
- Aj A063 1132 COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON D C F,. 9/2
NMCS IIWORMATION PROCESSING SYSTEM 360 FORMATTED FILE SYSTEM (N~~ETC (LlI
SEP 70 C k MILl.

I UNCLASSIFIED CCTC—CSM—IM—tS ?S—VO4. 3 NI.

I. _~JLJN _
_
_ _ _I UDO _-I__

U.—
I

__

-~~ I -

I .O~~~L L
_ _ _

L~ L 12.2

~ ~ 12.0Ij ~~~ .
~~

111.8

1.25 1.4 III 1.6
— m~~

MICROCOPY RESOLUTION TE S T CHART
H?~I()I4AL ~IJ11IM$ 01 SI*NOM1U ~~~ ~

,qiie,oo ,.~g ~ MPUT~ SYSTEM MAMUL.
CSM UM 15-78

*
vow~~m

C
1 SEPTEMBER 1978

C
j T . ~~ LE~~L~
COMMAND

CONTROL
TECHNICAL

~ii
CENTER

NMCS INFORMA11ON
PROCESSING SYSTEM

D £380 FORMATTED Fill
Iii 1• UUL~u~~ u~4J (NIPS 380 FF5) ~

4• _ AGEf __ _
t ‘

• t ’— ~~~~~~~ ~~~~~‘
- -4

1 £PMDVSS~~O* ~USL~~
~I LMSM* MLI,Ifl

J •1~~ ~~~~IIUTISI I 1% UWUNITID ____

•

CONIUND AND CONTROL TE r

Co.puter ,Ayste .~~ nu~~~N ~~~~~~~~~~~~~~ 5-t~ — VoL J

-- --————
~1 (-;~:;‘~ 24M’~J!E2 ~~~~~~~~~~~~~~~~~~~~~~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I - -

_

/ risers Manua1~

/ Vo lum e ~~~ ~ tile M aintenance (VP!) ,

/ —

~

-.—

~~~~~~

- /
—

4)

• SUBNITTED ay: APPROVED BY:

_ _ _  

JDERIc~~~~~~~ ?, JR./

~~~~~~ 
Captain U.S. Navy

CCTC Pv oJ.c.t Off icer Deputy Director
NN C S APP

Copies of this document say be obtained from the Defense
Docu.antatiofl Center, Cameron Station, Alexan4ria, Virginia
22314.

This document has been approved for public release and sale;
its distribution is unlimit ed.

D D C ~

_
78 1 2 08 09)

ACKNOWLEDGMENT

This sanual was prepared under the direction of the
Chief for Progra.ii with eneral technical support
provided by the Interna 1 usiness M achines Corporation
under contracts DCA 100-67— C— 100—69—C—0029, DCA
100—70-C—0031, DCA 100—70—c—OO 0, DCA 100—71—C—00’$7, and DCA
100—77— C—0065.

)

MCE*$ION for
ITfl White ~ec~o’ ~a

• uIM~IOUNCtD 0

L

•
~:: ~~

•
~

•[
~

ii

• “--~~~~~~~~~~~~~ ~• . -~
—T •i~~

~~~&



t

CONTENTS

Section Page

ACKNOWLEnGMENT. . .. .. . . . .. . . . . . . . . . . . ii.
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

• 1 INTROflDCTION........ ................ 1

2 FM CAPABILITIES............... ...... 2
2.1 Transaction Sources... .............. 3
2.2 Transaction Poraats. ................ 3

4 2.3 Logical Updating and Trans—
action !diting..... ........ ......... 3

2.4 Data Conversion and Validation —

User Snbroutines........... ......... 4
2.5 Processing of Periodic Sets. ........ 4
2.6 Variable Field and Variable

Set Maintenance. • 1  • . •. • •. • • • • . . . . . . . 4
2.7 Production of Auxi liary Outputs..... ‘4
2.8 Production of Run History

5
2.9 Logic Statement Storage...... ,...... 5
2.10 File update Methods................. 5
2.11 Modes of Operations................ . 6
2.12 Transaction Sorting... .............. 7

• 2.13 Ordinary Maintenance................ 7
2.14 Checkpoint/Restart....... ........... 8
2.15 Segmented Fi]es..... ................ 9
2.16 Secondary Indexing.................. 9
2.17 Auxiliary Pile Raference............ 10

• 2.18 Logic Statement Size......... ....... 10

3 FM DESCRIPTION.. .• .. .. . .. . . . . .. . . . . . 11
3.1 Control Elements...... .............. 11
3.2 PM ?unct ioning ............... ....... 15

‘4 INPUTS. . . .. . . . . . .. .. . . . .. . . . . . . . . . . . 20
4.1. Card Input.......................... 20
4.1.1 PES Control Card.. ....... ........... 20
4.1.1.1 LIMIT Control Card ........... ........ 20
4.1.2 Segmen t Control Cards. ............. . 20
4.1.3 Logic Statement Librar yUpdate Deck. . . . . .. . . .. . .. . . . . . . . . . . . 21
e.1.3.1 Library Action Cards................ 21
e.1.1.2 Logic Statement Source Decks........ 22

iii

~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~ ______


Section Pa ge

4.1.3.3 Logic Statement Library Update
Terminator Card 23

4~ 2 Transactions. 23
4.3 Subroutine Library.................. 25
~e.4 Data ?ile............ 25

5 ~~~~~~ S. 26
5.1 Output Data Ftle.................... 26
5.� Auxiliar y output........... 26

• 5.2.1 Tape and Disk Auxiliar y Output...... 26
5.2.2 Punched Card Auxiliary Output....... 26
5.2.3 Printed Auxiliar y Output............ 27
5.3 Run History............ 27
5.14 File Analysis and Run Optimization

Statistics. 27

i 6 CON T ROL CA RD ’O RNA T S 30
6.1 ?ree-’or•at Specifications.......... 30
6.1.1 FNS Control Card (Free—Foraat)...... 31
6.1.1.1 LIMIT Control Card (Free Format)..... 34)
6.1.2 Segment Control Cards..... 35
6.1.3 Librar y Action Card (Free—Format)... 36
6.1.4 Transaction Descriptor (TD) Cards

6.1.5 Language Identifier Card............ 41
(Free— Format) 39

6.1.6 Logic Statement END Card............ 41
6.1.7 Logic Statement Librar y Update

Terminat or Card........... ‘41
6.1.8 Report Identifier Card.............. £41
6.2 Ordinary Maintenance (ON)

Transaction Descriptor (TD) Cards... ‘42
6.2.1 Keyword: FIELD.... 43
6.2.2 Keyword: CONTROL..................... 1414

• 6.2.3 Keyword: PICTURE.................... £45
6.2.4 Keyword: YALtJE.................. 45
6.2.5 Keyword: RANGE..... i46
6.2.6 Keyword: YEPIFY..................... 47
6.2.7 Keyword: CONVERT.................... 47

• ~• 6.2.9 Keyword: EPPOR 49
• -~ 6.3 Fixed—Format Specifications......... 51

6.2.8 Keyword: GENERATE................... 188

6.3.1 FM S Control Card...... 51
6.3.2 Library Action Cards 53
6.3.3 Transaction Descriptor (TD)

Cards............. 55
6.3.4 Language Identifier Card.... 57

7 POOL LANGUAG!............ 59

_
iv

-•

~

•• -. - • • - • . . .1~~ ___ •~~~~
• .~

•
-

Section Page

7.1 Card For•at..... 59
7 • 1.1 Symbols. . .. • •. • •. . . • . . 59
7 • 1.2 operators..... •• 59
7 • 1 • 3 Operan ds• 59
7 • 1.4 Co•men ts. • 59
7 • 2 Operand Coding.... • . . 60
7.3 POOL !nstructions................... 62
7.3.1 Alphabet ical Listing....... 62

• 7.3.2 Valid Operands Chart.. 68
7.3.3 Instruct ion Groups.................. 73
7.4 POOt lnstructions..... 80
7.4.1 Environment Handling Instructions... 80
7.14.2 Data Handling Instructions.......... 83
7.4,3 Control Instructio ns................ 92
7.14.14 Display Instructions..... 100
7~ie ,5 Ordinary Maintenance Validity Test

Instruct ions.. •.• • . . 102
7.4.6 Transaction Error Log Instruction

(SODA and ON)..... 103
7.5 Logic Statement Examples............. lOll
7.5.1 FM S Control Card...... 104
7.5.1.1 LIMIT Control Card................. .. 104

- • 7.5.2 Library Action Car d to Add a Report.. 105

J 7.5.3 Logic Statement Setup...... 105
7.5.4 Use of Data Conversion Subroutines... 109

• 7.5.5 Periodic Set Processing...... 112
7.5.6 Test for Numeric Data..... 116
7.5.7 Production of Summary Information.... 119
7.5.8 Yariabl~ Field and Set Processing.... 122
7.6 Summary of POOL Instructions.... 126

8 ORDINARY MAINTENANCE (ON) EXAMPLES... 129
8.1 Use of Ordinary Maintenance TD Cards. 1294 8.2 Use of Ordinary Maintenance TD Cards

and POOL Instructions..... 129

9 NE W PILE MAINTENAN CE LAN GU AGE (NFL) • 131
9.1 NFL Statement Composition........... 131
9.1.1 Statemen t Identifiers 132
9 • 1 • 2 Keywords.. •• 133
9.1.3 Noise Words....... 135
9.1.11 Statement Labsls............... 135
9 • 1 • 5 Operands • •. 1 36
9.1.5.1 Control Location Op.rands.. 136
9.1.5.2 Subroutine/Table Nam e Operands...... 136
9.1.5.3 Literal Value Operands.............. 137
9.1.5.4 Data Location Op.rands.............. 137
9.1.5.18.1 Fill Data Operands... 138

•

~

• .—w ~~~~~~
-

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
‘
~~~~~ii~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~


Section Page

9.1.5.4e2 Transaction Data Operands........... 138
9.1.5.4.3 Indirect Data Operands.............. 139
9.1.5.14.4 Defined Constant and Area Operands. 139
9.2 Special Requirements and

considerations. •.. • 139
9.2.1 Data Mode Compatibility............. 140
9.2.2 Data Length Compatibility........... 141
9.2.3 Special Statement sequence

• Requirements. • ils i
9.2.3.1 Condition/Action Statement Sequence. 142
9.2.3.2 Proced ure Definitions.. 143
9.2.3.3 Define Sequence Requirements........ 1418
9.2.4 Sub set Positiontng.................. 1144
9.3 NFL Statement Description........... 1145
9.3.1 conditional. Stateuents. 145
9.3.1.1 Relational Condition................ 146
9.3.1.2 Table Validation................... . 1148
9 • 3, 1 • 3 Picture Mask. • • 1148
9 • 3. 1 • 14 Switch Test. • . .. • .. • 149
9.3.1.5 Bit Mask Test..•....... .. 150
9.3.1.6 New Record Test...... 151
9.3.1.7 Job Complete ?est. 151
9.3.1.8 Overflow Test..... •...• 152
9.3.2 Action Statements.. 152
9.3.2.1 Data Movement..... ...• •.. 152
9.3.2.1.1 The MOVE Stateaent............... ... 152
9.3.2.1.2 The ATTA CH Stateaent.. 154
9.3.2.2 The COMPUTE Stateaent. .•............ 151$
9.3.2.3 Subset Positioning Stateients..... .. 155
9.3.2.3.1 The LOCAT !Statement.... 156
9.3.2.3.2 The STEP Statenent... 156
9.3.2.3.3 The PO SI’tION Statement.............. 156
9.3.2.4 Auxiliar y Output Stateients......... 159
9.3.2.11.1 The PRIN’! Stai~ement..•.... 159
9.3.2.18.2 The PUNCH Statement... 160
9.3.2.4.3 The WRI’~’!State.ent... 160
9.3.2.4.4 The DISPLAY Statement..............• 160
9.3.2.5 The BVJILD Statement................. 161
9.3.2.6 The DELETE Statement. 162
9.3.2.7 The DEFINE Stata.ent.,.......... 163
9.3.2.7.1 Defini ng a Constant 163
9.3.2.7.2 Defining an Interlog ic Statement

Work Area..... 164
9.3.2.7.3 Defining an Intralogic Statement

• W ork Area........................... 165
9.3.2.7.44 Defining and Initializing an Area... ¶65
9.3.2.8 The TURN Statement.................. 166

_

vi
_ __ _ _ _L

—
~~~
—-  —•-—--

~~~~~~
-.--

~~
-- -•—•-

• . - - -~--~~-~~~~ ~~ •• •~~~~~~~~~~~~ ~~~~~

-~~~

Section Page

9.3.2.9 Execution Sequence Changing
Statements.... • . • • • 167

9.3.2.9.1 The GO State•ent. 167
9.3.2.9.2 The RETURN Statement 168
9.3.3 Control Point Identifiers.... 168
9.3.3.1 The NOTE Statement.. 168
9.3.3.2 The PROCEDURE Statement............. 169
9.3.3.3 The END State•ent.. 169

• 9~ 3•3~ 1$ The ELSE Stateaent.................. 170
9.3.3.5 The CONTINUE Statement..........,,.. 170
9.3.3.6 The Language Identifier Statement... 171
9~ 14 NFL Logic Statement Ezamples........ 172
9.4.1 FNS Control Card.................... 172
9.4.2 Library Action Card to Add a Report. 172
9.4.3 Logic Statement Setup 173
9.4.4 Use of Data Conversion.... 177
9.4.5 Periodic Set Processing........ 179

•
9.4.6 Test for Nuseri.c Data.... 182
9~~1$~~7 Production of Summary Information... 181$)
9.4.8 Variable Field and Variable SetProcessing...... 186
9.5 Summary of NFL Condition and Action

Statement Syntax................ 188

APPENDIX Utilizin g a NIPS File as FM Transaction
Input. • 195

DISTRIBUTION..... 197

OD Form 11$73................ 201

_ _

_ _ _ _

H
vii

____________ -
—

--

-~~-•—~~~a- —

A BSTRACT

This volume defines the File Maintenance (PM) component
of NIPS 360 FFS. It describes the functioning of the
componen t, its capabilities, limitations, expected output

• results, an d specif ications for preparing run decks an d
control cards which will serve as reference for the
knowledgeable user.~ç

• This document sup~;sedes
(~~fl U M—46—~*~j Ve-AirW5 TtI.

•

CSN UN 15—78, Volume III is part of the following
additiona l NIPS 360 FFS documentation:

CSN UN 15—78 Vol 1 — Introduction to ‘ile Concepts
Vol II — File Structuring (PS)
Vol IV — Retrieval and Sort Processor (RASP)
Vol V — Output Processor (OP)
Vol VI — Terminal. P rocessing (TP)
Vol VII — Utilit y Support (UT)
Vol VIII - Job Preparation Man ual
Vol IX - Error Codes

TR 5 14—78 - Installation of NIPS 360 FF5
CSM GD 15—78 — General Description

viii

________________________ ______
_ — a

— - ~~~~~~~~~~~~~~~~~~~~~~~~
..

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -



FILE MAINTE N AN CE (PM )

Section 1

I NT RODUCTION

The File Maintenance (FM) volu.e of the Users Manual is
divided into nine sections.

Section 1 presents a brief introduc tion to the manual.

Section 2 describes the capabilities of the FM component
in generating and updating data files.

Section 3 gives detailed information on FM transactions
under the control of PMS ccntrol card and logic statements.

Section 1$ describes input to the FM component.

Section 5 discusses the output from the FM com ponent.

In summary, sections 2 through 5 give the user an
insight to th. general function ing of the component, its
capabilities, and limitations. A thorough understanding of
these sections is necessary befor e attemptin g to use the
system.

The remaining four sections describe the specifications
for preparing run decks and control cards for the PM
component and serve as a reference for the knowledgable
user.

1

-



PILE MAINTENANCE (PM)

Section 2

-,

FM CAPABILITIE S

The FM componen t provides the NIPS 360 FFS user with a
tool for generatin g and maintaining data files. For maximum
efficiency, updating is performed on indexed sequential
access method (ISAM) or virtual storage access method (VSAM)
files resid i n g  on Direct Access Storage devices (DA SD) .
This permits random access of only those records that are to
be processed on any given run; only records that require
processing are retrieved fro m the file. Record subsets,
whose data content is modified , are wri t ten  back into the
file. The file is updated in place; only those records
requiring modification are rewritte n.

The co.ponent is capable of generating and adding new
records and subsets to the file or deleting records and
subsets. Another feature of the system is its ability to
increase or decrease the size of existing records and
subsets through the addition or deletion of variable data.
All of these functions can be accomplished in one update
cycle.

The componen t also has the capability to generate and
maintain segments of a sequentially organized file. This
capability will, allow large chronological files to be
segmented as specified by the user to expedite processing
when the primary updating to be performed is addiflg new
records with a higher key than those already present in the
data file. Each segment, when generated, will be a separate
data file that can be processed singly or concatenated with
other segments as one data file.

During FM , the user has the option of specifying the
file block size when generating either an indexed sequential
or physical sequential file, or when updating a physical

• sequentia l file. If a block size is not specified, the
output file block size will be the same as the input YFT or

2

__________________ -- 
- 

~- • 

- -
~~

--
~•~ ~~~ •—

~ 
~~~~~~~~~~~~~~~~~~~ -• ~~~~~ • • . • •

,
~~~~~. • ., - - —  —T:-



FILE M A I N T E N A N C E  (FM)

the input file. For deta ils of file block size
specification, see Volume VIII , Job Preparation Manual.
Block size modification is not possible with VSAM DATA files
during FM

The FM component features are discussed in the following
paragraphs. Another option available to the user is to
limit the records read from the data file to be processed.
This can be done through the use of a LIMIT statem ent.

2.1 Transaction Sources

The FM component will accept fixed or variable length,
blocked or unblocked , or undefined transaction records from
ta pe, disk, or card files. The transaction files may be
organized sequentially, or in indexed sequential  form on
disk. The latter capabilit y permits the FFS data tile to be
used as transaction input to update another FFS data file.
Transaction files may also be YSAM FFS data files.

2.2 Transaction Formats

On any given FM run , file updating can be performed with
a variety of transaction record formats, from any number of
different reporting sources. This capability allows new
in formation management systems to be developed without
seriously impacting existing informa tion management systems
and existing reporting systems.

2.3 Logical Updating and Transaction Editing

The FM component automatically performs all, of the I/O
function s, record positioning, and new record generation
required for a file update run; however , the user supplies
the actual record update logic to be used by writing file
maintenance logic statements. The user writes one logic
statemen t f or each different transaction record format that
is used to update his file. The logic statements are• written in the Pile Maintenance languages (POOL or NFL).
Thea. languages provid, a ful l  comple me nt of comparative and
arithmetic functions, so that the u s r  can per f orm all of
his transaction data editing validation in conjunction with
his file update. In most applications, no preprocessing or
presditing of transaction data should be required.

3

— — •-—-- •—~ •

- - - - • •
~

— •—

-~
- •

~~~~ 
• —T

—
~~~~

-
~~

-T- 
~~~~~~~~~


FILE M A I N T E N A N C E (P M)

2.4 Data Conversion and Validation — User Subroutines

In addi t ion to the comparative and a r i thmet ic commands,
the FM languages also provide the-user with commands that
allow him to perform on—line validation and conversion of
transaction data with subroutines that may be wr~.’ten in any
of the 5/360 languages (COBOL, FORTRA N, PLI) or in S/360

• Assembler language. These s%zbroutinea can be pr.stored on
a load library, using the NIPS 360 PPS utility, UTSUBLDR ,
and can be accessed by the PM component as they are
required. A NIPS 360 ?FS utility, TABGEW , has been provided
to generate tables that perform data conversion and
validation using the table search technique (see section 2,
Volume VII , Utility Support.)

2.5 Processing of Periodic Sets

The FM languages contain a series of comiands that allow
the user to scan the periodic sets, so that he may
selectively update subsets based on their existing data

• contents. These commands also allow the user to control the
physical sequence of subsets in a set when new subsets are
being added.

2.6 Variable Field and Variable Set Maintenance

The F M languages provide a set of commands for adding,
deleting, or replacing information in the variable fields

•
j

and the variable sets.

2.7 Production of Auxiliary Outputs

The FM languages provide a set of commands for producing
auxiliary outputs on pr inter , punch , direct access device or
tape in conjunction with a file update. These outputs can
be used to • provide an audit trail of the updates or to

t ~rod ucs transaction files that might be used to update otherfiles in a fi le system. Two separate printed reports, two
separate punched outputs , and up to f ive auxiliary files may
be produced. The user has access to a 999-byte work area
for formatting auxiliary output records. Each record is
limited to a maximum of 9944 bytes because NIPS adds siz
overhead bytes to the da ta and the DCB LRECL is 1000.

• Violation of this limit will cause a System 001 ABEND (I/O
ERROR , RECORD TOO LONG) • Information can be selected for

1$

• - —r • ~~~~~~~~ —•— ~~~~ . • _ —
a—

PILE M A I N T E N A N C E (F M)

output from either the transaction records or the data
records. The PM languages also provide the capability for

• maintaining summary counts and totals which can be output to
tape , pr int , or punch. The user has access to 20 ful]~ vord• binary work areas for developing summary information in
conjunction with a file update run.

2.8 Production of Run Histor y Infor.ation

The FM component automatically produces a printed run
history to indicate error conditions that were encountered

• during file updating. The run history is printed separately
from the printed auxiliary output.

2.9 Logic Statement Storage

The FM component maintains a library of the user—written
logic statements (in compiled form) to update a file. The
Logic Statement Library is maintained with the data file and
consists of a series of records with special keys. This
capability allows the user to avoid recompilation of the
statements each time his file is to be updated, thereby
reducing execution time . The component automatically
retrieves the logic statements that are required for the
transaction record formats encountered during an update
cycle. The user can add/delete statements on the Logic
Statement Library by using a set of control cards, called
library action cards (see section 4.1.2).

2.1$ P u . Update Methods
The PM user can cause the FM component to employ any

combination of the following file update methods in a given
file ma intenance run.

a. ~~~~~~~~~~~~~
— Using this method, every record of

the data f ii.. is made available for logical
updating. This method may be used to sake
corrections to some data field in the file or to
prod uce summary information. If at all possible,
this method should not be used as a part of normal
production runs since it greatly reduces the

• ef ficiency of the component. However , when it is
deemed necessar y, the RANG E statement shoul d be
compiled and stored on the library in accordance

S

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _



FILE MAINTENANCE (FM)

with the paragraph “Logic Statements” under section
3.1, Control Elements.

b. ~~~~~~~~ _ p ft~j~~ 
- Using this method , each

transaction record is matched against a particular
data record, which is made available for logical
updating. When no match is found, a new data

• • record is generated, and a ‘new record’ indicator
is set which the user can test by using one of the
FM language commands in his logic statement.
Exception updating is the normal update method.

C. 

~~~~~~~~~~~~~~~~~~~~~~~ 
- Using this method , each

record tha t has been subjected t~~~~ exception
updating is made available for further processing
by one or more exception—range logic statements.
This method can be used for collecting sum mary

• inton ation or for producing audit information on
all records affected by an update cycle.

d. ~j~~~~~5ubs~~ ~~P4~j1~g - Using this method, a
transaction rOcord is matched against a particular
data record subset and the record’s fixed set , and
the par~icular subset is made available for
processing. When no subset match is found , a new
subset is generated, unless the record does not
exist. In the latter case, the transaction is
logged as an error on the run history.

2.11 Modes of Operations

four FM component modes of operation may be specified by
the user. (Any given FM run may be executed in only one
mode of operation.)

Compile Logic Statement Mode - This mode allows the user
to get compilations of his logic statement for the purpose
of debugging. The component produces a symbolic listing
with all errors flagged, along with a summary of the errors
and their causes. Processing is com pleted when the last
statement is compiled. No logic statements can be added to
the File Library portion of the data file in this mode, but
any other actions can be performed on the Logic Statement

• Library. It the data file is sequentially organized, no

6

-— _ _ _ _ _ _ _ _ _ _ _ _ _

•
•
- ~~~~~~~~~~~~~~~~~~~~~~~ - •-~- -- - •—• •-•~~~~~~~~ .‘,~•— •

FILE MA I N T E N A N CE (FM)

library actions will be performed on the Logic Statement
Library.

Logic Statemen t Library Update Mode — When this mode of
operation is specified, FM updates the Logic Statemen t
Library as specified by the library action cards. Logic
statements may also be compiled in this mode and placed on
the Logic Statement Library. If the data file is

• sequentially organized , logic statements cannot be added to
the logic statement portion of the data file during this
mode .

Data File Generation Mode — The user specifies this mode
of operation when he wishes to generate a new file. The
component will also compile logic statements and perform
Logic Statement Library maintenance if specified. At this
ti..1 the user may specify the file block size using the

• BSZNEVF symbolic parameter of the XFM procedure. If a block
• size is not specified, it will be set at the size of the)

input F??.

Data Pile Update Mode — This mode of operation is
specified when the user wishes to upd ate a data file. Logic
statement compilation and library maintenance may also be
performed by the componen t when executed in this node of
operation. If the file is sequentially organized , the user
may specify a new file block size using the BSZNEWF symbolic
parameter in the 1PM procedure. If a new block size is not
specified, it will be set at the size of the input file.

2.12 Transaction Sorting

The FM component automatically sorts all transaction
records into sequence on the transaction control fields
prior to updating a file. The sort will be ‘ccomplished on
tape or disk. When the transaction volume is such that the
disk sort capacity is exceeded , a tape sort will be

I
• executed . If the transactions are already in order , the

• sort is automatically bypassed.

2.13 Ordinary Maintenance

Through the use of the Ordinary Maintenance (ON)
• Transaction Descriptor (TD) cards (see section 6.2), the

7

- ~~~~~~~~~~~~~~~~~~~~~~~

- _
_

i_ ~
•
~~~• _ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



FILE M A I N T E N A N C E  (PM)

user may specify automatic validation of transaction data,
and automatic (unconditional) updating of file fields. The
types of data validation that may be performed are value,
range , picture , and verification against a table or
subroutine. Data conversion through use of table or
subroutine is also permitted. Error options are provided to
permit or suppress automatic logging of erroneous data, to
automati .cal ly delete records of subsets generated by the
erroneous transaction data , or to automatical ly  clear the
data field that corresponds to the erroneous transaction
field.

The Ordinary Maintenance capability permits the user to
• write logic statements that • contain only Ordinary
• Maintenance Transaction Descriptor cards, or to writ.

statements that contain both Ordinary Maintenance cards and
FM statements. Instructions are provid ed in the FM language

• to interrogate the results of the Ordinary Maintenance
validation (see section 7.4.5). This allows the user to .4
perfor, part of the validation function using the Ordinary
Maintenance language, and to perform the more complex edits
and data manipulation in the F?! language in one logic
statement. In a mixed logic statement, the Ordinary
Main tenance functions are executed prior to the FM language
functions.

2. 114 Checkpoint/Restart

During the generate/update phases of SAM processing, the
user may invoke the OS/360 checkpoint/restart capability to
record timed or end—of—volume checkpoints. End—of—volume
checkpoints will be taken on the SAM data file input for an
FM SAM update and on the user’s SAP! transaction input, if
there is one, for a generate or an updat.. TheI I checkpoint/restart capability should be used only during
Long-running jobs using the execute only procedures. (Note
that OS/360 step restart is program—independent and is not
the topic of this discussion. A detailed description of the
OS/360 checkpoint/restart capability, which is utilized in
NIPS, is available to the interested user in IBM Systeas
Reference Library, Number C28—6708.) A detailed description
of how to use checkpoint/restart in NIPS is included in the
Job Preparation Manua l, Vol ume VIII.

8

_ _ _ _ _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- •

FILE M A I N T E N A N C E  (P M )

2.15 Segmented Piles

The segmented file capability is primarily for users
with Large chronolog ica l files where the updating process
consists of adding new records with higher Record ID. than
those already present on the data file. By segmenting the
data fil, to cover a specified range of Record IDa, the user
can generate a segment using the FFT and logic statements
from the previous segment. The component will build segment
control records containing the boundary of a segment and the
volume serial number of the segment such that the most
recent segment will contain segment control records
identifying all previous segments.

The capability exists to allow the user to maintain an
ISA?! or YSAM data file containing the FPT, logic statements
and segment records for  his segmented data file. This file

• would contain the most recent version of all logic
• statements and segment records identifying all segments used

with the capability. In general the ISA?! or YSAN data set
may be used in a generate segment run in the same manner in
which a SAN data set is generated from a DI SK F??. In an
update run, the ISA?! or YSAP! data set must be defined on the
ISANWORK DD card.

Examples are provided in Volume VIII, Job Preparation
Manual, to illustrate •ethods for generating and maintaining
segments of a data file.

2.16 Secondary Indexing

Secondary Indexing, if active for the file being
• updated, operates within FM in an entirely automatic manner,

without user intervention. The maintenance function
• consists essentially of analyzing the updates of the data

file and mo dLfyin g the Index Data Set to conform to the
changed data file. The analysis inclu des all pertinent
keyword functions: recovery of words from keyword fields
being updated and the application of stop word tables and
dictionaries (if any) to the recovered words.

____ 
- —~~~~~~~~~ 

~~~~ 9


PILE MAINTENANCE (FM)

2.17 Auxiliary File Reference

With the POOL language operator, APR , FM features a
capability to retrieve data f rom the fixed sets of other
NIPS I SA?! or VSAP ! files during the update process of FM
enabling the user to expand transaction editing without
additional tables or multiple passes of transactions against
related files. This capability allows the user to retrieve

• data from an unlimited number of NIPS ISA?! or VSAN files
other than the primary data file in a single logic
statement. The user must suppl y a DD card for each
auxiliary file referenced . OPENs and CLOSEs of the files
are automatic with a maximum of five files OPENed
simultaneously.

2.18 Logic Statement Size

N either POOL , 0?! nor NFL compilers restrict the size of .4
a user wri t ten logic statement due to base register
limitations. Certain restrictions on Logic statement size• do exist, however, and are listed below.

a. The user may define no more than 4096 characters of
constants or literals in one logic statement,
except in an ON/POOL logic statement, where the ON
section and POOL section may each contain 4096
bytes of constants or literal values.

b. In POOL and NFL, no more than 4096 bytes of
executable code can be generated between user-
detined labels. As a practical example, less than
~4O96 bytes of code are generated by 100 contiguous
MAL instructions or 15 contiguous NV? instructions.

• If a sequence of code in POOL or NFL does generate
over 14096 bytes of code without labels present, an
assembly addressability error will occur , in which
case the user need only label his source
instructions at appropriate intervals and recompile
the logic statement.

C. For any one log ic statement , a ma x imum of 255
records can be written to the logic statement
library, thus limiting a logic statement to a
maximu m size of approximately 80,000 bytes.

-
•

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~

—- .

~~ 

— — 1T



FILE M A INTE N AN CE (PM)

Section 3

FM DE SCRIPTI ON

In addition to the PM logic statements, the F?! component
function s under the control of information that exists iii
the user-supplied control cards and in the transaction and
data file records. The function and interaction of these
elements is discussed in the following paragraphs.

3.1 Control Elements

The F?! component operates under the control of the .4
following element s of information: ?NS control card , LIMIT
control card transactions, and logic statements.

a. f l c I~
]
~ Card — The use r mus t provide an ?MS

control card (see subsection 6.1.1 and 6.3.1) for
each FM run. It specifies the f unctions that the
FM is to perform .

o LI?!I çontr~~~ç~~~, - The user may optionally
provide a LIMIT card (see subsection 14.1.1.1
and 6.1.1.1). It specifies the range of
records to be processed.

b. ~~~~~~~~~~~~~ - Transaction records are source—data
records containing information used to update the
data records. The transaction records may also
contain two elements of control information. They

• 
• are the transaction ID fields and the tra nsaction
control fields.

• o ~~~~~~~~~~~~~~~~~~~~~ - Since more than one
type of transaction record can be used to
update a given data file, each transaction
record must contain information that uniquely
identifies it. format. The fields that

• contain this identifying information are the

11

- •—• ,. •-
.
--~~~• ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ • • - -



PILE MAINTENANCE (PM)

transaction ID fields. Each transaction may
contain- up to three ID fields. The aggregate
length of the transaction ID fields may not
exceed six characters.

o ~ ansact contr21 j~]1~~ 
- If the data in a

transaction record is to be applied to a
particular data file record or a record

• subset, that transaction must contain control
fields. The most significant information
contained in these fields is identica l to the
information contained in the control fields of
the data record to which the transaction
applies. The least significant information in
these fields may be used to control the
sequence in which d i f fe ren t  transac tions are
processed against a given data record and must
not exceed 10 characters. The user specifies
the location of transaction control fields
through the  use of transaction description
cards, which are a part of the logic
statements. A transaction record may contain
up to 255 characters of control in format ion
whic h may include up to 10 characters of user
control information in as many as 60
noncontiguous fields.

o Tr~nsactiop b~2 LLic~tLQ~ 
- Each

transaction that is used to update a file
contains a transaction ID. The location of
the transaction ID fields for all of the
different transactions within a given report
m ust be the same. To ident ify th. location of
the transaction ID fields, the user must
assign a report name to each set of
transactions with ID fields in unique
locations. The report name must conform to
the system name rules specified in Volume I,
Introduction to File Concepts. Before FM will
compile the logic statements that are used in
processing a given set of transactions, the
transaction report identification record must
be placed on the Logic Statemen t Library
through the use of a library action card.

12 ~~~~ •,



FILE MAINTENANCE (FM)

Transactions that are being processed duri ng
an FM run must be identified by a report name
before they can be processed through the use
of the ?MS control card and report
identification card. Transactions from
several different reports may be used to
update a file on a given run. Report
identification cards/records must be inserted
in the in pu t stream between groups  of
transactions from different reports.

c. ~g,~jçjj~~~entn — In addit ion to specifying the
processing logic, the analyst must also include
certain control information in his logic
statements. This information is used to specify
the type of logi c statement he is constructing and
to ident i fy  the logic st at emen t so that it may be
retrieved from the libra ry .

