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1. INTRODUCTION

In two recent publications1’2 we have presented a Laplace-transform
analysis of charged transmission-line configurations for use in high-
current particle accelerators. Two examples of constant-impedance cavity
designs which could serve as the basic single stage in a imalti-stage ac-
celerator are shown in Fig. 1(a) and (b) . In an internally-switched ac-
celerator of this type the center electrode is first charged to some
desired voltage with the switch syst~~ S in an open configuration. When
the switches are subsequently closed , voltage pulses travel through the

• cavity , and the resulting voltage pattern at the output gap is dependent
on the relative impedance of lines 1 and 2 which constitute the cavity
line-pair and on the time elapsed from switch closure. If the passage
of a pulsed electron beam down the beam pipe is appropriately timed with
respect to the switch closure, the electron pulse will be accelerated
when it passes the gap .

The equivalent circuit which was analyzed in References 1 and 2 to
predict the general behavior of such accelerators is shown in Fig . 1(c) .
In the earlier reports we derived general expressions for the time-
dependent open-circuit output voltage, the accelerating voltage per stage ,
and the conditions for maximum efficiency and maximum energy transfer to
the beam load. It was shown that, in the lossless-line approximation , )
asymmetric line-pair configurations exist with which both a high accel-
crating voltage per stage and nominal unit efficiency can be achieved.
A recirculating accelerator concept was also developed,1 in which advan-
tage is taken of a repetitive voltage waveform present in appropriately-
designed transmission-line cavities to repeatedly accelerate a current
pulse which is recirculated through the accelerator . It was shown that ,

• . with proper choice of parameters, this type of design again affords the
possibility of nominal unit efficiency for energy transfer to the beam .

In the equivalent circuit of Fig. 1(c) no provision is made for
treating the effect on the output voltage of the coupling region between
lines 1 and 2. In Reference 1 a qualitative discussion of this effect
was presented , in which the coupling region was treated as a shorted
transmission line of impedance Z1 + Z2 (Z1 and Z2 being the characteris-
tic impedances of lines 1 and 2, respectively) and electrical length Td,
and a voltage step was traced through the system. The results of this
analysis for two different asymmetric line-pair configurations are shown
in Fig . 2, where we compare the open-circuit output voltage for d = 0.OSL

1J .  K. Ta per ley and D. Ecoleehall, “Ana lyeCa of Tranamiaaion-Line Accel-
erator Concepte ,” Technical Report ARB.RL—2W—02087, M2y 1978. (AD #A056364)

2D. Ecoleehall and J . K. Tenrp erley, “Transfer of Energy from Charged Trane-
mission Lines with App l~cationa to P ulsed High-Current Accelerators,”
J. Appl. Thys. Vol. 49, No 7, pp. 3649—3856, July 1978.
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with that obtained from analysis of the equivalent circui t of Fig. 1(c)
in which the coupling region is completely neglected Cd = 0). Here x =
arccos p, where p = (Z2 

- z1)/(Z2 + Z1) is the reflection coefficient
for a wave traveling from line 1 to line 2. We use the notation arccos

p to mean the principal value of the function cos~~ p .

We see that this qualitative aialysis predicts that additional short
pulses arising from reflections in the coupling region will be superim-

posed on the waveform at intervals of 2TL, where I = v’L1C1 
= is

the reciprocal of the phase velocity of electromagnetic waves in the
l ines. Except for the double-length pulse of Fig. 2(a) for which the
equivalent-circuit analysis of Fig. 1(c) predicts a constant voltage for
an interval of 4TL and the effect of the coupling region is to superim-
pose small pulses at the mid-point, the net effect is that the rise- or
fall-time of the waveform at t = 2mTL is 2mTd instead of zero. We
therefore expect that in a real cavity the effect of the coupling region
will be to cause rise-time deterioration which will become increasingly
severe in successive periods of 2TL.

