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FOREWORD

This report describes an in-house work effort conducted
in the Recovery and Crew Station Branch (FER), Vehicle Equip-
ment Division (FE), Air Force Flight Dynamics Laboratory, Air
Force Wright Aeronautical Laboratories, Wright-Patterson Air
Force Base, Ohio, under Project 2402, "Vehicle Equipment Tech-
nology", Task 240203, "Aerospace Vehicle Recovery and Escape
Subsystems', Work Unit 24020312, 'Crew Escape and Recovery
System Performance Assessment'.

The work reported herein was performed during the period
of 1 November 1973 to 1 November 1976 by the author,
Mr. Robert E. McCarty (AFFDL/FER), project engineer. The
report was released by the author in March 1978.
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SECTION 1
INTRODUCTION

1. Background

Computer programs have contributed much to the design
and analysis of deployable aerodynamic decelerator systems.
Most of the major parachute analysis computer programs devel-
oped over the last decade include in some form a mathematical
model for the properties of the materials comprising the
system. The task of modelling the behavior of parachute mate-~
rials in such a manner has come to be regarded as both an
indispensable element in computer analyses and a major road-
block to full success of the same computer analyses. It is
essential because the dynamics of parachute systems prove to
be very sensitive to material properties, and at the same time
becomes an obstacle primarily because the behavior of
parachute materials is so complex.

A review of the typical tensile behavior of the most
widely used parachute material, nylon, will serve to explain
the difficulty encountered in modelling its properties. The
load-strain characteristic, referred to in this report as the
loading characteristic, of a nylon tensile member is quite
nonlinear and demonstrates a strong sensitivity to strain rate,
as can be seen from Figure 1. For a parachute structural
member in tension the strain rate is defined to be the differ-
ence between the lengthwise velocity components of the member
ends divided by the length of the member. It will be reported
in units of sec-l. Positive strain rates imply that the member
is growing longer, negative ones that it is growing shorter.
The word loading will be used to imply positive strain rates,
the word unloading to imply negative strain rates.

During unloading, nylon exhibits strong hysteresis, that
is, it unloads along a characteristic load-strain curve which
is considerably different from the one along which it loads
as illustrated in Figure 2. The area contained by the two
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Figure 1. ILoading Characteristics of Nylon.
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Figure 2. Hysateresis of Nylon.
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characteristics represents the kinetic energy dissipated per
unit length of material.

Another significant aspect of nylon tensile behavior is
the large plastic strain exhibited by the material. Figure 3
illustrates this. Plastic strain is defined to be that strain

O
97
400 1b
nylon cord
a
= Ol
§:n
J
o —
T T
OQO 8 A 12 .24

Strain (in/in)

Figure 3. Plastic Strain of Nylon.

remaining in a tensile member when the load is zero after
having been loaded. Figure 3 indicates that nylon plastic
strain has two components, one time dependent and one not.
Immediately upon unloading, the material exhibits the large
plastic strain A. After the passage of some time at zero load
it exhibits the smaller plastic strain B (at the beginning

of the second loading cycle). Plastic strain B is independent
of time, or permanent. The material process of shrinking

from initial strain A to later strain B is referred to as
relaxation.

e ;-—-——-_————-—————A
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Yet another significant aspect of the tensile properties

of nylon is the presence of creep which is defined as that
strain suffered by the material as a function of time under
static tensile load. Figure 4 depicts typical creep behavior

1 Primary Creep
I Secondary Creep

III Tertiary Creep high load

x Rupture
iow load

Strain

i

Time

Figure 4. Creep Behavior

including its three stages: primary, secondary, and tertiary.
Primary creep is characterized by decreasing strain rate with
time, secondary by constant minimum strain rate, and tertiary
by rapidly increasing strain rate to the point of material
rupture. The creep strain history can change dramatically

for different static load levels, so in general creep in nylon
is a function of both time and tensile load.

Studies, such as those in References 1 and 2, have shown

that the number of these mechanical properties included in

(1) Priesser , J.S. and Green, G.C., "Effect of Suspension
Line Elasticity on Parachute Loads," Journal of Spacecraft and
Rockets, Vol. 7, No. 10, Oct. 1970, pp. 1278-1280.

(2) Poole, L.R., "Effect of Suspension-Line Viscous Damping on
Parachute Opening Load Amplification," Journal of Spacecraft
a”d ROCkets, VOl. 10' NO- 1, Ja.'n. 19730 pp. 92-93.




the mathematical model of a parachute material has a marked
effect upon computer analyses utilizing that model. As has
been mentioned earlier, successful computer analysis of para-
chute systems depends heavily on the availability of realistic
ma<erial math models.

A considerable variety of parachute material computer
models already exist. The simplest, such as that used in
Reference 3, assume that the material is linearly elastic,
i.e., that the loading characteristic is linear and that the
material exhibits no strain rate sensitivity, hysteresis,
plasticity or creep. Others, for example those in References
4, 5, and 6, vary this approach somewhat by assuming a non-
linear elastic model. Some researchers have tried to account
for the effects of hysteresis by assuming the presence of
viscous damping in the material. Modelling this damping com-
ponent 0of the tensile load as a single constant multiplied by
material strain rate, as in References 7 and 8, implies linear
viscous damping. Allowing a variable coefficient or a matrix
of coefficients to multiply material strain rate implies non-
linear viscous damping. The material model cited in

(3) Mullins, W.M., et al., Investigation of Prediction Methods
for the Loads and Stresses of Apollo Type Spacecraft Parachutes,
Volume 2: Stresses, NASA-CR-134231, 1970. i

(4) Houmard, J.E., Stress Analysis of the Viking Parachute
AIAA Paper 73-444, 1973.

{5) Reynolds, D.T., and Mullins, W.M., An Internal Loads
Analysis for Ribbon Parachutes, NVR 75-12, Northrop Corp.,
Ventura Division, 1975.

(6) McVey, D.F.,and Wolf, D.F., "Analysis of Deployment and
Inflation of Large Ribbon Parachutes," Journal of Aircraft,
Vol. 11, No. 2, February 1974, pp. 96-103.

(7) 1Ibrahim, S.K., and Engdahl, R.A., Parachute Dynamics and
Stability Analysis, NASA-CR-120326, February 1974.

(8) Sundberg, W., Finite-Element Modelling of Parachute
Deployment and Inflation, AIAA Paper 75-1380, 1975.
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Reference 9 was used in analysis of the Viking Mars Lander
parachute recovery system deployment and inflation. It
assumed nonlinear viscous damping, nonlinear elasticity and
an arbitrary history of plastic strain. Notwithstanding the
fact that this model was the most sophisticated ever devel-
oped, its authors have written that "Significant voids in
the knowledge of... suspension system physical properties
appear to be a major obstacle to obtaining very accurate
(parachute dynamics) simulations and to the use of the
analytical model in a predictive mode." This theme is
repeated in Reference 10: "A continuing effort is needed to
obtain data ... to definitize the behavior of ... (parachute)
components under dynamic conditions.”

These statements and others like them reflect the con-
sensus that material math models better than those which
have been available will be required before parachute system
computer analyses can become real predictive tools and as a
consequence, make a broader impact on system design and
analysis.

These circumstances led to the start in November 1973
of an in-house program in the Recovery and Crew Station
Branch, Vehicle Equipment Division, of the Air Force Flight
Dynamics Laboratory (AFFDL/FER) to develop improved math
models for the dynamic tensile behavior of nylon parachute
materials. The approach taken during this work effort is
discussed in the following section.

