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EXECUTIVE SUMMARY

i DISCUSSION:

One of the important problems which is of recurrent concern within
the Department of Army is the accurate determination of the operational
readiness float factor for a fleet of aircraft. 1If the float is too
small, there will be a loss of service of those aircraft needing float
replacements when none are available. On the other hand, if the float
is too large, there will be a financial burden of providing float air-
craft which are not needed.

2 METHODOLOGY :

The important question of the optimum size of the float can be
answered by recognizing that the demand for and utilization of float
aircraft can be interpreted as a queueing system which can be analyzed
by classical queueing theory. The solutio. of the queueing model pro-
vides statistics which represent the average number of aircraft needing
float replacements when none are available and the average number of
float aircraft which are available but unneeded. By evaluating these
statistics for the various possible float sizes, the decision maker

can select the optimum size of the float.

‘ Fe CONCLUSIONS:

[ RN S .

' This methodology provides an excellent means of determining the
ideal float size for a fleet of aircraft, It requires verv little
input data which should be easy to obtain, and it allows easy and

complete sensitivity analysis,

4, RECOMMENDATIONS :

This methodology should be used to evaluate the consequences of

floats of various sizes when determining the ideal size of the float.
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} INTRODUCTION

A fleet of aircraft usually has associated with it a small group
of aircraft designated as its float. According to AR 750-1, when an
ailrcraft from the fleet requires maintenance for longer than a spe-
cified length of time, it is to be replaced in the fleet by an oper-
ationally ready aircraft from its float. The replacement which takes
place is in the use and designation of the aircraft, The aircraft
which needed maintenance becomes the float aircraft until it is re-
paired and is itself exchanged for an aircraft needing a float
replacement.

The question of interest is how large should the float be?
That question is made more difficult by the random nature of the needs
for float aircraft. WNo matter what the size of the float, there will
be times when float aircraft are needed and none are available; and for
the same size float, there will be times when float aircraft are avail-
able but unneeded.

However those situations are exacerbated if the float is either
too small or too large. If the float is too small, there will be a

continual problem of aircraft needing float replacements when none

are available, In this situation the fleet looses the services of
those aircraft which need float replacement when none are available.
On the other hand, if the float is too large, there will be a contin-
ual problem of available float aircraft when they are not needed.
Thus there will be the financial burden of providing unnecessary-

aircraft.




The important question of the optimum size of the float can be
answered by recognizing that the demands for float aircraft and the
filling of those demands can be interpreted as a gueueing system which
may be analyzed by classical queueing theory.

In a queueing system, there are customers arriving for service
of some kind and one or more servers to provide that service. In our
case, the potential customers of the queueing system are the aircraft.
The number of servers in the system is the number of float aircraft.

A customer arrives for service when an aircraft is determined to need
replacement by a float aircraft., A service begins when an aircraft is
exchanged for a float aircraft, and that service ends when that air-
craft is restored to operationally ready status.

A queue develops when there are more aircraft in need of float
replacement than there are float aircraft. When there are fewer
demands for float aircraft than there are available float aircraft,
there are idle servers. The queueing model provides vital statistics
which describe the important features of the queueing svstem. The
most important of those statistics are the expected queue length and
the expected number of idle servers. The expected queﬁe length is a
measure of the average number of aircraft needing float replacements
when none are available, and the expected number of idle servers is

the average number of float aircraft which are available but unneeded.

In order to choose the optimum size of the float, the decision

maker must first choose weights for the expected queue length and the
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expected number of idle servers; and, of course, they could be
weighted equally, Since when one of these quantities decreases the
other increases, the objective function is then chosen to be the
weighted sum of the expected queue length and the expected number of
idle servers. Since there are onlv a finite number of choices for
the size of the float, the objective function can be evaluated for
each of the possible float sizes. The optimum size of the float is

then the one which gives the smallest value for the objective function.




2 A FINITE CALLING POPULATION, MULTIPLE SERVER QUEUEING MODEL

9 4

There are several different alternative mathematical models for
describing queueing systems, Mathematical results describing the
characteristics of the queueing system are available for many of
these models. We need to select the elementary model which corresponde
most closely to the demand and utilization of float aircraft. One
manageable system which corresponds very closely to our situation
is the queueing system which has a finite calling population (poten~
tial customers) and multiple servers. Of course the usual conditions
apply, first come, first served, Poisson arrivals, and exponential
service times.

First, the queueing system will be described in enough detail
to facilitate the use of its results.