While the above qualitative treatment is of some heuristic value,
it is clearly desirable to have a more quantitative description of the
effect of the coupling region on the output voltage of the cavities . )
Since in most applications a constant accelerating voltage is required,
it is clear that rise-time deterioration will result in a decreased
fraction of any output pulse being available for acceleration of the
beam load. An understanding of the distortion of the output waveform
is particularly important to the recirculating accelerator concept,
which depends for its operation on maintaining the integrity of the re-
petitive voltage waveform. In this report we present a Laplace-transform
analysis of a more realistic equivalent circuit for the two-pulse-line
cavities, based on a description of the coupling region first developed

by Whinnery et al.3 Some results of this analysis a.e also given in 
p

Reference 2.

2. ANALYSIS OF THE COUPLING REGION

2.1 The Equivalent Circuit

In References 3-5, Whinnery et al. analyze various transmission-line
discontinuities by solving the electromagnetic field equations subject

R. Whinnery and H. W. Jcvirieson, “E quivalent Circuits for Dieoontinui-
ties in Transmiaai ’on Lines,” Proc. IRE ~~, 98—115, 1944.

4J .R.  Whinnery, H. W. J c~,ieson, and T. N. Robbine, “Coaxial-Line Disoon-
• tinuities,” Proc. IRE ~~~~, 895— 709, 1944.

5j .R .  Whinnery and D. C. St*zaon , “Radial Line T) isoontinui’ti ea ,” Proc.
IRE ~~, 48—51 , 1955.
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to the geometry of the discontinuity. They show that a good approxima-
tion to the solutions of the field equations is obtained by inserting
capacitive elements into the transmission-line equivalent circuit at the
point of discontinuity and present graphs from which the appropriate
values of the capacitance can be determined. For the simplest type of
discontinuity, in which two transmission lines of similar geometry but
different characteristic impedance are directly connected together, a
single shunt capacitance is required at the discontinuity. For the re-
entrant type of discontinuity which occurs in the transmission-line ac-
celerator cavities, the appropriate equivalent circuit is shown in Fig .
3. The three shunt capacitances occur also in the case of three trans—
mission lines connected in series. The inductance arises from recogniz-

• ing that a short transmission-line stub (the coupling region) has induc-
tive character . The zero-impedance generators set up the initial condi-
tions .

The values of L , C1, C2, and C3 are determined by the detailed
geometry of the transmission lines , in accordance with the solution of
the field equations for any particular case. In all cases , however , C3
is a negative number. To see that this is reasonable , we refer to Fig .

• 4. In Fig. 4 (a) we show three coaxial lines connected in series. This
will become the transmission-line cavity of Fig . 1(b) If line 3 is
shorted . The three transmission lines of Fig . 4 (a) can be transformed
into a simple step discontinuity by shorting line 1, for example , as
shown in Fig. 4(c). According to the analysis of Whinnery et al., the
shunt capacitance C required for the equivalent circuit of Fig. 4(d)
corresponding to the discontinuity of Fig. 4(c) is smaller than the ca-
pacitance C2 which occurs in the equivalent circuit of Fig. 4(b) corres-

• ponding to the discontinuity of Fig. 4(a). Since to be consistent we
must have C = C2 + C3, we see that C3 must indeed have a negative value.

To provide results which have general validity, we will develop a
Laplace-transfrom analysis of the circuit shown in Fig. 3, without mak-
ing any assumptions about the geometry of the transmission lines. Some
numerical examples for specific cases are presented in Section 3.

2.2 Previous Results

• Before proceeding to the analysis of the coupling-region equiva-
lent circuit, we collect here for ease of reference some of the results
obtained in References 1 and 2 from the analysis of the equivalent cir-
cuit of Fig. 1(c). In that case we obtained for the transformed open-
circuit output voltage

V 2V (1 + p) e 25Tt
= - 

1 + e 45T~ + 2p e 2
~

Tt ‘ (1)
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where the bar denotes a transformed quantity, s is the Laplace-transform
variable, V~ is the voltage to which the center electrode is initially
charged, and the other symbols are as previously defined. For the open-
circuit output voltage we obtained

V~°~ -V- 0 n-k-i

= V0 {i 
- 2 (1 + (fl

k (1)q+k 
(
~+k)} n>l, (2)

k=O q=0

where the square brackets denote “largest integer contained in” and
is the open-circuit output voltage during the period 2nTL<t<2(n÷1)T&,
where t = 0 corresponds to the closing of the switch system S. It was

• further shown that Eqs. (2) are equivale”t to

- 2n+lsin ( 2 ) x  3= (_ 1) fl v0 sin~~

where x = arccos p, as defined previously.

