

8. CONTRACT OR GRANT N U M B E R (s)

Dan iel Sagalowicz
N00014—77--C—0308 ‘~

9. PERFORMING ORGANIZATION N A M E A N D ADDRESS 10. P R O G R A M ELEMENT . PROJECT . TASK

SRI In te rna t iona l V
AREA & WORK UNIT NUMBERS

333 Ravenswood Avenue NR 049—308
Menlo Park , CA 94025 ______________________________

__
12. REPORT DATE 13. NO. OF PAGES

11. CONTROLLING OFFICE NAME AND ADDRESS January 1979 60
Of fice of Naval Research 15. SECURITY CLASS. (of this report)

Unclas sified

14. MONITORING AGENCY NAME & ADDRESS (i f diff . from Controlling Office)

15a. DECLASSIF ICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

Distribution of this document is unlimited . It may be released to the
Clearinghouse , Department of Commerce , for sale to the general public .

17 . D ISTRIBUTION STATEMENT (of the abstract entered in Block 20 , if different from report)

18. SUPPLEMENTARY NOTES

19. K EY WORDS (Continue or, reverse side if necessary and identif y by block number)

Management , knowled ge—base , modularity, planning, replanning coordination ,
organization , model process model , demons., and communications.

\
\

20. TRA CT)Continue on reverse side if necessary and identif y by block number)

~This report describes the Message Handler , a component of the experimental
system Automated Command Support (ACS.1). ACS .1 is intended as a vehicle to
develop tech n iques for building k nowled ge—based systems that will provide
intelligent support to a manager in the areas of planning opera ti ons , adminis—
tration and monitoring of approved p lans , and re t rospec ti ve analysis of com-
pleted operations.

I.

D D FORM
1 JAN 73 Unclassified

EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIF ICAT ION OF THIS PAGE (When Date Entered)

Unclass i f ied
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
19. KEY WORDS (Continued)

20 ABSTRACT (Continued)

Viewed from the top leve l , ACS. l can be regarded as an assembly of modules
called “schedulers” and “p lanners .” The planners create detai led plans to meet
specified objectives , including the t iming of all required tasks and the
assignment of all necessary resources. The schedulers coord ina te resources ,
whether peop le , equipment , supplies , or f a c i l i t i e s, so tha t c o n f l i c t w i t h
other p lans or expected events is avoided .

The planners and schedulers work independent ly . Each has models of i t s
respective tasks and relationships with each other. Global plans are created
when these modules communicate w i t h each other via messages. A special com-
ponent , the Message Handler , routes al l the messages , and is at the system ’s
core. Because of i ts special pos i t ion , the Message Handle r of AC S .1 p lays an
important role in ACS.1; the user may u t i l i z e the message hand le r to si gn i f i -
cantly modif y the system ’ s behavior . The central idea is to implement a data
s t r u c t u r e , called the Message Table , which would contain the knowled ge of the
Message Hand le r . Wi th t h i s table , t h i s component can modif y the messages
exchanged by the ACS modules and t h e r e f o r e , t o t a l l y change the system ’ s
behavior.

In th i s report , we describe the message handler and ways the user can
modif y the system wi th i t .

D D FORM ‘BACK’
1 JAN 73 ‘ ‘ Unclassif ied

EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAG E (When Data Entered)

L _ _ _ _ _ _ _ _

I
!
,

/
CONTENTS

AE STRACT . . • .._......J
LIS T OF ILLUST RATIONS iv

LIST OF TABLES v

A CKNOWLEDGMENTS vi

I INTRODUCTION 1

II SYSTEM DESIGN 5

III MESSAGE HANDLER RE QUIREMENTS 11

IV DESIGN AND IMPLEMENTATION OF THE MESSAGE HANDLE R . . . 13

V AUXILIARY FUNCTIONS 16

Vi ROUTiNG FUNCTIONS 17

VII MESSAGE MODIFICATION FUNCTIONS 20

VIII U SEH INTERFACE FUNCTIONS 25

IX CONCLUSIONS 32

REFE R ENCES 33

APPENDIC E S

P. Auxiliary Functions 35

E Routing Functions 37

C Message Modification Functions

D User Interface Functions

~~~~~~~~~~.. ~~~~~



¶1
I LLUS TRA TIONS

1 Block Diagram of ACS.1 6

2 Proces s Model f or Flying a M iss ion 9

I

iv



I - - ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ —- -~~~~~~~~

TABLES

1 Typical Assignment Request Message  13

2 Typical Message in Response to an Ass ignment Request . .  15

3 Message Switching Example 18

Il Message Modif icat ion Exanple 22

5 Message Table Example 23

6 User Entr y of a Messa ge 26

7 User Interaction wi th  P R IN T .TT YNES 28

8 Example of a User Reply 29

9 Example of Message For w ....rd ing Interact ion 30

V 



ACKN OWLEDGMENTS

The work described here has been done in collaboration with

Ma rshall Pease . Early contributions to this work were made by Richard

Fikes. Jack Goldbe rg is project supervisor. This research was

supported by the Off ice  of’ Naval Research , Department of’ the Navy ,

Ar l ing ton , Virginia  22217,  under contract NOO 01~4— 77—C—O 3 O8 .

vi

~~IIrii. — -  - .—
~~
— -

~~~~ 
_
“ 4

I INTRODUCTION

This report describes the Messag e Hand ier , a component of the

experimental system Automa ted Command Support (ACS.1). ACS.1 is

intended as a vehicle to develop techniques for building knowledge—based

systems that will provide intelligent support to a manager in the areas

of planning operations , administration and monitoring of approved plans ,

and retrospective anal ysis of completed operations .

Viewe d from the top level , A CS .1 is a system of autonomous modules ,

some of which are called “planne rs” and some “schedulers ,” communicating

w i t h each other via messages. The planners have the responsibil i ty of

planning specified types of ac t iv i t i es . The schedulers are responsible
for coordinating the use of particular types of’ resources , which may be

people , equipment , supplies , or facilities. The messages sent by the

various modules are routed by a special component called the Message

Hand ler. Besides just send ing messages to their appropriate

destination , the Message Handler may also modify them , in a way

specified by the user. The purpose of giving the Message Handler such

an active role is to provide the user with a powerful tool to modify

drastically the system behavior . This report addresses the design of

the Message Randler . describing the other components of’ the system only

to the extent necessary to understand the requirements for the Message

Handler.

ACS .1 has opera ted in the simulated environment of a naval air

squadron , although its techniques lend themselves to a wide variety of

app lications . The principal operations being planned and managed are

flight missions . This requires coordinating such various resources as

pilots , aircraft , maintenance crews , deck crews, launch facilities and

crews , and recovery facilities and personnel. The use of these

resources is further limited by such things as the need of personnel for

_ _

_ _ ~~~~~~~— - —~~~~~~~~~~~~-.—— - .-—~~~~~~~~-~~~~ - - - - - ~~~~~~~~~~~~~

res t, or of equipment for maintenance. Still unexpected other events

can limit the availability of certain resources. For example , a pilot

may become sick or an aircraft may require unexpected maintenance . Thus

the development and maintenance of a plan to meet specified conditions

requires taking into account extensive , complex constraints.

ACS.1 can handle an arbitrary number of resources and an arbitrary

number of operations using them . In our current system , the models for

these resources and operations are contained in virtua l memory , and

therefore the main system ’s limitation is the size of the address space.

On PDP—1O , the maximu m size is 250 pages of 512 words of 36 bits each.

The system could easily be extended to store those models on secondary

storage, thereby providing for an unlimited number of resources and

operations.

Each different appl ication requires appropriate specific design ,

tak i ng into account different levels of detail and different policy

constraints. The tailoring of the system is obtained by specifying the

appropriate models .

Some constraints are imposed by limitations in the various types of

resources. Other constraints occur when other commitments for these

resources are made. The schedulers coordinate the use of these

resources. Technical Report 1~~, “The Schedulers of ACS .1” [2] describes

the detailed design of the schedulers of ACS .1 .

Other constraints, imposed by the complexities of the operation

bethg planned or administered , are the responsibility of the planners ,

whose detailed design has been described in Technical Report 15, “The

Planners of ACS .1.” [3].

Note that the constraints interlock . Although a planner seeks to

accommodate those constraints caused by the complexities of the

operation , it must do so without conflicting with other commitments made

for the required resources. Further , the planner may not recognize that

a potent ial confl ict exists until it has completed much of’ the planning

process. Resolution of the resultant conflict by a scheduler may

2

.- .---- --- ---.. --.- ~—-- -----~ —~~~ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

A

invalidate part of the previously developed plan. The planner must then

revise accordingly. Thus developing a complete plan involves not only

the ability to meet its internal constraints, but also the ability to

respond to unexpected external conditions that may force replanning of

all or part of the plan .

In A C S . 1 each module——planner or scheduler——enforces its own set of

constraints independently . The overall planning operation is obtained

by having the modules communicate with each other via messages. The

message handler ’s chief function is to route the messages from one

module to another. In this implementat ion, ACS.1 imitates quite closely

the way a human organization operates, the Message Handler taking the

role of the telephone switching system . However , the message handler

performs an additional function——namely to facilitate the capabilities

of the decision maker to maintain , modify and expand the system ’s

behavior .

This additional function permits the user to have full control of

the system operations and the system itself the possibility of modifying

its own behavior . This last possibility is not used in the current

system; however , we plan to use it in our future research so that

“higher level” components can direct the system to adapt itself

automatically to new circumstances——environmental changes such as

weather , or others such as the existence of other cooperat ing systems .

Those components will be able to use the Message Handler to

automatically modify the system ’s behavior .

The system design and one specific implementation have been

described in Technical Report 13, “ACS .l : An Experimental i’~anagement

Tool” [1], and also in Mr. Pease ’s paper which has been rublished in

the IEEE tranrac tions on Systems , Man , and Cybernetics [!I] . In those

two pu blications , the relationship of this work to other research in

artificial intelligence and in optimal scheduling is discussed . That

material will not be repeated in this report , although a brief overview

of the system design is given in Section II to place the requirements

for the message handler in context.