(9) Talay, T.A., Parachute Deployment-Parameter Identifica-
tion Based on an Analytical Simulation of Viking BLDT AV-4,
NASA-TN-D7678, August 1974.

(10) Bobbit, P.J., "Recent Advances and Remaining Voids in
Parachute Technology," AIAA Aerodynamic Deceleration Systems
Tech Committee Position Paper, Astronautics and Aeronautics,
October, 1975, pp. 56-63.




2. Approach

Since earlier attempts to model the properties of para-
chute materials all seemed to share a theoretical approach
and to have achieved only limited success, the AFFDL/FER pro-
gram was planned to be more empirical in nature. Instead of
assuming some viscoelastic model for the material behavior at
the outset and then struggling to acquire data (elastic and
viscous damping coefficients) to fit, it was intended to
develop the formulation of a realistic model from appropriate
loading data alone. The mathematical expression of the
observed data was to be the goal of the effort, not the
first step.

An experimental phase of the program was planned to
acquire a limited data base for some parachute material of
interest. This was to be followed by an analytical phase to
search for aspects of the data lending themselves to general
mathematical expression over a wide range of load levels and
strain rates; i.e., to develop math models of the data
acquired. Finally, it was planned to code the math models
as computer subroutines for general use in large parachute
analysis computer programs. The material subroutines would
serve to realistically model the dynamic tensile load-strain
behavior of nylon components within the larger computer pro-
gram, be it for parachute system stress analysis, opening
dynamic analysis, stability analyéis or design purposes.
After one test case, that is after the successful develop-
ment of one parachute material computer subroutine, it was
further intended to automate the process as much as possible
by writing data processing computer programs to generate
additional material subroutines from new sets of data follow-
ing the general form developed for the test case.

The goal of the program then was to demonstrate the
capability to empirically develop computer subroutines which
could realistically model the tensile behavior of nylon
parachute components. These subroutines would be generated
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semiautomatically through data processing of limited data
bases acquired for the materials of interest.

3. Scope

The work outlined in the previous section resulted
in two-and-one half man-years of work and involved a nylon
cord and fabric used widely in personnel parachute fabrica-
tion. Only uniaxial tensile behavior of materials was
addressed. The first material selected for modelling was a
core-sleeve nylon cord used widely in suspension systems of
personnel parachutes: 400 1lb minimum breaking strength,
MIL-C-5040E, Type II, nylon cord.

An apparatus was fabricated to provide dynamic load-
strain data for material samples and was used to acquire data
for load levels up to 300 1lb and over a range of strain rates

from 1.2 to 6.9 sec L.

By early 1975, a computer subroutine modelling the cord
behavior had been demonstrated and was documented in Refer-
ence 11, This cord subroutine was used with encouraging
results in parachute opening dynamics studies conducted in-
house during the same time period as reported in Reference 12.

A second test series was accomplished to acquire data
for uniaxial samples in both the warp and fill directions of a
light ripstop nylon fabric also used extensively in fabrica-
tion of personnel parachutes: 1l.1l-oz per square yard, MIL-C-
7020F, Type I. The warp direction is that of the yarns which
run parallel the length of a bolt of fabric as it is woven.
The £fill direction is normal to the warp direction and is that
of the yarns which run back and forth across the bolt of fabric
as it is woven. This time, data was acquired up to rupture

(11) McCarty, R., A Computer Subroutine for the Load-
Elongation of Parachute Suspension Lines, AIAA Paper 75-1362,
1975.

(12) Keck, E.L., A Computer Simulation of Parachute Opening
Dynamics, AIAA Paper 75-1379, 1975.




loads and over a range of strain rates from 1.3 to 4.9
sec’l,

Seven small data processing computer programs were
written to automate the generation of material subroutines
as much as possible. These programs were used to derive sub-~

routines from both the fabric warp and fill data bases.

The purpose of this report is to document the overall
work effort and publish the nylon material computer sub-
routines developed. It is also to encourage the application
of these subroutines and the development of additional sub-
routines for other parachute materials by means of the
efficient data processing capability now available for their
generation.




SECTION IX
DATA ACQUISITION

1. Methods

This work effort involved a nylon cord and fabric used

widely in personnel parachute fabrication, and the primary

% inhouse application of the computer subroutines developed was
intended to be in simulation of personnel parachute opening
dynamics, as reported in Reference 12. For these reasons, a
test method was sought which would duplicate to a consider-
able extent the dynamic loading environment experienced by
these materials in personnel parachute applications. All
constant strain rate methods were rejected because strain
rates experienced during parachute operation are not con-
stant but rather suffer large excursions and sign changes. A
drop-weight test method was adopted because it provided
periodic variation of strain rate and would allow data
acquisition over the full range of loading and strain rates
(0 to 4.5 sec-l) occurring during conventional deployment and
inflation of personnel parachutes.

2. Apparatus

A test fixture was designed and fabricated which would
allow tensile impact loads to be applied to samples of para-
chute materials over a wide range of initial strain rates and
impact energies. Figure 5 illustrates the device. Material

samples were oriented vertically in the fixture, the upper

end being fixed and the lower being attached to a weighted
sled. The main component was a 120-inch high tower fixed

along its length to a concrete block wall. The tower supported
two hard aluminum rails which served to guide the weight sled

(12) Keck, E.L., A Computer Simulation of Parachute Opening
Dynamics, AIAA Paper /5-1379, 1975.
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Figure 5. Schematic for Tensile Impact Test Fixture.

as it moved vertically. The rails engaged the flanges of
four ball bearing wheels, two on either side of the weight

sled. A solenoid-operated device on the tower provided for
release of the drop weight sled from various heights. Com-

binations of drop height and drop weight were selected to

obtain the initial strain rates and impact energies desired
during testing. Rubber bungee cords were used in some tests
to yield sled accelerations exceeding one gravity.

The upper attachment point for material samples was a
strain gage load link used to acquire load history data
during a test. The weighted drop sled had extending downward
from its bottom center a 36-inch-long rod the tip of which
entered a 30-inch Linear Variable Differential Transformer
(LVDT) used to acquire sled displacement data during a test.
Signals from the load link and LVDT were conditioned and
used to drive galvanometers in a direct writing type oscillo-
graph. An automatic test sequencer drove the release

11
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mechanism and data acquisition equipment. Data was recorded
for at least three full loading cycles (bounces) on every
test. Figures 6 through 10 show details of the test fixture.
Table 1 contains the list of equipment used in the tensile
impact test fixture.

3. Material Samples

Length of the material samples tested in the tensile
impact fixture were dictated by the range of strain rates
desired in testing. Since the geometry of the test fixture
prevented drop heights exceeding the length of the sample,
the maximum initial strain rate available for (no rubber
bungee) drop tests follows Equation (l1). The sample lengths

_ 1/2
EDOT .. = [(29)/L0] (1)
EDOT_ .. - maximum possible initial strain rate

g - acceleration of gravity
LO - unstressed length of sample

that were selected allowed cord strain rates up to 4.2 sec-1

and fabric strain rates up to 4.9 sec-l.

Cord samples had the ends doubled back and zig-zag
stitched to allow steel pin attachments in the test fixture.
The ends of warp and fill fabric samples were sandwiched
between thin aluminum plates with an epoxy resin. Holes
drilled in these end plates provided the same steel pin
attachment used for the cord samples. Fabric samples were cut
slightly wider than desired, then after epoxying on the end
plates, extra yarn ends were cut from both sides of the
sample to obtain the desired sample width. All fabric samples
had the same number of longitudinal yarn ends. Figures 11 and
12 illustrate the material samples used. In each case, all
samples were cut from the same lot of material. All samples
were tested at temperatures between 66 and 88 degrees
Fahrenheit.

