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AN INVISCID MODEL FOR SUBMERGED TRANSONIC WALL JETS

N. D. Malmuth* and W. D. Murphyt
Rockwell International, Science Center
Thousand Oaks, California 91360

Abstract

Nonlinear flow phenomena in transonic wall jets
prototypic of propulsive lift devices such as
1lifting ejector augmenters and upper surface blown
wings have been studied using the Karman-Guderley
model. From modern line relaxation methods, an
efficient computational method has been developed
to treat the diversity of shock patterns produced
by various wall shapes and exit conditions. Asso-
ciated with the algorithm is a far field determinea
analytically from the boundary value problem appro-
priate to subsonic conditions far downstream.
Numerical results for circular arc boattails indi-
cate rapid relaxation of the wall induced disturb-
ances, even in the supersonic region. Partially
subsonic and supersonic jet exit conditions lead to
the anticipated wave interactions. Studies of other
shapes show that branch point singular behavior
associated with satisfaction of a Kutta condition at
the wall trailing edge is obtained by demanding
continuity of the perturbation potential at this
point.

Introduction

Increased emphasis on propulsive lift devices
in tactical and advanced aircraft has stressed the
need for greater understanding of the underlying
fluid dynamic processes which control the degree of
force augmentation that can be achieved. Such con-
cepts are exemplified in recently proposed super-
critical jet flap implementations for advanced
highly maneuverable aircraft such as the NASA HiMAT.
Similar mechanisms are illustrated in upper surface
blowing configurations and lifting ejector aug-
menters which are embodied in the Navy's XFV-12A.1
An essential element in the operation of these
devices are Coanda-type wall jets consisting of jets
bounded by curved walls in which a transonic pri-
mary flow entrains an ambient secondary stream
through turbulent mixing processes. Existing models
for such wall jets stress the incompressible treat-
ment of these phenomena using eddy viscosity and
energy methods. Correspondingly, there is a need
for simulations that include the effects of non~
linearities, mixed flow, and wave interactions on
the development of the wall pressure distributions
and overall augmentation forces.

Previous investigations of related phenomena
are limited to the treatment of inviscid shockless
free jets, and include the work of Chaplygin.z
Frankl,3 and Guderley‘ all of which employ hodo-
graph methods. To study shock development and
mixed flow phenomena, we have applied modern relaxa-
tion methods to treat arbitrary jet exit velocity
distributions and assess the influence of an adja-
cent wall boundary.

‘In this paper, the computational model will be
discussed from analytical and numerical viewpoints.
In analogy to unbounded cases such as airfoil flows,
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the far field is employed to condition the numerical
problem and provide useful information about the
decay of disturbances. Both free and wall jets are
discussed for several examples illustrating various
features of this class of flows.

Formulation ' »

Referring to the physical configuration
depicted in Fig. 1, a jet i{s shown exhausting from
the exit OC bounded by the wall 0Q and a mixing
layer which has been idealized as the slip line CB.
This approximation neglects turbulent diffusion
processes in the study of wave interactions with
the shear layer, but these phenomena can be
incorporated in later refinements. Furthermore, it
will be assumed that wall and jet turning angles
are small. In contrast to the usual jet formula-
tions, in which an upstream cowl lhlp!_él specified,
or stagnation conditions are assumed, this
analysis will treat a specified exit Mach number
distribution. Additional assumptions are irrota-
tionality and subsonic conditions infinitely far
downstream. The methods applied here can be
generalized to cases where these restrictions are
not present. Finite length walls 0Q are considered
in keeping with relevance to upper surface blown
wings and other propulsive 1lift devices.