2.3 The Transformed Output Voltage )

We define t = 0 as the time at which the switch system S is closed.
To simplify the arithmetic we will assume that a unit step function
voltage pulse is applied to the input (switched) end of the circuit at
t = 0, resulting in an open-circuit output voltage waveform V0~~ Ct).
The open-circuit output voltage obtained when the center electrode is

• initially charged to V0 will then be

V(t) = V0 11 
- V0~t

(t)] . (4)

We denote transformed quantities by a bar. The symbols used in the
following equations are defined in Fig. 3. In line 1 we have

C i

1
~~ 

V1 = O  (5)
Vi

= (V1 + ~)e
_5T9. (6)

j ..~~ sTi (7)
2

14

— 
i..~~.. ~~~~~~~~~~~~~~~ —s-f — —



(8)

(9)

+ +
• V2 V2

— •  = - .— . (10)

• •

These can be combined to yield
4. +
v - v
2 2

2~~~~~~~ 7

1 ‘~2 
(1 + e25T&)_ 2 (~)e5TL

Zl l _ e 25Tt . (11)

Similarly in line 2
+
V + I-

OUt 
— 1 , — 2 a 2 v-out (12)

V3 = v-~~ 0
sTL • (13)

= iout 
:

5TL (14)

v3 = :3 +;  (15)

r3
_ T

3 + T 3 (16)

+ +v~) V
—~- _ z  ~~~~~~~~~ (17)
+ 2

12
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From equations (l2)-(l7) we obtain

= 
OUt sinh sfl (18)

and

V3 = cosh sfl . (19)

We have further

T2 = T 1 + T 2 + T 3

(20)

- -I-

V 2 - V 3 = i 1 sL

so that

12 = + (V2 - V3)sC3 + V2 sC1

= V2 (
~

-
~

- + sC3 + sC1) - ‘~2 ~~ 
+ sC3) - (21)

Equating equations (21) and (11) gives

V2 (
coth sTi 

+ —.~~ + sC3 + sC1) 
•

= V3 (—i. + sC3) + 

~1 
s ih sTi (22)

Substituting (19) into (22) yields

16
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V
2 (

COth sTR. 
+ + sC3 + sC1) v0~ c1— + sC3) cosh sTL

+ — 
. (23)

sinh sTi
Now also

i2 T3 - i 4

(24)

V3 = ;ç ‘

v2 _ V 3 =_ r ~
which give

+ 
~~2 - V3)sC3 - sC2 V3 . (25)

Equating (18) and (25) yields

sinh sT2. 2 
sL + 

~~2 
- V3) sC3 - sC2 V3 - (26)

Substituting for V3 from (19) gives

+ (~~~+ sC3 + sC2) cosh sF&]u. V2 (~4+ sC3). (27)