I
There are six types of logic statements:

lii k~tittInt Lwia23Lt L~~~~c~tJ~2fl _flIfl -
RANGE statements without transaction data are
used to perform logical processing on every
record in the data file. The analyst
specifies this type of statement by omitting
transaction information when he makes the
library action cards for his logic statement.
This type of statement cannot be stored and
must be recompiled for each F?! execution. It
should be noted that this type of statement
can easily be converted to a range with
transaction data in accordance with the
paragraph below to permit storing on the
library. A single transaction description
card containing a noncontrol field (i.e.,
$LSNAM ,1,1) with the appropriate ASP card
would fulfill the requirements for storage of
a logic statement. A sing le transaction with
the a pplicable transaction control ID columns
filled in would subsequently invoke the logic
statement at generate/update time (e.g., an A
in the first position of a transaction).

13



PILE MAINTENANCE (FM)

o R AEG ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- RAN GE

statements with transaction data are used to
perform logical processing on every record in
the data tile and to update the record. The
analyst specifies this type of statement by
not specifying transaction control fields when
he makes up t ransaction description cards for
his logic statement. This type of statement
may be stored on the Logic Statemen t Library
and need not be recompi led for later use.

RANG E statements apply to the entire data file
whil e EXCEPTION statements apply to one
specific record. The se types of updating
operations may be com bined.

o ~IC!PIIQ~~~~~~~~Ut~ — EXCEPTION statem ents
always require transaction data and are used
to process a particular record of a data file.
The transaction control fields indicate which
record is to be processed. The analyst
specifies this type of stat emen t by specifying
the location of the tra nsaction control fields
in the transaction description cards .
EXCEPTION statements may be stored on the
Logic Statement Library and n eed not be
recompiled for later use.

o ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — SUBSET EXCEPTION
statements process a particular subset record
of a data file. The analyst specifies this
type of statement by specifying a subset field
as a minor control field in his transaction
description cards. The subset ID must be
unique wi thin  its set. The transaction
control fields, ma jor and minor, indicate the
subset to be processed. This type of
statement may be stored and need not be
recompiled for later use.

o EICZ~ILQI - EXCEPTION RANGE
statements may be with or without transaction
data. The statements are used on a per-record
basis to process all data records in the file
that have been updated via EXCEPTION

114

- • -.- _~~~~~~~~~~~~~~
‘

~~~ ~~~~~~~~~~~~~~~~~~~~~~~


FILE MAI NTE N AN CE (FM)

statements during a given run. The analyst
specifies this type of statement by using the
POOL INP instruction writ ten in the POOL
language logic statement, or by punching XNP
as the sixth parameter in a free format Add

• Statement card (subsect ion 6.1.2) when using
Ordinary Maintenance or the NFL. These
statements can be stored on the Logic
Statement Library when they are associated
with transact ion data.

0 Logic Statese~~ ~~~~ntificat j2fl - All logic
statements except RANGE and EXCEPTION RANGE
statements without transaction data, must be
uniquely identified within a data file.
Statement identification is accomplished
through the use of the library action card
that must precede each logic statement
compiled. The report name and the statement
must be specified.

The report name identifies the report type and provides
the location of the transaction ID field for a set of
transaction records; this is the higher level of
identification.

The statement name must be identical to the transaction
ID on the transactions used with the logic statement. This
is the lower level of identification and m ust be unique
within a given report.

3.2 FM Functioning

The FM component is divided into the following
functional sections:

a. ln~tja1iz~~j~~
- This section processes the user’s

punched card input. It uses the PMS control car d
to determine which PM functions are to be performed
and sets up a run communication record to control
processing for the run. It will also process any
segment control cards and update the segment
records on the data file. It constructs a disk

• work file from the user ’s Logic Statement Librar y

15

FILE MAINTENANCE (FM)

u pdate cards; if there are any card transactions,
these are output to a second wor k f i le .

b. LQ~ ic_ St~~~~~ g.Lc.Q 1Pil jQ~~~~LLj f l~~~~ fl~~
— The functions of this section consist of deleting
specified reports and statements from the Logic
Statement Library, adding new reports to the
l ibrary, and compiling and addin g new statements to
the library for a given file. The report

• i n fo rmat ion records and the logic statements are
mainta ined on the library in sequence by report and
statement name. Each logic statement on the

• l ibrary contains two parts. The f irst part is a
logic statement control record that is used during
transaction processing. This record indicates the¶ statement type. If it is an EXCEPTION or

• SUBSET EXCEPTION statement, it indicates the
location of the t r an~action control fields in the
transaction record it processes. The second part
consists of the Executable Load module that is
produced when the POOL langua ge or NFL statements
are compiled .

In addit ion to updating the Logic Statement
L i b r a r y , this section also produces a listing of
the user’s Logic Statement Librar y update deck ,

• with any errors flagged. When the compile—only
mode of FM is specified, the Logic Statement
Library is only updated by the addition or the
deletion of reports/statements. For compiled
statements, only the error listing is produced.

c. ~~~~~~~~~~~~~~~~~~~~~~
- The Transaction Processor

matches each transaction record with its
appropriate logic statement and creates an update
record for each transaction that is used by the
File Processing section to perfor m th. actual
record update.

Af te r the Transact ion Processor reads a transaction
record, it extracts the transaction ID fields from

• the record. The locations of the transaction ID
fields are associated with the transaction report

J name on the Logic Statement Library. It then uses
the transaction report name and th. transaction ID

16

• • •

FILE MAI NT E N A N CE (FM)

to retrieve the control record of the logic
statemen t tha t will be used to process the
transaction.

An update record , containing the name of the logic
sta temen t tha t processed the transaction , a sor t
key, and the transaction record, are then produced.
The high— order byte of the sàrt key contains the
upda te record type indicator; ‘H’ for Range
updates , ‘E ’ for Exception Range updates, an d ‘P’
for Exception and Direct Subset updates. The
collating values of. the record—typo indicators
establish the sequence in which the update records

• will be passed to the File Processing section, but
do not esta blish the seque nce in which the update
records will actually be processed. For Exception
upoate records, t he sor t key will con tain only the
major ID, one byte of binar y zeros for the set

• num ber and user control information. For direct
subset updates, the sort key will contain the major
ID, the set number and the subset control field .
The remainder of the sort field will be padded wit h
b i n a r y zeros ,

At the completion of transaction process ing, the
update records are ordered on the sort key, if they

• are not al ready in sequence.

If the da ta file is a segmen ted file an d segmen t
processing is to be performed , the update record
sort keys are checked to determine if the record
key is within the boundaries of the segment being
processed . If it is no t, an error message will be
prin ted and the update record will be bypassed.

d. ~~~~~~~~~~~~~~~ — The Range and the Exception Range
• update records are read and saved in core. Then

processing of the Exception and Direct Subset
• update records begins. Direct Subset updating for

• a given record will be performed following the
exception updates on the record. If only Direct
Subset updating is to be performed on the record,
the fixed set and the subset are retrieved , and the
updating is performed. If no matching fixed set is
found , an error message is logged. When a matching

17

-

. - .-

PILE MAINTENANCE (‘M)

subset is not found, a new subset is generated, and
a ‘NE W RECORD’ switch is set that can be tested by
the user with the POOL ‘BNR’ instruction or the NFL
new record test.

If Range up dates are to be made, the entire data
file is passed sequentially. As each data file
record is read, its record key is matched against
the current update record’s sort key. If a match
is foun d , the appropriate logic statement is
executed , and the current data record is updated
with the information in the current update record.
A new update record is then read and processing
con tinues on the same d ata reco rd, until an update
record is read with a different sort key. At this
point , Range processing is executed against the
current record .

If the current update record’s sort key has a lower
value than the current data record’s key, a new
record is generated, and the ne~w record switc h is
set.

If the current data record ’s key has a lover value
than the current update record’s sort key, this
indicates that no exception processing is to be
performed against the data record, and only the
range processing is performed.

When Range processing is perfor.ed against the
records that were not updated by exception
processing, the Exception Range logic statements
are not executed .

when all of the data records and update records
have been processed , the RANGE statements and
EXCEPTION RANGE statements that have been
collecting summ ary information are executed once
more , to allow them to output the information.

When no Range processing is required, the File
Processing Section retrieves and processes only
those records with keys that match the Exception
update record sort keys. When no match is found ,
a new record is generated.

18

_ j
_

.

-

-

~~~~~~~~~~~~~~~~~~~~ ~~~~~

-. 

~~~~~~ ~~~~~~

- ——

FILE MAINTENANCE (PM)

File generation is accomplished by generating a new
record for each Exception update record with a
un ique sort key.

Subset Exception updates can be processed dur ing
• file generation for those records generated by

Exception update records.

For sequential processing, the f i le is passed
sequentially as for Range updating. The F!T and
logic statement records are copied onto a new
sequential output data file. The records are read
and updated, and the records whose major IDs have
been cha n ge d are wri t te n on a t emporary hold file.
This hold file is sorted and merged with the output
data file to produce the new data file. If the
sequentia l file is a segmented file, a listing of
the segment control records on the data file viii
be printed indicating segme nt boundaries and the
volume serial number of each segment. During logic
statemen t execu tion , if a ma jor control field
change occurs, the new Record ID is checked to
insure tha t the new ID is wi th in the segme nt
boundary . If t h e new Record ID is not within the
segment boundary, an error message will be printed
and the change will not be executed .

A secondary functicn of the Fi le Processing section
is the production of a consolidated auxiliary
ou tpu t f i l e . The records for this f i le are
produced when any of the POOL or NFL instructions
that produce printer, punched card, or tape
auxiliary output are executed. Control is then
passed to the next section.

e. jg~~~ Q~~~~~~~~~~~~~ j~g - This phase reads the
consolidated auxiliary output file, and outputs the
individual records to their proper printer, punched
card , disk or tape files. When two printer files
are requested, the y are produced sequentially on
the same printer. The two pun ched card files are
punched into pockets 1 and 2 of the card punch.

-

~~ ~~~~~~i- ,-..t- -

- -

~~~~~ 
- .  T ~~~~~~ ~~~~~~~~~~~



FILE MAINTENANCE (FM)

Section 4

INPUTS

4 e 1  Card Input

catd input to the FM component consists of the FMS
control card , the Log ic Statement Library update deck , and
t1~e transaction deck.

4.1.1 FNS Control Card

The format of the FNS control card is described in
sections 6.1.1 (Free—Format) and 6.3.1 (Fixed—Tor.atj,

An P145 cont rol car d mus t be the first card in the PM run
deck. It specifies the functions to be performed during the
FM run.

‘4.1.1.1 LIMIT Control Card

The format of the LIMIT control card is described in
section 6.1.1.1 (Free Format). The LIMIT control card is
optional. When used, it must follow the P145 control card.
It specifies the range of records that File Maintenance will
process.

4.1.2 Segment Control Cards

The segment control cards will direct the component to
perform processing of the segment record s on the data file.
The segment control cards m ust appear immediately after the
FM S control card. If segmented processing is not desired,
these cards must be omitted. The format of these cards is
described in section 6.1.2.

- 

20 

_ _ _ _  _ _ _ _ _ _ _

~~~~~~~~~~~ ~~~~~~~~~~~ 
— — ———

- -

FILE M A I N T E N A N C E (PM)

4.1.3 Logic Statement Library Update Deck

This deck specifies the maintenance actions to be
performed on the Logic Statement Library and consists of the
cards discussed. If no Logic Statement Library update is
desired on a given run , there is no requirement for this
deck.

• 4.1.3.1 Library Action Cards

The format of the library action cards is discussed in
sections 6.1.3 (Free—Format) and 6.3.2 (Fixed—Pormat).

These cards direct the component to perform a specific
type of library update. Each library action card may be
used to specify one update action only. The types of
upda tes that may be specified are as follows:

a.
~~~~~~~~~~~~~~~ 

- The component adds the report
name and infor mation concerning the  repor t to the
library. The name of a report must be added to the
library before statements wh ich will be used to
process tha t repcrt can be added to the library.
This can be accomplished in one pass if both sets
of control cards are in order in the same run deck.

b. ~~~~~~~~~~~~~~~~~~~~~~~~~~ 4teaQ ~~~~~ D1fl~~~~~~~~~ 
- The

component compiles a logic statement and adds the
logic statement to the library.

c. cQa2ij ,~_&~g_ ig~~_ ~~~~~~~~~~~~~~~~~ - The
component compiles and adds a logic statement to a
Temporary Library only for the current run. A
Statement added temporarily will be the one
executed during the run in which it is added , even
if another statement with the same name already
exists on the Logic Statement Library.

d. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~LAA! - The com ponent deletes from the l ibrary all
of the report informatio n and logic statements that
pertain to the f i le .  ‘~1- The component deletes the
specified report from the library and deletes the

21

T.. — — . — 
—Ti___. ____



FILE MAINTENANCE (FM)

logic statemen ts that are used to process tha t
report. If user wishes to delete more than one
report from a file, all SDR cards should be
together in the deck.

f. ~~~~~~~~~~~~~~~ - The component deletes the
specified s ta tement  from the library. If user
wishes to delete m ore than one logic statement from
a library, all SDS cards should be together in the
deck.

Note: Each library action card, which specifies that the
component is to compile a statement, must be the first card
of the logic statement dec k that is to be compiled. All
othe.r library action cards must be placed in front of the
logic statement decks.

4.1.3.2 Logic Statement Source Decks )
Each logic statement source deck consists of the cards

that are required to compile and , if des ired , add one logic
statement to the library. A maximum of 24 logic statement
decks may be compiled and added to the library, either
temporarily or permanently, during an PM run. There is no
limit on the total number  of s tatements that  may be used
with a file or report.

Each logic statement may consist of the following card
types:

a. ~j j ~~~~~~~j~~~ j  .~~~~~~~~~~~ 
- In addit ion to directing

FM to compile and add a statement to the library,
this card also provides information about the
transaction data that is to be processed with the
statement to be compiled . If there is no
transaction data to be processed by the statement,
the statement is not add ed to the library, bu t is
com piled only for use with the run in which it is
compiled. The format of the LA card is discussed
in sections 6.1.3 (Free— Form at) and 6.3.2 (Fixed—
Format) .

b. ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
- TD cards are

• - used to describe the transaction data which the

22

p 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
T’

~~~~~~. ~~~~~~~~~~~~~~~~ ,
~~~~~~

-.

FILE MAINTENANCE (FM)

statement is to process. They provide the user
vith the capabi lity of labeling transaction fields
so that he may reference the fields by labels in
l anguage source statements. Thes e mnemonics need
not be unique from file field mnemonics.

The TD cards are also used to specify the locations
of the transaction control fields. If transaction

• control fields are not specified, the component
assumes th at a Ran ge statement is being compiled .

The format of the TD card is discussed in sections
6.1.3 (F ree—Format) and 6.3. 3 (Fixed—Format) .

c. ~ ~uage_rdenti~ ~~~ - This card must precede
the POOL and NFL source statements. The format of
the language iden t i f i e r card is described in

• section 6.1.4. This card tells the compiler which
source language is being used.

d. ~ - Sect ion 7
discusses the format and logical capabilit ies of
the POOL language, and section 9 discusses the
format and logical capabilities of the NFL. The
source statement cards specify the processing logic
used by the component.

e.
~~~~~~~~~~~~ c~~g - The last card in each logic
statement deck m ust be a statement END card. The
format  of this card is discussed in section 6.1.5.

4.1.3.3 Logic Statement Library Update Terminator Card

The last card of the Logic Statement Library update deck
must be a terminator card if card transactions follow the
deck. The forma t of this card is described in section• 6.1.7. This card is required only if library updates are to
be performed.

• 4.2 Transactions

The transaction file can be either cards, tape, or disk
(sequential or indexed sequential or YSAM data set) or a
combination of multiple sources with the varying data
attributes. If it exists soley on cards or is a combina tion

23

________________________________________________________________________ _________________________________________________________________________ ______________________________________________________

-~~~~ 
_ _~_ _ , ‘4_ • S .,-



FILE MAINTE NANCE (FM)

of more than one source, it must follow the Logic Statement
Library update  terminator  card . The transactions may be of
more than one report type for an FM run. Normally, the
report type used for a run is entered on the PM con t rol card
as a parameter. However, for runs consisting of more than
one report type , the transactions applicabl e to the -
different reports must be batched separately and each batch
must be preceded by a report identifier ca rd . When
utilizing more than a single transaction source in an PM
run , a report identifier card is required for each source in
order to provide FM with the transaction DD name. The
format  of the report identif ier  card is discussed in section
6.1.8. Detailed infor.ation concerning processing of a NIPS
360 FF5 dat a base as transaction input is contained in the
appendix of this manual.

Transaction records must follow the following
conventions:

I
a. Each transaction record may contain one variable

field which must be the last field in the record.

b. The max imum size of the transaction record is 1,900’
characters.

c. The transaction records must be in one of the
standard 5/369 formats ; fixed or variable length,
blocked or unblocked, or undefined. If the record
fo rma t  of the transaction is either variable or
un defined , there will be a 4—byt e field prefixed to
the beginning of the transaction . This field must
be accounted for in the user’s logic statement,
i.e., if the logic statement name starts in
position 1 of a fixed transaction, then it will
start in position 5 of a variable or undefined
transaction (assuming the sa me transaction,

d. A transaction field that is used by the logic
statement as an indirect address must contain a
valid field/group name from the file format  table
of the f i le  to be processed . The transaction may
contain •ore tha n one indirect address field ,
however , each field m ust contain a valid F??
field/group name.

24

~ 

~~~~~~~ ~~~~
‘

,~~~~~~~~~~~~~~~~~~~~~ . - . ~~~~~~~~~~~~

FILE MAINTENANCE (P11)

Numeric transaction data will be processed in two
different ways, depending on the use to be made of it. (1)
If the data is to be moved to a binary area (that is, a
binary data file field or a binary work area) or if it is
the operand of a numeric instruction (i.e., add , divide,
mult ip ly , subtract , or compare numeric operands) , the dat a
will be ~~~~~~~~~~~~~~~ (i.e., trailing blanks will be

• deleted) and ~~~~~~
Editing means that all characters

between the + and — signs (it present) and the last non-
• b1an~ character of- the data viii be checked to make sure

they are numeric. The last character will automatically be
considered numeric if it can be converted to binary. (2) If
the data is to be moved to a decimal area (a decimal file
field or the EBCDIC work area), a check will be made for a
• sign or — sign. The sign will be replaced in the
receiving field by an EBCD!C zero; a - sign will cause the
low—order zone of the receiving field to be made min us. The
data will

~~~ 
be right—justified or edited in this case.

The numeric portion of each byte will be transferred to the
receiving area, and the zone portion of ee~ch byte except thelast will  be set to a hexadecimal ‘F’ . The low—order zone
wi ll a lways  be set to a hexadecimal ‘D ’ (i.e., minus) if the
operand contained a minus (—) sign; otherwise, the low—order
zone wil l  be transferred. Tb. zone of a low—order blank
will be set to hexadecimal ‘C’ (i.e., plus).

4.3 Subroutine Library

The Subroutine Library must contain all subroutines and
tables whic h will be used during an FM run.  The l ibrary ma y
be stored on the sa me vol ume as the dat a file and may have
a name of the user ’s choice.

4,4 Data Tile

The FM component processes indexe d sequential data files
on disk and sequential data files on tape or direct access
devices. The PM componen t will a lso process !irtual Storage
Access Method (YSA M ) data files on the Sf370. When desired,
the ut ili ty  program UTELVISM (see Volume VII , Utility
Support) may be used to load sequential data files onto
direct access storage.

25



FILE MAINTENANCE (FM)

Section 5

OUTPUTS

5.1 Output Data File

The output from the FM component is a direct access data
file, updated in place on disk (15kM or VSAII processing) or
a sequential data file on tape or disk (SAM processing), or
a segment of a sequential data file on tape or disk.

5.2 Auxiliary Output

In addition to producing an updated data file, the FM
component provides the user with the capability of producing
auxiliary outputs under the control of logic statements.
Auxiliary output may be pro duced on disk, magnetic tapes.
punched cards, or the printer, according to the user’s
format t ing  specificat ions. The outpu t length is limited to
a maximum of 994 bytes. NIPS adds six overhead bytes to the
output data and the DCB LR!CL is 1000. Violation of this
limit will cause a system 001 ASEND (I/O ERROR , RECORD TOO
LONG).

5.2.1 Tape and Disk Au xiliary Output

During an FM run , the user may produce auxiliary output
on five tape or disk files.

5.2.2 punched Card Auxil iary Output

The FM component provides the user with two punched
outputs. Any formatting of punched output must be
accomplished by the user in his logic statements. If the
user requests that more than 89 characters of data be
punched, the data in excess of 89 characters will be punched
on subsequent cards.

26

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — 

— - ~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~• •~ ~~~~~~~~—-~~~



FILE M A I N T E N A N CE (FM)

5.2.3 Printed Auxiliary Output

The FM component provides the user with two printed
outputs. The user is responsible for formatting the print
lines. The FM component will handle the printing of 132
characters or less. If the user requests that more than 132

• characters of data be printed , the data in excess of 132
characters will be printed on subsequent lines.

5.3 Run History

As part of its functioning, the ~M component
automatical ly generates a run .histor .y .on th e pr inter .  This
includes listings of logic statements that are compiled , and
messages indicating that errors, or unusual  con ditions tha t
might  be interpreted as errors, have been encountered during
process g.

If segmented file processing is being performed, the
segment control records on the current segment will be
printed showing the seg ment boundary  and the volume seria l
number of each segment.

5•14 Pile Analysis and Run Optimization Statistics

The File Analysis Statistics capability in the FM
component provides transactions showing the number of times -each logic s ta tement  is executed during an ‘11 execution.
The data set name (DS NA M ’)  of th is  data set must  be the data
file name su f f ixe d by a T. The T is added to ISAM and YSAN
names; the S is replaced by T in SAN names. To obtain
transaction output, the DSNAME must be cataloged and the
user must specify the volume serial (VTRANS) and unit
(UTRANS) in the execution proced ure. The volume may be any
direct access volu me .

If the transaction data set exists at execution t ime ,
transactions will be added (DISPzNOD) • If the data set does
not exist, a 5—track data set will be dyn amically allocated.

• The user may change the allocation value by overriding the
TEAKS? DD card space parameter. Transactions are written as
fi xed length , unblocked, 50—byte records. The format
(fixed) and length (50) cannot be changed but the user may
change the blockin g factor by specifying a DCR BLKS IZ ! in

• th e T E AKS? DD card which is a multiple of 50.

27

S. 
—F 

~
• .-.

~ 
— -~~~—‘--— ~•& -~--—-—.-- .-



FILE MAINTENANCE (FM)

If the user specifies a DSNAM! (TRANS) in the TRANS DD
card, he must supply all parameters required to process the
data set. These parameters must conform to the requirements
defined above.

The Run Optimization Statistics capability provides the
user with statistical data reflecting the core allocation
during FM execution. The breakdown of the statistics detail
the amount of core used for user subroutines and tables,
logic statements, process b locks , I/O buf fe r s , and access
methods. It also includes the number of BLDL entries
allocated and used and the number of entries required for
each subroutine, table, and logic statem ent to reside in
core. The amount of core required for each subroutine,
table , and logic s ta tement  to res ide in core is also output.
If subroutines, tables, and logic statements are rolled ,
this information viii be output with the causes for the
rolling and the number of times it occurred.

I
In addition , the user is able to enter override

parameters for the number of BLDL entries to allocate, and
the size of the processing block desired for storage of the
data records during FM processing.

The statistics gathering is initiated through parameters
entered in the PAR M field of the EX!C card. The paramete rs
and their function s are as follows:

ROS — Indicates that run optimization
information is to be gathered and output.

NO RO S - Indicates that optimization processing is
to be omitted. If no other parameters
are coded, this parameter should be
omitted as it is the defaul t .

The parameters the user may supply to tailor his core
allocation are listed below. Using these parameters, the
Run Optimization Statistics are gathered and output unless
the NOROS paramete r is used.

TCP=NK — The N indicates the number of bytes
requested for the process block in 1000
(K) bytes.

28

—-5- — - - . - - - - . —,--, --- S.—- —
- ~~~~~~~~~



FILE M A I N T E N A N CE (PM)

TCB=n — The n indicates the nu mber of entries to
be used in the BLDL list for SUBSUP, the
subroutine supervisor.

TCS — This parameter indicates that the
statistics record on the ISAM or YSAM
data file is to be used to compute the
process block size. This parameter •ust
not be used with TCP and vice versa.

For a more detailed description of the capability see
Introduction to File Concepts, Volume I.

1

1

iF

I

2g

• *.



FILE MAINTENANCE (FM)

Section 6

CONTROL CAR D FORMATS

6.1 Free—Format Specifications

This section specifies the preparation requirements for
all PM control cards. These cards may be punched in free
format or fixed format (see sections 6.1 and 6.3
respectively).

The general rules that apply to free-format control
cards are as follows:

• a. The control card data must always be punched
starting in column 1. The first character of a
control card must always be a dollar sign ($).

b. The information in the cards mus t be punched in a
• specified parameter sequence.

c. The control card fields must be separated by
commas , with no intervening blanks .

d. If the analyst has no requirement for a certain
parameter , he must so indicate by punching a comma
for that field, except when he has no more fields
to punch.

The four control cards that  may be formatted in this
manner are as follows:

a. The PMS control card

b. The LIMIT control card

c. The Library Action card

d. The Transaction Descriptor card.

30

•-

: ~~~~~~~~



FILE MAI NT E N A N CE (PM )

The specifications for each of these cards, together with a
description of the editing proced ures that will be performed
by th e system , foll ow. Any errors detected while editing
these cards wil l  cause a no—go switch to be set. However ,
all con trol car ds will be edited before any run which has
erroneous control cards is aborted.

6.1.1 FMS Control Card (free—Format)

De scri pt ion:

Field 1 — $FMS/AAA—$Card Identifier And Run Node.

$FN5/ is the card identif ier. AlA indicates the

$ 
run mode an d n ay be one of the followin g:

CON - Logic statement compilat ion mode. The input
logic statement s will be compiled and chec k list
generated . No l ibrary act ions can be performed

LIB — Logic Statement Libr ary update mode. Logic
statements can be compile d , and all library actions
can be performed in this mode.

Note: For sequential files, a run node of CON or
LIB will cause only compilation to be performed.
No librar y action will be accomplished.

GEN — Data file generation mode

UPD — Data file upda te mode.

Note: Logic statements may be compiled and added to
the Logic Statement Librar y with file generation or
file update.

_  

31 

L
________ - ~~~~~~~ — 

-S.--— - 

--F -
~~~~~

-.

FILE MAINTE NANCE (FM)

Field 2 — Pile Name

This field must contain a 1— to 7—character file
name. The first character must be alpha betic, and
no embedded special characters may occur. On a SAN
run or an ISAN or VSA N GE M run , this field su pplies -

the name for the new file.

The following parameters (fields 3—6) are only used if
the GEN or UPD run modes are specified. If the CON or LIB
modes are specified , the remaining fields should be omitted .

Field 3 — Report Name (Optional)

This parameter may be one to seven characters in
length and must be alpha betic. It provides FM with
the name of the first tra nsaction report that will
be processed in the run . This parameter may be
omitted if there are no transactions to process, or
if the report name for the first set of
transactions is to be specified using the report
identifier card. This parameter must be omitted if
the transactions being processed originate from
mul tiple transaction sources as information as to
the source mus t be sup plie d through N E W REP ORT
control card parameters .

Fiel d ~4 — Logic Statemen t Librar y Update Indicator
(Required for tJPD or GEN when logic
statem ents are to be compiled on—line).

‘LS’ indicates the library is to be updated. This
parameter is omit ted if no update is required.

Field S - Da ta File Type

For GEN mode , the data file type parameter on the
• FMS control card should be supplied. If it is not

supplied, a default option is used.

For UPD mode , the data file type parameter on the
• FMS control card may be omitted. The default
• option will be used if the parameter is not

1
- supplied .

32

• — • - -•-- 5- - ~~~~~~~~~~~~~~~~~~ - -~~

FILE MAIN TENANCE (FM)

The data file type parameters are:

TAPE — For sequential processing - (SAN)

DISK - For direct access processing (ISAM or VSAM)

The default option is to process, according to the
organization of the input data file which contains• the FFT, logic statements and, for UPD runs, data
records.

Field 6 - Transaction Source (Required for UPD or
G EM Node)

TAPE - Sequential transactions; file on either
tape or direct access storage.

DISK - - Transaction source is in indexed
sequen tial or ganiza tion)

SAM — Transact ion source is a NIPS 360 FFS ISAM
or YSAM data file in sequentia l
organization

ISAM - Transact ion source is a NIPS 360 F?S data
file in index sequential organization

CARD — CARD must be specified or this parameter
omitted entirely when ut ilizing multiple
transaction sources since the NEW REPORT
card describing the source must be
included in the run deck.

NONE — No transactions

If this parameter is omitted , CARD is assumed.

Field 7 — Segmented Pile Processing Indicator

• SEG - Segmented processing to be performed in
th is run

NOSEG - Bypass segmented file processing in this
t run

I
I ~ -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- . - . —S.— — .5

- ____ fl -S. —

PILE MAINTENANCE (FM)

If this parameter is omitt ed, the default option is to
perform segmented f i l e proce ssin g if the da ta f i l e is a
segment and to ignore segmented file processing if the file
is not a segment.

6.1.1.1 LIMIT Control Card

Descri pt ion:

Field 1 — $LIMIT — card identifier

Field 2 — Field na me or Group name (m/n] (*SUBTAB)

The field or group name specified must include the
high—order charact er(s) of the major control field.
The user has the option to specify partial field

• notation for the field or group by indicating m m .
This specifies which por tion s of the record key
will, be used for comparison. This partial field
mu st start at the first character; i.e. 1/n. In
ad dition, the f ie ld or group may be modif ie d by a
subroutine expression. Double pound signs (**)
suppress automatic table conversion, and the name
of the subroutine enclosed in pound signs forces
table conversion.

Field 3 - Relational Operator F

The relational operators shown below are allowed in
the statement formed by the LIMIT operator and
condition the selection of records as follows:

EQ - process when equal to
LT - process when less than

- process when less than or equal to
GT - process when greater than
GE - process when equal to or greater than
BT - process when equal to or between

The logical connector NOT may precede all
relationa l operators.

_ _ _ _ _ _ _ _ _ _ _ _ _ - T:~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PILE MA I N T E N A N CE (PM)

Field ‘4 — Literal(s)

If the BT relational operator is specified, then
two literals are required and must be separated by
a slash; i.e., a/b.

6.1.2 Segment Control Cards

The segment control cards are used to update the segment
records on a segmented data file. The options allowed are
as follows:

SEG - This option indicates to the component that
the output of a GEN run is to be a segmented

• data file. This option must be used only when
the mode of the run is GEN.

ADD - This option indicates to the component that a
new segmen t record is to be added to the
segmented data file. This option may be used
in either GEN or UPD mode.

REP — This option indicates to the component that
the volume seria l num ber of a specified
segmen t is to be replaced by a new volume
serial num ber.

DEL — This option indicates to the component that
the segmen t record specified by the low key
value is to be deleted from the segmen ted data
file.

Note: The actionè specified by the segment cont rol cards
will, be performed at PM initialization time. Therefore, if
no logic statements are to be compiled , o.it the logic
statement paramete r on the PM S contro l card.

The control cards are free format and possible operands
are as follows:

LOKE! HIKE!

LOKE! HIKE! VOLID
• ‘ ft~~~

LONE! OVOLID NVOLID

- :i . ~
- -i

~~
_ .

FILE MA I N T E N A NCE (PM)

F LONE!

wher e the first parameter is as shown —

LOKET - the lowest major control field for the segment

HIKE! - the highest major control field for the segment

VOLID — the volume serial number

OVOLID - old volume serial number for REP action

NVOLID - new volume serial number for REP action

The parameters on the segment control cards iust be
separated by a comma and/or one or more blanks. If the
ma jor. control field contains special characters or blanks,
the field must be enclosed in quotes or at signs. More than
one card may be used to specify the action to be performed.
However, the action parameter must be the first entry on the
first card of a set of cards if more than one card is
needed.

Columns 1—71 are used to contain the segment parameter,
column 72 is used as the continuation column , and columns
13—80 are ignored~

If the major control field parameter is too long for one
card , a nonbiank character in column 72 will indicate the
continuation of the field in column 1 of the next card.
Fields specified in this fashion must have a single quote
(‘) or at sign (~~) at the beginning of the field and a
single quote or at sign at the end of the field. A maximum
of tour cards may be used in specifying one field.
Continuation indicators should be use d only if the field
continues through 71 and the beginning of the next card.

6.1.3 Library Action Card (Free—Format)

Description:

FieLd 1 — Action Identifier (Required)

- • This field must contain one of the following:

- . -- 5
—a ~~~~ ~~~~~~~~~~~~

FI LE MAINTE N AN CE (FM)

SD? delete all reports and statements for
a f i le

SAR add a report name
$DR delete a report name and all statements

for the report
SDS delet e a statement
$&SP add a statement perma n ently
SA ST add a statement temporarily.

For a SD? card, all that is needed is the action
identifier - SD F.

Field 2 — Re port Nam e

This field is used to specify a report name. The
report name may be f rom one to seven characters
long. It is required for all action cards that
deal with reports or statements. This is the last
field that need be specified for cards with the
function code SDR.

Fields 3,~$,5 - Posi tion of Transact ion Ident i f icat ion
Fields (Add Report)

The Add Report card is treated as a special case.
Following the report name, it will con tain from one
to three parameters used to specify the location of
transaction identification fields~

The format of this parameter is:

HH—LL .

where

H is the high—order position of the transaction ID
(or a portion thereof), and L is the low—order
position of the transaction ID. The high— and low—

[order positions may be specified as 1- or 2—d igit
numbers with a range between 1 and 99. A one—
position statement ID field may be specified by one
number only.

37

—

~L~~’-
. - • - - .. . - • • , . •~~~—

FILE MAINTEN A NCE (FM)

Example :

SAR ,PORT,1—3 ,80,33—34

This card requests that the system add information
about report type PORT to the library.
Transactions within report t~.ype PORT will, contain
identification in three fields. Field 1 will be in

- columns 1—3 , field 2 in column 8~, an d field 3 in
columns 33—34.

The following fields are used only with statement action
cards: $A ST,SA SP,$DS.

Fiel d 3 — Statement Name (Required)

¶ The name may be from one to six characters long.
No embedded blanks will be permitted.

If the library action specified in the card is $DS,
field 3 is the last field ,in the card. The
following fields pertain only to the add stateme nt
cards.

Field 4 — Length of Fixed Transaction Data
- (Required)

This field may be from one to four digits long and
must be a number between 1 and l~~Ø inclusi ve.

Field 5 - High—Order Position of Transaction
Variable Field (Optional)

If no varia ble field exists, this parame ter may be
omitted. This parameter may be from one to four
characters long and must be a number between 1 an d

~~~~ inclusive. The value of this parameter must
be greater than the value of field 4.