Queueing theory is the mathematical treatment of a situation
in which customers seek service of some kind from one or more servers.
If there are more customers than can be served, a waiting line develops
for the service.

Service is provided on a first come, first served basis.

When a customer is served, he leaves the queueing system and if present,
a new customer is served. The arrival of the customers is not uniform,
and there may be times when a waiting line has developed and other times
when there are too few customers and the servers are not busv.

In our queueing system there are only a finite number of potential
customers., Therefore our system is said to have a finite calling pop-

ulation. Assume that customers are generated for the queuecing system




according to a Poisson process, ie. the number of customers generated
until any specific time has a Poisson distribution (This is called a
Poisson Input). An equivalent assumption is that the time betwecn
consecutive arrivals has an exponential distribution. Under this
distribution, customers arrive at random but according to some fixed
average rate,

In this queueing system, more than one customer can be served
at a time. Therefore, our system is said to have multiple servers.
Assume that there is exponential service time, ie, the probability
distribution of the time until the next service completion has an
exponential distribution. In other words, the service completions
are a Poisson process.

In order to obtain a solution to this queueing system, assume
that the system has reached a steady state, ie. that transient
conditions (such as when the queueing system first starts) no
longer exist,

We make use of the following notation and terminology which
applies to the steady state condition.

state of the system = number of customers in the queueing

system (includes both those in the

queue and those being served)

queue length = the number of customers waiting to be
served
Pn = the probability that there are exactly n

customers in the queueing svstem

5
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S = number of servers in the queueing system
A = mean arrival rate of new customers when there are

n customers in the system
Un = mean service rate for the overall system when n
customers are in the svstem. (ie. the combined

rate for all busy servers)

L = expected number of customers in the queueing system
Lq = expected queue length

W = expected waiting time in system

wq = expected waiting time in queue

In order to obtain equations for the queueing model, the first
step is to develop the balance equations.

Suppose that the queueing system is in any state n. The system
can leave that state either by losing one customer and being in state n-l
or by gaining one customer and being in state n+l. However, it cannot
leave the state n again unless it first reenters state n. Therefore, the

th

number of times the system leaves the n state differs at most by one

from the number of times it enters the nth state., To determine the rate

at which the system enters and leaves the nth

state, the number of
entrances and departures in a period of time are divided by that time.
Since the number of entrances and departures differ at most by one, the

rates at which the system enters and leaves a state are essentially the

same over a long period of time,




By equating the rate of entry and the rate of departure for each
state, a balance equation is obtained for each state. Tor example for
the oth state, the only way of entering the oth state is to be in
state 1 and loose one customer. Thus the rate of entering state 0 is
the probability of being in state 1, times the rate of departures when

1

leaving the Oth state is to be in the Oth state and to gain one customer.

the system is in state 1, ie. U Pl. Similarly the only way of

Thus, the rate of leaving state O is the probability of being in state

times the rate of arrival when the system is in state 0, ie. A P .
oo

Therefore, the balance equation for state O is

To obtain the balance equation for state 1, note that the svstem
can enter state 1 in two ways; be in state 0 and gain one customer or
be in state 2 and loose one customer. Hence the rate of entering
state 1 is lo Po + u2 P2 . The svstem can leave state 1 in two wavs;
be in state 1 and gain one customer or be in state 1 and loose one

customer. Hence, the rate of leaving state 1 is A} Pl 25T Pl N

Therefore, the balance equation for state 1 is

=A% P 4+ B .
Ao Po + UZ P2 M 1 Ul .




BALANCE EQUATIONS

Cimilarly the balance equations for the cother states cau be

developed. The results are shown in the following table.

state rate in rate out
0 “1 Pl 'A‘o I,u
1 AO B4 Hy P2 (A1 + 1) P1
2 >‘1 P1 + 1:3 P3 (\2 + uQ) P2
n A+ P
)‘n—l Pn—l i un+1 Pn-*-l ( n An) n

The balance equations can be solved recursively. The first

equation is solved for P

(2 B2
o
Ao
Uz P2 = (A]_ i Ul) -1‘
I
Uy P_ = A o B+
< 2 1 UI (o]

Then this result and the second equation can He solved for P. in terms

2




P A M P
2 By e 9

By continuing this procedure, each Pn can be expressed in terms

of B .
(o]
12 = _)\O_ll____A_Z_ P
3 HL M2 M3 =
P = Ao M...An-1 P
n H1 Hoeeoln o

To simplify the notation let

@ = g diseshey
n ul Uz...un

Then P = C_ P s forn 21
n n o S

Since the Pn are probabilities which exhaust all the possibilities,

which implies that

P = L .
(o]
L
nzzl Cn

-




If the An and U, are known, then everything else follows from
them. The A, and |, determine the C_ which in turn determine P, and

P0 and Cn determine the Pn .