Equations (23) and (27) then imply

• 
_ _ _ _ _ _  + ~L ~~~~~~~~~~~~ 

sC3 + sC1) sinh sTL + ~~~~~~~~~ sC
3 

+ sC 2) ç h  5TL

+ (~~ + sC3 + sC1)(~~ ~ aC3 + sC2) cosh sT& - (
~~~ 

+ sC3) 2 cosh sTt}

(~~~+ s C )
s Z 1 sinh sTt

‘1 17
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where we have put ~~~ = .
~~
. . Equation (28) can be put into the form

— 
4Z (1 + ~2 LC ) -2stL

out - sc*(s) 
1 + e

_25TR
~ + e~~~”~

• where

cz(s) = Z1 + Z2 + s IL + Z1 Z2 (C1 + C2)]

+ ~2 L [Z 1 (C3 + C1) + Z
2 

(C3 C2)] (30)

+ S
3 Z1 Z2 L ( C 1 C2 +C 1 C3 + C 2 C3) ,

s(s) = z1 + - S [L + Z1 z2 (C1 + C2)]

+ ~2 L IZ~ (C
3 
4 C1) 

+ Z2 (C3 + C2)]

- 5 3 Z1 Z2 L(C 1 C2 + C 1 C3 + C 2 C31

and y(s) = 2 {z2 - - S
2 L 1Z 1 (C3 + C1) - Z2 (C3 + C 2)J}

We note that if L = C1 = C2 = C3 = 0 we obtain

— 
4Z2 — 25TL

Vout = s (Z1 + Z
2)  

~ + 2  2 
Z)
~~ e

_l5T
~ + e

45TL 

•

-2sfl
— 

2( l -~~p) (31)— 

i + e~~~”~ + 2pe
_25TL -

Since from (4) by definition

V — V 0 ~~~~ v-out)

we have

• --
~ v0 2V11 (1 + p) -2sT&

V - 

i + e4~~ + 20~2sTt 
(32)

18



Equation (32) is identical to the expression (1) which we obtained
earlier1’2 in our analysis of the equivalent circuit neglecting the
coupling region.

2.4 The Inverse Transform

We define

0, t<2kTS.

S2k (t)=

l,t > 2kTt

D(s) = a(s) + y (s) e 2sTL 
+ s(s) e 4~

T
~ , (33)

— 
d

where the are the solutions of

I
D(s)=0.

Then the formal inverse transform of (29) is

(1 + $ 
2 LC )eSn(t - 2TL)

~
1out S2 (t) 1 + 4Z 2 5n D~’~ (sn) 

(34)

where we have assumed that the s~ are all distinct. While equation (34)
could be useful in numerical solutions of specific problems, it is not
very helpful in trying to visualize the output waveform. tn particular,
except for the explicit step at t 2Tt, it does not display the inher-
ent periodicity of the output voltage which is evident in equations (21
and (3). We will therefore pursue a development analogous to that lead-
ing to equation (21 in order to derive a more i11~~inating (but more
complicated-appearing) expression for the open-circuit output voltage.

We expand the denominator of the second factor of equation (29) in
a binomial series to obtain

= 
4Z 2 (1 + ~2 LC3)e

_ 25T
~ 

~~o~~1){~~d 
~~25T~ ~~~ e_45Ttr. (35)

19
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A further expansion of the summand in equation (35) yields

= 
4Z2 (1 

+ ~2 LC3) ~~ ( 1 ) fl — ~~~ (“)e~
2
~
2
~ 

- k + 1) sTL
OU n=0 [a(s)]n~

l =

x 1~(5)Jn_
k j~(5)]k - (36)

We now write

a(s) = a1 S
3 

+ 0
2 
~2 + ~ 5 + a~ (37)

and define

A(s) = 
a )  

- (38) 

4
Let the roots of A(s) = 0 be a1, a2, a3. In the following we assume

these are distinct. Then equation (36) becomes )
(1+ S2LC )L~ (s) k Iy(s) e 2(2~~

k 1)STL

4Z2 n~0 k~0 
(_ l)n (~~) f l +l

3
fl+l fl+l )fl+l .(39)

We define f(s) by writing (39) as

Vout = 4Z 2 
~~~ JO 

( .l) n ( f l ) 4 f ( $ ) e 2( 2Th~~4i)5Tt 
- (40)

The inverse transform is

• V0~t
(t) = 4Z2 Z J 0 (_ i)fl(~) ~~~~ 

S2c~fl_k+l)
(t) F(t-2(2n-k+1)TL) (44)

• where

F(t) L 1 (f(s)} .