38

_ _ _  ___________  
~~~~~~~~~~~~~~~~~~


FILE MAINTENANC E (FM)

Field 6 — Exceptio n Range Indicator (OM and NFL
only)

This fiel d con ta ins ‘XNP’ if the logic statement
being compiled is an Exception Pange statement. If
the logic statement is not an Except ion Range
statement , this parateter must be omitted .

Field 7 — NOP Instruction Count

This fie ld contains •NCT’ an d signals to t he
processor program that the test for logic loops
should not be performed during the execution of the
logic statement.

6.1.44 Transaction Descriptor (TD) Card s (Fr e e—Format)

These cards are provided to allow the ’ user to label
transaction fields in writing his logic statements. He may
then reference the transact ion field label in his logic

F

statements by the label preceded by a dollar sign (5). The
format of these cards is as follows:

Field 1 — Field La bel (Require d)

The field label can be from one to seven characters
long and must be preceded by a dollar sign (5).
80th alphabetic and numeric characters may be used,
but the first character of a label must be
alphabetic. No special characters may be used.

Field 2 — High-Order Position of Field in
?ransact ion (Required)

This field say be from one to four digits. If the
analyst is using the TD card to assign a label to
the variable field of the transaction, this
parameter viii be the last parameter on the card.
In this case, FM viii make certain that the

• position specified in this card coincides with the
high—order position of the variable field as it is
specified in the library action card.

Field 3 - Low—order Position of Transaction Field
- (Required Only for Fixed— Length Fields)

39

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~ ~~



FILE MAINTENANCE (FM)

This field may be from one to four digits. FM
chec ks to ma ke certain that the value specified
here is not grea ter than the length of the fixed
field as specified in the library action card.

Field 4 — Major or User Control Field Designation
(Optional)

The field must be punc hed as a C followed by a 1—
to 2—digit number between 1 and . 60. The number
indicates the sequence in which the transaction
control f ields mus t be arranged in order to compare
them to the data record ID. The transaction
control fields that are assigned the lower sequence
numbers and that have an aggregate length equal to
the length of the data file major record control
group constitute the ma jor transaction control
fields. The transaction control fields that are
assigned the higher sequence numbers constitute the
user control fields; they are not used in matching
the transaction to the file record but are used in
sorting to control the record update sequence. For
example:

$RECID,4,10,C1

ThLs example describes the transaction field which
the analyst wishes to refer to , as PECID in his -

logic statement. It i’s located in positions 4—la
of the transaction , and it is the major portion of
the transaction that corresponds to the data record
ID.

Field 5 — Data Mode of the Transaction Field
(Optional)

A - Indicates the field contains alphabetic data
B — Indicates the field contains binary data
C - Indicates the field contains coordinate data

in internal format
D - Indicates the field contains aiphameric

(!BC DIC) data.

If this parameter is omitted , D is assumed .

4 h O

- •  
~~~~~~~~~~~~~~ 

.
~~~~~~~~~

. . .



FILE M A I N T E N A N C E  (FM)

Field 6 — Control Indica tor (Optional)

This parameter specifies the type of control field.
The following codes may be used.

M — Major control field
- S — Secondary control field

N — No control field.

If bl an k , ot her pa rameters on the car d are tested
and the control field indicator is set by the
prog ram.

Field 7 — Corresponding Subset Control Field
Mnemonic

This parameter specifies the subset field to be
used as a control field on a direct subset update
statement. This field should be blank for other
types of update statements.

6.1.5 Language Iden t i f i e r  Card

This card will contain either POOL in card columns 16—19
to indicate that POOL language source statements follow or
NFL in any three consecutive columns to iàdicate that NFL
source s tatements  fol low.

6.1.6 Logic Statement END Card

The END card must be placed at the end of each POOL
language logic statement. This card will contain the word
£ND in columns 16—18.

6.1.7 Logic Statement Library Update Terminator Card

This card will contain the word STOP in card columns 16—
19. The STOP card must be the last card of the logic
statement update deck if card transactions follow the dick.

6.1.8 Report Identifier Card

This card is used to signal the beginning of another
report. Tb. characters NEW REPORT viii be punched in

- — 

4 1



FILE M A I NTE N AN CE (FM )

columns 6-15. The report name viii begin in column 21 and
may be from one to seven characters,

If processing transactions from multi ple sources, the DD
name for the specific transaction source must follow the
report name . A comma must separate the report name from the
DD name. The DD name must be in the form PSTRANxz for
sequentially organized transaction data and ISTRANrx for
defining a NIPS ISAM or VSAM file as a transaction source.
The xx may be a user coded unique ID for each DD statement.
The statements mus t be included by the user immediately
preceding the  FM.SYSIN DD * at run  execution. , Comments say
be included in the NEW REPORT identifier car d following the
DD name after allowing a blank to separate the two. NEW
REPORT statements containing the optional DD name parameter
may be contained only in the SYSIN data set. -

6.2 Ordinary Maintenance (ON) Transaction Descriptor
(TD) Cards

?he FNS control card and library action control cards
must be coded as shown in sections 6.1, 6.1.1, and 6.2.1.
Oil Transaction , Descriptor (TD) cards are free formatted
(there is no fixed format capabilit y). Oil TD cards may ~~~be used wi th  the New File Maintenance Language (N F L) . The
parameters c’jnsist of keywor ds followed b y single operan ds
or operara’ ~.ists. Allowabl e keywords are as follows:

FIELD
COWl R O~PI CTURE
VALUE
RAN GE
VERIFY
CONVERT
GENERATE
ERROR

With the exception of the FIELD and CONTROL parameters , the
parameters may appear in any sequence. The keywords and
operands may be separated by any number of blanks, commas or
equal signs. Operands that contain any of these characters
lust be enclosed in single quotes ( ‘) .  Operands may not
contain quotes in any position. The parameters for a single

142

- —
5, 

—..--- . ~~~~~~~~ ~~~~



FILE MAINTENANCE (FM)

transaction field may be entered on any number of cards.
The description of each given field may begin anywhere ;
however , keywords and operands may not be split across input
card boundaries. The number of characters per keyword
operand may not exceed 52. The total number of characters
per keywor d operan d list may  not exceed 9~~ .

Each of the keyword parameters is discussed in the
following subsection. The discussicn provides a description
of each keyword ’s function , the legal abbreviation for the
keywor d, and a description of any restrictions on the use of
the keyword.

6.2.1 Keyword: FIELD

Abbreviation: FLD

Example: FLD ALPHA 8 11. A )
FLD NUMBER 12 15 D F

Function:

This keyword is used to identify the start of a
transaction field description operand list. It must be the
first parameter on a card. The FIELD operands must be
entered in a specific sequence as follows:

a. User—assigned t ransaction field mnemonic.  This may
be a 1— to 7—byt e aiphameric operand , the f irst
byte of which must be alphabetic. When the
GENERATE parameter is nsed,’ the transaction field
mnemonic must be identical to the mnemonic for the
field that will receive the data.

b. High—order position of the transaction field. This
operand may be fro m one to four bytes long and must
be numeric.

• c. Low—order position ‘of the transaction field
(optional) . This operand is omitted for variable
length transaction fields. The operand may be f rom
1- to 14—numeric bytes in length.

143

‘~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



FILE M AI N TEN ANC E (FM)

d. Field notation indicator (optional). This field
consists of a 1-byte code to indicate the type of
data contained in the transaction field. The legal
codes and their meanings are as follows:

‘A’ - The field contains ~~~~~~~~ da ta,
i n c l u d i n g  blanks  and special characters.

- ‘B ’ — The f ie ld  contains ~~ !&~jg data in
&i~ar ! f o r m a t .

‘C. — The f i e ld  contains ~QordjflR te data
in internal form.

- The f ie ld con tains ~~ rn~~jc data in
decim~J1 format.

The default option for this code is ‘D’. Decimal (‘D’)
transaction data may be processed in the POOL language by
either the arithmetic (NNU , MNC , CON) or logica l ( M A L , MA C ,
COA) instructions.

6.2.2 Keyword: CONTROL

Abbreviation: CTL

Example: CONTROL PSCTL

Function:

This keyword is used to specify that a transaction field
is a control field. The operand may be a 1— to 2—d igit
num ber, to indicate that the transaction field is a major or
record control field ; or it may be a subset control field
mnemonic , which indicates that the transaction field is a
subset control field for a direct subset update statement.

For main or record control f ie lds, the number indicates
the sequenc, in which the transaction fields are to be
arranged in order to compare them to the data record ID.
The transaction fields assigne d the lower seq uence numbers
that have an aggregate length equal to the len gt h of the
ma jor data record control group constitute the major
transaction control fields; the remaining transaction

14 1$

-~~~ 5 - ~ - . --—- —5-- -5 --5- . - —
—-—-

~ 

.- . ~~~~“~~~~~~~~5,__ — — -.  —i--” - - - — -~



FILE M A I N T E N A N C E  (FM )

control f ields are considered user control fields, and are
used only to cont rol the u pdate sequence on a given record.

when the control parameter is specified , it ~~~~immediately follow the field parameter list.

6.2.3 Keyword: PICTURE

Abbreviation: PlC

Example: PlC A ABB B*S (A) NN A ( A B ) N

Function:

This keyword is used to indicate that character or
profile checks are to be performed on a transaction field .
The keyword should be followed by masks depicting the types
of EBCDIC characters permitted in the defined transaction
field. The PICTURE para m eter may only be specified for
aiphameric or decimal transaction fields. Character checks
that  may be specified by the ‘

. masks are Alphabetic (A),
Numeric (N), Special (S), Blank (B), Nonbiank (X), Non—
special (Y), and no check or universal match (C).

A direct test for specific characters, as oppose d to
types of characters, may be specified wit h a VhLUE check, or
by enclosing the specific characters in çarentheses. The
picture masks , not counting parentheses, must be either
shorter tha n or equal to the length of the transaction field
defined. If a •ask is shorter , only the leftmost characters
of the transaction field will  be checked , up to the  length
of the mask. The picture mask is terminated by the
occurrence of a blank. Up to 10’ masks may be specified in
a PICTURE parameter list.

6.2.4 Keyword: VALUE

Abbreviation: YAL

Example: VAL 32768 Rl92 ***58 ‘AAbX3 ’

‘45

— -.- -~ ~~~t--r T 
, 

-- - — - -  

- - 
~~.
. 

~~~~~~~~~
- ~~.—

__________ -

FILE MAINTENANC E (FM)

Function:

This keyword indicates that the transaction field data
must match one of the values specified in the operand list
that follows the keyword.

The VALUE parameter may on ly be used in editing
alph am eric or decimal (Type ‘A ’ or ‘D ’) t ransaction fie lds.
The values specified in the list will be compared against
the transaction data by left—justifying the list values and
padding with blanks as required to achieve field length.
value operands may not exceed the transaction field length.

List values for either aiphameric or decimal fields may
contain any number of letters. If any of the list values
contain embedded blanks (b) or commas .(,) , they must be
enclosed in single quotes (‘). If any of the list values
contain any other special characters, they need not be
enclosed in quotes, but the mode specification of the field
must be alphameric (type ‘A’). A universal match character
(C) may be used to indicate positions of a transaction field
which are not to be validated. - -

Up to 10 values may be specified in a VAL parameter
list. Validation against more than ten values should be
performed with a table or subroutine and the VERIFY keyword .

6.2.5 Keyword: RANGE

Abbreviation: RAN

Example: RANG E ø0’l 499 —10’ 29

Function:

This keyword is followed by a list of alphameric value
pairs and indicates that the transaction field value must
fall, within the range of at least one of the specified value
pairs. This type of editing may not be performed on
coordina te (type ‘C’) transaction fields.

All value pairs must be alph abetic or numeric. A minus
(—) sign may precede a value to indicate that it is

146

FILE M A I N T E N A N C E (FM)

negative. The first valu e of a pair must be less than the
second value.

For binary and zoned decimal fields (types ‘B’ or ‘D’),
an arithmetic range test is performed . RANGE operands for
these field types may not exceed 10 characters and must
contain numbers, or num bers preceded by a minus sign.

A logical range check is performed on aiphamer ic fields.

Up to 10 range pairs may be specified in a RAN GE operan d
list.

6.2.6 K e y w o r d : V E R I F Y

Abbrevia t ion: VER

E xample: VERIFY SUBRS

Function:

This keyword will be followed by the name of a single
user—supplied validation subroutine or table. It indicates
that the fi,ld identified by the TD statement is to be
passed against the data validation subroutine or table. An
indication of the result (valid/invalid) is to be returned F

to the system.

Validation or conversion subroutines and tables should
be written in accordance with the Users Manual, Volume I,
~~troduc~j2n tQ ~ LJ& ~~~~~ and Volume VII, ~tili~~
~1&pp o~t.

6.2.7 Keywori: CONVERT

abbreviation: CON

Example: CON TABID

Fu nc tion :

This keyword will be followe d by the name of a single
user-supplied data conversion subrouti ne or table and

147

~~~~ ‘ 5 ,~ - - -  ---~~~~~~~~~~~~~~~~~~~~~~
.
~~- - 5 - - -  -‘- ~~ -~~~~~~~~~~~~~~

, .



PILE M A I N T E N A N C E  (FM)

indicates t h a t  the  t ransaction field ident if ied by the TD
card is to be passed th rough  the conversion routine. The
result is stored in the original transaction field, lef t-
justified, with trailing blanks to the length of the

F or igina l f ie ld .  The result lengt h must  be equal  to or
shorter t h a n  that  of the or iginal  transaction field.  A
validity indicator will be returned to the system.

Ground rules for writing conversion subroutines and
tables are  the  same as those specified . for  the VERIFY
parameter.

6.2.8 Keyword: GENERATE

Abbreviat ion : GEN

Example: FIELD F L D N A M  5 10’ A GEN E RAT E
I

Function :

This keyword  does. not expect or require  any operands.
It specifies that  the  system should au tom atically move the
data from the transaction field to the data field. The user
name specified as the  transact io n field mnemonic (reference
the FIELD parameter)  must be ide nt ical to the mnemonic
assigned to the  f i le field to be updated.

GENERATE may be used to cause upda t ing  of existing
pe riodic subsets, when it is used with direct subset
updat ing logic statements. In direct subset updating logic
statements, the user specifies the location of the subset
control fields in the transaction record by using the
control parameters on the appropriate TO cards. If no file
match is tound for the subset control fields, a new subset 

F

is generated and the new record switch is turned ‘on’
(unless the fixed set does not exist, in which case an error
message viii be logged). The user may interrogate this
switch by the POOL ‘BNR’ instruction if desired.

This keyword may also be used to create new periodic
subsets, when used in exception logic statements or range
logic statements, provided that the periodic subsets do not
contain user-defined control fields. Each execution of the
logic statement will cause generation of new subsets at the

148

5—.- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



FILE MAINTENANCE (FM)

end of each set to be updated. When there is no f i le  match
against the major record control field, a new fixe d set is
automatically generated. ‘he new record switch is set ‘on ’
and may  be tested by the POOL ‘B N R ’  ins t ruct ion, if desired.

The GEN keyword need not be coded for fields identified
as control fields.

6.2.9 Keyword : E R R O R

Abbrevia tion: E R R -

Example: ERR T -

ERR DS

Func tion:

This keyword expects a single parameter to iden t i fy  the
error option to be take n when inval id d ata is detected in a
field by a n y  of the edi t  func t ions  specified by the TD
parameters. The options and their code identifiers are as
follows:

~ QQ~

D Data is not to be moved to t he  data file. -

The data move instruction created by the
GEM parameter for the transaction field
will not be executed.

B Blank or clear the receiving data file
f i eld .  The data field i. set to its null
value (blanks for alpkameric fields,
zeros for  numeric  and coordinat e fields).
The option may not be used wi th  record
contro l fields.

C Accept the  data.

T Delete the  transaction. When t hi s  option
is used , no upda t ing  will take place with
any  of the  t ransact ion fields. If a new
record or subset has been created by the
t ransact ion , it will be deleted .

49

- . —-- .‘~ -,-—— , a~~~~
f

~
_
~~~ ~~~~~~ 

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—~F—~~.~~ -’— ~~~~~~~~~~~~~~~~~~~~ 

.
~

.— .—.—



FILE MAINTENANCE (FM)

If this ERR keyword is omitted , the default option is
ERR D. If the ERR keyword is specified , it must be followed
by a valid code identifier. emission of the code identifier
will result in error message 20036.

As transaction data errors are detected in processing
specified by Ordinary Iiaintenance TD cards, they will be
collected and reported as an additional auxiliary output
stream during FM ez~cution . The error log format viii be as
follows:

ERROR
MAJO R KEY FIELD 19 ERROR MESSAG ES DATA ACTION
(30’ char. max .) (50’ char. max.) (30’ char. max.) COOE

x x x x x x x x x x x x x x x  x x xx x x x x x x x x x x xx z x x x  x x x x  x

x x x x x x x x x x x x x xx x x x x x x  z x x x x x x x xx x x x x  x x x x  x

The standard error messages generated indicate the data
validation tailure as specified by the ON keyword parameter.
Messages are as follows:

RANGE ERRO R
VALUE ERROR
PICTURE ERROR
VERIFY ERROR
CONVERT ERRO R

Tha log may be suppressed for a given field by coding an
‘S’ following the error option code.

Tests for validity of a given field or the entire
transaction may be made by the POOL ‘B’V’, ‘B?N ’, BTN ,
‘BTV’ instruction s (see section 7.14.5). User—defined error
messages for this log require use of the POOL ‘ERR’
instruction (see section 7.4.6).

The Ordinary Maintenance error tog capability may also
be used when wri tin g logic statemen ts for the Source Data
Automation (SODA) on—line maintenance capability. When used
on—line, erroneous data is logged by underl ining the
erroneous transaction data wit h a key to the message
indicating the type of error detected. (See Terminal

50

-. 

— 

~~~~ 

—

FILE M A I N T E N A N CE (FM)

Processing (TP) Com ponent, Volume VI of the NIPS 360’ FPS
Users Manual .

6.3 Fixed—Format Specifications

The FM component provides the user with the option of
preparing the PM control cards in fixed—format , so that
compatibilit y may be maintained wit h the 11*10’ NIPS. This
format is somewhat more rigid than the free— format in that
the data fields must be placed in certain card columns and
numeric values must be made a speci fied length by punching
leading zeros.

One format or the other must be used exclusively for any
given run. Fixed—format control cards can not be used with¶ Ordinary Maintenance . r

6.3.1 FMS Control Card 44

Format:

0’ 1 1 2 3 4 5
6 0 6 $ 5 $
A A A A BBb CCCCC DDDDDD EF! ?F GGGG

Description:

Field A — Card identification (must contain PM S/)

Field B — Run mode (must contain one of the
fol lowing):

CON - Compile mode . The input logic statements
will be compiled only and a check list

• generated. No statements can be added to
the l ib ra ry in th i s mode. However , any
other library actions can he performed.

LIB — Logic Statement Library update mode.
Logic statements can be compiled , and all
library actions can be performed in this
mode ,

-

~~~ 

51

.~~~~~~~
— 

~~~~~~
.i-

_

~~~~~~~~~~~~ .



H FILE MAINTE NANCE (FM)

Note: For sequential files, a run mode of CON or LIB
will cause only compilation to be performed. No
library action will be accomplished.

GEM - Data file generate mode.

UPD — Data file update mode.

Note: Logic statements may be compiled and added to
t~e Logic Statemen t Library with file generation or
file update.

Field C — File name. The file for which all
processing specified is being performed.
A file name must be specified in this
field.

The following fields (D through G) are left blank if LIB
or CON mode is selected. .

Field D - This field is used to specify the report
name for the first set of transactions
that will be processed. The report nam e
may be from one to six characters long
and must be left—justified. A report
name need not be specified in this field
if the user can use the report identifier
card. However, when the user is updating
with tape transactions, it is quite often
more convenient to specify the report —

name here than to try to generate a
report identifier card image on his
transact ion tape.

Field B — This field is used to specify the
transaction source.

SIU - Card transactions.

NRC — ‘rap e transactions.

BLA NK — ~o tra nsaction data.

• ~ie1d F — L~ - In4ica~ °s that logic statement
c3m pilat i on or Logic Statement Library

5’

__________ ----_ __________________  _ _ _

- ~~~~~~~~~~~~~~~ - ~~~~
- _ 

_______



FILE NA INT ENANCF (VN)

maintenance is to be performed during the
run.

BLANK — No logic statement comp ila tion or
Logic Statement Librar y maintenance is to
be per form~d.

Field G - DISK — For direct access processing (ISAM
• or V SAM)

TAPE - For sequential processing (SAN).

6.3.2 Library Action Cards

Formut:

.11 0’ 1 1 11 22 2 3 4 ‘4
1 6 0 ’2. 5 7  01 5 0’ 5 0’ 5

PINN NN 0000AAAAACCCCC DflDDDD LLLLLL

5 5  5 6
02  5 7
BBB EEFPGGHHIIJJ K

Description:

Field A - Card Identification. It must conta in  the
word START.

Fi*ld B — Action Ident ification. It m ust contain
one of the following codes, left-
justified:

DF — D.lete all reports and all
statem ents for a file.

AR — Add a report name .

DR — Delete a report name and all
statements for a report.

ASP — Add a statement permanently.

AST — Add a statement temporarily

- .  ~~~~~~~ ~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~


P I LE fU I N I E N A N C ! (F M)

DS — !)e1~ ’~ a s t a t e men t .

Field C - File ~I am e . It must con ta in a 5—character
a lphabe t ic f i l e nam e . If the l ibrary
action card is being used to add a f i le ,
de1et~ a f i le , or request compila t ion of
a R a n g e s ta tement w i t h o u t t ransact ion
data , only f ie lds A through C need to be
punche d .

Field D — Report Name . This f ie ld contains a 1— to
6-charact er report name , le f t — j u s t i f i e d .
If th~ l i b r a r y act ion card is being used
to d~~1et e a re pnrt , field 1) is the last
f i e ld t h a t need be punched .

Fields E t h r o u g h K a re required only wh en the action
code is Add Repor t (A R) . They are used to speci fy the
number and location ot the t ransact ion ident i f ier fields.
At least one an d up to th ree ident i f ier f ields may be
specified in this manner. ~2ach location is specified by a
pair of 2—digit numbers. The total len gt h of transaction ID
fields may not exceed six characters.

-

Field B - MN — Hig h—order location of ~he major
(Required) identification field.

Field F - MN — Low-order location of the ma jor
(Required) identification field.

Field G — NN — sigh—order location of the second
(Optional) identification field.

Field H - MN — Low—order location of the second
(Optional) identi fication field.

Field I — MN — High—order location of the third
(Optional) identification field .

Field J — NW — Low—order location of the third
(Optional) identification field.

Field K - N — Number of transaction ID fields. N
(Required) must be a number between one and three.

5(4

- ~~~~~~~~~~~ —-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

FILE MAINTENANCE (FM)

~he following fields are used only when compiling,
deleting, or adding a statement to the library.

Field L - Statenen t N ame . This field contains a 1-
to 6—character statement identifier,

left-justified.

Field Pt - This f ie ld must contain a T , indicating
that the log ic statement will be used

• with transaction data.

Field N — NNNN—Length of the fixed portion of the
transaction data. NNNN must be a
LI—digit number nct greater than 1,000
with leading zeros as required.

Field 0. — NNNN—Righ—order position of the
tran saction ’s variable field. NNNN
must be a 4—digit number with
leading zeros as required.

BLANK — No variable transaction field.

6.3.3 Transaction Descriptor (TD) Card s

Format:.

0 ~ 11 2 2 2 3 3 3 3 3 4 ‘4 5 5
1 6 26 01 ‘0 3457$ 5 $2

BBBBBBB AAAA A CCCC DDDDEE F GGGGGG H 1111111

Description :

Field A - Card Identi fication. It must contain the
• word FIELD.

Field B - Transaction Field Label. Labels may be
from one to seven characters in lengt h

• and must be lef t—just i f ied in this field .
The following rules apply to transaction
field labels.

-
...

~~~~



FILE MAINTENANCE (FM)

a. They may be alpha or numeric
characters, but they must begin
with an alpha character.

b. No embedded blanks may appear in
a la bel.

Field C — NMNN-Transaction Field — High—order
• position . Mus t be a 4—digit number, with

leading zeros as required. This field
may be left blank on a Transaction
Descriptor card that is part of a set of
car ds tha t are be ing used to describe
contiguo us fields. However, if this
field is left blank, extreme care must be
taken to maintain the sequence of the
cards, If the Transaction Descriptor
card is being used to assign a label to
a variable transaction field, field C is
the las’ one that need be punched. The
TD card for the variable Lield must be
the last card in the Transaction
Descriptor deck.

Field D - NNNN-Transaction Field Length. Must be
a ‘4—digi t  number  w i t h  leading zeros as
required .

Field E — N—Transaction Control Field Indicat 4on.
If the transaction field is part of the
control group, N must be a 2—digit number
between one (O’l) and sixty (60’) . A one
in d ica tes that the field con tains the
ma jor control. The numbers 02 through 60
are used to indicate the minor fields.
If a field is not part of the transaction
control, N mu st be blank or zero (00’) .

Field F - Mode of Transaction Field. This
parameter specifies the mod e of the •
field. The following codes may be used.

56

A ~~~~~~~~~~~~~~~~~ 
_ -. -~~~



FILE M A I N T E N A NCE (FM)

A - Al phabetic
B — Binary
C - Coordinate
D - Ai phameric

If om itted , D is assumed.

Field C - Statement Name (optional). This field,
• if used, contains the name of the

sta tement  being processed .

Field H — Control Indica tor (optional) . This field
specifies the type of control field, and
may contain the following codes.

N — Ma jor
S - Secondary

- Not contro l
I

*If this parameter is omitted , other parameters are
checked and the progra m sets the control indicator
accordingly.

Field I - Corresponding subset field. For a direct
subset update statement only. This
parameter specifies the subset field to
be used for a control field on a direct
subset update statement. It must be
o.itted for all other t ypes of
statements.

6.3.44 Language Identifie r Card

Format:

0 1111
1 6789

A AA A

I

57

______________________ ________________________ ____________ 4

- . ...t~ ~_ ~~. —..



FILE MAI NTE N AN CE (FM)

Description:

Field A — Language Identification.

POOL — Indicates POOL language source
cards follow.

)

_  

58

-~ - - —~~~~~~~~~~~ _.~_ :. ._ ~~~1T ~~~T~ ~~~



FILE MAINTENANCE (FM)

Section 7

POOL LANGUAGE

7.1 Card Format

The format of POOL coding is as follows: Each
instruction operator is coded in columns 16—18. Operands
begin in column 21. If a n y  instr uction is labeled , the
label wil l  appear as a mnemonic in columns 6—12.

0 1 2
6 6 1
SIMBOL OPERATOR OPERANDA ,OP E R A N D B,OP ERA ND C,OPERAN DD

7. 1. 1 Symbols

Instruction symbols may be from one to seven characters
long. The first character must be alphabetic. The
remaining characters may be alphameric.

7.1.2 Operators

The operators specify the logical functions to be
performed . These are discussed in detail in section 7.3.

7.1.3 Operands

There may be up to four operands per instruction ,
depending on the operator.  The operands are separated by

- 
• commas or a ~~~~~~ blank.  The types  of operands and the

coding requirements for each type are discussed in section
7.2.

7.l.~4 Comments

The user may also commen t on his instructions. At least
two blank must separat e the comment from the last operand.

sq

- _ _ _ _ _ _ _  . ---  . —~~~
--..- - - - -

~~~~~ 
_ _ _ _ _ —-

FILE MAINTENANCE (!M) -

7.2 Operand Coding

The operands of each POOL instruction genera l ly specify
fields, in dicators, an d tags upon wh ic h the POOL operator
acts. The following conventions are used in specifying the
operan ds:

a. ~~~~~~~~~~~~~~~~~~~~~~~~~~ of a data file are
indicated by the actua l field or group name
assigned in the File Format Table (?FT). These are
denoted by one to seven characters. The first
character must be alphabetic, an d the f ield nam e
mu st not contain embedded special characters.

b. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ inpu t fields
(input data used in updating the data base) can be
identified by an alphabetic mnemonic from one to
seven characters in length , prefixed by a dollar
sign ($) . The transaction field name must be
iden tified by mean s of a TD card (refer to sections
6.1.3 and 6.2 or section 6.3.3).

The transaction field may also be specified by the
f o r m Tm/n , where “a” and “n” specify the high— and
low—order positions of the transaction field in the
transaction record. No spaces are lef t between the
characters of this operand, e.g., $ITEM or T40’/S5.

c. L ~SiQfl~~jQfl—-A data file field may be
indirectly designated by the contents of the
transaction input record. In this case, the letter
C prefixes the usual operand form for the
transaction field except when high— and low—order
transaction field positions are specified. In this
case, the C replaces the ‘I’, e.g., CITRAN or C2$/27.
The contents of the transaction field must be a
data file field or group name as specified in the
F?T.

d. ~~~ of the
POOL macro instructions have an operan d which
controls the print ing of error messa ges when an
incorrect or invalid value is processed by a
table/ subroutine. When an invalid input is
detected, it w ill not be used by FM. However , if

60

- — j- —
- ~~~----- --.—. — —

FILE M A I N T E N A N CE (FM)

the value ca. from a transaction record, the
re.aining da$~i vii) . be used as specified in the
logic statement. The validity codes (C operands)
function in the following fashion:

Code A
or R — When the input data is invalid, the

da ta, its source, and an error message
are printed on the run history fil..

Code I - No printing occurs in event of an error.

9. ~~~~ j~~ _Tags—-when one of the POOL instructions
specifies a branch to another instruction, the
operand is the 1— to 7—character alphabetic tag
assigned to the branched—to instruction.

t~. ~j~~~g~~--Litera1s may be used as operands in most
instructions. The literals may be alphabetic,
signed numeric or unsigned numeric. Alphabetic
literals are enclosed within single quotes. All
enclosed literals are considered alphabetic if any
character included is other than a valid numer ic
character.

Numeric literals do not need to be enclosed within
single quotes. An unsigned numeric literal is
considered posit ive, an d a signed numeric literal
will have the sign set in the low—order byte during
processing.

A signed numeric literal enclosed in quotes will
cause the sign to be carried as an additional
character.

One restriction applies to the use of alphabetic
literals; a single quote may not be embedded in a
literal.

g. g 2 ~~~JQ; j&.~~ —— FM provides a 999—byte EBCDIC
work area for for matt ing auxiliary output records,
for accumulating summary information and for
passing informatio n between logic statements. POOL
instructions will reference this area by the
operand notation W I/y where I and I are the high—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~



FILE MAINTENANCE (FM)

and low—order locations of a work area field, e.g.,
Wl/lO0’ or W 200/230. A maximum of 994 bytes may be
specified in auxiliary output instructions (e.g.,
POO L PET, NFL PRINT). Violation of this limit will
result in a System 001 ABEND .

h. ~~~~~~~~~~~~~~~~~~ provides a second work area
• which can be used to perform arithmetic functions

in binary. This area will be 20 words (80’ bytes)
long. POOL instructions will reference words in
this area by the notation BX/ or 811/ where I must
be between one and 20. This area will be
restricted to ar i thmetic  computation .

7.3 POOL tns t ructions

7.3.1 Alphabetical Listing -

In this list, all POOL instructions are presented
alphabetically wit h their group numbers.

Lnstrucli2n !3~nctiQfl

2 ADC A,B,C A+B=C if A is not blank

2 ADD A,B,C A+8 C

27 ~ APR A,8,D,C Store value at D from
- field C in NI PS record

ID B of file DDNA M! A

3 REQ A branch if B EQ A

22 BFN A,B branch to B if invalid
ON f ield A.

22 SPY A,B branch to B if valid ON
field A.

3 SCE A br anch if B GT or EQ A

3 BGT A branch if B GT A

3 OLE A branch if B LT or EQ A

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


FILE M A I N T E N A N C E (F M)

~~2~2 L J & ~&tQfl !YIflc.tAQfl
3 BLT A branch if B LT A

3 BNE A branch if B NOT EQ A

3 BNR A branch if new record

• 3 BNV A branch if invalid (GEN ,
TB L, VA L , A FT

3 BPO A branch if pg. sv 1 is ON

3 BRA A branch unconditionally

3 BRO A branch if overflow

9 BSS A create subset for field A
before subset or at end of
set if al l recor ds have been
processed.

3 0S2 A branch if pga sw 2 is ON

3 BT N A branch if ON f ound any f ie ld
invalid.

3 BTV A branch if ON found all fields
valid.

13 CLE A set field A to blanks

17 COA A ,B compare alphabetic B to A

• 18 CON A ,B com pare num eric B to A

20 CV! A delete variable field A in
• current periodic subset, or

delete all subsets in van —
able set A.

4 ’ I
63

— — - _ _ _ _ _ _ _ — -- —

------—
-
-
- - --~~

.
~~~~~~~~~~~~~~~~~~~~ _ . 4~~



FILE MAINTENANCE (FM)

~L2~~ L~~~~~~~~~~ ti2.~

4 DDR delete current NIPS record
and branch to logic statement
exit.

5 DSB A ,B delete subset containing
field A. Address the next
subset in the set or branch
to B if the last subset was
deleted.