Since L is the expected number of customers in the system,

n=o
Furthermore since there are S servers in the system, there is no queue
unless there are more than S customers in the system. Thus the expected
queue length is

Lq =z:s(n—s)1>n f

It is possible to obtain W and WQ from the following results whose
proof has been developed elsewhere:

W =

W =
q

>‘¢r >4'r

Where ) is the expected value of the A .

John D. C. Little, "A Proof for the Queueing Formula : L = AW",

Operations Research, 9 (3): 383-387, 1961; Shaler Stidham, Jr.,

"A Last Word on L = AW," Operations Research 22 (2): &417-421,

1974,
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All that remains now is to develop expressions for An and Yy, for
our queueing model, Suppose that the size of the calling population
is M. Then the possible states cf the queueing system are O, 1, 2, ..., M.

In order to obtain an expression for A,, assume that a customer's
time from leaving the system until returning for the next time has an
exponential distribution with parameter A, If the system is in state n,
then n customers are in the system and M-n customers are outside the
system. By certain properties of the exponential distribution, the
distribution of the remaining time until the next customer arrival is
exponential with parameter

Ay = M-n)x , o<n<M

If the rate of service for each individual server is j, then the

rate of service for the system when n servers are busy would be njl.

Since there are S servers, i, has the following expression,

na
wm
A
(=]
A
=

An expression for C, can now be obtained. It is necessary to
consider the twc cases n<S and n >S .

First, let n<S. Then substituting the preceeding expressions for

An and W, gives
A A X ,
C =0 Lot o o M= 1

. ul uz. e . un

11




= MA (M=-1)X . . . (M=p+1)A

i (2u) ol e e Kpiyt)

n
T M (= n< S
(M-n)! n! ‘ H § 5

Now consider the case n > S.

cn = MA (M=1)A . . . (M=p+1)X
w2y ) . . . €Sy )y (sy yn-s
n
= Ml _)\- s S<n <M
(M=n)t Sy g"° u
Then
P, = =
I +1 ¢,
n=1

=

S

+  (M=n)! n!'t=) + —
n=o ) W g4 (M-n)! S SPTS\y

\

Once P and the Cn have been determined it is simply a matter of

substituting in the previously developed equations to obtain P.» L, and

L. .
q
Be = Gu¥ - . BRngH
L = ¥ av
n=o n
L B
” s (n-s) Pn 5
L2




A simple expression can be obtained for X » the expected value

of the A, , by using Aq = (M=-n)A.

A= ZX P =L (M-n) AP =} MAP, -2 n AP
neg 2 R e n=o 1 n=o &
= Mx L P -2°% = MA- AL
e e R MA
= )\ (M-L) .




Sia A DECISION CRITERION FOR THE QUEUEING MODEL

In order to select the optimum float size, some decision cri-
terion is needed. One possible procedure would be to consider all
the statistics generated from the preceeding section, and to base
the decision on a collective evaluation of those. However that
would require the decision maker to juggle several interrelated
quantities at the same time and a systematic approach would be more
manageable.

As a preliminary, consider the utilization of float aircraft.
Float aircraft are intended to replace aircraft which require extended
maintenance. Therefore, when an operationally ready float aircraft
is needed and none is available, the fleet is deprived of the use of
an aircraft. This situation represents an undesirable condition
which should be minimized. In order to do that we need some measure
of it, and we have one in Lq the expected queue length,

The expected queue length Lq tells on the average how many air-
craft are in the queue, ie. in need of a float aircraft when none is
available. Suppose, for example, that Lq = .5 . An expected value
of .5 can occur in many different ways. In order to better understand

the significance of L_, note that Lq = .5 is equivalent to .5 on an

q
aircraft being in the queue all the time and it is also equivalent to
one aircraft being in the queue 507% of the time and no aircraft being

in the queue the rest of the time. Thus L, gives a measure of the need
i

for float aircraft when none is available.