Returning to Fig. 1, the equations of slip

lines Sl(x,y), Sz(x,y), and the wall boundary B(x,y)
are assumed as

CB: Sl'y-d-GGI(x) =0
QA: Sz "y - Gcz(x) =0
0Q: B=y - {6f(x) =0

vhere § 1s a characteristic flow deflection
parameter. In a small disturbnnciliinit in which

the scaled jet exit height D = d&*/°, the wall length
length L, gnd S?e transonic similarity parameter

K= (1 -M5/5%3 are held fixed, as § = 0, the
asymptotic expansions of the velocity, pressure P,
and density p are

->

1 yi,8,4,0) & [1 + /% _(x,1:x,0,1)
+ ]I + [“Y + ]3

(1.1a)
PIog s 1 - 6% 4 ... (1.1b)
/0 1 + 8%+ ... (1.1c)

where the subscript * signifies conditions at x = oo,
$ 1is the por:urbationzpotcncinl. P, is the ambient
pressure, U = a M, a, = YP /0y, » Py
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is the density, a,, is the speed of sound, E ii shc
flow velocity and the scaled coordinate Y = § / y
is also fixed in the limit. If a further transfor-
mation is introduced in which § = Y, a boundary
value problem can be formulated for the case of an
elliptic far field. The region can be considered
as -the rectangular domain shown in Fig. 2, 5
corresponding to transfers of the boundary condi-
tions to the appropriate undisturbed streamlines
allowed by the small disturbance limit. Dropping
the tildes, the following small disturbance equa-
tion holds inside OQABCO

8¢ = (3%/ax® + 3%/ay?)o

¢.)

(u = ¥

= (1) (2u?/0x) /22
1.2)

where we define functions G and ¢ such that

u(x,y) = a(x,Y)
¢(x,y) = &(x,Y) .

Invoking continuity of pressure and flow tangency
along the slip lines, we have, with a = D/VK

’("‘) =0 (1.3‘)
o, (x,2) = ¢l , 0<x<e (1.3b)
$(x,0) = C; , LEx<o (1.3¢)
¢,(x,0) = Gy(x) , L<x<e (1.34)

where the constant C1 is to be computed by itera-
tion. In this approximation, the slip lines are
therefore not truly free, the unknown functions G,
being computed from the solution by a simple diff‘r-

entiation. The remaining boundary conditions are
¢ (x,0) = f(x) SF(x). , 0€<x<L (1.3e)
Ox(O.Y) = h(y) = H(Y) (1.3f)

Equation (1.3f) is representative.of the initial
exit velocity profile which conceivably is deter-
mined by the upstream duct contour and stagnation
pressure.

Far Field

To complete the formulation of the problem for
subsonic conditions far downstream, the asymptotic
behavior is derived in this section. Introducing
a Green's function G satisfying homogeneous
Dirichlet conditions on OA and CB, and homogeneous
Neumann conditions on OC and AB in Fig. 2 with

T

AG = §(P,Q) = 8(x~£)8(y-n)

where Q(£,n) is the source point and P is the field
point, Green's theorem applied to the region OQABCO
gives the following integrodifferential equation for °

-
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The quantity G may be obtained from the cosine
transform where

C= f G cospxdx
0

c-%f.i': cospxdp
0

The subsidiary equations for G are

2=

48 _ 5% = 8(y-n)cospt
dy
(8] (&) (&) -
g = cospt
["]rw (d’)y-m 497/ gun-
(B 2 Oy = @ =0
G(p,0;E,n) = G(p,a;5,n) = 0
Implying that
a-‘-‘mﬂ’ﬂ}if—‘“ﬁuﬂﬁ L yen (e
- a8 : .m’.l CO8) .y >n (1.‘5)

Equations (1.4) can be inverted by a treatment
of appropriate contour versions for the inversion
integrals, initially, without the cospf factor amd,
subsequently, including it using the shift theorem.
To obtain convergence and exponential decay of the
integrand, the appropriate closure for the comtour
1s & large semicircle |p| = R, R =, vwith Im p 20
for x ¥ 0. Susming the residues at the poles
penmi, n= (sgnx)(1,2,3,...), gives the following
final expression for G:
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o0
-16 = 3 0 ‘sin nay sin nnn{c-m(#{)
1

& .-nalx-El} (1.5)
a 3 n/a

Equation (1.5) is valid for y®n, x £, and can
be summed as the integral of a geometric series
giving
-276 = s(a(x),a(my)) + $(ax+0),a(n-y))
- s(al:-{l.a(my)) - s(ulx—El u(n-y))

=o =& {[Emnbmaing)]

1-cosa secha|x- ]} 1.9

1-cosa(nty)secha|x~-E

where

oo
S(A,B) zn-llﬂcom - -ta|1-e"%|
1

- % ta(1-207Acosn + ‘-u)

~N
"

A+ 1B

An inspection of these formulas reveals that G is
exponentially small as x %, and is logarithmically
singular at the source point as anticipated.