Now
- I ’

20



L4{f (s ) } • 
~ 

R~ (t)

where R
3 

(t) is th: residue of eZt f (z )  at the ~th pole. The function
f(s) has a simple pole at s = 0 and poles of order n+l at s = a1, a2,
a3. Hence

L 1 ff(s)} = L~ (Q)lfl_k jy~ouk 
+ ~ e

a
J~ 

~ ~~~~~~~~ - , (42)
• (-a1a2a3) J*1 r~O 

13

where

(n-i)! d$
n_r (s_a~1”~~ f(s) I 

=

We now define

(s—a )fl+l f(s) = 
U k

(s) (43)
J S

so that

(1 + ~2 j~~)1~(5))fl
.k
[~(5)]k

U
k (S) = 3 . (44)

II
i—i
isi

We note that

~~~ r 
[un k(s) ] = :~: 

(fl;r) i~
(n_r_p) (s)] , (45)

• where we have used the notation

• 
d1’u(sl

• ds

• Using equation (45) , and with some manipulation of the indices of si a-
tion, equation (42) can be written

-
~ 

• 

• 

L 1 f~~~1 1~~~ 1n-k f~~~)]k 
+

21
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+ ~ eaj t ~ ( l ) r~
n_r ~ (.1) P

_
~
j

(P_l

:i
r

~
p

~

: 
(aj) . (46)

j=1 r=O (n_r)Iaj p—O

Hence from (41) we obtain

V0~t
(t) = 4Z2 n~0 JO 

(_ l)fl (~~)_~~ 1 S2(2 k l)(t)

{ 

IB(O)l
n_k

LY (O)? + ~ eaj1t_2 (2~
_k
~~ Tfl

(-a1a2a3)

x ~ (_l)rit_2(2fl_k+l)Tt]
n_r ~ (-l)Pa~~ ~~~ (aj)~ . (47)

r=0 (n-r)1 a. p”O p

We now wish to change from summations on n and k to summations on
m and k, where in = 2n-k. To do this we note the correspondences :

in n k )
0 0 0

1 1 1

2 .  1 0

2 2 2 • 

P

3 2 1
3 3 3

4 2 0
4 3 2

4 4 4
5 3 1
5 4 3
5 5 5
6 3 0
6 4 2 •

6 5 4 - •

L 6 6 6

We note that for each even (odd) value of a k takes on all even (odd) •

values from 0 to a. Hence equation (47) becomes

22
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4Z2 a~O kL 
(_l)

_r

(
!jk).!

~~m+1)c)

a even k even 1

a-k

x 5 b 0 ~~~~~~~~0)1’
~ ~ a.[t-2(a+l)TL]

ask+2 t e
( a1a2a3) 2 3=1

m+k a+k
r - ~ ‘ l~~a 

1~ 1

x (—1) Lt-2(m+1)TRJ ? ~~~~ j • (i,)

r=0 ~!~~- - r) I aj  ~=o .—

~~~

-, k ~

+ 4Z2 ~ 
• (same thing) . (48)

a=0 k—0
m odd k odd

We now define )

~~~ — V(’~~(t) ,  2nTL<t<2(n+l)T&, n>i , (49)

and using the properties of the step function Sk(t) we obtain from (48) P

a.k

• 
= 4Z2 a~o J~o ~~~~~~~~~~~~~~~~

a even k even
a-k

z~~
b 0h1

~~~~~~~~~ + ~

~ (-a1a~a3) 2
m+k+2

~~ 
~ (_l) rf~_2OI+flTLfr - r 

(-l)~’a1~~ (s)
r~0 (~~~.-iir ) l  a~ p.0 p1 *4k ,k

n-i !
• 4Z 2 ~ ~ (use thing). (50)

a~O k.0
a odd k odd
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We def ine a(m ,k) by writing (50) in the form

n-i a n-l m

~~~ 4Z2 ~ ~ a(a,k) + 4Z2 ~ ~ a(m,k) . (51)
rn”O k=0 a=0 k=0

in even k even a odd k odd
We now wish to interchange the order of summation on a and k and replace

a by q = This is facilitated by noting the correspondences of the
following table:

k a q
n-i n-i 0

n-2 n-2 0

n-3 n-3 0

n-i 1

n-4 n-4 0

n-2 1

n-S n-5 0

n-3 1

n-i 2

We see that for each value of k we have 0’cq5 1
n_ i~k] , where the square

brackets denote “largest integer contained in.” Then eq. (51) becomes

n-l-k1 en-i-k,
n—i 1 2 ~ n_l L 2