9 DSC A delete subset containing
field A. Address the next
subset.

2 DVC A ,B,C A/B=C if A is not blank

2 DYD A ,B,C A/B=C

4 END end of logic statement.

23 ERR A,B SODA: underscor e the invalid
field A and display the
literal B.

ON: error log field A with
literal B.

6 GER A,B,C,D call sub/tab B to process
field A. Store the result
at D. Use validity code C.

4 ULT establish logic statement
exit

3 LWk A branch to A. Save NSI address
for RET.

tO LOG A print field A on first printer
(same as PET)

1 SAC A,B move alphabetic A to B if A
is not blank.

6*

— -~- — —r - — _________________- _______________________
- . — “ ~~~



FILE ~t A I N T E N A N C E  ( F M )

~~292 LnE.tIia~&iQn !~uicti2n
1 SAL A,B move a lphabe t i c  A to B

19 MCS A ,B move a lp h ab a ~~ic A to m i n o r
contro l f ie ld B.

MCT A.B move a l p h a bet ic A to  m a j o r
cont ro l  f i e l d  B.

1i4 M CW A,B execute  MCT ari d write
imm ed ia t e

7 M NC h ,B move n ume r i c  A to  B if A is
riot b lank

7 SNU A ,B move numer i c  A to B

2 M U C A,B.C ASBZC if A is no t  b l ank

2 MUL A.B.C A *B C

21 M V F  A,B move A to var iab l e field or
v ar i ab l ~ set B. Va r i ab l e
set f ie ld  l e n j t h  is F?I
de f i n i t i o n ; t r a n s a c t i o n  f i e ld
may ba split

21 N V R  A ,9 move A to v a r i a b l e  f ield or
v a r i a b l e  set B. Var iab le  set
f ield  length is transac tion
length

14 NCT no opera t ion

!40P no ope ration

25 OV F A , B ,C move variable field A to work
area B. Nova maximum 256 bytes per
execution . When the last segment of
the variable field has been moved ,
branch to C

65

—-_ _ _ _ _ _ _ _ _ _ _ _ _ _  
- — -  — -—-- - .. _ _ _ •: 

~~~~~~

- -

~

—

~~~~~

- -

~~~


PILE MA I N T E N AN CE (FM)

La~ Lt&112ti2n

12 PCH A punch A (pocket 1)

12 PC2 A punch A (pocket 2)

5 POS A ,B find first subset for field
- A. If none, go to B

16 POv A ,B,C tind first subset for field
B whic h contains value A. If
none, go to C

12 PET A
-

print field A on first printer
(same as LOG).

12 PT2 A print field A on second printer.

4 RET branch to instruction following
- last LNK.

26 RVF A reset OYF segment pointer for
variable field or variable
set A to first byte in the
fiel d

-

-

11 SDT A store FM start date/time in
A. YYDD D TTT T.

4 SIE set condi tion to EQ

4 SIB set condi tion to GT

‘4 SIL set condition to LT

3 SMR A bran ch to A whe n last RANGE
record has been processed .

4 SOP set overflow OFF

‘4 SOc set overflow ON

‘4 SPY set pgm sw I OFF

66

— —• ..--‘ - — --—~ — — - -. ~~~~~~~~~~~~~~~~~~~ —

FILE M A I N T E N A N CE (PM)

~g~~~ ctjofl _____

2~4 SSS A store consecutive number in
field A (all subsets).

5 STP A,B address next subset for field
A. If none , resume sequentia l
execution of POOL instructions.

16 STY A.B.C address su bset which follows
su bset for field B whic h
contains value A. If none, go
to~C.

2 SU B A,B,C A 5 C

2 SUB A.B.C A—B=C if A is not blank.
I

4 SY-F set validity sw to valid
(see SNY)..

4 SVO set validity sw to invalid
(see BNV).

‘4 S2F set pg. sw 2 0??

4 S20 set pgm sw 2 ON

6 TBL A,B,C,D lookup value A in table B
using condition C. Store
the function at D.

8 VAL A ,B,C call subroutine B to process
value A using condition
C.

12 WET A write A on auxiliary file I

12 WT2 A wr ite A on auxiliary file 2.

4 SPO set pg. sv 1 ON

4$ SE? set new record sw OFF

4 SRO set new record sv ON

67

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ - --
~~
- - -

PILE MAINTENANC E (FM)

12 WT3 A write A on auxiliary file 3.

12 - - WTL& A write A on auxiliary file 4•

12 WTS A write A on auxiliary file 5.

4 UP branch to exit if no exception
processing. If not the first

-
in struction in a R A NGE state-
ment it is a no—operation.

7.3.2 Valid Operands Chart

Symbols used in the chart have the following meanings:

TF — transaction field
DF — data file field
IA — indirect address
W A — wor k area
LV - literal value
SL — statement la bel
ST - subroutine or table
VC - code value . -

A — alphabe tic
N — numeric
B — binary
E - EBCDIC(vork)
C - coorindate

C? — control field
PS — periodic set
GB — group
V — variable field(periodic or variable set)

68

- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~- -

FILE M A I N T E N A N C E (F M)

.. .fl ...J ~! .. IL _.~~~T ..ic — 1.. IL ... ~~. ~~ . .~~~. ._cr .i ~ ._Qi .. i.

1 x x I x x x x x x x x x
2 1 X I X I X X X x x
3 x

14 none

S I I x x x I I I K

x x x x x x x x x x
7 x l I I I x x x I I I

8 X I I K X X X X I K K I

9 x x x x x x x x x

10 I X I I x x I X K I

11 1 1 I X X I X I I

12 X X I I X X I I I I

13 X I I I X X X X X I x

1 4 x x x x X x x x x x x x
15 reserved

16 X X I K I X X I X I I X

17 ~ x I I X x x x x x x
18 X X I I I X X X I I I

19 I X I I I X X I X I I I

69

__________________________ ___ ___________________________
-~~~~~~

--
~~~~~~~~~~~

, - --
~
—-

~~~~
-- -------- - --

. -

-

~~~~~

- —
~~
- y

~~~~
- - - - -—

FILE M A I N T E N A N C E (F M)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
_~~ __ cT ._f ~~._~~~...L

20 K X X I X  I I

21 I X K I I K I K I I I

22 I X X X  I

23 I I K K K I

2 14 X I X X  I I K

25 I x x  x x x

26 I I I I I X K K I

27 I I X X X  X

a~

70

-~~~~
- - -

- -i- .  -, - --c . - .  — -- -



F I L E  M A I N T E N A N C E  ( F M )

2
i~~~~r~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~ 

~~~~~~~~~~~~~~~~~~~

— O m i t t e d g r o u p s hav ne B op~~r and

1 X X X X X X 1 X I
—

2 I I X I I X X X I I I

5 X

6 I

7 X I I I I X X X X I

8 I

114 1 I X X I I I

16 K K X X X X I X

17 1 I I I K X I X I I I

16 X X X X X I I X I I I

19 1 X X X I I X I

21 I X I K I I

22 I

23 X X

25 1 K

27 X X I X X I

71

~

FILE M & I N T E N A N C E (P M)

~~~~~ii1~~r 
~~r!TLT~~T~ 

.i. ..c_. _cr _~~~~~ ....~~~t _ !.

- O m i t t e d  g ro u p s  have  no ‘C’ oper and

2 X I I X X X  I x

6 1

• — O m i t t e d  groups  ha ve no ‘D ’  operand

27

72

- - --- -—--- _ _ _ _ _ _ _ _

1•
~~~~


FILE MAINTENANCE (FM)

7.3.3 Instruction Groups

The POOL instructions are organized into various groups
according to the number of operands and operand types
allowed. Therefore, all the permissible operands are
indicated by the respective group of each instruction. The
following subsection, which discusses each POOL instruction,
will also indicate to which group it belongs.

The following tables are organized by instruction
groups. For each group, the numbe r of operands, the
instructions that belong to the group, an d a list of the
legal operands are shown. The following legend should be
used to interpret the legal operands.

DY — Da ta File
IA — Indirect Address
LV —

- Literal Value
SL — Symbolic - Instruction Label
ST — Subrou t in e or Tab le
TF — Transaction Field
YC - Val id i ty Code
WA — Work Area

Group 1

*Number of Operands—2 *

*Instructions—MAC,NAL *

* *
*Legal A Operands Legal B Operands *

* TF,W A ,LV ,IA ,DF WA ,IA ,D? *

I

Group 2

*N umb er of Oper and s—3 *

*Inst ctions— C, D,DYC, D ,Muc,MUL,$UB,SUC *

* *
*Legal A Operands Legal B Operands *

* TF ,WA ,LV ,IA ,DF TP,WA ,LV,IA ,D? *

* *
*Legal C Operands *

4 ~~~
- * VA ,IA ,D? *

LL ____________ L
-- ~~~~~~~~~~

FILE M A I N T E N A N C E (P M)

Group 3

SNum ber of Operands—i *
*Instructions—BEQ,BGE,BGT,BIE,BLT ,BNE ,13NP ,BTV,BTN, *

* BNV ,BPO,BRA ,BPO,BS2,LNK ,SNR *

* *
*Legal A Operands *

* SL *

** ******
Group 4

*Nuaber of Operands—None *
*Instructjons—DDR, END ,HLT ,NCT,NOP,RE T ,SIE,SIH, *

* SIL ,SOF ,SOO ,S rF ,SPO ,SRF ,SRO ,SVF , *

- * SVO,S2F,S20,XNP *

I
Group 5

*Number of Operands—2 *

*Instructjons—DSB,p05,5Tp *

* *
*Legal A Operands Legal B Operands *

* IA,DF SL *

Group 6
** *********************************** **
Slumber of Operands—4 *

~I mstrI3ct j on s—GEN , TBL *

• *A Ope rands Legal B Operands *

• Tr,lA ,LV ,D? ST *

• *
•L.1.1 C Operands Legal D Operands *

• ~~: WA ,DF *

FILE MAINTENANCE (FM)

Group 7

*Nuaber of Operands—2
-

*
*Instructions—MNC,NNt! *

* *
*Legal A Operands Legal B Operands *
* T? ,W A ,LV ,IA ,DF TF ,W A ,LV ,IA ,DF *

** **
Group 8

*Number of Operands-3 *
*Instructions—VAL - *

* *
*Legal A Operands Legal B Operands *
* TF,WA ,LY ,IA.DF ST *

* *
*Legal C Operands *
* YC *

*************************** **************
Group 9
*************************** ************
*NuaDer of Operands—l *
*Instructions—BSS,DSC *

* *
*Lega] A Operands *
* IA ,DF *

Group 10

*Num ber of Operands — 1 *
-

— * Instructions — LOG *

* *
* Legal A Operands *
* TF ,LV ,EBCD IC WA , ALPH A A ND DECIMAL DP *

** **************** ********************* *******************

~~~~ 
I

.

— .--- — — 

75 

-

~~~~~~~~~~


FILE MA I NTENAN CE (FM)

Group 11

*Num ber of Operands—l *
*Instructjons—SDT *

* *
*Legal A Operands *
* WA ,IA ,DF *

Group 12 -

*Nunber of Operands—i * -

*Instructjons—PC}j,pC2,PRT,p’12,WRT ,WT2 ,WT3, *
— * WT4,WT5 *

* *
*Legal A Operands - *

* TF,LV , EBCDIC WA , Alpha and Decimal DF - *

I
Group 13
************* ***** *************** ****** ** *********** ******
*Number of Operands—i *
*Instructjons—CLR *

* *
*Legal A Operands *
* TF,WA ,IA ,DF *

Group 14

*Number of Operands— 2 *
*Instructions—MCT,MCW *

* *
*Leg?1. A Operands Legal B Operands *
* TF,WA ,LV ,IA ,DF IA,DF *

Group 15 Reserved -

76

-

~~~~~~~~~~~~~~~~~ - 
-~~~~~~~ -~~~ T - 

~~~~~~~


FILE MAINTE N A NCE (F M)

Group 16

*Nu mber of Ope r ands — 3 *
*Instructions—POV ,STV *

* *
*Legal A Operands Legal B Operands *
* TF ,WA ,LV ,IA ,DF IA ,DF *

* *
*Legal C Operands *

* SL *
*5 * * * * * * * * * *** * * ** ********* * ***** **** ** **

Group 17

*Nuaber of Operands—2 *
*Instructjous—COA *

* *
*Legal A Operands Legal B Operands *
* TF,WA ,LV ,IA ,DP T?,WA ,LV,IA ,DF *

Group 18

*Nu.ber of Operands—2 *
- I *Instruct ions—CON *

* *
*Legai A Ope rands Legal B Operands *
* TF,WA ,LV ,IA ,DF T?,WA ,LV ,IA .DF *

Group 19

*!4umber of Operands—2 * —
*Instructions—MCS *

* *
*Legal A Operands Lega l B Operand s *
* TF,WA ,LV,IA ,DF IA ,D? *

i_ I— -
- - -—

~~~~~~~~~~~~ :~~
_
~~~

_ - -
~~- -—~~~~ -~

FILE MAINTENANCE (FM)

Group 20

*Numbe r of Opera nds—i *
*Instructions—CYF *

* *
*Legal A Operands *
* DF *

Group 21 -

*** *** * * * * ** * ** * ** ** * *** * ** *5*5*5 ****** .** ** * * * * ** **** ** ** *
*Nuaber of Operands—2 *
*Instructjons—NVF, NVR *

* - - *
*Legal A Operands Legal B Operands *
* TF,VA ,LV ,IA ,DF (Variable Field) D? *

TP (Variable Set) DF *

I

Grou p 22
* * **** *** * * ** ** * * * *** * * ** **** * *** *55* 5* * * * * * * * *** * * * * *** ***
*t4uaber of Operands—2 *
*Instructions—B!’V,BPN *

* *
• •Legal A Operands Legal B Operands *

~~
1’? SL *

* ** ** *** * **** * * ** ** * *** **** *5*5*. * ** * * * * ** * **** * * *** **** * ** —

Group 23
* * *** *** * * * * * * ** * * ** * * * ******* ***
*Numbe r of Operands—2 *
*Lnstructjons—ERR *

* *
*Legal A Operands Legal B Operands *
* TF LV *
************ * *5*5* *************** * * * ***** * ***** *.** * * * * ****

78

_______________________________ _-_ - ----~.----- ~~~~~~~~~~~ -~ ..

FILE MAINTENANCE (FM)

Group 24
5*
Slumber of Operands — 1 *
*Instructions — SSS *

* *
*Legal A Operands *
* IA ,DF,NUNERIC OR BINAR Y *

Group 25
55 * * * * ** ** * * * ****** *** *** * **** * * *** * * ** * * * * ******* * ** ** * *
*Nuaber of Operands—3 *
*Instructions-OVF *

* *
SLegal A Operands Legal B Operands *
* D F WA *

* *
*Legal C Operands *

* SL *
************ ****** ***************

Group 26

Slumber of Operands—I *
*Instructjons—Ryp *

* *
*Legal A Operands *
* DF *

* *

Group 27

•Wumber of Operands — 4 *
*Insttuctjon — APR *

* *
-

- *Legal A Operands Legal B Operands *
* * TF,LV,VA TY,LY,WA *

* *
SLegal C Operands Legal D Operands *
* TF,LV ,WA W A *

* *
****************** * * *** * * * *.* *** *** * * ** * ** * ** * ** *** * ***S***

79

— - — —-
- - -

-— - -----

- - - — -
~~~~~~~~  

- - - - - - -  ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



FILE MAINTENANCE (FM)

7~ l4 POOL Instructions

There are 84 POOL instructions available, each of which
can be used to build the updating logic statements for FM.
These instructions can be divided into five basic types
according to the function they perform. These are:

a. Environmen t establishing instructions which
allow the user to selectively handle the
periodic set fields of the data base.

b. Data handling instructions which allow the
user to perform processing against the fields
of the data base such as moving, arithmet ic
opera tion s, an d transformation.

c. Control instructions used to control the
sequence of instruction execution.

d. Display instructions which allow the user to
specify certain output functions.

e. Validity test instructions and error logging
instructions used with ON and SODA.

Each of the 81$ POOL instructions (within its basic type)
is described below.

7.4.1 Environment Handling Instructions

Position to First Subset of Periodic Set (Group 5)

POS A ,B

This instruction causes the first subset of the
periodic set containing field A to be made active;
i.e., positioned so that processing can be

• performed on the data contained in the first
subset. If there are no subsets of the set in the
current data record, the instruction with tag B
will be executed next.

Step to Next Subset of Periodic Set (Group 5)

ST P A ,B

- 90

—a ~~~~~~~~~ - t__j



FILE MAINTENANCE (FM)

This instruction causes the next subset after the
curren t active subset of the perio dic set
containing field A to become active. If there is
no other subset to be ma de active, the activity is,
in effec t, placed after the last subset and
sequentia l execution of the POOL instructions
resumes. If the instruction is successful the next
subset is made active and the instruction with tag
B is executed.

Position on Value (Group 16)

POV A,B,C

This instruction causes the activity for a periodic
set to be placed at the first subset with the field
specified by opera n d B containing the data value
specified by operand A . If no subsets of the set
meet the requirement , the instruction with tag C
will be executed next.

I • Step to Value (Group 16)

STY A ,B ,C

This instruction causes the nex t su bset, after the
curren t su bset that con tains the da ta value
specified by operand A in the field specified by
operan d B, to be made active. If no subsets of the
set meet the requireme nts, the instruction with tag

• C is executed next.

Delete Subset of Periodic Set and Branch (Group 5)

D SB A , B

This instruction causes the currently active subset
of the periodic set containin g field A to be
deleted from the current data record. If the
deleted subset was the last of the periodic set,
the subset activity is placed after the last one,
and a transfer to the instruction with tag B is

81



FILE MAINTENANCE (FM)

made. Otherwise, the next subset is made active,
and sequential operation continues.

Delete Subset of Periodic Set and Continue (Group 9)

DSC A

This instruction causes the active subset of the
periodic set containing field A to be deleted from
the current data record. If there is a subset of

• the same set followin g the deleted subset, it is
activated . if not, the activity is place d af ter
the last one. In either case, sequential operation
continues .

Build Subset of Periodic Set (Group 9)

BSS A
I

This instruction causes a subset of the periodic
set containing field A to be built • and placed in
the current data record. The active subset of the
periodic set and any that follow are moved down in
the data record, and the newly generated subset is
placed in the position formerly occupied by the
last active subset. If the activity was placed
after the last subset of the periodic set by some
previous instruction, the new subset is placed
after the last one. In either case, the  newly
created subset becomes active and is ready for
processing by othe r instructions.

Delete Current Data Record ((roup 4)

D D R

This instruction notifies FM that the current data
record is to be deleted; i.e., not to be included
in the output data file. After execution of this
instruction, all processing is terminated for the
update statement.

Sequence Subsets (Group  24)

SSS A

82



•

FILE MAINTENANCE (FM)

This instruction places sequen ce num bers in field
A of the periodic containing field A. The sequence
numbers  wil l  a lways  beg in with one an d will alwa ys
be incremented by one for each subset. This
instruction may not be used to modify the contents
of the system generated PSSQ fields.

7.4.2 Data Handling Instructions -

Auxiliary File Reference (Group 27)

APR A ,B,C,D

This instruction allows the user to move the
conten ts of field C of the data record with
ma jor record identification B of the ISAN or
VSAM file w ith DDNANE A into the EBCDIC work
area D. The auxiliary file must be a NIPS
data file of ISAN or YSAM organization, but
must not be the primary data file. Field C
must be an alpha field or group, a numeric
field or group, a decimal field or group,
varia ble field, or a coordinate field within
the fixed set. Binary and coordinate data is
-converted to EBCDIC before being placed into
the work area D. If the data from the field
C has an output length greater than the
specified work area length truncation occurs
from the right. If field C is shorter than
the work area, the da ta is lef t justi f ied and
padded on the right with blanks. If any error
occurs tha t prohibits the return of data to
the work area (i.e., no DD card with DDNAME A ,
no existing major record identification B, I/O
error), an error is logged fully describing
the problem , and the validity indicator is set
to invalid, Only if the referenced data is

• 
• successfully returned to work area D is the

validity indicator set to valid. APR operates
in a read only mode; no data can be entered
into the auxiliary file with this instruction.

H j 8~



FILE MAINTE N AN CE (FM)

Move Alphabetic Field to Field (Group 1)

M AL A,B

This instruction moves the content of field A to
field B. The content of field A is treated as
alphabetic information. If the field to be moved
is shorter than field B, blanks are appended on the
right. If the field to be moved is longer than
f ie ld B, the resultant content of field B is
truncated from the right.

Note: The ‘MAL ’ instruction is based on a 361 ALC move
instruction which moves left to right through each

• field a byte at a time. Therefore, cau tion mus t be
used whenever fields overlap (e.g., NAL
W1O/12, Wi 1/13)

Move Numeric Field to Field (Group 7) -

MNU A ,B - 
-

This instruction causes the content of field B to
be set to the content of field A. The content of
tield A is assumed to be a numeric-quan tity. If
the field to be moved is shorter than field B,
necessary zeros are appended on the left. If the
field to be moved is longer, the resultant content
of field B will be truncated from the left.
Numeric transaction data may be signed or unsigned.
Signed transaction data will have the sign set in
the low—order byte during processing; if unsigned ,
the data is considered positive. Transaction data
may be signed in two ways: (1) the sign may be

H placed in the low order zone; e.g~, —2 would be
punched as a K, +1 would be punched as an A , etc.;
(2) a • s ign  or — sign may immediately precede the
first digit of the data (although a + sig n will in
effect be ignored).

Note: The ‘MNU’ instruction, when moving data from a
decimal area to a decimal area, uses a 360 ALC move
instruction which moves left to right through each
field a byte at a time. Therefore, caution must be

91$

j  •. a -_ _ 1~~~~~- - - - - -~~~-



FILE MAINTE NANCE (FM)

used whenever fields overlap (e.g., NNU
W1O/12,V11/13)

Move Conditional Alphabet ic Field to Field (Group 1)

MAC A ,B

This instruction is executed exactly as NIL except
that if the field to be mo ved is blank , no action
is taken; i.e., field B is left undisturbed .

Move Conditional Numeric Field to Field (Group 7)

NNC A,B -

This instruction is executed exactly as NNU except
tha t if the content of field A is blank , no action
is taken; i.e., all of field B is left undisturbed .

IAll of t he fol lowin g ari thmetic opera tions use three
operands. The user specifies in the A and B operands the
fields wi th which the arithmetic operation is to be
performed. These two fields are not disturbed by the
operation.

The C operan ds specif y the field in to which the result
of the operation is to be stored.

If he desires, the user may specify the  same f ield for
all three operands or for any two operands. For instance,
he may add A to B and store the result in A.

Add Field A to Field B, Store in Field C (Group 2)

A DD A ,B ,C

• This instruction algebraically adds the content of
field A to the content of field B and stores the
result in field C. The resultant sum is moved

• numerically to field C, and the sum is truncated or
extended by zero characters on the left as
appropriate. If the resultant sum is truncated,
the overflow indicator is turned on.

85

- - -

~ 

- -  - -- -~~ ~~—-~~~~~~~~~~~~~ - -



FILE MAINTENANCE (FM)

Add Conditional Field A to Field B, Store in Field C (Group
2)

ADC A,B,C

This inst ruct ion is identica l in execu tion to ADD
• except that if the content o~ field A is b lank, no

action is taken.

Multiply Field A by Field B, Store in Field C (Group 2)

MilL A ,B,C

This instruc tion causes the conten t of fiel d A to
be algebraically multiplied by the content of field
B and the result to be stored in field C. As with
AD D the result is stored numericall y in field C,

• and the overflow indicator is Set as appropriate.
I

Multiply Conditional Field A by Fie ld B, Store in Field C
(Group 2)

MUC A~B,C

This instruction is identical in execution to NUL
- 

except that execution does not take place if the
content of field A is blank.

Divide Field B into Field A , Store in Field C (Group 2)

DVD A ,B,C

This instruction causes the content of field A to
be divided by the content of field B and the result
to be stored in field C. Results are moved to
field C numerically from right to left, and zeros
are truncated or added on the left as required .
The overflow indicator is set as in NtJL.
Remainders  are lost. •

Divide Conditional Field B into Field A , Store in Field C
(Group 2)

DVC A ,B,C

86 

—- —- - --- --
- ~~~

-_



FILE M A I N T E N A N C E  (FM)

This instruction is executed exactly as DVD except
tha t  execut ion does not take place if the content
of f ie ld A is b l a n k .

Su btract Fiel d B f r o m  Fiel d A, Store in Field C (Group 2)

SUE A,B,C

This instruction al gebraically su btracts the
con ten t of f ield B from the content of field A and
stores the result in field C. The result is stored
numer ica l ly  f r om right to lef t, an d zeros ar e
truncated or added to the left as required. If
field C will not contain the result, the overflow
indicator is turned on. Other wise, it is turne d
off.

Su btract Con ditional Fiel d B f rom Field A , Store in Field C
(Group 2)

SUC A,B,C

This instruction is identical in execution to
SUB except that if the content of field A is blank ,

• ~he content of field C remains unchanged.

Clear Variable Data Field (Group 20)

CVF A

This instruction causes the variable data field of
the current data file record to be cleared. The
length of the variable data field is effectively
set to zero.

Move to Secondary Control Field (Group 19)

MCS A ,B

• This instruction moves the contents of field A to
field B. The instruction is treated as an
NIL instruction. This is the only instruction that
may be used to alter the contents of a subset
control field.

87

________- — •- -- • •- --- - - —- _ _ _ _ _ _ _ _ _ _



• A0 A063 1.32 C OMMAND AND CONTROL TEC~t4ICAL CENTER WASNINSTON 0 C F/Ø 9/2 N
P C S  INFORMATION PROCESSING SYSTEM 360 FORMATTED FILE SYSTEM IN—— ITCCU)
50 76 C K HILL.

IJNCLASSZFIED CCTC—CSN—*M—t5—7S—VO~ —3 Mt.

___ U
I,!~ _

_  

_

-

~~~~~~~~


•~~ 12.8i.c L

L L “22
~ L
~ L.~ ~ 2.O11111 I I L

‘I’ll - IIIII~~
Ilil i ____________ 11111 I .8IIIII~~
11111’

.25 IIIIP~
‘I” 1.6

_ = IiIII~~

MICROCOPY RESOLUTION T EST CHART
NA1tUHM eU~1LAU O~ ¶~ AN~JARDS ~~~

FILE MA INTENANCE (FM)

This instruction is executed exactly as DVD except
tha t execu tion does not take place if the content
of field A is blank.

Subtract Field B from Field A, Store in Field C (Group 2)

sue A,B,C

This instruction algebraically subtracts the
content of field S from the content of field A and
stores the result in field C. The result is stored
numerically from tight to left, and zeros are
truncated or added to the left as required. If
field C viii not contain the result , the overflow
indicator is turned on. Other wise , it is turned
off.

Subtract Conditional Field B from Field A , Store in Field C
(Group 2)

S rJC A ,B ,C

This instruction is identical in execution to
SUB except tha t if the content of field A is blank ,
the content of field C remains unchanged.

Clear Variable Data Field (Group 20))
CYF A

This instruction causes the variable data field of
the current data file record to be cleared. The
length of the variable data field is effectively
set to zero.

Move to Secondary Control F ield (Group 19)

NCS A ,B

This instruction move s the contents of field A to
field B. The instruction is treat ed as an
NAL instr uction. This is the only instruction that
may be used to alter the contents of a subset
control field .

87

- .~~~~~~~~ ~~~~~ _______ ___________________________________

FILE MA I N T E N A NCE (FM)

Move Control Field (Group 14)

MC’! A ,B

This instruction moves the contents of field & to
H f ield B. If truncation is required, the

instruction is t reated as the move alphabetic
instruction (MAL) • MC’! and MCW are the only
instructions which can al ter the contents of the
record control field. Subsequent transactions that
match the old record key are still applied to this
record .

Move Control Field and Wri te the Data Record (Group lie)

MCW

This instruction functions in the same manner as
MCT excep t that the data record is output upon
comple tion of the execution of the logic statement
in which an execution of an NCW instruction has
occurred. A subsequent transact ion that matches
the old record key will cause a new record with the
old key to be generated.

If a NIPS ISAM file is being updated and the step
abnormally terminates, all records whose control
field was changed up to that point have been
deleted from the file. The new records •ay not
have been wri t te n onto the fil e, depending on where
the step terainat icn occurred.

88
S

_ _ _ _- - ~~~I - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . . - ... ~~~~~~~~~~~~~~~~~~~~~~~~~~~
__~ __~_.___ A~ _ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~ — - -- - - -

FILE MAINTENANCE (PM)

Look Up Tabular Function Value (Group 6)

TBL A,B,C,D

This instruction causes the contents of the
transaction input field A to be used as an argument
to the tabular function B (cod e conversion table)
to produce a function value wh ich is stored in
field D. The resul t of the tabular function is
assumed to be alphabetic and is left—justified in
f ie ld D. The function value is truncated or padded
with blank characters on the low—order end as
required. If the input field A does not compare
wit h entries of the tabular function , the
disposition of the tra nsaction input record is
determined by C. The legal values of C are A, I,
or P. The transaction input record disposition is
as described for the C operand of VAL. The
val id i ty indicator is set to valid or in valid , as
ap propriate, by this instruction. Note that inputs
to tables and subroutines may be data base fields,
work areas , or transaction fields.

Generate Value from Argument Field (Group 6)

GEN A ,B,C,D

The execution of this instruction is identical to
that of TBL except tha t B is the name of a non—
tabular funct ion .

Store Date—Time in Fiel d (Group 11)

SD T A

This instruction stores the current Date—Time Group
(DTG) in field A. The DTG reflects the time that
this FM run started . The f ormat of the value
stored is XXYYYZZZZ in which

~ Year (~~—99)TV! ~ Date (~~~—366)ZZZZ = 214 hour time (Ø~~ Ø~ 2 14Qg) to the hundredths
of hours-i

89

~~~~~~~~~~ ~~~~~~~~~~ -~ — — 
~~~~~~~~~~ — —


FILE M A I N T E N A N CE (P M)

The 9-character DTG field is stored alphabetically
in field A. The DTG is truncated or padded on the
right as required (see MAL).

Move/Add Variable Field to Variable Field (Group 21)

MV! A,B

This instruction updates variable fields in
periodic sets and adds data to the end of variable
sets. When used to update periodic sets, the
contents of field B viii be replaced by the
contents of field A. When used to add to variable
sets, the transaction input data (field A) is
appended to the variable set identified by field B.
The input data is packed into fixed—length subset
records; new subset records are created whenever
necessary.

I
Move to Variable Set/Field (Group 21)

M VR A,B

This instruction appends the contents of the
transaction input field A to the contents of the
variable data field specified by the B f ield. If
the original length of the variable data set is N ,
and the length of field A is N, the resultant
length of the da ta set will be N+ M . If the B field
is a variable field in the periodic set , the
previous contents of the field viii be replaced by
the contents of field A. The difference between
MVF and MVR is this: the lengt h of each subset
field in a variable set is obtained f rom the F!? by
MV ?; the lengths of all subset records in the set
are the same (except for the last, which may be
shorter) . M VR uses the input transaction lengt h
(field A) as the output length; subset records may
vary in length . This method reduces the
probabil i ty of splitting word s between subset
records. Only words whic h are split bet ween input
transactions viii be split between subset records.

I
,

90

_____________________ — S

FILE M A I N T E N ANC E (FM)

Output Variable Field to Work Area (Group 25)

OVF A , B,C

This instruction will move a portion of the
variable field A to the defined work area specified
by the B field . The variable field A may be stored
in a periodic set or a variable set . The B field
also determines the len gth of the move. Up to 256
characters can be moved at a single execution. A
pointer is then set to the remaining unmoved
portion of the variable A field so that the next
execution of th is instruction will •ov~ another
por tion of the variable field data. If the
remaining portion of the field is shorter than the
work area receiving the data, the receiving field
is first clear ed and the n the data is moved. The

• pointer is then reset to the beginning of the
varia ble field, an d a bra nch is take n to the la bel
specified in the C operand. If the lengt h of the
var iable field is zero, the work area is cleared to
blanks and a branch is taken to the C operand
label.

Reset Var iab le Field Pointe r to Beginning of the Variable
Field (Group 26)

RV! &

This instruction will reset the pointer which is
used in the OVF instruction back to the beginning
of the war •~ble field. It may be used only when an
OVF inst ~,ction with the same A operand appears
w i t h i n the log ic statement.

Clear Field (Group 13)

CLR A

This instruction sets field A to blanks. Field A
cannot be a record control ID.

Note: The processing operators discussed above, with the
exception of NV? , M YR , CV?, OV?, and MY? apply both to
nonperiodic and periodic fields. Reference may be made to

.1

—

~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~ .~~~~~~~~ - . -



FILE M A I N T E N A N C E  (FM)

nonperiodic fields at any point in a logic statement, but
reference to fields of a periodic set may occur only when a
subset of that periodic set is currectly active. Periodic
sets are independent of each other, and subsets of two or
more periodic sets may be active simultaneously. Only one
subset of a given periodic set may be active at a n y  given
tile.

7.4.3 Control Instructions

Compare Field to Field Alphabetic (Group 17)

COA h,B

This instruction compares the content of field A to
the content of field B. Both operand fields are
assumed to be alphabetic, and comparison takes
place from left to right. If the B field is
shorter tha n the A field, the comparison will be
made as if the B field were padded on the right
with blanks. If the A field is shorter than the B
field, only the common portion of the two fields is
compared. The compare indicator is set as follows:

Condition Compare Indicator Setting 

A equal to B EQUAL
B greater than A HIGH
B less t h a n  A LOW

Compare Field to Field Numeric (Group 18)

COW A ,B

This instruction causes the content of field B to
be compared to the content of field A. Both
operand fields are assumed to be numeric and
comparison is algebraic. The relative lengths of
the operand fields are not a criterion for
meaningful comparison. Both operand fields are
assumed to be assigned whole numbers. Th. sign of
each operand field is indicated by the setting of H

92

- 

— 

~~~~~~~~~~~ 1• .~~~~~- ~~~~~~~~


-- ~~~~~~~~~~~~~~~~

FILE MAINTENANCE (FM)

the zone bits of the low—order character. The
compare indicator is set as follows:

Condition Compare Indicator Setting

& equal to B EQUAL
B greater than A HIGH
B less than A LOW

Ch eck Field for Val idi ty (Group 8)

VAL A , B, C,

This instruction causes the contents of field A to
be processed by the subroutine B to determine if
the content meets specifications contained in
subroutine B. Field C specifies whether to log an
error if the content of field A is determined to be
invalid. The codes for field C are:

Value of C Disposition or Action

A or R Appropriate error message is logged on
history file and invalid data is skipped

I No error messages printed - invalid data
is skipped

The validity indicator is set to valid or invalid,
as appropriate , by this instruction.