14




The other side of the coin is represented by the inefficiency of
having operationally ready float aircraft available whea they are not
needed. Again we have an undesirable situation which should be mini-
mized., Let F be the expected number of operationally ready float air-
craft which are not being used. To calculate F, recall that the number 1
of servers S is the number of float aircraft. Thus, for example, if there

are N customers in the system and ? < S then there are S - n available

float aircraft not being used. Therefore F = § PO 4 (S—I)Pl + (S=-2) P, +

s s SR DE L - Both Lq and F need to be minimized. However, decreasing

1
one of them increases the other. Therefore a suggested objective function
is & = Lq + F and & should be minimized.

The objective function in such problems is often taken to be a cost.
In our case, & could be expressed as @ cost if L, were multiplied by the
cost of an out of service helicopter and F were multiplied by the cost of
an idle helicopter. However, since the out of service and idle helicopters
are the same type helicopter, we have taken these costs to be the same
(which is the same as not using them). However, for some reason the
decision maker may wish to assign different importances to out of
service helicopters than to idle helicopters. If so that can be done by
assigning costs or simply weighting factors to Lq and F. The objective
function would then be & = wl Lq 4 w2 F where wl and W, represent the
relative importance of Lq and F and need not sum to one.

There are only a finite number of choices for S (0 < S =M). So

to minimize Z, merely calculate Z for the possible choices of S and

select the value of S which minimizes Z.

15




In practice the choices for S may be limited to only 2 or 3 values which

further restricts the calculations to minimize #A.

There is another possible criterion for selecting the ideal float size
based on the percent of time that float aircraft are available.

Suppose that it is desired that float aircraft be available at least
80% of the time when they are needed. The demands for iloat aircraft occur
at random according to a fixed average rate. The randomness of the demands
implies that if float aircraft are available 807% of the time, then 807 of
the float demands can be met.

It is easy to calculate the percent of time that float aircraft are
available. Pn is the probability that there are exactly n customers in the
queueing svstem, but Pn can also be interpreted as the percent of time that
exactly n customers are in the queueing system. There are float aircraft
available 1f n < s, Therefore float aircraft are available P, + P1 cERRAT
+ P,_y percent of the time,

The float availability can be calculated for each possible value of S,
starting with the smallest value of S, until a value of S is found for which
the float availability is greater than 80%. That value of S would be the
ideal float size.

Part of the purpose of the examples in section 4 is to illustrate the
diversity of the type of problems which can be solved by queueing theorv.
All of the examples utilize the first described decision criterion. However

each of them could just as easilv have utilized the second decision criterion.

16




4, EXAMPLES

In this section some examples are developed to illustrate the
use of the queueing model and the decision criterion. Assuming that
the fleet size M and the number of servers are known, the only other
inputs to the model are A and u. Recall that A is the parameter for
the exponential distribution for interarrival times for one single air-
craft. This means than X is the arrival rate for one single aircraft.
Suppose that we take our unit of time as one month. Then 2 would be
the number of times per month that a single aircraft would need a
float replacement. Recall that i is the service rate for ore busy
server in the system. This means that 11 is the numhber of {loat
replacements that a float aircraft being used continuously could
provide in one month.
Example 1: Suppose that there is a fleet of 25 aircraft and that it
is desired to determine if it should be supported with a float of 2 or 3 air
aircraft, Furthermore, suppose that it is estimated that a single aircraft
in the fleet needs a float replacement on the average twice a vear and that
it is known that when an aircraft is replaced by a float aircraft it takes
an average of % month to restore it to operationally ready starus.

If a single aircraft needs a float replacement twice a year, then the
monthly arrival rate is 2 . Therefore A = .167 arrivals per month. If a ?

L2

float replacement takes !5 month on the average, then a float aircraft could

handle 2 replacements a month. Therefore u = 2 services a month.

The next step is to calculate the objective function 2 = Lq + F for

the two possible float sizes S = 2 and S = 3, and select the one

17




which gives the smaller value of Z. Since there are 25 aircraft in
the fleet, M = 25,

Since the calculations involve some unwieldy factorials, they
must be done with a simple computer program. The first step is to

calculate the C, from A and u

n
M! A
Gy 1 n!<i) ek
Cnh =

M! X H <M
(M-n)! s! &S (‘ﬁ) RREOAR e

Py =G B 0<n<M

The results are shown below for s = 2.