~~~ = 4Z2 ~ ~ a(2q+k k) + 4Z2 ~ ~ ci(2q+k,k)
a.0 q O *“O q 0

a even a odd

n-i-k
n—i 2

a 4Z2 ~ a(2q+k,k) . 
• 

(52)
maO q.O

Hence, using (4), we obtain for the open-circuit output voltage

n-i-k

= V - 4V Z ~ 
çj~+k (q+k) .ca.)]~TY fQ)1I~ +

0 0 2 k.0 q.O ~ q4k+l k (_ft
1
~
2
~
3)
q4k4l
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- 4V0Z2 
n-~l 

1
n-~-k1 

)~
4(~ (q+k) ~~ 0a~jt~2(2q+k+l)TL]

k=0 q=0 0 q j=l

~ 
q~k ~~~~~~~~~~~~~~~~~~~~~ ~ c_ l)~’a~’~ 

~~~ k (a.), n>1. (53)• r=0 (q+k-r)I aj p.O P q 
~

• We now define to be the terms in (53) which do not contain cx-
plicit time dependence. We have

n-k-i

u~~ = 1 - 4Z
~ 

.

~~~~~~~~ J0 
(q+k) 

~~~~~~~~~~~ 
( .  (54)

But from equations (37) and (38) and the definition of a1, a2, a3, we
find

~ (-a1a2a3) = a
~ 

(~±.) = 04

Referring to the defining equations (30) we find

a4 aZ
1 +Z 2

8 (0) = Z 1 + Z 2

y (O) = 2(Z2 
- Z1)

Hence (54) becomes
n-k-l

. - 

4Z2 n~l ~ 
(_ 1)q+k (~+k)2

k (Z2_Z1)
k

2 1 k=0 • q—0 (Z2+Z1)

n-k-i

= V0 { 1 - 2(1)! (_1)q+k (q+k)(~,)k} (55)
kaO q.0
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Comparing (55) with (2), we see that U~~ is just the open-circuit out-
put voltage that is obtained when the coupling region is ignored. The
remaining terms in (53) represent the perturbation on the output voltage
produced by the finite coupling region.

We see by inspection that equation (53) has the form

~~ = ~
(n) 

- v0 ~ eaj(t~~~
T
~ p

j m~i
(t uTt) , (56)

j=l mal

where 1~ ~_ 1
(t) is a polynomial of degree (ju-l) in t. The coefficients

• of the powers of (t-2mTL) in P. -l are dependent on the a. (and hence
3,m 3

on the values of the equivalent-circuit parameters), but are just num-
bers independent of t. Physically it is clear that the a~ must be nega-
tive rea l numbers or complex numbers with negative real parts. The per-
turbation therefore consists of a sunr of decaying exponentials or a sum
of exponentially decaying oscillations . These are, however, multiplied by
polynomials whose degree becomes higher in succeeding periods of 2Tt.
Hence the perturbation term will approach zero more slowly in later
pulses than in earlier ones, and the rise-time deterioration will become
increasingly severe. This agrees with our earlier qualitative treatment.
Clearly an optimum design would have _Re(a~) as large as possible, so
that each additional perturbation occurring at the beginning a period of
2T& would damp out shortly after t = 2nTL. If this can be achieved the
perturbations will not “carry over” from one pulse to the next until n
becomes large. Unfortunately, the arithmetic of the preceding analysis
is too complicated to permit a quantitative statement of this criterion.

3. Some Numerical Examples

In this section we present for several specific transmission-line
configurations the output-voltaQe waveforms for the period O<t 4TL as
obtained from expression (53). In all cases we of course have V”~ v0.
For the pulse V~

1
~ we obtain

4V0Z2 ( (1 + a~ LC3)ealt
~

(l) V0 {i - 2 (.1 + p)} - 
~ ~a1(a1 - a2)(a 1 - 

a3)

(1 + a~ LC3)ea2t (1 + a~ LC ).
a3t

a2(a2 - a1)(a2 - a3) 
+ i3(a3 - a1)(a3 - a2) ç

where t • t - 2Tt , and the other symbols are as previously defined. The
• values of the equivalent-circuit parameters will be obtained from Refer-

ences 3-5. It is important to recognize, however, that these are valid