Branch Unconditionally (Group 3)

PRA A

This instruction causes an unconditional branch to
the instruction with tag A.

• Branch Unconditionally and Link (Group 3)

-L

•

LNK A

LI ~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _ _

• -- ----~~~~~~~~~~ -~~--- • •. — ‘---. — - ------ -

FILE MAINTENANCE (FM)

This instruction causes an unconditional branch to
tag A. The locati on of the instruct ion following
the LN ~ instruct ion is saved for use with the RET
instruction.

Return Branch (Group 14)

RET

This instruction causes an unconditional branch to
the instruction following an LNK instruction. An
LNK instruction must have been executed prior to
the execution of the PSI’ instruction. These two
instructions can be used to provide closed
subroutines in logic statements. Only one level of
closed subroutines may be used at any given time.

The fol lowing instructions test the compare indicator .
The indicator is reset to indicate the result each time a
compare instruction is executed.

Branch if not Equa l (Grou p 3)

ENE A

This instruction causes a transfer to the
ins t ruct ion wit h tag A if the compare indicator is
either high or low .

Branch if Greater Than or Equal (Group 3)

EGE A

This instruction causes a transfer to the
instruction with tag A if the compare indicator is
set either high or equal.

Branch if Less Than (Group 3)

BLT A

This instruction causes a transfer to the
instruction with tag A if the compare indicator is
low.

94

5-
~~— r~ h-~. •

FILE MAINTENANCE (FM)

Branch if Equal (Group 3)

SEQ A

This instruction causes a transfer to the
instruction with tag A if the compare indicator is
equal.

Branch if Less Tha n or Equal (Group 3)

BLE A

This instruction causes a transfer to the
instruction wit h tag A if the compare indicator is
set equal or low .

Branch if Greater Than (Group 3)

BGT A)
This instruction causes a t ransfer to the
instruction with tag A if the compare indicator is
set high.

Set Indicator Low (Group £4)

SIL

This inst r uction sets the indicator low.

Set Indicator Equal (Group 14)

SIE

This instruction sets the indicator equal.

Set Indicator High (Group Is)

SIR

This instruction sets the indicator high.

The following instructions are concerned wi th the
validity indicator. Execution of the TBL, GEN , APP , and VAL
instructions sets this indicator to valid (off) or not valid

95

- -__ ~
— •—••~ — — d. ~~~~~~~~~~~~ ~~-S--

FILE MAINTENANCE (FM)

(on). It is initialized to valid before the execution of
each logic statement. During ON POO L logic statement
execution, the switch is set to invalid by ON if a picture
error occurs.

Branch if Not Valid (Group 3)

BNV A

This instruct ion causes a transfer to the
instruction with tag A if the validity indicator is
set to not valid.

Set Validit y Switch On (Group 4)

SVO

This instruction sets the validity switch on, (not
valid).

Set Validity Switch Off (Group 14)

SVF

This instruction causes the validity switch to be
turned off (valid)

The following instructions are concerned with the
overtlow switch. This switch is set on any time an
arithmetic operation results in an overflow condition. It
is turned off by any arithmetic operation that does not
result in an overflow condition. It is initialized to off
before execution of the logic statement begins.

Btanch if Overflow (Group 3)

RRO A

This instruction causes a transfer to the
instruction with the tag A if the overflow
indicator is set to on.

Set Overflow Switch Of f (Group 1$)

SO?

96 j •~.

FILE MAINTENANCE (FM)

I ’ This instruction causes the overflow switch to be
turned off.

Set Overflow Switch On (Group 4)

scm
This instruction sets the overflow switch on.

The following instructions are concerned with the new
record switch whic h is turn~d on any time a new recor d is
generated. New records are generated when an equal
comparison of the input transaction and data record control

• fields cannot be made. The new record switch is turned on
• • prior to the execution of the first logic statement used to

process a new record. It will be turned off prior to
executing any subsequent logic statements that are used to
process the same record.

)
Branch if 14ev Record (Group 3)

BNR A

This ins truc tion causes a transfer to the
instruction with tag A if the new record switch is
on.

Set New Record Switch On (Group 4)

SPO

This instruction sets the new record switch on.

Set New Record Switch Off (Group t4)

SB?

This instruction causes the new record switch to be
turned off.

The following instructions deal with the two prograw
switches. These switches are provided to assist the user in
controlling his logic. ~~~~ user may turn them on and off as - •

required. They are initialized to off prior to each

97

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•—
_- - . •• - - - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

c,. _____



FILE MAINTENANCE (FM)

execution of a logic statement. Note: Each valid
transaction will execute a logic statement.

Set Program Switch On (Grou p 4)

SPO

This instruction sets the program switch on.

Set Program Switch No. 2 On (Group 4)

S20

This instruction sets prog ram switch No. 2 on.

Set Program Switch Off (Group 4)

sPF
I

This instruction causes the program switch to be
turned off.

Set Program Switch No. 2 Off (Group II)

52?

This instruction causes program switch No. 2 to be
turned off.

Branch if Progra. Switch On (Group 3)

~PO A

This instruction causes a transfer to the
instruction with tag A if the program switch is on.

Branch if Program Switc h No. 2 is On (Group 3)

5S2 A

This instruction causes a transfer to the
instruction with tag A if program switch No. 2 is
on.

98

- — ,~~~~
—_-—

— _~~ ._~~~~_~gt —



FILE MAINTENANCE (FM)

The following miscellaneous control instructions are
also available to the user.

Branch on Summary (Group 3)

• SNR A  -

This instruction causes a transfer to the
instruction with tag A when the last record has
been processed . This instruction is valid only for
range statements. -

Halt (Group 4)

lILT 
-

This instruction specifies that no further
processing is to be performed against the current
data record.

No Operation (Group 4)

NOP

This instruction performs no operation.

End of Logic (Grou p 4)

END

This instruction signifies to the language compiler
that the end of the logic statement has been

• reached.

NOR The Diagnostic Instruction Co unte r (Group 14)

NCT

• This instruction is a carryover from 11410 NIPS and
• has been included in NIPS 360 FFS to maintain

coapatability. The NCT instruction has no
operational function in NIPS 360.

99

• 
-
- • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ________



FILE MA I N T E N A N CE (F M)

Exit if no Prior Processing on Data Record (Group 4)

XNP

This instruction is used to provide the Exception
R ange capabi l i ty .  It is effect ive only when it
appears as the f irst  instruction in a RANGE
statement . If it appears anywhere  else, it
functions as an NOP. When this instruction appears

• as the f irst  instruction in a RANGE statement , it
causes an immediate exit from the RANGE statement
if the data record being processed has not been
sublected to Exception updating during the run.

7• 14 • 14 Display Instructions

For all displa y instructions, th e lengt h of field A
ca nnot exceed 994 bytes. NIPS adds six overhea d bytes to
th e data specified by field A and the DCB LRECL is 1000. )
Vi olation of this limit will result in a System 001 AB END
(I/O ERROR , R ECORD TOO LONG).

Log Comment (Group 10) • 

-

LOG A

This instruction causes the contents of field A to
be wr i t ten  on the pr inter in batch mode and on the
display screen in TP mode .

Note: Carriage control may be spec if ied by coding an
optional B operand. This operand , if coded, must be
preceded by a comma and enclosed in quotes. Valid B
operands are:

0 (zero) — space two lines
— (minus) — space three lines
1 (one) - eject (In TP mode , th is

I 
• character will cause

the screen to blank)

Print Comment (Group 12)

PRT A

100

• — - -~~~-
- --~- ,



FILE M AINTENANCE (F M )

This instruction is the sa me as log. See above
note.

Print Comment (Group 12)

PT2 A

This instruction is the sa me as LOG and PRT except
• • it writes operand A data on the  pr inter  in batc h

mode and on an ON Q display dev ice in TP mode. See
above note.

Write on AOF (Group 12)

WRT A

This ins t ruct ion causes the contents of field A to
be writte n on the auxil iary output file.

write on Second AOP (Grou p 12) - -

W’2 A

This instruction causes the cont ent s of fie ld A to
be wri t te n on the second aux i l i a ry  output file.

write on Third AO? (Group 12)

~T 3 A

This instruction writes the contents of field A on
the third auxiliar y output file.

Write on Fourth AOF (Group 12)

WT4 A

This instruction writes the contents of field A on
the fourth auxi l iary  output  file .

Write on Fifth AO? (Group 12)

4 ,  

WT5 A

101



FILE M A I N T E N A N C E  ( P M )

This  ins t ruct ion writes the contents of f ield A on
th e f i f t h  auxi l iar y output  file.

Punch Output (Group 12)

PCH A

This instruction causes the contents of field A to
• be punche d in punch pocket one.

Punch O u t p u t  (Group 12)

PC2 A

This  instruct ion punches the contents of field A in
punch pocket two.

7.4.5 Ordinary Maintenan ce Validity Test Instructions

• • The following group of instructions may be used to test
the  results of the Ordinary Maintenance validation
functions. Instructions are provided to allow testing of
the validity of a given field, or the entire transaction.
These instructions are as follows:

Branch on Transaction Field Valid (Group 22)

• BPV A,B

Example — BPV $T R ANS ,OK

This instruction branches to location ‘B’ if the
contents of transaction field A passed the Ordinary
Maintenance edit tests. The transaction field must be
designated by its assigned mnemon ic.

Branch on Transaction Field Not Valid (Grou p 22)

B?N A ,B

Example — B~N $TRANS ,BAD

This instruction branches to location ‘B’ if the• contents of transaction field ‘A ’  fai led any of the Ordinary

102

- - • -~~
- • - - - •- ‘ ~~~~~~ -~ ‘--~~~~



FILE MAINTENANCE (FM)

Maintenance error tests. The transaction field must be
designated by its assigned TD mne monic.

Branch on Transaction Valid (Group 3)

• BTV A

This instruction branches to location ‘A ’ if all of the
transaction data passed on specified Ordinary Maintenance
validity tests.

Branch on Transaction Not Valid (Group 3)

BTN A

This instruction branches to location ‘A’ if any
• transaction fields failed the specified validity tests.

I
7.14.6 Transaction Error Log Instruction (SODA and ON)

Log Erroneous Transaction Data (Group 23)

ERR A,B

Example — ERR S’RANS,’TIiIS IS BAD DATA’

This instruction is provided to assist the terminal
operator in correcting erroneous transaction data when using
the on—line update capability, Source Data Automation
(SODA).

When this instruction is executed during a SODA run, it
causes the displayed transaction field ‘A’ to be underscored

• with a key to the message provided as the literal in field
‘B ’ . (See the  Terminal  Processing (TP) component volume of
the NIPS 36~ ?FS Users Manua l . )

Wh en this  instruction is executed dur ing a batch FM run ,
it causes the  message tc be printed on the Ordinary
Maintenance error log (see sect ion 6.2) • In a co•bined
Ordinary Maintenance /POOL logic statement , this instruction

— may be used to replace or supplement the standard ON error
messages.

• 

103 

- • - _________



FIL E M A I N T E N A N CE (FM)

7.5 Log ic Statement  Examples

The fo l lowing  exampl e s i l lustrate the setup of the FM
run  dec k f o r  upda t ing  the  Logic Statement Library ,  and the
use of some of the POOL language instructions. Sections
9. 5. 3 t h r o u g h  9.5.8 provide equiva lent N FL logic statements
for  the POOL language  statements of sections 7.5.3 through
7.5.8. All of the examples pertain to the TEST369 file.
For a description of this f i le, see the Introduction to File
Concepts volume of the NIPS 36~ FFS Use rs Manual .

All of t h e sample logic statements, with the exception
of the R a n g e  statement , perform update s with transactions
f rom the report ‘RPT36 ~~’. The d i f fe ren t  transaction formats
wi th in  this  report are id en t ified by the letters ‘A ’  through
‘G’ in column 1 of the transaction.

• Section s 7.5.1 throug h 7.5.8 i l lustrate the f ree—format
?NS control card , l ibrary  action cards, and TD cards.

Comments  cards are show n in each of the logic statements
and explain the functions of the statements.

Section 8.1 provides an equivalent Ordinary Maintenance
TD of the POOL statement in section 7.5.6. Section 8.2
shows a combinat ion 0$/POOL logic statement.

7.5.1 F$S Control Card

The fo l lowing  FM S control card would be used to execute
• the ‘LIE ’ mode of FM , to perform updates for the logic
• statemen t l ib ra ry  for the T!ST36~ file:

$FMS/LIB,TEST36I

7. 5.1.1 LIMI T Control Card

Th. following card would be used when the user wanted to
limit a rang. to all the records whose control field, LCTRL,
was equal to ‘A AA ’ .

• $LINI T ,LC TR L ,EQ, A A A or
$LIMIT,LCTRL,BT,AAA /AAA

~~~~~~~~~~


FILE MAINTE N AN CE (FM)

If all records not eq ua l to ‘AU’ were desired, then the
control card would be:

$LIMIT,LCTRL .NOT,EQ,A A &

• 7.5.2 Library Action Card to Add a Report

The following card would be used to add the report
• • ‘RPr36 ~ ’ to the Logic Statemen t Library. The transaction ID

fi eld, for transactions within this re por t, is located in
column l.

SAR , RP T36 0, 1

This card could also have been punched as follows:

$AR ,R2T36$, l—l

• However , since the transaction ID field is onl y one byte
long, the ‘—1’ is not required.

7.5.3 Logic Statement Setup -

The following example illustrates the organization of
tAte l ibrary action card , the TD ca rds, the language
identif ier card , and the POOL instruction cards for an
Exception logic statement. The sa mp le statement performs

• updates with the ‘A’ transaction format of the report
‘aPT 36~~’.

The first card for the statement is the library action
card. This card specifies that the statement is to be
permanently added to the library . It also specifies that
the statement will perfor, updates with the ‘A’ transaction

• • of report ‘RPT36~~’, and that the fixed data in that
transaction format is 8~ bytes long. The transaction does
not contain any variable data.

The TD cards follow the l ibrary action card. The first
field in each of these cards is used to assign mnemonics to
the t ransact ion data fields.

1’ ~
~~

-

~~ ‘
—

~~~ 

—-  -

~~~~~~~~~ 

-
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -



— •

FILE MA I N T E N A N CE (FM)

The second and third fields specify the high—order
position and the low—order position of the transaction
fields.

The fou r th  f ield is used to specif y that a transaction
field is a major  or user control field . In the example ,
lUCID is a major transaction control field, and it
corresponds to the data record cont rol group, ‘UIC ’. $SORT
is a user transaction control field. It is not used in
ma tching a transaction record to a data record , but is
associated w i t h  the record contro l field to con trol the file
processing sequence.

The fifth field in the TD card indicates the type of
data that the transaction fields will contain. The ‘A’
transaction contains alpha betic (A) da ta and zoned decima l
(D) data only. Insertion of this field is optional, with
the defa ult option being ‘D ’ .

I
The card fol lowing the TD ca rd is the language

identifier card, and contains the word ‘POOL’ in columns 16—
19.

Comment cards , descr ibing the logic statement ’s
function , follow the language identifier card. The comment
cards are identified by an asterisk (C) in coLumn 6.

The logic statement first tests the new record switch by
using the B W R inst r uction . A new record wil l be generated
by FM when no data record can be found with  a UIC group that
matches the contents the SPECI D transaction field , in an ‘A ’
transaction. Whe n this occurs, the instructions at NEWREC
will be executed. These instructions format a print line in
the EBCDIC work area and print the line. At the completion
of this function, the instruction sequence at MOVE is
executed. This sequence of instructions moves the data from
the transaction field ! to the data record fields, using the
MAL , MAC, ansi ~NC instructions. The MAL and MAC
instructions are used to mo ve the alphabetic data to the
file record, and the MNC instruction is used to move the
numeric data to the f i le  record .

When the MAC instruction at MOVE is executed, no data
transfer wil l  take place if the content of the transaction
field SHONE is blank. When the MNC instruction is executed,

106

__ T _ • .~_ _ •~~ 

—



FILE M A I N T E N A NCE (P M)

no data transfer will take place if the content of the
transaction field SPERS is blank .

The instruct ions that  move the transaction data to the
coordinate f ie lds  DAP TI — 14 will automatical ly  convert the
data to in te rna l  coordinate format .

At the comp letion of execution of the data move
• instruct ions, an SDT instruction is executed. This

instruction stores the date/time of the update in the data
field LAUD.

A lILT instruction is executed next. This instruction
ca uses an exi t  fro m the  logic sta te ment.

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

p

~~~~

-

~~~~~~~~ ~~~~~ 
-

FILE MAINTENANCE (FM)

SASP,RPT 36~, A , 8~
SR ECID ,2,7,Cl ,A

$SORT,8, 8,C2, A

SHONE , ~~~~~~ , A

• SAT TAC H ,12 , l2 ,,A

SPUTURE,]3,13, ,A

$POILIT,35,25,, D

IAREA1 ,27,37,, A

SAREA 2 ,38,48,,A

$AREL3,49 ,59, ,A

$AREA4,6~,7~,,A

SPER S , 73 ,8Ø , • D

POCL

* THIS LOGIC STATEMENT WILL UPDAT E THE LOCATION AND DEPLOYMENT

* AREA OF THE SPECIFIED UNIT. IF A NEW RECORD IS GENERATED, A

C MESSAGE WILL BE PRINTED AND TUE TRAISAC’ION FIELDS WILL B!

* MOVED TO THE DAT A FIELDS.

BNR N!VREC

MOVE MAC $HOME ,HOME

NAL $ATTACH,ATACH

MA L $FUT URE , P UTU

SAL SPOINT,POINT

108

- -

— _____________________________ —— -• -
~

—— __*
• •

FILE M A I N T E N A N C E (FM)

SAL SAR EA 1 ,DAPT 1

H AL SAREA2 ,DAP T 2

HAL SA R E A 3 , DA PT 3

• HA L $A RE A I 4 .DAPT I$

NR C SP E RS ,PERS

SDT L A U D

HLT

N~WREC HAL ‘NEW RECORD GENERATED. ID IS — ‘,Wl/3~

HAL SR E C ID ,W3 1/36

PRI W1/36

BRA MO VE

LILT

END •

109

• —-~~~~~~~~~~ —~~~~ • •• • • • —-- - •-•—• —~-~-— ~~~~~~~ • • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —~~ — •—

FILE MA I N T E N A N CE (FM)

7• 5• 1~ Use of Data Co nversion Subro utines

Th e fol lowing logic statement is used with ‘B ’
transactions. These transactions contain only a major
control f ield in positions 2 th rough 7.

This logic statement verifies that the CNTR Y and ACTIV
fields , in selected records , contain vali d data.

If a new record is generated by a ‘B’ transaction, the
DDR instruction at ‘DELETE’ is executed to delete the
record. Otherwis e, positions 1 to 4U of the work area are
cleared to b lan ks, and the data record’s UIC field is moved
to the work area. Then ~he data in CNTRY is converted by
the subroutine CTRYS, and the result is stored in the work
area, If the data is invalid , a sterisks are moved to the
work area by the instructions at ‘ERRl’. Next the data in
ACTIV is converted by the subroutine ACTVS, and the result
is stored in the work area. If the data is invalid , .4

asterisks are moved to the work area by the instructions at
‘E RR 2 ’ . Then the contents of the wor k area is printed , and
the logic statemen t exits.

Note: Execution of the TBL instructions does not alter the
F contents of the fields CNTRY or ACTIV.

-

~~~~~ 

- - -  • •_ __

~~~~

•,

~~

_ ••

~~11~0

_ _ _
— ~~

FILE MAIN TENANCE (FM)

SASP ,RPT36~ , B,B~

SREC ID ,2 , 7,Cl ,A

POOL

* THIS LOGIC STATEMENT WILL EXTRACT THE COUNTRY CODE AND

* THE ACTIVITY COD! FOR SPECIFIED UNITS.

BNR DELETE

CLR wl/ds q

MAL UIC,Wl/6

TEL CN T R Y ,CT R YS ,!,Wl~ /2 14

BNV ERRI
I

ACTV TE L A CTIV ,ACI’VS, I ,W39ç/q4

BNV !RR2

PRT PRT W]./4’e

HL T

E R R I HAL ‘***************~ , vl~ /24

BRA ACTV

E RR 2 H AL ‘***********$***~ ,~~3~/1$4

BRA PRT

DELETE DDR

lILT

END

111

—--—-- -~~~~~~~~~~~~~~~~~~~~~~~ --- ~~~~~~~~~
—

• - • - • • •••- • • - •- - • • • • _ . . • _ __
~~~~ .~.t~~_ • . • _ - •-- - - - - • - -  - *•

~~•~~• • ~~~~~~~ •



FILE MAINTENANCE (FM)

7.5.5 P eriodic Set Processing

The following examples illustrate two methods for
updating periodic subsets. Example 1 uses an Exception
update statement to perform the updating of the record. The
library action card will add statement ‘D’ of report type
‘RPT 360’ permanently to the Logic Statement Library. The TD
car d s assign mnemonics to the transaction fields, with
transaction field SRECID containing the major control field
of the record to be processed.

The ‘POY’ instruction will cause the subset of periodic
set one to be searched for the data field ‘NECLQ ’ 3eing
equal to the transaction field ‘SMEQPT ’. If it is not
foun d, a branch is taken to ‘NEW’ . If it is found the
indicated processing viii be done.

At ‘NEW’ , a new subset will be built for Periodic Set 1.
The subset control field will be set by the ‘MCS’
instruction , an d the rema in in g transa ction fields will be
set in the specified data fields. A message is printed to
indicate a new subset was created and the transact ion field
SMEQPT is printed.

Example 2 uses direct subset update capability. The
l ibrary action card is the same. The TD card for the
transaction field ‘SMEQPT ’ is d i f fe ren t  in that  the control
par ameters  on the TD card indicate that the  field is to be
used as a subset control field . It also carries a data
record subset control field parameter name ‘MECLQ’ which is
defined as a subset control group in the FFT. If no subset
exists with a total record control group (major  control
field, set number , and subset control group) equal to the
update record control group (lUCID , set number , $N EQP T) a
new subset is generated by FM and the total record control
grou p is set in the new subset and the new record indicator
is set on. If  the subset exists , the subset is made active.

The first instruction tests the new record indicator.
If it is on , a branch is ta ken to ‘NEW’. If it is not on,
the processing is performed .

At ‘REV ’ , the f ield is up dated, and  the messages are
printed .

• 112

— 

— ‘___ ‘____- • 
_,_j.,_~~ 

- 

— —  - -  
• •  •—•—-. — -  •— —- p

~~ - —



FILE MAINTE N AN CE (PM)

S ASP , R PT36O , D , 80

$RE CID ,2 ,7,Cl ,A

SM EQ PT , 19, 22 , ,A

$NOEQPT,25,27,, D

$ADDCO’DE,29,29,, A

POOL

* THIS LOGIC STAT~ MENT WILL SEARCH FOR THE SUBSET

C CONTAINING THE EQUIPMENT TYPE AND ADD OR SUBTRACT

* THE N U M B E R  OP IT EM S AS SPECIFIED BY THE A D D  CODE. IF I

C THE SUBSET DOES NOT EXIST , A NEW SUBS ET WILL BE BUILT

* AND THE FIELDS WILL BE U P D A T E D .

POV $MEQPT,M!CLQ,NEW

- COA $ADDCODE ,’A’

BEQ ADD

SUB N!PSD,$NOEQPT,PIEPSD

• lILT

ADD ADD PIE PSD ,SNOEQPT ,M!PSD

LILT

113

- ___________________  - - . -
•
—

. IT~~ - T~ •~T



FILE MAINTENANCE (FM)

NEW BSS ME CLQ

MCS $M!QPT,N FCLQ

MNU SNOEQPT, MEP SD

PRT ‘NEW SUBSET CREATED’

END

• EXA MPLE 2

SASP,RPT36O , D,80

SRE CID,2,7,C1,A

$HEQPT,l~ ,22 , ,A ,S,MECLQ
I

$NOEQPT ,25,27 ,,D

$ADDCODE, 29,29,, A

POOL

* THI S STATEMENT WILL PERF OR M THE SANE FUNCTI ON, USING

* THE DIRECT SUBSET UPDATE CAPABILITY. IF THE SUBSET

* DOES NOT EXIST A NEW SUBSET WILL •BE GENER ATED AND THE

C SUBSE’~ CONTROL FIELD WILL BE AUTOMATICALL Y SET BY ~N.

*

BNR NEW

COA SADDCODE,’A’

• SEQ ADD

SUB NE PSD , SNOEQPT , MEPSD

lILT

-

~~~~ Il l ’

- — •
••

—

FILE M A I N T E N A N C E (F M)

ADD A D D NEPS D, SNO E QPT , M EPS D

lILT

• NEW MNU $NOEQPT,NEPSD

PRT ‘REV SUBSET CREATED’

PRT $MEQPT

END

I

• 115

-~~~ — —• - — -

—-

~

-•• ‘-

-•

-
—•——:

~~ •~~ •~~~~~~~~.
•.
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ —

FILE MAINTENANCE (FM)

7.5.6 Test for Numeric Data

The following logic statement illustrates a simple
method of determining if a transaction field contains
inval id numer ic da ta (assuming valid data is a nonzero value
wi th in the range ~2 ,147 ,*83 ,6a~7) . This method is especially
applicable when it is not known in exactly wha t position of
the field the data begins and/or ends (e.g.. when leading
zeros are not required or the r igh t—jus t i f i ca t ion capability
of the system is being used). 1+ is also applicable when
some of the data may be signed and some may be uns igned .
(The PICTURE instruction can be used in Ordinary Maintenance
or NFL to pe r fo rm the edi t ing function when the type of data
in each col~imn is known — see sections 8.1, 8.2, and 9.$.6.)

When the logic statement is entered , a CON instruction
is executed to compare the operand value with zero. This
will cause the transaction data to be edited (see qection
4. 2) . If the transaction f ield contains a valid nonzsro
numeric value, the compar ison will be flQ~ equal ; if the
transaction field contains invalid data, th. comparison viii

• be equal.

116

_ _ _ _ _ _ _ _ _ _ _ _ _ _

t
•—

~~~~~ ~~~~~~~ -



- r

FILE MAINTENANCE (FM)

$ASP ,RP T 369, E , 89

STRANS ,1,8~

SRECID,2,7,C1

SPEESONL, 19,15

$READAVG , 29, 22

POOL

* THIS LOGIC STATEMENT WILL UPDATE NUMERIC FIELDS IN

* THE FIXED SET. THE INPUT TRANSACTION FIELDS CONTAIN

* DECIMAL DATA. THE DECIMAL DATA IS EDITED TO DETERMINE

* IF IT CONTAINS AN! INVAL ID CHARACTERS. I? AN ERROR

* IS DETECTED , AN ERROR MESSAGE WILL BE PRINTED OW THE

C A U X I L I A R Y  OUTPUT PRINTER AND THE ERRONEOUS TRANSACTION

* WILL BE PRINTED.  j
F * 

•

- CON 9,$PERSCNL TEST I’ $PERSONL NUMERIC

BEQ E R R 1  BRANC H IF INVALID DATA

NNU SPERSORL,P!RS

CHK2 CON SREADAVG ,~

B!Q E R R 2

MNU SREADAVG ,READAV G

CHK3 CON 1,RITNN

• SEQ ERR3

117
I

_____________ - •~~,~~~~~~ -‘- 
•
~~~~ 

•-
~~ — •

~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~ -



FILE M A I N T E N A N C E  (FM)

N NU $R I TN N ,RI’NM

LI LT

ERR1 PPT ‘THE SPERSONL FIELD CONTAINS INVALID’

PRT ‘N U M E R I C  DATA OR A VAL UE OF ZERO’

PRT STRA W S

BRA CHK2

ER R 2 PR T ‘THE SREADAVG FIELD CONTAINS INVALID’

PRT ‘ NUM E RIC DAT A OR A VALUE OF ZERO ’

PRI STRAWS
I

EPA CHK3

£RR3 PLIT ‘THE SPITNN FIELD CONT AI NS INVALID’

• PRT ‘NUMERIC DATA OR A VALUE OP ZERO’

PRT STRAW S

lILT

END

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~~~



FILE M A I N T E N A N C E  (FM)

7.5.7 Production of Summary Information

Th e fo l lowing  logic statement is a Range s tatement that
funct ions  wi thou t  transaction data. Note that  the l ibrary
action code for this statement contains only the function

• - code ‘lAST ’ , and t ha t  there are no TDD cards for this
statement. This type of statement must be compiled on—line
each time it is used.

This s ta temen t uses the SMR ins t ruct ion to determine
when line processing is comEleted . Whe n processing is not
complete , the three instruct ions that follow the SMR
instruction are executed , and a . logic statement exit is
taken. These instruction s accumulate information in the

• first three words of the binary work area.

When processing is completed , the SlIP ins t ruct ion  causes
a branch to the instruction sequence at ‘LAST’, where f inal
processing and printing of the accumulated data takes place.
Note that  when t he  data is moved from the  binary work ar ea
to the EBCDIC work area, it is automatical ly converted to
zoned decimal format.

_  

119 

_
- • J—1-- — — — -~~ • • •---



FILE MAINTENANCE (FM)

IA sr
POOL

* RANGE STATEMENT TO CALCULATE TOTAL NU M B E R  OF UNITS

* IN THE DATA FILE , TOTAL PERS ONNEL STREN GTH , A V ERA GE

* OF TOTAL P !AD IN F SS A V E R A G E  OF ALL UNITS

* THIS I N F O R M A T I O N  WILL BE PRINTED ON THE A U X I L I A R Y

* OUTPUT FILE

*

SLIR LAST

ADD Bi/, 1, 81/
I

ADD PERS ,R2/,82/ F

ADD REA DAV G ,R3/,B3/

LILT

• LAST M AL ‘TOTAL NUMBER OP U N I T S — ’ ,Wi/ 23

M N U  Bi/ , W2 4/ 29

PRT ‘ ‘ P R I N T  BLANK LINES

PR? ‘

• PR? W l/ 29

NA L ‘TOTAL PERSONNEL STRENGTH OP ALL UN I TS — ’ ,Wi/ 39

NNU 82/,W”O/4$9

PRT ‘ ‘
PRT 141/149

120

• -- -- • __._ 
- -

______________________ • i~~ —



FILE MAINTENANCE (FM)

MAL ‘AVERAGE OF TOTAL READINESS A VERAGE— ’,Vl /35

DVD B3/, 81/, N 36/37

PR? ‘

PR ? Vl/37

• lILT

END

I

121

F 4



FI LE M A I N T E N A N C E  ( F M )

7.5.8 Variable Field and Set Processing

The f ollowing two log ic statements i l lustrate the use of
the M VF i n s t ruc t ion .

Example  1 moves in format ion  from a variable transaction
field, lYlE , to the variable field COMMENT. Existing 

•

in format ion  in COMMENT viii be destroyed. When the data
t ransfer  takes  place , the data is t runcated , so that any
trailing blanks in the variable transaction field are not
mo ved.

Example 2 appends information to the variable set REFER.
Since the  in fo rma t ion  to be t ransferred is in a fixed length
transaction field, no t runcat ion takes place .

Example 3 outputs variable field (RENUK) data. When a
matching subset is found , the da ta  is moved to the work area
in 50 charac te r  increment s, and printed .

122

- - -  • - - — 
~~~~~~~~~~~~~~~~~~~~


FILE MAINTENANCE (FM)

$ASP,RPT36Ø,F,l~,l1

$RECID,2,7,Cl,A

$V AR ,ll

POOL

* I
* THIS LOGIC STATEMENT REPLACES THE INFORMATION IN THE

* VA R IABLE FIELD COM M E NT W ITH THE INFOR MATI ON IN THE

* VARIABLE LENGTH TRANSACTION FIEL D IVAR.