PO = ,065 PQ = 037

Fq = aili36 PIO =2

P = 136 1 = ,016

2 50 |

P3 = 13l P12 = .,009

P4 = ,120 P13 = L.005

PS = 105 Pyg = 002

Pg = .088 PlS = ol

P7 = ,070 Pn = 0 5 n=216
Eg. = 5002

18




Recall that P, is the probability that there are n aircraft in

the queueing system. Thus, for example, P .065 meanc that 6.57%

-
of the time all of the float aircraft are idle. Since in this case

s = 2, a queue exists when n z 3. This occurs Py + P, + Pg + ~ - -

66.17% of the time.

|
1]

Then the other quantities follow

oo
L =% aP
n=o Lk
L = 4,237

If n >s, there is a queue. The expected number in the queue is

L =% (n=s)P,
1 n=s

Lq = 1(,131) + 2(.120) + 3(.105) + 4(.088) + s5(.070)

+ 6(.052) + 7(.037) + 8(.025) + 9(.016) + 10(.009)

+11(.005) +12(.002) +13(.001) 25003
If n < s, there are idle float aircraft. The expected number is
s
F = n;o (s=n) P,
F = 2(.065) + 1(.136) = .266
Finally 2 = Ly + F = 2.503 + .266 = 2.769
Using the notation Z (s) to indicate that # is a function of the number

of servers gives

Z (2) = 2.769 .

19




Repeating the calculations when s = 3 gives

i 20
}’1 =  L.250
Py = 2230
Py = 160
R .098
Be = .05
Pf» = 032
Por =0 01
Pg = .008
P9 = ,004
Pig = 002
Pll = ,001
By = 0 , aszll
L = 2.356
L, = 1(.098) + 2(.057) + 3(.032) + 4(.017) + 5(.008)
+ 6(.004) + 7(.002) + 8(.001) = .465
F = 3(.120) + 2¢.250) + 1(.250) = 1.1]
2(3) = 1.575
Since Z is smaller for s=3, a float size of 3 aircraft is indicated.

0f course this result depends upon Lq and F being weighted equally and on

the values we have assumed for » and }.

Example 2: In example 1, suppose that the value of X = ,[167
is based on the condition that a float aircraft is issued when maintenance
of 8 days or longer is required. If the condition is changed to 9 days or

20




longer, A will decrease. Indeed, » is a monotonically decreasing

function of X where a float aircraft is igsued if maintenance of X

or more days is needed. Suppose that the following relation exists
X ‘ 8 i Q i 10 | 1
A | .1e7] .125 | .100 | 083

Suppose it is desired to find the number of davs X for which the
optimum float size decreases from 3to 2. The procedure 1s to
calculate the objective function # (2) and # (3) for the various
values of A in decreasing order until a value of X is found for
which 2 (2) < 2 (3) . The value of X corresponding to that value
of X is the desired solution.

The following table shows Z (2) and # (3) for various values

of N

L F
‘"‘13%5 I G AR

RS

+125 .971 587 1,558 | 159 1.54 1.699
.100 467 .832  1.299 .070  1.814 1,884
.083 LT A P T S W ,035  2.006  2.041

From the table it can be seen that Z (2) < 2 (3) for X = .125
which corresponds to X = 9 days. Thus the desired answer is

9 days. The table also illustrates how L, and F vary as a function

1
of X .

Example 3: Use the data from example 2 for A = ,125. In this case

Z (2) = 1.558 and 2 (3) = 1.699 which indicates that 2 float aircraft

should be chosen rather than 3. However that depends on Lq and F

being weighted equally. Since the concept of flioat aircraft entails

2l




having float aircraft in available status to avoid the loss of service
of aircraft which require extended maintenance, there is some justi-
fication in attaching more importance to the smallness of L, than to
the smallness of F., Suppose that the smallness of Lq is considered
twice as important as that of F., The new objective function would
than be

W = 2Lq+F.

Evaluating W (s) for s = 2 and s = 3 gives

|
~
.
wi
N
o}

W(2) = 2(.971) + .587

W(3)

2(.159) +1.54

1.858
Since W (3) < W (2) , a float size of 3 is now indicated., !Note that
even though it was desired to minimize the objective function, the

more important of the two tewxms L_ and 7 is multiplied by the larger

q
weighting factor. Here by changing the weighting factors, the float
size increased from 2 to 3 , decreasing Lq and increasing F.