Based on (1.5), the dominant term of the

asymptotic expansion of Il as x > % {g given by the
formula

X

I, & %11.-“'1”, f sinandn f u?sinhafdg
; 0 0

(1.6)

vhere in the evaluation,” the contribution of the

simple pole of GE vanishes, and integrals of the
form "

a oe
f dnf I=Elee nrde  and
0 0

a
/; dn j:. e (e nyag a.n

arise. The multiplication by “2 of the asymptotic
expansion reprasented by (1.5) as x < *® and {ts
subsequent integration with respect to £ formally

.‘nn upper limit of the inner integral can be inter-
preted as * ¢o vithin terms of higher order
involving ¢“3X g8 x =, This interpretation is
sade in Eq. (1.8).

gives a development dominated by these integrals.
Writing the inner integral of the first of 1.7),
as

X
f xElg e nyae T e ma
0 0

ax " -af
+ e e f (E ."I)d€ 0
/.

and if the e "X factor of the first integral on the
left-hand side ig indicative of the behavior of ¢
as x %, then u” and f are O(e~2%§) in this limit.
If u? and f are bounded on the range of integrationm,
the first integral converges and the second is
O(e~20X) a4 x 0, The second integral in (1.7)

requires no such decomposition and is also conver-
gent; hence, (1.6) follows. Evaluating the

remaining integrals, using (1.5) and (1.5), the
final expression for the far-field is

® & O = € (1-Y%) + Cpre ™ stnmye
$ 00 a5 xow ‘ (1.8a)
wvhere

00
z Ll tomyeay [ o2 1nhE*d
e 2 55 stor _/; 2 (8,1 s1angrag

- ZT H(Y) sinmedy +—— f ®(£,0)coshE*dE
()} o/k Jo
- 2c1-1uh L* (1.8b)

x* = mx/ovK |, £

/oK, L* = /DK,
Y* = Y/D .

Numerical Analysis

The numerical procedure is similar to that one
first developed by Hum87 and extended by Jameson8
and Bailey and Ballhaus. Briefly, the transonic
potential equation in divergence form is discretized
using central differences when the equation is
elliptic and backward differences when it is hyper-
bolic. Thus, we may write

1,2
(KO‘ - ﬁz'- 0!)" + (OY)Y
2 2
~ RO 01/ - I;—l"n-u/z"u-uz))/"i
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s )[% _yt (°1+1‘°1 . °1‘°1—1)]
X 2 \Pyys2 P12
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3 [°1+1‘°1 & 4% ]

Pis1/2P1 PiPyoy/2
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i-1 2 \p P
1-1/2 1-3/2
v * 4+ o T +
;. - [’1"’1-1 S °1-2] s i T 0
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5 where the missing subscript is j when only 1's are
- - present and i when only j's are present. For
example, 01_1 2 01_1.1 and °j+1 = 01’J+1. Also,

Py ™ Gy = B ME Gy gy Sy MR

Y

Peedfz ™ %ot " %t Y2 ™ ) T Na

Y =¥

Bev ] Pi-1/2 © %1 7 i1 Yer/2 7 P11 T Yy

Pyrr/2 " %41 T N

and
{0 if the point (xi’Yj) is elliptic
: M, =
e et L 1 1if the point (xi’Yj) is hyperbolic
o 127 .  Define
S, . (°1+1 bl e °1—1)
3 2\ P12 Pi-1/2

then
S 0 1fvc1>o
'. g -
1 1 1if VC1 <0

Here the iterations are viewed as steps in pseudo-
time with ¢* (NEW) and ¢ (old) values. In addi-
tion,

o’
Lo )l
Piay/Py 1\PyPyoqyyn  PiPyoyyn I\P4Py 372

These definitions guarantee that the linearized
difference algorithm satisfies thg von Neumann
stability criterion. See Jameson for the proof.

Overrelaxation is employed in the elliptic
region (ui 3 S Uiq,4 " 0) only. First, define
’

—— il s

o BlpPeyy 0 & ERgPyy o

and

02 e + 03

Then, the elliptic difference expression in Eq. (2.2)
given by

+ o
[°1+1'°1 SR ]

Pi+1/2°1  PiPy-1)2

+ +
- .loi.l - .20‘ + .3°1+1

is replaced by

e 0+

+
%11 ~ 8ey/e = Pe, (1-1/w) + e 0

3 i+l

where w is the overrelaxation parameter; i.e.,
1<w<2. Note that if w = 1, there is no change
between the two expressions.

To improve stability near the sonic points,
especially if a discontinuous wall boundary condi-
tion is being considered, it was found necessary, as
in Bailey and Ballhaus,? to add to Eq. (2.1) the
term

+ +

BN 0 S L e
X, =X xt 2

1 71i-1 (%, = %))

where € is chosen to be in the range 0 € ¢ € .5.

Boundary Conditions

The boundary conditions ¢(x,D) = 0 and
QY(x,O) = £(x) may be incorporated into the numeri-
cal scheme usinglshe same techniques described in
Murman and Cole. First, we shall concentrate on
discussing the boundary condition at the jet exit
x = 0, which may be of one of two types: (A) sub-
sonic at the jet exit, and (b) partially or com-
pletely supersonic at the jet exit. The far field
boundary condition will be treated later.

(A) Subsonic at the Jet Exit

Here the boundary condition is
ox(o,y) = H(Y) 0SYSD
where

K = (Y+1)H(Y) > 0 for

In this case, we let x,,, = 0, X = Xy " Ax/2,

M, = 0, and uy, = 0, and we require x, - x

en, the x dJrivn:ive- in Egs. (2.1; and (2.2)
become
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[K“xJIZ " %2 " %1 (°i3/2 = 0:1/2)]/&:
3 [ % un °*1/2’][°x3/2 . %1/2]/Ax
: [‘ i y;_l('_zu-h i “(‘f))][oi‘;‘-°l - B(Y)]/Ax

(B) Partially or Completely Supersonic at the

Jet Exit

For this case two boundary conditions are
required at x = 0; namely,

9.,(0,Y) = H(Y) 0<y<D
and

$(0,Y) = g(¥Y) for Y € [0,D)
wvhere

K= (y+1)H(Y) <0 .

For all points Y € [0,D] in which
K = (Y+1)H(Y) > 0, g(Y) need not exist.

If a point (x,,Y,) is elliptic, we use the
discretization ;i:}n ln case (A). On the other
hand, if (x,,Y ) is hyperbolic, we assume the grid
may be extedded to the left by 4x/2, and we let
Xy = 0, x_; = -Ax/2, and 001 - O(O.Yj) - l(Yj)-

Using Taylor's theorem,

1,9 " %0g " 8x0,(0,¥)/2 = g(v,) - Lxu(Y,)/2

These values for ¢ ., and 0_1 may now be substi-
tuted into Eq. (2.9 1n the'ddrmal way, and line
relaxation may be applied to the first column of
unknowns along x = X

The far field Boundary condition given by Eq.
(1.8) contains two unknown constants, C, and ’
vhich must be determined in an uontiv} fashion.
The basic technique holds fixed while (:1 changes
until the solution converges.’' Then, is updated
by evaluating the integrals in Eq. (1.8b), and the
procedure is repeated until also converges. In
order to determine C,, the network is swept
from left to right uhn' line relaxation. After
the potential is computed on the line x = L,
extrapolation of the interior points yields
#(L,0) = & . Assuming only that & {s continuous at
X * L, ve fat c1 = &(L,0) = &(x,0) for x > L, which
guarantees that 0!(1.0) = 0 for x > L.

L 4 T Trail Ed

It is physically plausible that a Kutta condi-
tion given by

¢, L-,0) = ¢ (L+,0) = 0 (3)

is satisfied by the solution for trailing edge
neighborhoods in unmixed flow. Because of (3), the
nonlinear term in (1.2) can be assumed negligible,
and ¢ is locally harmonic in the scaled variables.
Let

z=x*+41y , xtex-|

mod 2

6 Zargz, r

w(z) = u(xf.y) = iv(x*,y) = complex velocity
vhere

us= Qx* y Ve 6, »

Then 1if the boundary conditions are locally
linearized near the point z = 0, we obtain

v(x*,0) *F(L) Sw , x*t 0 (4a)
u(x*,0) = 0 y X*>0 (4b)

To dominant order, a sufficient condition to satis~
fy (3) and (4) near the origin is that w has the .
following branch point behavior

vei(w+B7Z) as z=0 , (0<8<m (5)

where B is a real constant to be determined b{
matching with the outer nonlinear solution. qua-
tion (5) implies that

3/

¢~ ¢ *= -wy- % B> %g1n30/2 (6)

Several examples to be discussed indicate that the
approach described previously in which ¢ is main-
tained continuous at the wall trailing edge gives
numerical solutions that satisfy the Kutta condition
(3). However, a rigorous proof that this is an
implication of the algorithm has not been ﬁtcﬂptcd.
A similser procedure has been used by Kruppll to sat-
isfy the Kutta condition in the solution of the
transonic small disturbance lifting airfoil problem.

Results and Discussion

In addition to the assumptions given in the
Introduction, the analysis previously described is
not directly applicable to choked flows where up-
stream and downstream conditions are decoupled.

Sonic zones comprising the entire vertical dimension
of the flow field are thereby excluded. However, the
foregoing methods can be extended to handle such
cases.

A number of examples will now be considered.
For these cases, the associated wall displacement

e e e
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functions, and exit velocity distributions H(Y) are
given in Table 1. For these cases, K is unity and
D will take on this value for the remainder of this

incompressible flow problems in which a ungularfty
is reflected between free pressure boundaries
yielding an image development in which the strengths

paper. - alternate in sign to satisfy the slip line
Table 1. Wall Jet Cases
Case f = Wall Shape Function H(Y) Remarks
1 f=f =0 ,0<x<1 L = 3.8 for this and all
i 2 other cases
= -(1-x) , 1< x<2 .075
= 3-2x ,2Sx<L 0SYS1
2 f= fz - -fl
<3 f=f =0 , 0Sx<1 Has discontinuous slope
3 at x = 1
= [-142(1H) A-0]1/2L , 1SxSL
4 E=t, =0 ,0<x<1 ; Has reflex curvature on
= - curved ramp portion
.10%'12{‘:” "‘;:112‘1} S ey {’
S f-fs;-xz ,0<x<1|h=1 0SYS1/2 | ¢=0.20n0<YS<1/2
= 1-2x ,1Sx<2 =0,1/2<Y<1
= =3 ,2<X<L

Wall pressure distributions for the convex
ramp comprising Case 1 are shown in Fig. 3 for
K=1 and K = 1.46. Interpreting these results as
those for different final M_'s downstream but with
the same §, the decrease in M, leads to upstream
motion of the terminating shock but a preservation
of the shock strength. There is a smooth accelera-
tion to critical conditions with the location of
the sonic line established at the curvature dis-
continuity, x = 1. These calculations, which are
typical of the ocher cases, cost approximately $60
on the Berkeley 7600 and ran 15-30 CP seconds.
Figure 4 shows a close-up of the pressures near the
trailing edge. The dashed line has a slope propor-
tional to vx* appropriate to the singular behavior
given by Eqs. (5) and (6) and the Kutta condition
(3). 1Isobars shown in Fig. 5 are consisteat with
these remarks, and demonstrate the satisfaction of
homogeneous pressure boundary conditions on the
slip lines. Because of the weakness of the singu-
larity, e.g., ¢__ ~r-1/2 a5 r = 0, sg,einl numeri-
csl treatments 3uch as those of Woods*“ were not
used.

In Figs. 6 and 7, rapid decay of the dis-
turbances is indicated. The relaxation length for
this decay from (1.8b) with D = K = 1, is 7. This
exponential decay is typical of flows confined by
jet boundaries and is much more potent than for
bodies in unbounded fields. Qualitatively similar
effects have begn discussed by Murman,13 and
Pinzola and Lo"  in connection with tunnel wall
interference un transonic airfoils. The distinc-
tion between confined and unconfined flows can be
appreciated by an interpretation of the exponential
series due to (1.5) arising in the far field
developments dominated by (1.8). Because of
linearity of the far field, this series is directly
related to expansions occurring in analogous

condition.* Thus, the relaxation to uniform condi-
tions downstream which must be consistent with homo-
geneous conditions on the slip lines produces a more
rapid decay than found in unconfined flows.

In Figs. 8a and 8b, the upper and lower slip
lines obtained from integration of (1.3b) and (1.3d)
are given for Case 1. It is evident from Fig. 8a
that the curved surface in this approximation turns
the flow so that the streams are parallel for x = °e,
In the near field, it is evident from Fig. 8b that
this is not quite the case. Asymptotic parallelism
can be established for subsonic conditions far
downstream by integration of the small disturbance
continuity equation. Thus

: :
d +1 2
G () = Gy(x) = 2 /(; (Ku(x.?) - 32— u )dY 82

and since u = CXQ'**). this expression shows that
Gy(x) = G,(x) as x =%, Equation (7) can also be
oétaincd y differentiating (1.8a) with respect to
Y and using (1.3b) and (1.3d). For the case of a
free jet with a symmetrical exit Mach number profile
function H, i.e., H(Y-1/2) = H(1/2-Y), G, = and
the divergence theorem or integration of (7) between
x = 0 and ™ gives the displacement of the jet
infinitely downstream as

G, =3 _/0' l[mm R uz]a (8

*
Such a series can be summed by recognizing that it
is a partial fraction expansion of a hyperbolic
function which i{s exponentially small as x = o,
consistent with developments such as (1.8a).
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where G(0) = 0 has been used.

Insight into the mechanisms causing accelera-
tion to supercriticality can be obtained from the
flow direction field for Case 1 shown in Fig. 9.
For clarity, all isocline slopes have been magni-
fied by a factor of 100, and only the entrance sec-
tion 0 S x €1 is depicted. The expansion around
the curved ramp on the interval 1 « x < 2, leads to
upstream influence in the subsonic region which
turns most of the flow downward upstream of x = 318
Producing throats and acceleration due to the
stream tube contraction required by the zero slope
boundary condition in that region. Also indicated
is the "ballooning" due to the singularity
occurring at (0,1), the top point of the Jet exit
station. In contradistinction to the trailing edge
where u = 0, local linearization cannot be used to
characterize the flow behavior in this region, and
some local similarity solutisn nuag be sought,
presumably of the form ¢ = x £(¥/x°) where a and B8
are exponents to be determined.

By contrast, the concave shape shown in Fig.
10 produces the anticipated compressive decelera-
tion, which is also depicted in Fig. 11.

The effect of a slope discontinuity is indi-
cated in Fig. 12. It is evident that the numeri-
cal method accurately locates the initiation of the
sonic line at the point (1,0) where the flow is
"tripped" to criticality by the acceleration
singularity at this location. In most other
respects, the pressure distribution is similar to
that for Case 1.

In Fig. 13, the effect of a reflex curvature
in accelerating the recompression process is shown.
As related to comparable turning and wall deflec-
tion treated in Case 1, the strength of the ter-
minating shock is considerably increased as well as
the magnitude of the pressures near the trailing
edge.

The effect of mixed flow conditions at the
exit is shown in Figs. 14-16. Here, the function
H as well as 9(0,Y), comprise the Cauchy data
needed to properly pose the hyperbolic portion of
the initial manifold. Since the vertical velocity

(0,Y) can be derived as a tangential differen-
tiation, the Cauchy data connotes specification of
the additional velocity component for supersonic
portions of the jet exit statiom. Figure 16 indi-
cates that in addition to the usual terminating
shock, the transition from hyperbolic to ellipeic
flow occurs across a weak shock emanating from the
specified u discontinuity at (0,1/2).

In Fig. 17, the behavior of centerline
pressures for various free jet cases is shown. The
monotone subcritical behavior exhibited by these
nonlinear cases has not yet been corroborated by
rigorous proof based on the boundary value problem
with subsonic exit and downstream conditions. For
linearized subsonic flow, this property is obvious
from the maximum modulus theorem. It should be
noted that in the free jet problem discussed here,
specified mass flow, pressure ratio and final Mach
aumber M uniquely determine S--the scale parameter
for the jet displacement.

As a validation, a comparison of numerical and
Prandtl-Glauert free jet solutions for u(x,1/2) for
H = 0.35 and K = 10 18 shown in Fig. 18, where the

analytical solution obtained either from summed
eigenfunction expansions or transforms is:

1.
us= 1;_}! tan-l alay - T (8a)
sinhx
/K cothx+ cOos Y
v--Tln coshx + cosy (8b)

coshx - cosy

and

*

=K, yem

The slight discrepancies shown in Fig. 18 presumably
derive from the small nonlinear effect associated
vith the finite K value, and truncation errors of
the discretizations which are only approximately
second order for a non-uniform elliptic mesh. The
associated universal slip line curve is obtained
from the following integral of (8b)

-(2n+1)x

G, (x) b
Vs SEEY. (1 +x(2n+1)]e
- 515

i - (20+1)°

- % ctnh-l(colhx)% 9)

where the daggers have been dropped. Equation (9)
has the following limiting behavior

G, (x)

Jim - :—z{ﬂdnx +* (% ln6+1)x + O(xz)} as x =+ 0
(x) -

clnx '%'%'x*o(“‘z") as x >

and is plotted in Fig. 19. The asymptotic half
width thus checks that given by (8) when the non-
linear second term in the integral is omitted.

Conclusionn

Submerged inviscid transonic wall jets have
been treated for subsonic conditions infinitely far
downstream for a specified exit velocity profile.
Unchoked flow has been assumed and a series of wall
shapes have been considered giving rise to the
following observations:

® Line relaxation provides an efficient means to
treat the diversity of wave patterns that can
occur, particularly for mixed initial condi-
tions. Accordingly, inverse problems in which
contours are identified to reduce wave drag ard
enhance thrust recovery may represent a feasi-~
ble near-term possibility.

® A Kutta condition can be satisfied merely by
requiring continuity of the potential across
the trailing edge. The numerical solution
tracks a local singular solution which has a
Square root zero and is locally harmonic in
scaled variables.

® As compared to unconfined flows, the slip line

boundaries create a rapid decay of the dis-
turbances. The functional form of the far

-




-

field perturbation potential is an exponen-
tially damped sine similar to incompressible
flow but different in that its amplitude
interacts nonlinearly with the near field.

©® Analysis of the free jet case indicates sub-
critical monotone streamwise variations of the
pressure for a subsonic jet exit, as in linear
subsonic flow.

® Acceleration of the wall jet to criticality
over convex walls is accomplished by stream
tube contractions and throats induced by up-
stream influence of the turning.

@ The upper slip line of the wall jet becomes
asymptotically parallel to that emanating from
the trailing edge infinitely far downstream.
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Fig. 2 Transformed wall jet domain.

Fig. 3 Pressures along wall for K= 1 and K = 1.46,
£1 = normalized wall ordinate.
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Fig. 16 Mach contours for Case 5.
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