* I

N VF $VAR ,CON N EN T

LI LT

END

• $ASP,RPT369~,G,89

IRECID,2,7,Cl,A

SV AR,31,8~ ,, A

POOL

t . *

• * THIS LOGIC STATEMENT APPENDS THE INFORMATION IN THE •

* TRANSACTION FIELD SVAR TO THE INFORMATION IN THE

* V A R I A B L E SET -REFER .
F

*

123

- _ _ _ _ _ _ - -- -• — • •
• — - - • - . • -

FILE MAINTE N AN CE (FM)

lIVE $VAR ,REP!R

LILT

END

~LLNPLL~

SASP ,RPT36 O ,I ,80 -

$R ECID,2,7,C1 ,A

POOL

*

* THIS LOGIC STATEMENT WILL SEARCH THROUGH THE VARIABLE
I

* FIELDS (REMARK) CF THE PER IODIC SUBSETS CONTAINING

* THE FIELD MEQPT FOP A COMMENT BEGINNING WITH THE

* VA L U E -01MAY71. WHEN FOUND, THIS VARIABL E FIELD

• * WILL THEN BE PRINTED 50 CHARACTERS PER LINE.

*

POS MEQPT, NONE

NEXT OVP R!PI A R K ,W 1/7,CONP

COMP COA ‘O1NAY71 ’ ,W1/7

BEQ RE SET

RVF R E M A R K

STEP STP MEQPT,NEXT

PRT ‘NO MATC H FOUND’

HLT

124

— — Fi -• — - ~~~~~~~~~~—•~~ • • • - •-•• • •••• • * • - • ••- • • • • • - • • ~~~~ •--• •-- • - - • • - • -— —~~~~~~~ - • — • - -“
•

~~~~~~~~~~~~~~~~~~~~~~~~ -



FILE MA I N T E N A N CE (FM )

NONE PR? ‘NO SUBSETS FOUND’

LILT

RESET EVE REMARK

PUT OV F R E M A R K ,W 1/50,LAST

PR? 141/50

BRA PUT

LAST PR? 141/50

lILT

END

I 
F

125

_ _ _ _ _ _ _ _ _  — —~~~~~ :- p~~~~~ --- -- •

- - — - , - ~~~-~~- - - . . - 
. - --

-

~~~~~~~~~~~
• - — — -

FILE MAINTENANCE (PM)

7.6 Summary Of POOL Instructions

Data Handling Instr uction s

Instruction Operation

MAL A,B Move Alphabet ic
M N U A,B Move Numeric
MAC A,B Move Alphabetic Conditional
ENC A ,B Move N umeri c Condi t ional
ADD A,B,C Addi t ion
ADC A ,B,C Add Conditional
PWL A ,B,C Multiplication
MUC A,B,C Multiply Conditiona l

F DVD A ,B,C Division
DVC A ,B,C Divide Conditiona l
SUB A,B,C Subtraction
SUC A ,~~,C Subtract Conditiona l
CVF A Clear Variable Data Field
MCT A,B Move To Recor d ID
NCS A,B Move To Secondary Control Field

• MCW A ,B Move To Record ID And Write Record
YAL A,8,C Validity Check
TBL A ,B,C,D Table Lookup Routine
GEN A ,B,C,D Su brou tine Processing
COA 1,8 Compare Alphabet ic
CON 1,8 Compare Numer ic
SDT A Store Date—Time Group
M YF A,B Move To Variable Set/Field
lIVE A,B Move To Variable Set/Field (Input Length).
OVF A B C Output Variable Field
RYE A Reset Variable Field Pointer
CLR A Clear Field

Control Instructions

Instruction Operation

BRA A Unconditional Branch
LN K A Branch And L ink
RET Return Branch
BLT A Branch If Less Than
SEQ A Branch If Equal

- - 81.5 A Branch If Less Than Or Equal
BGT A Branch If Greater Than

126

FILE M A I N T E N A N CE (FM)

BNE A Branch If Not Equal
EGE A Branch If Greater ?han Or Equa l
HLT Halt Statement Execution
NOP No Operation
XNP Exit No Prior Processing
SN E A Branch On Summary
BNR A Branch If New Record
BS2 A Branch If Switch 2 Is On

-

-
BRO A Branch If Overflow
B NV A Branch If Invalid
SPO A Branch If Program Switch On
SOP Set Overflow Switch Off
SVF Set Validit y Switch Off
SPF Set Program Switch Off
SEE Set New Recor d Switch Off
S2F Set Switch 2 Off
500 Set Overflo w Switch On
SVO Set Validity Switch On
SPO Set Program Switch On)
520 Set Switch 2 On
SRO Set New Record Switch On
SIL Set Indicator Low
SIE Set Indicator Equa l
SIH Set Indicator High
NCT HOP Instruction Counter
END End Update Statement

Environmeni- Handling Instruction s
-

Instruction Operation

POS A,B Activate First Subset
STP A,U Step Activity To Next Subset
POV A.B,C Position On Value
STY A ,B,C Step To Value
DSB A ,B Delete Subset And Bra nch
DSC A Delete Subset And Con tinue
BSS A Built Subset
SSS A Sequence Subsets
DDE Delete Data Record

_ _ _ _ --

:7

. ~~~~~~~~~

._

- - _ _ _ _ _ _

FI LE M A I N T E N A N C E (FM)

Display Instructions

Instruction Operation

LOG A Print On History Pile
PET A Print On History Pile
PT2 A Print On History File
WET A Write On Auxiliary File
14T2 A Write On 2nd Auxiliary File
14T3 A Write On 3rd Auxiliary File
WTI$ A Write On 4th Auxilia:y File
14T5 A Write On 5th Auxiliary Pile
PCH A Punch Contents Of A Into Punch Pocket 1
PC2 A Punch Contents Of A Into Punch Pocket 2

Instructions Used With ON and SODA

J~Q~~ Qfl ~~~~~~~~~ •

BFV A ,B Branch On Tra nsaction Fie ld Valid
BEN A ,B Branch On Transacti4on Field Not Valid
BTV A Branch On Transaction Valid
8TH A Branch Transaction Not Valid
ERR A,B Log Erroneous Transaction Data

128

—

FILE MAINTENANCE (FM)

Section 8

ORDINARY MAINTENANCE (ON) EX A MPLES

8.1 Use of Ordinary Maintenance TD Cards

The followin g logic statement , writt~ n en tirely in the
Or d inary Ma intena nce lang uage, illustrates a sim ple method
of editing for nonnumeric characters when the type of
character in each column is known. (The utilization of
additional PICTURES for values to be edited gives greater
flexibility, as needed.) The editin g function performed is
similar to that performed by the POOL logic statement in
sect ion 7.5.6. It uses the PICTURE parameter to test for
numeric da ta in the tran sac tion f ie lds, and if the data is
correct move s it to the data tile. Nonnumeric data is
logged on the Ordinary Maintenance error log .

The logic statement also checks the f i rst byte of the
transaction record ID field for a legal service code, usin g
the VALUE parameter. If the first byte is in error, the
transaction is deleted. j

$ASP ,RPT36~,F,8~F FIELD RECID 2 7 A CONTROL 1 VALUE J***** N*****
M****t N***** ERROR T

FIELD PERS 1~ 15 D PICTURE NNNNN N ERROR D GEN
- FIELD READAVG 2~ 22 D P ICTURE MNN ERROR D G!N

FIELD RITNN 25 27 D PICTURE NNN ERROR D GE M

8.2 Use of Ordinary Maintenance ‘i’D Cards and
POOL Instructions

The following logic statement performs the same function
as the one in section 8.1, except that automatic logging on
the Ordinary Maintenance log is suppressed. Invalid record
control fields are printed on the opi error log by use of the
ERR instruction. Logging of other errors is performed by
the POOL statements on the normal printer auxiliary output.
The NTV instruction is used to exit from the POOL logic when

129

1_i
- •

.— -
~

— — -

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ .~~~~~~~ ~ ~i”-~-: ~~~~~~~~~~~~~~~~~~~~~~~



FILE M A I N T E N A NC E (F M)

no errors vere found , and the BEN insttuction s are used to
• test tor invalid fields.

$ASP ,RPT 36~ ,E,80
FIELD RECID 2 7 A CONTROL 1 VALUE J***** W*****

M***** N ***** E R R O R  DS
FIELD PE RS 10 15 D PICTURE NNNNNN FRROR DS GEN
FIELD READAV G 20 22 D PICTUR’ NNN ERROR DS GEN

• FIELD RITNM 25 27 D PICTUP E NNN ERROR DS GEN

POOL
B TV EXIT
B EN $P ECID , I D ER R
PR? Tl/80
BEN SP!RS,ER~~1¶ cHK2 BEN $READAVG ,~ R R 2

CHK3 BEN $RITNM ,E R R 3
EXIT HLT
REEl PET ‘THE PER SONNEL FIELD CONTAINS HON—NUMER IC DATA’

BRA CHK2 -

ERR2 PET ‘THE REA DAVG FIELD CONTAINS NON—NUMER IC DATA’
BRA CHK3

ER 83 PET ‘THE RITNN FI!LD CONTAINS NON—NUMERIC DATA’
BRA EXIT

IDERR ERR $RECID ,’INVALID SERVICE CODE’
DDE
END • - -

130

_ _ _ _ _ _ _ _ _ _   

ii
________________  - 

:~~~~~~~~~~~~~~ II~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
—- —

~~~~~~~~~~~~~~~


FILE MAI NTEN A NCE (F M)

Section 9

NEW FILE MAINTENANCE LANGUAGE (NFL)

NFL is a high—level or procedural FM language which
provides the user wit h a language which is easy to learn an d
sim ple to use, yet which is powerful and flexible enough to
efficiently accomplish a wide range of FM functions.

The NFL section of the FM component accepts, as input,
statements writte n in an English—like language describing
the conditions and actions which are to be applied against
a NIPS data f i l e f o r a specified set of upda te ‘ransactions.
The language is interpreted and processed (compiled),
resul t ing in an executable logic s ta tement . Error
conditions are detected, an d dia gnostics whic h wil l aid the
user in correcting the logic statement are printed.

Before reading th i s section , review sections 2 through
6 of this manual.

9. 1
-

NFL Statement Composition

NFL statements are free—forma t. Words are separated by
blanks, commas , or periods. Multiple statements can be
punched on a single card or a stateme nt m a y be spread over

• more than one card. Card columns 72—80 must not be• utilized. Words, including literels, may not be split over
two cards. Statements are composed of statement

• identifiers, keywords, noise words, labels, and operands.
Periods may be used freely for readability. They have no
effect on the language processor in this component.

t
I

131

-- r

H FILE M A I N T E N A N C E (FM)

9.1.1 Statement Identifiers

There are a limited number of statement identifiers in
NFL wh ich iden ti f y a condi tion , an action, or a point of
control. Though the number of statements is limited , a
num ber of functions are implied simply by the structure of
the statements. The following lists of identifiers have
been grouped by ca tegory .

Action Condit ion/Logic Con t rol Point
I~~ntth&~~

__
M O V E IF ELSE
ATTACH AND CONTINUE
COMPUTE OR PROCEDURE
BUILD END
POSITION NOT E
LOCATE NFL
STEP NFL
PRINT

• PUNCH
•

- W R I T E
DI SPL A Y
DELETE

• D E F I N E
TURN
GO
RETURN

Example -

~~ con dition ~jj D condition ~Q!E from location to
location , j j~ data ~~~~~~

In the preceding exam pl e, I? , AND , MOV E , PRINT , and
CONT iNUE are s ta tement identifiers. The IF identifies a new
condition to follow . The AND identifies a condition to
follow and denotes that it is a conti nuat ion of a “string”

F of condit ions (see section 9.3.1) . The MOVE and PRINT
id ent if iers ident ify actions to be performed if the
preceding conditions are true. CONTINUE identifies the
point to cont inue processing regardless of whether the
preceding condit ions were met .

132

- --

FILE M A I N T E N A N CE (F M)

9.1.2 Keywords

Keywords differ fro. statement identifiers in that they
are embedded in the statement and identify either a
secondary action , a specific action f r o m a grou p of possible
actions, or succeeding operands. The following list of
keywords are used in NFL. Examples can be found in the
section discussing statement descriptions.

NOT Used to negate a condition

B? Identifies a between condition
BETWEEN

EQ
EQUAL Id entifies an equal condit ion
E QUAL S -

NE Identifies a not equal condition

LT Identifies a less than condition
LESS

GT Iden t i f i e s a g reater than condition
GREATER -

-

I.E Identifies a less t han or equa l condit ion

TAB Identifies a validation table condition or
TA bLE conversion of data

plc Identities a picture condition
PI CTURE

SUB Identifies a data con version operation
SUBR OU T I N E

BIT Iden t i f i e s a bit condi t ion

ON Identifies an on (true) condition

0?? Identifies an off (false) condition

133
•

FILE M A I N T E N A N C E (FM)

NEW RECORD Identifies a new record condition

JOB COMPLETE Ident i f ies a run complete cond it ion
JOB COMPLETED

OVER FLOW Identifies an overflow condition

• Add operation

- Subtract operation

/ Divide operation

* M u l t i p l y operation

= Denotes equivalency in compute statement

ON (fo l lowing PRINT , PU NC H, WRITE , DISPLAY) , s ignif ies that
a device is being specified

EXIT Identif ies the next operand as an exit label

RECORD Identifies the object of the action as a record

FIELD Identifies the object of the action as field

SET Identifies the object of the action as a set

SUB SET Identifies the object of the action as a subset

OVER Specifies resulting position of set.
PAST
BEYOND
NEXT
FIRST

I-

134

_ _ _ _ _ _ _ _ _ _ _ _ _ _ •

—- - ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

-

- -

FILE MAINTENANCE (PM)

9.1.3 Noise Words

N oise words are a group of commo nly used words which
have no effect on the functions of the statement but which
help to give the s tatements a more English—like readabili ty.
Noise words can appear any place within a statement. The
following noise words are allowed in NFL:

A FOR IS WITH
AN FROM THAN USING
AS IN THE
B! INTO T O

9.1.4 Statement Labels

The provision for labeling statement s (or procedures)
allows a name to be associated with a statement. These
na mes can then be referenced as exit points or to change the
sequence of execution. Labels must begin with an alpha
character and may contain only alpham eric characters. The
la bel can contain up to seven cha racters. It is identified
as a label by suffixing the name with a colon . A valid
label must have a space following the colon. Statement
identifiers or noise words cannot be used as labels.

Exam ple —

LOOP: NOYE....GO TO LOOP

LOOP is a label associated with the MOVE statement. In the
exam ple, the GO causes the order of execution to be changed
to the statement labeled LOOP.

The fo l lowing statement s may not ha ve labels:

An If statemen t or any part of an I? statement such
• as the AND , OR , OR ELSE clause.

A CONTINUE statement

A NOTE statement

A DEFINE statemen t

135

____________________ _______________ __________________________ - 4-
4 ‘

FILE MAINTENANCE (PM)

9.1.5 Operands

Statement operands identity control locations,
subroutines and tables, literal values, and data locations.

9.1.5.1 Control Location Operands

Control locations are references to statement labels
(section 9.2.4). This type of operand is an exit point or ‘

a change (GO) in execution sequence.

Exam ple 1 —

LOCATE SET MEQPT,EXIT TC NOSUR

In this example , if there are no subsets belonging to the
set N E QPT , the next s tatement to be executed would be the
statemen t w i t h the label NOSUB. Thus NOSUB is a “control
location ” type operand.

Example 2 —

GO TO X Y Z

When the above statement is executed , the next statement to
be executed would have the label XYZ. XYZ is a “control
location ” type operand.

9.1.5. 2 Subrout ine/Table - Nam ~ Operands

When user written subroutines or tables are to be
executed , the subrout ine or table na me is designated as a
statement operand.

Example —

IF LOC IS IN TA BLE PLA CES

In the above example , the operand PLACES names a user
written validation table.

136

—a _,__ ___ - — -—, — —,._ ---—-—- -__ -t__ —
-

- - - - - ,- -~~~~~~~~
,- -

FILE M A I N T E N A N C E (FM)

9.1.5.3 Literal Value Operands

When a value is specified, it is a literal value
operand. Alpha or numeric literals can be specified. To
designate an alpha literal, the value mus t be enclosed in
quotes. Though several words may be included within the
quotes, it is considered as a single operand (care must be
taken not to split a literal value operand over more than
one card) . W i t h t h e exception of the quote and ampersand
characters, any character can be used wi th in the quotes. To
define a literal value operand containing a quote or
am persan d, a double quote or ampe rsand m ust be used. In
this instance, the redun dan t special character is not
counted in determining the length of the literal.

Numeric literal value operands are designa ted by
expressing a numeric value (not enclosed in quotes). A +

(plus) or — (minus) sign may be prefixed to the value. If
the sign is missing, the value is assumed to be positive.

Exa m ple 1 —

MOVE ‘ROSSLYN PLAZA’ TO LOC

~~~~~ tne above example, the alpha literal value ROSSLYN PLAZA
~~~~~~~~ be moved.

Ex~~’ple 2 —

COMPUTE SCALE = +1~~~~ * LENGTH

In the above examp le, the numeric literal 1~~1 will be used
in the computation. Note t hat in the example the plus sign
could be omitted.

9.1.5. 4 Data Location Operands

Data Location operands are designated by using symbolic
• names whic h have been defined to the system in such a way

th at the name is equated to the location and length of the
data.

-

The location and length may be modified or adjusted for
these types of operands (except for binary, coordinate and

137

______________________ 4’

FILE M A I N T E N A N C E (F M)

variabl e f ield data) by use of partial field notation. This
is done by fo l lowing the symbolic name (separated by at
least one blank or comma) with the desired beginning and
ending character positions. The form of expression for
partial f ie ld notation is N/N where N is the beginning
character position and N is the ending position; e.g., to
designate the f i rs t two characters of the field ME QPT ,
specify NEQPT 1/2.

There are fou r basic types of “Data Location” operands
in NFL . These are file data , transaction data , indirect
data , and d e f i n e d constants and areas.

9.1.5.4.1 File Data Operands

File data operands ~re designated by the sym bolic name
assigned to the specific value (f ield) dur ing fi le
structure.

Exam ple —

IF MEPSD IS EQUAL TO NERD!

MEPSD and NERD! are f i le data operands.

9 .1.5.4.2 Transact ion Data Operands

Transact ion data operands are desig na ted by the symbolic
na me assigned to the value (f ield) in the statement
transaction descriptor deck. The symbolic name is alwa ys
pref ixed wit h a $ character . Note: NFL does not permit the
TN/N f o r m ot t ransact ion references.

Example —

MOVE $N E QPT TO PIE QP T

$ME QP T is a t ransact ion dat a operand.

138

FILE M A I N T E N A N C E (FM)

9.1.5.14.3 Indirect Data Operands

Indirect data operands (see section 7.2) are designated
by pref ixin g the symbol ic name (defined by the transaction
descriptor deck) with C$. Partial field notation is not
allowed for indirect data operands.

Example —

POSIT ION TO THE F IRS T SUBS ET FOR C$Z ILCH ,EX IT TO NO S...

C$ZILC H is an indirect data reference.

9.1.5.4.4 Def ined Constant and Area Operands

Constants and areas which can be used as work areas can
be defined and given symbolic names by the user. These are
then referenced by symbolic name as operands in statements.

NFL provides three constants which can be referenced and
need not be defined by the user. These have the following
characteristics and symbolic names.

a. For a value of zer o, use ZERO , Z E ROS , or ZEROES.

b. For a value of b l ank , use BLAN K or BLANKS .

C. For the current date and time , use SYSDATE.

SISDATE is in the form YYDDD TT TT where Y is year, D is
Julian date and T is time. Partial—field notation will not
be allowed for the zero and blank values.

9.2 Special Requirements and Considerations

There are several special require ments or considerations
which are imposed by NFL . These must be clearly understood
by the user for effective application of NFL.

139

— — —
- — -

~~~~
-
~~~ 

- --.----—- .-- -——-----•- .- - -- -—-.--- --
~~~~

--- -
~ 

-



FILE MAINTENANCE (FM)

9.2. 1 Data Mode Compatibili ty

The NF L s t a tements  are not “mode ” oriented , therefore it
does not require one statement for alpha data and another
for  numeric . Obviously,  only numeric data may be used in an

F arithmetic statement. In all ot her instances, the system
checks for  the  mod e of the  dat a and determines the mode of
the operat ion.  EBCDIC work areas are nonmode associated and
take on the mode of the related data. If , when two operands
are specified, both are nonmode associated, the mode
defaul ts to alpha. There are some combinat ions of mode
which are illegal. Legal mode combinations are given in the
table below.

F Node codes are:

A — a l p h a

B — binary

C - coordinate

D — decimal

V - nonmode associated

1’~ 114 0

-- — - - - - - - —  ~~~~~~~~~~~ 

~~~~~

~-

FILE M A I N T E N A N C E (FM)

Legal Mode Comb ina tion:

4_a
A A
A C
A V
B B
B D
B V
C A

- C C
C V
D A Not e the combinations
D C cannot be reversed
D -. B -

D V
D D
V V
V B
V C
V D
V A

9.2.2 Data Length Compatibility

• When two operands for a statement req uire data length
compatibility, NFL automatically pads or truncates to obtain
this compat ibi l i ty . The Second operand length is the
de termining length. Al pha data fie lds are padded wit h
blan ks or truncate d on the r ight . Numeric data fields are
padded with zeros or truncated on the left.

9.2.3 Special Statement Sequence Req uirements

There are several NFL statements or groups of statements
which require special sequence considerations. These are

• described in the paragraphs which follow.

1141

— _____________________— —--- — ~~~~~~~~ P~~ ’— —
- .—

——-— •
— — —— ~~~~~~

- -— .
~

- • -
,

~~—

FILE MAINTENANCE (PM)

9.2.3.1 Condition /Action Statement Seq uence

Condit ion s ta tements are composed of conditional clauses
logically connec ted an d iden tif ied by IFs, AN Ds, and ORs.
An action (s) is always associated with a condition. This
action is executed if the ccndi t ion is true. There may also
be a set of “false” actions associated wit h a condition.
False act ions are optional a n d ident i f ied by an ELSE
statement. After the “true” or “false” action s have been
executed , the po in t at which execution is contin ued is
identified by a CONTINUE statement.

There m a y be m u l t i p l e “true” and “false” statements.
All sta tements between the last condition clause and the
ELSE or CONTINUE statements are “true” actions. All
statemen ts betwee n the EL SE and the CONTIN UE are “false”
actions.

A second condit ion cannot appear between the f irst
condition and the actions associated vith it.

For label ing purposes , a condition/action statement
sequence is considered to be a single st a tement. A label
may precede the keyword I? but no f u r t he r labe ls are
permit ted un t i l a f t e r the keyword CONTINUE.

Example 1 —

I? NEPSD IS NOT CT ME RBQ , A N D NE QPT IS EQUAL TO
‘P L A N E ’ , PR INT ‘***I ,ME QPT,’***DEFICIENCY***’,
MEPSD,N~ REQ.
CON T I N U E ,POSITION....

In the preceding example, if the condition is t rue the
action PRINT will be executed. If the condit ion is false,
or on completion of the PRINT action, processing will
proceed with the CONTINUE statement.

Example 2 —

I? MEPSD IS NOT GT MEREQ,AND MEQPT IS
EQUAL TO ‘PLANE’ , PRINT ‘***‘ ,ME QPT,
‘***DE?I CIEWCY ***’ ,MEPS D , N EP E Q .

- • ELSE, COMPUTE DI? MEPSD MEREQ .
CONTI NUE , POSITION.. .

1142

___ — • -~-- __~_I;~_ •- -- ~~ - - • -

FILE M A I N T E N A N C E (FM)

In the preceding example , if the condition is true, the
action PRINT will be executed. If the condition is false,
the action COMPUTE will be executed. In ei ther case,
execut ion wi l l the n continue at the CONTI N UE statement.

9.2.3.2 Procedure Definitions

Procedures are simply a metho d of grou ping conditions
and act ions as a uni t and allowin g these to be executed as
a uni t . The f irst s ta tement of a procedure is the PROCEDURE
statement. The last statement is an END statement. All
condition and action statements between the PROCEDURE and
END s t a tements are considered as part of tha t procedure.

A procedure can be executed by executing a GO to the
pr ocedure t r o m outside of the procedure or by “dropping ” in
it. Upon completion , a procedure will return control to the
statement following the GO statement (GO type execution) or
the s ta tement fo l lowing the procedure END s ta tement
(“dropping ” type execut ion) . Exi t (re turn) f rom a procedure
occurs when the RETURN s tatement is executed or when the end
of the procedure (END statement) is encountered.

Procedures are restricted in the fol lowing sense:
execution of a procedure can only be initiated at the entry
point of the procedure. Nesting (procedure calling a
procedure) is not permitted .

The examples below illustrate the two methods for
executing a procedure.

Example 1 —

... ~Q TO ~J1fi~ f lQ7J ~~~~~~ TO ~~~~~~~. . .SU M: PROCEDURE condi -ions and actions ~~Q...

The preceding example illustra tes how a proced ure is
executed f rom a GO statement.

The procedure named SUN would be executed when the GO TO
SU~ statement is executed. When the END statemen t within
th . procedure is executed control will, be returned to the• nixt statement following the GO TO SUM statement. Following

• 1143

_ _ _ _ _ _ _ _- -p
~~~~--~~- - - 

. •~~~‘ ~~.
__ —

-— -r— — — 
• —



FILE M A I N T E N A N C E  (FM)

the execu t ion  of the procedure, the next  s ta tement  to be
executed would be the MOVE RESULT TO TOTAL statement.

Example 2 —

...MOVE SYSDATE ¶0 DATE, CONVERT : PROCEDURE...
procedure conditions and actions RETURN additional
procedures conditions and actions END PR INT ‘FILE
UPDATED’, DATE...

The preceding example illustrates the “d rop th rough”  method
of execut ing  a procedure . The procedure is executed
followin g the statement MOVE SYSDATE TO DATE. When the
RETURN statement is executed, the next statement to be
executed would be the f irst  statement following the END
procedure s ta tement  which in the example is a PRINT

- statement.

- 1
9 . 2 . 3 . 3  Define Sequence Requirements -

There are two simple considerations regarding sequence
requirements for use of DEFINE. The first is that a
constant or area must be defined before it can be referenced

• by another statement. The second involves the define and
initialize (VALUE) statement. The initialization occurs at
the point that the statement is encountered. Thus, in a
logic statement which loops bac k, an area might be
reinitialized or, if the path of execution never encountered
the initialize statement the area would not be initialized
during that execution.

Though not required , these two sequence requirements can
always be satisifed by placing all define statements at the
beginning of the NFL logic statement.

9.2.4 Subset Positioning 
F

Special consideration should be given to th. subset
positioning actions which position to the next subset. If,
at the tim• th. statement is ez.cuted, the set is in an
inactive status (eith. r the set has ne ver been activat.d or
th. set has b u n  position.d put the Last subset) the first

1~~4 

_______t_ .:_
_ _ _ _  - - -



FILE M A I N T E N A N C E  (FM)

subset of the set will be activated. If there are no
subsets, the exit will be taken.

9.3 NFL Statement Description

This section describes each of the NFL statements in
detail. In each of the examples which are given , required
terms are underscored. Those which are not required , such
as noise words , are not underscored . Commas and periods are
optional; i.e., they are not required and are effectively
ignored. A summary of the syntax for the NFL can be found
in section 9.4.

9.3.1 Conditional Statements

To review what has previously been stated regarding NFL
conditional statements: 

-

a. The statement identifier I’ introd uces the first
condition clause of a new conditiona l “string”.

b. AND or OR identifiers iden tify a continuation of
the conditional string and the logic to be applied
between clauses.

c. A conditiona l string is always followed by a “true ”
ac t ion(s), optionally a false action(s), and a
required continuation point.

d. A second condition may not appear before the
continuation point.

Several types of conditional clauses in NFL are listed
below.

Relationa l

Table Val idation

Picture Mask

Switch

illS

— - - — —~~~~~~~~~ - ~~~~~ — —



FILE MAINTENANCE (FM)

Bit Mask

New Recor d

Run Complete

Overflow.

9.3.1.1 Relat ional  Condi t icn

The relational condit ion is used to compare two pieces
of data for a stated relationship. The clause is composed
of an operand , a relational operator, and a second operand.

Example -

U~&Q1 IS ~~~~~ TO ~~~~~~~~
The above example is a typical example of the relational
condition clause. The operand represented as FIELDA can
reference transaction data, data file data, indirect data,
constants, or work areas. The relational operator (EQUAL)
could be any one of the fol lowing:  -

EQ
EQUAL The relationship must be equal to be true.
EQUALS

NE The relationship must be unequal to be true.

1.? The relationship must be less to be true.
LESS

GT The relationship must be greater to be true.
GREATER

LE The relationship must be equal to or less to be
true.

GE The relationship lust be equal to or greater to
be true.

FIELDB can reference transaction data, data file data,
indirect data, cons tants, work areas or literal values.

1146

~ 

- 
~~~~
-- - t-

FILE M A I N T h N A N C E (F M)

FIELDB mi ght also be expressed as a multiple value
operand for the equal (and not equal) relationship.

Example —

•..~~Q !L~ItQ~
IS

~~~~ 
TO ‘ZQ~~~Lli’. ‘Q.~!i! ~’

,

The sultivalue equa l condition is processed as an OR
string, i.e., if any one of the multiple values satisfies
the desired relationship, the clause is true. This, of
course, is just the opposite if the negat ive rela tionship is
required .

Exam ple —

JJ~~ 
IS ~~~~ ~~~~~~ TO . ‘!Q~~~X!’. ‘GBUR ~’,‘li ~liL1~iI2i~’ .... I

In th is example , for FIELDA to be true, it must not equal
‘ROSSLYN’ , ‘GBURG’ , or ‘WASHINGTON ’ .

The between relationship condition requires two fields
or values following the specified relat ion.

Exam ple — 
-

... QI U1~~ IS ~~ TWE!! ~~~~~~~~
The two between values are separated by a slash;

multiple value operands are allowed with the between
relationship.

Example —

,~f ~~~~ IS ~~~~~~ ~QQzi2~ 9Q~L112Q...
The results (true or false) of the multiple value

between is the same as described for the equal relationship.
The between relation operator can be expressed as BT or
BETWEEN.

When specifying partial field notation wit h the second
operand of the between, care must be taken to be sure that

1147 - 
-

p

~

- - —
—a



FILE M A I NT E N A N CE (F M)

the partial field notation is preceded and followed by at
least one blank (see section 9.5).

9.3.1.2 Table Val idation

The table validation condition allows the user to use a
user—written subroutine or table lookup for validation
purposes. The clause is specified by designating the data
to be validated and the table (or subroutine) whic h is to be
executed to perform the validation.

Example —

...jIjQ rJ1L2.~ IS IN I&~L~ ~il~•••
FIELDA may be transaction data, data file data, indirect

data, constants or work areas. The keyword TABLE could also
be designated as TABS CNTRYS is the name of the table or
subroutine.

NOT could be used to negate the conditi9n.

Example —

~~~~~~ IS liQI IN IL~&~ cNIRx~ ...
The val idat ion must be unsuccessful for the above clause

to be true.

9.3.1.3 Pi c ture Mask

The p ic ture condition allows an alpha or decimal value
to be tested for designated character types. A picture mask
must be specified. This mask is composed of a series of the
following characters.

A Alpha characters

N Numeric characters

S Special characters

1148
-

- ~~~~~~~~~~~~~~~~~ -~ _~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

- • •~~~~~~~~~~~~~~~~~~ ~~~~

FILE M A I N T E N A N C E (FM)

B Blan k characters

X Nonbiank characters

I Nonspecial characters

* No check.

The field to be tested is checked character—by—character
for the condition specified by the corresponding character
in the mask.

Example -

...~~ Q j~JJ,Q IS AS IN ~~~~~
The above example would test the content s of FIELD for

two numeric followed by three alpha followed by two numer ic
characters. -

FIELD may reference transaction data, data file data,
indirect data, constants or work areas. Tb. mask must be an
alpha literal value.

9.3.1.4 Switch Test -

The switch test is used with the TURN action (see
section 9.3.2.8). It is a tool for testing for an 0W/OF?
condition of a switch which is set by the user.

The switch is a single byte (character) in core which ii
set to an EBCDIC zero for 0!? and an EBCDIC one for 01. The
switch is designated by a symbol which can be defined with
a DEFINE statement by the user or can be automatically
defined by the system.

The form of the switch clause is operand, followed by
the keyword OFF or OW.

Exampl. -

...Q~ THE ~~~~~~ IS 2!...