Example 4: In example 1, a float size of 3 is indicated. However
suppose that the decision maker believes that by placing more import-
ance on the maintenance of aircraft which have been replaced by floeat
aircraft, the service rate U can be increased from p = 2 to | = 2.4 ,

Taking the other data the same as in example 1, should the float size

now be 2 or 3? Calculate 2 (2) and 2 (3) . Using 2 = Lq + F ,

20 (2) L4 3850+ S464 1.849

Z (3)

.237 + 1.389

1.626
Here the increase in 1 is insufficient to decrease the float size; the

float size should still be 3.
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Example 5: Using A = .125 and p = 2 , calculate L, and F for M = 10,
i

20, 30, 40, S50 and S = 10Z of M for each value of M,

The results are shown in the following table

> B i) L ¥

10 1 } .490 441
20 2 | 420 848
30 3 .347 1.258
40 4 .287 1.663
50 5 i i - B ¢

Note that in each case the float size is exactly 107 of the fleet size.
Also note that as the fleet size increases, the expected number in the
quzue decreases and the expected number of idle servers increases.

Thus the larger the fleet, the better a float of a4 given percentage of

the fleet can fulfill the float demands.

In other words, in deciding if a float size of a given percentage of

the fleet is correct, the size of the fleet must be taken into account.
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5. ALTERNATE MODEL

Implicit in the model which we have used so for is the assumption
that aircraft which are in the queue are not receiving maintenance.
Depending on the maintenance support available, that might not be true.

If it is desired to allow the aircraft in the queue to receive
maintenance while they are in the queue, that can be done by specifving
the same number of servers as there are aircraft in the calling population,
S = M. Then there is always an available server for each aircraft which
needs it.

Of course this doesn't represent the situation in the field, and is
not intended to. However, it will allow the model to generate statistics
about how many servers actually were used and therefore needed. I[n
particular, recall that Pn represents th. percent of time that there are
n aircraft in the system. In other words P, is the percent of time that
n float aircraft are needed.

It is possible to develop a decision criteria based on the Pn'
Suppose that it is desired to have a float aircraft available 80X of the
time. As an illustration suppose that the model has produced the following

values of Pn.

P, = .10
Py = .15
Py = .25
Py =25
P, = .10
Peg = .10
Bg ™ 0

A el e, |



If there were 4 float aircraft, there would be float aircraft avail-
able when there were o, 1, 2, 3, or 4 aircraft in the system, i.e. Po +

Py # Bp % Bg # By = 85% of the time. If there were only 3 float aircraft,

there would be float aircraft available P, + Py + Py + Pg = 75% of the

e

time. Therefore the decision criteria would require 4 float aircraft.
In general terms, the P, should be summed for successive values of n

from o up to the smallest value k such that Py + Py + Py + ¢+« + P .80.

k>

Then that value of k is the correct number of float aircraft.
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6. CONCLUSIONS AND RECOMMENDATIONS

Before giving the conclusions and recommendations, there are some
general comments which should be made. In order tc illustrate how the
model works, it was necessary to have some data.

It seemed that the difficulty of collecting reliable dara was not
warranted, before the methodology has been accepted for use. Therefore
all of the data in the report is hypothetical. However an effort was
made to select plausible data.

A1l statistical models make assumptions about such things as
distributions of data. They are more often close approximations to
reality than precise descriptions of reality. This is immanent in the
nature of statistical analysis and is true for this queueing model.
However the degree of closeness of the model to realitv is quite good
as compared to most modeling efforts.

The model is an attempt to represent the utilization of float
aircraft as the author understands the regulations call for them to
be used. It is not an attempt to model the situation which exists
in the field. Because of the many different influences which exist
in the field, distortions occur to the need for and utilization of
float aircraft and to the data which describe the needs for and
utilization of float aircraft.

The model is a deterministic, expected value model whose results
are given in statistical terms. The input and output are average
values, and in situations where there is significant variation from

the average values, the results of the model could be inaccurate.
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CONCLUSIONS:

1)

3)

/4)
5)

6)

This model provides an excellent methodology for determining

the best float size for a fleet of aircraft and te analyze the
consequences of floats of different sizes.

It requires only two items of input data, the averape rate at
which a single aircraft needs a float replacement and the average
length of time to restore to operationally ready status an aircraft
which requires a float replacement.

The needed input data should not be hard to collect if indeed it
is not available from the present data system,

The method allows easy and complete sensitivity analvses,

The percentage of a fleet needed for the ideal size of the float
depends on the size of the fleet.

If there are more than one fleet of aircraft in the same location,
it i1s more efficient (using only considerations of this study) to
combine the individual floats to create a large combined float to
serve all of the separate fleets than for each individual fleet to

have its own float.

RECOMMENDATIONS :

1)

This method should be used to evaluate the consequences of floats

of various sizes when determining the optimum size of the float.
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