12
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Drop Sled Probe in LVDT.
17

Figure 10.




Component

TABLE 1
IMPACT TEST FIXTURE COMPONENTS

Model

Performance

steel strain gage
link, bending

aluminum strain gage

link, 'tension

Schaevitz LVDT

Schaevitz signal
conditioner

SOLA regulated
power supply

Bell & Howell
signal conditioner

Honeywell
Visicorder

Honeywell
galvanometer

Honeywell
galvanometer

S/N D-1 (FER)

S/N 300-1 (FER)

P/N 10000 HR

P/N SCM 025

Cat. 80-36-1300

P/N 8-115-1

1508-T13679HK000
(oscillograph)

M-1000
(fluid damped)

M200-120

0-60 1b or 0-140 1b

0-300 1b

+ 10 in displ.

(displ. channel)

(loads channel)

0-600 Hz
(loads channel)

0-120 Hz
(displ. channel)
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Fabric Samples

Figure 12. Test Sample Dimensions.

4. Static Data

The Composites and Fibrous Materials Branch, Non-Metallic
Materials Division of the Air Force Materials Laboratory
(AFML) performed static testing of cord, fabric warp and fill
samples. Tests were performed on an Instron machine at strain
rates of 0.01 sec—l. Rubber lined pressure grips were used to
fix samples; all sample gauge lengths were 20 inches. This
static data served as a baseline from which to measure strain
rate effects in the high strain rate data acquired during

subsequent dynamic (drop weight) testing. Load-strain plots

made from the reduced AFML data are contained in Appendix A.
Static test parameters may be found in Table 2.

5. Creep Data

Creep strain data was acquired for fabric warp and fill
samples by suspending the weight sled from a material sample
on the Tensile Impact Test Fixture. The oscillograph was
used to record the static tensile load and the resulting

20
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strain history exhibited by the material sample. Creep data
was recorded under three different loading conditions. A
sample of reduced creep data is shown in Figure 13, No data

N1
(¢ o] %00 %
o ooooo.o° °
Primary Secondary m°o.o°°°°°
creep creep oo, ooo
“000
— oom
E M~ oo°o°°°
£ Bﬁ ooo°°
o .
(.,‘:) o fabric warp sample
-]
o 15 Ib/in static loading
“o
[-]
o
[
o
0.0 L. 2 3

Time (sec)

Figure 13. Typical Creep Strain Data.

was acquired for the tertiary stage of creep; i.e., no creep
tests were conducted which resulted in material failure.

6. Dynamic Data

Each dynamic, or drop weight, test was conducted with
a previously unloaded material sample. Cord samples were
tested at eleven different combinations of drop weight
and drop height, fabric fill samples at nine combinations,
and fabric warp samples at nine combinations. Three tests

were performed at each test condition for a total of 87 tensile

21




impact tests. Table 2 lists parameters for one test at each
condition. Parameters for those remaining tests not shown on
Table 2 are very similar for any particular test condition, the
differences being due primarily to small variations in the
length of fabricated test samples. Sample length for cord
samples was measured between centers of the steel pins used

to mount the samples in the fixture. Sample length for

fabric samples was measured between edges of the aluminum end
plates as shown in Figure 12. Drop height was defined to be the
distance between the sled release position and the sled
position at the instant the recorded tensile load rose

above zero. Figure 14 shows a typical oscillograph test and
illustrates how the sled position at load rise was determined.
This position was referred to as the sled zero displacement
point and also served as the point from which to measure

material sample strain.
7. Data Reduction

The analog load-time and displacement-time traces on
each oscillograph record were digitized at uniform intervals,
25 increments per loading cycle including values for peak
load and peak displacement, Each data set was checked for
reduction errors and corrected accordingly when any were found.
Since load data and displacement data channels were calibrated
only once at the start of each test series, the following pro-
cedure was devised to measure calibration errors. It was
assumed that no calibration error was present in the oscillograph
timing marks. The load-time data for each drop weight test was
pointwise fit with a natural cubic spline as described in
Reference 13 and numerically integrated twice to calculate
a corresponding sled displacement history. Friction between

(13) DeBoor, C., and Rice, J., Cubic Spline Approximation II-
vVariable Knots, Computer Science Department TR-21, Purdue
University, April 1968,
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TABLE 2
TENSILE TEST PARAMETERS

Sample Dro Drop Initial Peak Peak

Test Length Height Mass Strain Rate load Strain

Number (£ft) (ft) (sl) (sec~t) (1b) (in/in)
1Ml a 3.31 0.35 0.052 1.43 17.7 0.042
2-2 a 3.23 0.27 0.275 1.29 50.2 0.079
3-3 a 3.28 0.32 0.497 1.38 76.8 0.105
4-1 a 3.29 1.59 0.052 3.07 40.9 0.067
5-3 a 3.28 1.57 0.274 3.07 95.0 0.131
6-1 a 3.27 1.60 0.492 3.10 136.7 0,162
7-2 a 3.28 2.82 0.052 4.11 53.2  0.079
8-2 a 3.28 2.86 0.274 4.13 125.3 0.165
9-2 a 3.29 2.87 0.492 4.13 190.0 0.212
10-3 a 3.27 2.85 0.714 4.14 255.4 0.244
11-1 a 3.32 Fokk 0.052 6.88 85.0 0.120
*2C a 1.67 - - .01 409.9 0.355
*3C a 1.67 - - .01 396.0 0.348
Wl b 2.72 0.22 0.943 1.38 46.1%% 0,176
2Wl b 2.72 0.22 0.501 1.38 25.0%% 0,121
3W1L b 2.71 0.21 0.167 1.35 10.8%% 0.050
*1W4 b 2.70 1.45 0.498 3.58 52.9%% 0,201
W5 b 2.71 1.46 0.278 3.58 38.7** 0.160
6W3 b 2.70 1.45 0.062 3.57 13.6%* 0.070
3W7 b 2.69 2.70 0.279 4.89 53.1%% 0,203
8W2 b 2.70 2.70 0.166 4.88 39.2%% 0,156
9W2 b 2.70 2.71 0.062 4.88 18.8%* 0.101
*16W b 1.67 - - .01 40.9%% 0,207
*30W b 1.67 - - .01 40.7%% 0,209
1F3 ¢ 2.72 0.22 0.943 1.39 46.5%% 0,247
2F3 ¢ 2.72 0.22 0.501 1.40 25.5%% 0.174
3F2 ¢ 2.70 0.21 0.167 1.35 10.8** 0.083
3F4 ¢ 2.71 1.46 0.498 3.58 51.7%* 0.264
5F2 ¢ 2.72 1.47 0.279 3.57 35.1%% 0,207
6F2 ¢ 2.71 1.46 0.062 3.58 12.5%% 0,099
*3F7 ¢ 2.71 2.71 0.279 4.87 42 ,6%% 0,235
8F1 ¢ 2.71 2.71 0.166 4.87 33.7*%% 0.211
9F3 ¢ 2.72 2.72 0.062 4.87 17.0%*% 0.126
*3F1 ¢ 1.67 - - .01 39.3%* 0,257
*30F ¢ 1.67 - - .01 40.3%% 0.271

*Material rupture occurred. *¥*(lb/in) ***Bungee cord used.

a - cord samples b - warp samples c - fill samples
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sled zero displacement

sled
displacement

load rise time

tensile lood

time

Figure 14. Tensile Impact Test Oscillograph Record.

sled and test fixture quide rails was assumed to be negligible
in the calculation. The sled displacement data computed for

a given test was compared with the sled displacement data
recorded during that test. Figure 15 illustrates the method.
Any difference between recorded and calculated periods of
motion was taken as evidence of calibration error in the

load data, since displacement data calibration error could not
alter the recorded period of motion. Sled displacement
history was then recalculated as a boundary value problem,
assuming various load calibration errors until the one

was found which resulted in agreement between recorded and
calculated periods of motion. Figure 16 illustrates typical
correlation after correction for load calibration error.

Any remaining difference between the two maximum sled
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Figure 15. Calibration Error Determination.
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Figure 16, Load Calibration Error Correction.
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displacements was attributed to calibration error in the
displacement data. That displacement data calibration error
which resulted in agreement between calculated and recorded
maximum displacements was determined. Figure 17 shows typical
correlation between the two sled displacement histories

after correcting the data for those calibration errors

implied by the method just described. The excellent agree-~
ment between shapes of the two displacement histories is

Q.
G " recorded data
= corrected for
c displacement
()] . .
£ calibration
@ error
o calculated from
Q0 | load -time data
a corrected for load

calibration error
©
2
n
-]
o
O t ]
00 05 10

Timé(sec)

Figure 17. Displacement Calibration Error Correction.

taken as evidence that nonlinearities in transducers and
recording equipment, friction in the tensile impact test
fixture, and other random sources of recording and reduction
errors were negligible for the purposes of this study.

Table 3 lists calibration errors derived for those tests in
Table 2. Load-strain and load-time plots of corrected

data for these tests are contained in Appendix A.
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TABLE 3

LOAD AND DISPLACEMENT DATA CALIBRATION ERRORS ASSUMED

Test
Number

1ml
2-2
3-3
4-1
5-3
6-1
7-2
8-2
9-2
10-3
11-1
1wl
2wl
3wl
1wa
1wW5
6W3
3w7
8w2
9Iw2
1F3
2F3
3F2
3F4
5F2
6F2
3F7
8F1
9F3

Percent Load

Cal. Error

3.0
1.0
6.0
0.0
5.0
-1.0
-2.0
-1.0
-1.0
-1.0
-2.0
4.0
-2.0
-2.0
2.0
3.0
-3.0
4.0
5.0
-1.0
4.0
-1.6
-1.6
4.0
7.0
-5.0
4.6
6.0
-1.6
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SECTION III
DATA ANALYSIS

1. Method

In developing math models from the data bases acquired,
an attempt was made to isolate individual aspects of the
material behavior. It was hoped that each of these features
could be modelled independently and then that all could be
combined to express the observed net behavior. Candidate
features for doing this were drawn from the list discussed
in Section I.l: nonlinear loading characteristic, strain-
rate sensitivity, hysteresis, plasticity, and creep. The
first feature selected for modelling was creep. This is
discussed in the following section.

2. Creep

The data which was acquired for creep is shown in
Figure 18. It exhibits classic primary and secondary creep

g
. aoooooovooooaooooooooooooo
fill 15.4 1b/in
<
<
= 147 I1b/in
E ooooowoo:pOOOooo:ooooaooooooocoooog
~ ~ oooooo°o°o°o°°°°°°.,°.gooo.eoooo
€ Olecoc®? fill 8.4 Ib/in
(=)
@ warp 8.0 ib/in oo
° 000900000000000000000.0000
PP
fill I.Olb/in° ves
0000000000000000000000000 600000
o
©00 1’5 30
Time (sec)

Figure 18. Creep Strain Histories for Fabric.
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as defined in References 14 and 15, A great deal of similarity
appears in all the creep data shown, aside from the fact that
the initial strains under load differ widely. Little measur-
able creep resulted at very low loads (1 1lb/in) on fill test
samples. Nearly doubling the loading in the case of both

warp and fill samples had little effect on the shape of the
resulting strain-time curve. Similarily, no significant
difference in curve shape can be seen between warp and fill
data taken at about the same level of loading. Transition
from primary to secondary creep occurs at about 1.8 seconds in
all cases. Based on these observations and on the very
limited data base acquired, a simple creep model was developed
which proved sufficient for the purpose at hand and which
threw a new light on the mechanism underlying the strain rate
sensitivity of nylon. This latter result will be discussed
more fully in Section III.3.

The creep model adopted assumes that creep behavior is
independent of the construction of the particular component
fabricated from nylon be it fabric, cord, webbing, etc. It
further assumes no effects of material temperature. The model
does assume that primary creep occurs from 0.0 to 1.8 seconds
under any loading, and secondary creep from 1.8 seconds
forward in time. Tertiary creep to material rupture is not
modelled. The effect of this omission is discussed in the
next section. 1Identical creep strain histories are assumed

for all loadings above 20 percent of the minimum breaking

strength for the material; i.e., at loadings above 20 percent
of material breaking strength, creep ceases to be a function
of static load and time and becomes a function of time alone.

(14) Crandall, S.H., and Dahl, N.C., An Introduction to the
Mechanics of Solids, McGraw-Hill, 1959, pp 222-223,

(51) Bruhn, E.F., Analysis and Design of Flight Vehicle
Structures, Tri-State Offset, 1965, pp. Bl.12-Bl.13.




For load levels between 0 and 20 percent breaking strength,
the creep strain history is linearly scaled between zero and
that creep strain history assumed for higher load levels.

The model is extrapolated indefinitely in both independent
variables: 1load and time. Figure 19 illustrates this model.

Strain(in/in)

Figure 19. Creep Strain Model.

Values for initial strain (at t = 0) have been subtracted out
from the data in Figure 19. This surface representing strain
as a function of load and time was differentiated with
respect to time to yield a second surface representing creep
strain rate as discussed further in Reference 16. Figure 20
shows this surface. Double linear interpolation on the
second surface for a given load and time gives a correspond-
ing creep strain rate. For the case of dynamic loading, a

(16) Polakowski, N.H., and Ripling, E.J., Strength and
structure of Engineering Materials, Prentice-HaI?, 1966

p. 429.
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Figure 20. Creep Strain Rate Model.

series of creep strain rates can be determined which corre-
spond to any given load-time path as shown in Figure 21.
Integration along the creep strain rate path shown in
Figure 21 yields instantaneous creep strain for the given
loading history. This is the form in which the nylon creep
model was adopted. Tabular data is used to represent the
surface shown in Figures 20 and 21. Double linear inter-
polation and integration of the interpolated values is
performed along the load-time path experienced by the
material. The corresponding creep strain history is the
result.

This creep model is probably more scund for secondary
creep than for primary creep as a result of the test method
used. The ideal creep strain test would provide for the
instantaneous application of a static load and subsequent
recording of strain-time data as shown in Figure 22, 1In
practice, tensile loads were not applied instantaneously.
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Figure 21. Creep Strain Rate History.

As a result, the early portion of the primary creep data was
lost. Figure 23 illustrates that the effect of this would |
be to record values for primary creep strain rates which were

too low. This concern was substantiated later in the
analysis and will be discussed in greater detail in Section
ITI.4. Data for secondary creep strain and strain rate
remained unaffected by this technique-related problem.

3. Loading Characteristic

It was apparent from the data acquired that consideration
of two behavioral aspects of nylon would be required in order
to model the loading characteristic of the material. These
were the nonlinearity of the loading characteristic and its
sensitivity to strain rate. Figure 24 illustrates some
dynamic and static loading characteristics from the fabric
fill data. The nonlinearity is apparent and the dynamic
behavior is considerably stiffer in every case. This latter
fact plus the experience that had been gained in modelling
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creep suggested that all or a part of the strain-rate
sensitivity of nylon might simply be a manifestation of
material creep. To test this hypothesis, the following steps
were taken. The load-time histories for all tests (including
static) of a material were input to the creep model shown in
Figure 21 and described in the last section. The resulting
creep strain rate history for each test was integrated to
yield a corresponding creep strain history. This creep
history was subtracted out from the loading characteristic
for each test, making it stiffer in every case. Figure 25
illustrates this for a static test. The computed creep
strain contribution for dynamic tests was much less signifi-
cant than that illustrated for the static case. This

result was to be expected since creep is time dependent and
time under load was two orders of magnitude higher for

8} dynamic
data

3 “~static
< data
2
e 1
SN
o
-

o

o 1

0.0 0.15 0.30
Strain(in/in)

Figure 24. Fabric Fill Loading Characteristics.
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Figure 25. Creep Contribution to Total Strain.

static than for dynamic tests.
is shown in Figure 26.

The result of this exercise
This is a plot of the same fabric

fill loading characteristics shown in Figure 24 but for

which the effects of creep have been subtracted out.

The

dispersion customarily associated with the strain rate

sensitivity of nylon is no longer evident as in Figure 24,

The only data lying outside the narrow band is that near

material rupture from the static tests.

Had the tertiary

stage of creep been included in the creep model, much larger

Ccreep strains would have been computed in the vicinity of

static rupture and these data points would have been moved

closer to the narrow band of data.

Figure 26 implies that it is reasonable to think in

terms of a strain rate independent loading characteristic

This
characteristics.

for nylon.

six-knot natural
linearity of the

thinking was followed in modelling loading
The data was least squares fit with a
cubic spline which preserved the non-

data. The coupling of the previously
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Figure 26. Loading Characteristics With Creep Effects Subtracted Out.

described creep model to this cubic spline fit then com-
pleted the definition of the loading characteristic. The
spline fit provided the nonlinear strain rate independent
behavior required while the creep model provided the
necessary strain rate sensitivity. It should be emphasized
that loading characteristics discussed thus far have been
for initial loading of previously unloaded samples only.
Subsequent or repeated loading behavior is treated in later

sections.
4. Plasticity

With the development of the creep and loading character-
istic models just described it became possible to simulate
accurately all of the data acquired (static and dynamic) for
initial loading of material samples up to the point of maxi-
mum strain. Attention turned next to behavior beyond this
point, in particular to the plastic strain resulting from
this initial loading. At this point in its development, the
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model predicted only a slight plastic strain at the beginning
of the second loading cycle. This was a creep effect alone
and is indicated as such in Figure 27. The difference
between the smaller plastic strain predicted by the model
with creep and the larger plastic strain observed in the
data was defined as the residual strain, ELR, for modelling
purposes. Dynamic tests were simulated using the current
version of the model to generate plots similar to Figure 27,
and values for residual strain were measured from these
plots and tabulated. It was readily apparent from this that
residual strain, ELR, increased with maximum strain, ELM.

A plot of residual strain versus maximum strain shown in
Figure 28 revealed a nearly cubic dependence so the data was
fit with a cubic polynomial.

Having derived a simple expression for residual strain
as a function of maximum strain, it remained to use this
expression to correctly model subsequent or repeated loading
characteristics for the material. It was observed that the
slope of the recorded loading characteristic increased after
each loading cycle and "pointed toward" a common vertex at
the current maximum strain. This is illustrated in Figure 29.
Other investigations, such as in Reference 17, have noted
these same aspects of repeated loading behavior. This
suggested that the expression derived for residual strain
might be used to transform the expression for the loading
characteristic. The transformation would be a linear one
judging from the appearance of geometric similarity between
first, second, and third loading characteristics. It would
provide that the origin of the loading characteristic move
from zero strain for the first loading cycle to the value of
the current plastic strain for the second loading cycle and

(17) Groom, J.J., Investigation of a Simple Dynamic System
with a Woven-Nylon Tape Member Displaying Nonlinear Damping,
Thesis for Master of Science, Ohio State University, 1974,
PP. 51-54.
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that all subsequent characteristics still pass through the
point of maximum strain. The variable ELOT defined by
Equation (2) was intended to meet all these requirements.
Whenever material strain, ELO, is equal to the current
residual strain, ELR, the value of ELOT becomes zero. When
ELO is equal to the current maximum strain, ELM, the value
of ELOT becomes ELM.,

ELOT

(ELO - ELR)ELM/(ELM-ELR) (2)

ELO - current material strain

ELR - current material residual strain
ELM - current material maximum strain
ELOT

transform of ELO, this provides for
movement of the loading characteristic
origin along the strain axis as a function
of residual strain ELR.
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After this definition of ELOT it became possible to use the
cubic spline fit for the loading characteristic (Section
III1.3) to model both initial and repeated loading by substi-
tuting either ELO or ELOT as the independent variable as
illustrated in Figure 30. The choice between the two was made
by comparing instantaneous values of ELO and ELM during the
loading history according to Equation (3). During initial
loading, Equation (3-a) describes the loading because at any
given time ELO equals ELM. During subsequent loading to

FT = f(ELO) if ELO = ELM (3-a)
FT = £(ELOT) if ELO < ELM (3-b)
FT - tensile load
ELM - current maximum strain
ELO - current strain
ELOT - transform of ELO
f -~ cubic spline function

strains less than the maximum strain attained during the
initial loading, Equation (3-b) describes the behavior because
ELO always remains less than ELM. During subsequent loading
which exceeds all previous maximum strains, the behavior again
reverts to Equation (3-a) since ELO equals ELM again. Figure
31 illustrates the behavior of the model at this point with
creep and plasticity effects accounted for. The shift between
[ first and second loading characteristics is due to both

] effects, the shift between second and third is due to the

creep effect alone. All three loading characteristics are

well simulated by the model. It should be noted that, as
suspected (Section III.2), the level of primary creep originally
modelled was too low by a factor of three or four and had

to be increased to yield the level of correlation illustrated

in Figure 31.

One case remained for which this version of the math
mudel failed to model loading behavior satisfactorily. That
was the case for which the tensile load never returned to
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zero after initial loading as shown in Figure 32. Estimation
of residual strain as a function of maximum strain for such
continuously loaded samples showed the same cubic dependence
as that shown in Figure 28 for samples which periodically
experienced zero load. But for the continuously loaded
samples, the observed residual strain was always greater for
the same level of maximum strain. This difference was
attributed to the fact that for samples periodically seeing
zero load the accumulated residual strain had time to relax
while for continuously loaded sample no relaxation could
occur (Section I.l). This behavior was modelled by using
two curve fits like the one shown in Figure 28, one serving
as an upper bound and one as a lower bound to residual strain.

(o) " .
Ll maximum strain 7
Test 1F3
s dashes - model with

. creep and
c
P residual
- strain
° 0
o N
o
it

(@]

%8 R ‘28

EC ELR ) ELM

Strain { in/in)

Figure 32. Continuous Loading Characteristics.

Accumulative time under zero load was tracked and used to
interpolate linearly between the two. An example is
illustrated in Figure 33. Immediately upon unloading from a
maximum strain of 0.10 in/in the material exhibits the large
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Figure 33, Residual Strain for Material under Load and under
Zero Load.

plastic strain A. With the passage of time under zero load,
the plastic strain relaxes or grows less following the path
indicated from A to B. After sufficient time passes, the
plastic strain ceases to relax further, permanently assuming
the value represented by B. Data for both curves shown in
Figure 33 and for related relaxation times were extracted from
the test data, then this refinement was added to the plasticity
portion of the model. At this point, all static and dynamic,
initial and repeated loading characteristics could be
simulated satisfactorily by the model. The only feature
missing was realistic unloading behavior; the strong
hysteresis observed in the data had not yet been accounted
for. The development of this feature of the model is
discussed in the following section.
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5. Hysteresis

The first observation made regarding unloading behavior
was the apparent geometric similarity among all unloading
characteristics. This similarity has been noted by other
authors, for example Reference 17, and led to the following
approach to modelling unloading.

To provide a common denominator by which to describe
unloading a normalized strain parameter, ELS, was defined
having the form of Equation (4).

ELS = (ELM - ELO)/(ELM - ELR) (4)

ELM - current maximum strain
ELO - current strain

ELR -~ current residual strain
ELS - normalized strain

When material strain is maximum, i.e., when ELO equals ELM,
the value of ELS is zero. When the material has unloaded to
its current plastic strain, i.e., when ELO equals ELR, ELS
assumes the value of 1. Figure 34 shows that every unloading
action then, no matter from what maximum strain or to

what plastic strain, involves the variable ELS assuming
values over the range of 0 to 1. To further specify
unloading, the variable FD, as illustrated in Figure 34 was
defined to be the difference between that load predicted by
the current version of the model and that load observed in
the data at a given strain during material unloading. Plots
similar to Figure 34 were generated for all data on hand with
the model results being linearly scaled such that computed
and experimental peak load and strain would coincide exactly.
From these plots tables of FD as a function of ELS were
developed in an attempt to quantify unloading behavior.

Plots of FD versus ELS for various tests are shown in

Figure 35. The shape of the plots showed general similarity

(17) Groom, J.J., Investigation of a Simple Dynamic System
with a Woven-Nylon Tape Member Displaying Nonlinear Damping,
Thesis for Master of Science, Ohio State University, 1974.
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for all tests but the magnitudes varied over a very wide
range. It was observed, however, that the magnitudes varied
directly with the maximum strain experienced by the material
during the test. To determine the form of this dependence,
the following steps were taken. One of the FD versus ELS
curves for the material was selected arbitrarily and inte-
grated in order to determine the area beneath the curve. All
other FD versus ELS curves for the same meterial were
multiplied by a ratio with a value such that the area under
each became equal to the arbitrarily chosen reference area.
The resulting group of data points was fit with a cubic
spline as shown in Figure 36. This fit was forced to pass
through zero at ELS = 0.0 and ELS = 1.0. The ratios required
: to equate areas in this manner were found to be a simple
function of maximum strain as shown in Figure 37 and were

least squares fit with a cubic polynomial.
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Figure 36. Ratioced FD versus ELS Data.
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The analysis just described provided a simple and
general definition of unloading. The form of the expression
is shown in Equation (5). It implies that three pieces of

information are required in order to calculate FD: The

value of Riglo which is a function of normalized strain
_ _FD (ELM1 - ELR)
FD = RartTo "ATIO (Fim - ELm)  “hen EDOT < 0 (5)
= 0 when EDOT > 0
FD . . . : .
RATIO - six knot least squares fit cubic spline (Figure 36)
RATIO - least squares fit cubic polynomial (Figure 37)

(ELS), the value of RATIO which is a function of maximum

strain (ELM1l), and the value of ELM (and ELR which is a func-
FD

RATIO 18 determined

tion of ELM per Figure 28). The value of
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from the curve fit illustrated in Figure 36, and the value
of RATIO is determined from the curve fit illustrated in
Figure 37. ELS, ELMl, ELM and ELR are continuously cal-
culated by the material model. Equation (5) also implies
that the value of FD is zero whenever material strain rate
is positive. When the material is loading, no FD contribu-
tion is felt by the model. But, whenever the material is
unloading, a positive value of FD is calculated and sub-
tracted from the current load.

The approach just outlined served very well to model all
drop weight test data which periodically experienced zero
load. This is illustrated in Figure 38. It should be noted
that the third term in Equation (5) was added to properly
scale FD for subsequent or repeated loading cycles. In this
way, for example, FD loads for the third loading cycle
shown in Figure 38 are scaled for the maximum strain experi-
enced during that loading cycle instead of for the overall
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€ N7 Line - Dynamic Test .
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o
O
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Figure 38. Model with Creep, Plasticity, and Hysteresis Effects.
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maximum strain which had occurred earlier in the first
loading cycle.

= e

j This description of material unloading failed for one
class of drop weight tests, however, that being those tests
during which the material sample was continuously loaded;
i.e., those tests for which the drop weight sled did not
bounce. Figure 39 shows that since unloading was modelled
by subtracting an appropriate load component only when the
material strain rate was negative, a force discontinuity was
generated by the model whenever the strain rate changed from
negative to positive at nonzero values of tensile load. This
undesirable feature of the model was overcome by arbitrarily
adding a strain rate term to the overall expression for FD.
This term is only active when negative strain rates are
decreasing, i.e., when material strain rates are negative
and acceleration of sample end points is positive. The rate
term is a ratio of current negative strain rate to maximum
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Figure 39. Model Unloading Discontinuity.
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negative strain rate during the current unloading cycle. It
is used to drive FD to zero as the current material negative
strain rate approaches zero as shown in Fiqure 40. Load
histories resulting from this approach still had discontinuous
first and second derivatives with time.

At this point in its development, the model included all
the major features of material behavior outlined in Section
I.l. It provided the strong nonlinearity characteristic of
nylon, the sensitivity to strain rate, significant hysteresis,
large plastic strains, and gEggpﬂeffectsv—~The—mbdéI‘HEa'ﬁag‘_
begp,g§ed/te~simﬁI§E€/15;a:£ime or strain-time behavior of
_——— " the material, however, When force-time correlation was first

studied, room for improvement became apparent. The next
section deals with this final stage of model development.

6. Damping

As discussed in Section I.l1, the area included within a
load-strain diagram for one loading/unloading cycle of the
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Figure 40, Model with Continuous Loading Term.
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material represents the kinetic energy dissipated during
that cycle. The magnitude of this energy dissipation
determines among other things the resulting unforced period
of motion or free damped natural frequency for simple mass-
material systems. In view of this, the following approach
was taken to optimize load-time correlation. A multiplicative
constant VSFD was added to the expression for FD already
described in Equation (5). For each data set a value of
VSFD was determined which resulted in the best load-time
correlation. It became apparent from doing this that
.. -~ - - greater values of VSFD were required for those tests per-
formed at higher strain rates. A graph of VSFD versus strain
rate as shown in Figure 41 revealed a linear dependence,
the first and only evidence of linear viscous damping
encountered during data analysis.

A linear fit was made to the VSFD data and was added as
an additional term to the steadily growing expression for FD
as shown by Equation (6).
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Figure 41. VSFD versus Strain Rate.
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FD
RATIO

= 0 when EDOT > 0

(ELM1 - ELR)

FD = {ELM - ELR)

RATIO

VSFD when EDOT < 0

FD

RATIO see Equation (5)

RATIO see Equation (5)

VSFD

linear viscous damping term

The first and second terms have already been discussed in
Equation (5). The third term is that discussed in Section
III.5 to scale FD for repeated loading cycles, and the fourth
term is the linear viscous damping term just described.

This final expression for FD improved the load-time or
phase correlation obtained to a satisfactory level as shown
in Figure 42. Development of math models for the dynamic
loading of nylon parachute materials was not carried beyond
this point.

¥1  Test 2F3
Dashes - full model
Line - dynamic test data
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Figure 42. Typical Model-Data Phase Correlation.
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SECTION IV
COMPUTER SUBROUTINES

1. Data Processing

As already discussed in Section I.2, one of the goals of
this work effort was to develop the capability through auto-
’ matic data processing computer programs to generate additional
models for a variety of parachute materials as the needs arose.
To this end, and after obtaining satisfactory results with the
manual development of one model as a test case, as documented
in Reference 11, several plotting and data processing computer
programs were written. Each of these was intended to automate
as much as possible one of the data manipulation and fitting
processes discussed in Section III. The flow chart in Figure
43 illustrates the following discussion. Each box in the
figure represents a data processing computer program. The
section in this report which discusses the analysis performed
by each program is included in parenthesis in the same box.
The following is a brief description of each program in the
order in which they are executed during data processing:

1. Program OKDATA reads raw load, displacement, and time
data acquired from drop weight testing. Reduction errors are
also read and are used to correct the data accordingly. Cor-
rected force-time data is pointwise fit with a cubic spline
and integrated twice to calculate corresponding displacement-
time data. Experimental and calculated displacement-time
data are overplotted for visual correlation as shown in Figure

15. Subsequent runs of OKDATA are used to determine values
for displacement and load data calibration errors following
Figure 16 and 17 and to correct the data accordingly for
these.

(11) McCarty, R.E., A Computer Subroutine for the Load-Elongation

Characteristics of Parachute Suspension Lines, AIAA paper
75-1362, 1975.
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2. Program CREEP is designed to smooth and differentiate
creep strain data (strain versus time). Tabular data is gen-
erated for a surface such as that illustrated in Figure 20 as
a function of load and time.

3. Program EXTEND requires two types of input, the first
being the creep strain rate table generated by program CREEP
and the second being corrected load, strain, and time data
generated by program OKDATA. Data for all initial loading
characteristics are isolated. Creep effects are calculated for
f each loading history and subtracted out from the corresponding
loading characteristic. Finally, all altered loading character-
istics are overplotted and least squares fit with a cubic
spline as illustrated in Figure 26. The two arrays and one
matrix required to define the spline fit are printed out.

4. Program BOUNCE is a Control Data Corporation 777 Inter-
active Graphics System program, per Reference 18, which allows
the interactive determination of residual strain from plots J
similar to Fiqgure 27. Tabular data for residual strain as a
function of maximum strain is output for all data sets
processed.

5. Program POLYFIT reads residual strain tabular data
generated by program BOUNCE and fits it with a third order
polynomial constrained to pass through the origin as shown in
Figure 28.

6. Program BOUNCE also serves to generate plots similar
to Figure 34, Tabular data for FD as a function of the
normalized strain parameter, ELS, are generated.

7. Program HYSTER reads the FD versus ELS tabular data
generated by program BOUNCE. It performs the analysis dis-

cussed in Section III.5 required to generate plots like
Figures 36 and 37. Coefficient arrays for the FD cubic spline
fit and the RATIO polynomial fit are printed.

(18) 777 Interactive Graphics System, Version 2.1, Reference
Manual, Control Data Corporation publication number 17321800,
Revision B, 30 October 1975.
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8. Program MADLOT (Mathematical Analog for the Dynamic
Loading of Textiles) incorporates the finished material model
as a subroutine. It simulates the dynamics of the drop weight
test apparatus used for this work and overplots computed and
experimental results. Either static or dynamic data may be
simulated. All plots in Appendix A were generated using
program MADLOT in conjunction with the appropriate material
subroutine.

2. Subroutine Models

The three subroutine models developed with the aid of the
seven data processing programs described in Section IV.l are
listed in Appendix B. The first is a model for 400 1lb
strength nylon parachute cord, the second for 1.1 oz nylon
rip stop parachute fabric warp, and the third for 1.1 oz
nylon rip stop parachute fabric fill. Data in them which was
derived directly from execution of the seven data processing
programs is labeled as such at the beginning of each sub-
routine model. Two external functions and one interpolation
routine required by the subroutine models are listed at the
end of Appendix B. The subroutine models are written in
FORTRAN Extended Version 4, per Reference 19. All variable
names used in the subroutine models are defined in the list
of symbols at the beginning of this report.

The parameters involved in calling the subroutine models
from other FORTRAN programs or subroutines are T, Y, and P as
indicated in the listings. T is a scalar quantity which repre-
sents current time in seconds. Y is a vector gquantity of
dimension three. Y(1l) is the component of relative velocity
in ft/sec of the two end points of a tensile member taken in
the direction parallel the member. A positive value implies
that the ends are moving away from each other. Y(2) is the

(19) FORTRAN Extended, Version 4, Reference Manual, Control
Data Corporation publication number 60305600, Revision J,
5 March 1976,
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current tensile member length in ft. Y(3) is the current
creep strain in the tensile member measured in in/in. The
vector Y carries input data to the subroutine models. P is
also a vector quantity of dimension three. It carries out-
put data from the subroutine models to an integration routine
(a fourth order Runge Kutta routine is used in MADLOT). P(1l)
is the component of relative acceleration in ft/sec2 of the
two end points of a tensile member taken in the direction par-
allel to the member. It serves as the integrand in computing

a new value of Y(1l). P(2) is the same as Y(l). It serves as
the integrand in computing a new value of Y(2). P(3) is the
current material creep strain rate measured in sec-l. It

serves as the integrand in computing a new value of Y(3).

The two variables of primary interest in applications of
the subroutine models are EL and FTR. EL represents current
strain in in/in of the tensile member based on the original
unstressed length. FTR represents the current tensile load in
1b for cords (tapes, webs) and in lb/in for fabrics. Values
for both variables are carried from the subroutine models
through the labeled common block named INFO.

Since the subroutine models were used to simulate only
single degree of freedom systems for the purposes of this
report, the dimensions of all load and strain variables is
one. To apply these subroutine models to systems involving
many tensile structural elements will require modification.
For example, for a system of N tensile elements the arrays ¥
and P might be dimensioned Y(N,3) and P(N,3) and do-loops
added accordingly.

The following values should be preset prior to calling
the subroutine models for the first time from a main program:

KRL = 1.0 ELM1 = 0.0
KCR = 1.0 EC = 0.0
KDP = 1.0 TF = 0.0
RMAXD2 = 1,.E-6 TS = 0.0
ELM = 0.0 DELOMAX = 0.0
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They are carried to the subroutine model through the labeled
common block named INFO.

It is the intent of this report to publish the subroutine
models in a rough format, leaving additional modifications of
a more general nature to be accomplished through a variety of
future applications.

All data included in the subroutine models follows the
British Engineering system of units. Time is measured in
seconds, load in pounds force, and mass in slugs.

It should be noted that material rupture is not modelled
in any manner by the subroutine models. 'Instead, print flags
are set for the two variables ELO and ELOT, the current strain
and the transformed strain. Valid ranges for these variables
are defined for each subroutine model. When the valid ranges
are exceeded a printed message results. After printed
messages occur, the models continue to function, but with
potentially meaningless results. For some applications, it
may be desirable to modify the subroutine models such that the
tensile load is set to zero above a critical strain in an
attempt to simulate rupture.
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SECTION V
RESULTS

Appendix A contains plots to illustrate the correlation
obtained between subroutine models and all static and dynamic
experimental data acquired. Plots are grouped by material
type in the order of cord, warp, and fill. The materials are
more specifically identified in Section I.3. Within each
grouping dynamic data is presented first, then static. For
each test a load-strain plot is presented first, then a load-
time plot. Material rupture occurred on all static tests and
on the higher energy dynamic tests. Test number and material
strain rate are printed on each plot. For dynamic tests, the
material strain rate indicated is the initial strain rate
occurring at time zero. More specific parameters for each
test are listed in Table 2.

Review of Appendix A reveals that the shape of simulated
initial loading characteristics is quite good for the dynamic
case in general, but somewhat worse for the static case. This
is believed to be primarily due to coarseness in the creep
model, the effects of which become significant only for the
static case. Peak loads and strains calculated for dynamic
tests vary less than 5 percent from the data in most cases,
never more than 10 percent.

The shapes of the initial unlcading characteristics are
also accurate although the level or magnitude of the
hysteresis is occasionally low or high as for tests 2F3 and
8Fl respectively. The effect of this error is reflected in
the load-time plots for the same tests. Too little damping
occurs during first cycle simulation for test 2F3 while too
much occurs for test 8Fl.

Load-~-strain correlation for second and third loading
cycles varies from quite accurate to only moderately so. Test
8F1 results offer a worst case example. The primary short-
coming of the models seem to be the inability to predict
correct slopes for second and third loading cycles. Slopes

are satisfactory for tests which involve continuous loading
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such as 1F3 and 2F3, but not so for tests during which the
loads periodically return to zero such as 8Fl. The simple
rules adopted to model repeated loading characteristics
(Section III.4) apparently do not provide the capability to
model all loading characteristics very accurately.

A second unsatisfactory feature related to repeated loading

is apparent from the warp test plots in particular. This

is the fact that in addition to the slopes of second and third
loading characteristics being awry, the predicted shape also
is unrealistic. This is due to the fact that warp samples
exhibited a characteristic 'hump' in the initial loading
characteristic. Previously loaded warp samples failed to
redisplay this hump. 1In dynamic warp test cases, the first
loading characteristic always showed the hump while second
and third ones did not. The subroutine models, however,
represent repeated loading and unloading characteristics by
linearly transforming the initial loading characteristics as
discussed in Section III. This approach preserves the humped
shape of initial loading and reproduces it in all subsequent
loading characteristics. Again, it would appear that the
approach taken to model subsequent loading characteristics

by applying linear transformations to the initial character-
istic (Section III.4) may be overly simplistic.

The slight shift to higher strain between second and
third loading characteristics is modelled very accurately in
every case. This is an effect of material creep alone and
reflects the accuracy with which primary creep has been
modelled.

The level of damping predicted by the models is very
realistic. The envelope of peak loads on load-time plots
calculated by the models agrees closely with that seen in the
data in every case.

In the case of dynamic loading, the material models do
very well in predicting the shape of the loading character-
istic at or near material rupture. Tests 3F4 and 3W7 provide
examples of this respectively.
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For static rupture, however, the model performance is
poorer as can be seen for test STAT30F. This is due to the
fact that tertiary creep effects become significant near
static rupture and that the tertiary stage of creep has not
been included in any of the subroutine models (Section III.2
and IITI.3). In contrast, for dynamic rupture the times to
material failures are so short that creep plays virtually no
part at all in the simulation.




SECTION VI
CONCLUSIONS

An empirical approach to modelling the dynamic tensile
behavior of nylon parachute materials is warranted. The
capability of subroutine models of nylon material to simulate
free oscillation data over very broad ranges of strain rate
(nearly three decades) and tensile load has been demon-
strated. This capability is unique and will contribute
significantly to the improvement of parachute recovery

ks

system dynamic analyses.

The strain rate sensitivity so characteristic of nylon
materials may be modelled accurately by coupling a strain
rate independent loading characteristic for the material
with a classical creep model as discussed in Section III.3.

Repeated loading characteristics may be modelled simply
with moderate accuracy by means of a linear transformation
of the initial loading characteristic. This transform is a
function of residual strain and maximum strain as discussed

in Section III.4. l

Material unloading characteristics, or hysteresis, may
be modelled by means of a generalized representation which
is a function of a normalized strain parameter. The
magnitude of the loads provided by this general rule is a
function of both maximum strain and strain rate as discussed

in Section III.5.

F The capability exists to generate additional similar
p subroutine models for other parachute materials in short
times {(one week of data processing) and from limited data
bases (digitized load and strain histories from ten drop

weight tests).




SECTION VII
RECOMMENDATIONS

The subroutine models developed should be used in a
variety of parachute applications involving forced vibration
in an attempt to validate them for forced vibration problems
in general. The areas of stress, opening dynamics, and
stability analysis all promise such potential applications.

The subroutine models developed should be used to roughly
model other similar materials. This could be done when
maximum accuracy is not required simply by scaling minimum
breaking strengths and strains. Experience in this area may
show that all materials covered by one Military Specification
can be represented by a single subroutine model which has
been normalized for minimum breaking strength and strain. For
example, one model might suffice to describe all the core-
sleeve nylon cords defined by MIL-C-5040E because of their

strong similarity in geometry of construction.

Since the mechanical properties of nylon materials can
vary significantly from one lot to the next, specific sub-
routine models should be developed for particular applica-
tions. The time and data required to generate models are
sufficiently small to allow this approach. As an example,
during the development of a new spacecraft parachute recovery
system, a small number of samples could be taken from the
same material lots used to fabricate the parachute systems.
Subroutine models could be developed quickly from tests of
the material samples. This would allow accurate simulation
of system dynamics prior to full-scale development.

Consideration should be given to the generation of
libraries of subroutine models for many different parachute
components and materials. The benefits would be consider-
able for the general purposes of parachute recovery system
design and analysis.
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Consideration should be given to development of sub-
routine models from free vibration load-time data alone.
Corresponding strain-time data could be generated by inte-
gration of the load-time data. This method would simplify
the design of the drop-weight test apparatus to be used and
reduce data acquisition requirements to the minimum.

Improvements to the math modelling approach outlined
in this report should include the following.

1. A refined creep model developed along the same lines
but from a larger data base to include the tertiary stage of
creep and more load levels. This would serve primarily to
improve low strain rate correlation.

2. The development and inclusion of material failure
criteria in the subroutine models. This may evolve directly

from development of an improved creep model.

3. The inclusion of temperature effects since these can
become even more significant than strain rate effects according
to Reference 20.

4. The development and inclusion of a relaxation model
following the form of the creep model already developed. This
would provide more realistic prediction of instantaneous
plastic strain than the simplistic method described in
Section III.4.

(20) swallow, J.E., and Webb, Mrs. M.W., "Single and Repeated
Snatch Loading of Textile Yarns, and the Influence of
Temperature on the Dynamic Mechanical Properties”, Journal

of Applied Polymer Science, Vol. 8, pp. 257-282, 1964.
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APPENDIX B

SUBROUTINE LISTINGS
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SUBROUTINE MODEL FOR
NYLON CORD, MIL-C-5040E
TYPE IT
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SUBROUTINE MODEL FOR NYLON
FABRIC WARP, MIL-C-7020F

TYPE 1
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SUBROUTINE MODEL FOR NYLON
FABRIC FILL, MIL-C-7020F

TYPE I
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FUNCTION FSW

REQUIRED BY

SUBROUTINE MODELS
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FUNCTION RLIM

REQUIRED BY

SUBROUTINE MODELS
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SUBROUTINE TBL2

'REQUIRED BY

SUBROUTINE MODELS
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