~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~ ~~~ h j
~~~~~~~~~~~L


FILE MAINTENANCE (FM)

In the preceding example, if the character represented
by the symbol GOSWTCH contains a one, the clause will be
true.

The switch operand can only be a defined area (by the
user or system).

The keyword (ON) can be ON or OFF.

9.3.1.5 Bit Mask Test

rhe bit mask test allows a user to scan a field on a
character basis, while testing for the presence of
designated bits within a character. The bit mask is
specified as a series of ones and zeros. If less than eight
are specified, zeros will be padded to the right. If more
than eight are specified, they will be truncated on the
left.

When an ON (or NOT OF!) condition is specified , if any
bit in any character of the field being scanned matches, the
result is true. For aa OF? (or NOT ON) conditon , if all of
the designated bits in any character of the field being
scanned are of f , the result is true.

The for m of the bit test is; operand , keyword (BIT) , bit
mask , keyword (ON , 0!?, NOT ON , or NOT O FF) .

Example —
-

.1! ~L~i& ~1I 12111 111 IS 2!...

In the preceding example , if any bit of any character of
FIELD is a one, other tha n the second bit, the clause will
be true.

Example —

~il 12111111 IS Qf~...
In this examp le, a true cond ition will result only when

all of the bits, or all bits but the second, are zero for
any character of FIELD.

150

-- ----~~~~.-. -~ - • - - - ~~~~~~~~~ ~—~-- - - — - - ~~~~~~~~~~~~~ • - —

FILE MA I N T E N A N CE (FM)

The bit mask is designated as an unsigned numer ic
literal value composed of ones and zeros.

9.3.1.6 N ew Record Test

When a file record cannot be found for a transaction, a
new file record is automatically created by the File
Maintenance capability. There are times when the user would

• like to know when this condition exists. ‘rhis can be
determined by the new record test. The example below
illustrates how to specify this condition.

Exam ple —
-

...il ~ !~?Y ~~~~~~
The next example i l lustrates how a test f o r an old record
could be designated by use of the condition negation.

Example -

...Q~ !Q! !~~ ~~~~~~~

9.3.1.7 Job -Comple t e Test

For the user who wishes to perform an action at the end
of the maintenance run , the job complete-test is provided.
This test is particularly useful in prod ucing “main tenance
summaries ”. It would only be used in Range logic
statements.

The following example illustrates how the job complete
test would be used to test for the end of the run and for
not the end of the run.

151

~~~~~~~~~

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


FILE MAINTENANCE (FM)

Exam ple -

•.. .&! T H E ~~~~~ IS ~~~~~~~~~~~~~~~~~~ ..4~~ THE ~QB IS ~QT

9.3.1.8 Overflow Test

• The test for OVERFLOW statement is used after a compu te
statement to determine whether overflow has occurred. The
test must be -made before a second COMP UTE statemen t is
executed or the status of the first statement is lost. The
exam ple following illustrates the overflow test.

Example —

...LL Q~~ B?J,OW IS Qji... ...~~ Q~~ JJ~Q~ IS Q!r...
I

9.3.2 Action Statements -

Action statements specify a function to be performed .
The opera tions wh ich the y specify to be performed may be
uncondi tional or they may be based on the satisfaction of a
pr ior condition.

9.3.2. 1 Data Movement

There are two statements which can be used to move data
from a specified source to a specified destination.

9.3.2.1.1 The MOVE Statement

There are two fo rms of the MOVE statement. The first is - -

a simple movement of the data f rom a source location to a
destination location . The second is the movemen t of the
da ta from a source location via a conversion subroutine or
table.

Example —

• ...flQ~~ ~~~ TO ~~~~~~~

152

_ _ _ _ _ _ _ ___ —- p~~~~ - - - —
_ _ _ _ _ _ --~~~~~~ ~~~~~~~~~~~~~~ - . - -

FILE MAINTENANCE (FM)

The preceding example illustrates a simple MOYF
s ta tement . FIELDA may refe rence transaction data , data file
data , indirect data, defined constants, defined work a reas
or literal values. ?IELDB may reference data file data,
indirect data or defined work areas. Data mode
com patibilit ies will automaticall y be checked and field
lengths will automatically be adjusted. If partial field
nota tion is designated, it will be checked to determine
whet her it is within the boundaries of the data field. When
moving coordinate fields, to or from EBCDIC fields,
conversion to and from internal forma t automatically occurs.

Example —

...fl9~~ fl~LDA TO !j~I~ B USING ~~~~£~LI LLU.T...
The preceding example illustrates the movement of data

th rough a conversion table. ?IELDA and FIE LDB may reference
the same types of data as for the simple move . The data
charac terist ics for FIELDA are checke d against the input
characterist ics for table STATES and the ?IELDB data
characteristics are checked against the output
characterist ics for table S”ATE S . The exit label (ILLST) is
the label of the NFL statement to which control will be
given if the table is not successful in converting the data.

In either of the MOVEs, FIELDA say not be a variable
data t i le f ie ld or set. If ?IELD B is a var iab le data file
field or set, ~~~ ~~~~~~~~~ ~~rj~~j~~ ~~~~~~~~~~~ jfl ~~~II~I will ~~

____ ~~ ~~~ ç~fl~ent~ g.~ flflQ ~. If FIELDS is a major
control f ie ld , a warning diagnostic will be printed when the
logic statement is compiled and the move will be allowed.
IF FIELDB is a secondary control fiel d (su bset ID) , the move
.ill be allowed without any warning diag nostic to the user.

¶ - Note: When alpha or decimal data is moved to an alpha or
decimal field, the ‘MOVE’ instruction uses a 360 ALC MOVE
instruction which moves left to right throug h each field one

• byte at a ti.e. Therefore, caution must be used whenever
overlapping portions of the same field are used as the
operands of a ‘MOVE ’ instruction (e.g. MOVE FIELDA 2/14 TO
FIELDA 3/5...).

153

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - -

~~~ 
_ _j  

-



_________________________

FILE MAINTENANCE (PM)

9.3.2.1.2 The ATTACH Statement

The ATTACH statement is used only to move data to a
variable set, It differs from the MOVE to variable set in
tha t instea d of re p lacing the existing conte nts, the data to
be moved is appended to the existing data.

Example —

•..4fl~~li !~~~2& TO ~~~~~~~~
In the precedin g exam ple, assuming tha t FIELDB is a

varia ble set, the contents of PIELDA would be appended to
the existing contents of FIELDS. FIELDA may reference
tran saction data, data rile data, indirect data, defined
constan ts, defined work areas or literal values. ?IELDB may
reference data file data which are variable sets.

/

9.3.2.2 The COMPUTE Statement

The COMP UTE statemen t is used to specify one or more
arithmetic opera tions an d to store the result in the
designated result field. The general format of the COMPUTE
statemen t i~ the result fie ld followe d by the = (equa l
character) followed by the arithmetic expression.

Example —

C O M P U T E  P IE L DA  = Ar ithmetic Expression

In the preced in g example , the f ina l  result of the
expression to the right of the = character will be placed in
the location designated as PI E LDA. ?IELDA may reference
data tile da ta, indirect da ta or defined work areas.

The arithmetic expression can consist of operands
separated by a r i thmet ic operators. The operands may
reference t ransact ion data , data file data , indirect data ,
defined work areas, definea constants or numeric literals.
The arithmetic operator may be a + - * / character
indicating addit ion, sub trac t ion, multiplication, or
division. The arithmetic operator must be preceded and
followed by a blank character.

- 

1514

—---—---- ——-—-- -— -- — -  - —— - - —-—---—---
~~~~~~~— ,~~— - - -  —


FILE MAINTENANCE (PM)

Parentheses may be used to alter the sequence of
arithmetic operations. Expressions within parentheses are
evaluated first. When parenthesized expressions are in a
nest of parentheses, evalu ation begin s at the innermo st
level and con tinues until the outermost parenthesis level is
reached.

The multiplication and division operators are at a
higher precedence level tha n the addition and subtraction
operators. In expression s containing consecutive equal
precedence o pera tors, evaluation will be performed from left

- to right.

Note: only integer arithmetic may be performed. Division
of a value by a larger value produces a zero result.
Ther efore , carefu l consideration mus t be given to the
sequence of operations. Full word binar y logic is used , so
the m a x i m u m value r esu l t ing from any operat ion is restricted
to t2 ,1~~7 ,483 , 647 .

Exam ple —

A+B—C*D/!

The prece d ing expression, because of the or der of process-
in g woul d have the same result as

- -

(A+B)—((C*D) /E)
-

while

A+8*C—D/E
-

would have the same result as

(A+ (B*C))—(D/E)

9.3.2.3 Subset Positioning Statements

To reference a data field belonging to a periodic set,
that set must he activated or be pointing to a subset
belonging to that set. NFL provides three statements to
perform the functions of activating and “stepping” through
a set ; each s ta tement has an exit. The exit designates the

155

_________________ - — —— ____________ ________________________ - t

• - - —h--— -

FILE MAINTE N AN CE (FM)

label of the statement to be given control if there are no
subsets or if a set becomes exhausted.

9.3.2.3. 1 The LOCATE Statement

The LOCATE statement will activate the first subset of
a set.

Example —

. . . J&QAI.~ i~I !L~L.P& ‘ ~~~ !2~~...
The preceding example WOuld cause the first subset of

the set in which PIELDA belongs to be activated. If there
are no exist ing subsets for that set, control would be given
to the statement following the label MOSS. FIELDA may
reference a data file field , indirect data, or the actual
set number may be designated. The exit label, MOSS, may be
the label of any statemen t other than a procedure label.

9.3.2.3.2 The STEP Statement

The STEP statement will cause the next subset of a set
to be activated.

Example —

~~~~~~ L~I ~11~ ~~~~~~~~
- In the preceding example , the ne xt subset of the  set in -

which FIE LDA is a field wi l l  be made acti ve. If there are
no other subsets to be made act ive the exit will be taken.
FIEL DA may be referenced as a data file field , indirect data
or as the actual set number .  The exi t label, ENDSE T , may be
the label of any statemen t other than a procedure label. - 

- 
-

9.3.2.3.3 The POSITIO N Statement

The POSITION statement can be used for all subset
positioning. The basic positioning actions which can be
done wit h the POSITION statement are:

156



FILE M A I N T E N A N CE (PM)

a. The POSITION sta tement can be used to position set
to the  first subset within the set.

Example - -

£Q~~I~O1 TO THE L~~ j  SUBSET FOP ~~~~~ ~ ~XL~

The preceding example would cause the  f i rs t  set of the
set in which PI E LDA belon gs to be activated. If there are
no subsets belonging to tha t  set , control will  be given to
the statement following the label MOSS wh ich must not be a
procedure label. FI E LD A may referen ce a data f i l e  field ,
indirect data or as the  actual set number .

b. The POSITION statement can be used to position a
set to the next subset in a set.

Example —

~~~~~~~~~~ 
TO THE ~~~~ SUBSET FOR ~~~~~ , ~~~~ TO

The preceding example would caus e the next subset for
the set in which F IELD A belongs to be made active. If there
is no addi t ional subset , control will be given to the
st at ement fol lowing the label ENDSET (must not be a
procedure label) . FI ELDA may reference a data file field ,
indirect data or be the act ual set number.

c. The POSITION statement can be used to position a
set a fter the last subset in a set . This is a
useful tool to build a new subset at the end of a
set.

Example -

~~~~~~~~~~~ AFTER ~1j~~ SUBSET FOR ~~~~~~
The preceding example would cause, in affect, the next

action for t h a t  set to be a fter the last subset of the set
(the only valid action against that  set would be build
subset or delete set) • Note that there is no exit in the

4 example. An exit can be specified; however, the exit will
never be execute d , i.e., it is ignored . FIELDA may

157

,

~

— - - — —



FILE MAINTENANCE (FM)

reference data file data, indirect data, or be the actual
set number .

d. The POSITION statement can be used ~to position a
set to the subset in whic h a designa ted field of
that set contains a designated value.

• Example -

.. . ~~~~~ TO fl~ J~Q~ I N ~1U TO ‘iQlit! ...

The preceding example w ould cause the following:

If the set in which FIE LDB belonged was inactive, the
first subset would be activated and the contents of
FIEL,DB compared wit h the contents of FIELDA . If an
equal condit ion exists t h a t  subset will be activated.
Otherwise , the set containing TIELDB will be stepped and
the compare made until an equal condition exists or the
set becomes exhausted . -

If the  set has no subsets or if it is exhausted without
an equa l condition, control will be given to the  next
s ta tement  fo l lowing the NO H IT label - (may not be the
label of a procedure)

If when the statement is exec uted , a subset of the set
to which FI!LDB belongs is active, the subset will be
stepped and the compa re s will  commenc e w i th  that  subset.

Note: If a set is stepped past the last subset (effect ively
the set becoies inactive), the next execution of the
POSITION statement will cause the search to begin with the
f irst  subset.

In the preceding example , FIELD A may reference
transaction data , data f i le  data , ind irect dat a , de fined
constants, defined work areas or literal values. FIELDB may
reference a data f i le  field or indirect data .

158

- -   - •_ ~~~~~~~~~~~~~ • ~~~~~~~~~ ~~~~~-t- ~~~ 
- 

~~~~~~~~~~~~~~~~~


FILE M A I N T E N A N C E (FM)

- - 9.3. 2. 14 A u x i l i a r y Out put Statements

There are four forms of auxi l ia ry output available in
NFL. The s tatements to format and output each form are
identical except for the st a tement identifier and the number
of devices which can be designated. The data to be output
is specified as a list. NFL automat ically formats the data
as a continuous string of data. If the value is binary, it
wi ll, be converted to an EBCD IC value. The converted length
of a binary data file value will be the length designated
when the file was structured. The converted length of a
binary work area will be 10 characters. Coordinates which
are in internal form will be-converted to external form. If
the coordina te was defined as a field , the resulting length
will be that designated whe n the file was structured. If
the coordinate was defined as a group, the resulting length
will be 15 characters per point. Blanks are not
automatically inserted between data values. If they are
desired, they must be designated by the user. If the system
provided constants , BLANK , B LANK S, ZERO, ZEROS or ZEROES are
designated fo r output , the length wi ll be one character.
The list of operands to be output may be transaction data ,
data file data , defined constants , defined work areas or
literal values. The total number of bytes specified by all
auxi l iary ou tpu t instruction opera nds cannot exceed 9914,
NIPS adds six bytes to the specified dat a and the DCB LRE CL
is 1000. Violation of this limit will result in a System
001 A BEND (I/O ERROR , RECORD TOO LONG). - -

9.3.2.14.1 The PRINT Statement

The PRINT statement is used to log data on a printer
during a FM update run. Two printers can be designated. If
a printer is not designated in the PRINT statement, the
default is printer 1. In the TP mode , printer 1 designates
the display terminal and pr inter 2 an OMQ di splay device .

Example —

...~~UINI F1ZL~.A, ’ ‘, VIELDB ,’ ‘,FIELDC ...
Q~ 2~ !~~~ 2A, FtELDB ,FIELDC .

i51_j
_ _ _

~~~~~~~~~~~~~~~ ~~~~~~~~~

-- 
~~~~~~~~~~~~~~~~~~ ~~~-


FILE MAINTENANCE (FM)

The f i rs t example illustrates the PRINT statement
defaulting to printer 1; the second illustrates the met hod
for specifying the printer.

Note: The printer specif ication (on N, where N is 1 or 2)
must immediately follow the statement identifier. If the
total length of data is greater than 132 haracters, lines
of 132 characters will be printed until the total length is
exhausted.

9.3.~ .l4.2 The PUNCH Statement -

The PUNCH statement is used to punch data onto cards.
Two punches can be specified If a punch is no t -specified,
default is to punch 1. -

Example -

~~~~~~~ ~i~ .Qi ~~Q!
The prece d ing example  woul d resul t in the contents of

FIELDA, FIEL CB and FIELDC being punched in cards. If the
total  leng th  is greater than  80 characters, 80—character
records will be punched un t i l  the total number  of characters
is exhausted.

9.3.2. ’~.3 The SPITE Statement

the WRITE sta temen t is used to ou tput da ta on a
sequential output file. As man y as five output dev ices can
be designated. If the device is not designated, it defaults
to aux i l i a ry  device 1; i.e., the device specified on the
F M .A U X 1  DD card.

Example —

2~ ~~. !L~k~A~ ~~~~~~~~
- Tb. preceding example would cause the contents of

FIELDA , FI EL DB and FIELDC to be formatted and a record equal
to the total lengt h output on auxi l ia ry  output device 3.

160 

_ _
~
___ __ _ i

_ — --
~~

_ 
-.~~ ~~~~--- - - -



FILE M A I N T E N A N C E  (FM)

9.3.2. 14. 14 The D I S P L A Y  Statement

The DISPLAY statement is provided to assist the terminal
operator in correcting erroneous transaction data when using
the online update capabi l i ty  of Source Data Au tomat ion
(SODA) .

Example —

....DISPLAY SFIELD, ‘TUBE MESSAGE ’.. •

When t h i s  instruction is executed during a SODA run , it
ca uses the dispJ.aye d tra nsaction field ($PIELD) to be
underscored with ~ a key to the message provided as the
literal ‘TUBE MESSAGE ’ .

When th i s  instruction is executed dur ing  a batch PM run ,
it causes the  message to  be pr in ted  on the Ord ina ry
Maintenance error log (see section 6.2.9) .

9.3.2.5 The BUILD Statement

The BUILD statement causes a new subset to be created.
The new subset is created at the point where that set is
active ; i.e., if the set has not been posi tioned af ter the
last subset processed , exist ing subsets are  “ pushed down ” in
the set and the  n e w l y  created subset inserted at the acti ve
point. A f t e r  the subse t has been crea ted, the new su bset is
made active. No da ta  is mo ved to the subset as a result  of
the BUILD s t a tement .

Example -

.. . ~M1~~ -~11~~!I ~~~~~~~
The preceding example causes a new subset to be built

for the set in which FIE LDA belon gs. LIE LDA may be data
file data , indirect data or the actua l set number .

HI

— 161

- - --- —
~ :-~~~~



F I L E  M A I N T E N A N C E  ( F M )

9.3.2.6 The DELETE State ment

-
~~ The DELETE s ta tement  is used either to delete the

recàvd , to delete a set , to delete t h e  curren t ly active
subset, or to clear a field.

a. The DELETE record is illustrated in the following
exam ple.

Example  —

~~~~~~~~ ~~~~~~~~~
The preceding example in fo rms FM tha t the cur ren t data

record is to be deleted. After execution of this
ins truc tion , no fur ther processing is performed against the
current data recor d and a return is made to ~M.

b. The DELET E set is illustrated in the following
exam ple.

Exam ple —
-

~~~~~~~~ ~~~~T FOR L~~1Ifl~ - -

The preceding example causes the entire set to which
FIELDA belongs to be deleted. FIELDA may be data file data,
indirect data or the actual set number.

C. The DELET E subse t is illustrated in the following
example.

Exam ple —

~~~~~~~~~~ THE ~~~~~~ FOR !I.~LQA... 
—

The preceding example would cause the currently active
subset for t he set in which PIELDA belongs to be deleted.
After the subset is deleted , the next subset (if any) is
ma de active . F I ELDA m ay be data file data , indirect data or
the actual set number .

d. The DELETE f ie ld is illustrated in the following
example.

162

-a ____ _~~_~i~~ - —-—-j - --~~~ — - - - — - - -

FILE M A I N T E N A N C E (FM)

Example —

~~~~~~~~ FIELQ L~&...

The preceding example would cause one of the following
results depending on PI ELDA : - 

-

o If numer ic, FIELD A would be set to zero.

o If alpha , FIELDA would be set to blanks.

o If a coordinate, PI ELDA would  be set to zero.

o If a variable field or set , the variable field
or set would be deleted.

9.3.2.7 The DEFIN E Statement
- I

The DEF INE s ta tement  is used to define constants and
work areas. A constant is simply a way to define a literal
value w hich can be referenced with a symbol. Data cannot be
moved to a constant .  Wor k areas are just what  the na me
implies , and are used for the temporary  storage of data.

There are two types of work areas. One is a system
provided logic s ta tement  work area consisting of a 999—byte
EBCDIC area -and a 20 fu ll wor d binary area. Data  can be
passed from one logic statement to another or retained
between data records by use of this type of work area. The
second type, or logic statement internal work area, is
unique to the logic statement in whic h it is defined. Any
data which is moved to it is lost between data records.

Each de f ine  assigns a symbol to the work area or
constant. The symbol is then used to re f erence the area or
constant. An error wil l  occur if the same sym bol is defined
more than once or if a defined symbol is the same as a data
fi le field name.

9.3.2.7. 1 Def in ing  a Constant

The followin g example s illustrate how a constant is
defined.

163

— -_~~~~~- — p ~~~
_ - ~~~~~~~~~~

A - — - ,j -! - -



FILE MAINTENAN CE (FM)

Example —

...Q~~~~~ ~~~~~~ AS ‘~~~ j  Q~ ~~cQ~~ LP~ ~~ ILQ ’...
~~~~~~~~ ~~ 

AS ±ili...
In the f irst example , HEADER is the symbol assigned to

the alpha literal value. When that symbol is referenced in
a NFL statement the literal value will be used. In the
second example , P1 is the symbol assigned to the numeric
value.

9.3.2.7.2 Def in ing an Inter—logic Statement Work Area

10 de f ine an area in the system provided EBCD IC work
area , one ident i f ies the symbolic nam e to be assigned to the
area and the relative pos it ions wi thin that area in the form
SN/N where ii is the relat ive position of the f irst character
and M is the relat ive posit ion of the last character.

Example —

. . . ~~~~~ S4~~ AS !i1L~~...
In the preceding example, SAVE is the symbolic name

assigned to characters 71 through 8~ of the EBCDIC wor k
area. These characters can then be referenced by the NFL
condition and action statements by the symbolic name , SAV E.

Defined areas in the EBCDIC work area ëan be overlapped.

Example —

~~~~~~~~ ~ j  AS fl~~...
LQ!Ifl AS ~~~~~~

~~~~~~~~ fl~fl AS !~L1...

~~ J AS ~~~~~~
In these examples , DATE overlaps DAY, MONTH , and YEAR.

1614

_ _ _ _ _ _ _
— -~~~~~ ~~~~~~~~ --

FILE MAINTENANCE (FM)

A binary work area is assigned a symbolic name by
identify ing the name followed by the designated word in the
form BN where N is a word number between 1 and 2~ inclusive.

Example — - -

~~~~~~~~~ QQQ~3j AS 
~~~~~

In the preced ing exam ple, COU NT is the sym bolic name to
be assigned to the four th b ina ry word in the sys tem— provided
binary work area.

9 .3 .2 .7 .3 Def in ing an In t ra—l ogic Statement Work Area

A logic s ta tement internal work area is defined by
spec i fy ing the symbolic name and designating the number of
characters to be assigned to tha t sym bolic name. The number
of characters is designated by the form *N where N is the
number of characters to be assigned.

Example -

~~~~~~~~ .li2L~ AS £121...

In the preceding example , a 10—character area will be
reserved and can be referenced using the symbolic name HOLD.

9.3.2.7.4 Defining and Initializing an Area

A work area can be def ined and in itialized with a value

~~c.k tiu ~~ ~~~~~~~ When using
this capabi l i ty ,  t he  def ine  sequence requirements (section
9.2.3.3) should be considered. To specif y that a defined
area is to be in i t ia l ized wi th  a va lue , the area def ini t ion
(sections 9.3.2 .7 .2  and 9 .3.2.7.3) is followed by the
keywor d V A L U E  fol lowed by the l i teral va lue  or one of the
system—provided constants (SYSDATE , ZER O, ZEROS, ZEROES,
BLAN K , or BLANK S).

Example - 
-

~~~~~~~ li.!~ AS III ~~ Q~ ~~~ IS AiNI~...

165

—~~
--- p-_- - - -———— —_-

- 4— - —~~-~~—

FILE M A I N T E N A N CE (FM)

In the preceding example , a 10—character area in the
system work area will be assigned the symbolic name SAVE.
That area will be initialized to blanks each time the logic
statement is executed.

Exam ple -

~~~~~~~ ~QiLN! AS ~~~~ , !ALUE IS 9...

In the preced ing example, the binary work area will be
assigned the symbolic name COUNT. Each time that the logic
statemen t is execu ted , it will be initialized to zero.

Exam ple —

~~~~~~ .L~9LD AS !.iQ~ !1L~~ 
IS ‘~~~~~~~~~~~~~~~~~~~~~~ ‘

In the preceding ~ xa .ple , the 10—character work area
will be assigned the symbol ic name HOLD. Each time that the
logic statement is executed , it will be ini t ial ized to the
value A BCDEFGHIJ.

9.3.2.8 The TURN Stateme nt

The T U R N s t a tement is used to set a 1—character area to
an ON or OFF status. The area may be defined by the user
with a DEFINE statement or he can let the system def ine it
for him. Ii the system defines the area, it will be a logic
statement in te rna l work area.

The TURN statement is primarily for use with the switch
test condition. The user designates the switch setting he
desires to be set with the TURN statement. Later, he can
test for t ha t condition w i t h t h e switch condition. The
switch is set to an EBCDIC zero for off or one for on.

Example -

•..TURN SWITCH A ON...

In the preceding example t he area (switch) ha ving the
symbolic name SWITCHA wil l be set to an E BCDIC one . If no
area has been def ined w ith the symbolic name SWI TCHA , an

166

~~~~~~~~~~~~~~~~~~~



FILE M A I N T E N A N C E  (FM)

area wi l l  au toma tical ly  be define d and given the symbolic
name SWITCHA.

SW ITCHA may only  re ference define d (by the user or
system) areas.

9.3.2.9 Execution Sequence Changing Statements

There a r e  two NFL statements (not counting exits from
other action statements) w h ich alter or chan ge the sequence
of executin g statements.

9.3.2.9.1 The GO Statement

Normally, NFL statements are executed sequentially in
the  order t h a t  t h e y  are  read in to the system. The GO
statement can be used to change that order. Only a )statemen t label can be designated as the point to continue
execution. That label may be a procedure label (unless the
GO is inside a procedure definition (see section 9.2.3.2))
or a s t a t em ent  label. If it is a stateme nt la bel, it must
be at the same level (within or without a procedure) as the
GO statement. If a GO to a procedure label is executed ,
return from the procedure will be to the next  sequentia l
statement following the GO. If it is not a procedure la bel ,
control is not a u t o m a t i c a l l y  returned .

Example  -

. . ~Q TO J~Q~ ~~~~~~~~~~~~~~~ 
.. . ~Q~ : ~~~~~~

The precedin g example illustrates a typical use of the
GO statement. Assuming that a condition precedes the GO
statement , if the condition is true, the order of statement
execution is changed to the statement following the label
LOG. It is not a procedure statement, thus control will not
be returned.

Exam ple —

...~ Q TO ~~~~~~~ flQy~... ~~~~~~~~~~~~ ~~~~~LU...

- - 

-

~~~~~~~~~~

-
_

~~~~~1:~

:

~~~~ 

-
-~~~~— w - _i -

F I L E M A I N T E N A N CE (F M)

The preceding example illustrates the use of the GO
statem en t to execute a proced u re . Whe n the procedure has
completed execut ion , exec ut ion would resume w i t h t he MOVE
statement following the GO statement.

9.3.2.9.2 The RETURN Statement

The RETURN statement when used w ithin a procedure
re turns control to the mainline statement or when used in
the mainline, terminates execution of the logic statement.
rf control by the procedure was gai ne d f rom a GO statement
(see section 9.2.3.2), exec ution of the RE T UR N sta temen t
would cause control to be returned to the next statement
following the GO. If control was gai ne d by the procedure by
the “drop through” method , execu t ion of the RE TURN statemen t
will cause control to be returned to the next statement
follow ing the proced ure ‘!Nt) statement.

The RETURN statement has no operands. Examples in
section 9.2.3.2 illustrate the use of the RETURN statement.

9.3.3 Con trol Poin t Iden tif iers

There a r e several s ta tements which cause no condit ion to
be sa t is f ied or ac t ion to be perfor med. Their p r imary
func t ion is to i d e n t i f y statement gr oup ings or control
points.

9.3.3.1 The NOTE Statement

The NOTE statement actually is not even a control point.
It is simpl y a means for the user to insert commentary text
between NFL statements.

The NOT ! statement has one operand. It is an implicit
• literal enclosed in quotes. The NOTE statement can appear

between any two statements but shou ld not appear between a
labe l and i ts associated s t a t emen t .

Example -

~~~~~~ Qj~~ ~~ TO ~Qjf~~ ~~~ ‘fiQ~~ fl Q~f~~ ~Q W Q~~

168



FILE MAINTENANCE (FM)

AR EA ’

In the precedin g example, the NOTE statement is used to
explain the characters being moved.

9.3. 3. 2 The PROCEDUR E St atemen t

The PROC EDURE s tatement  identifies the beginning of a
grou p - of statements wh ich will  be treated as a uni t .  The
PROCEDURE must be preceded ty a label. This label is called
the procedure name.

9.3.3.3 The END Statement

The END statement identifies two control points. It
identifies the end of a procedure and/or it identifies the
end of the logic statement. It has no operan4s.

Exam ple —

NFL Conditions and Actions

PROC1: PROCEDURE
Con ditions an d Act ions
END

PROC 2: PROCEDURE
Condition and Actions
END

END.

The preceding example illustrates a logic statement
containing two procedures. The f i rs t  END statement
escountered terminates  the group of statements whic h
compris, procedure PROd . The second END statement does the
same for th. procedure PROC2. The third END statement
t rsiaates th .  entire logic statement .

169

— ,~~~~~ - _ _
- -.-



FILE MAINTENANCE (FM)

9.3.3.4 The ELSE Statement

The E L S E  statement identifies the beginning of a group
of action statements which are to be executed only if a
preceding condition was false. This statemen t is not
required and it should only be used when there are both true
and false actions (true actions consist of those actions
immediately following the condition and continuing unti l  an
ELSE or CONTINUE statement is encountered) . False actions
commence with the first action following the ELSE statement
and continue until a CONTINUE statement is encountered.

Exam ple -

...~~~~ THE 
~~~~ 

IS ~~~~~~ THAN 1Q ~Qfl!~T~ ~.Q~!{I =¶ ~~~ ____ ~~~~
TO couNT ~~~~~~~~~~~

In the preceding example, if the condition is true, the
COMPUTE statement would be executed. If it is false, the
MO VE s tatement would be executed. Any number of actions
could appear where these two actions appear.

9.3.3.5 The CONTINUE Statement

The CONTINUE statement identifies the point, following
a condi tion , that execution of nonconditional statements is
resumed. There are no exceptions; each IF statement must
have associated wi th it a corresponding CONTINUE statement.
All N FL statemen ts w hich follow an I? statement are
considered to be par t of the I F-s t a t e m e n t . To t e rmina te an
IF block, a CONTINUE statement is required.

Example —

• . . .~~~ fl~~Q IS
~~ ~~~~

TO ~j~~NKS
~~~ fl~ L~ TO ~~~

- 
In the example above, if the condition is true ,

execution is resumed with t h e  next  statement fol lowing the
CONTINUE after the true actions are performed. If the
condition is false, execution is resumed with  the  next
statement following the CONTINUE statement.

170

—

~

- p

~

- — —



F I LE  M A I N T E N A N C E  ( FM )

Example —

.. . ~~~ ~~~~ 
IS 

~~~ ~~~~ 
TO ~J~ j f~~ ~~~~ ~~~~~~~~ TO ~~~~

~~~~ DOV E ~~ç TO 
~~~~ ____

In the preceding example , if the condition is true ,
processing is the same as in the previous example. Hc~wever ,
if the condition is false, the false actions (those - between
the ELSE statement and the CONTINUE s ta tement) are executed ;
execution then is resumed with the next statement following
the CONTINUE s ta tement .

9.3.3.6 The Language Identifier Statemen t

The language identifier statement consists of the
- I characters NFL. It must appear as the first statement

following the transaction descriptor deck (or the library
action control card if there is no TDD). It identifies the)
language of all statements between it and the END statement
which t e rmina tes the last N FL log ic statement.

Exam ple -

Library Action Control Card

Transaction De scriptor Dec k

NFL

Condit ion and Action Statements

END.

In the preceding example, the language is identified as
NFL. All statements bet ween it (NFL) and the logic

-

- statement END card must be written as NFL statements.

POOL s tatements may be compiled in the same execu tion as
NFL statements. Grouping of NFL statements is recommended.

- . 4 1

171

_________________ _________________ ____— —- -- - —~~~ ‘~~ - _______________

—
—

~~
——-‘——-— — — -- -

—

FILE M A I N T E N A NCE (FM)

9.4 NFL Logic Statemen t Examples

The fol lowing examples illustrate the setup of the FM
run deck for updating the Logic Statement Library, and the
use of some of the NFL language statements. All of the
examples pertain to the TEST36Ø’ file.

All of the sample log ic statements, with the exception
of the range statement, perform updates with transactions
from the report ‘RPT36~ ’. The different transaction formats
within this report are identified by the letters ‘A’ through
‘G’ in column 1 of the transaction.

Comments in the form of NOTE statements are shown in
eacn of the logic statements. The logic statements
illustrated in sections 9.4 .3 to 9~ 44~ 5 and sections 9.4 .7 to
9.4.8 are the NFL equivalents of the POOL statements in
sections 7.5.3 to 7.5.5 and sectiOn 7. 5.7 to 7 .5.8,
respectively. The logic statement in section 9.4 .6 is the
equivalent of the logic statements in sections 8. 1 and 8.2.

9.4.1 FNS Control Car d

The fol lowing FMS control card would be used to execute
the ‘LIB’ mo de of FM to perform updates for the Logic
Statement Library for the TEST36~ file:

$FMS/LIB,TEST36~

9.4.2 Li brary Action Card to Add a Report

The following card woul d be used to add the report
‘RP T 3ÔØ’ to the Logic Statemen t Library. The transaction ID
field , for tra nsactions within this re por t , is located in
column 1.