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only for electromagnetic wavelengths which are greater than twice the
largest transverse dimension of the system. Hence care must be exer-
cised in interpreting the leading portion of pulsed waveforms which may
be dominated by high-frequency components of the pulse. The results are
expected to be valid for r > where rain is given by t~~~~,1 

w/2v ,
with w the largest transverse dimension of the line-pair system and v
the phase velocity of electromagnetic waves in the lines.

We take as our first example a symmetric strip-line pair with Z1 =

Z2 
a 50 g~ and vacuum dielectric. In the notation of Fig. 5(a) the dimen-

sions are a • 2.92 cm, d = 11.1 cm, x = 0.0127 cm, ~ = 305 cm , and the
width of the lines is 15.24 cm. From Reference 3 we then find

C1 = C 2 =O .83 pf

C3 = - 0.4 pf

L = 53.S nh.

Expression (38) for this case is

A (s) = ~3 + 24.6 x 1010 ~2 + ~~~~ x io20 s + 10 x 1030

and the roots of A(s) are

a1 = - 0.189 x lO~~

a2 — - 2.4 x iO~’°

a3 - 22. 1010 . 
•

From (57) we then obtain, with r expressed in nanoseconds,

vc
~ • V0 - V0 f2 - 2.04e~~~

89T 
- 2e 24t 

+ 2.O4e_220T}

This result is plotted in Figure 5(b) . We see that ~~~ reaches 90% of
• its final value of -V at r • 1.5 ns. The sharp spike which occurs be-

tween T = 0 and r = is a result of the inadequacy of the equivalent-

circuit treatment at very early times.
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(b)
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::: 
2TL 211+3 t(ns) •

•

Figure 5. (a) Syninetric strip-line pair. (b) Open-circuit
output pulse
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This case has been studied experimentally using copper strips hay-

ing the dimensions treated here.6 The input pulse had a risetime of
1.1 fl,1 and the risetime degradation observed in the output pulse was
completely consistent with the analytical result shown in Figure 5(b)
for t > T i .

As a second example we choose an asymmetric cylindrical coaxial
line pair with Z

1 
= 20.2 0, = 61.7 ~7, and vacuum dielectric. In the

notation of Pig. 6(a) the dimensions are r
1 = 5 cm, r2 = 14 cm, r3 21

cm, x = 1 cm, i • 160 cm, and d • 6 cm. The equivalent-circuit para-
meters are to be taken from Reference 4. This reference does not treat
the effect of finite thickness of the intermediate electrode. By
analogy with the treatment in Reference 3 for strip lines, however, we
find that the values of C3 obtained from Reference 4 should be multi-
plied by 1.2, and the values of C1 and C2 by 1.06. The re-entrant dis-

continuity is also not treated explicitly in Reference 4, but again by
analogy with Reference 3 we find that the capacitances are the same as
for three transmission lines in series (Figure 4(a)), and the inductance
is obtained by multiplying the inductance per unit length of the coupl-
ing region by its length. Correction of the values of the capacitances
is required because of the termination of the coupling region close to
the discontiaiity. From Figure 18 of Reference 3 and Figure 14 of Re-
ference 4 we can infer that this requires multiplication of the capaci-
tancesby an additional factor of 1.2. We then obtain

C1 = 8.2 pf

C2 = 2.8pf 
-

C3 = - l .9pf 
-

L=l7.2 nh.

Expression (38) for this case is

A( s) • ~3 + 7.12 x iolO s2 + 7.00 x io20 s + 1.85 x io30

and the roots of A(sI = 0 are

8C. E. HoUøidaworth1 BRL Report (to be p ubZieh.d) .