3

-i —

In Section III , a general discussion of the requirements for the

Message Handler is given in order to define more precisely what is

needed . In Sect ion IV , the detailed design of the message handler is
presented , followed in Sections V to IX by a detailed description of’

each of the major subroutines.

- ~~~~~~~~~~~~~~~~~~~ - - .-~~~~~~ --

II SYSTU4 DESIGN

The system design of ACS . 1 is shown in Figure 1 in block diagr am .

The main elements of the system are modules called planners and
schedulers , each of which is responsible for a wel l—defined part of the

system ’s operat ion——a planner for planning a specific type of activity

and a scheduler for coordinating the planned use of a specific type of’

resource. Interactions among the modules are handled entirely through

messages passed through a uni t called the message handler. All

communications to or from a user , or to or from the data system , also

pass through the message handler. The message handler helps maintain

the autonomy of the separate modules and provides a central switch for

user control of the system ’s operations .

Between the user ’s terminal and the message handler is the user

interface which provides a pseudo—natural language capability . This

in terface uses a language fac i l i ty called LI FEP developed by the

Artificial lntelligence Center of SRI International . The user interface

accepts requests or commands in natural language format .*

At this time , the data system is in rudimentary form . It is

intended to be more than a simple repository o data and will monitor

the execution of approved plans , checking that required tasks are

started and completed according to plan , and that needed resources are

ava ilable . When a conflict occurs, the data system will initiate the

appropriate system action , such as replann ing or advising the user of’

the situation.

Each planner and scheduler uses a body of knowledge unique to it , a

body that defines how it is to exercise its responsibilities . The

* Information about LIFER may be found in “LIFER: A Natural Language
Interface Facility ,” by Gary Hendrix , Technical Note 135 of’ the SRI
Artificial Intelligence Center

, 5

User

~~ T
~~~ER INTER FAC~ J

MESSAGE j  DATA
L HAN DLER ] 1 SYSTEM

_ _ _J r
• •
• I

[~~LANN
f j PLANS . .[ E:uLE~~

J I~ ~~~~~~~ I
I I

PROCESS 1 RESOURCE ]
MODEL ] MODEL

• I

• S

• S
(One for each (One for each

process and subprocess resourc e type
being planned) being scheduled) 4 ,

SA-6289- 1

FIGUR E 1 BLOCK DIAGRAM OF ACS.I

6

- - . -~~~~~~ - .~~~ .~~~~~~~k - -



computer  representation of such a body of knowledge incorporated by a

planner or a scheduler w i l l  be referred to as a “Model” in the rest of

this report. The model used by a planner describes the process for

whic h it is responsible to a specified level of detai l .  It identif ies
the tasks that  compose the process at the given level of detail , and the
kind s of resources that must be assigned. It describes the constraints

among the tasks——for example certain tasks must be completed before
others can be started . It describes the relationship between the

assignments of resources and the tasks, such as that an assignment must

span the times during which certain tasks are being done . It also

includes how an assignment can be obtained , or a plan for a task

req uested . That is , the model knows how to make requests of’ the

schedulers and other planners , and it knows the identities of ’ othe r
models it must consult to generate a complete plan .

A subtask recognized by a planner as a component in the planner ’s

task may itself require planning , if so, some other planner has the

responsibil i ty for planning the subtask , perhaps decomposing it fur ther
into subtasks and obta in ing  addi t ional  assignments. The system of

planners , in responding to some particular requirement , may be

structured into a hierarchy of modules operating at various levels of

detai l .  Di f fe ren t  hierarchies may be required in response to d i f fe ren t
r equi rements .

Each scheduler coordinates a type  of resource , whether  people ,
equipment , supp l ies , or facilities. When asked for one of the resources

of its type to be assigned for some future interval of t ime , the

scheduler f i r s t  determines a resource ’s ava i lab i l i ty . If ’ more than one
i s available , and i f  the scheduler has been given the author i ty , it

selects one ana re turns  the name . It also enters the commitment into

its own data structure in which it maintains its updated knowledge of

the resource commitments. If the scheduler has not been given the
a u t h o r i t y ,  it send s the relevant information to the manager for his
decision.  If no resource is available , the scheduler wi l l  e i ther  re turn
the closest available assignment or refuse the request , depending on the

responsibility given to it.

. 
~~~~~~. .  ~~~~~~~~~~~~~~~~~~~~~~ 

. .
~~~



- - 
-

Fo r example , consider the application that has been stud ied——the

com mand of a naval air squadron . The principal activity that needs

planning is flying a mission . The commander may specify the mission ’s

exact departure from and return to the ship . The requirement is

accepted by the planner in charge of planning missions . The process

model for that planner——i.e. the computer representation of the

knowledge incorporated in that planner——may decompose the act ivity as

shown in Figure 2. The tasks the Mission Planner recognizes are the

aircraft’s preflight preparation , the pilot ’s briefing , the flight

itself , the aircraft’s postflight servicing , and the pilot ’s debriefing ,

The process model also includes the fact that a pilot and an aircraft

must be assigned. The sequential constraints among the tasks, and the

concurrency constraints between the assignments and the tasks that are

indicated in Figure 2 are also contained in the process model.

The process model suggested by Figure 2 implies a particular level

of detail. The task of preflight prepara tion of the aircraft, for

example , may be further decomposed by another planner into the transfer

of the aircraft to the flight deck , its preflight service , arming ,

fueling , and its launching . Additional resources, such as maintenance

personnel , may be required during some of these subtasks, and that

information would also be included in the process models .

A generated plan will be returned to the commander for his approval

or modification , only after all tasks and subtasks have been planned and

all resources needed during any task or subtask have been assigned .

Several features of the system design are considered vital for an

easy user interface——both for the system ’s use and for the model’s

definition. These features , which have dominated the design of the

experimental sy.~tem , have been s igni f icant  components of the research .

They can be suninarized as follows:

• The division of responsibilities among the planners and
schedulers should correspond to the division of
responsibility in the comparable human organization . This
division facilitates the user ’s understanding of the
system’s operations, and permits an orderly growth of the
system . It also facil i tates the trans fer of responsibili ty
between the system and the human organization when needed.

8



- --.----.. -- ~~~-- -- —. ~~~~~~ --~~~~-~~~~~~~ ‘ —--~~~~~~-~~~- -,~~- ~~~~~~~-. -—-- - -

~~~~~~L~~~~~ I


* The models contained by the planners and schedulers should
be explicit and accessible for modification without major
revision of the system , This is necessary to permit
adapting the system to changing needs . It also permit s
introducing new planners or schedulers through
speci fication of the applicable models . Th is feature
permits the rapid expansion of the system or its transfer
to new environments,

The operation of each p lanner or scheduler should be
sufficiently simple to make it readily understandable by
the human user, The complexity of system operation should
be the result of interactions among the modules, rather
than contained within any module . Again , this facilitates
growth and adaptation , and permits rapid modification to
meet exceptional conditions .

ACS.1 has been implemented on a PDP—1O using INTERLISP under TOPS—

20. It uses a simulated clock in an interactive mode in order to

simulate an operational environment.

Further details of the system design , and of the techniques that

have been used to implement it , have been given in Technical Report 13

[1] cited earlier . In the next section , we cons ider the req uirements

for the message handler in greater detail.

10

:_ ~ i.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~~~~~~~~~~~~~ 

III ME SSAGE HANDLE R RE QU IR ~~ ENTS

The principal system function served by the Message Handler is to

route messages from one component of the sys tem to another , i.e. from a

planner to a planner or a scheduler , or from a scheduler to a planner .

For this function to be executed properly, each message explicitly

contains information about where it is coming from , where it is going

to, what its main purpose is, and when it is expected to be received by

it~ destination. However , since the Message Handler occupies such a

central positic,n in the overall system architecture , it becomes possible

to change the way the system behaves by influencing the way the Message

Handler acts.

The easiest way to modify the system behavior is to change the

contents of’ the various messages allowing the following possibilities:

The destinat ion of some messages may be changed . By doing
so , one can easily

dynamically replace a module by a new one . All messages
sent to the old module will be sent to the new one,

replace a module by the user. This allows the user to
test new ideas, without having to program them or
intervene in exceptional circumstances . All messages
sent to the module are now sent to the user , who answers
them as if he were the new module ,

implement a complete or partial trace of some or all of
the modules. Messages to some or all of the modules are
sent to a “tracer—module ” which logs them on some logging
file(s), then forwards them to their previous
destination.

The text of some messages may be changed. This may be
useful

to temporarily modify a module ’s behavior . For example,
if a new , inexperienced crew replaces an old one , one
could increase all expected timings for that particular
crew alone and avoid introducing a new process model
corresponding to that crew alone ,

11

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



to ease the modifications to the system. Let us assume
that a module , say module A , is to be rep laced by a mor e
sophi sticated one , module A’ , wh ich takes into account
new information not available to module A. Then , in
classical system design, one woul d f irst have to replace
all modules which call on A to provide that additional
irformation , or at least provide the corresponding
default values. With our design, we can either replace
all t he other modules one by one , and supp ress the
additional information from messages going to A , unt il
all the modules have been implemented——at which point we
replace A by A’ . Or , we could start by replacing A by
A’ , and add to all messages going to A’ the default
values for the missing pieces of information. Clearly,
that technique will allow the progressive, dynamic
modification of the whole system as required .

The above list is not exhaustive , but gives an idea of the

possibilities of this architecture .

This message modification capability has been implemented in the

Message Handler. The user fully controls which messages are modified

and how they are modified by indicating them explicitly in the “Message

Tab le ,” as will be explained in section IV,C

The next section describes the design of the Message Handler and

lists the functions used to obtain the desired behavior .

12

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

-j



-
~ 

_ _ _ _ _ _ _ _

IV DESIGN AND IMPL EMENTATION OF THE MESSAG E HANDLER

The Message Handler , as described here, is intended to operate in

conjunction with the planners and schedulers as described in references

[2,3]. Hence, all the funct ions deta iled in thoses references are

assumed to be available . In particular , the functions used there for

manipulating A—lists——i.e., lists of’ property—value pairs——are freely

used here , without description.

A message is an A—list of the form

[01E8.ID . <integer>)
(FROM . <module—name>)
(TO . <module—name>)
(MES.FUN CTION . <function—name))
(TIME . <integer>)...]

Table 1 shows a sample message taken during an ACS.1 session , and

the content of a typical message addressed to the pilot scheduler.

Table 1

Typical Ass ignment Request Message

MES.ID 5
TO PILOT .SCHEDULER
FROM MISSION .MODULE
MES.FUNCTION SCHEDULER.ASSIGN.MES
TIME 0
R ETURN.MES.TO RESOURCE.ASSIGNED
A RGS (NAME START END )
EET (850 (PRIoRITY . 2))
LST (380 (PRIORITY . 1 ))

In this example the message contains the following information:

MES.ID is the message number——in this case, this was the fifth
message handled by the message handler.

13

_ _ _ _ _ _



~~~~~ 
-
~~

TO is the destinat ion of the message——here the pilot
scheduler.