$AB ,RPT36 Ø, 1

This card could also have been punched as follows:

SAR ,PPT36~~,1—1

172

~

- ~~~~~~~~~~~~

FILE M A I N T E N A N C E (PM)

Howe ver , since the transaction ID field is only one byte
long, the ‘-1’ is not required.

9.4 .3 Logic Statement Setup

The followin g example illustrates the organization of
• the l ibrar y action card , the TDD car ds, the language

iden ti f ier card, and the NFL statement cards for an
Exception logic statement. The sample statement performs
upda tes wit h the ‘A’ transaction format of the report
‘RPT36 H ’ .

The f i rs t card for the statement is the library action
card. This card specifies that the statement is to be
permanent ly added to the l ibrary. It also specifies that
the statemen t will perform updates with the ‘A ’ transaction
of report ‘RPT36Ø’, and that the fixed data in that
t ransact ion format is 8~ bytes long. The transaction does
not cont ain any var iable data.

The TDD cards follow the library action card. The first
field in each of these cards is used to assign mnemonics to
the t ransact ion data fields.

The second and third fields specify -the high-order
position and the low-order position of the transaction
fields.

The f o u r t h field is used to specify that a t ransaction
field is a ma jo r or use r cont rol field. In the example ,
IRECID is a major transaction control field, and it
correspc~nds to the data record control group, ‘UIC’. SSORT
is a user transaction control field. It is not used in
matching a transaction record to a data record, but is
associated w i t h the record control field to control the file
processing sequence.

The f i f t h field in the TDD card indicates the type of
data that the transaction fields will contain. The ‘A’
t ransaction contains alphabetic (A) data and zoned decimal
(D) data only. Insertion of this field is optional, with
the defau l t option being ‘D ’ .

173

___________________ - - — —- ~~~~~~~~~~ •. ~—

FILE MAiNTENANCE (FM)

The card fol lowing the last TDD card is the language
identifier card , and contains the word ‘N F L ’ . The word
‘N FL’ may appear anywhere between column - 1 and column 71,
but must be in three consec utive card columns .

The logic s ta tement’ s funct ion is described in the NOT!
statements which fol low the language identifier card.

The logic statement first tests the new record switch by
using the condition/action statement sequence labeled TESTS
A new record will be generated by FM when no data record can
be found wi th a UIC group that matc hes the contents of the
$R ECID t ransaction field in an ‘A ’ transa ction . If this has
occurred, then the true actions of the condition/action
statement vii i be executed. The t rue action prints a line
which indica tes that a new record was generated and contr ol
is then passed to the statements following the keyword
CONTINUE. If a new record was not generated , control will
also be passed to the statements following the keyword
CONTINUE because false actions were not specified in this
particular condition/action statement sequence.

The MOVE statements move the contents of the transaction
fields to data f i le fields. Transaction data that is moved
to coordinate fields wi l l be con verted automatical ly to
internal coordinate fo rmat . The last MOVE s tatement will
store the date/ t ime of the update into the data f ield LAUD
by referencing the SYSDAT E system constant.

The last two condition/action statement sequences are
the NFL equivalent of the POOL conditiona l move
instructions. Transaction data $HOME will be moved to data
field HOME if it is not blank and $PERS viii be moved to
PEN S if it is not b lank.

The END statement is executed next. This statement
ca uses an exit from the log ic statement.

174

- *___ — - - — - _ _ _ _ _ _ _ _ _

FILE M A I N T E N A NCE (FM)

$ASP ,RPT36 ~~, A ,8~
SR ECID ,2 ,7 ,C1 ,&

$SORT,8,8,C2,A

$HOME,1
~
,1
~~

,, A -

$ATTACH ,12,12,,A

SF UTUR E ,13,13,, A

SPOINT ,15,25,,D

SA REA1 , 27 ,37 , ,A

$AREA2 ,38,48,, A

$AREA3 ,49,59,, A
I

$PERS,73,8~ , ,D

NFL -

NOTE ‘THIS LOGIC STATEMENT WILL UPCAT E THE LOCATION’

NOTE ‘ A N D D E P L O Y M E N T A R E A OF THE SP ECIFIED U N I T . ‘

NOTE ‘IF A NEW RECORD IS GENERATED , A MESSAGE WILL ‘

NOTE ‘BE PRINTED AND THE TRANSACTION FIELDS WILL BE’

NOTE ‘MOVED TO THE DATA FIELDS’

TEST: IF A N E W RECO RD

PRINT ‘NE W RECORD GENERATED. ID IS — ‘, $R ECID

CONTINUE

HOVE SATTACH TO ATACH MOVE SFUTURE TO FtJTU

HOVE $POINT TO POINT MOVE $AREA 1 TO DAPT1

HOVE $ A R E A 2 TO DAP T2 MOVE $A R EA 3 TO DAP T3

FILE MAINTENANCE (FM)

MOVE $AREA 4 TO DAPT4 MOVE SYSDATE TO LAUD

IF SHONE IS NOT EQUAL TO BLANKS

MOVE SHONE TO HOME CONTINUE

I? SPE R S IS NOT EQUAL TO BLAN KS

HOVE $PERS TO PERS CONTINUE

END

•

1

176

— p~~~~ - - —
J — -~ —•---——-- —- - - -- ----~~~ — - - ,.— —~ -- -

FILE M A I N T E N A N C E (F M)

9.4.4 Use of Data Conversion

The fol4owing logic statement is used with ‘B’
transactions.’ These tran saction s conta in only a ma jor
conttol f i e ld in positions 2 t h r o u g h 7.

This logic s ta tement ver i f ies tha t the C N T R Y and ACTIV
tields, in selected records , contain val id data .

It a new recor d is generated by a ‘B’ transaction , the
record wil l be deleted and an exi t from the logic statemen t
will be taken when the RETUPN statement is executed.

If a new record is not generated , control is passed to
the s t a t e m e n t s fo l lowing the keyword CONTINUF. Three work
areas are then defined to hcld the results of the conversion
rout ines or the asterisks error f lag. Data f ie ld CN T RY will
be moved to the work area CNT BU C if the conversion by table
CTRYS is successful. If the conversion is unsuccessful, an
exit to the statement labeled E P R1 will occur and aster isks
will be move d to the work area CNTBUC. The statement
labeled ACT performs a similar function with the data field
ACTIV. Before the logic statement exits, the results of the
two conversions will be printed . The system word BLANK in
the PA INT statement will insert a single blank character in
the printed line.

177

— - — -- -
~~~~~~~~~— , * - -~~~~~~~~~~ -



FILE M A I N T E N A N C E  (PM)

$AS P.RPT 36~ ,B ,8~

IR ECID,2,7,C1,A

NFL

NOTE ‘ THI S LOGIC ST ATEMENT WILL EXTRA CT THE COUNTRY ‘
NOT E ‘ CODE A N D  THE ACTIVI TY CODE FOR SPECIFIED UNITS ’

IF A NEW RECORD D!LET~ THE RECOR D RETURN CONT INUE

DE FINE CNT B U C AS *15 D E t ~IN! ACTBUC AS *15

DEFI NE A STR K AS •***************~

MOV E CNT R Y TO CNT BUC US ING TAB LE CTR Y S ,EX IT TO ERR 1

GO TO ACT

ERR1: MOVE ASTRK TO CNTBUC

ACT: MOVE AC TI V TO ACT BUC USING TABL E ACTVS , E XIT TO E RR2

GO TO PRT

ERR2: MOVE ASTRK TO ACTBUC

P R T :  P R I N T  U I C ,BLANK ,CWr BTJ C,BLA NK ,ACTBUC

END

178

-

~

- - - - - - - - - - -   ___



FILE M A I N T E N A N C E  (FM)

9.4.5 Periodic Set Processing

The fo l lowing  examples i l lustrate two methods for
updating periodic subsets. The first exa m ple uses an
Exception update statement to perform the updating of the
record. The library action card will add statement ‘D’ of
report type ‘RPT36~~’ permanen tly to the logic statemen t
library. The TDD cards assign mnemonics to the transaction
fields, wi th  t ransact ion field $REC ID con tain ing  the  major
control field of the record to be processed.

In the first example , the POSITION A FTER LAST statement
will ensure tha t  t he  data f i l e  is at the beginning of the
subsets. The statement labeled P05 will cause the subset of
periodic set one to be searched for the data field NECLQ
being equal to the contents of the transaction field SH!QPT.
If foun d , the fol lowin g I? statemen t will modi f y  data field
MEPSD an d exit f rom the logic state men t because RET URN
st atements  a r e  in both the true and false actions part  of
the condition/action statement sequence. If the subset is
not found , then  an exit wi l l  be take n to the stateme nt
la beled NE W , where a new su bset will be created, transaction
data will be set into the specified fields and a message
will  be pr in ted  to indica te this action .

In the secon d ex ample, the library action card is the
same. The TDD card for the transaction field ‘SMEQPT ’ is
different for the direct subset update. The control
parameter on the TDD card indica tes that the field is to be
used as a subset control field. It also carries a
corresponding data record subset control field parameter.
The data field name ‘MECLQ’ is defined as a subset control
group in the  PFT . If no subset e xist s with  a total record
control group (major control field, set number , and subset
control group)  equal  to the update record control group
(SN ECID , set numbe r , $HE QPT ) a new subset is generated by FM
and the tota l  record contro l grou p is set in the new subset
and the new record indicator is set on. If the subset
exists, the subset is made active.

$A SP,RPT36~, D, 80

• SRECID,2,7,C1,A

179

-- — ,~~~~- 
- —



FILE MAINTENANCE ( FM )

$NEQPT , 1~~,22 , ,A

SN OEQPT ,25,27 ,, D

SADDCODE,29,29,,A

NFL

NOTE ‘ T H I S  LOGI C S T A T E M E N T  WILL S E A R C H  FOR THE SUBSET’

NO TE ‘C O N T A I N I N G  THE E Q U I P M E N T  TYPE AND WILL ADD OR ‘

NOTE ‘SUBTRACT THE NUMBER OF ITEMS AS SPECIFIED BY THE’

NOTE ‘ADD CODE. IF THE SUBSET DOES NOT EXIST, A NEW ’

NOTE ‘SUBSET WILL BE BUILT AND THE FIEL DS UPDA~~!D’

POSITION AFTER LAST SUBSET IN MECL Q

NOTE ‘ABOVE STATEMENT FORCES SET INACTIVE’

P05: POSITION TO $MEQPT IN MECLQ, EXIT TO N E W

IF $ADDCODE EQUALS ‘A’

CO MPUTE MEPSD = M!PSD + SNOEQPT , RET UR N

ELSE

COMPUTE MEPSD = MEP SD — SNOEQPT,RE T U PN

CONTINUE

N E W :  B U I L D  SUBSET FOR NE CLQ M O V E  $NE QPT TO HECLQ

MOVE $N0!QPT TO NEPS D

P R I N T  ‘ N E W  SUBSET C R E A T E D ’  PRINT $ME QPT

END

180



FILE M A I N T E N A N C E  (FM)

$A SP,RPT369r, D.80

SR ECID ,2 ,7,C1,A

SM EQPT,1~~,22 ,, A ,S,MECLQ

$NOEQPT ,25, 27, ,D

$A DDCODE,29.29,, A

NFL

NO TE ‘ T illS STATEMENT WILL PERFORM THE SAME FUNCTION , ‘

N OTE ‘ U S I N G  THE D I R E C T  SUBSET U P D A T E  C A P A B I L I T Y . ’

NOTE ‘ I? THE SUBSET DOES NOT EXI ST A NE W SUBS ET WILL ‘
NOTE ‘ BE G ENERATED AND THE SUBSET CONTRO L FIELD ‘
N OTE ‘ W I L L  BE A U T O M A T I C A L L Y  SET BY F M .  ‘

IF A NE W RECORD MOVE $N O EQPT TO NEPSD

P R I N T  ‘N E W SUBS ET C R E A T E D ’  P R I N T  $MEQ P T

RETURN CONTINUE

IF $A D D C O D E  IS E Q U A L  TO ‘A ’

C O M P U T E  M E P S D  = SNOEQPT + NEP SD , RETURN

ELSE

COMPUTE NEP S D $NOE Q PT — NEPS D,RETURN CONTINUE

END

_ _ _ _ _ _ _ _  

- :~~~~~~~~~
‘ 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


F I L E M A I N T E N A N C E (F M)

9 .4 .6 Test for Num eric Data

The following logic statemen t illustrates a simple
method of determining if a transaction field contains zoned
decimal data. The PICTURE test is used for this function.
The P I C T U R E mask will contain the letter N which signifies
a numer ic character test. If all characters of the field
are to be tested, then the mask will con tain a num ber of Ns
equal to the length of the field. This statement consists
of condition/action statement sequences containing both true
an d false actions. If the transaction data contains all
numeric characters, then it is moved to the data field. If
not , an error message is printed.

I

0

182

—,~

—- - ——- ,~~ _- _ _--_- — —
—a-- - - - _________ —-

1 / A0 A063 ‘i32 COMMAND AND CONTROL TECIWICAL CENTER WASHINSTON D C F/s 9fl
I t*ICS INFORMATION PROCESSING SYSTEM 360 FORMATTED FILE SYSTEM (N——ETC (U)

UP 76 C K HILl.
UNCLASS IFIED CCTC—CS$ M—15—7S—VOl.—3 NI.

I

~II2.O
H ~~:

_______ 1.8

11111’ .25 IIIII~ IIIIt~

MICROCOPY RESOLUHON lIST CHART
NAT IO NAL ~URIAU ((I S(A N[JAKIY I%(A

FILE MAINTENANCE (FM)

$AS P ,RPT36~~,E,8Ø

$BECID,2,1,C1,A

SPERSOIIL, 1~~, 15,,D

SREADAVG ,2Ø,22,,D

$RITNM ,25,27,,D

NFL

NOTE ‘ THIS LOGIC STATEMENT WILL UPDATE NUMERIC FIELDS IN’

H NOTE ‘ THE FIXED SET. THE INPUT TRANS ACTION FIELDS ARE IN’

NOTE ‘ ZONED DECIMAL FORM . CHECKS WILL BE MADE TO DETERMINE’

NOTE • IF THE FIELDS CONTAIN NUMERIC CHARACTERS. IF AN ERROR’

NOTE ‘ IS DETECTED , AN ERROR MESSAGE AND THE FIELD IN’

NOTE • ERROR WILL BE PRINTED’

IF SPERSONL PICTURE IS •NNNNNN’ MOVE SPERSONL TO PERS ELSE

PRINT ‘THE PERSONL FIELD CONTAINS NON—NUM ERIC CHARACTERS’

SPE9SONL CONTINUE IF SR !ADAVG PICTUR E IS ‘WNN ’ MOVE

SREADAVG TO READAVG ELSE

PRINT ‘THE R EADAYG FIELD CONTAINS NON NUMERIC CHARACTERS ’

$READAVG CONTINUE I? SRITNN PICTUR E IS ‘NNN’ MOVE $RITNM

TO RITNM ELSE PRINT

‘THE RITNM FIELD CONTAINS NON—NUMER IC CHARACTERS’ $RITNM

CONTINUE END

183

________ - — i--— - —

FILE MAINTENANCE (FM)

9.Ae.7 Production of Summary Information

The folloving logic statement is a Range statement that
function s vithout transaction data. The library action code
for this statement contains only the functi on code ‘UST’,
and there are no TDD cards for this statement. This type of
st atement lust be compiled on—line each time it j s used.

This statement uses the job complete test to determine
if the processing is complete. If processin g is not
complete , three CONPUT R statemen ts update the desired
statistics. When processing is complete, t hese statistics
viii be printed.

)

181$

FILE M A I N T E N A N C E (FM)

U ST

NFL

NOTE • R A N GE STATEME NT TO CALCULATE THE TOTAL NUMBER OF’

NOTE ‘ UNIT S IN TM! DATA FILE, TOTAL PERSONN EL STRENGTH’

NOTE • AVERAGE OF TOTAL REAtINESS AVERAGE OF ALL UNITS’

NOTE • THIS INFORMATION WILL BE PRINTED ON TN!’

NOTE ‘ AUXILIARY OUTPUT FILE’

DEFINE COUNT AS B1,D!FINE TOTPER AS B2,DE?IN! AVG AS B3

IF THE JOB IS NOT COMPLETE COMPUTE COUNT = COUNT • 1

COMPUTE TOTPER z TOTP!R + P~ RS,COPIPUT! AVG T AVG +

R E A D A Y G R E T U R N CONTINUE

PRINT BLANKS PRINT BLANKS NOTE ‘SPACE TWO LINES’

PRINT ‘TOTAL NUMBER OF UNITS—’,COUNT PRINT BLANKS

PRINT ‘TOTAL PERSONNEL STRENGTH OF ALL UNITS—’ TOTPER

PRINT BLANK S DEFINE TO1’AVG AS $12

COMPUTE TOTAVG ~ AVG / COUNT

PRINT ‘AVERA GE OF TOTAL READINESS AVERAGE— ’ ,TOTAVG

PRINT BLAN K S END

2
185

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~ ~~~~~~~~~~~~ —- - - -



FILE M A I N T E N A N CE (TN)

9.4.8 variable Field and Variable Set Processing

The fol lowing log ic statements illustrate the use of the
MOVE statevent when the var iable field or variable set are
referenced.

The f i rs t  statement moves information from a variable
transaction field, STAR , to the variable field COMMENT.
Existing information in COMMENT will be destroyed. When the
data transfer takes place, the data is truncated so that any
trailing blanks in the variable transaction field are not
moved.

The second statement appends in formation to the variable
set REFER.  Since the infor mation to be transferred is in a
fi xed length transact ion field , no truncation takes place.

‘4

186

_ _ _ _ _  . ._~~:T:~~ ~~~~~~~~~~~~~~~~~~~ 

-
~1



FILE MAINTENANCE (TN)

$A SP ,RPT36O ,P,1O,11

SREC ID,2,7,C1 ,A

5k Va , 11

NFL

NOTE • THIS LOGIC STATEMENT REPLACES THE INFORMATION’

NOTE • IN THE VARIABLE FIELD COMMENT WITH THE ‘

NOTE ‘ INFORMATION IN THE V ARIABLE LENGTH TRANSACTION’

NOTE ‘ FIELD $VAR. ‘

MOVE SYAR TO COMMEN’

END .4

IA , RPT 369, G, 89

SR!CID ,2,7,C1 ,A

SVA R ,31,89,,A

NFL

NOTE • THiS LOGIC STATEMENT ~PPEWDS THE INFORMATIO N IN’

NOTE • THE TRANSACTION FIELD STAR TO THE INFORMATION’

NOTE ‘ IN TN! VARIABLE 5!? REFER.’

ATTA CH STAR TO RE FEn

END

187

_ _ _  _ _ _ _  _ _ _ _ _  

0

______________________ _____________________________— 

~~~~~~~~~~~~~~~ 
. —

- .

FILE MAINTENANCE (FM)

9.5 Summary of N!L Condition and Action Statement
Syntax

The following shows the syntax format for NFL
conditional and action s$atements.

The following legen ds are use d:

TF —Transaction Field Name

DF —Data File Name

IA —Indirect Address Name

W A —Wo rk Are a Name

LV —Literal Value

PT —Partial Field Value .4
SN — Set Number

PC —Figur ation Constant (SYSDATE ,
ZERO, ZEROS , ZEROES, BLANK ,
BLANKS)

ST —Subroutine or Table Nam e

SL —Symbolic Statement Name

PM —Picture Mask designated as
an alpha LV

BM —Bit Mark designated as an un-
signed numeric LV consisting
of ones and zeros

C] —Optional Words

—Choose One Word

Rot•: Partial field notation for figurative constants is valid
only for SYSDAT!.

ii
,

188

FILE MAINTENANCE (FM)

I? Statement (Non—between Relational)

EQ TF(PF] TF(PF]
NE D?(PF] D?(P ?]

: EQUAL (TO] WA(PF] WA(PF 1
: EQUALS FC(PF J FC(Pfl
: IA IA

LV L V

: MULTIPLE OPERANDS
PER$I’TED

:

.

TF(P F] :
D?(PF) :

I?’ W A[P P] (IS] [NOT) : ‘

IA :

.

:

.

S.

:
:
:
: LT TP(P?)
: GT D?[PE)
: LE Wh[PF]
: GE [THAN] ?C(P!)

LESS IA
GREAT ER LV

SINGLE OPER AN D ONLY

189

4.

—a .. - ~ ~~ ~~~~~~~~~~~

FILE MA I N T E N A N CE (PM)

IF Statement (Between Relation)

TP[PF] TF(PF]
TF(P!] BT DF[PP] DF[PP]
DP(PF) VA (PF 1 / W A (P F]

IF WA [PF] (I S] (NOT] BETWEEN FC(PF] FC[PF]
IA IA IA

LV LV

MULTIPLE OPERANDS
PERMITTED

BETWEEN OPERAND FORMAT:

NO PARTIAL FIELD — NEQPT/SERV or NEQPT / SER V

WITH PARTIAL YIELD — NEQP T 1/2 / SER 3/4 ‘4

MEQPT / SERV 3/4

NEQPT 1/2 / SEPT

IF Statement (Table Relation)

TF(PF] TAB
IF DF(PP] (IS] (NOT) (IN) ST

WA (PF] TABL E
IA

IF Statement (Picture Relation)

T?(PF] PlC
I T DF(P?] [IS] (NOT] PM

V&(P?] PICTURE

L

IA

190

_____________________ —.__________________ -

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



FILE M A I N T E N A N C E  (FM)

IF Statement (Bit Test)

TF( PF]
DF(PF] ON

IF WA (P?] BIT 3M (IS ] (NOT]
* IA OFF

IF Statement (Switch Test)

ON
IF WA (IS) (NOT]

OFF

I? Statement (Status Test) ‘4

IF [N O?] NEW RECOR D

COMPLETE
IF (THE ] JOB ( IS ] [ NOT ]

COMPLETED

OW
IF OVERFLOW (IS] [NOT)

OFF

191



FILE MAINTENANCE (FM)

ACTION State•ents

GO (TO ] SL

ON
TU R N WA

OFF

DF TF (P F]  + TF( PF ]
CO MPUTE W A  DF( P? ] — D?( PF ]

IA W A(PF]  * WA ( PF ]
FC(PFJ / FC(PF J
IA IA
L V LV

WRITE TF(PF] TF(PF] .4
PRINT (OH n] DF(PF) DF[PF]
PUNCH WA [PF] WA(PF]
DISPLAY FC(PF] FC(P?)

LV LV

n = unit number

for PRINT , P UNCH, DISPLAY n may be 1 or 2

for WRITE n may be I through 5

If (ON n] not specified, unit 1 is assumed.

DP
BUILD SUBSET IA

SN

T?( PF ]
DF(PF J DF

ATTACH WA( PF J (TO ]
?C( PV ]

192

-

~~~~~
-
~

- -
~~~~~~~~~~~~~~~ .~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ --



FILE M A I N T E N A N C E  ( TN )

LV

DELETE RECORD

FIELD . DY
DELETE SUBSET ‘

~~ IA
SET SN

T F ( P ? ]  SUB
DP ( PF ) !~F[ PF ] TAB

MOVE WA (PFJ (TO ] WA (PF) [USING] SUBROUTINE ST EXIT SL
FCC PF) IA TABLE
IA
LV )

DF
LOCATE SET IA !XI’~ SL

SN

DP
STEP SET IA EXIT SL

SN

193

..- -- -~.. -.~~-- - - .~~ —~~~



FILE MAINTENANCE (FM)

TF( PF )
DP( PP ] DF[ P F)

POSITION [To ] VA ( PF ) ( I N ] EXIT SL
IA I A
LV

DF
POSITION [TO ] FIRST (SUBS ET 1 ( I N ]  IA EXIT SL

SN

DY
POSITION (TO ] NEXT (SUBSET](IN] IA EXIT SL

SN

I
DY

POSITION [AFTER ] LAST (SUBS ET] (IN) IA EXIT ~L
SN

AS
DEFI NE WA LV

TO

N n/ s
As PC

DEFINE WA $n VALUE (IS)
TO LV

Bn

194

1. ~~~  ~~~~~~~~~~~~ . ~— - - - ..~ - - “ —--—‘-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —



FILE MAINTENANCE (FM)

Appendix

Utilizing a NIPS Pile as TM Transaction Input

This appendix specifies the preparation requirements for
using a NIPS 369 FF5 data base as a transaction input file.

The high—order location, length and mode of each file
field may be obtained from the File Format Record List
portion of the FYT listing. These high— order locations are
re lative 9 and must be adjusted to relative 1 (add 1 to each
H.O. location) for FM TDD cards. If in doubt, run an FR and
list the logic statements produced. The TDD cards of these
statements will also describe each field in the file being
revised.

If the file has periodic sets, a logic statemen t can be
wri t ten for  each set. The LS name would be formed from two
bytes. The first byte would be art ‘R ’ which is in position
6 (relative to 1) of every data record. The second would be
one hex byte  which specifies the  set I.D. The location of
this byte can be found under the label ‘H.O. SET ID’ in the
Control Record Contents portion of the FFT list. Again,
this is relative to 9; so add one for the TDD card. This
byte is a binary 0 for the fixed set, binary 1 for the first
periodic set, binary 2 for the second , etc.

The TR)~NS DD statement in the FM procedure should be
overridden to describe the NIPS file. The DCB for a NIPS
ISAM file must include the parameter DSORG=IS.

The transaction source field on the FM control card
should be specified as SAM for a sequential NIPS data base
or ISAM for an index sequential NIPS data base.

Using file TEST369 as an example, the record control is -

six bytes long which places the SET ID at location 13 of
each file record.

195

- . 

,- - - —~~~~~~~~~ - -~~~ .- ~~~~~~~~~~~~~~~~~~~~~~ ____________



FI LE M A I N T E N A N CE (FM)

a. The Add Report card would appear as follows:

$AR ,R!PT ,6,13

b The Add Statement card for the fixed set logic
statement would appear as follows:

SA SP,REPT ,R*,329

where * is a binary 9 (12—9—8- 1 punch) and 329 is
the set length.

I

196



I

DISTRIBUTION

4 CCTC CODE S COPIES

C 124 (Reference and Record) 3
C 12 L ~ (Record Copy) Stock 6
C240 20
C315 1
C3U1 (Maintenance Contractor) 10
C34 1 (Stock) 70

EXTERNAL

Director of Administrative Services, Of f i ce  of
the Joint Chiefs of Staff
Attn : Chief , Personnel Division , Room 1A72L~, The
Pentagon Washington , D.C. 20301 1

Director for Personnel , J-1 , Off ice of the Joint
Chiefs  of Staff , Attn : Chief , Data Service Office,
Room 1B738C, The Pentagon , Washington , D.C. )
20301 1

Director for Operations , J—3 , Off ice of the Joint
Chiefs of Staff , Attn: P C AD , Room 2B870 , The

• Pentagon , Washington , D.C. 20301 1

Director for Operations , J—3 , Office of the Joint
Chiefs of Staff , Attn : Deputy Director for
Operations (Re connaisance an~1 Electronic Warf are)

P Room 20921 , The Pentagon , Washington , D.C.
2030 1 1

Director for Logistics, J—4 , Off  ice of the
Joint Chiefs of Staff , Room 2E828 , The Pentagon ,
Washington , D.C.  20301 1

Chief , Studies Analysis and Gaining Agency , Attn :
Chief , Force Analysis Branch , Room 1D928A , The
Pentagon , Washing ton , D.C. 20301 I

- Automatic Data Procest ;ing , Liaison Office
National Ililitary Command Center, Room 2D901A,
The Pon tagon , Washington , D.C. 20301 1

- . 197

______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ —~~~~-~
- 

~~~~~~~~~~~~ 
r~~~

j

EXTERNAL COPIES

Automatic Data Processing Division
Supreme Headquarters Alli ’d Powers , Europe
Attn : SA C P Branch , APO New York O905~ 1

Direc tor , Defense Communications Agency , Of f i c e
Of MEECN System Engineering , Attn : Code 960T ,
Washinqton , D .C. 20301 1

Director , Defenze Communications Eng ineering
Center , Hybri.cl Simulation Facility, 1 860
Wiehi lwenuc,- Reston , VA 22070 1

Director , Defense Intelligencn Agency
Attn : DS - 5C2
Washington , D.C. 20301 5

Commander-in-Chief , Paci f ic, Attn: J6331 ,
FPO San Francisco , 96610 1

Commander-in--Chief , US Army Europe and
Seventh Army ATTN: OPS APO New York 09403--- 1

Commanding General , US Army Forces Command ,
Attn : Data Support Division, Building 206 ,
Fort McPherson, GA 30303 1

Commander , Fleet Intelligence Center , Europe,
Box 1 8, Naval Air Station , Jacksonville,
Florida 32212 1

Commanding Of f i ce r , Naval Air Engineering
Center, Groun d Support Equipment Depar tment,
SE 314 , Bu:Liding 76—1 , Philadelphia , PA 19112 1

Commanding Of f icer , Naval Security Group
Cenmand , 3801 Nebraska Avenue , N.W. Attn: GP22,

H Washin gton , D.C. 20390 1
I

Commanding Office r , Navy Ships Parts Control
Center , Attn : Code 712, Mechanicsburg , PA 17055 1

Headquarters , US Marine Corps , Attn : System
Design and Programming Section (MC-JSMD-7)
Washington , D.C. 20380 1

198

— -~ - - —— . - -._ _ _ _ _ _ _ _ _ _ _ _ _ _ _

— .~~~
.

~~~~ - -~~ ~~~~~~~~~~~~~~~~~~ .~~~~~~~~T



COPIES

Commanding Officer , US Army Forces Command
Intell igence Center , Attn : AFIC—PD , Fort
Bragg , NC 28307 1

Commander , US Army Foreign Science and
Tech:ioloqy Centex , At tn: AMXSJ—CS , 220
Seventh Street NE , Charlottsville , VA 222 12—— 1

Commanding Of f icer , US Army Security Agency ,
Command Data -Systems Activity (CDSA) Arling~on

• Hall Station , Arlington , VA 22212  1

Commanding Off icer , US Army Security Agency
Field Station - Augsburg , Attn : IAEADP ,
APO New York 09458 1

Commander , Fleet Intelligence Center , Atlantic,
Attn : DPS , Norfolk , VA 23511 1

Commander , Fleet Intelligence Center , Paci f ic ,
Box 500 , Pearl Har bor , MI 96860—-- 1

Air Force Operations Center , Attn : Systems
Division (XOOCSC) WaEthington , D.C.  20301-—---- 1

Commander , Armed Force~ Air Intelligence
Training Center , TTMNIM (3G0 FFS) , Lowry
AFB , Co 80230-- 1

Commander , Air For’~e Data Services Center ,
Attn : Director of System Support , Washington ,
D.C. 20330 1

Comm~ nder- in—Chie f , US Air Forces in Europe ,
Attn : ACDI APO New York 09332 -- 1

Commander , USA1’ Tactical Air Command , Langley
• AFB , VA 23665 1

Commander , Space and Missile Test Center , Attn :
• (ROCA) Building 7000 , Vandenberg , AFB , CA

93437 1

199

- 

.~~~~~~~~~~~~~~~~~~~ . ..  . . ~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —J



EXTERNAL COPIES

Naval Air Systems Command, Naval Air Station ,
Code 13999 , Jacksonville, Florida 32212 1

Commandin g General , US Army Computer Systems
Command , Attn : Support Operations Directorate,
Fort Delvoir , VA . • 1

Defense Documentation Center , Cameron Stai:ion ,
Alexandria , VA 22314 12

TOTAL 159

)

~~~ 
(

200

~~ I-
— — . --~~~~~~~~~~~~~~~~ - ~~ - ~~~~~~~~~~~~~~~~~~~~~ ~~~~

SECURITY CLASSI FICATION OF THIS PAGE (W7i.a 0.I. Eat.,. ~~

bED,
~
o.r I’~f1~~IIA1~~ UYATIAU DAr’ E READ INSTRUCTIONS

fl ,- j r,, ~~~ um&.n i~~’•w
- BEFORE COMI’l ETINQ FORM

L REPORT NuMBER 2 VT ACC~~SSION NO. k. RECIPIENrS C A T A L O G NUMBER

CSM UM 15-78 Volume III _____________________
4. TITLE (,d Swb•Slf .) S. TYPE OF REPORT S PERIOD COVERED

NMCS Information Processing System 360 Formatted
File System (NIPS 360 FFS) - Users Manual
Vol I I I — File Maintenance (FM) s. PERFORMINO ORG. REP ORT NUMBE R

~~~ AUTHOR(.) S. CONTRACT OR GRANT NuMBER(.)

DCA 100—77—C—0065

*~ PERFORMING ORGANIZATION NAME AND ADDRESS ~~~~~~ *0. PROGRAM EL EMENT. PROJECT , TASIC
A REA S WORK UNIT NUMBERSInternational Business Machines , Corp.

Rosslyn, Vi rginia

II. CONTROLLING OFFICE NAME AND ADDRESS *5. REPORT DAT E

National Military Comand System Support Center 1 September 1978
The Pentagon, Washington , D.C. 20301 ~~~. NUUSEROF PA GES

____________________________________________________ 209
W MONITORING AGENCY NAME S AODRES$(U dStt.r.v 1 1,0., C.nI.vtIl,e~ Oh io.) IS. SECURITY CLASS. (at lAS. ,.poiS)

Uncl assified

IS.. DCCL ASh Fl C ATION/ DOWNGRADING
SCHEDULE

IS. ~~$TRISUTION STATEMENT (.5 eM. R.po,l)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~This document has been approved for public release and sale; its distribution
Is unlimi ted.

17. DISTRISUYION SYATEM~~NT (.1 lb. aboerac I 0.t., .d in Black 30. iv diU.,.nl I,.., R.po,f)

IS. UPPLEMCNTARV NOTES

IL REV WORMS (C..ulS.w. i.e vo..,.. aid. it .,ocia.i. ~ 0.4 idonlltp b~. block n b.,)

A $TRAC T (C~~ffiuu. = ,..i .i~~ St o o.aii.p 0.4 14.eSie’ by bt..& n b..)

This volume defines the File Maintenance (FM) component of NIPS 360 FFS. It
describes the functioning of the component, Its capabilities, limi tations,
expected output results , and specifications for preparing run decks and
control cards which will serve as reference for the knowledghle user.

Thu document •up.riede. CSM UM 15-74 , Volume III.

00 ~~~~~~~
1473 IOIflONO SNOV SE 5$ o~~~.(y1 UNCLASSIFIED

S(Cu~ ITV C~ ANI~ ICAtION O~ IRIS PASt (~~i.e b~~lfotauO
201

—

~~~~~~~~~~~~~~~~~~~~~~~~ ?A . ~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ .