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- 
~~1J_L__ (

3V0 —

( b )

2V0 -

• V0

I I I I
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Figure 6. (a) Asyninetric coaxial-line pair. (b) Open-circuit
- 

. output pulse
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a1 = - 0.509 x 1010

a
2 

= - 0.606 x 1010

a
3

_ _ 6.Ol x lOlO .

Prom (57) we obtain, with -r in nanoseconds,

= V0 
- V0 ~3.01 - 3.15e

S
~~
9T 

- 3 520-6.06T + 3.66e_60JT} -

This result is plotted in Figure 6(b). The output pulse ~~~ reaches
90% of its final value of -2V0 in 0.65 ns. Again expression (57) results

in a non-physical spike ocurring between -r = 0 and ¶ = -rain s

This line-pair geometry has been studied with a computer code which
calculates the electric and magnetic field strengths as a function of
time for electromagnetic waves traveling in cavity structures.7 Again
the results are consistent with the analytical picture presented here
for -r > t mm

A third geometry of some interest is that of the biconic line shown
in Figure 7(a). This example is also given in Reference 2. We take

= 5.24 0, Z 2 • 15.7 0, a = 95°, ~ = 900, y = 75.2°, x 0, £ = 200

cm, d - 20 cm. Reference S treats only straight-sided radial lines,
but since a and y are not very different from 90°, we will use equivalent-
circuit parameters from that source as a reasonable approximation. We
find

C1 = lO7 pf

C2 * 37.7 pf

C3 = -  26.4 pf .

L = l 3.9 nh. 
•

Bhm~thmrgn, “C sçut.r Sinssi.ati.on of Ei.otron -B.~~-Oav~ty Int r.iotione
in Caaria~ Q.~inetry, ” BRL Rep ort (to be pub U.h.d).
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V0 I

• I I
211 
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.4 • Figure 7. (a) Asymmetric biconic radial-line pair. (b) Open-
circuit output pu’se
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Expression (38) for this case is

A(s) a s~ + 3.44 x 10
10 ~2 + 1.07 x 1020 s + 0.0864 x io30

and the roots of A(s) = 0 are

• 
a1 

a -1.50 x iolO

a2 = -1.86 x 1010

a3 
- 3.l0 x 1010 .

From (57) we then obtain with -r in nanoseconds

= V0 
- V0 (3 - 2.85e .50t 

- 3.58e4~ 86t 
+ 3.43e

_3LOT} .

3 This result is plotted in Figure 7(b). The output pulse V~
’
~ reaches

90% of its final value of ~2V~1 at -r = 2.1 ns. The positive spike is non—

physical. Because of its rather intractable geometry, this case has not
yet been studied either experimentally or through- computer simulation of
the electromagnetic fields.

A number of transmission-line equivalent-circuit cases, including
the three examples given above, have been run on the network analysis
computer code NET-2. While some difficulty has been encountered with
numerical instabilities in the output, the results are in general agree-
ment with those obtained from the foregoing Laplace-transform analysis.

4. SITht4ARY

• A Laplace-transform solution for an equivalent circuit representing
the coupling region which occurs in internally-switched transmission-line-
pair accelerator cavities has been derived. The results show that for a
step-function input the effect of the coupling-region equivalent circuit
on th. open-circuit output voltage is a risetime deterioration which be-
comes increasingly severe with succe.di~g output pulses . Specific ex-
amples have been presented for three cavity geometries showing the rise-
t ime deterioration of the first output pulse.
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