F ROM is the source of the message——here the mission module.

MES.FIJNCTION is the function that should handle this message
for the destination module——here it is a request for a
resource assignment. Hote that the sam e module may have
several functions. For example , a scheduler is in charge
of a spec if ic resource ty pe , but may still perform
several functions associated with the assignment of
resources , such as resource assignments, resource sta tus
reporting , resource status saving on f ile , and so on.

MES.F(JNCTION indicates what function is expected .

TIME is the simulated time when the message should be
delivered—-here it is 0, i.e., immediately.

RETURN.MES.TO is the function to notify in the sending module.
This will become the value of’ the property MES. FUNCTION
in the reply. In this case, the function to be called in
the mission module when the reply comes is
RESOURCE . ASSIGNED .

A RGS is the list of variables that the mission module expects
to see in the reply——here , the name, starting and ending
times of the assigned pilot . EET and LST are the
earliest ending time and latest starting time demanded
for the pilot to be assigned . Other possible indications
could be given , such as EST, LET , NAME , START and END
which are respectively the earliest starting time , latest
end ing time , nam e, suggested actua l start time and
suggested actual end times. In the present example these
were not given and therefore do not appear at all in the
message .

Fi nally, other information may be contained in the message, either
for the benefi t of the dest inat ion module , the benef i t of the source
mo dule , or just for comment purposes. For reasons of simp licity, we
have not included them here .

Tab le 2 presents the typical response ‘~iessage which corresponds to

the previous request for an assignment:

1~4

-I.-

~

Table 2

Typical Message in Response to an Ass ignment Request

MES.ID 8
TO MISSION.MODULE
FROM PILOT.SCHED1JLER
TIME 0
tIES. FUNCTION REQUEST. ASSIGNED
1N.RESPONSE.TO ((MES.ID . 5) (TO . PILOT.SCHEDULER) (— — —))
N AME ABLE
START 380
END 850

The only significant part which is different from the previous

message is 1N.RESPONSE.TO . This is a pointer to the data structure

representing the original message——in this case message number 5. When

it is printed , the whole previous message is printed , but it should be

understood that only a pointer is actually part of’ the reply message.

Until delivery time , the messages are stored in a message queue ,

wh ich is a priority queue. The delivery time is the priority ; and in

case of equal delivery times , the value of MES.ID becomes the priority .

Before delivery, the messages are modified according to the

specifications contained in the message table , as indicated in section

III.

15

- .

V AUXIL iARY FUN CTIONS

The next sections describe the most significant functions which are

part of the message handler package. ¶v~e start with two auxiliary

functions, MES.GETP and MES.PUT , which are the equivalent of GET? and
PUT for the message A—lists . They take as message input either an A—
list or an ID number , in which case the corresponding message A—list is

found in the corresponding element of the array MES .HARRAI . MES.GETP
gets the value of a property in the message, whereas MES.PUT either puts
a new property—value pair or modifies the value of’ an existing property .
The complete definition of these functions is given in Appendix A.

16

-- ~~~~~~~~ - -~~~~~~~---~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ -~~~~~~~~~—

VI ROUTING FUNCTIONS

In this section , we present the functions which represent the

routing role of the message handler. They are CREATE.MES , QUEUE.MES ,

DEQUEUE.NES and MES.PROCESSOR .

The first function , CREATE.MES, is used to create the message A—

list. It takes as input a list of the form

(PROP) VAL 1 ... PBOPn VALn),

and creates the corresponding message A—list

[(MES.ID . <integer>)(PROP 1 . VAL1)...(PROPn . VALn)],
generating the value of MES.ID automatically. This function also

creates an entry in the array t’IES .HARRAY so that from then on , the

message may be retrieved by its ID alone. All the message handler

functions may then take as argument either a pointer to the message or

the ID of’ the message——in which case they retrieve the message pointer

from MES.HARRAY .

The function , QUEUE.MES , stores the message in the message queue ,

MES.QUEUE. The message will be processed later by MES.PROCESSOR.

The function DEQUEUE.KES is the inverse of the last one: it remove s
the message from the message queue , if’ it has not yet been processed by

MES .PROCESSOR . Otherwise , it just prints an error message.

Finally, the last function , MES.PROCESSOH , is in fact the message

hand ler. It is called by the monitor whenever a module releases

control . MES .PROCESSOH checks whether any message is in the queue. If’

so , it modifies it using the message table , as explained in section

IV .C , then sends it to its destination. The message is then deleted

from the message queue and MES.HAHRAY is updated to indicate that the

message has been sent .

17

-
~~~

--
~~~~~~~~~~ ~~

—-

~~
--

~~~~

--- - 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Table 3, ~~ioh presents an extract from an ACS. 1 sess ion, shows the

routing function of the message handler. In this example, the user asks

the system to plan for a mission to start in 3 hours.

Table 3

Message Switching Example

(1 )GIONITOR>ttymes)

PLEASE SPECIFY THE MESSAGE PROPERTIES AND V A LUES :

TO mission.module
MES. FN enter.value
MODEL.NAME mission
PLAN.ID 1
TYPE tasks
NAME fit
PROP start
VAL 500
PRI ORITY
PRINT.SUP.FLG

THANK YOU.

(2) QUEUE FN.MES MESSAGE 2 TO MISSION.MODULE
(3) GOING BACK TO MONITOR .
(~4)  SEND FN .MES MESSAGE 2 FROM TTY: TO MISSION.M000LE
(5) QUEUE PLAN.TASK.MES MESSAGE 3 TO A/C—PREP.PLANNER
(6) SEND PLAN.TASK.MES MESSAGE 3 FROM MISSION.MODULE TO

A/C—PREP. PLANNER

In the table , the characters typed by the user are in small

letters. The rest is typed ‘o the user by the system——either for

information purposes or for requesting needed dat.a from the user.

First the user specifies that he wants to send a message to the

mission module (from line 1 to line 2). Then , the user is not ified that

the message has been queued—-using QUEUE.t~ES (line 2). The 11Y module

then releases control , and the monitor calls on MES.PROCESSOR , i.e. the

message handler (line 3). The message hand ler sends the message to the

mission module——i.e. the cont rol is transferred to the mission module

18



— ---
~~~~~~

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(line 1~), That module queues a message which is due to go to the

aircraft preparation planner (line 5), and the scenario will repeat

itself , i.e., the message handler sends the message to the aircraft

preparation module which then takes control and queues another message

to ar~ ther module , and so on.

The function definitions of all the routing functions are given in

Appendix B.

19

~1~’.~~ ~ - .L~ . -.

VII MESSAGE MO D IFICATION FUNCTIO NS

We now present the funct ions used to modify the messages. The

first one , MES.MODIFY , is called by MES.PROCESSOR . It checks whether

entries in MES.TABLE apply to the message.’ If so , the message is

modified accordingly. Actual ly , the checking is done by

MATCH.MES.WITH.TABLEENTRY , and the message modification is done by

MES.A PP LY .EN TRY .

M ATCH. M ES.WITH.TA B LEENTR Y tries to decide whether the message
matches with an entry in MES.TABLE. The entry has the following format:

(<condition> <change specification>)

The role of MATCH .MES.WITH.TAELEENTRY is to check that the message

matches the <condition> part of’ the entry , which has the following

format:

<condition> (<cond.prop> <cond .val>)
or (AND <condition> ... <condition>)
or (OR <condition> ... <condition>)
or (NOT <condition>)
or (NULL <condition>)

A match between a message and a condition of the type

(<cond.prop><cond.val>) occurs if one of the following is true:

<cond.prop> is the atom ::
or

the message has a property <cond.prop> and <eond.val> is
or

the message has a property—value slot equal to (<eond .prop> .
<cond.val>)

or
the message has ~ property <cond.prop> and the value slot is a

list whose CAR is ::. In this case , tne CITh of the list is EVPILED.

* The entries in MES.TABLE are prepared by the user. Although we have
not done it , functions could be written to help the user set up
ME S.TA BLE .

20

L -- -.-~~~~

-

~~~~~~~~~~~~~~~~~~



— TT ~~~~ .. 
_ .

~~~~~

_
.___—

~~~~~~~~. 
- . .- --.-—

~
.--.,---. -- ----- - .-..

Then the message may be modi f ied , or side effects may occur.

The extension to the conditions of the ty pe AND , OR , NOT , or NULL
is obvious.

The next f unct ion , MES.APPLY.ENTRY, modifies the message according

to the <change specification> part of the entry . More precisely, the

<change specification> is a list of’ the form:

( . . .  (<prop> <val>) . . .)

If’ <prop> is NIL , <val> is evaluated——using TABLE.ENTRY.GET-.— and the

message is not modified directly : presumably, we are only interested in
the side effects of evaluating <val> , which may modify the message

indirectly. Otherwise , a new slot is added to the message, with

property name <prop> , and value the value returned by TABLE.ENTRY .GET

Finall y,  TAELE.E N TR Y .GE T evaluates the entry elemen t , i .e. ,  the
<val> part of’ the <change specification> . <Val) may be one of the

following :

an atom , in which case it is simply returned
or

a list whose first element is not “ : “ , in which case the list

is returned
or

a list start ing with “ : “ , in which case each element of the list

is evaluated , and the last value is returned .

As an example of message modifications , consider table ~4 which

represents an actual sess ion with a use r.

21



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- - :1

Tab le 4

Message Modification Examp le

(1)~MONITOR>ttymes)
PLEASE SPECIFY THE MESSA GE PROPERTIES AND VALUES :

TO m.m
MES.FN enter.value
MODEL . NAME mission
PLAN.II.) 1
TYPE tasks
NAME . fit
PROP start
VAL 500
PRIORITY
PRINT.SUP.FLG

THANK YOU.
(2) C’UEUE FN.MES MESSAGE 4 TO N.M
Going back to MONITOR .
(3) SEND FN.NES MESSAGE 4 FROM TTY : TO MISSION.NODULE
(4 )  QUEUE SCHEDULER.ASSIGN.MES MESSAGE 5 TO PILOT.SCHE DULE H
(5) SEND SCHEDULER.ASSIGN.MES MESSAGE 5 FROM MISSION .MODULE TO TTY:
(6)SCHED ULER.ASSIGN.MES MESSAGE 5 RECEIVED FROM MISSION .MODULE

Here , the same conventions are used as in the previous table : the

user’s input is presented in small letters. The user prepares a message

to be sent to “m.m ” (between lines 1 and 2). The message to n.m is

queued (line 2). The message handler sends the same message to the

mission module , i.e., the message has been modified by replacing n.m

with mission.module (line 3). The mission module queues a message to

the pilot scheduler (line 1!). The message hand ler sends that message to

TTY :, i.e., to the user (line 5). Here again , the message was modified ,

replacing PILOT.SCHEDULER by TTY : . Finally, the TTY: module , which is

the user interface , notifies the user that a message has been received

(line 6).

22



In Tab le 5, we present the message table which gave rise to those

two modifications :

Table 5

Message Table Example

(1) [(((TO M.M))
(2) ((TO MISSION.MODULE)))
(3) ([(NOT ((TO TTY:)))
(4) (NOT ((TO MISSION .MODULE]
(5) ([ORIGINAL.TO (:(MES.GETP MES (QUOTE TO]
(6 ) (TO TTY: ]

This message table has two entries . The first entry applies to all

messages addressed to M.M (line 1), and modi fies them by replacing the

TO part of the message by MISSION.MODULE (line 2). The second entry

applies to all messages which are not addressed to either the user (line

3) or the mission module (line 4). It modifies those messages by

replacing the TO part by Ti?: (line 6), and by adding an ORI GINAL.TO

part which will contain the original value of the TO part , i.e., the

original destination of the message (line 6).

These two entries correspond to a typical case where a user ,

testing a module alone (here: MISSION.MODULE), wishes to rece ive all

messages coming from this module (second entry), and also wishes not to

write out the complete module name everytime he sends a message to it

(first entry). Since this case is so typical in system development , a

func t ion  could be wr i t t en  to create two such entries automat ica l ly  for

any module , and any alias the user would wish to use.

As another  example , let us consider the a i rc raf t  launch process ,

and let us assume that it takes one minute to launch an aircraft in good

weather , and three minutes in bad weather . The problem is how to

implement both conditions easily in ACS .1.

There are basically three ways of achieving this result in ACS. 1

First, the user can change dynamically the process model which

23 

-- ~~ -- --~~~~_ _  -~~~- 1. ~~~-.



corresponds to the flight task . In good weather , that model would

indicate that the launch takes one minute ; in bad weather the user would

modi fy it to make the launch three minutes long. The only disadvantage

of that solution is that the user has to change the models constantly
instead of having them prepared in advance .

The second solution is to have both models prepared in advance , and

have in essence two flight modules——one which uses the original model,

the other the modified model. Then , the user would implement the change

of weather by making an entry in the message table which would indicate

to what module the flight task belongs——given the current conditions .

The third solution is in the same spirit as the second , but simpler

in realization . The basic idea is that whenever a message is sent to

the launch facility scheduler by the flight module, the time to be

reserved will be increased by two minutes. This solution can again be

easily implemented by making an entry in the message table.

We give the definition of all the functions involved in the message

modification role of the message handler in Appendix C.

This completes the presentation of’ the message handler per se.

However, we believe that its usefulness can mainly be justified by its

advantages to the user. To emphasize this point, sect ion V presents the
functions we have developed so far as part of the user interface.

2~I



VIII USER INTERFACE FUNCTIONS

The use r ’s primary need in the user interface is to be able to

specify a message to be sent. This need is met by the function TTYMES.

It asks the user for the dest inat ion of the message and the funct ion
req uested . Then , it automatically asks for the values of the arguments
that the function needs. Finally, it asks the user whether he wan ts to

add any more attribute/value pairs to the message. It then creates the

message and sends it via the message handler. When the message arrives

at its destination , it is handed to the function FN.NES, which in a

sense is part of the user interface although used inside the other

modules. FN.MES knows how to call the appropriate function from the

content of’ the messages created by TTYME S . Essential ly,  it finds in the

property ARGS of the message the list of arguments to be part of the

function call, and under each argument name finds the appropriate value.

Table 6 presents an example of the use of TTIMES.

25



~ - —--- .. - -_ --.--_- - .. 

~~~~-- - - - - - --
~
- - - -

~~~~ ~~~~~~~~~~

Tab le 6

User Entry of a Message

<M ONITOR> ttymes)

PLE ASE SPECIFY THE MESSAGE PROPERTIES AND VALUES :

TO mission.module
MES.FN enter.value
MODEL. NAME mission
PLAN.ID 1
TYPE tasks
NAME fit
PROP start
VAL 500
PRIORITY
PRINT. SUP.FLG

comment (this is a message asking that a mission flight
start at 500]
THANK YOU.

The first two questions (TO and MES.FN) are always asked by TTYMES.

ENTER.VALUE is a function which has eight arguments, namely MODEL.NAME ,

ID , TYPE , NAME , PR OP , VAL , PRIORITY and PRINT.SUP.FLG . Those arguments

are requested by TT?MES once it is told which function is being invoked.

Finally, TTYMES checks to see if the user wants any more information in

the message , and in the example , the user added a COMMENT. In this

example, TTYNES created the following message:

26 

—-- - .-_--_-- _- —~ ~~~~



—-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TO MI SSION .MODULE
FR OM TTY:
MES.FUNCTION FN.MES
MES.FN ENTER .VALUE
MODEL . NAME MiSSION
ID 1
TYPE TASKS
NAME FLT
PROP START
VAL 500
PRI ORITY NIL
PRINT.SUP.FLG NIL
COMMENT (THIS IS A MESSAGE A SKING THAT A MISSION FLIGHT

STARTS AT 500)
ARGS (MODEL .NAME ID TYPE NAME PROP VAL PRIORITY

PRINT.SUP.FLG COMMENT)

After receiving this message , the mission module will call FN.MES,

since this is the value of the MES .FUNCTIOti property in the message. It

gives FN.MES the message as an argument . In turn , FN .MES will call

ENTER.VALUE (the value of the MES.FN property in the message) and give

it as argument values the values of the arguments listed in ARGS . Note

that the value of the COM MENT property wil l be given to ENTER.VALUE

which will not see it since it only takes eight arguments. In this

case, we can consider that COMMENT——and other extra property/value

pairs——are ignored.

The next funct ion, P R INT .TTYMES , is called whenever a message for

the user is received. It briefly describes the message, and then asks

the user what he wishes to do. Depending on the user ’s answer , one of

several functions which will take the appropriate actions may be called .

We first show in Table 7 an example of an interaction with PRINT.TTIMES .

27

_ _ _ ~ 1. ~.. - -~~~~

_
-

~~~~~~~~~~~~~~~~~~~~~~~~

Table 7

User Interaction with PR INT .TT’IMES

( 1)  SCHED UL ER .ASSIG N J4ES MESSAGE 5 RECEIVED FROM MISSION.MODULE

(2) WHICH A CTION DO YOU WISH TO TAKE? <?>
ONE OF:
REPLY TO IT
FO R WARD IT
PRINT iT
SUS PEND PLAN AND SAVE MESSAGE
DEFER ANSWER (MESSAGE SAVED AND PLA N CONTINUED)
BYPASS QUEST I ON (PLAN CONTINU E D BUT MESSAGE LOST)
<CR> MAY ALSO BE USED INSTEAD OF “R” TO REPLY TO THE MESSAGE.

(3) WHIC~i ACTION DC YOU WISH TO TAKE? pRINT IT

IT CONTAINS THE FOLLO WIN G INFORMATION:

MES.ID 5
FROM MISSION.t4ODULE
TO TTY :
TIME 0
MES.FUNCTION SCHEDULER.ASSIGN.MES H
REI1JRN .MES.TO REQUEST.ASSIGNED
A SK.TO.TTY REQUEST. ASSIGN.FRON.TTY
AROS (NAME START END )
EET (850 (PRIORITY . 2))
LST (380 (PRIORITY . 1 ))

(4) WHICH ACTION DO YOU WISH TO TAKE? sUSPEND

ID FOP SAVED MESSAGE: 1

The user is first notified that a message was received (line 1).

The n, he asks what his options are by typing a question mark——which is

not echoed back (line 2). Knowing his options , he then asks to see the
complete message (line 3). Finally, he asks that the planning operation

be suspended , and the message saved (line 4). Then , the system asks for
an Id number for the message——in this case, the user types 1.

28

I.. - . —  _-. -~~~~ 
:.. -



In the above examp le, the user asked that the planning operations

be suspended and the message saved. This saving was done by SAVE.MES ,

which stored the message in an array named MES.SAVED.}IARRAY .

Instead of suspen di ng the plann ing operat ions , the user coul d have

replied to the message. Also , after having suspended the planning , the

user may resume it by answering the saved message. The example in Table

8 presents such an interaction.

Table 8

Exa mple of a Use r Rep ly

(1)Q4ONITOR> reply.mes(1)

(2) NEED AN A SSIGNMENT OF A PILOT FOR MISSION NUMBER 1 .
CURRENT REQUIREMENTS ARE AS FOLLOW S:

LATEST START TIME DESIRED : 380.
EARLIEST END TIME DESIRED : 850.

(3 ) ENTER NAME OF PILOT ASSIGNED,
OR <CR> TO DEFER ASSIGNMENT: ab le

(4 )  A RE THE LATEST END AND EARLIE ST START TIMES OK? yES

(5) DC YOU WANT TO ADD ANYTHING ELSE TO THE t.ESSAGE? NO

(6) QUEUE REQUEST .ASSIGNED MESSAGE 45 TO MISSION .MODULE
GOING bACK TC MONITOR.

The user says that he wants to reply to the message saved under ID

1 (line 1). Then , a brief sur~nary of the message is presented to the

user (between line 2 and line 3). This is done using the function

REOUEST.ASSIGU .FROM.TTY which was indicated in the message in Table 7 as

the value of the ASK.TO.TTY part . Then , REQUEST.ASS1GN.FROM .TTY asks

the user for the name of a pilot (line 3) and the acceptability of’ the

indicated times (line 4). Finally, the user is asked for other

property/value pairs to be added to the message (line 5); he does not

add any . The message is then built and sent to the mission module (line

6).

29 

~~~ .-.___ - 

- .

- i
. -

~~~~~~~ 
-

~~~~~~


- -

The definition of REPLY .MES will be given in Appendix D, followed

by REQUEST.ASSIGN .FROM.TTY as an example of one such “specific function”

which may be used to simplify the user interface. Without this

function , the user could have built the message directly in a more

tedious fashion.

Finally, the user may want to forwar d the message to either the

original destination or a new one. This can be initial ized either when

the message is first received by the user inter face, or later , after the

message had been saved. Table 9 presents such an example taken from an

ACS. 1 session.

Tab le 9

Example of Message Forwarding Interact ion

(1) QUEUE PLAN.TASK MESSAGE 3 TO A/C—PREP.PLANNER
(2) SEND PLAN.TASK.MES MESSAGE 3 FROM MISSION.MODULE TO TTY :
(3) PLAN .TASK.MES MESSAGE 3 RECEIVED FROM M1SSION .MODULE

(4) WHICH ACTION DO YOU WISH TO TAKE? fORWARD IT
(5) TO: a/c—prep.planner
(6) DO YOU WA NT THE ORIGINATOR OF THE MESSAGE TO BE TTY:? yES

(7) QUEUE PLAN.TASK MESSAGE 3 TO A/C—PREP. PLANNER
(8) SEND PLAN.TASK MESSAGE 3 FROM TTY : TO A/C—PREP.PLANNEH

The mission module sends a message to the aircraft preparation

planner (line 1). The message is rerouted by the message handler to the

user (lines 2 and 3). PRINT.TTYMES informs the user that a message was

received (line 3) and asks for further instructions (line 4). The user

asks that the message be forwarded (line 1!) to the aircraft preparation

planner (line 5), and that the user be indicated as the origin (line 6)

so that the message will not be rerouted to the user again , but will go

instead to the planner itself (line 7 and 8). The function which asks

the questions on lines 5 and 6 is FORWARD.MES which also will build the

new message.

30

.

~ .

Appendix D gives the definitions of all the user interface

functions.

31


~~~~~-~~_ .—~~~~~~~~~-- .._ . .~~~~
-.. .

~~~~~
-,—

IX CONCLUSION S

The message handler of ACS.1 has added new possibilities for

helping the user maintain , modify , and extend the planning and

scheduling system. Its main role was originally to imitate the

functions of a switching network such as the telephone system, mostly to

provide a true asynchronism and independence between modules. However ,

it has been ext ended to allow the dynamic modification of messages. As

has been explained in the previous sections, this allows for a dynamic ,

gradual modification of the system behavior. It is believed that this

component will facilitate the development and maintenance of a complex

planning/scheduling system , at the same time giving the user confidence

in using the system, knowing that he can modify its behavior.

For the future, the message handler could become the main tool for

a system to modify itself’. “Higher level” modules could apply their

knowledge of a situation and modify automatically the message table.

Also , in a distributed , cooperative system environment the message

hand ler could use its own model of the cooperative modul es to

“understand” and “translate” the messages to and from the local system.

The idea of’ a message handler is not new; however the expanded role

it plays with its message modification possibilities suggests such a

component will to help management perform their functions more

efficiently.

32

_ _ ~~~. ..---~~~~~-, -~~~~~~~~~~~~—-—~~~~~~~~~—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _

r .
. . ~~~~~~~

REFERENCES

[i] Pease M.., “ACS.l : An Experimental Management Tool,” Technical Report
13, Computer Science Laboratory, SRI International, 1977.

[2] Pease N., “The Schedulers of ACS .1 ,” Technical Report 14, Computer
Science Laboratory , SRI International , September 1977.

[3] Pease M., “The Planners of ACS.1 ,” Technical Report 15 , Computer
Science Laboratory , SRI In ternat ional , November 1977.

[4] Pease M ., “ACS. l : An Experimental Management Tool ,” IEEE
Transactions on Systems. li~~~. ~~ Cybernetics, Vol. 8, No. 10, pp.
725—735 , October 1978.

33

-

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix A

Auxiliary Functions

V

-

~ 

- . ..- . - -- - ~
_.. . ~~~~~~~ .



Appendix A

Aux iliary Funct ions

(tIES. GETP
[ LAMBDA (ME S PROP )

(CO ND
((LISTP MES) (* It is an A—list)
(A’.GETP tIES PROP))

((A.GETP (GETHASH MES MES.1-IARRAY) (* It is not : get the )
PROP]) (* A—list in the array )

(ME S. PUT
[LAMB DA (MES PR OP VAL )

( CO ND
( ( L I STP MES)
(A’.PUT MES PROP VAL))

((A.PUT (GETHASH tIES MES.HARRAI)
PROP VAL] )

35



Appe ndix B

Routing Funct ions



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appe ndix B

Rout ing Functions

(C REAT E. ME S
[LAMBDA X

(‘ This is a LAMBDA nos pread funct ion .
Function: creates an a.list , generates an id , ent ers
the id into the a.list; input : CREATE.MES
(propl ;valuel;prop2;value2;...); output : returns an
a.list as a value such as ((mes .id . <integer>)
(prop i . valuel) (prop2 . value2) ...)
If called with no arguments , the value would have
the form ((mes.id . <integer>)).)
(* An association between a pointer to a message
and the id of that message is stored in the hash
array called MES.HARRAY such that the pointer is
retrievable by the id.)

(PROG (MES (Ml 1)
0.122)
(TO 0)
Ti)

[SETQ MES (LIST (CONS (QUOTE MES.ID)
(SETQ Ti (TRACE.GEN .ID.TEMPORARY]

(PUTHASH Ti MES MES .HARRAY)

LP (if X TO
t hen (RETURN MES)

else (NCONC 1 MES (CONS (A R G X M l)
(ARG X N2)))

(SETQ M l (IPLUS M2 1))
(SETQ M2 (IPLUS Ml 1))
(SETQ TO (IPLUS TO 2))
(GO LPJ)

(Q(JEUE.MES
[LAMBDA (MES)

(* Takes as input either a message A.list or an
ID of a message , stores that message in the
message queue and then returns the ID of the message
just stored into the message queue.)

(F ROG (TO T i)

37

L
.

- -- -
~~~~~~~~~~~~~~~~~~~~~~~~~



~TT TI~~~~~~I~~~~~ 
- .

[Co ND
( (NOT (LISTP MES ) ) ( ft  F irst get)

(SETQ MES (GETHASH tIES MES .HARRAY ] (‘ the A—list)
(SETQ Ti (MES.GETP tIES (QUOTE MES.ID)))

(
~ Then check if the time is there.

I f not: assume immediate delivery )

(CO ND
((NULL (A.GETP MES (QUOTE TIME)))
(A.PIJT tIES (QUOTE TIME)

S.CLOCK)))
LSE~I.TRACE Queue ((MES.GETP MES (QUOTE MES.FUNCTION)))message

(T i )
to
((MES.GETP MES (QUOTE TO]

(‘ Traces the message if so required )

(ADD.QUEUE (QUOTE MES.QUEUE)
MES )

(ft Finally, adds it to the message queue)

( RETURN T l ])

(DEQUEUE.MES
[LA MBDA (tIES)

( f t  Takes either a message a.list or a message id.
If the message is not deleted then returns the
deleted id else returns the message that the id
is already deleted .)

( PROG (T i )
[CO ND

( (NOT (LIST? t IES ))  ( f t  First , get the A—list )
(SE1~ MES (GETHASH MES MES .HARRAY J

(SEIQ Tl (MES.GETP MES (QUOTE MES.ID)))
(CO ND
((EQUAL (GETHASH (QUOTE MES.QUEUE)

SYSTEM .QUEUE)
(DEL.NODE (QUOTE MES.QUEUE)

MES) )
(CO ND
((EQ (QUOTE YES)

S.TRACE )

(ft The messa ge has already been p rocesse d or deleted )

38



-

~1(PRIN 1 “THE MESSAGE WHOSE ID IS ‘0
(PRINi Ti) (ft Say so if tracing)
(PRINT 1

“ HAS ALREADY BEEN DELETED FROM THE MESSAGE QUEUE.”)))
(RETURN Ti))

(T (ft delete this message)
(CO ND

( ( E Q ( QUOTE YES )
S.TRACE) (‘ and say so if tracing)

(PRIN 1 “THE MESSAGE WHOSE ID IS “ )
( PRIN 1 T i )
(PRINT 1

“ HAS SEEN DELETED FROM THE MESSAGE QUEUE.”)))
(RETURN T i ])

ME S . PROC ESSOR
[LAMBDA (NES)

(* Input: either A.list form of a message or an id
form of the message; output : message id which has
been processed; function: receives a message and
applies the module specified by the A.list value
corresponding to the property TO , to the message passed
to the module. I.e., it sends the message to the module
whose name is contained in the slot corresponding to
“TO”)

(ft After it has processed tIES, it puts it into a trace
file (mes.trace) and changes the hash array
(MES.HARRAY ) entry of the message processed into NIL.)

(f t  It also checks the MES.TABLE to modi fy the message
before sending it)

(PROG (MES.ID MES.TO MESSAGE TO.WHOM TO.LOCK.LIST MES.LIST)
[~o ND
((NLISTP tIES) (ft We HAVE the message id , get

the whole message A—list)
(SEx MES (GETHASH MES MES.HARHAY ]

(‘  Check if’ the message matches any entry in MES.TABLE.
MES.MODIFY will do both the checking and the
modi fications if’ needed)

(SETQ MES (MES.MODIFY MES))
(SETQ MES.LIST (CDR (GETHASH (QUOTE MES.QUEUE)

SYSTEM.QUEUE)))

39

:~~~~~~~~~~~~ 
_ _ _ _ _



—-.---~~~~~~ -- —--~~~~~~~ -- , - , --- -. .-.-~~---

L3 (SETQ MES.ID (MES .GETP MES (QUOTE MES.ID)))
(SEw MES.TO (A.GE~FP tIES ( QUOTE T O ) ) )

(ft trace the message processing if required )

(S~N.TRACE Send ((MES.GETP tIES (QUOTE MES.FUNCTION)))
message
(ME S . ID )
from
((MES.GETP MES (QUOTE FROM)))
to
(MES.TO))

(SETQ S.TRACE.LEVEL 3)
(SETQ TO .WHOM (MES.GETP MES (QUOTE IN.RESPONSE .TO)))
( CO ND
[(OR (NULL (SETQ TO.LOCK.LIST

(GETPROP LOCK.LIST MES.TO)))
(MEMB TO.WHOM TO.LOCK .LIST))

[CO ND
(TO.LOCK.LIST (PtJTPROP LOCK.LIST MES.TO

( R E ~iOVE TO.WHOM TO.LOCK.LIST]
(DEL.NODE (QUOTE MES.QUEUE )

tIES )
(SETQ MESSAGE (RESUME MONITOR (EVAL MES.TO)

tIES)

(‘ This in effect sends the message to destination)

(CO ND
((NULL MESSAGE)

(Pr.TrPROP LOCK.L1ST MES.TO NIL))
( (EQ ( CAR MESSAGE)

(QUOTE *))
(PUTPH OP LOCK.LIST MES.TO (2ND MESSAGE)))

((AND (E Q ( C A R  MESSAGE)
( QUOTE A D D ) )

(EQ (CAR (2ND MESSAGE))
( QUOTE f t f l )

(for EA CH.MES in (2ND (2ND MESSAGE))
do (ADDPROP LOCK .LIST MES.TO EACH.MES)))

( ( E Q (CA R MESSAGE )
( QUOTE A D D ) )

(ADDPROP LOCK.LIST MES.TO (2ND MESSAGE)))
[ (AND (EQ ( CAR MESSAGE )

( QUOTE DEL E T E ) )
( E Q (CAR ( 2ND MESSAGE ) )

(QUOTE *)))
(for EACH .MES in (2ND (2ND MESSAGE))

do (PUTPROP LOCK .LIST MES.TO
( R~ ’1OVE EACH.MES (GETPROP LOCK .LIST

40

_ :
~~ ~~~~~~~~~~~~~~~~ . .--~~~~~ -



I
ME S • TO ]

( ( E Q ( CAR MESSAGE )
( QUOTE DELETE ) )

(PUTPROP LOCK.LIST MES.TO
( R E~ioVE (2ND MESSAGE)

(GETPROP LOCK.L1ST MES.TO]
(T

(f t  Do not send a message ; pass over the locked out
message and consider the next message on the queue.)

(CO ND
((SETQ MES (CAR MES.LIST)))
( ( P R I N T 1

“No more message to be served. Error in the system.”)
( H E L P ) ) )

(SETQ MES.LIST (CDR MES.LIST))
(GO L 3 ) ) )

(SETQ S.TRACE.LEVEL 0)
(RETURN MES.ID])

41



~~~~~~~~~~~~~~~~~~~~~~~~~

~1

I

Appe ndix C

Message Modi f icat ion Functions

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 A



-~ -. 

Appendix C

Message Modification Functions

(MES.MODIFY
[LA MB DA (tI Es)

(‘ Check if any entry in MES.TABLE applies to the
message : if’ yes does the modifications and loops
back; if no , returns the final result)

(FR OG ( (N EWM ES tIES)
(ME S.TABLE.PTR MES.TAELE)
MES.TABLE.ENTR~i)

LOCP ( COND
(ME S.TAEDLE.PTR (f t  more entries in the table :

check the next one)
(sETQ MES.IABLE.ENTRY (CAR MES.TAELE.PTR))

(CO ND
((MATCH.MES.WITH.TABLEENTRI NEWMES

(CAR MES.TAEsLE.ENTRY))
(SETQ NE~MES (MES.APPLY.ENTRY

N~WME S
( CA D R MES.TAELE.ENTRY)))

(SET Q MES.TAbLE.PTR NES.TABLE)
( f t  Now we loop back , and
start all over again)

( GO LOOP ) ) )
(SETQ MES.TABLE.PTR (CDR t4ES.TABLE.PTR))
(GO LDO P))

(T

( f t  That’s it! NEWNES is the new message; it will be sent
to the module contained in its TO slot by MES.PROCESSCR)

(RETURN N E WME S])

(MATCH. tIES .WITH. TABLEENTRY
[ LAMBDA (ME S MAT CHLS T ORFLG )

143



( f t  Tries to match the message with the list in MA TCHLST.
If ORFL G is T , only one element of the matchl ist has to
match; the matchlist may start with AND , OR , NOT or NULL
in which case the appropriate recursive call is made)

( FROG (VAL PROP )
( RETURN

(CO ND
[MATCHLST (ft There is something to match

with: let us try it out...)
( CO ND

[(EQ (CAAR MATCHL ST)
( QUOTE AND ) )

(ft The match list starts with an AND : we must match
everyth ing inside the AND list)

(C0ND
(ORFL G

(‘ we were called with OHFLG:T, then we must either match
everything in the AND list, or match some element in the
OR list——of’ which the AND list is only one!)

(OR (MATCH .MES .WITH.TAELEENTRY MES
( CDA R MATCHLST ))

(MATC H .MES .WITHTABLEENTRY tIES
( CDH MATCHLST ) T ) ))

(T
( f t  otherwise: we were part of another AND list : we must
match EVERY thing)

(AND (MAT CH.MES.WITH.TABLEENTRY tIES
( CDAR MATCHLST ))

(MATCH .MES.WITH.TABLEENTRY MES
(CDR MATCHLST]

[ (E Q ( CAA R M A TCHL ST)
( QUOT E O R ) )  ( ft W~ go through the same

type of’ ‘hing for an OR list)

(CO ND
(ORFLG

(ft he were part of an OR list: we must either match this
Oh list, or any other element of the upper OR list!)

(OR (MATCH .MES .WITH.TABLEENTRY
tIES ( CDA R MAT CHLST ) T)

(MATCH .MES.WIT}I.TAELEENTRY
tIES (CD R MA TCHLST ) T)))

(T
( f t  be were part of an AND list:  we mus t match at least one
element of this OR list , and all the other elements of the
upper AND list)

(AND (MATCH .NES . WITH. TABLEENTRY
tIES ( CDAR MATCHLST ) T)

(MATCH .MES.WITH.TABLEENTRY MES
( CDR MATC HLS T ]

44

— — - - - - — ~~~ _..,



[(on (EQ (CAA R MATCHLST)
(QUOTE NULL))

(EQ (CAAR MATCHLST)
(QUOTE NOT)))

(‘ This is a NULL or NOT list)
(CO ND

(ORFL G
(ft We were in an OR list : either we do not match the
element of this NULL list, or we match some other element
of the upper OR lis t)

(oft (NULL (MATCH.MES.WITH.TABLEENTRY
MES ( CADAR MATCHLST ) ) )

(MATCH .MES . WITH. TABLEEN TRY
MES (CDR MAT CHLST ) T ) ) )

(T
(ft We were in an AND list: we must not match the element of
t he NULL list , and we must match all the other elements of
the upper AND list)

(AND (NULL (MATCH.MES.WITH.TABLEENTRY
MES ( CADA R M A TC H LST )) )

(MATCH.MES.WITH.TABLEENTRY
MES (CDR MATCHLST ]

[(on (EQ (SETQ PROP (TABLE.ENTRY.GET
( CAAR MAT CHLST )) )

(QUOTE ::))
(AND (E Q (SETQ VAL

(TABLE.ENTRY .GE T
( CADAR MATCHLST )) )

( QUOTE : : ) )
(MES.GETP tIES PROP))

(EQUAL (MES.GETP MES PROP) VAL)
(AND (LIST? VAL )

(EQ (CAR VAL) (QUOTE ::))
(EVAL ( CADR V A L ) ) ) )

(ft We finally get to the check itself. It will match in any
of the following cases: 1.0 the slot name is :: —— this
indicates that th is part must always match... 2.0 or the
slot must exist in the message, and the value in the match
list is :: —- this means that we are only checking for the
existerx~e of the slot. 3.0 the values of the slots
match in the message and the match list. 4.0 the value of
the slot is a list starting with :: then we just execute
the CDR of the list.
Then , if we were in an OR list: we are through. Otherwise ,
we must test the other elements of the upper list.)

(OR ORFLG (MATCH.MES.WITH.TABLEENTRY tIES
( CDR MATCHL ST]

(ORFL G

145



(ft  the match fa iled , but we were in an OR list: try
the other elements)

(MATCH.MES .WITH .TABLEENTRY MES
(CDR NATCHLST) T]

(OR FL G
(ft There is no more to match with , and we

were in an OR list: the match fa iled )
NIL )

(T
(f t  There is no more to match with , and we

were in an AND list: the match succeeded)
T ])

(MES.APPLY .ENTRY
[LAMBDA (MES PR OPVALLST )

( f t  Creates the new message propert ies given in PR OPVALLST )

( f t  Each eleme nt of PROPVALLST is a list of 2 elements: a
slot name , and a slot value. If the slot name is NIL ,
t he slot va lue is st ill evalua ted , but no new messa ge
slot is created —— supposedly in this case , we are only
int erested in the side effects  of evaluat ing the slot
value...)

( FROG (PROP VAL (LOOPLST PROPVALL ST)
(N EW MES t IES ) )

LOOP (COND
(LOOPLST (SETQ PROP (TABLE.ENTRY.GET (CAAR LOOPLST)))

(SE TQ VAL (TABLE.ENTRY .GET (CADAR LOOPLST)))
( AND PROP (MES.PUT NEWMES PROP VAL))
( SETQ LOOPLST ( CDR LOO PLST ))
(GO LOOP ))

(T (RETURN NE WME S))

(TABLE.ENTHY .GET
[LAMBDA (ELT )  ( f t  Eval uates the entr y element )

(CO ND
( (OR (ATOM ELT )

( N E Q ( CA R ELT )
(QUOTE : ) ) )

(* If the element is an atom: return it. If it is a list
whose first element is not a : return it too. Otherwise,
evalua te each element of the list)

146

L - - -



ELT )
(T ( FROG ((ELTLST (CDR ELT ))

RESPONSE )
LO OP (COND

(ELTLST (SETQ RESPONSE (EVAL (CAR ELTLST)))
(SETQ ELTLST (CDR ELTLST ))
(GO LOOP ))

(T ( RETURN RESPONSE] )

1~7

L _ 
- . _ _ __ _  _ _



Appendix D

Use r In terfac e Funct ions



.

~~~~~~

11!

Appe ndix D

User In terface Fun ct ions

(TTY ME S
[LAMBDA NIL

(FROG (tIns ARGS PROP FN LOOPL.ST NUM)
(SET.I.FLAG T)
(TERPR I)
(PRINT 1 “Please specify the message properties and values:”)
(TERPRI)
[SETQ MES (LIST (QUOTE TO)

(P RO GN (T E R P R I)
(SPACES 3)
(PRIN 1 “TO”)
(SPA CES 13)
(P EEKC NIL T)
(CAR (R E A D L I N E)))

(QUOTE FROM)
(QUOTE TTY :)
(QUOTE tIES. FUNCTION)
(QUOTE FN.MES)

(ft FN.MES is a function which knows how to call other
functions It receives its arguments in a message where
MES.FN is the name of the function to call; and it calls
that function with the appropriate arguments.)

(QUOTE MES.FN)
(PR0GN (SPA CES 3)

(PRIN1 “MES.FN”)
(SPACES 9)
(PEEKC NIL T)
(SETQ FN (CAR (READLIN E]

(SETQ AR GS (A R GLIST FN))
(SETQ LOOPLST ARGS)

(‘ ARGS is now the list of arguments of’ MES.FN)

LOO P (SPA CES 3)
(CO No
(LOOPLST (SETQ PROP (CAR LOOPLST))

(P R I N 1 PROP)
(ft this prints the argument name)

(SPACES (COND
((ICREATERP 1 14 (SETQ NUM (NCHARS PROP)))
(IDIF FERENCE 15 NUM))

(1 1)))
(PEEK C NIL T)

149

- ..-. -.---.-. . . --.

(SETQ LOOPL ST (COR LOOPLST))
(sETQ MES (APPEND tIES (LIST PROP)))
{SETQ tIES (APPEND tIES (COND

((hEADLINE))
(f t we get the argument value from the user)

(T (LIST NIL]
(GO L O O P))

((SETQ PROP (PROGN (PEEKC NIL T)
(R E A D L I N E)))

(f t we check if’ the user wants to add to the message)
(SETQ MES (APPEND tIES PROP))
[OR (CDR PR OP)

(SETQ MES (APPEND MES (LIST NIL)
[SET~ ARG S (APPEND A R GS (LIST (CAR PROP]

(ft if yes: we add it and its value to the message)
(GO LOOP)))

(T ERP RI)
(T E R P R I)
(PRINT 1 “Thank you .”) (ft it always pays to be polite)
(sETO MES (NcONc 1 tIES (QUOTE ARCS)))
(SE1~ tIES (APPE ND tIES (LIST ARCS)))
(T E H P R I)
(QUEUE.MES (APPLY (QUO1E CREATE.MES)

tIES))
(ft finally the me5sage is created and queued)

(i~FTFROM (QUOTE USEREXECI)

(FN.ME s
[LAMBDA (MEs)
(FROG [LIST (ARCS (MES.GET P tIES (QUOTE ARGS]
LOOP (CONC

(ARG S [OR (EQ (CAR ARCS)
(QUOTE MES.FN))

(SETQ LIST (NCONC 1 LIST (MES.GET P tIES
(CAR AR GS]

(SE1c7 ARCS (CDR ARGS))
(GO LOOP)))

(APPLY (MES.GETP tIES (QUOTE MES.FN))
LIST)

(PRINT. TTYMES
[LAMBDA (MES)

(FROG (ID)
(WRITE (MES .GETP tIES (QUOTE MES.FUNCTION))

“message”

50

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

: -
~~~~~~~~~~~

---
~~ .-~~~~~~~~~

(MES.GETP tIES (QUOTE MES.ID))
“receive d from ”
(MES.GETP tIES (QUOTE FROM)))

(TERPRI )
( TE R PRI )

LOOP( SETQ ID (ASKUSER NIL NIL
“

Wh ich action do you wish to take? “

(QUOTE ((R “eply to it
RETURN ( QUOTE R))

(F “orward it
“ RETURN ( QU OTE F))

(F “rint it
“ RETURN ( QUOTE F))

(S “uspend
RETURN (Q UOT E S)

EXPLAINSTRING
“Suspend plan and save message”)
(D “efer answer

“ RETURN (QUOT E D)
EXPLAINSTRING

“Defer answer (message saved and plan continued)”)
(B “y—pass

“ RETURN (QUOTE B)
EXPLAI NSTRI NC

“By—pass question (plan continued but message lost)”)
(%

“Reply to it
“ NOECHOFLG T RETURN (QUOTE R )
EXPLAINSTRING “< CR> may also be used to reply to the message.”)))

T))
(CO ND
((EQ ID (QUOTE P))

( f t  the user wants to see the message: show it to him)
(WRITE “It contains the following information:”)
(TERPRI)
( fo r EL~~1ENT in tIES do (WRITE (CAR ELEMENT )

(CD H EL E M E N T ) ) )
(GO LOOP))

( ( E Q ID (QUOTE R ) )
(‘ the user wants to reply to the message: call REPLY.MES)

(REPLY.t€S tIES))
((EQ ID (QUOTE s))

( the user wants to suspend planning : call SAVE.MES)
(SAVE.ME S tIES))

( ( E Q ID (QUOTE B))
( f t  the user wants to by—pass the question: call REPLY.MES

to send back a null answer)
(REPLY .MES MES T))

51

1~



__

((E Q ID ( QUOTE F ) )
( the user wants to forward the message: call FORWARD .MES)

(FORWARD .MES MES))
( ( E Q ID (QUOTE D ) )

(“ the user wants to defer the answer : call SAVE.MES to save
t he message, then REPLY.HES to send back a null answer)

(SAVE.ME S MES)
(REPLY.ME S tIES T])

(SAVE.ME S ( f t  saves the message for later use.
asks for an ID under which it will
save the message, or generates one.)

[LAMBDA (MEs)
( PROC ( ID )

LOOP [S ETQ ID
(ASKUSER NIL NIL “ID for saved message: “

( QUOTE (($ EXPLAINSTRIN G

“a number needed to save the message: this number may then be used
in REFLY.MES and FORWARD.MES later on.”)

(%
““ RETURN NIL EXPLAINSTRING
“<CR> may also be used: then , the ID is automatically generated”
NOECHOFL G T]

[CO ND
( (NULL ID )

(PRINT 1 (SET Q ID (S~rQ MES.SAVED.ID (ADD 1 MES.SAVED.ID]
(CO ND

( (NUMBER ? ID)
(PUTHASH ID MES MES.SAVED.HARRAY))

(T (PRI N T 1 “?“)
(GO LOOP])

(REPLY.ME S
[LAMBDA (tIES FLG) ( f t  builds a reply message to tIES)

(PR OC (TTYFLG NEW M ES AR GS )
[Co ND

((NUMBERP MES)
(SETQ TTYFLG T) (f t  fi rst get the saved message)
(SET~ tIES (GETHASH tIES MES.SAVED .HARRAY )

(CO ND
(FL G ( GO END )) )

( f t  if’ FLG is set, we just want to send a NULL message to
cont inue the opera tions )

[CO ND
((SETQ ARGS (MES.GETP MES (QUOTE ASK .TO.TTY)))

(ft a “specialized” function exists: use it)

52

~~~~~~~~ 1~~.~~~~~ 


—,—— . - --•

(SETQ NEWTIES (APPLY’ ARCS tIES))
(SETQ ARGS)
(Co ND

([ASKUSER NIL NIL

Do you want to add anything else to the message? “

(QUOTE ((Y “es
“ RETURN T)

(N “o
“ RETURN NIL)

(%
“No

“ NOECHOFLG T RETURN NIL EXPLA INSTRING
“<CR> may also be used to say no .”]

(GO LOOP))
(T (GO END]

(COND
((SETQ ARCS (MES.GETP MES (QUOTE ARGS)))

(f t no specialized function: let us do it the hard way)
(PRINT 1 “Please , specify the following values

LOOP [COND
(ARCS (SPACES 3)

(ft for each property in ARGS , ask a value to the user)
(PRIN 1 (CAR ARCS))
(SPACES (COND

[(IGREATERP 15 (N CHAR 3 (CAR A R G S)))
(IDIFFERENCE 15 (NCHARS (cAR ARGS]

(1 1 5)))
(PEEK C NIL T)

(‘ and put the property value pair in the message)
(SETQ NEWMES (APPEND (LIST (CAR A RGS)

(CAR (READL I NE)))
NEWMES))

(SETQ ARCS (CDR ARGS))
(GO LOOP))

(T (SPA CES 2)
(f t then ask for more property /value pairs)

(PRIN1 ,ift ~~)

(PE EKC NIL T)
(CO ND
((sETQ ARGS (READLINE))

(SETQ NEW MES (APPEND ARCS NEWMES))
(SETQ ARCS)
(GO LOOP]

(we build the complete reply message)
END (SETQ NEWMES (APPEND (LIST (QUOTE TO)

(MES.GETP tIES (QUOTE FROM))
(QUOTE FRct.1)
(OR (MES.GETV tIES (QUOTE

a.

-- . . -~~~--..-~~

.
~~~~~~~~

. . _
~~

. -

- - ~
__.—,~

-_. 
~

.
. _.- - . -.

ORIGINAL.FROM))
( QUOTE TTY: ) )

(QUOTE MES.FUNCTION)
(MES.GETP MES

(QUOTE RETURN.MES.TO))
(QUOTE IN.RESPONSE.TO)
tIES)

NE~MES ))
( QU EUE .MES (APPLY (QUOTE CREATE.MES)

NEW M ES ))
(‘ and queue the result)

(CO ND
( TTYFLG (B E TFRO M ( QUOTE USE R EXEC ] )

We now give , as an exam ple , the definition of

REQUEST.ASSIGN.FROh .TTY which is the “specialized” function used in the

ACS session of section V.

(REQUEST. ASSIGN. FROM . TTY
[LAMBDA (MEs)
(PROC ((MODEL.NAME (MES.GETP tIES (QUOTE MODEL.NAME)))

(ID (MES.GETP tIES (QUOTE REQUEST.ID)))
(RES.NAME (MES.GETP tIES (QUOTE RES.NANE)))
(STA RT (MES.GETP MES (QUOTE START)))
(END (MES.GETP tIES (QUOTE END)))
(nsT (MES.GETP tIES (QUOTE EST)))
(LS T (MES.GET P tIES (QUOTE LST)))
(EET (MES.GETP tIES (QUOTE EET)))
(LE T (MES.GETP MES (QUoTE LET)))
X Y Z LST 1)

( TERPRI )
(MAPPR INQ (“Need an assignment of a “ RES.NAME “ for “

MODEL.NAME “ number “

ID “ .“ TERPRI
“Current requirements are as follows: “

T E R P R I ) )
[CO ND

( (LISTP START )
“Start time : “

( CAR START )
“ .“ T E R P R I ]

[Co ND
((LIST? END)

(MAPPRINQ ((TAB 5)
“End time : “

(CAR END)
“ .“ TERPRI]

[CO ND
(EST (MAPPRINQ ((TAB 5)

“Earliest start time desired : “

( CAR EST )



“ .“ TE RPRI ]
ECO ND

(LST (SETQ LST 1 LST)
(MA PPR IN Q ( (TAB 5)

“Latest start time desired : “

(CAR LST 1 )
“ . “ TERPRI]

[COND
(EET (MAPPRINQ ((TAB 5)

“Earliest end time desired : “

(CAR EET )
“ .“ TERPRI]

[Co ND
(LET (MA PPRINQ ((TAB 5)

“Latest end time desired : “

(CAR LET )
“ . “ TERPRI]

( TE R PRI )
(MAPP R I NQ ( (TAB 10 )

“Enter name of “ RE S .NA ~ E “ assigned ,” TERPRI
(TAB 10 )
“or <CR> to defer assignment: “))

[SETQ X
(CAR (A SKUSER NIL N IL “

(QUOTE ( (~NIL RETURN NIL EXPLAINSTRING “<CR) to defer assignment”)
($ NIL RETURN ANSWE R EXPLAINST R ING

“name of a resource”]
[CO ND
((NULL X )

( RETURN N I L ) )
[ ( A N D  (LI ST? START )

(LISTP EN D ) )
(CO ND

([ASKU SER NiL NIL “Are the start and end times OK? “

(QUOTE ((1 “es
“ RETURN T)

(N “o
“ RETU RN NIL)

(%
“yes

“ RETURN T NOECHOFLG T EXPLAINSTR1NG “<CR> may also be used for yes”]
(SET~ Y (CA R START ))
(SETQ z (CAR END))
(GO L]

((AND (NULL (LISTP START ))
(NULL (LIST? END))
LST EET )

(CO ND
([ASKUSER NIL NIL

55

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



~ IU~~

“Are the latest end and earliest start times OK? “

(QUOTE ((Y “es
“ RETURN T)

• (N” o
“ R E T U R N  NIL )

“yes
“ RETURN T NOECHOFLG T EXPLAINSTRING “<CR> may also be used for yes”]

(SETQ Y (CAR LST) )
(SETQ Z ( CAR E E T ) )
( CC L ]

(MAPPRIN Q ((TAB 10)
“Enter start time of assignment: “))

(SETQ I ( R E A D ) )
(MA PP R IN Q ( ( TAB 10 )

“Enter end time of assignment : “))
(SETQ Z ( R E A D ) )

L (RETURN (LIST (QUOTE NAME )
X
(QUOTE START )
Y
( QUOTE END )
Z ] )

(FORWARD .NES (f t  forward the message)
[LAMBDA (MES)

(PROC (TTYFLG NEWMES)
[CO ND
((NUMBERP tIES) (

~ first get the message itself)
(SET~ TTYFLG 1)
(SETQ MES (GETHASH tIES MES.SAVED.HARRAI]

(PRIN1 “To: “ )

(PEEKC NIL T) (‘ get the destination from the user)
(MES.P~rr tIES (QUOTE TO)(CAR (READLINE )))
[CO ND

( ( A SKUSER NIL NIL
“Do you want the originator of the message to be TIY:? “

(QUOTE ((Y “es
“ RETURN I)

(N ”o
“ RETURN NIL )

“Yes
“ NOECHOFLG T RETU RN T EXPLAIN STRING

“<CR> may also be used for yes.”)))
T)

[ME S .PUT tIES (Q UOTE ORI GI NAL.F R OM )
(OR (MES.GETP tIES (QUOTE ORIGINAL.FROM))

(MES.GETP tIES (QUOTE FROM ]

56



(ME S.PUT tIES (QUOTE FROM)
(QUOT E TIY:]

( f t  add an ORIGINAL .TO and a FRa~1 part , then queue it )(Q UE U E.ME S MES)
(CO ND

( TTYFLG (RE TFROM (QUOTE USER EX EC ))

57



—~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DISTRIBUTION LIST

Defense Documentation Center 12 copies
Cameron Stat ion
Alexandria, Virginia 223114

Off ice of Naval Research 2 copies
Informa tion Systems Program
Code 1437
Arlington , Virginia 22217

Off ice of Naval Research 6 copies
Code 1O2IP
Arl ington , Virginia 22217

Of fice of Naval Research 1 copy
Branch Office , Boston
1495 Suniner Street
Boston , Massachusetts 02210

Office of Naval Research 1 copy
Branch Office , Chicago
536 South Clark Street
Chicago, Illinois 60605

Off ice of Naval Research 1 copy
Branch Office, Pasadena
1030 East Green Street

New York A rea Office 1 copy
715 Broadway — 5th Floor
New York, New York 10003

Naval Research Laboratory 6 copies
Tech nical Informat ion Div ision
Code 2627
Washington , D.C. 20375

Dr. A. L. Slafkosky 1 copy
Scientific Advisor
Commandant of the Marine Corps
Code RD— i
Wa sh ington , D.C. 20380

Off ice of Naval Resear ch 1 copy
Code 1455
.-~rlington , Virginia 22217

Off ice of Naval Research 1 copy
Code 1458
Arlington , Virginia 22217

58

L .
.. ~~~~~~~~ . _ _ ~~~~~~~~

.
~~~~~~~

.
- -

~~~~~~


Naval Ocean Systems Center 1 co py
Advanced Sof tware Technology Division
Code 822
San Diego, California 92152

Mr. E. H. Gleissner 1 copy
Naval Ship Research & Dev. Center
Computation and Mathematics Dept.
Bethesda , Maryland 200814

Captain Grace M. Hopper 1 copy
NAICOM/MIS PLANNING BRANCH (oP—9 16D)
Office of’ Chief’ of Naval Operations
Was hington , D .C. 20350

Mr. Kin B. Thompson 1 copy
Technical Director
Information Systems Division (OP—91T)
Off ice of Chief of Nava l Operat ions
Washington , D.C. 20350

Director 1 copy
Nat ional Secur ity Agency
Attn : Mr. Glick
Fort George C. Meade, Maryland 20755

Naval Aviation Integrated Logistic 1 copy
Support Center

Code 800
Patuxent River , Maryland 20670

Professor Omar Wing 1 copy
Columbia University in the

City of New York
Department of’ Electrical Engineering

and Computer Science
New York , New York 10027

Mr. M. Culpetter 1 copy
Code 183
Naval Ship Research and

Development Center
Bet hesda , Maryland 200814

Mr. D. Jefferson 1 copy
Code 188
Naval Ship Research and

Development Center
Bethesda , Maryland 200814

4 59

1

.TT .
r

Robert C. Kolb , Head 1 copy
Code 8214
Tact ical Command Control and

Navigation Division
Naval Ocean Systems Center
San Diego, California 92152

Defense Mapping Agency Topographic 1 copy
Center

Attn : Advanced Technology Division
Code 141300 (Mr. W. Mullison)
6500 Brookes Lane
Washington , D.C. 20315

Com ma nder , Naval Sea Systems Command 1 copy
Department of’ the NAvy
Attn : PMS 30611
Washington , D.C. 20362

Professor Mike Athans 1 copy
MIT
Dept. of Elec. Eng. & Comp. Science
77 Massachusetts Avenue
Cambridge , Massachusetts 02139

Captain Richard L. Martin 1 copy
Cmd. Officer , USS Francis Marion
LPA—2149
FPO , New York 09051

60

-~~~~~~~~~ - .-

