AD=-AD63 432 COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON D C F/6 9/2
NMCS INFORMATION PROCESSING SYSTEM 360 FORMATTED FILE SYSTEM (N=<ETC(U)
SEP 78 C K HILL

UNCLASSIFIED CCTC=CSM=UM=-15=T8=VOL~3

i

Iié m l2.5
T
[9

TN

I
s s e

=
o

B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

A063432

AD

——

NOC FILE COPY

- R—— RET——p— oy g e e

11) T Sepvem— n‘le_/

@ -—'”/

e Tkt e 21&]
NMCS JNFORMATIGON RROCESSING SYSTEM

{]
36 TTED PILE SISTEN (NIPS 368 Fes) | "ZEPJ

- —_— _— \,

{ 9 g COMMAND AND CONTROL TBW—
L: Conputer,éysten ,l(anua_]_.)i!mnhet gsa-uﬁ-vs-w—l/ab-:':o]

s ottt il AN

Isers Manual,
T * -

Volume III ¢ File Maintenance (FM), /
| z. = P = ‘

SUBMITTED BY: APPROVED BY:

#RPDERIC K. GRAF, JR.'/

Captain U.S. Navy
*L CCTC Project Officer Deputy Director

NMCS ADP

Copies of this docuaent may he obtained from the Defense
Documantation Center, Cameron Station, Alexandria, Virginia
22314,

il o 2

This document has been approved for public release and sale;
its distribution is unlimited.

a4
et o B ARG

ACKNOWLEDGMENT

This manual vwvas

prepared
Chief for Prograammi

with

under the direction of the
eneral technical support
provided by the Interna usiness Machines Corporation
under centracts DCA 100-67-C- 100-69-C-0029, DCA
100-70-c-0031, DCA 100-70~C-0080, DCA 100-71-C-0047, and DCA
100-77-C-0065.

1

BMCERSIOR for
ms White Jection

00C Butt Sactlon QO
WRARROURCED O
JRSTIFICATION o
| AT S S LS

WSBBTGRf2L R (OES |
[Dist, AVAW. vidh’ o SPECIAL

A

CONTENTS

J Section Page

ACK“O‘"L’ADGHB"T..........‘.........'. ii

ABSTRACT............................ 'iii

4 1 I“TRODUCTION.Q.......ooo.oo.oooooo.. 1
; 2 FH CAPABILITIES.................’... 2
‘ 2.1 Transaction SOUrCeScecceccccscccoccsce 3
2.2 Transaction FormatS.ececcccccccccccee 3
2.3 Logical Opdating and Trans-
action gditinq‘.“............‘..... 3
2. 4 Data Conversion and Validation =~
User SubroutineS.ccecseccceccscccccccs 4
2.5 Procassing of Periodic SetS.ccecccece 4
2.6 variable Field and Variable
Set uaint‘uancel'.............‘.'... u)
| 2.7 Production of Auxiliary Outputse..... 4
- 2.8 Production of Run History
% Infot.ation............'............ 5
; 2.9 Logic Statement Storage.oooooooooooc 5
:N 2.10 yile t’pdate Heth“s. 90 000 000 000 00 ° 00 5
2.11 Modes Of OperationSccccccccccecccces 6
2.12 Transaction Sortingeeccscecocceccccee 7
2.13 Ordinaty MaintenanCe.cecesccocsccssce 7 <
2.14 CheCkPOint/Resthtoooot-ccoooﬁoo'ooo 8 ;
215 Segmenteqd FileSeeesesossosscsossscesnse 9 {
2.16 Secondaty Inde‘ing.o-ooooocooooooooo 9 i
2.17 Auxiliary File ReferencCecccecesesccse 10 i
2.18 Logic Statement SiZe.ccecccccsccccce 10 i
3 Pu DEScRIPTION....‘..........'...... 1‘ ‘
3.1 Control ElementSeccccccscesccccscccee 11
3.2 PH ’unctioninq‘..‘.................. 15
“ INPUTS.0.00..Qo..t..c.".o...o..l... 20
“.1 Catd Input......'.................'. 20
4.1.1 FMS Control Cardeccececcececcseccccce 20
4.,1.1.1 LIMIT Control Cardececccceccccscsncacee 20
4.1.2 Segment Control CardScccscecsccccces 20
4o1.3 Logic Statement lLibrary
Update DeCKiecosveoossssoscsccsocccse 21
4.1.3.1 Lihtﬂry Action CardSeesceccccccscces 21
4.1.3.2 Logic Statement Source DecCKkSecescscee 22

iii

S

%

4

Section

4.1.3.3

e o o
&EWN

(SN RS S T) &E&EE
e o o
* o o
WwN =

.
EWwNhNONDN M-

L]
-l

.
e o o o o
~NovWnm EWN =

® [] [] L]
N e R e
L] [] B

& W N - WO NEWN

(- 0 - O N N N - - - - -) (< -] AN oo
L]

w WWWWhONDNNNNDNNDKN N -

o
B

=~

Logic Statement Library Update

Terminator Cardeececcececcecsccccccnce
Transactions...--.....-.............
Subroutine Libraryeeececcceccccecccces
Data Pile..........Q.l.!...‘....‘...

OUTP(’"S‘.............0.....0..0.0...
Output Data ?ileooocoo--oo.ccocooooo
Auxiliary Outputiceccscscescscesccccss
Tape and Disk Auxiliary Outputececece
Punched Card Auxiliary Output..cccee.
Printed l“‘iliar’ Output.......-....
Rnn Histot’........l................
Pile Analysis and Run Optimization

statistics.oooo-oocoocoooooc.ooo-oo

CONTROL CARD !ORHATS.......‘........
Pree~-Porsat SPOC1ficati00300.ooooooo
FMS Control Card (FPree=Pormat)e.ceeee
LIMIT Control Card (Pree Format) c...
seq.ent COnttol Catds....... S0 99900 o
Library Action Card (Free-Format)...
Transaction Descriptor (TD) Cards
(PreQ’Potlat)........-..............
Language Identifier Cardeiecccccscccece
Logic Statement END Cardecceccccceccee
Logic Statement Library Update
T.r.inator card....."..............
Report Ydentifier Cardececccccecccsee
Ordinary Maintenance (OM)
Transaction Descriptor (TD) Cards...
Key'ord: PIELD......................
Ke"otd: COHTROL....................
Key'ord: PICTuRB‘...................
Key'otd: 'ALUE......‘...............
KQ"O:d: BANGEeecseeo osccccccccccscsce
KQY'otd: VERIPY.eceoeovccccoccscccccne
KQ"O:d: CONVERT ceeveccvecccccsccccce
Keyvord: GENERATEecccscccccccsccccncs
Keyword: ERRORcccccccccccocsccsscnce
Pixed-Pormat SpecificationScccececss
FMS Control Cardeccecececscccccccncsce
Libt‘t’ Action CardScecccsceccecccccsce
Transaction Descriptor (TD)

CardBecsvscosocssescssssssnssososene

Language Identifier Cardecceccscscsce

POOL Ll'GUAG!oooooooo.ooobooooooo-no

iv

L]

Page

|
!

Section Page

j 7.1 Card FPOormatececcecececsocoscscscsccnnsane 59
| 7.1.1 SY.bols..............“..".....".. 59
Tel.2 OPeLAtOr Secescscssosccscscoscsscncssascs 59
! 7.1.3 operands.....‘............."'...... 59
l 7.1.“ co.-ents............‘....Q.......... 59
‘ 7.2 Opetand COding-o..ooooo..-oooocooooo 60
i 7.3 POOL INStruCtioNS.ceccecccecscscccocesse 62
: 7.3.1 Alphabetical ListianOQOQ.QQOOQ..... 62
! 7e3.2 valid Opetands Chartecsceccsoceccccce 68
! 7.3.3 Instruction GrO“pS...-oooooocco-ooo. 73
i 7.4 POOL INStrUCtiONSsccccccnccscccccsccs 80
‘ 7.4.1 Environment Handling Instructions... 80
7.4.2 Data Handling InstructionS.icceccesccee 83
To4.3 control InsStructionS.cccecccccceccces 92
7.“.“ Displa’ Instt“ctions....0....'.00.0. 100
‘ 7.4.5 ordinary Maintenance Validity Test
1 InstruCtion’.....'.........‘...'.... 102
T.4.6 Transaction EBrror Log Instruction
(SODA and OH’........................ 103
75 Logic Statement E!&lpl&s..-.....--... 104)
7‘5.1 pns control card...‘.........‘....... 10“
i Y'éiz 7.5.’.1 LIHIT COntrol CQrd.. 90 9900000 2000000 00 10“
| & 7¢5.2 Library Action Card to Add a Report.. 105
F 7¢5.3 Logic Statement SetuUpecceccsccceccces 105
l £ 7.5.4 Use of Data Conversion Subroutines... 109
i T7¢5¢5 Periodic Set Proc0881ngcooooo-ooooooo 112
| 7.5.6 Test for Numeric Datacssescsccsscsses 116
; 7.5.7 Production of Summary Information.... 119
i 7.5.8 Variable Pield and Set Processing.... 122
7.6 Summary of POOL INnStructionScccecccecee 126
\ 8 ORDINARY MAINTENANCE (OM) EXAMPLES... 129
| 8.1 Use of Ordinary Maintenance TD Cards. 129 i
| & 8.2 Use of Ordinary Maintenance TD Cards :
‘i and POOL InstructionS.cecccecceccscee 129 |
9 NEW PILE MAINTENANCE LANGUAGE (NFL). 131
9.1 NPL Statement COlposition..oo....... 131
9.1.1 Statement IdentifierS.ccceccccccccee 132
9.1.2 Keyvords............................ 133
9.1.3 “ois‘ 'ords.."..'.................. 135
9.1.4 Statement LabelSciccccsccocscccccacsce 135
9.1.5 Operands............................ 136
9.1.5.1 Control Location op.rands........... 136
9.1.5.2 Subroutine/Table Name OperandS.¢e.es. 136
9.1.5.3 Literal value Opet&nGS.............. 137
9¢1.5.4 Data Location Operands.-........-... 137
9.1.5.4.1 Pile Data OperandSceccccccecccccesces 138
v

Section Page

e1.5.4.2 Transaction Data Operandsececceccccces 138
e1.5.4.3 Indirect Data OperandScesccsseoccsces 139
«5.4.4 pefined Constant and Area Operands. 139

Special Requirements and
ConsiderationSeescccecccvecccscccccss 139

e 2o Data Mode Co.patibility.cooo‘ooooooo 140
0242 Data Length CompatibilityYecocescsces 141
e2.3 Special Statement Sequence
RequirementS..ccsceccccssescscsscssces 141
e2.3.1 Condition/Action Statement Sequence. 142
. 0302 Procedure Definitions.-ooooo.uooo.-- 143
e2.3.3 Define Sequence RequirementS.ceeccses 144 i
) Subset Positioninq.................. 144

NPL Statement DescriptionNececcececcecese 145
anditional StatementSecceccccccccccee 145 1
Relational ConditioNececcecesccccocsce 146 ’
Table ValidatioNecececcoecoocceccccccae 148
Picture MasKececoeccsccccesccscscccsns 148
SWitCh TeSt.cccsceccccccccccccscnces 149
Bit Mask TeStececccececccoscccscccece 150
New ReCOrd TeStececeseccscscsccscccce 151 }

Job Co.plete TeSteeoscescsccccecccacce 151
OVerflow TeSteescecsacscecssccccnnsce 152
Action StatementSceccceccccsccccccccase 152
Data MovemeNt.iccccccccscscscscssccccce 152

e o 0 0 & o o o
ONdAVEWN

.1 The HOVE state.ent...l...‘.......... 152
«2 The ATTACH Statement.ccccevccccocece 154
The COMPUTE Statement.cscecccecccccses 154
Subset POSitioning StatementsScecccee 155
1 The LOCATE Statementececcoessocccosnscs 156 !
2 The STEP Statement.sccsccsscscsceses 156
3 The POSITION StatemeNteececccsccccccce 156
AuXiliary Output StatementScecccccee 159
o1 The PRINT Statementeecccoccscscscccee 159
e2 The PUNCH StatemenNtececccecccccccccoe 160
.3 The HRITE State.ent..............". 160
.“ The DISPLA! state-ent'..........'.’. 160
The BNMILD Statementeccccccccccccccce 161
The DELETE Statemént.cccecccccccocece 162
The DEFINE State@ment.ccceccsccccccsose 163
1 Defining a Constant.cccceccecsccocees 163
2 Defining an Interlogic Statement
"ork Ar‘a........................... 16“
«3 Defining an Intralogic Statement
4

e o 0 0 0 0 o o o
L]
® 3 ~ NNNOOME ST EEFFWWWWNCG o

L] e O
NNNNNONNNODNNNNNOONNNNNNNNNNNCS DD

e & & & & o © o o o o
L]

L]
e & o o & 0 & o o

- o VOOV OVWOVOVOVOVWOOVOVOVOVOVOVOVOOVOVOVOVOVOVOVOOVOOVOYDOVOYOYW (Y-~ O WO WOW
.
wWw w WhwwuwuwwwuwuwwwwwwwLwwwwwwwwwwwwwNoo e NN N LS

e3¢ 2

WOTK AL@Accecccsccvcsecsecscsscocssaccne 165 !
¢3.2.7.4 Defining and Initializing an Area... 165
0342, The TURN Statement.ccccscecceccccconcs 166

vi ;

Bt

Section Page |
9.3.2.9 Execution Sequence Changing
state.euts..‘....l.0...'............ 167
9‘3.2.9.1 The GO state.ent..'.....'...O..O.... 167
9.3.2.9.2 The RETURN statennt................ '68
9.3.3 Control Point Identifierscecceccececece. 168
9.3.3.1 The NOTB state.ent.................. 168 J
9.3.3.2 The PROCEDURE Statementiccccsecccecces 169
9.3.3.3 The E"D state.ent'....‘..O.‘.O‘...l. 169
9.3.3.4 The BELSE StatemenNteccccsccccccscccese 170
9.3.305 The CONTINUB State.ent.......‘...... 170
9.3.3.6 The Language Identifier Statement... 171
9. 4 NPL Logic Statement ExampleS.:ceccecee 172 1
9.“.1 Pﬂs COBtrOl Card.................... 1.’2
9.4,.2 Library Action Card to Add a Report. 172
9.4.3 Logic Statement Setup......-..-..... 173
9.4.4 Use of Data CONVEersSiON.sccecccscsvee 177 {
9.4.5 Periodic Set ProcessinNgecccccccccecees 179
9.,4.6 Test for Numeric Data@cecccsccccccsscsce 182 J
9.4.7 Production of Summary Information... 184)
9.4.8 Variable Field and Variable Set J
1 Processing...‘...................... 186
= 9.5 Suamary of NFL Condition and Action
& Statement Syntax...- se0evcovecccscoe 188
i APPENDIX Utilizing a NIPS File as FM Transaction
Inpnt...I......Q..........l.......l. 195 .J

DISTRIBUTIO“...'...l........l....... 197 .

DD ror- 1“73.....‘.l...O.Q....‘..... 201

vii

ABSTRACT

This volume defines the FPile Maintenance (FM) component
of NIPS 360 FPS, It describes the functioning of the
component, its capabilities, 1limitations, expected output
results, and specifications for preparing run decks and
control cards vwvhich will serve as reference for the
knowledgeable user.F;

This document sggg;sgﬂgs_csn_naw45~1fz:¥oiult:11I.

O o I

CSM UM 15-78, Volume 1III is part of the following
additional NIPS 360 PPS documentation:

CSM UM 15-78 Vol I Introduction to FTile Concepts

TR 54-78
CSM GD 15-78

Installation of NIPS 360 FPS
General Description

Vol II - Pile Structuring (FS)

Vol IV - Retrieval and Sort Processor (RASP)

Vol V = Output Processor (OP)

Vol VI - Terminal Processing (TP))
Vol VII - Utility Support (UT)

Vol VIII - Job Preparation Manual

Vol IX - Brror Codes

viii

g»

FILE MAINTENANCE (PHM)

Section 1

INTRODUCTION

The Pile Maintenance (PM) volume of the Users Manual is
divided into nine sectionms.

Section 1 presents a brief introduction to the manual,

Section 2 describes the capabilities of the FM component
in generating and updating data files.

Section 3 gives detailed information on PM transactions
under the control of PMS ccntrol card and logic statements.

Section 4 describes input to the FM component.
Section 5 discusses the output from the PM component.

In summary, sections 2 through 5 give the user an
insight to the general functioning of the component, its
capabilities, and limitations. A thorough understanding of

these sections is necessary before attempting to use the
systea.

The remaining four sections describe the specifications
for preparing run decks and control cards for the PN

component and serve as a reference for the knowledgable
user.

FILE MAINTENANCE (FM)

Section 2

FM CAPABILITIES

The FPM component provides the NIPS 360 FFS user with a
tool for generating and maintaining data files. For maximum
efficiency, updating is performed on indexed sequential
access method (ISAM) or virtual storage access method (VSAM)
files residing on Direct Access Storage devices (DASD).
This peramits random access of only those records that are to
be processed on any given run; only records that require
processing are retrieved from the file. Record subsets,
wvhose data content is modified, are written back into the
file. The file is wupdated: in place; only those records
requiring modification are rewritten.

The component is capable of generating and adding new
records and subsets to the file or deleting records and
subsets, Another feature of the system is its ability to
increase or decrease the size of existing records and
subsets through the addition or deletion of variable data.

All of these functions can be accomplished in one update
cycle.

The component also has the capability to generate and
maintain segments of a sequentially organized file. This
capability will allov large chronological files to be
segmented as specified by the user to expedite processing
vhen the primary updating to be performed is adding new
records with a higher key than those already present in the
data file. Each segment, when generated, will be a separate

data file that can be processad singly or concatenated with
other segments as one data file,

During FM, the user has the option of specifying the
file block size when generating either an indexed sequential
or physical sequential file, or when updating a physical
sequential file. If a block size is not specified, the
output file block size will be the same as the input FPPT or

)

U ———

FILE MAINTENANCE (FPM)

the input file. For details of file block size
specification, see Volume VIII, Job Preparation Manual.
Block size modification is not possible with VSAM DATA files
during FHM

The PM component features are discussed in the following
paragraphs. Another option available to the user is to
limit the records read from the data file to be processed.
This can be done through the use of a LIMIT statement.

2.1 Transaction Sources

The FM component will accept fixed or variable 1length,
blocked or unblocked, or undefined transaction records fronm
tape, disk, or card files. The transaction files may be
organized sequentially, or in indexed sequential form on
disk. The latter capability permits the FPFS data file to be
used as transaction input to update another PPS data file.
Transaction files may also be VSAM FPS data files.

2,2 Transaction Formats

on any given FM run, file updating ‘can be performed with
a variety of transaction record formats, from any number of
different reporting sources. This capability allows new
information management systems to be developed without
seriously impacting existing information management systems
and existing reporting systess,

2.3 Logical Updating and Transaction Editing

The FM component automatically performs all of the I/0
functions, record positioning, and new record generation
required for a file update run; hovever, the user supplies
the actual record update logic to be used by writing file
maintenance logic statements. The user writes one 1logic
statement for each different transaction record format that
is used to update his file, The logic statements are
written in the File Maintenance languages (POOL or NFL).
These languages provide a full cosplement of comparative and
arithmetic functions, so that the user can perform all of
his transaction data editing validation in conjunction with
his file update. In most applications, no preprocessing or
preediting of transaction data should be required.

sicsine: Gad ¥ " PRSI aT.

e e BRI e
-

FILE MAINTENANCE (PM)

2.4 " Data Conversion and Validation - User Subroutines

In addition to the comparative and arithmetic coamands,
the FM languages also provide the.user with cosmands that
allov him to perform on-line validation and conversion of
transaction data vith subroutines that may be written ia any
of the 5/360 languages (COBOL, FORTRAN, PL1) or in S/360
Assembler 1language. These subroutines can be prestored on
a load library, using the NIPS 360 PPS wutility, UTSUBLDR,
and can be accessed by the FM component as they are
required. A NIPS 360 PPS utility, TABGEN, has been provided
to generate tables that perform data conversion and
validation using the table search technique (see section 2,
Volume VII, Utility Support.)

2.5 Processing of Periodic Sets

The FM languages contain a series of commands that allow
the user to scan the periodic sets, so that he may
selectively update subsets based on their existing data
contents., These commands also allov the user to control the
physical sequence of subsets in a set vhen new subsets are
being added.

2.6 Variable Pield and Variable Set Maintenance

The FM languages provide a set of commands for adding,
deleting, or replacing information in the variable fields
and the variable sets.

2.7 Production of Auxiliary Outputs

The FM languages provide a set of comamands for producing
auxiliary outputs on printer, punch, direct access device or
tape in conjunction with a file update. These outputs can
be used to ' provide an audit trail of the updates or to
produce transaction files that might be used to update other
files in a file system. Two separate printed reports, two
separate punched outputs, and up to five auxiliary files may
be produced. The user has access to a 999-byte work area
for formatting auxiliary output records. FPach record is
limited to a wmaximum of 994 bytes because NIPS adds six
overhead bytes to the data and the DCB LRECL 4is 1000.
Violation of this limit will cause a System 001 ABEND (I/0
ERROR, RECORD TOO LONG). Information can be selected for

R

FPILE MAINTENANCE (FM)

output from either the transaction records or the data
records. The PM languages also provide the capability for
maintaining summary counts and totals which can be output to
tape, print, or punch. The user has access to 20 full~vord
binary work areas for developing summary information in
conjunction with a file update run.

2.8 Production of Run History Information

The FM component automatically produces a printed run
history to indicate error conditions that were encountered
during file updating. The run history is printed separately
from the printed auxiliary output.

2.9 Logic Statement Storage

The FM component maintains a library of the user-written
logic statements (in coapiled foram) to update a file. The
Logic Statement Library is maintained with the data file and
consists of a series of records with special keys. This
capability allows the user to avoid recompilation of the
statements each time his file is to be updated, thereby
reducing execution time, The component automatically
retrieves the logic statements that are required for the
transaction record formats encountered during an wupdate
cycle. The user can add/delete statements on the Logic
Statement Library by using a set of control cards, called
library action cards (see section 4.,1.2). :

2.19 File Update Methods

The PM user can cause the FM component to employ any
combination of the following file update methods in a given
file maintenance run.

a. Bange. Updating - Using this method, every record of
the data file is made available for logical
updating. This method may be used to make
corrections to some data field in the file or to
produce susmary information. 1If at all possible,
this method should not be used as a part of norsal
production runs since it greatly reduces the
efficiency of the component. However, when it |is
deemed necessary, the RANGE statement should be
compiled and stored on the 1library in accordance

M

FILE MAINTENANCE (FH)

with the paragraph "Logic Statements®” under section
3.1, Control Elements,

b, Exception _Updating - Using this method, each
transaction record is matched against a particular

data record, which is made available for logical
updating, When no match is found, a new data
record is generated, and a 'new record' indicator
is set which the user can test by using one of the
PM language commands in his 1logic statement.
Exception updating is the normal update method.

Ce Exception-Range Updating - Using this method, each
record that has been subjected *to exception

updating is made available for further processing
by one or more exception-range logic statements.
This method can be used for «collecting summary
intformation or for producing audit information on
all records affected by an update cycle.

d. Direct_Subset _Updating - Using this method, a
transaction record is matched against a particular
data record subset and the record's fixed set, and
the par:cicular subset is made available for
processing. When no subset match is found, a new
subset 1is generated, unless the record does not
exist. Tn the latter case, the transaction is
logged as an error on the run history.

2.11 Modes of Operations

Four FM component modes of operation may be specified by
the user. (Any given FM run may be executed in only one
mode of operation.)

Coapile Logic Statement Mode - This mode allows the user
to get coempilations of his logic statement for the purpose
of debugging. The component produces a symbolic 1listing
with all errors flagged, along with a summary of the errors
and their causes. Processing is completed wvhen the last
statement is compiled. No logic statements can be added to
the File Library portion of the data file in this mode, but
any other actions can be performed on the Logic Statement
Library. If the data file is sequentially organized, no

|
|

B SRR

RS ——

il

FILE MAINTENANCE (FHN)

library actions wvwill be performed on the Logic Statement
Library.

Logic Statement Library Update Mode - When this mode of
operation is specified, FM updates the Logic Statement
Library as specified by the 1library action cards. Logic
statements may also be compiled in this mode and placed on
the Logic Statement Library. If the data file is
sequentially organized, logic statements cannot be added to
the logic statement portion of the "data file during this
mode. i

Data Pile Generation Mode - The user specifies this mode
of operation wvhen he wishes to generate a new file. The
component will also compile 1logic statements and perfornm
Logic Statement Library maintenance if specified. At this
time, the user may specify the file block size using the
BSZNEWF symbolic parameter of the XPM procedure. If a block
size is not specified, it will be set at the size of the
iaput PPT.

Data Pile Update Mode - This mode of operation is
specified when the user wishes to update a data file. Logic
statement compilation and 1library maintenance may also be
performed by the component when executed .in ¢this mode of
operation. If the file is sequentially organized, the user
may specify a nev file block size using the BSZNEWF symbolic
parameter in the XFPM procedure. If a newvw block size is not
specified, it will be set at the size of the input file.

2,12 Transaction Sorting

The PM component automatically sorts all transaction
records into seguence on the transaction control fields
prior to updating a file. The sort will be accomplished on
tape or disk. When the transaction volume is such that the
disk sort capacity is exceeded, a tape sort will be
executed. If the transactions are already in order, the
sort is automatically bypassed.

2,13 Ordinary Maintenance

Through the use of the Ordinary Maintenance (oM)
Transaction Descriptor (TD) cards (see section 6.2), the

i

———E T

FILE MAINTENANCE (FM)

user may specify automatic validation of transaction data,
and automatic (unconditional) updating of file fields. The
types of data validation that may be performed are value,
range, picture, and verification against a table or
subroutine. Data conversion through use of table or
subroutine is also permitted. Error options are provided to
permit or suppress automatic logging of erroneous data, to
automatically delete records of subsets generated by the
erroneous transaction data, or to automatically clear the

data field that corresponds to the erroneous transaction
field.

The Ordinary Maintenance capability peraits the user to
write 1logic statements that contain only ordinary
Maintenance Transaction Descriptor cards, or ¢to vrite
statements that contain both Ordinary Maintenance cards and
FM statements. Instructions are provided in the FM language
to interrogate the results of ¢the Ordinary Maintenance
validation (see section 7.4.5). This allows the user to
perform part of the validation function using the Ordinary
Maintenance language, and to perform the more complex edits
and data wmanipulation in the PM language in one logic
statement. In a mixed 1logic statement, the Ordinary
Maintenance functions are executed prior to the FM language
functions.

2. 14 Checkpoint /Restart
/

During the generate/update phases of SAM processing, the
user may invoke the 0S/360 checkpoint/restart capability to
record timed or end-of-volume checkpoints. End-of-volume
checkpoints will be taken on the SAM data file input for an
FM SAM wupdate and on the user's SAM transaction input, if
there is one, for a generate or an update. The
checkpoint/restart capability should be used only during
long-running jobs using the execute only procedures. (Note
that 0S/360 step restart is program-independent and is not
the topic of this discussion. A detailed description of the
0S/360 checkpoint/restart capability, vhich is wutilized in
NIPS, is available to the interested user in IBM Systeas
Reference Library, Number C28-6708.) A detailed description
of hov to use checkpoint/restart in NIPS is included in the
Job Preparation Manual, Volume VIII.

RSN SR

AT : s et N

et s

FILE MAINTENANCE (Fn)

2. 15 Segmented Piles

The segmented file capability is primarily for users
with large chronological files where the updating process
consists of adding new records with higher Record 1IDs than
those already present on the data file. By segmenting the
data file to cover a specified range of Record IDs, the user
can generate a segment using the FFT and 1logic statements
froa the previous segment. The component will build segment
control records containing the boundary of a segment and the
volume serial number of the segment such that the most
recent segment will contain segment control records
identifying all previous segments, -

The capability exists to allowv the user to maintain an
ISAM or VSAM data file containing the PPT, logic statements
and segment records for his segmented data file. This file
would contain the most recent version of all logic
statements and segment records identifying all segments used
vith the capability. In general the ISAM or VSAM data set
may be used in a generate segment run in the same manner in
which a SAM data set is generated from a DISK PPT. 1In an
update run, the ISANM or VSAM data set must be defined on the
ISAMWORK DD card.

Exanples are provided in Volume VIII, Job Preparation
Manual, to illustrate methods for gemerating and maintaining
segments of a data file.

2.16 Secondary Indexing

Secondary Indexing, if active for the file being
updated, operates within PM in an entirely automatic manner,
without user intervention. The Bmaintenance function
consists essentially of analyzing the updates of the data
file and modifying the Index Data Set to conform to the
changed data file, The analysis includes all pertinent
keyvord functions: recovery of words from keyword fields
being updated and the application of stop word tables and
dictionaries (if any) to the recovered vords.

FILE MAINTENANCE (FPHM)

2.17 Auxiliary Pile Reference

#ith the POOL language operator, APR, FM features a
capability ¢to retrieve data from the fixed sets of other
NIPS ISAM or VSAM files during the wupdate process of FM
enabling the wuser to expand transaction editing without
additional tables or multiple passes of transactions against
related files. This capability allows the user to retrieve
data from an unlimited number of NIPS ISAM or VSAN files
other than the primary data file in a single logic
statement, The user amust supply a DD card for each
auxiliary file referenced. OPENs and CLOSEs of the files
are automatic with a maximum of five files OPENed
simultaneously.

2.18 Logic Statement Size

Neither POOL, OM nor NFL compilers restrict the size of
a user wvwritten 1logic statement due to base register
limitations. Certain restrictions on logic statement size
do exist, howvever, and are listed below.

a. The user may define no more than 4096 characters of
constants or literals in one logic statement,
except in an OM/POOL logic statement, wvhere the OM
section and POOL section may each contain 4096
bytes of constants or literal values.

b. In POOL and NPL, no more than 4096 bytes of
executable code can be generated between user-
defined labels., As a practical example, less than
4096 bytes of code are generated by 100 contiguous
MAL instructions or 15 contiguous MVF instructionms.
If a segquence of code in POOL or NFL does generate
over 4096 bytes of code without labels present, an
assembly addressability error will occur, in which
case the user need only label his source
instructions at appropriate intervals and recompile
the logic statement.

Ce Por any one 1logic statement, a maximum of 255
records can be vwritten ¢to the 1logic statement
library, thus 1limiting a 1logic statement ¢to a
maximum size of approximately 80,000 bytes.

10

FILE MAINTENANCE (PH)

Section 3

FA DESCRIPTION

In addition to the PM logic statements, the PM component
functions under the control of information that exists in
the user-supplied control cards and in the transaction and
data file records, The function and interaction of these
elements is discussed in the following paragraphs.

3.1 Control Elements

The FM component operates under the control of the
folloving elements of information: FMS control card, LIMIT
control card transactions, and logic statements.

a. EMS_cControl Card - The user nmust provide an FHNS
control card (see subsection 6.1.1 and 6.3.1) for
each FM run. It specifies the functions that the
FM is to perforsm.

o LINMIT Control _Card - The user may optionally
provide a LINIT card (see subsection 4.1.1.1
and 6.1.1.1). It specifies the range of
records to be processed.

be Iragsactions - Transaction records are source-data

records containing information used to update the

data records. The transaction records may also

contain twvo elements of control information. They

. are the transaction ID fields and the transaction
control fields.

o Iransaction ID Pjelds - Since more than one
type of transaction record can be used to
update a given data file, each transaction
record must contain information that uniquely
identifies its format. The fields that
contain this identifying information are the

1"

P ——

FILE MAINTENANCE (FHN)

transaction ID fields. Each transaction nmay
contain up to three ID fields. The aggregate
length of the transaction ID fields may not
exceed six characters. .

o Iransaction Control FPjields - If the data in a

transaction record is to be applied ¢to a
particular data file record or a record
subset, that transaction must contain control
fields. The most significant informaticn
contained in these fields is identical to the
information contained in the control fields of
the data record to which the transaction
applies. The least significant information in
these fields may be used to control the
sequence in which different transactions are
processed against a given data record and must
not exceed 10 characters. The user specifies
the location of transaction control fields)
through the use of transaction description
cards, which are a part of the logic
statements. A transaction record may contain
up to 255 characters of control information
which may include up to 10 characters of user
control information in as many as 60
noncontiguous fields.

o Iransaction. _Report _Ideptification - Each

transaction that is wused to wupdate a file
contains a transaction ID. The location of
the transaction ID fields for all of the
different transactions within a given report
must be the same. To identify the location of
the transaction ID fields, the user must
assign a report name to each set of
transactions with ID fields in unique
locations. The report nase nmust conform to
the system name rules specified in Volume I,
Introduction to Pile Concepts., Before FM will
compile the logic statements that are used in
processing a given set of transactions, the
transaction report identification record must
be placed on the Llogic Statement Library
through the use of a library action card.

12

!mmw S —

FILE MAINTENANCE (PHN)

Transactions that are being processed during
an PM run must be identified by a report name
befora they can be processed through the use
of the FMS control card and report

identification card. Transactions from
several different reports may be used to
update a file on a given run. Report

identification cards/records must be inserted
in the input streans between groups of
transactions from different reports.

Logic_Statements - In addition to specifying the
processing logic, the analyst =must also include

certain control information in his logic
statements. This information is used to specify
the type of logic statement he is constructing and
to identify the logic statement so that it may be
retrieved from the library.

There are six types of logic statesents:

o BANGE statements without _Transaction _Data -
RANGE statements without transaction data are
used to perform logical processing on every
record in the data file. The analyst
specifies this type of statement by omitting
transaction information when he makes the
library action cards for his logic statement.
This type of statement cannot be stored and
must be recompiled for each FM execution. It
should be noted that this type of statement
can easily te converted to a range with
transaction data in accordance with the
paragraph below to permit storing on the
library. A single transaction description
card containing a noncontrol field (i.e.,
$LSNANM,1,1) with the appropriate ASP card
vould fulfill the regquirements for storage of
a logic statement. A single transaction with
the applicable transaction control ID columns
filled in would subsequently invoke the logic
statesent at generate/update time (e.g., an A
in the first position of a transaction).

13

Bk ondin -~

-

FILE MAINTENANCE (FHM)

o BANGE Statements with Transactjon Data - RANGE
statements with transaction data are used to 1

performa 1logical processing on every record in
the data file and to update the record. The
analyst specifies this type of statement by L
not specifying transaction control fields when :

he makes up transaction description cards for
his 1logic statement. This type of statement
may be stored on the Logic Statement Library
and need not be recompiled for later use.

el

RANGE statements apply to the entire data file
while EXCEPTION statements apply to one
specific record. These types of wupdating
operations may be combined.

o EXCEPTION Statements - EXCEPTION statements

alvays require transaction data and are used

to process a particular record of a data file. /
The transaction control fields indicate which 4
record is to be processed. The analyst
specifies this type of statement by specifying
the location of the transaction control fields
in the transaction description cards.
EXCEPTION statements may be stored on the !
Logic Statement Library and need not be 1
recomapiled for later use.

o SUBSET EXCEPTION Statements - SUBSET EXCEPTION

stateaents process a particular subset record
of a data file. The analyst specifies this
type of statement by specifying a subset field
as a minor control field in his transaction
description cards. The subset ID must be

e prv

unigque within its set. The transaction
control fields, major and minor, indicate the
subset to be processed. This type of

statement may be stored and need not be
reconpiled for later use.

o EXCERTION RANGE Statements - EXCEPTION RANGE

statesents may be with or without transaction
data. The statements are used on a per-record
basis to process all data records in the file
that have been updated via EXCEPTION

14

FILE MAINTENANCE (FPN)

statements during a given run. The analyst
specifies this type of statement by using the
POOL XNP instruction written in the POOL
language logic statement, or by punching XNP
as the sixth parameter in a free format Add
Statement card (subsection 6.1.2) when using
Ordinary Maintenance or the NPL. These
statements can be stored on the Logic
Statement Library wvhen they are associated
with transaction data.

o Logic sStatement _Identifjcatjon - All logic
statements except RANGE and EXCEPTION RANGE
statements without transaction data, must be
uniquely identified within a data file.
Statement identification is accoamplished
through the use of the library action card
that must precede each logic statement
compiled. The report name and the statement
must be specified.

The report name identifies the report type and provides
the 1location of the ¢tranmsaction 1ID field for a set of
transaction records; this is the higher level of
identification.

The statement name must be identical to the transaction
ID on the transactions used with the logic statement. This
is the 1lower 1level of identification and must be unique
vithin a given report.

3.2 FM Punctioning

The FM component is divided into the following
functional sections:

a. Initialization - This section processes the user's
punched card 4input. It uses the PMS control card
to determine which PM functions are to be performed
and sets up a run communication record to control
processing for the run. It will also process any
segment control cards and update the segment
records on the data file. It constructs a disk
vork file from the usor's'Loqic Statement Library

15

2

- ————— o

FILE MAINTENANCE (FH)

be

update cards; if there are any card transactions,
these are output *to a second wvwork file,

Logic Statemept Compilation and Library Maintenance
- The functions of this section consist of deleting

specified reports and statements from the Logic
Statement Library, adding new reports to the
library, and compiling and adding nev statements to
the 1library for a given file. The report
information records and the logic statements are
maintained on the library in sequence by report and
statement nanme, Bach 1logic statement on the
library contains ¢wo parts. The first part is a
logic statement control record that is used during
transaction processing. This record indicates the
statement type. If it |is an EXCEPTION or
SUBSET EXCEPTION statement, it indicates the
location of the transaction control fields in the
transaction record it processes. The second part
consists of the Executable Load module ¢that is
produced wvhen ¢the POOL language or NFL statements
are compiled.

In addition to updating the Logic Statement
Library, ¢this section also produces a listing of
the user's Logic Statement Library update deck,
vith any errors flagged. When the compile-only
mode of PM is specified, the Logic Statement
Library is only updated by the addition or the
deletion of reports/statements. Por compiled
statements, only the error listing is produced.

Transaction Processing - The Transaction Processor
matches each transaction record vwith its

appropriate logic statement and creates an update
record for each transaction that is used by the
FPile Processing section to perform the actual
record update.

After the Transaction Processor reads a transaction
record, it extracts the transaction ID fields froa
the record. The locations of the tramnsaction 1ID
fields are associated wvith the transaction report
name on the Logic Statement Library. Yt then uses
the transaction report name and the transaction ID

16

PP A P) s 2o/ el &g wt ; Eﬁ‘ _ I

et SN S

AOIIRCSERITIE™ . 3 g ot 5 e

FILE MAINTENANCE (FM)

d.

to retrieve the <control record of the logic
statement that vill be wused to process the
transaction.

An update record, containing the name of the logic
statement that processed the transaction, a sort
key, and the transaction record, are then produced.
The high-order byte of the sort key contains the
update record type indicator; 'H' for Range
updates, 'E' for Exception Range updates, and *'P!
for Exception and Direct Subset updates. The
collating values of. the record-type indicators
establish the sequence in which the update records
vill be passed to the File Processing section, but
do not establish the sequence in which the update
records will actually be processed. Por Exception
upaate records, the sort key will contain only the
major ID, one byte of binary zeros for the set
nuaber and user control information. Por direct
subset updates, the sort key will contain the major
ID, the set number and the subhset control field.
The remainder of the sort field will be padded with
binary zeros,

At the completion of transaction processing, the
update records are ordered on the sort key, if they
are not already in sequence,

If the data file is a segmented file and segnment
processing is to be performed, the update record
sort keys are checked to determine if the record
key is within the boundaries of the segment being
processed. If it is not, an error message will be
printed and the update record will be bypassed.

Eile_Processing - The Range and the Exception Range
update records are read and saved in core. Then

processing of the Exception and Direct Subset
update records begins, Direct Subset updating for
a given record will be performed following the
exception updates on the record. If only Direct
Subset updating 4is to be performed on the record,
the fixed set and the subset are retrieved, and the
updating is performed. If no matching fixed set is
found, an error message is logged. When a matching

17

TN

i Gl S s hait P adkilica W ONCYY

i

FILE MAINTENANCE (PM)

subset is not found, a new subset is generated, and
a 'NEW RECORD' switch is set that can be tested by
the user with the POOL *BNR' instruction or the NFL
new record test. !

If Range updates are to be made, the entire data
file is passed sequentially. As each data file
record is read, its record key is matched against
the current update record's sort key. If a match
is found, the appropriate logic statement is
executed, and the current data record is wupdated
with the information in the current update record.
A nev update record is then read . and processing
continues on the same data record, until an update
record is read with a different sort key. At this
point, Range processing is executed against the
current record.

If the current update record’s sort key has a lower
value than the current data record's key, a new
record is generated, and the new record switch is
set.

If the current data record's key has a lower value
than the current update record's sort key, this
indicates that no exception processing is to be
performed against ¢the data record, and only the
range processing is performed.

When Range processing is performed against the
records that were not updated by exception
processing, the Excaption Range logic stateaments
are not executed.

when all of the data records and update records
have been processed, the RANGE statements and
EXCEPTION RANGE statements that have been
collecting summary information are executed once
more, to allovw them to output the information.

When no Range processing is required, the File
Processing Section retrieves and processes only
those records with keys that match the Exception
update record sort keys. When no match is found,
a nev record is generated.

18

FILE MAINTENANCE (PHM)

Pile generation is accomplished by generating a new
record for each Exception update record with a
unique sort key.

Subset Exception updates can be
file generation for ¢those
Exception update records.

processed
records

during
generated by

For sequential processing, the file is passed
sequentially as for Range updating. The FPFT and
logic statement records are copied onto a new

sequential output data file. The records are read
and updated, and the records whose major 1IDs have
been changed are written on a temporary hold file.
This hold file is sorted and merged with the output
data file to produce the new data file. If the
sequential file 1is a segmented file, a listing of
the segment control records on the data file will
be printed indicating segment boundaries and the
volume serial number of each segment. During logic

statement execution, if a major control field
change occurs, the new Record ID is checked to
insure that the new ID is within the segment

boundary. If the new Record ID is not within the
segment boundary, an error message will be printed
and the change will not be executed.

A secondary functicn of the Pile Processing section
is the production of a cconsolidated auxiliary
output file. The records for this file are
produced vhen any of the POOL or NFPL instructions
that produce printer, punched card, or tape
auxiliary output are executed, Control is then
passed to the next saection.

e. Auxiliary Qutput Processing - This phase reads the
consolidated auxiliary output file, and outputs the

I S———

individual records to their proper printer,
disk or tape files.
are requested, they are
printer.

card,

the same

punched
When tvo printer files
produced sequentially on
The two punched card files are

punched into pockets 1 and 2 of the card punch.

19

cosiua e 0

FILE MAINTENANCE (FNM)

Section 4

INPUTS

4.1 Card Input

Card input to the FM component consists of the FHMS
control <card, the Logic Statement Library update deck, and
the transaction deck.

4.1.1 FMS Control Card

The format of the FMS control card is described in
sections 6.l.1 (Free-Format) and 6.3.1 (Fixed-Pormat).

An FMS control card must be the first card in the PM run
deck. It specifies the functions to be performed during the
PM run.

4.1.1.1 LIMIT Control Card

The format of the LIMIT control card is described in
section 6.1.1.1 (FPree Pormat). The LIMIT control card is
optional. When used, it must follow the FMS control card.
It specifies the range of records that File Maintenance will
process.

4.1.2 Segment Control Cards

The segment control cards will direct the component to
perform processing of the segment records on the data file.
The segment control cards must appear iamediately after the
PMS control card. If segmented processing is not desired,
these cards must be omitted. The format of these cards is
described in section 6.1.2.

20

SUNUES———

T g s s

FILE MAINTENANCE (FN)

4.1.3 Logic Statement Library Update Deck

This deck specifies ¢the maintenance actions ¢to be
performed on the Logic Statement Library and consists of the
cards discussed. If no Logic Statement Library update is
desired on a given run, there is no requirement for this
deck.

4.1.3.1 Library Action Cards

The format of the library action cards is discussed in
sections 6.1.3 (Free-Format) and 6.3.2 (Fixed-Format).

These cards direct the component to perform a specific
type of library update. Each library action card may be
used to specify one update action only. The types of
updates that may be specified are as follows:

a. Add_a _Report Name - The component adds the report
name and information concerning the report to the
library. The name of a report must be added to the
library before statements which will be wused to
process that repcrt can be added to the library.
This can be accomplished in one pass if both sets
of control cards are in order in the same run deck.

b. gompile and Add_a_Logic Statement Permapently - The
component compiles a logic statement and adds the
logic statement to the library.

c. Compile and _Add _a_Logic_Statement Temporapily - The

coaponent compiles and adds a logic statement to a
Teaporary Library only for the current run. A
statement added temporarily will be the one
executed during the run in vhich it is added, even
if another statement with the same name already
exists on the Logic Statement Library.

d. Relete All Logic Statements and Report Names FPor a
Eile - The component deletes from the library all

of the report information and logic statements that
pertain to the file.

. Delete _a Report - The component deletes the
specified report from the library and deletes the

21

g

e

FILE MAINTENANCE (FH)

logic statements that are used to process that
report. If user wishes to delete more than one
report from a file, all $DR cards should be
together in the deck.

f. Delete a Statement =~ The component deletes the
specified statement from the library. If user

vishes to delete more than one logic statement from
a library, all $DS cards should be together in the
deck.

Note: Each 1library action card, vhich specifies that the
component is to compile a statement, must be the first card
of the 1logic statement deck that is to be compiled. All
other library action cards must be placed in front of the
logic statement decks.

4,1.3.2 Logic Statement Sourceé Decks

Each logic statement source deck consists of the cards
that are required to compile and, if desired, add one logic
statement to the library. A maximum of 24 1logic statement
decks may be compiled and added to the library, either
temporarily or permanently, during an FM run. There is no
limit on the ¢total number of statements that may be used
with a file or report.

Each logic statement may consist of the following card
types:

a. L;pni;x_gg;ign_ihgl_gggg - In addition to directing
FM to compile and add a statement to the 1library,

this card also rrovides information about the
transaction data that is to be processed with the
statement to be compiled. If there 1is no
transaction data to be processed by the statement,
the statement is not added to the library, but is
compiled only for use with the run in which it is
compiled. The format of the LA card is discussed
in sections 6.1.3 (FPree-Pormat) and 6.3.2 (Pixed-
Format).

b. Iransaction Descriptor (ID) Cards - TD cards are

used to describe the ¢transaction data which the

22

— -
BUPEE S I —

FILE MAINTENANCE (FM)

statement is to process. They provide the user
with the capability of labeling transaction fields
so that he may reference the fields by 1labels in
language source statements. These mnemonics need
not ke unique from file field mnemonics.

The TD cards are also used to specify the locations
of the transaction control fields. If transaction
control fields are not specified, the component
assumes that a Range statement is being compiled.

The format of the TD card is discussed in sections
6.1.3 (Pree-Format) and 6,.3.3 (FPixed-Format).

C. Language_Identifjer Card - This card must precede
the POOL and NFL source statements. The format of

the language identifier card 1is described in
section 6.l.4. This card tells the compiler which
source language is being used.

d. Lapguage Source Statement Card » Section 7
discusses ¢the format and logical capabilities of

the POOL lanquage, and section 9 discusses the
format and 1logical capabilities of the NFL. The
source statement cards specify the processing logic
used by the component.

e. Statement END Card - The last card in each logic
statement deck must be a statement END card. The

format of this card is discussed in section 6.1.5.
4.1.3.3 Logic Statement Library Update Terminator Card

The last card of the Logic Statement Library update deck
must be a terminator card if card ¢transactions follow the
deck. The format of ¢this card is described in section
6.1.7. This card is required only if library updates are to
be performed.

4.2 Transactions
The transaction file can be either cards, tape, or disk
(sequential or indexed sequential or VSAM data set) or a

combination of nmultiple sources wvwith the varying data
attributes., If it exists soley on cards or is a combination

23

PILE NAINTENANCE (FNM)

of more than one source, it must follow the Logic Statement
Library update terminator card. The transactions may be of
more than one report type for an FM run. Normally, the
report type used for a run is entered on the PM control card
as a parameter., However, for runs consisting of more than
one report type, the transactions applicable to the
different reports must be batched separately and each batch
aust be preceded by a report identifier card. When
utilizing more than a single transaction source in an PHM
run, a report identifier card is required for each source in
order to provide FM with the transaction DD name. The
format of the report identifier card is discussed in section
6.1.8. Detailed information concerning processing of a NIPS
360 FFS data base as transaction input is contained in the
appendix of this manual.

Transaction records maust follow the folloving
conventioas:

a. Each transaction record may contain one variable
field which must be the last field in the record.

b. The maximum size of the transaction record is 1,090
characters.

Ce The transaction records naust be in one of the
standard S/360 formats; fixed or variable length,
blocked or unblocked, or undefined. If the record
format of the transaction is either variable or
undefined, there will be a 4~byte field prefixed to
the beginning of the transaction. This field aust
be accounted for in the user's logic stateaent,
i.e., if the 1logic statement name starts in
position 1 of a fixed transaction, then it vill
start in position S of a variable or undefined
transaction (assuming the same transaction,

d. A transaction field that is used by the 1logic
statement as an indirect address must contain a
valid field/group name from the file format table
of the file to he processed. ' The transaction may
contain more than one indirect address field,
however, each field must contain a valid PPT
field/group name.

24

N~ PR TI T 2 VA L) b, B e S et

O e

FILE MAINTENANCE (FN)

Numeric transaction data will be processed in two
different ways, depending on the use to be made of it. (1)
If the data is to be moved to a binary area (that 1is, a
binary data file field or a binary vork area) or if it is
the operand of a numeric instruction (i.e., add, divide,
multiply, subtract, or compare numeric operands), the data
will be rjght-justifjied (i.e., trailing blanks will be
deleted) and edited. Editing means that all characters
between the ¢+ and ~ signs (if present) and the last non-
blank character of the data will be checked to make sure
they are numeric. The last character will automatically be
considered numeric if it can be converted to binary. (2) If
the data is to be moved to a decimal area (a decimal file
field or the EBCDIC work area), a check will be made for a
¢+ sign or - sign. The sign will be replaced in the
receiving field by an EBCDIC zero; a - sign will cause the
low-order zone of the receiving field to be made minus. The
data wvwill pot be right-justified or edited in this case.
The numeric portion of each byte will be transferred to the
receiving area, and the zone portion of each byte except the
last will be set to a hexadecimal 'P'. The low-order zone
will always be set to a hexadecimal 'D*' (i.e., minus) if the
operand contained a minus (-) sign; othervise, the low-order
zone will be transferred, The zone of a low-order blank
will be set to hexadecimal *‘C' (i.e., plus).

4.3 Subroutine Library

The Subroutine Library must contain all subroutines and
tables which will be used during an FM run. The library may
be stored on the same volume as the data file and may have
a name of the user's choice.,

4.4 Data File

The PM component processes indexed sequential data files
on disk and sequential data files on tape or direct access
devices. The PM component will also process Yirtual Storage
Access Method (VSAN) data files on the S/370. When desired,
the utility progras UTBLDISM (see Volume VII, Utility
Support) may be used to 1load segquential data files onto
direct access storage.

25

FILE MAINTENANCE (FNM)

Section 5

OUTPUTS

5.1 Output Data Pile

The output from the PM component is a direct access data
file, updated in place on disk (ISAM or VSAM processing) or
a sequential data file on tape or disk (SAM processing), or
a segment of a sequential data file on tape or disk.

5.2 Auxiliary Output

In addition to producing an updated data file, the PHM
component provides the user with the capability of producing
auxiliary outputs under the control of logic statements.
Auxiliary output may be produced on disk, magnetic tape,
punched cards, or ¢the printer, according to the user's
formatting specifications. The output length is limited to
a maximum of 994 bytes. NIPS adds six overhead bytes to the
output data and the DCB LRECL is 1000. Violation of this
limit will cause a System 001 ABEND (I/O ERROR, RECORD TOO
LONG) «

5.2.1 ‘Tape and Diskvluxiliary Output

During an PM run) the user may produce auxiliary output
on five tape or disk files.

5¢2.2 Punched Card Auxiliary Output

The FM component provides the user with ¢two punched
outputs, Any formatting of punched output must be
accomplished by the user in his logic stateaments., If the
user requests that more than B8f# characters of data be
punched, the data in excess of 80 characters will be punched
on subsequent cards.

26

e e —— e

FILE MAINTENANCE (PN)

S5¢2.3 Printed Auxiliary Output

The FPM component provides the user with ¢two printed
outputs. The user is responsible for formatting the print
lines. The FPM component will handle the printing of 132
characters or less. If the user requests that more than 132
characters of data be printed, the data in excess of 132
characters will be printed on subsequent lines.

5.3 Run History

As part of its functioning, the PM component
automatically generates a run . history on the printer. This
includes listings of logic statements that are compiled, and
messages indicating that errors, or unusual conditions that
might be interpreted as errors, have been encountered during
processing.

If segmented file processing is being performed, the
segment control records on the current segment will be
printed shoving the segment boundary and the volume serial
number of each segment.

S. 4 Pile Analysis and Run Optimization Statistics

The Pile Analysis Statistics capability in the FM
component provides transactions showing the number of times
each logic statement is executed during an "M execution.
The data set name (DSNAME) of this data set must be the data
file name suffixed by a T. The T is added to ISAM and VSAM
names; the S is replaced by T in SAM nanmes. To obtain
transaction output, the DSNAME nmust be cataloged and the
user must specify the volume serial (VTRANS) and unit
(UTRANS) in the execution procedure. The volume may be any
direct access volune.

If the transaction data set exists at execution time,
transactions will be added (DISP=MOD). If the data set does
not exist, a 5-track data set will be dynamically allocated.
The user may change the allocation value by overriding the
TRANST DD card space parameter, Transactions are written as
fixed length, unblocked, 50-byte records. The format
(fixed) and 1length (50) cannot be changed but the user may
change the blocking factor by specifying a DCB BLKSIZE in
the TRANST DD card which is a multiple of 50.

27

FILE MAINTENANCE (PM)

If the wuser specifies a DSNAME (TRANS) in the TRANS DD
card, he must supply all parameters required to process the
data set. These parameters must conform to the requirements
defined above.

The Run Optimization Statistics capability provides the
user with statistical data reflecting the core allocation
during FPM execution. The breakdown of the statistics detail
the amount of core used for user subroutines and tables,
logic statements, process blocks, I/0 buffers, and access
methods. It also includes the number of BLDL entries
allocated and used and the number of entries required for
each subroutine, table, and 1logic statement to reside in
core. The amount of core required for each subroutine,
table, and logic statement to reside in core is also output.
If subroutines, tables, and 1logic statements are rolled,
this information will be output with the causes for the
rolling and the number of times it occurred.

In addition, the user is able to enter override
parameters for the number of BLDL entries to allocate, and
the size of the processing block desired for storage of the
data records during PM processing.

The statistics gathering is initiated through parameters
entered in the PARM field of the EXEC card. The parameters
and their functions are as follows:

ROS - Indicates that run optimization
information is to be gathered and output.

NOROS - Indicates that optimization processing is
to be omitted. If no other parameters
are coded, this parameter should be
omitted as it is the default.,

The parameters the user may supply to tailor his core
allocation are 1listed below. Using these parameters, the
Run Optimization Statistics are gathered and output unless
the NOROS parameter is used.

TCP=NK - The N indicates the number of bytes
requested for the process block in 1000
(K) bytes.
28

B T T

FILE MAINTENANCE (PNM)

TCB=n - The n indicates the number of entries to
be used in the BLDL list for SUBSUP, the
subroutine supervisor.

TCS - This parameter indicates that the
statistics record on the ISAM or VSAM
data file is to be used to compute the
process block size. This parameter must
not be used vwith TCP and vice versa.

For a more detailed description of the capability see
Introduction to File Concepts, Volume I,

29

S

FILE MAINTENANCE (FHNM)

Section 6

CONTROL CARD FORMATS

6.1 Free-Pormat Specifications
This section specifies the preparation requirements for
all PM control cards. These cards may be punched in free

format or fixed format (see sections 6.1 and 6.3
respectively).

The general rules that apply to free-format control
cards are as follows:

ae The control card data must always be punched
starting in columsn 1. The first character of a
control card must alvays be a dollar sign ($).

b. The information in the cards must be punched in a
specified parameter sequence.

Ce The control card fields must be separated by
commas, with no intervening blanks.

d. If the analyst has no requirement for a certain
parameter, he must so indicate by punching a coama

for that field, except when he has no more fields
to punch.

The four control cards that may be formatted in this
manner are as follows:

ae The FMS control card
be The LIMIT control card
Ce The Library Action card

d. The Transaction Descriptor card.

30

MR |

P S U

B tmiiaa—

FILE MAINTENANCE (FHM)

The specifications for each of these cards, together with a
description of the editing procedures that will be performed
by the system, follow. Any errors detected while editing
these cards will cause a no-go svitch to be set. However,
all control cards will be edited before any run which has
erroneous control cards is aborted.

6.1.1 FMS Control Card (Free-Format)
Description:
Pield 1 - $FPMS/AAA-%$Card Identifier And PRun Mode.

$PMS/ 1is the card identifier. AAA indicates the
run mode and may be one of the following:

COM - Logic statement compilation mode. The input
logic statements will be compiled and check list
generated. No library actions can be performed

LIB - Logic Statement Library update mode. Logic

statements can be compiled, and all library actions
can be performed in this mode.

Note: Por sequential files, a run mode of COM or
LIB will cause only compilation to be performed.
No library action will be accomplished.

GEN -~ Data file generation mode

UPD =~ Data file update mode.

Note: Logic statements may be compiled and added to

the Logic Statement Library with file generation or
file update.

3

R

T

FILE MAINTENANCE (FM)

Field 2 - File Name

This field must contain a 1- to 7-character file
namee. The first character must be alphabetic, and
no embedded special characters may occur. On a SAM
run or an ISAM or VSAM GEN run, this field supplies
the name for the new file.

The following parameters (fields 3-6) are only used if
the GEN or UPD run modes are specified. If the COM or LIB
modes are specified, the remaining fields should be omitted.

Field 3 - Report Name (Optional).

This parameter may be one to seven characters in
length and must be alphabetic. It provides FM with
the name of the first transaction report that will
be processed in the run. This parameter may be
omitted if there are no transactions to process, or /
if the report name for the first set of
transactions is to be specified using the report
identifier card. This parameter must be omitted if
the transactions being processed originate from
multiple transaction sources as information as to
the source must be supplied through NEW REPORT
control card parameters.

Field 4 - Logic Statement Library Update 1Indicator
(Required for UPD or GEN when 1logic
statements are to be compiled on=-line).

'LS' indicates the library is to be updated. This
parameter is omitted if no update is required.

Field 5 - Data Pile Type

Por GEN mode, the data file type parameter on the
FMS control card should be supplied. If it is not
supplied, a default option is used,

Por UPD mode, the data file type parameter on the
FMS control card may be omitted. The default
option will be wused if the parameter is not
supplied.

A vn

SRRPPpea—

32

b

e

FILE MAINTENANCE (FHM)

The data file type parameters are:

TAPE - Por sequential processing ~(SAM)

DISK - Por direct access processing (ISAM or VSAM)
The default optiomn is to process, according to the

organization of the input data file which contains
the FFT, 1logic statements and, for UPD runs, data

records.
Field 6 - Transaction Source (Required for UOPD or
GEN Mode)
TAPE - Sequential transactions; file on either
tape or direct access storage.
DISK = Transaction source is in indexed

sequential organization

SAM - Transaction source is a NIPS 360 FPS ISAM
or VSAM data file in sequential

organization

Isam - Transaction source is a NIPS 360 FPPS data
file in index sequential organization

CARD - CARD must be specified or this parameter
omitted entirely vwhen utilizing multiple
transaction sources since the NEW REPORT
card describing the source must be
included in the run deck.

NONE =~ No transactions

If this parameter is omitted, CARD is assumed.

Field 7 - Segmented Pile Processing Indicator
SEG - Segmented processing to be performed in
this run

NOSEG - Bypass segmented file processing in this
run

33

b

FILE MAINTENANCE (FM)

If this parameter is omitted, the default option is to
perform segmented file processing if the data file is a
segment and to ignore segmented file processing if the file
is not a segment.

6.1.1.1 LIMIT Control Card
Description:
Field 1 - SLIMIT - card identifier
Field 2 - Field name or Group name [m/n] [#SUBTAB]

The field or group name specified must include the
high-order character(s) of the major control field.
The user has the option to specify partial field
notation for the field or group by indicating a/n.
This specifies which portions of the record key
vill be used for comparison. This partial field
must start at the first character; i.e. 1/n. In
addition, the field or group may be modified by a
subroutine expression. Double pound signs (##)
suppress automatic table conversion, and the name
of the subroutine enclosed in pound signs forces
table conversion.

Field 3 - Relational Operator
The relational operators shown belov are allowed in

the statement formed by the LIMIT operator and
condition the selection of records as follows:

EQ -~ process vwhen equal to

LT -~ process when less than

LE - process when less than or equal to

GT -~ process when greater than

GE =~ process when equal to or greater than
BT -~ process when equal to or between

The logical connector NOT may precede all
relational operators.

34

e A ——————

FILE MAINTENANCE (FHN)

Field 4 - Literal(s)

If the BT relational operator is specified, ¢then
tvo literals are required and must be separated by
a slash; i.e., a/b.

6.1.2 Segment Control Cards

The segment control cards are used to update the segment
records on a segmented data file. The options allowed are
as followvs:

SEG - This option indicates to the component that
the output of a GEN run is to be a segmented
data file. This option must be used only when
the mode of the run is GEN.

ADD =~ This option indicates to the component that a
new segment record is to be added to the
segnented data file. This option may be used
in either GEN or UPD mode.

REP - This option indicates to the component that
the volume serial number of a specified
segnent is to be replaced by a new volume
serial number.

DEL -~ This option indicates to the component that
the segment record specified by the low key
value is to be deleted from the segmented data
file.

Note: The actions specified by the segment control cards
vill be performed at FM initialization time. Therefore, if
no logic statements are to be compiled, omit the 1logic
statement parameter on the FMS control card.

The control cards are free format and possible operands
are as follows:

$SEG LOKEY HIKEY
SADD LOKEY HIKEY VOLID
$REP LOKEY OVOLID NVOLID

35

TR Py -

FILE MAINTENANCE (FH)

$DEL LOKEY

where the first parameter is as shown -

LOKEY -~ the lovest major control field for the segment
HIKEY - the highest major control field for the segment
VOLID - the volume serial number

OVOLID - old volume serial nuamber for REP action

NVOLID - new volume serial number for REP action

The parameters on the segment control cards =msust be
separated by a comma and/or one or more blanks. If the
major control field contains special characters or blanks,
the field must be enclosed in quotes or at signs. More than
one card may be used to specify the action to be performed.
However, the action parameter must be the first entry on the
first card of a set of cards if more than one card is
needed.

Columans 1-71 are used to contain the segment parameter,
column 72 is used as the continuation column, and columns
73-80 are ignored.

If the major control field parameter is too long for one
card, a nonblank character in column 72 will indicate the
continuation of the field in column 1 of the next card.
Pields specified in this fashion must have a single quote
(*) or at sign (@) at the beginning of the field and a
single gquote or at sign at the end of the field. A maximum
of four cards may be wused in specifying one field.
Continuation indicators should be used only if the field
continues through 71 and the beginning of the next card.

6.1.3 Library Action Card (Free-Format)
Description:
Field 1 - Action Identifier (Required)

This field must contain one of the following:

36

A B

——

FILE MAINTENANCE (FHM)

$DF delete all reports and statements for
a file

$AR add a report name

$DR delete a report name and all statements
for the report

$DS delete a statement

$ASP add a statement permanently

$AST add a statement temporarily.

For a $DF card, all that is needed is the action
identifier-$DF,

Field 2 - Report Name

This field is used to specify a report nanme. The

report name may be from one to seven characters

long. It is required for all action cards that

deal vwith reports or statements. This is the last

field that need be specified for cards with the ;
function code $DR. /

Fields 3,4,5 - Position of Transaction Identification
Pields (Add Report)

The Add Report card is treated as a special case.
Following the report name, it will contain from one
to three parameters used to specify the location of
transaction identification fields.

The format of this parameter is:
HH-LL
vhere

H is the high-order position of the tranmsaction 1ID
(or a portion thereof), and L is the low-order
position of the tramsaction ID. The high- and low-
order positions may be specified as 1- or 2-digit
numbers with a range between 1 and 99. A one- j
position statement ID field may be specified by one !
nuaber only.

37

JIasne

PILE MAINTENANCE (FPHM)

Example:
$AR, PORT,1-3,80,33-34

This card requests that the system add information
about report type PORT to the library.
Transactions wvithin report type PORT will contain
identification in three fields. Pield 1 will be in
columns 1-3, field 2 in column 89, and field 3 in
columns 33-34.

The following fields are used only with statement action
cards: $AST, $ASP,$DS.

Field 3 - Statement Name (Regquired)

The name may be from one to six characters long.
No embedded blanks will be permitted.

If the library action specified in the card is $DS,
field 3 1is the last field in the card. The

following fields pertain only to the add statement
cards.

Field 4 - Length of Fixed Transaction Data
(Required)

This ield may be from one to four digits long and
must bée a number bhetween 1 and 1809 inclusive.

Field 5 - High-Order Position of Transaction
Variable Pield (Optional)

If no variable field exists, this parameter may be
omitted. This parameter may be from one to four
characters 1long and must be a number between 1 and
1999 inclusive. The value of this parameter nmust
be greater than the value of field 4,

38

e T————

FILE MAINTENANCE (FHM)

Field 6 - Exception Range Indicator (OM and NFL
only)

This field contains *XNP' if the logic statement
being compiled is an Exception Pange statement, If
the logic statement is not an Exception Range
statement, this parameter must be omitted.

Field 7 - NOP Instruction Count

This field contains 'NCT' and signals to the
processor program that the test for logic loops
should not be performed during the execution of the
logic statement.

6.1.4 Transaction Descriptor (TD) Cards (Pree-Format)

These cards are provided to allow the user to 1label
transaction fields in writing his logic statements. He may
then reference the transaction field 1label in his 1logic
statements by the label preceded by a dollar sign ($). The
format of these cards is as follows:

Field 1 - Pield Label (Required)

The field label can be from one to seven characters
long and must be preceded by a dollar sign (§).
Both alphabetic and numeric characters may be used,
but the first character of a label must be
alphabetic. No special characters may be used.

Field 2 - High-Order Position of Field in
Transaction (Required)

This field may be from one to four digits. If the
analyst is using the TD card to assign a 1label to
the variable field of the transaction, this
parameter vwill be the last parameter on the card.
In this case, PFPM will make certain that the
position specified in this card coincides with the
high-order position of the variable field as it is
specified in the library action card.

Field 3 - Low-order Position of Transaction Pield
(Required Only for Fixed-Length Fields)

39

3

FILE MAINTENANCE (FHM)

This field may be from one ¢to four digits. FM
checks to make certain that the value specified
here is not greater than the length of the fixed
field as specified in the library action card.

Field 4 - Major or User Control Field Designation

(Optional)

The field wmust be punched as a C folloved by a 1-
to 2-digit number between 1 and 60, The number
indicates the sequence in vhich the transaction
control fields must be arranged in order to compare
them to the data record 1ID. The transaction
control fields that are assigned the lower sequence
nusbers and that have an aggregate length equal to
the length of the data file major record control
group constitute the major transaction control
fields. The transaction control fields that are
assigned the higher sequence numbers constitute the
user control fields; they are not used in matching
the transaction to the file record but are used in
sorting to control the record update sequence. For
example:

$RECID, 4, 10,C1

This example describes the transaction field which
the analyst wishes to refer to as PECID in his
logic statement. It is located in positions 4-1§
of the transaction, and it is the major portion of
the transaction that corresponds to the data record
ID.

Field 5 =~ Data Mode of the Transaction Pield

QW

o

(Optional)

- Indicates the field contains alphabetic data

Indicates the field contains binary data

- Indicates the field contains coordinate data
in internal format

- Indicates the field contains alphameric
(EBCDIC) data.

If this parameter is omitted, D is assumed.

40

PILE MAINTENANCE (FPN)

Pield 6 - Control Indicator (Optional)

This parameter specifies the type of control field.
The following codes may be used.

M - Major control field
S - Secondary control field
N - No control field.

If blank, other parameters on the card are tested
and the control field indicator is set by the
programe.

Field 7 - Corresponding = Subset Control Pield
Mnemonic

This parameter specifies the subset field to be
used as a control field on a direct subset update
statement. This field should be blank for other
types of update statements.

6.1.5 Language Identifier Card

This card vill contain either POOL in card coluans 16-19
to indicate that POOL language source statements follow or
NPL in any three consecutive columns to indicate that NFL
source statements follow. .
6.1.6 Logic Statement END Card

The END card must be placed at the end of each POOL
language 1logic statement., This card will contain the wvord
END in columsns 16-18,
6.1.7 Logic Statement Library Update Terminator Card

This card will contain the word STOP in card columns 16-
19. The STOP card must be the 1last card of ¢the 1logic
statement update deck if card transactions follov the deck.
6.1.8 Report Idontitief Card

This card is used to signal the beginning of another
report. The characters NEN REPORT will be punched in

41

FILE MAINTENANCE (FN)

columns 6-15. The report name will begin in column 21 and
may be from one to seven characters,

If processing transactions froa multiple sources, the DD
name for the specific transaction source must follow the
report name. A comma must saeparate the report name froam the
DD name. The DD name must be in the form PSTRANXXx for
sequentially organized ¢transaction data and ISTRANxx for
defining a NIPS ISAM or VSAM file as a transaction source.
The xx may be a user coded unique ID for each DD statement.
The statements must be included by the wuser immediately
preceding the FM.SYSIN DD * at run execution., Comments may
be included in the NEW REPORT identifier card following the
DD name after allowing a blank to separate the two. NEW
REPORT statements contairing the optional DD name parameter
may be contained only in the SYSIN data set..

6.2 Ordinary Maintenance (OM) Transaction Descriptor
(TD) Cards

The PMS control card and library action control cards
must be coded as shown in sections 6.1, 6.1.1, and 6.2.1.
OM Transaction. Descriptor (TD) cards are free formatted
(there is no fixed format capability). OM TD cards may pot
be used wvwith the New Pile Maintenance Langquage (NFL). The
parameters consist of keywords followed by single operands
or operans .ists. Allowable keywords are as follows:

FIELD
CONTROL
PICTURE
VALUE
RANGE
VERIPY
CONVERT
GENERATE
ERROR

With the exception of the FIELD and CONTROL parameters, the
parameters may appear in any seguence. The keywords and
operands may be separated by any number of blanks, coamas or
equal signs. Operands that contain any of these characters
sust be enclosed in single quotes ('). Operands may not
contain quotes in any position, The parameters for a single

42

FILE MAINTENANCE (FM)

transaction field may be entered on any number of cards.
The description of each given field may begin anywvhere;
hovever, keywords and operands may not be split across input
card boundaries. The number of characters per keyword
operand may not exceed 52, The total number of characters
per keyword operand list may not exceed 90¢.

Each of the keyword parameters is discussed in the
folloving subsection. The discussicn provides a description
of each keyword's function, the legal abbreviation for the
keyvord, and a description of any restrictions on the use of
the keywvord.

6.2.1 Keyword: PIELD
Abbreviation: PFLD

Example: FLD ALPHA 8 11 A
FLD NUMBER 12 15 D

Function:

This keyword is used ¢to identify ¢the start of a
transaction field description operand list. It must be the
first parameter on a card. The PFIELD operands must be
entered in a specific sequence as followvs:

a. User-assigned transaction field mnemonic. This may
be a 1- to 7-byte alphameric operand, the first
byte of which must be alphabetic. When the
GENERATE parameter is used, the transaction field
anemonic must be identical to the mnemonic for the
field that will receive the data.

b. High-order position of the transaction field. This
operand may be from one to four bytes long and must
be numeric.

Ce Low-order position of the transaction field
(optional). This operand is omitted for variable
length transaction fields., The operand may be from
1= to U-numeric bytes in length.

43

FILE MAINTENANCE (FH)

d. Field notation indicator (optional). This field
consists of a 1-byte code to indicate the type of
data contained in the transaction field. The legal
codes and their meanings are as follows:

A - The field contains alphameric data,
including blanks and special characters.

'B* - The field contains pumeric data in
binary format.

'C* - The field contains coordinate data
in internal form.

D - The field contains pumeric data in
decimal format.

The default option for this code is *'D'. Decimal ('D')
transaction data may be processed in the POOL language by
either the arithmetic (MNU, MNC, CON) or logical (MAL, MAC,
COA) instructions.

6.2.2 Keyword: CONTROL
Abbreviation: CTL

Example: CONTROL PSCTL
Function:

This keyword is used to specify that a transaction field
is a control field. The operand may be a 1- to 2-digit
number, to indicate that the transaction field is a major or
record control field; or it may be a subset control field
snemonic, which indicates that the transaction field is a
subset control field for a direct subset update statement.

For main or record control fields, the number indicates
the sequence in which the transaction fields are to be
arranged in order to compare them to the data record ID.
The transaction fields assigned the lower sequence nuabers
that have an aggregate length equal to the length of the
major data record control group constitute the major
transaction control fields; the remaining transaction

4y

BE SV AT L TE

B R TR R A e AL ey
TR

FILE MAINTENANCE (FHM)

control fields are considered user control fields, and are
used only to control the update sequence on a given record.

when the control parameter is specified, it pmust
immediately follov the field parameter 'list.

6.2.3 Keyword: PICTURE
Abbreviation: PIC
Example: PIC AABB B*S (A)NN A(AB)N

Function:

This keyword is used to indicate that character or
profile checks are to be performed on a transaction field.
The keyword should be followed by masks depicting the types
of EBCDIC characters permitted in the defined transaction
field. The PICTURE parameter may only be specified for
alphameric or decimal transaction fields. Character checks
that may be specified by the masks are Alphabetic (A),
Numeric (N), Special (S), Blank (B), Nonblank (X), Non-
special (Y), and no check or universal match (*).

A direct test for specific characters, as opposed to
types of characters, may be specified with a VALUE check, or
by enclosing the specific characters in fparentheses. The
picture masks, not counting parentheses, must be either
shorter than or equal to the length of the transaction field
defined. If a mask is shorter, only the leftmost characters
of the transaction field will be checked, up to the length
of the mask. The picture mask is terminated by the
occurrence of a blank. Up to 19 masks may be specified in
a PICTURE parameter list.

6e2.4 Keyvord: VALUE
Abbreviation: VAL

Example: VAL 32768 R192 **%58 *AAbX3?

45

oS > ra
aitnioe il " o a 4 . —

et .. . e

FILE MAINTENANCE (FHM)

Function:

This keyword indicates that the transaction field data
must match one of the values specified in the operand 1list
that follows the keyword.

The VALUE parameter may only be used in editing
alphameric or decimal (Type °*A' or 'D') transaction fields.
The values specified in the list will be compared against
the transaction data by left-justifying the list values and
padding with blanks as required to achieve field length.
Value operands may not exceed the transaction field 1length.

List values for either alphameric or decimal fields may
contain any number of letters., If any of the 1list values
contain embedded blanks (b) or commas (,), they must be
enclosed in single quotes ('). If any of ‘the 1list values
contain any other special characters, they need not be
enclosed in quotes, but the mode specification of the field
must be alphameric (type 'A'). A universal match character
(*) may be used to indicate positions of a transaction field
which are not to be validated.

Up to 10 values may be specified in a VAL parameter
list. Validation against more than ten values should be
performed with a table or subroutine and the VERIFY keyword.
6.245 Keyword: RANGE
Abbreviation: RAN
Example: RANGE @@1 499 -19 29
Function:

This keyword is followed by a list of alphameric value
pairs and 1indicates that the transaction field value must
fall within the range of at least one of the specified value
pairs. This type of editing may not be performed on
coordinate (type 'C') transaction fields.

All value pairs must be alphabetic or numeric. A minus
(=) sign may precede a value to indicate that it is

46

P ———|

FILE MAINTENANCE (FM)
negative. The first value of a pair must be less than the
second value,

For binary and zoned decimal fields (types 'B! or 'D'),
an arithmetic range test is performed. RANGE operands for
these field types may not exceed 10 characters and nmust
contain numbers, or numbers preceded by a minus sign.

A logical range check is performed on alphameric fields.

Up to 10 range pairs may be specified in a RANGE operand
list.

6.2.6 Keyword: VERIFY
Abbreviation: VER

Example: VERIFY SUBRS
Function:

This keyword will be followed by the name of a single
user-supplied validation subroutine or table. It indicates
that ¢the fi=ld identified by the TD statement is to be
passed against the data validation subroutine or table. An
indication of the result (valid/invalid) is to be returned
to the systen.

validation or conversion subroutines and tables should
be written in accordance with the Users Manual, Volume I,

lntrodyction to Eile Concepts, and Volume VII, Utility
Support.

6.2.7 Keyword: CONVERT
Abbreviation: CON

Example: CON TABID
Function:

This keyword will be followed by the name of a single
user-supplied data conversion subroutine or table and

47

———

FILE MAINTENANCE (FPH)

indicates that the transaction field identified by the TD
card is to be passed through the conversion routine. The
result is stored in the original transaction field, left-
justified, wvwith ¢trailing blanks to the 1length of the
original field. The result length must be equal to or
shorter than that of the original transaction field. A
validity indicator will be returned to the systenm.

Ground rules for writing conversion subroutines and
tables are the same as those specified for the VERIFY
parameter.

6.2.8 Keyword: GENERATE

Abbreviation: GEN

Example: FIELD FLDNAM 5 1@ A GENERATE
Function:

This keyvword does. not expect or require any operands.
It specifies that the system should automatically move the
data from the transaction field to the data field. The user
name specified as the transaction field mnemonic (reference
the FIELD parameter) must be identical to the mnemonic
assigned to the file field to be updated.

GENERATE may be used to cause updating of existing
periodic subsets, wvhen it is wused with direct subset
updating 1logic statements, In direct subset updating logic
statements, the user specifies the location of the subset
control fields in the ¢transaction record by using the
control parameters on the agpropriate TD cards. If no file
match is tound for the subset control fields, a nev subset
is generated and the new record switch is turned ‘on'
(unless the fixed set does not exist, in which case an error
message will be 1logged). The user may interrogate this
switch by the POOL *BNR' instruction if desired.

This keyword may also be used to create new periodic
subsets, wvhen used in exception logic statements or range
logic statements, provided that the periodic subsets do not
contain user-defined control fields. Each execution of the
logic statement will cause generation of new subsets at the

48

FILE MAINTENANCE (FM)

end of each set to be updated. When there is no file match
against the major record control field, a new fixed set is
automatically generated. The new record switch is set 'on’
and may be tested by the POOL *BNR' instruction, if desired.

The GEN keyword need not be coded for fields identified
as control fields.
6e2.9 Keyword: ERROR
Abbreviation: ERR

Example: ERR T
ERR DS

Function:

This keyword expects a single parameter to identify the
error option to be taken when invalid data is detected in a
field by any of the edit functions specified by the TD
parameters., The options and their code identifiers are as
follows:

CODE QPTION
D Data is not to be moved to the data file.

The data move instruction created by the
GEN parameter for the transaction field
will not be executed.

B ‘ Blank or clear the receiving data file
field. The data field is set to its null
value (blanks for alphameric fields,
zeros for numeric and coordinate fields).
The option may not be wused with record
control fields.

* Accept the data,

T Delete the transaction. When this option
is used, no updating will take place with
any of the transaction fields. If a new
record or subset has been created by the
transaction, it will be deleted.

49

et

FILE MAINTENANCE (FM)

If this ERR keyword is cmitted, the default option is
ERR D. If the ERR keyword is specified, it must be followed
by a valid code identifier, Omission of the code identifier
will result in error message 20036.

As transaction data errors are detected in processing
specified by Ordinary Maintenance TD cards, they will be
collected and reported as an additional auxiliary output
stream during FM execution., The error log format will be as
follows:

TRROR
MAJOR KEY PIELD ID ERRORP MESSAGES DATA ACTION
(39 char. max.) (59 char. max.) (3¢ char. max.) CODE
XEXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXX XXXX X
XXXXXXXXKXXXXXX XXXXXX XXXXXXXXXXXXXX XXXX X

The standard error messages generated indicate the data
validation failure as specified by the OM keyword parameter.
Messages are as follows:

RANGE ERROR
VALUE ERROR
PICTURE ERROR
VERIPY ERROR

CONVERT ERROR

Tha log may be suppressed for a given field by coding an
'sS* following the error option code.

Tests for validity of a given field or the entire
transaction may be made by the POOL °*BPV?®, 'BPN?, *BTN’,
'BTV' instructions (see section 7.4.5). User-defined error
messages for this 1log require use of the POOL *ERR?
instruction (see section 7.4.6).

The ordinary Maintenance error log capabhility may also
be used when writing logic statements for the Source Data
Automation (SODA) on-line maintenance capability. When used
on-line, erroneous data is 1logged by underlining the
erroneous transaction data wvwith a key to the nmessage
indicating ¢the ¢type of error detected. (See Terminal

50

o

PSSkl

FILE MAINTENANCE (FHM)

Processing (TP) Component, Volume VI of the NIPS 368 PPS
Users Manual.

6.3 Fixed-Format Specifications

The PM component provides the user with the option of
preparing the PM control cards in fixed-format, so that
compatibility may be maintained with the 1419 NIPS. This
format is somevhat more rigid than the free-format in that
the data fields must be placed in certain card columns and

numeric values nmust be made a specified length by punching
leading zeros.

One format or the other must be used exclusively for any
given run. Fixed-format control cards can not be used with
ordinary Maintenance.

6.3.1 FMS Control Card
Format:
g 1 1 2 3 4 5
6 g 6 1 ') S 2
AAAA BBB CCCCC DDDDDD EEE PF GGGG
Description:
Field A - Card identification (must contain FMS)).
Field B - Run mode (must contain one of the
follovwing):
coM - Compile mode., The input logic statements
vill be compiled only and a check list
generated. No statements can be added to
the 1library in this mode. However, any
other library actions can bhe perfornmed.
LIB - Logic Statement Library update mode.

Logic statements can be compiled, and all
library actions can be performed in this
mode.,

51

i 'm.w—.m-ﬂ..«,. -

——— /TS

FILE MAINTENANCE (FH)

Note: For sequential files, a run mode of COM or LIB
will cause only compilation to be performed. No
library action will be accomplished.

GEN - Data file generate mode.
UPD - Data file update mode.

Note: Logic statements may be compiled and added to
the Logic Statement Library with file generation or
file update.

Field C - File nanme. The file for which all
processing specified is being performed.
A file name must be specified in this
field.

The following fields (D through G) are left blank if LIB
or COM mode is selected.

Field D - This field is used to specify the report
- name for the first set of transactions
that will be processed. The report name
may be from one to six characters long
and must bhe left-justified. A report
name need not be specified in this field
if the user can use the report identifier
card, However, when the user is updating
with tape transactions, it is quite often
more convenient to specify the report
name here than to ¢try to generate a
report identifier card image on his
transaction tape.

Pield E - This field is used to specify the
transaction source.

5I0 - Card transactions.
MRC - Tape transactions.
BLANK - No transaction data.,

Field F - LS - 1Indicates that logic statement
compilation or Logic Statement Library

52

FILE MAINTENANCE (FM)

maintanance is to be performed during the
run.

BLANK - No logic statement compilation or
Logic Statement Library maintenance is to
be performed.

Field G T DISK - Por direct access processing (ISAM
or VSAM) .

TAPE - For sequential processing (SAM).

6.3.2 Library Action Cards

g g %% A% 20 2@ IR 4
1 6 @2 56 @9 S @ 5 . @ 5
MNNNN OOOOAAAAACCCCC DDDDDD LLLLLL

/
55 5 6
g 2 5 7
BBB EEFFGGHHITJJK
Description:
Field A - Card Identification. It must contain the
word START.
Field B - Action Identif ication. It must contain
ona of the following codes, left-
justified:

DPF = Delete all reports and all
statements for a file.

AR - Add a report name. 3

DR - Delete a report name and all
statements for a report.

ASP - Add a statement permanently.

AST - Add a statement temporarily

53

FILZ MAINTENANCE (FM)

DS = Dele+ta a statement.

3
P.
0]

-
a

C - File Name. TI%t must contain a S-character
alphabetic file name, If the library
action <card is being used to add a file,
delete a file, or request compilation of
a Range statement without transaction
data, only fields A through C need to be
punched.

Field D - Report Name. This field contains a 1- to
6-character report name, left-justified.
If the library action card is being used
to delete a report, field D is the last
field that need be punched.

Fields E through K are required only when the action
code 1is Add Report (AR). They are used to specify the
number and location of the transaction identifier fields.
At least one and up to three identifier fields may be
specitied in this maaner. Fach location is specified by a
pair of 2-digit numbers, The total length of transaction ID
fields may not exceed six characters.

Field E * NN - High=-order location of +the major

(Required) identification field.

Field F - NN = Low-order location of the major

(Required) identification field. °

Field G = NN - High-order location of the second

(Optional) identification field.

Field H - NN - Low-order location of the second

(Optional) identification field.

Field I - NN = High=-order location of the third

(Optional) identification field.

Field J - NN - Low=-order location of the third

(Optional) identification field. -

Field K - N = Number of transaction ID fields. N

(kequired) must be a number between one and three.
sS4

FILE MAINTENANCE (FM)

The following fields are wused only when compiling,
deleting, or adding a statement to the library.

Field L - Statement Name., This fiesld contains a 1-
to 6-character statement identifier,

left-justified.
Field M - This field must contain a T, indicating

that the 1logic statement will be used
with transaction data.

Field N = NNNN-Length of the fixed portion of the
transaction data. NNNN must be a
4-digit number nct greater than 1,000
with leading zeros as required. -

Field 0- - NNNN-High-order position of the
transaction's variable field. NNNN
must be a 4-digit number with
leading zeros as required.

. BLANK = No variable transaction field.

6.3.3 Transaction Descriptor (TD) Cards
Pormat:
g o 11 22 23 333 3 4 4 5 5
1 6 2 6 g1 49 345 79 5 g 2
BBBBBBB AAAAA CCCC DDDDEE P GGGGGG H ITITIIIII
Description:
Field A - Card Identification. It must contain the

word PIELD.

Field B - Transaction Field Label. Labels wmay be
from one to seven characters in length
and must be left-justified in this field.
The following rules apply to transaction
field labels.

55

PO s

"

ettt e

FILE MAINTENANCE (PM)

Field C

Field D

Field E

Field P

a. They may be alpha or numeric
characters, but they must begin
with an alpha character.

b. No embedded blanks may appear in
a label.

NNNN-Transaction Pield - High-order
position. Must be a U4-digit number, with
leading zeros as required. This field
may be 1left blank on a Transaction
Descriptor card that is part of a set of
cards that are being used to describe
contiguous fields. However, if this
field is left blank, extreme care must be
taken to maintain the sequence of the
cards. If the Transaction Descriptor
card is teing used to assign a 1label to
a variable transaction field, field C is
the las* one that need be punched. The
TD card for the variable field aust be
the last card in the Transaction
Descriptor deck.

NNNN-Transaction Field Length. Must Dbe
a U4-digit number with leading zeros as
required.

N-Transaction Control Field 1Indication.
If the transaction field is part of the
control group, N must be a 2-digit number
between one (@l) and sixty (60). A one
indicates that the field contains the
major control. The numbers @2 through 6§
are used to indicate the minor fields.
If a field is not part of the transaction
control, N must be blank or zero (@9).

Mode of Transaction Pield. This

parametar specifies the mode of the
field., The following codes may be used.

56

FILE MAINTENANCE (FHN)

Field G

Field H

*If this
checked and
* accordingly.

Field I

Alphabetic
- Binary

- Coordinate
- Alphanmeric

(Mol J

If omitted, D is assumed.

Statement Name (optional). This field,
if used, contains the name of the
statement being processed.

Control Indicator (optional). This field
specifies the type of control field, and
may contain the following codes.

M - Major
S = Secondary
*N - Not control

parameter is omitted, other parameters are

the

program sets the control indicator

Corresponding subset field. Por a direct
subset update statement only. This
parameter specifies the subset field to
be used for a control field on a direct
subset update statement. It nmust be
omitted for all other types of
statements,

6.3.4 Language Identifier Card

Pormat:
g 1111
1 6789

AAAA

57

FILE MAINTENANCE (FHN)

i Description:
Field A - Language Identification.

POOL =~ 1Indicates POOL language source
{ cards follow.

¥

‘.

‘; J
|

1

i
]
kY
|
¥
|
ok
|
L 58
i
2 e 5 " % >

- —— PO e

=4

| ———————

FILE MAINTENANCE (FHM)

Section 7

POOL LANGUAGE

7.1 Card Pormat

The format of POOL coding is as follovs: Each
iastruction operator is coded in columns 16-18. Operands
begin in column 21, If any instruction is labeled, the
label will appear as a mnemonic in columns 6-12.

g 1 2
6 6 1
SYMBOL OPERATOR OPERANDA,OPERANDB,OPERANDC,OPERANDD

Telel Symbols

Instruction symbols may be from one to seven characters
long. The first character must be alphabetic. The
remaining characters may be alphameric.

7.1.2 Operators

The operators specify the 1logical functions to be
performed. These are discussed in detail in section 7.3.

7ele3 Operands

There may be up to four operands per instruction,
depending on the operator. The operands are separated by
commas or a single blank. The types of operands and the

coding requirements for each type are discussed in section
Te26

Telel Comments

The user may also comment on his instructions. At least
tvo blank must separate the comment from the last operand.

59

FILE MAINTENANCE (¥M)

7.2 Operand Coding

The operands of each POOL instruction generally specify
fields, indicators, and tags upon which the POOL operator
acts., The following conventions are used in specifying the
operands:

a. Data__File _Fjelds--Fields of a data file are
indicated by the actual field or group name
assigned in the File Pormat Table (FFT). These are
denoted by one to seven characters., The first
character must be alphabetic, and the field nanme
must not contain embedded special characters.

b. Transaction Input Fjields--Transaction input fields
(input data used in updating the data base) can be
identified by an alphabetic mnemonic from one to
seven characters in 1length, prefixed by a dollar
sign ($). The transaction field name must be
identified by means of a TD card (refer to sections
6.1.3 and 6.2 or section 6.3.3).

The transaction field may also be specified by the
form Tm/n, where "m* and "n" specify the high~ and
low~order positions of the transaction field in the
transaction record. No spaces are left between the
characters of this operand, e.g., $ITEM or T4@/55.

Ce Indigrect Desigpation~-A data file field may be
indirectly designated by the contents of the

transaction input record. In this case, the letter
C prefixes the wusual operand form for the
transaction field except vhen high- and low-order
transaction field positions are specified. In this
case, the C replaces the T, e.g., CS$TRAN or C20/27.
The contents of the transaction field npust be a
data file field or group name as specified in the
FFT.

d. Subroutine Processing Validity Codes--Three of the

POOL macro instructions have an operand which
controls the printing of error amessages vwhen an
incorrect or invalid value is processed by a
table/subroutine, When an invalid input is
detected, it will not be used by PM. However, if

60

B it — 4

‘&Wﬂ‘?ﬁﬁwwst,‘q*m BN 0T

FILE MAINTENANCE (FHM)

fe

g.

the value ca. from a transaction record, the
remaining dat>» will be used as specified in the
logic statement. The validity codes (C operands)
function in the following fashion:

Code A
or R - When the input data is invalid, the
data, its source, and an error message
are printed on the run history file.

Code I ~- No printing occurs in event of an error.

Iastruction Tags--When one of the POOL instructions
specifies a branch to another instruction, the
operand is ¢the 1- to 7-character alphabetic tag
assigned to the branched-to instruction,

Literals--Literals may be used as operands in most
instructions. The 1literals may be alphabetic,
signed numeric or unsigned numeric. Alphabetic
literals are enclosed wvwithin single quotes. All
enclosed literals are considered alphabetic if any
character included is other than a valid numeric
character.

Numeric literals do not need to be enclosed within
single quotes. An unsigned numeric 1literal is
considered positive, and a signed numeric literal
will have the sign set in the low-order byte during
processing.

A signed numeric 1literal enclosed in quotes will
cause the sign to be carried as an additional
character.

One restriction applies to the use of alphabetic
literals; a single quote may not be embedded in a
literal.

EBCDIC _Work Area--FM provides a 999-byte EBCDIC
work area for formatting auxiliary output records,

for accumulating summary information and for
passing information betveen logic statements. POOL
instructions will reference this area by the
operand notation WX/Y where X and Y are the high-

61

it ns =

e

FILE MAINTENANCE (FH)

and low-order locations of a work area field, e.g.,

Wl/190 or W20@/239. A maximum of 994 bytes may be
| specified in auxiliary output instructions (e.g.,
1, POOL PRT, NPL PRINT). Violation of this limit will
| result in a System 001 ABEND.

! h. Binary Work Area--FM provides a second work area

E . vhich can be used to perform arithmetic functions

. in binary. This area will be 2§ words (8¢ bytes)
long. POOL instructions will reference words in
this area by the notation BX/ or BXX/ where X nmust
be betveen one and 20. This area will be
restricted to arithmetic computation.

‘ 7.3 PCCL Instructions

7.3.1 Alphabetical Listing

In this 1list, all POOL instructions are presented /
| alphabetically with their group numbers.
| group Lastruction Pupction
i 2 ADC A,B,C A+B=C if A is not blank
J: 2 ADD A,B,C A+B=C
i 2%y APR A,B,D,C Store value at D from

field C in NIPS record
ID B of file DDNAME A

3 BEQ A branch if B EQ A
22 BFN A,B branch to B if invalid
oM field A.
22 BPV A,B branch to ﬁ if valid om
field A.
3 BGE A branch if B GT or EQ A
3 BGT A branch if B GT A
3 BLE A branch if B LT or EQ A
62

|

B —————

FILE MAINTENANCE (FN)

group
3
3

3

13
17
18
20

Instruction

BLT
BNE
BNR

BNV

BPO
BRA
BRO

BSS

BS2

BTN

BTV

CLR
COA
CON

CVF

A

A

A

63

Pupction

branch if B LT A
branch if B NOT EQ A
branch if new record

branch if invalid (GEN,
TBL,VAL,APT)

branch if pgm sw 1 is ON
branch unconditionally
branch if overflow

create subset for field A
before subset or a* end of
set if all records have been
processed.

branch if pgm sw 2 is OWN

branch if OM found any field
invalid.

branch if OM found all fields
valid,

set field A to blanks
compare alphabetic B to A
compare numeric B to A
delete variable field A in
current periodic subset, or

delete all subsets in vari-
able set A,

FILE MAINTENANCE (¥HM)

Group Instruction

4 DDR
5 DSB A,B
9 DSC A
2 DVC A,B,C
2 DVD A,B,C
4 END

23 ERR A,B
6 GEN A,B,C,D
4 HLT
3 LNK A

10 LOG A
1 NAC A,B

64

Function

delete current NIPS record
and branch to logic statement
exit.

delete subset containing
field A. Address the next
subset in the set or branch
to B if the last subset vas
deleted.

delete subset containing
field A. Address the next
subset.,

A/B=C if A is not blank

A/B=C
end of logic statement.

SODA: underscore the invalid
field A and display the
literal B.

OM: error log field A with
literal B.

call sub/tab B to process
field A, Store the result
at D. Use validity code C.

establish logic statement
exit

branch to A. Save NSI address
for RET.

print field A on first printer
(same as PRT)

move alphabetic A to B if A
is not blank,.

P e

FILE MAINTENANCE (PNM)

Group
1

19

14

14

21

21

25

Instruction
MAL A,B

MCS A,B

MCT A,B

MCW A,B

MNC A,B

MNU A,B
MUC A,B,C
MUL A,B,C

MVF A,B

MVR A,B

NCT
NOP

OVF A,B,C

65

Function
move alphabetic A to B

move alphabetic A to minor
control field B.

move alphabetic A to major
control field B.

execute MCT and write
immediate

move numeric A to B if A is
not blank

move numeric A to B
A*B=C if A is not blank
A*B=C

move A to variable field or
variable set B, Variable
set field length is FFT
definition; transaction field
may be split

move A to variable field or
variable set B. Variable set
field length is transaction
length

no operation
no operation

move variable field A to work

area B, Move maximum 256 bytes per
execution. When the last segment of
the variable field has been moved,
branch to C

- e N -

N e——

FILE MAINTENANCE (FM)

group
12
12
5

16

12

12

26

1

dastruction

PCH
PC2

POS

POV

PRT

PT2

RET

RVF

SDT

SIE
SIH
SIL

SHMR

SOF
S00

SPF

66

Punction
punch A (pocket 1)
punch A (pocket 2)

find first subset for field
A. If none, go to B

tind first subset for field
B which contains value A, If
none, go to C

print field A on first printer
(same as LOG).

print fieid A on second printer.

branch to instruction following
last LNK.

reset OVF segment pointer for
variable field or variable
set A to first byte in the
field

store PM start date/time in
A. YYDDDTTTT.

set condition to EQ
set condition to GT
set condition to LT

branch to A when last RANGE
record has been processed.

set overflow OFF
set overflow ON

set pgm sv 1 OFF

FILE MAINTENANCE (FNM)

Group
24

16

12
12

Intruction

SSS

STP

STV

SUB
SUB

SVF

SVo

S2F
s20

TBL

VAL

WRT
WT2
SPO
SRF
SRO

A

A,B

A,B,C

A,B,C

A,B,C

A,B,C,D

A,B,C

67

Function

store consecutive number in
field A (all subsets).

address next subset for field
A. If none, resume sequential
execution of POOL instructions.

address subset which follows

‘subset for field B which

contains value A. If none, go
to. C,

A=B=C
A-B=C if A is not blank.

set falidity s¥ to valid
(see SNV)..

set validity sv to invalid
(see BNV).

set pgm sv 2 OFF

set pgm sw 2 ON

lookup value A in table B
using condition C, Store

the function at D,

call subroutine B to process
value A using condition

C.

write A on auxiliary file 1
vrite A on auxiliary file 2,
set pgm sv 1 ON

set new record sv OFF

set new record sv ON

O

FILE MAINTENANCE (FHM)

group Iostruction Fupction
12 WT3 A write A on auxiliary file 3.
12 . . WT4 A write A on auxiliary file 4,
12 TS A write A on auxiliafy file 5.
4 XNP ¢ branch to exit if no exception

processing. If not the first
instruction in a RANGE state-~
ment it is a no-operation.

7e3.2 Valid Operands Chart

Symbols used in the chart have the following meanings:

TP -~ transaction field J
DFP -~ data file field

IA - indirect address

WA -~ work area

LV -~ literal value

SL - statemant label

ST - subroutine or table
VC - code value

A - alphabetic

N - numeric

B - binary

E - EBCDIC(work)

C = coorindate

control field

periodic set

group

variable field (periodic or variable set)

ol
wn
I I I |

68

FILE MAINTENANCE (FHM)

Groyp _TF__DP__IA WA LV __SL ST__vC_ __A_N 3 E_C _CP PSS GR__V

| e | e

QPERAND_'A®
g 1 X X X X X X (X X1 X X X X

2 X X X X X X| X|X X X

3 X

4 none

5 X X X|Xx| X X X X X

6 L |X X X X{X| X} X X X X

7 XX X X X X| X|X X X X

8 X | X X X X X[X[XX X X X

9 X X X]X] X X X X X

10 X |X X X X| X X X X X I
1 X X X X1x) x| Xx X X

12 X | X X X X| X X X X X

13 X |X X X X X|{ X{X| X X X

14 XX X b 4 X X| X| X X_ X X X

15 reserved

16 XX X X X X| X} X| X X X X d
17 L1X X X X X| X X X X X

18 X | X X X ; X X{ Xt X X X X

19 XX X X X X| x| x| X X X X

69

————R S——

i

FILE MAINTENANCE (FM)

Geoyp IE__DP_ _IA WA _LV__SL__ST__VC PS __GR
20 X X | X
21 X | X X | x| x Ly
22 X
23 X
24 X X o | s
25 X X
26 X > Al B
27 X X | «x

70

A

PR —

FILE MAINTENANCE (FM)

9‘9“-]-1%-93--151-—ﬂw—-uT-S‘T ST__V AT “T B_E__C __CFP_PS_GR V¥
QPERAND *B! ~-| Omitted|groups havel nc|B |operand

1 X X X X! X X| X X X

2 X | X X X X X| X| X X X X

5 X

6 X

7 X | X X X X X! x| X X X

8 X

]

14 X X X| x| X X X

16 X X X(X{ X X X X

17 X | X X X X X[X X X X X

18 XX X X X X| X| X X X X /
19 X X X| x| X X X X

21 X X[X X X X

22 X

23 X X

25 X X

27 X X[X X[X X

71

FILE MAINTENANCE (FHM)

Group TFP__DP__IA__WA__LV__SL ST _VC __A_ N _B CF__PS__GR
nggglﬁ_il: - Onitzd—cr;rmllps have|no 'CI lperanq

2 X X X X| X X X

6 X

8 X

16 X

25 X

27 X X| X X| X
QPERAND *D* - omitted groups have| no |*D' operand

6 X X X| X| X X X
27 X

72

R AT I

rﬁwyywwm’

FILE MAINTENANCE (FHN)

7.3.3 Instruction Groups

The POOL instructions are organized into various groups
according to the number of operands and operand types
alloved. Therefore, all the permissible operands are
indicated by the respective group of each instruction. The
following subsection, which discusses each POOL instruction,
will also indicate to which group it belongs.

The following tables are organized by instruction
groups. For each group, the number of operands, the
instructions that belong to the group, and a 1list of the
legal operands are shown, The following legend should be
used to interpret the legal operands.

DF - Data Pile
IA - ‘Indirect Address
LV - Literal Value
SL - Symbolic: Instruction Label
ST - Subroutine or Table
TF - Transaction FPield
vC - Validity Code
WA - Work Area
Group 1

U REERERERR R R REE R R R R Rk Rk kK kR kR Rk kR kR kR k kR Kk

*Number of Operands-2 *
*Instructions-MAC, MAL *
* *
*Legal A Operands Legal B Operands *
* TF,WA,LV,IA,DF WA,IA,DF L3
EREERRERERERERRERERERRRER KR EARRRRREER SR KRR KRE R KRR KR AR RKR

Group 2

T T T T T R P T
*Number of Operands-3 *
*Instructions-ADC, ADD,DVC,DVD,NUC,MUL,SUB,SUC *
* *
*Legal A Operands Legal B Operands *
* TF,WA,LV,IA,DP TF,WA,LV,IA,DF *
* "
*Legal C Operands *
WA,IA,DF *
EEERER R R R ER R RS R R R R R R AR R AR R R R KRk R Rk kR

73

FILE MAINTENANCE (FHM)

Group 3
#tttgttttttttttttt#ttttttt#tttttttttttttttttttttttttttt#tt
*Number of Operands-1 *
*Instructions-BEQ, BGE,BGT,BLE,BLT,BNE,BNR,BTV,BTN, *
* BNV, BPO,BRA,BRO,BS2,LNK,SHR *
& *
*Legal A Operands *
*x SL *
L R ey Py
Group 4 .
EERERERRKERRRRERKERERREERERRRRER KR RRE AR AR KKK E KR RR KRR K KR KKK
*Number of Operands-None *
*Instructions-DDR, END,HLT NCT,NOP ,RET,SIE,SIH, ' *
* SIL,SOF,S00,SEP,SPO,SRF,SRO,SVPF, *
* SV0,S2F,S20,XNP *

Mo 2 Ak o o ko o o o e ke e e e e ok ol e e e e e o o e ek ok el ok ook o ok ko ok ke e ok e kokok ok

Group 5
ke 0k kg o o 2 g ok o e ok ook s e ok e o ek ok ok ok ol ok ok ok ok sk ook ko ok sk ok ok ko K ok ok e okakok ok

*Number of Operands-2 *
*Instructions-DSB, POS,STP *
* | *
*Legal A Operands Legal B Operands *
* Ia,DF SL *

EEEERERREEE R KR KEhR KRR KRR R KRRk R bk Rk k Ak kR kR Rk kR ER KK

Group 6
SEEERERE R RN R RERER KRR RKRRR KRRk ke kokokok kg ok kR Rk Rk Kk kR Rk

*Number of Operands-4 *
tIgstructions-GEN, TBL *
L *
*Legal A Operands Legal B Operands *
© TF,WA,LV,DP ST *
. *
*Legal C Operands Legal D Operands *
e IC WA,DP *

SR SR RAPRNNRN NS RN RN SR RN R R R R RN RN R R R AL KR KRRk R Rk KRR KRR kR Kk Kk

p————

R T S M

PILE MAINTENANCE (FM)

Group 7
EERRERRE KRR RR KR RRR R KRR KRR R R R KRR R KRR KRR R KK R R kK

*Nuaber of Operands-2 *
*Instructions=-MNC, MNU *
* *
*Legal A Operands Legal B Operands *
* TF,WA,LV,IA,DF TF,WA,LV,IA,DF *

AEEEXEEEEEE R KRR ERREERRER KRR EE Rk R KRR KRR KRk kkkkEEE R R RE KK

Group 8
T T T T
*Number of Operands-3

*Instructions=-VAL

*

*Legal A Operands Legal B Operands
* TF,WA,LV,IA,DF ST

3

*Legal C Operands

* VC

Ll e Ty

LR BE SR AR BE B B

Group 9
T T I e Tt it

*Numper of Operands-l =
*Instructions-BSS,DSC #
* *
*Legal A Operands *
* IA,DF *

A ok o ok o ok ok o ok ok ok ok ok ok ok o e ok ok ok ok o ok ke ok o koK Ak ok ok ok ke ok ok ok O ok ok ok ok ok ok

Group 10
ok ok ko ok ok K ok Kk o gk kR ok ok o ok ok o ok ook oKk ok ok K ok ok ok ok kol o ok R ok ok o ok ok ak ok ko ok
*Number of Operands - 1
* Instructions - LOG

E 3

* Legal A Operands

* TF,LV,EBCDIC WA, ALPHA AND DECIMAL DF
ok R o o o o o o R K o ok o ok ok ook R o o R o ko o ok ok ok o ko ok

% % % % %

79

FILE MAINTENANCE (FM)

Group 11
EEREEERRREEERARERKERRERRRKRRBRRERERER AR KRR RRRK R KRR ERRRRR RS
*Number of Operands-1l
*Instructions=SDT

*

*Legal A Operands

* WA,IA,DF
EEREERERERKKKRREER KRR R RRRREE RRRR KRR KRR EE KRR KR KR ER Rk

* % % % %

Group 12 ;
EEREERERREEREEREERKEERKEER KK RRRR KRR KR KR RE KRR Rk RE R R KRR KK

*Number of Operands-1l
*Instructions-PCH,PC2,PRT,PT2,WRT,WT2,WT3,
* WT4,WT5

*

*Legal A Operands
« TF,LV, EBCDIC WA, Alpha and Decimal DF
Ao o ok ok ok ok ok e e o o ok ok o ok K ko s e o ok ok ke ok ok 3k ok s ook ke ok e ok ool gk o ok o ofe ok ok ok ok ok ok

Group 13

EEEEEEREEREE R KRR ER KRR R KRR KRR KRR R R R KRR Kk R KRR Rk Rk kk kR kKK
*Number of Operands-l
*Instructions-CLR
*Legal A Operands

* TF,WA,IA,DF

SEREEE AR RERE R K ERERE KR KKK E R KR KRR R E KR kR AR R kR KRR Rk Kk kRkkk Kk

* % #* % *

Group 14
t‘t‘ft‘tt‘ttt#*##ttt#ttttt#tttt*#*###tt#ttttt#tt#tt*#*‘tt*
*Number of Operands-2

*Instructions-MCT, MCW

*

*Leg2l A Operands Legal B Operands
* TP,WA,LV,IA,DF IA,DP

T T T T e T T

% * % %8

Group 15 Reserved

76

L3R IR B b AR

FILE MAINTENANCE (FHM)

Group 16

L L T
*Number of Operands-3

*Instructions=-POV,STV

*

*Legal A Operands Legal B Operands
*« TF,WA,LV,IA,DF IA,DF

*x

*Legal C Operands

* SL
R T eyt

LB IR R R BE SR R

Group 17
e s T PPyt

*Number of Operands=-2 *
*Instructions-COA *
* *
*Legal A Operands Legal B Operands *
* TF,WA,LV,IA,DF TP,WA,LV,IA,DF *
RKERREREE KRR ER KRR R R KRR KRR R KRR KK KR KRR kR kR R R
Group 18

EEREEREERERRREERERERERRKREKE KK KR ER R KR RR KR Rk Rk k kR Rk kR kkkk gk
*Number of Operands-2 *
*Instructions-=CON *
* *
*Legal A Operands Legal B Operands *
* TP,dA,LV,IA,DP TF,WA,LV,IA,DF &
R T R e ey 2y
Group 19

T I Ty R S T T T 2
*Number of Operands-2 *
*Instructions-MCS *
* *
*Legal A Operands Legal B Operands *
* TF,WA,LV,IA,DF IA,DF *

EEEEEK KR KRR E R KR KRR KRR R KR KRR kR kR kR Rk kX

77

TP centan s

o

FILE MAINTENANCE (FHM)

Group 20

FEEREERE R R EE R ERREEE G R E KRR KRR R Kk kF "k kK R KKk Rk Kok kR ok
*Number of Operands-1
*Instructions-CVF

*

*Legal A Operands

* DF

REREERE R R EEKE R ERE R KRR R R R R KRR R KRR kR Kk Rk kR k ko

L IR 2R 2R 2R

Group 21 -
T

*Number of Operands-2 *
*Instructions-MVF, MVR *
* i y *
*Legal A Operands Legal B Operands *
* TF,WA,LV,IA,DF (variable Field) DF *

3

TF (variable Set) DF
T T T T L T Ty ety Py Py PP YR P T T

Group 22
REEEREEEREKEREEEEERERRERKREREEREREREERRKE KR AR EKEREE KRR EREERE KKK

*Number of Operands-2 *
*Instructions-BFV,BFN *
* *
*Legal A Operands Legal B Operands *
* TF SL *

EEEEERE R REEEEREER KRR ER R R KRR R R KRR KRR R ke Rk kR kR Rk kkkkEk

Group 23
s T

*Number of Operands-2

*Instructions-ERR *®
* *
*Legal A Operands Legal B Operands *
* TF LV *
SEREERER AR R ER R R R RN R AR SRR SR R RS R RR R R R Rk AR K KRk

78

FILE MAINTENANCE (PN)

Group 24

CEEEEREE R R R R KR R KRR R KRR Rk Rk R h Rk
*Number of Operands - 1 *
*Instructions - SSS *
* *
*Legal A Operands *
* TIA,DF,NUMERIC OR BINARY *
EERRERERERE SR KRR KRR KRR KR KRR E R R KSR AR AR KR AR R SR REE

Group 25

SR RE KRR EEEE R R EE AR R R KRR AR E R R KK K EEE R R R R R kR kg gk kkE
*Number of Operands-3 *
*Instructions-0OVF *
* *
*Legal A Operands Legal B Operands *
* DF WA *
* *
*Legal C Operands .
* SL *
REEEEEEE R EE R KR EEKE R R RS E R KRR ERR KK KR ER AR S S AR SRS S SR SR S0 S

Group 26
t#8#2“*##‘tt‘ttt‘ttt#tt#t‘tt#ttt##.tt‘t‘#t““t“.“.....‘
*Number of Operands-1
*Iastructions-RVP

*

*Legal A Operands

* DF

*

e R T P P T T R P P R PP T R TR R T Y T

LR IR R IR IR

Group 27
L T T T Ty

*Number of Operands - 4 *
*Instruction - APR *
* *
*Legal A Operands Legal B Operands *
* TP,LV,WA TP,LV, WA *
* *
*Legal C Operands Legal D Operands *
* TP,LV,WA WA *
* *

BEEER SRR EER AR R R R R R R R R AR R Rk ®

79

i e

—v——_—.___.w__iﬁfA

FILE MAINTENANCE (FN)

7. 4 POOL Instructions

There are 84 POOL instructions available, each of which
can be wused to build the updating logic statements for FM.
These instructions can be divided into five basic types
according to the function they perform. These are:

ae Environment establishing instructions which
allow the user to selectively handle the
periodic set fields of the data base.

b. Data handling instructions wvhich allow the
user to perform processing against the fields
of the data base such as moving, arithmetic
operations, and transformation.

Coe Control instructions used to control the
sequence of instruction execution.

d. Display instructions which allow the user to
specify certain output functions.

e. Validity test instructions and error 1logging
instructions used with OM and SODA.

Each of the 84 POOL instructions (within its basic type)
is described below.

Telel Environment Handling Instructions
Position to Pirst Subset of Periodic Set (Group 5)
POS A,B

This instruction causes the first subset of the
periodic set containing field A to be made active;
i.e., positioned so that processing can be
performed on the data contained in the first
subset, If there are no subsets of the set in the
current data record, the instruction with tag B
will be executed next.

Step to Next Subset of Periodic Set (Group 5)

STP A,B

80

Delete

FILE MAINTENANCE (F¥M)

Position

This instruction causes the next subset after the
current active subset of the periodic set
containing field A to become active. If there is
no other subset to be made active, the activity is,
in effect, placed after the last subset and
sequential execution of the POOL instructions
resumes, If the instruction is successful the next
subset is made active and the instruction with tag
B is executed.

on Value (Group 16)
POV A,B,C

This instruction causes the activity for a periodic
set to be placed at the first subset with the field
specified by operand B containing the data value
specified by operand A. If no subsets of the set
meet the requirement, the instruction with tag C
will be executed next.

Step to Value (Group 16)

STV A,B,C

This 1instruction causes the next subset, after the
current subset that contains the data value
specified by operand A in the field specified by
operand B, to be made active. If no subsets of the
set meet the requirements, the instruction with tag
C is executed next,

Subset of Periodic Set and Branch (Group 5)

DSB A, B

This instruction causes the currently active subset
of the periodic set containing field A to be
deleted from the current data record. If the
deleted subset was the last of the periodic set,
the subset activity is placed after the last one,
and a transfer to the instruction with tag B is

81

satnt akad s iV i

S

Py

ISy o

FILE MAINTENANCE (FNM)

made. Otherwise, the next subset is made active,
and sequential operation continues,

Delete Subset of Periodic Set and Continue (Group 9)
DSC A

This instruction causes the active subset of the
periodic set containing field A to be deleted from
the current data record., If there is a subset of
the same set following the deleted subset, it is
activated. If not, the activity is placed after
the last one. In either case, sequential operation
continues.

Build Subset of Periodic Set (Group 9)
BSS A

This instruction causes a subset of the periodic
set containing field A to be built A and placed in
the current data record. The active subset of the
periodic set and any that follow are moved down in
the data record, and the newly generated subset is
placed in the position formerly occupied by the
last active subset, If the activity was placed
after the last subset of the periodic set by some
previous instruction, the new subset is placed
after the last one. In either case, the newly !
created subset becomes active and 1is ready for

processing by other instructions.

Delete Current Data Record (Group U4)
DDR
This instruction notifies FM that the current data
record is to be deleted; i.e., not to be included
in the output data file. After execution of this
instruction, all processing is terminated for the .
update statement.
Sequence Subsets (Group 24)

S5S A

82

B e .

FILE MAINTENANCE (FM)

Tel.2

This instruction places sequence numbers in field
A of the periodic containing field A. The sequence
numbers will always begin with one and will always
be incremented by one for each subset. This
instruction may not be used to modify the contents
of the system generated PSSQ fields.

Data Handling Instructions

Auxiliary File Reference (Group 27)

AFR A,B,C,D

This instruction allows the user to move the
contents of field C of the data record with
major record identification B of the ISAM or
VSAM file with DDNAME A into the EBCDIC work
area D. The auxiliary file must be a NIPS
data file of 1ISAM or VSAM organization, bat
must not be the primary data file. Field C
must be an alpha field or group, a numeric
field or group, a decimal field or group,
variable field, or a coordinate field within
the fixed set. Binary and coordinate data is
.converted to EBCDIC before being placed into
the work area D, If the data from the field
C has an output 1length greater than the
specified work area length truncation occurs
from the right, If field C is shorter than
the work area, the data is left justified and
padded on the right with blanks. If any error
occurs that prohibits the return of data to
the work area (i.e., no DD card with DDNAME A,
no existing major record identification B, I/O
error), an error is logged fully describing
the problem, and the validity indicator is set
to invalid. Only if the referenced data is
successfully returned to work area D is the
validity indicator set to valid. APR operates
in a read only mode; no data can be entered
into the auxiliary file with this imnstruction.

813

PRSI SUS——

—

FILE MAINTENANCE (FHM)

Move Alphabetic Field to Field (Group 1)

Note:

MAL A,B

This instruction moves the content of field A to
field B. The content of field A is treated as
alphabetic information. If the field to be moved
is shorter than field B, blanks are appended on the
right. If the field ¢to be moved is longer than
field B, the resultant content of field B is
truncated from the right.

The *MAL* instruction is based on a 368 ALC move
instruction which moves left to right through each
field a byte at a time. Therefore, caution must be
used vhenever fields overlap (e« g., MAL
W10/12,811/13) .

Move Numeric Field to Field (Group 7)

Note:

MNU A,B

This instruction causes the content of field B to
be set to the content of field A. The content of
tield A is assumed to be a numeric quantity. If
the field to be moved is shorter than field B,
necessary zeros are appended on the left. If the
field to be moved is longer, the resultant content
of field B will be truncated from the left.
Numeric transaction data may be signed or unsigned.
Signed transaction data will have the sign set in
the 1low-order bhyte during processing; if unsigned,
the data is considered positive. Transaction data
may be signed in tvo ways: (1) the sign may be
placed in the low order zone; e.g., =2 would be
punched as a K, +1 would be punched as an A, etc.;
(2) a ¢+ sign or - sign may immediately precede the
first digit of the data (although a + sign will in
effect be ignored).

The °'MNU' instruction, wvhen wmoving data from a
decimal area to a decimal area, uses a 360 ALC move
instruction vhich moves left to right through each
field a byte at a time. Therefore, caution must be

84

ot et i =

b |

!

TR AT R T, B WL

FILE MAINTENANCE (FH)

used vhenever fields overlap (€<g., MNU
wW10/12,¥W11/,13) .

Move Conditional Alphabetic Field tc Field (Group 1)
MAC A,B

This instruction is executed exactly as MAL except
that if the field toc be moved is blank, no action
is taken; i.e., field B is left undisturbed.

Move Conditional Numeric Pield to Field (Group 7)
MNC A,B

This instruction is executed exactly as MNU except
that if the content of field A is blank, no action
is taken; i.e., all of field B is left undisturbed.

All of the following arithmetic operations use three
operands. The user specifies in the A and B operands the
fields with which the arithmetic operation is to be
performed, These two fields are not disturbed by the
operation.,

The C operands specify the field into which the result
of the operation is to be stored.

If he desires, the user may specify the same field for
all three operands or for any two operands. For instance,
he may add A to B and store the result in A,

Add Field A to Pield B, Store in Field C (Group 2)
ADD A,B,C

This instruction algebraically adds the content of
field A to the content of field B and stores the
result in field C. The resultant sum is moved
numerically to field C, and the sum is truncated or
extended by zero characters on the left as
appropriate. If the resultant sum is truncated,
the overflow indicator is turned on.

85

FILE MAINTENANCE (PNM)

add Conditional Field A to Field B, Store in Pield C (Group
2)

ADC A,B,C

This instruction is identical in execution to ADD
except that if the content of field A is blank, no
action is taken.

Multiply Field A by FPield B, Store in Field C (Group 2)
MUL A,B,C

This instruction causes the content of field A to
be algebraically multiplied by the content of field
B and the result to be stored in field C. As with
ADD the result is stored numerically in field C,
and the overflovw indicator is set as appropriate,

Multiply Conditional Field A by Pield B, Store in Field C
(Group 2)

MUC A,B,C

This instruction is identical in execution to MUL
except that execution does not take place if the
content of field A is blank.

Divide Pield B into Pield A, Store in Field C (Group 2)
DVD Aa,B,C

This instruction causes the content of field A to
be divided by the content of field B and the result
to be stored in field C. Results are moved to
field C numerically from right to left, and zeros
are truncated or added on the 1left as required.
The overflow indicator is set as in MUL,
Remainders are lost. s 3

Divide Conditional Field B into Pield A, Store in PField C
(Group 2) ﬁ

DVC A,B,C

86

e TS,

FILE MAINTENANCE (FM)

Subtract

Subtract

(Group 2)

This instruction is executed exactly as DVD except
that execution does not take place if ¢the content
of field A is blank.

Field B from Field A, Store in Pield C (Group 2)
SUE A,B,C

This instruction algebraically subtracts the
content of field B from the content of field A and
stores the result in field C. The result is stored
numerically from right ¢to 1left, and zeros are
truncated or added to the 1left as required. If
field C will not contain the result, the overflow
indicator is turned on. Otherwise, it is turned
off.

Conditional Field B from Pield A, Store in Field C

SUC A,B,C

This instruction 1is identical in execution to
SUB except that if the content of field A is blank,
the content of field C remains unchanged.

Clear Variable Data Field (Group 20)

CVF A

This 1instruction causes the variable data field of
the current data file record to be cleared. The
length of the variable data field is effectively
set tc zero.

Move to Secondary Control Field (Group 19)

MCS A,B

This instruction moves the contents of field A to
field B. The instruction is ¢treated as an
MAL instruction. This is the only instruction that
may be used to alter the contents of a subset
control field.

87

S

AD=AD63 432 COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON D C F/6 9/2
NMCS INFORMATION PROCESSING SYSTEM 360 FORMATTED FILE SYSTEM (N==ETC(U)
SEP 78 C K HILL

UNCLASSIFIED CCTC=CSM=UN=15=78=VOL~3

1.0 &M K
30 3.2
=LEw
o 4
Ll i ll=
= k=
=) Y 1
= == ==

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

FILE MAINTENANCE (FM)

This instruction is executed exactly as DVD except
that execution does not take place if ¢the content
of field A is blank.

Subtract Field B from Field A, Store in Pield C (Group 2)
SUR A,B,C

This instruction algebraically subtracts the
content of field B from the content of field A and
stores the result in field C. The result is stored
numerically from right ¢to 1left, and zeros are
truncated or added to the 1left as required. If
field C will not contain the result, the overflow
indicator is turned on. Otherwise, it is turned
off.

Subtract Conditional Field B from PField A, Store in Field C
(Group 2) {

SUC A,B,C
This instruction is identical in execution to
SUB except that if the content of field A is blank,
the content of field C remains unchanged.
Clear Variable Data Field (Group 20)
CVF A
This instruction causes the variable data field of
the current data file record to be cleared. The
length of the variable data field is effectively
set to zero.
Move to Secondary Control Field (Group 19)
MCS A,B
This instruction moves the contents of field A to
field B. The instruction is treated as an
MAL instruction. This is the only instruction that

may be used to alter the contents of a subset
control field.

87

e

et

g

PILE MAINTENANCE (FM)

Move Control Field (Group 14)

MCT A,B

This instruction moves the contents of field A to
field B. If truncation is required, the
instruction is treated as the move alphabetic
instruction (MAL). MCT and MCW are the only
instructions which can alter the contents of the
record contrecl field. Subsequent transactions that
match the o0ld record key are still applied to this
record.

Move Control Field and Write the Data Record (Group 14)

MCW A,B

This instruction functions in the same manner as
MCT except that the data record is output upon
completion of the execution of the logic statement
in which an execution of an MCW instruction has
occurred, A subsequent transaction that matches
the old record key will cause a new record with the
old key to be generated.

If a NIPS ISAM file is being updated and the step
abnormally terminates, all records whose control
field wvas changed up to that point have been
deleted from the file. The new records may not
have been written onto the file, depending on where
the step terminaticn occurred.

88

SOEPUSRE T e T

FILE MAINTENANCE (PHN)

N Look Up Tabular Punction Value (Group 6)
TBL A,B,C,D

\ This instruction causes the contents of the
transaction input field A to be used as an argument
| to the tabular function B (code conversion table)
; to produce a function value which is stored in
; field D. The result of the tabular function is
assumed to be alphabetic and is left-justified in
field D, The function value is truncated or padded
with blank characters on the 1low-order end as
required. If the input field A does not compare
with entries of the tabular function, the
| disposition of the transaction input record |is
{ determined by C. The legal values of C are A, I,
or R. The transaction input record disposition is
as described for the C operand of VAL, The
validity indicator is set to valid or invalid, as /
appropriate, by this instruction. Note that inputs
to tables and subroutines may be data base fields,
| work areas, or transaction fields.

Generate Value from Arqument Pield (Group 6)
GEN A,B,C,D
! The execution of this instruction is identical to
b that of TBL except that B is the name of a non-
tabular function.
Store Date-Time in Field (Group 11)
L SDT A
1 This instruction stores the current Date-Time Group
| (DTG) in field A. The DTG reflects the time that
this PN run started. The format of the value ,
stored is XXYYYZZZZ in which !
XX = Year (98-99)

YYY = Date (§PP-366)

2222 = 24 hour time (@@PP-24@@) to the hundredths
of hours

89

FILE MAINTENANCE (FHM)

The 9-character DTG field is stored alphabetically
in field A. The DTG is truncated or padded on the
right as required (see MAL).

Move/Add variable Field to Variable Field (Group 21)
MVF A,B

This instruction updates variable fields in
periodic sets and adds data to the end of variable
sets. When used to update periodic sets, the
contents of field B will be replaced by the
contents of field A. When used to add to variable
sets, the transaction input data (field A) is
appended to the variable set identified by field B.
The input data is packed into fixed-length subset
records; new subset records are created vhenever
necessary.

Move to Variable Set/Field (Group 21)
MVR A,B

This instruction appends the contents of the
transaction input field A to the contents of the
variable data field specified by the B field. If
the original length of the variable data set is W,
and the length of field A is N, the resultant
length of the data set will be N¢M. If the B field
is a variable field in the periodic set, the
previous contents of the field will be replaced by
the contents of field A. The difference between
MVFP and MVR is this: the 1length of each subset
field in a variable set is obtained from the FPT by
MVFP; the 1lengths of all subset records in the set
are the same (except for the 1last, vhich nmay be
shorter). MVR uses the input transaction length
(field A) as the output length; subset records nmay
vary in length. This method reduces the
probability of splitting words between subset
records. Only words vhich are split between input
transactions will be split between subset records.

90

e

FILE MAINTENANCE (FHM)

Output Variable Pield to Work Area (Group 25)
OYP A,B,C

This instruction will move a portion of the
variable field A to the defined vwork area specified
by the B field. The variable field A may be stored
in a periodic set or a variable set. The B field
also determines the length of the move. Up to 256
characters can he moved at a single execution. A
pointer is ¢then set to the remaining unmoved
portion of the variable A field so that the next
execution of ¢this instruction will move another
portion of the variable field data. If the
remaining portion of the field is shorter than the
work area receiving the data, the receiving field
is first cleared and then the data is moved. The
pointer is then reset ¢to the beginning of the
variable field, and a branch is taken to the label
specified in the C operand. If the length of the
variable field is zero, the work area is cleared to
blanks and a branch is taken ¢to the C operand
label.

Reset Variable Field Pointer to Beginning of the Variable
Pield (Group 26)

RVF A
This instruction will reset the pointer which is
used in the OVP instruction back to the beginning
of the var‘aible field., It may be used only when an
OVF inst: .ction with the same A operand appears
within the logic statement.
Clear Pield (Group 13)
CLR A

This instruction sets field A to blanks. Field A
cannot be a record control ID.

Note: The processing operators discussed above, with the

exception of MVP, MVR, CVP, OVF, and RVYP apply both to
nonperiodic and periodic fields. Reference may be made to

21

FILE MAINTENANCE (FHN)

nonperiodic fields at any point in a logic statement, but
reference to fields of a periodic set may occur only when a
subset of that periodic set is currectly active. Periodic
sets are independent of each other, and subsets of two or
more periodic sets may be active simultaneously. Only one
subset of a given periodic set may be active at any given
time.

Tel4.3 Control Instructions
Compare Pield to Pield Alphabetic (Group 17)
COA A,B

This instruction compares the content of field A to
the content of field B, Both operand fields are
assumed to be alphabetic, and comparison takes
place from left to right, If the B field is
shorter than the A field, the comparison will be
made as if the B field were padded on the right
with blanks. If the A field is shorter than the B
field, only the common portion of the two fields is
compared. The compare indicator is set as follows:

Condition Compare Indicator Setting
A equal to B BEQUAL

B greater than A RIGH

B less than A LOW

Compare Field to Field Numeric (Group 18)
CON A,B

This instruction causes the content of field B to
be compared to the content of field A. Both
operand fields are assumed to be numeric and
comparison is algebraic. The relative lengths of
the operand fields are not a criterion for
meaningful comparison. Both operand fields are
assumed to be assigned whole numbers. The sign of
each operand field is indicated by the setting of

92

PILE MAINTENANCE (PN)

the zone bits of the 1low-order character. The
compare indicator is set as follows:

Condition Compare Indicator Setting
A equal to B EQUAL

B greater than A HIGH

B less than A LOW

Check Pield for validity (Group 8)
VAL A, B, C,

This instruction causes the contents of field A to
be processed by the subroutine B to determine if
the content meets specifications contained in
subroutine B, Pield C specifies whether to log an
error if the content of field A is determined to be
invalid. The codes for field C are:

Value of C Disposition or Action

A or R Appropriate error message is logged on
history file and invalid data is skipped

I No error messages printed - invalid data
is skipped

The validity indicator is set to valid or invalid,
as appropriate, by this instruction.

Branch Unconditionally (Group 3)
BRA A

This instruction causes an unconditional branch ¢to
the instruction with tag A.

Branch Unconditionally and Link (Group 3)

LNK A

93

FILE MAINTENANCE (PHN)

This instruction causes an unconditional branch to
tag A. The location of the instruction folloving
the LNK instruction is saved for use with the RET
instruction.

Return Branch (Group U4)
RET

This instruction causes an unconditional branch to
the instruction following an LNK instruction. An
LNK instruction must have been executed prior to
the execution of the RET instruction. These two
instructions can be used to provide closed
subroutines in logic statements. Only one level of
closed subroutines may be used at any given time.

The following instructions test the compare indicator,
The indicator is reset to indicate the result each time a
compare instruction is executed.
Branch if not Equal (Group 3)
BNE A
This instruction causes a transfer to the
instruction with tag A if the compare indicator is
either high or low,
Branch if Greater Than or Equal (Group 3)
BGE A
This instruction causes a transfer to the
instruction with tag A if the compare indicator is
set either high or equal.
Branch if Less Than (Group 3)
BLT A
This instruction causes a transfer to the

instruction with tag A if the compare indicator is
lov.

94

NS, bl

W e i e

FILE MAINTENANCE (FPHM)

Branch if Equal (Group 3)
BEQ A
This instruction causes a transfer to the
instruction with tag A if the compare indicator is
equal.
Branch if Less Than or Equal (Group 3)
BLE A
This instruction causes a transfer to the
instruction with tag A if the compare indicator is
set equal or low.

Branch if Greater Than (Group 3)

BGT A J

This instruction causes a transfer to the
instruction with tag A if the compare indicator is
set high,
Set Indicator Low (Group 4)
SIL
This instruction sets the indicator low.
Set Indicator Equal (Group U4)
SIE
This instruction sets the indicator equal.
Set Indicator High (Group 4)
SIH |
This instruction sets the indicator high. j
The following instructions are concerned with the

validity indicator. Execution of the TBL, GEN, AFR, and VAL
instructions sets this indicator to valid (off) or not valid

95

Y

PR S &

FILE MAINTENANCE (FHM)

(on). It 1is initialized to valid before the execution of
each 1logic statement, During OM POOL 1logic statement
execution, the swvitch is set to invalid by OM if a picture
error occurs.,
Branch if Not Valid (Group 3)
BNV A
This instruction causes a transfer to the
instruction with tag A if the validity indicator is
set to not valid.
Set Validity Switch On (Group 4)
SvVo

This 4instruction sets the validity switch on, (not
valid).

Set vValidity Switch Off (Group 4)
SVP

This instruction causes the validity switch to be
turned off (valid).

The following instructions are concerned with the
overflow switch. This swvitch is set on any time an
arithmetic operation results in an overflow condition. It
is turned off by any arithmetic operation that does not
result in an overflow condition. It is initialized to off
before execution of the logic statement begins.

Branch if Overflow (Group 3)
BRO A
This instruction causes a transfer to the
instruction with the tag A if the overflow
indicator is set to on.
Set Overflow Switch Off (Group 4)

SOF

96

e T——
.

FILE MAINTENANCE (FM)
This instruction causes the overflow switch to be
turned off.
Set Overflow Switch On (Group 4)
S00
This instruction sets the overflow switch on.

The following instructions are concerned with the new
record switch which is turned on any time a new record is
generated. New records are generated when an equal
comparison of the input transaction and data record control
fields cannot be made. The new record switch is turned on
prior to the execution of the first logic statement used to
process a new record. It will be turned off prior to
executing any subsequent logic statements that are used to
process the same record.

Branch if New Record (Group 3)
BNR A
This instruction causes a transfer to the
instruction with tag A if the new record switch is
on.
Set New Record Switch On (Group 4)
SRO
This instruction sets the new record switch on.
Set New Record Switch Off (Group 4)
SRF

This instruction causes the new record switch to be
turned off.

The following instructions deal with the two program
sWwitches. These svitches are provided to assist the user in
controlling his logic. The user may turn them on and off as
required. They are initialized to off prior to each

97

e e T———

FILE MAINTENANCE (FHM)
execution of a logic statenment. Note: Each valid
transaction will execute a logic statement.
Set Program Switch On (Group 4)
SPO
This instruction sets the program switch on.
Set Program Switch No. 2 On (Group 4)
520
This instruction sets program switch No. 2 on.
Set Program Switch Off (Group 4)
SPF

This instruction causes the program switch to be
turned off.

Set Program Switch No. 2 Off (Group 4)
S2F

This instruction causes program switch No. 2 to be
turned off.

Branch if Program Switch On (Group 3)
BPO A

This instruction causes a transfer to the
instruction with tag A if the program switch is on.

Branch if Program Switch No. 2 is On (Group 3)
BS2 A

This instruction causes a transfer to the

instruction with tag A if program switch No. 2 |is
on,

98

A S

o
e i e it

e ——————————

FILE MAINTENANCE (FM)
The following miscellaneous control instructions are
also available to the user.
Branch on Summary (Group 3)
SMR A
This instruction causes a transfer to the
instruction with tag A when the last record has
been processed. This instruction is valid only for
range statements.
Halt (Group 4)
HLT
This instruction specifies that no ‘further
processing is to be performed against the current
data record.
No Operation (Group 4)
NOP
This instruction performs no operation.
End of quic (Group 4)
END

This instruction signifies to the language compiler

that the end of the 1logic statement has been
reached. :

NOP The Diagnostic Instruction Counter (Group 4) -
NCT
This instruction is a carryover from 1410 NIPS and
has been included in NIPS 360 FFS ¢to maintain

compatability. The NCT instruction has no
operational function in NIPS 360.

99

FILE MAINTENANCE (FHN)

Exit if no Prior Processing on Data Record (Group 4)
XNP

This instruction is used to provide the Exception
Range capability. It 1is effective only when it
appears as the first instruction in a RANGE
statement. If it appears anyvhere else, it
functions as an NOP, When this instruction appears
as the first instruction in a RANGE statement, it
causes an immediate exit from the RANGE statement
if the data record being processed has not been
subjected to Exception updating during the run.

Tl 4 Display Instructions

For all display instructions, the 1length of field A
cannot exceed 994 bytes. NIPS adds six overhead bytes to
the data specified by field A and the DCB LRECL is 1000.
Violation of this 1limit will result in a System 001 ABEND
(L/0 ERROR, RECORD TOO LONG).

Log Comment (Group 10)
LOG A

This instruction causes the contents of field A to
be written on the printer in batch mode and on the
display screen in TP mode.

Note: Carriage control may be specified by coding an
optional B operand. This operand, if coded, must be

preceded by a comma and enclosed in quotes. valid B
operands are:

0 (zero) =~ space two lines
- (minus) -~ space three lines
1 (one) - eject (In TP mode, this

character vwill cause
the screen to blank)

Print Comment (Group 12)

PRT A

100

PR i s

FILE MAINTENANCE (FM)

This instruction is the same as log. See above
note.

Print Comment (Group 12)

§irite on

Write on

Write on

Write on

Write on

PT2 A
This instruction is the same as LOG and PRT except
it writes operand A data on the printer in batch
mode and on an OMQ display device in TP mode. See
above note.
AOF (Group 12)

WRT A

This instruction causes the contents of field A to
be written on the auxiliary output file.

Second AOF (Group 12)
WT2 A

This instruction causes the contents of field A to
be written on the second auxiliary output file.

Third AOP (Group 12)
T3 A

This instruction writes the contents of field A on
the third auxiliary output file,

Fourth AOP (Group 12)
WT4 A

This instruction writes the contents of field A on
the fourth auxiliary output file,

Pifth AOP (Group 12)

§TS A

101

U A P L 1 . i

FILE MAINTENANCE (PM)
This instruction writes the contents of field A on
the fifth auxiliary output file.
Punch OQutput (Group 12)
PCH A

This instruction causes the contents of field A to
be punched in punch pocket one.

Punch Output (Group 12)
PC2 A
This instruction punches the contents .of field A in
punch pocket two.
7.4.5 ordinary Maintenance Validity Test Instructionms
The following group of instructions may be used to test
the results of the Ordinary Maintenance validation
functions. Instructions are provided to allowvw testing of

the validity of a given field, or the entire transaction.
These instructions are as follows:

Branch on Transaction Field Vvalid (Group 22)
BFV A,B

Exaaple - BPV $TRANS,OK

This instruction branches to location ¢B' if the
contents of transaction field A passed the ordinary
Maintenance edit tests, The transaction field must be
designated by its assigned mnemonic.

Branch on Transaction Field Not Valid (Group 22)

BPN A,B
Example - BPN $TRANS,BAD

This 4instruction branches to location *'B* if the
contents of transaction field 'A' failed any of the Ordinary

102

E

- - w —
SRR b AP

FILE MAINTENANCE (PHN)

Maintenance error tests. The transaction field must be
designated by its assigned TD mnemonic.

Branch on Transaction valid (Group 3)
BTV A

This instruction branches to location 'A' if all of the

transaction data passed on specified Ordinary Maintenance
validity tests.

Branch on Transaction Not Valid (Group 3)
BTN A

This instruction branches to 1location *A*' |if any
transaction fields failed the specified validity tests.

Tela6 Transaction Error lLog Instruction (SODA and OM)
Log Erroneous Transaction Data (Group 23)
ERR A,B
Example - ERR $TRANS,*THIS IS BAD DATA®

This instruction is provided to assist the terminail
operator in correcting erroneous transaction data when using

the on-line wupdate capability, Source Data Automation
(SODA) .

When this instruction is executed during a SODA rum, it
causes the displayed transaction field *A' to be underscored
vith a key to the message provided as the literal in field
‘B, (See the Terminal Processing (TP) component volume of
the NIPS 36F PFS Users Manual.)

When this instruction is executed during a batch PFM run,
it causes the nmessage tc be printed on the Ordinary
Maintenance error log (see section 6.2). In a combined
Ordinary Maintenance/POOL logic statement, this instruction

may be used to replace or supplement the standard OM error
messages.

103

PILE MAINTENANCE (FM)

7 i Logic Statement Examples

The following examples illustrate the setup of the FNM
run deck for updating the Logic Statement Library, and the
use of some of the POOL 1language instructions. Sections
9.5.3 through 9.5.8 provide equivalent NPL logic statements
for the POOL langquage statements of sections 7.5.3 through
T7.5.8. All of the examples pertain to the TEST369 file.
For a description of this file, see the Introduction to File
Concepts volume of the NIPS 360 FFS Users Manual.

All of the sample logic statements, with the exception
of the Range statement, perform updates with transactions
from the report °'RPT36F°'. The different transaction formats
within this report are identified by the letters 'A' through
'G* in columan 1 of the transaction.

Sections 7.5.1 through 7.5.8 illustrate the free-format
FMS control card, library action cards, and TD cards.

Comments cards are shown in each of the logic statements
and explain the functions of the statements, -

Section 8.1 provides an equivalent Ordinary Maintenance
TD of the POOL statement in section 7.5.6. Section 8.2
shovs a combination OM/POOL logic statement.
7.5.1 PMS Control Card

The following FMS control card would be used to execute
the 'LIB' mode of PM, to perform updates for the logic
statement library for the TEST36F file:

$FMS/LIB,TEST3609
T7¢5.1:1 LIMIT Control Card

The following card would be used vhen the user vanted to
limit a range to all the records vhose control field, LCTRL,
was equal to "AAA‘Y,

SLIMIT,LCTRL,EQ,AAA or
S$LIMIT,LCTRL,BT,AAA/AAA

104

IS . I

%

FILE MAINTENANCE (FN)

If all records not equal to 'AAA' vere desired, then the
control card would be:

$LIMIT,LCTRL,NOT,EQ,AAA
7e5.2 Library Action Card to Add a Report

The follovwing card would be used to add the report
*RPT360' to the Logic Statement Library. The transaction ID
field, for transactions within this report, is located in
column 1.

$AR,BRPT360,1
This card could also have been punched as follows:
$AR,RPT360,1-1

However, since the transaction ID field is only one byte
long, the *-1*' is not required.

7.5.3 Logic Statement Setup

The following example illustrates the organization of
the library action card, the TD cards, the 1language
identifier card, and the POOL instruction <cards for an
Exception logic statement., The sample statement perforas
updates with the 'A' transaction format of the report
‘RPT360°.

The first card for the statement is the library action
card. This card specifies that the statement is to be
permanently added to ¢the library. It also specifies that
the statement will perform updates with the 'A' transaction
of report °*RPT36@', and that ¢the fixed data in that
transaction format is 80 bytes long. The transaction does
not contain any variable data.

The TD cards followv the library action card. The first

field in each of these cards is used to assign mnemonics to
the transaction data fields.

105

bl i e s RN/

i S 2. s

FILE MAINTENANCE (FPHn)

The second and third fields specify the high-order
position and the 1low-order position of the transaction
fields.

The fourth field is used to specify that a transaction
field is a major or user control field. In the example,
SRECID is a wmajor transaction control field, and it
corresponds to the data record control group, *'UIC®. $SORT
is a wuser transaction control field. It is not used in
matching a transaction record to a data record, but is
associated with the record control field to control the file
processing sequence. '

The fifth field in the TD card indicates the type of
data that the transaction fields will contain., The *A*
transaction contains alphabetic (A) data and zoned decimal
(D) data only. Insertion of this field is optional, with
the default option being *'D°,

The card following the TD card is the 1language
identifier card, and contains the word 'POOL* in columns 16-
19. :

Comment cards, describing the logic stateaent 's
function, follov the language identifier card. The comment
cards are identified by an asterisk (*) in column 6.

The logic statement first tests the new record switch by
using the BNR instruction. A new record will be generated
by PM vhen no data record can be found with a UIC group that
matches the contents the $RECID transaction field, in an °*A‘
transaction. When this occurs, the instructions at NEWREC
vill be executed. These instructions format a print line in
the EBCDIC work area and print the line. At the completion
of this function, the 4instruction segquence at MOVE is
executed. This sequence of instructions moves the data from
the transaction fieldv to the data record fields, using the
MAL, MAC, and MNC instructions. The MAL and HAC
instructions are used to move the alphabetic data to the
file record, and the NNC instruction is used to move the
numeric data to the file record.

When the MAC instruction at MOVE is executed, no data

transfer wvill take place if the content of the transaction
field S$HOME is blank. When the MNC instruction is executed,

106

——————

FILE MAINTENANCE (FHM)

no data transfer will take ©place if the content of the
transaction field $PERS is blank.

The instructions that move the transaction data to the
coordinate tields DAPT1-4 will automatically convert the
data to internal coordinate format.

At the completion of execution of the data move
instructions, an SDT instruction is executed. This

instruction stores the date/time of the update in the data
field LAUD.

A HLT instruction is executed next. This instruction
causes an exit from the logic statemsent.

107

S—

FILE MAINTENANCE (FPHM)

$ASP,RPT360,A,80
$RECID,2,7,C1,A
$SORT,8,8,C2,A
$HOME,109,10,,A
SATTACH,12,12,,A
$PUTURE,13,13,,A
$POINT,15,25,,D
$AREA1,27,37,,A
$AREA2,38,48,,A
$AREA3,49,59,,A
3AREA4,60,70,,A
$PERS,73,80,,D

POCL

* THIS LOGIC STATEMENT

*

AREA OF THE SPECIFIED UNIT.

WILL UPDATE THE LOCATION AND DEPLOYMENT

IF A NEW RECORD IS GENERATED, A

* MESSAGE WILL BE PRINTED AND THE TRANSACTION PIELDS WILL BE

* MOVED TO THE DATA FIELDS.

BNR
MOVE MAC
MAL
MAL

MAL

NEWREC
$HOME, HONE

$ATTACH, ATACH
$PUTURE, PUTU
$POINT,POINT

108

R T

FILE MAINTENANCE (FPHN)

MAL
MAL
MAL
MAL
MNC
SDT
HLT
NEWREC MAL
MAL
PRI
BRA
HLT

END

$AREALl,DAPTI1
$AREA2,DAPT2
SAREA3,DAPT3
SAREAU,DAPTYU
$PERS,PERS

LAUD

*NEW RECORD GENFRATED.

$RECID,W31/36
W1l/36

MOVE

109

ID IS - *,W1/390

TP ol

RS it

e

P S

e e e e aba .

FILE MAINTENANCE (FM)

Te5.4 Use of Data Conversion Subroutines

The following 1logic statement is used with *B*
transactions. These transactions contain only a nmajor
control field in positions 2 through 7.

This logic statement verifies that the CNTRY and ACTIV
fields, in selected records, contain valid data.

If a newv record is generated by a *B*' transaction, the
DDR instruction at ‘'DELETE' is executed to delete the
record. Othervise, positions 1 to 44 of the work area are
cleared to blanks, and the data record®'s UIC field is moved
to the work area. Then +he data in CNTRY is converted by
the subroutine CTRYS, and the result is stored in the work
area. If the data is invalid, asterisks are moved to the
work area by the instructions at *ERR1'. Next the data in
ACTIV is converted by the subroutine ACTVS, and the result
is stored in the work area. If the data is invalid,
asterisks are moved to the work area by the instructions at
'ERR2'. Then the contents of the work area is printed, and
the logic statement exits,

Note: Execution of the TBL instructions does not alter the
contents of the fields CNTRY or ACTIV.

110

FILE MAINTENANCE (FN)

$ASP,RPT360,B,80
$RECID,2,7,C1l,A
POOL
: THIS LOGIC STATEMENT WILL EXTRACT THE COUNTRY CODE AND
* THE ACTIVITY COD® POR SPECIFIED UNITS.

BNR DELETE
CLR Wl/uu
MAL UIC,Wl/6

TBL CNTRY,CTRYS,Y,W10/24

BNV ERR1)
ACTV TBL ACTIV,ACTVS,I,W30/44 !
J BNV ERR2
, PRT PRT Wl/44
! HLT
; ERR1 MAL 'xessssssnsnsssn’ y10/24
L BRA ACTV |
ERR2 MAL ‘*ssassssnnasnss y3g /4y
BRA PRT
DELETE DDR
HLT
END

111 (
!

i
i
B

| .

e

FILE MAINTENANCE (FHM)

7.5.5 Periodic Set Processing

The following examples illustrate ¢two methods for
updating periodic subsets. Example 1 wuses an Exception
update statement to perform the updating of the record. The
library action card will add statement °'D' of report type
‘RPT368* permanently to the Logic Statement Library. The TD
cards assign mnemonics ¢to the transaction fields, with
transaction field $RECID containing the major control field
of the record to be processed.

The 'POV' instruction will cause the subset of periodic
set one to be searched for the data field *MECLQ' ©oeing
equal to the transaction field °*S$SMEQPT'. If it is not
found, a branch is taken to *NEW°', If it is found the
indicated processing will be done.

At 'NEW', a new subset will be built for Periodic Set 1.
The subset control field will be set by the ‘MCS?
instruction, and the remaining transaction fields will be
set in the specified data fields. A message is printed to
indicate a new subset was created and the transaction field
$MEQPT is printed.

Example 2 uses direct subset update capability. The
library action card is the sanme, The TD card for the
transaction field °*$MEQPT' is different in that the control
parameters on the TD card indicate that the field is to be
used as a subset control field. It also carries a data
record subset control field parameter name °'MECLQ' which is
defined as a subset control group in the FFT. If no subset
exists with a total record control group (major control
field, set number, and subset control group) equal to the
update record control group ($RECID, set number, S$MEQPT) a
nev subset is generated by PM and the total record control
group is set in the new subset and the new record indicator
is set on. If the subset exists, the subset is made active.

The first instruction tests the new record indicator.
If it is on, a branch is taken to 'NEW', If it is not on,
the processing is performed.

At 'NEW', the field is updated, and the messages are
printed.

112

FILE MAINTENANCE (PM)

|
i
* EXANPLE 1
1 $ASP, RPT360,D,80
‘ $RECID,2,7,C1,A
§ $MEQPT,10,22,,A
3' $NOEQPT, 25,27,,D
| $ADDCODE, 29,29, ,A
POOL
i * THIS LOGIC STATEMENT WILL SEARCH FOR THE SUBSET
* CONTAINING THE EQUIPMENT TYPE AND ADD OR SUBTRACT
* THE NUMBER OF ITEMS AS SPECIFIED BY THE ADD CODE. IP /
j * THE SUBSET DOES NOT EXIST, A NEW SUBSET WILL BE BUILT
| * AND THE PIELDS WILL BE UPDATED.
POV $MEQPT,MECLQ,NEW
| ; COA $ADDCODE,*A? d
‘L BEQ ADD i
SUB MEPSD, $NOEQPT, MEPSD
HLT
ADD ADD MEPSD,$NOEQPT,MEPSD

HLT

113

a A Sl AR

- - — -

FILE MAINTENANCE (FN)

NEW BSS MECLQ
MCS $MEQPT,MECLQ
MNU $SNOEQPT, MEPSD
PRT 'NEW SUBSET CREATED®

END

EXAMPLE 2
$ASP,RPT360,D,80
$RECID,2,7,Cl1l,A
$MEQPT,10,22,,A,S,MECLQ
$NOEQPT, 25,27, ,D
$ADDCODE, 29,29,,A
POOL
> THIS STATEMENT WILL PERFORM THE SAME FUNCTION, USING
o THE DIRECT SUBSET UPDATE CAPABILITY. IF THE SUBSET
* DOES NOT EXIST A NEW SUBSET WILL BE GENERATED AND THE

* SUBSET CONTROL FIELD WILL BE AUTOMATICALLY SET BY FHN.

BNR NEW
COA S$ADDCODE, 'A°*
BEQ ADD

SUB MEPSD, SNCEQPT,MEPSD
HLT

114

o
B AR —

FILE MAINTENANCE (PHM)

ADD ADD MEPSD, SNOEQPT, NEPSD
| HLT
| NEW NNU $NOEQPT, MEPSD
{ PRT 'NEW SUBSET CREATED®
: PRT $MEQPT
g END
|
|
I
b
bk
i
!
.
ki)
-4
§
|
5
i 115

FILE MAINTENANCE (FHM)

7.5.6 Test for Numeric Data

The following 1logic statement illustrates a simple
method of determining if a transaction field contains
invalid numeric data (assuming valid data is a nonzero value
vithin the range £2,147,483,647). This method is especially
applicable when it is not known in exactly vhat position of
the field the data begins and/or ends (e.g., vhen leading
zZeros are not required or the right-justification capability
of the system is being used). It is also applicable when
some of the data wmay be signed and some may be unsigned.
(The PICTURE instruction can he used in Ordinary Maintenance
or NFL to perform the editing function wvhen the type of data
in each column is knovn - see sections 8.1, 8.2, and 9.4.6.)

When the logic statement is entered, a CON instruction
is executed to compare the operand value with zero. This
vill cause the transaction data to be edited (see section
4.2). If the transaction field contains a valid nonzero
numeric value, the comparison will be not equal; if the
transaction field contains invalid data, the comparison will
be equal.

116

NPT WL TR BARGSE s 2X Ny AN -2 F

-
IR— /S

PILE MAINTENANCE (FN)

$ASP,RPT360,E,B80
$TRANS, 1,809
SRECID,2,7,C1
$PERSONL, 19,15
$READAVG, 20,22
$RITNM,25,27
POOL
* THIS LOGIC STATEMENT WILL UPDATE NUMERIC FIELDS IN
* THE FIXED SET. THE INPUT TRANSACTION FIELDS CONTAIN
* DECIMAL DATA. THE DECIMAL DATA IS EDITED TO DETERNINE
* IF IT CONTAINS ANY INVALID CHARACTERS. 1IF AN ERROR
* IS DETECTED, AN ERROR MESSAGE WILL BE PRINTED ON THE
* AUXILIARY OUTPUT PRINTER AND THE ERRONEOUS TRANSACTION

* WILL BE PRINTED.

CON @, $PERSCNL TEST I¥ $PERSONL NUMERIC
BEQ ERR1 : BRANCH IF INVALID DATA
MNU $PERSONL,PERS

CHK2 CON SREADAVG, @

LR

BEQ ERR2
MNU SREADAVG,READAVG

CHK3 CON #,RITNNM

BEQ ERR3

o
PRSI, S

PILE MAINTENANCE

ERR1

ERR2

ERR3

MNU

HLT

PRT

PRT

PRT

BRA

PRT

PRT

PRT

BRA

PRT

PRT
PRT
HLT

END

(FM)

$RITNN, RITNM

*THE $PERSONL FIELD CONTAINS INVALID'

Y NUMERIC DATA
$TRANS

CHK2

OR A VALUE OF ZERO®

'THE $READAVG FIELD CONTAINS INVALID'

' NUMERIC DATA
$TRANS

CHK3

OR A VALUE OF ZERO'

*THE $RITNM FIELD CONTAINS INVALID'

*NUMERIC DATA

$TRANS

118

OR A VALUE OF ZERO'

|
|

e s Yoo

R T s e PO T3 -

i

B

FILE MAINTENANCE (FHM)

7¢5.7 Production of Summary Information

The following logic statement is a Range statement that
functions without transaction data. Note that the library
action code for this statement® contains only the function
code '$AST', and that there are no TDD cards for this
statement. This type of statement must be compiled on-line
each time it is used.

This statement wuses ¢*he SMR instruction to determine
wvhen line processing is completed. When processing is not
complete, the three instructions that follow the SHMR
instruction are executed, and a logic statement exit is
taken, These instructions accumulate information in the
first three words of the binary work area.

When processing is completed, the SMR instruction causes
a branch to the instruction sequence at 'LAST', where final
processing and printing of the accumulated data takes place.
Note that wvhen the data is moved from the binary work area

to the EBCDIC work area, it is automatically converted to
zoned decimal format.

119

et adape s e ARGNRIIEY

FILE MAINTENANCE (FM)

$AST
POOL
* RANGE STATEMENT TO CALCULATE TOTAL NUMBER OF UNITS
* IN THE DATA FILE, TOTAL PERSONNEL STRENGTH, AVERAGE
* OF TOTAL RPADINFSS AVERAGE OF ALL UNITS
x THIS INFORMATION WILL BE PRINTED ON THE AUXILIARY

* OUTPUT FILE

SMR LAST
ADD Bl/,1,Bl/
ADD PERS,B2/,B2/ :
ADD READAVG,B3/,B3/
HLT
LAST MAL °*TOTAL NUMBER OF UNITS-*,W1/23

MNU Bl/,W24/29

PRT ¢ 8 PRINT BLANK LINES
PR v 8
PRT W1/29

MAL *TOTAL PERSONNEL STRENGTH OP ALL UNITS=-',W1/39
MNU B2/,W40/49
PRT ¢ ¢

PRT Wl/49

120

FILE MAINTENANCE (FHM)

MAL C*AVERAGE OF TOTAL READINESS AVERAGE-',¥Wl/35

pvp B3/,Bl/,%36/37 1

PRT ¢
L
PRT W1/37
HLT
END
- 1

PN biA R L

121

FILE MAINTENANCE (FH)

7.5.8 Variable Field and Set Processing

The following two logic statements illustrate the use of
the MVP instruction.

Example 1 moves information from a variable transaction
field, $VAR, to the variable field COMMENT. Existing
information in COMMENT will be destroyed. When the data
transfer takes place, the data is truncated, so that any
trailing blanks in the variable transaction field are not
moved.

Example 2 appends information to the variable set REPER.
Since the information to be transferred is in a fixed length
transaction field, no truncation takes place.

Example 3 outputs variable field (REMARK) data. When a

matching subset is found, the data is moved to the work area
in 50 character increments, and printed.

122

L L SIS ASSRSSSII .~ ST R

~ mmmwEme i

e aBa .

o amAa o o

FILE MAINTENANCE (PH)

EXANPLE 1
$ASP,RPT368,F,10,11
$RECID,2,7,Cl,A
$VAR,11

POOL

* THIS LOGIC STATEMENT REPLACES THE INPORMATION IN THE

* VARIABLE FIELD COMMENT WITH THE INFORMATION IN THE

* VARIABLE LENGTH TRANSACTION FIELD $VAR.

MVF $VAR,COMMENT

HLT
END
EXAMPLE 2
$ASP,RPT360,6G,80
$RECID,2,7,Cl,A
SVAR, 31,89, , A

POOL

* THIS LOGIC STATEMENT APPENDS THE INFORMATION

IN THE

» TRANSACTION FIELD $VAR TO THE INFORMATION IN THE

* VARIABLE SET REFER,

123

S 5P S S PN e,

BV S, P S

-

FILE MAINTENANCE (FN)

MVR S$SVAR,REPER
HLT
END
EXANPLE_3
$ASP,RPT360,1,80
$RECID,2,7,C1,A

POOL

* THIS LOGIC STATEMENT WILL SEARCH THROUGH THE VARIABLE

* FIELDS (REMARK) OF THE PERIODIC SUBSETS CONTAINING
* THE FIELD MEQPT POR A COMMENT BEGINNING WITH THE
* VALUE O1MAY71, WHEN FOUND, THIS VARIABLE FIELD

* WILL THEN BE PRINTED 50 CHARACTERS PER LINE.

POS MEQPT, NONE
NEXT OVF REMARK,W1/7,COMP
! ‘COMP COA 'O1MAY71¢,W1/7
! BEQ RESET
RVP REMARK
STEP STP MEQPT, NEXT
PRT 'NO MATCH POUND'

HLT

124

Bl

FILE MAINTENANCE (FPM)

NONE

RESET

PUT

LAST

S —

PRT
HLT
RVP
OVP
PRT
BRA
PRT
HLT

END

*NO SUBSETS FOUND®

REMARK
REMARK,W1/50, LAST
W1/50

PUT

W1/50

125

3 O

i iy

FILE MAINTENANCE (FHM)

7.6

Summary Of POOL Instructions

Instruction

MAL
MNU
MAC
MNC
ADD
ADC
MUL
MUC
DVD
DvC
SuB
SucC
CVF
MCT
MCS
MCu
VAL
TBL
GEN
COA
CON
SDT
MVF
MVR
OVF
RVF
CLR

Do ocwwww

® % 9@ § 8 & % o

.« =
O w®

O Y R R S
(2]

A
A

anoacaoaocan

aaa

@ =

oo

Instruction

BRA
LNK
RET
BLT
BEQ
BLE
BGT

A
A

> > > >

Data Handling Instructions

Operation

Move Alphabetic

Move Numeric

Move Alphabetic Conditional
Move Numeric Conditional
Addition

Add Conditional

Multiplication

Multiply Conditional

Division

Divide Conditional

Subtraction

Subtract Conditional

Clear variable Data Pield

Move To Record ID

Move To Secondary Control Pield
Move To Record ID And Write Record
Validity Check

Table Lookup Routine

Subroutine Processing

Compare Alphabetic

Compare Numeric

Store Date-Time Group

Move To Variable Set/Field

Move To Variable Set/Field (Input Length).
Output Variable Field

Reset Variable Field Pointer
Clear Pield

Control Instructions

Operation

Unconditional Branch

Branch And Link

Return Branch

Branch If Less Than

Branch If ¥qual

Branch If Less Than Or Equal
Branch If Greater Than

126

T ——

L - hiacis avas Wl aiigh P8 R

PILE MAINTENANCE (FN)

BNE
BGE
HLT
NOP
XNP
SHR
BNR
BS2
BRO
BNV
BPO
SOF
SVF
SPF
SRF
S2F
S00
SvVo
SPO
S20
SRO
SIL
SIE
SIH
NCT
END

Instruction

A
A

>3 o b

Branch If Not Equal
Branch If Greater Than Or Equal
Halt Statement Execution
No Operation

Exit No Prior Processing
Branch On Summary

Branch If New Record
Branch If Switch 2 Is On
Branch If Overflow

Branch If Invalid

Branch If Program Switch On
Set Overflow Switch Off
Set Vvalidity Switch Off
Set Program Switch Off
Set New Record Switch Off
Set Switch 2 Off

Set Overflow Switch On
Set Validity Switch On
Set Program Switch On

Set Switch 2 On

Set New Record Switch On
Set Indicator Low

Set Indicator Equal

Set Indicator High

NOP Instruction Counter
End Update Statement

Environment Handling Instructions

Operation

Activate Pirst Subset

Step Activity To Next Subset
Position On Value

Step To Value

Delete Subset And Branch
Delete Subset And Continue
Built Subset

Sequence Subsets

Delete Data Record

127

FILE MAINTENANCE (PN)

Display Instructions

Instruction Operation

Punch Contents Of A Into Punch Pocket 1
Punch Contents Of A Into Punch Pocket 2

LOG A Print On History Pile
PRT A Print On History Pile
PT2 A Print On History File
WRT A Write On Auxiliary File
WT2 A Write On 2nd Auxiliary Pile
NT3 A Write On 3rd Auxiliary Pile
HT4 A Write On 4th Auxiliacy File
HTS A Write On Sth Auxiliary Pile
A
A

Instructions Used With OM and SODA

Instruction QOperation

BFV A,B Branch On Transaction Pield valid

BFN A,B Branch On Transaction Pield Not Valid
BTV A Branch On Transaction Valid
BTN A Branch Transaction Not Valid
ERR A,B Log Erroneous Transaction Data
128

3

FILE MAINTENANCE (FHN)

Section 8

ORDINARY MAINTENANCE (OM) EXAMPLES

8.1 Use of Ordinary Maintenance TD Cards

The following logic statement, written entirely in the
Ordinary Maintenance language, illustrates a simple method
of editing for nonnumeric characters wvhen the type of
character in each column is known. (The utilization of
additional PICTURES for values to be edited gives greater
flexibility, as needed.) The editing function performed is
similar to that performed by the POOL 1logic statement in
section 7.5.6. It uses the PICTURE parameter to test for
numeric data in the transaction fields, and if the data is
correct moves it to the data file. Nonnumeric data is
logged on the Ordinary Maintenance error log.

The logic statement also checks the first byte of the
transaction record ID field for a legal service code, using
the VALUE parameter. If the first byte is in error, the
transaction is deleted.

$ASP ,RPT368,F,89

FIELD RECID 2 7 A CONTROL 1 VALUE J**#*#%% N&x&%*
Me%k%x%k% Nx%xk&%x ERROR T

FIELD PERS 1§ 15 D PICTURE NNNNNN ERROR D GEN

FIELD READAVG 20 22 D PICTURE NNN ERROR D GEN

FIELD RITNM 25 27 D PICTURE NNN ERROR D GEN

8.2 Use of Ordinary Maintenance TD Cards and
POOL Instructions

The following logic statement performs the same function
as the one in section 8.1, except that automatic logging on
the Oordinary Maintenance log is suppressed. Invalid record
control fields are printed on the OM error log by use of the
ERR instruction, Logging of other errors is performed by
the POOL statements on the normal printer auxiliary output.
The BTV instruction is used to exit from the POOL logic when

129

e

FILE MAINTENANCE (FM)

no errors

vere found, and the BFN instructions are used to

test for invalid fields.

$ASP,RPT360,E,89
FIELD RECID 2 7 A CONTROL 1 VALUE J**%%% {exkkx

M*%x%x &%k N*xkkx%x%k FRROR DS

FIELD PERS 10 15 D PYCTIHRE NNNNNN ERROR DS GEN
FIELD READAVG 20 22 D PICTURE NNN ERROR DS GEN
FIELD RITNM 25 27 D PICTURE NNN ERROR DS GEN

CHK2
CHK3
EXIT
ERR1
ERR2
ERR3

IDERK

POOL
BTV
BFN
PRT
BFN
BFN
BPN
HLT
PRT
BRA
PRT
BRA
PRT
BRA
ERR
DDR
END

EXIT

$RECID, IDERR
T1/89

$PERS, ERR1
$READAVG, ERR2
$RITNM,ERR3

‘THE PERSONNEL FIFLD CONTAINS NON-NUMERIC DATA' /
CHK2 g

*THE READAVG PIELD CONTAINS NON=-NUMERIC DATA®
CHK3

'THE RITNM PTELD CONTAINS NON-NUMERIC DATA®
EXIT

$RECID,' INVALID SERVICE CODE’

130

FILE MAINTENANCE (FM)

Section 9

NEW FILE MAINTENANCE LANGUAGE (NFL)

NFL is a high-level or procedural PM 1language which
provides the user with a language which is easy to learn and
simple to use, yet which is powerful and flexible enough to
efficiently accomplish a wide range of FM functions.

The NFL section of the FM component accepts, as input,
statements written in an English-like language describing
the conditions and actions which are to be applied against
a NIPS data file for a specified set of update transactionms.
The language is interpreted and processed (compiled),
resulting in an executable logic statement. Error
conditions are detected, and diagnostics vhich will aid the
user in correcting the logic statement are printed.

Before reading this section, review sections 2 through
6 of this manual.

9.1 ' NPL Statement Composition

NFL statements are free-format. Words are separated by
blanks, commas, or periods. Multiple statements can be
punched on a single card or a statement may be spread over
more than one card. Card columns 72-80 must not be
utilized., Words, including literals, may not be split over
tvo cards. Statements are composed of statement
identifiers, keywords, noise words, labels, and operands.
Periods may be used freely for readability. They have no
effect on the language processor in this component.

131

S 2 - 2 - ks it At N b L e

FILE MAINTENANCE (FM)

9.1.1 Statement Identifiers

There are a limited number of statement identifiers in
NFL which identify a condition, an action, or a point of
control. Though the number of statements is 1limited, a
number of functions are implied simply by the structure of
the statements. The following 1lists of identifiers have
been grouped by category.

Action Condition/Logic Control Point
Identifiers Identifiers ___ Identifiers _
MOVE IF ELSE

ATTACH AND CONTINUE
COMPUTE OR PROCEDURE
BUILD END

POSITION NOTE

LOCATE NPL

STEP NFL

PRINT

PUNCH

WRITE

DISPLAY

DELETE

DEFINE

TURN

GO

RETURN

Example -

iF condition AND condition MQVE from location to
location, PRINT data CONTINUE

In the preceding example, IF, AND, MOVE, PRINT, and
CONTINUE are statement identifiers. The IF identifies a new
condition to follow. The AND identifies a condition to
follov and denotes that it is a continuation of a "string"
of conditions (see section 9.3.1). The MOVE and PRINT
identifiers identify actions to be performed if the
preceding conditions are true. CONTINUE identifies the
point to continue processing regardless of vhether the
preceding conditions vere nmet,

132

e o L S Y AT ol T 55 XX -l Nealt

DA MO BT

FILE MAINTENANCE (FPHN)

9.1.2 Keywords

Keywords differ from statement identifiers in that they
are embedded in the statement and identify either a
secondary action, a specific action from a group of possible
actions, or succeeding operands. The following 1list of
keywords are used in NPL. Examples can be found in the
section discussing statement descriptions.

Keyword Usage

NOT Used to nagate a condition

BT Identifies a between condition

BETHWEEN

EQ

EQUAL Identifies an equal condition

EQUALS g

NE Identifies a not equal condition

LT Identifies a less than condition

LESS

GT Identifies a greater than condition

GREATER i

LE Identifies a less than or equal condition

TAB Identifies a validation table condition or

TABLE conversion of data

PIC Identifies a picture condition

PICTURE

SUB Identifies a data conversion operation

SUBROUTINE

BIT Identifies a bit condition

ON Identifies an on (true) condition

OFF Identifies an off (false) condition
133

N AN i A S it i ot

FILE MAINTENANCE (FHN)

NEW RECORD Identifies a nevw record condition

JOB COMPLETE Identifies a run complete condition 1
JOB COMPLETED

OVERFLOW Identifies an overflow condition :
Keyword Usage
¢ Add operation
- Subtract operation 1
/ Divide operation 1
- Multiply operation {
= Denotes equivalency in compute statement)
ON (following PRINT, PUNCH, WRITE, DISPLAY) signifies that /)
a device is being specified ‘
EXIT Identifies the next operand as an exit label
RECORD Identifies the object of the action as a record
FIELD Identifies the object of the action as field J
SET Identifies the object of the action as a set)
SUBSET Identifies the object of the action as a subset
OVER Specifies resulting position of set.
PAST
BEYOND
NEXT
FIRST
i
|
134

FILE MAINTENANCE (PM)

9.1.3 Noise Words

Noise words are a group of commonly used words which
have no effect on the functions of the statement but which
help to give the statements a more English-like readability.
Noise words can appear any place within a statement. The
following noise words are allowed in NFL:

A POR IS WITH
AN FROM THAN USING
AS IN THE
BY INTO TO

9.1.4 Statement Labels

The provision for labeling statements (or procedures)
allovs a name to be associated with a statement. These
names can then be referenced as exit points or to change the
sequence of execution. Labels aust begin with an alpha
character and may contain only alphameric characters. The
label can contain up to seven characters. It is identified
as a label by suffixing the name with a colon. A valid
label must have a space following the colon. Statement
identifiers or noise words cannot be used as labels.

Example -

LOOP: MOVE....GO TO LOOE
LOOP is a label associated with the MOVE statement. In the
exanmple, the GO causes the order of execution to be changed
to the statement labeled LOOP.

The following statements may not have labels:

An If statement or any part of an IP statement such
as the AND, OR, OR ELSE clause.

A CONTINUE statement
A NOTE statement

A DEPINE statement

135

FILE MAINTENANCE (FM)

9.1.5 Operands

Statement operands identify control locations,
subroutines and tables, literal values, and data locations.
9.1.5.1 Control Location Operands

Control locations are references to statement labels
(section 9.2.4). This type of operand is an exit point or
a change (GO) in execution sequence.
Exaaple 1 -

LOCATE SET MEQPT,EXIT TC NOSUB
In this example, if there are no subsets belonging to the
set MEQPT, the next statement to be executed would be the
statement with the label NOSUB. Thus NOSUB is a "control
location" type operand.
Example 2 -

GO TO XY2
When the above statement is executed, the next statement to
be executed would have the label XYZ. XYZ 1is a "control
location" type operand.
9.1.5.2 Subroutine/Table Name Operands

when user written subroutines or tables are to be
executed, the subroutine or table name is designated as a
statement operand.
Example -

IF LOC IS IN TABLE PLACES

In the above example, the operand PLACES names a user
written validation table, '

136

ik b AR AR s a Pl T PRAEN

' PN Y TN L S e

FILE MAINTENANCE (FNM)

9.1.5.3 Literal Value Operands

when a value 1is specified, it is a 1literal value
operand. Alpha or numeric literals can be specified. To
designate an alpha literal, the value must be enclosed in
quotes. Though several words may be included within the
quotes, it 1s considered as a single operand (care must be
taken not to split a literal value operand over more than
one card). With the exception of the quote and ampersand
characters, any character can be used within the quotes. To
define a literal value operand containing a quote or
ampersand, a double quote or ampersand must be used. In
this instance, the redundant special character is not
counted in determining the length of the literal,

Numeric 1literal value operands are designated by
expressing a numeric value (not enclosed in quotes). A ¢
(plus) or - (minus) sign may be prefixed to the value, If
the sign is missing, the value is assumed to be positive.
Example 1 -

MOVE °'ROSSLYN PLAZA' TO LOC

7»« the above example, the alpha literal value ROSSLYN PLAZA
‘2.1 be moved. :

Exanple 2 -

COMPUTE SCALE = +1900 * LENGTH
In the above example, the numeric literal 1999 will be used
in the computation. Note that in the example the plus sign
could be omitted.
9.1.5.4 Data Location Operands

Data location operands are designated by using symbolic
names which have been defined to the system in such a vay
that the name is equated to the location and length of the
data.

The 1location and length may be modified or adjusted for
these types of operands (except for binary, coordinate and

137

- TS N—— — e B - -
anciiin it S a Al N . '«‘m -

FILE MAINTENANCE (FHN)

variable field data) by use of partial field notation. This
is done by following the syambolic name (separated by at
least one blank or comma) with the desired beginning and
ending character ©positions. The form of expression for
partial field notation is N/M wvhere N is the beginning
character position and M is the ending position; e.g., to
designate the first twvo characters of the field NEQPT,
specify MEQPT 1/2.

There are four basic types of "“Data Location"™ operands
in NFL. These are file data, transaction data, indirect
data, and defined constants and areas.
9.1.5.4.1 File Data Operands

File data operands are designated by the symbolic name
assigned to the specific value (field) during file
structure.

Example -

IF MEPSD IS EQUAL TO MERDY

MEPSD and MERDY are file data operands.

9.1¢5.4,2 Transaction Data Operands

Transaction data operands are designated by the symbolic
name assigned to the value (field) in the statenment
transaction descriptor deck. The symbolic name is always
prefixed with a $ character. Note: NFL does not perait the
TN/M form of tramsaction references.
Example -

MOVE SMEQPT TO MEQPT

$MEQPT is a transaction data operand.

138

Salms Do

FILE MAINTENANCE (FHM)

9.1.5.4,.3 Indirect Data Operands

Indirect data operands (see section 7.2) are designated
by prefixing the symbolic name (defined by the transaction
descriptor deck) with C$. Partial field notation is not
allowed for indirect data operands.
Example -

POSITION TO THE FIRST SUBSET FOR C$ZILCH,EXIT TO NOS...

C$ZILCH is an indirect data reference.

9.,1.5.4. 4 Defined Constant and Area Operands

Constants and areas which can be used as work areas can
be defined and given symbolic names by the user. These are
then referenced by symbolic name as operands in statements.

NFL provides three constants which can be referenced and
need not be defined by the user., These have the following
characteristics and symbolic names.

a. For a value of zero, use ZERO, ZEROS, or ZEROES.

be For a value of blank, use BLANK or BLANKS.

Ce For the current date and time, use SYSDATE.
SYSDATE is in the form YYDDDTTTT where Y is year, D is
Julian date and T is time, Partial-field notation will not
be alloved for the zero and blank values.
9.2 Special Requirements and Considerations

There are several special requirements or considerations

which are imposed by NFL. These must be clearly understood
by the user for effective application of NPL.

139

i
i iinipensil

NSNS SO . —

-

FILE MAINTENANCE (FHM)

9.2.1 Data Mode Compatibility

The NFL statements are not "mode” oriented, therefore it
does not require one statement for alpha data and another
for numeric. Obviously, only numeric data may be used in an
arithmetic statement. In all other instances, the systena
checks for the mode of the data and determines the mode of
the operation. EBCDIC work areas are nonmode associated and
take on the mode of the related data. If, when two operands
are specified, both are nonmode associated, the mode
defaults to alpha. There are some combinations of mode
vhich are illegal. Legal mode combinations are given in the
table below.

Mode codes are:
A - alpha
B - binary
C - coordinate
D - decimal

W - nonmode associated

140

" - '._' \ e prw e - - “‘ . va-‘*" i

e

FILE MAINTENANCE (FPN)

Legal Mode Combination:

Qperapd 1 Operand 2

A A

A C

A W

B B

B D

B W

(o A
I C

C w

D A Note the combinations
D C cannot be reversed
D B -

D W

D D

W W

W B

W C

W D

'] A

9.2.2 Data Length Compatibility

When tvo operands for a statement require data length
compatibility, NFL automatically pads or truncates to obtain
this compatibility. The second operand length is the
determining length. Alpha data fields are padded with
blanks or truncated on the right. Numeric data fields are
padded with zeros or truncated on the left.

9,2.3 Special Statement Sequence Requirements
There are several NFL statements or groups of statements

vhich require special sequence considerations. These are
described in the paragraphs which follow.

141

— I —

FILE MAINTENANCE (FM)

9.2.3.1 Condition/Action Statement Sequence

Condition statements are composed of conditional clauses
logically connected and identified by IFs, ANDs, and ORs.
An action(s) is always associated with a condition. This
action is executed if the ccndition is true. There may also
be a set of "false" actions associated wvwith a condition.
False actions are optional and identified by an FLSE
statement., After the "true®" or "false" actions have been
executed, the point at wvhich execution is continued is
identified by a CONTINUE statement.

There may be multiple "true"® and "false" statements.
All statements between the last condition clause and the
ELSE or CONTINUE statements are "true®” actions. All
statements between the ELSE and the CONTINUE are "false"
actions.

A second «condition cannot appear between the first
condition and the actions associated with it.

For 1labeling purposes, a condition/action statement
sequence is considered to bhe a single statement, A 1label
may precede the keyword IP but no further 1labels are
permitted until after the keyword CONTINUE,

Example 1 -

IP MEPSD IS NOT GT MEREQ,AND MEQPT IS BQUAL TO
'PLANE?', PRINT '*#%3 NEQPT, '***DEPICIENCY*#*%",
MEPSD,MEREQ.

CONTINUE, POSITION....,

In the preceding example, if the condition is true the
action PRINT will be executed. If the condition is false,
or on completion of the PRINT action, processing will
proceed with the CONTINUE statement.

Example 2 =

IF MEPSD IS NOT GT MEREQ,AND MEQPT IS
EQUAL TO °*PLANE®, PRINT ®**%x' MEQPT,
‘***«DEPICIENCY***' MEPSD, MEREQ.
ELSE, COMPUTE DIF = MEPSD - MEREQ.
CONTINUE, POSITION...

142

RE——S———————

FILE MAINTENANCE (FHM)

In the preceding example, if the condition is true, the
action PRINT will be executed. If the condition is false,
the action COMPUTE will be executed. In either case,
execution will then continue at the CONTINUE statement.

9.2.3.2 Procedure Definitions

Procedures are simply a method of grouping conditions
and actions as a unit and allowving these to be executed as
a unit, The first statement of a procedure is the PROCEDURE
statement, The last statement is an END statement. All
condition and action statements between the PROCEDURE and
END statements are considered as part of that procedure.

A procedure can be executed by executing a GO to the
procedure from outside of the procedure or by "“dropping"™ in
it. Upon completion, a procedure will return control to the
statement folloving the GO statement (GO type exacution) or
the statement following the procedure END statement
(*dropping®™ type execution). PFxit (return) from a procedure
occurs vhen the RETURN statement is executed or when the end
of the procedure (END statement) is encountered.

Procedures are restricted in the following sense:
execution of a procedure can only be initiated at the entry
point of the procedure. Nesting (procedure calling a
procedure) is not permitted.

The examples belov illustrate the ¢two methods for
executing a procedure.

Example 1 -

eee GO TO SUM, MOVE RESULT TO IQTAL...
eeeSUNM: PROCEDURE conditions and actions END...

The preceding example illustrates how a procedure is
executed from a GO statement,

The procedure named SUM would be executed vhen the GO TO
SUM statement is executed. When the END statement within
the procedure is executed control will be returned to the
next statement following the GO TO SUM statement. Following

143

FILE MAINTENANCE (FHN)

the execution of the procedure, the next statement to be
executed would be the MOVE RESULT TO TOTAL statement.

Example 2 -

eee MOVE SYSDATE TO DATE, CONVERT: PROCEDURE.. .
procedure conditions and actions RETURN additional
procedures conditions and actions END PRINT *FILE
UPDATED', DATE...

The preceding example illustrates the "drop through" method
of executing a procedure, The procedure is executed
following the statement MOVE SYSDATE TO DATE. When the
RETURN statement is executed, the next statement ¢to be
executed would be the first statement following the END
procedure statement which in the exaaple is a PRINT
statement.

9.2.3.3 Define Sequence Requirements

There are two simple considerations regarding sequence
requirements for use of DEFINE. The first is that a
constant or area must be defined before it can be referenced
by another statement, The second involves the define and
initialize (VALUE) statement., The initialization occurs at
the point that the statement is encountered. Thus, in a
logic statement which 1loops back, an area might be
reinitialized or, if the path of execution never encountered
the initialize statement the area would not be initialized
during that execution.

Though not required, these two sequence requireaents can
alvays be satisifed by placing all define statements at the
beginning of the NFL logic statement.

9.2.4 Subset Positioning

Special consideration should be given to the subset
positioning actions which position to the next subset. If,
at the time the statement is executed, the set is in an
inactive status (either the set has never been activated or
the set has been positioned past the last subset) the first

144

:

FILE MAINTENANCE (FM)

subset of the set will be activated. If there are no
subsets, the exit will be taken.,

9.3 NFL Statement Description

This section describes each of ¢the NFL statements in
detail. In each of the examples which are given, required
teras are underscored. Those which are not required, such
as noise words, are not underscored. Commas and periods are
optional; i.e., they are not required and are effectively
‘ignored. A summary of the syntax for the NFL can be found
in section 9.4.

9.3.1 Conditional Statements

To review what has previously been stated regarding NFL
conditional statements:

a. The statement identifier IP introduces the first
condition clause of a new conditional "“string".

b AND or OR identifiers identify a continuation of
the conditional string and the logic to be applied
between clauses.,

Cs A conditional string is always followed by a "true"
action(s), optionally a false action(s), and a
required continuation point.

d. A second condition may not appear before the
continvation point.

Several types of conditional clauses in NFL are listed
below.

Relational
Table Validation
Picture Mask

Switch

145

—— Ty
A A R KT P e P VTG L Iy

FILE MAINTENANCE (FNM)

Bit Mask
New Record
Run Complete

Overflow.

9.3.1.1 Relational Conditicn

The relational condition is used to compare two pieces
of data for a stated relationship. The clause is composed
of an operand, a relational operator, and a second operand.

Example -

IF EIELDA IS EQUAL TO EIELDB...

The above axample is a typical example of the relational
condition clause. The operand represented as FIELDA can
reference transaction data, data file data, indirect data,
constants, or work areas. The relational operator (EQUAL)
could be any one of the following:

EQ

EQUAL The relationship must be equal to be true,

EQUALS

NE The relationship must be unequal to be true,

LT The relationship must be less to be true.

LESS

GT The relationship must be greater to be true,

GREATER :

LE The relationship must be equal to or less to be
true.

GE The relationship must be equal to or greater to
be true.

FIELDB can reference transaction data, data file data,
indirect data, constants, work areas or literal values,

146

S S E——1

FILE MAINTENANCE (FM)

FIELDB might also be expressed as a multiple value
operand for the equal (and not equal) relationship.

Example =~

«++AND FIELDA Is EQUAL TO *ROSSLYN®, *GBURG',
*WASHINGTON',c ..

The multivalue equal condition is processed as an OR
string, i.e., if any one of the multiple values satisfies
the desired relationship, the clause is true. This, of
course, is just the opposite if the negative relationship is
required.

Example -
...AND EIELDA IS NOT BEQUAL TO. *ROSSLYN', 'GBURG®,
*WASHINGTON',... '

In this example, for FIELDA to be true, it mus*t not equal
*ROSSLYN®', *GBURG', or 'WASHINGTON®.

The between relationship condition requires two fields
or values following the specified relation.

Example - ’ o

«++QR ELELD IS BEIWEEN 500/700...

The two between values are separated by a slash;
multiple value operands are allowed with the between
relationship.

Example -

IE EIELDR IS BETMEEN 35007790, 200/1100...

The results (true or false) of the wmultiple value
betveen is the same as described for the equal relationship.
The between relation operator can be expressed as BT or
BETWEEN.

when specifying partial field notation with the second
operand of the between, care must be taken to be sure that

14?7

FILE MAINTENANCE (PM)

the partial field notation is preceded and followed by at
least one blank (see section 9.5).

9.3.1.2 Table validation

The table validation condition allows the user to use a .

user-Written subroutine or table lookup for validation
purposes. The clause is specified by designating the data
to be validated and the table (or subroutine) which is to be
executed to perform the validation.

Example -

«o«AND FIELDA IS IN TABLE CNTRYS...

FIELDA may be transaction data, data file data, indirect
data, constants or work areas., The keyword TABLE could also
be designated as TAB. CNTRYS is the name of the table or
subroutine.

NOT could be used to negate the conditiogn.
Example -

««+QR FIELDA IS NOT IN TABLE CNTRYS...

The validation must be unsuccessful for the above clause
to be true.

9.3.1.3 Picture Mask

The picture condition allows an alpha or decimal value
to be tested for designated character types. A picture mask
must be specified. This mask is composed of a series of the
folloving characters.

chacactecs Test
A Alpha characters
N Numeric characters
S Special characters

148

-y

PILE MAINTENANCE (PHN)

B Blank characters

X Nonblank characters

Y Nonspecial characters
* No check,

The field to be tested is checked character-by-character
for the condition specified by the corresponding character
in the mask.

' Example -

«e«AND FIELD IS AS IN PICTURE 'NNAAANN®

The above example would test the contents of FIELD for
tvo naumaric followed by three alpha followed by two numeric
characters. :

PIELD may reference transaction data, data file data,
indirect data, constants or work areas. The mask must be an
alpha literal value,

9.3.1.4 Switch Test

The switch test 1is used with the TURN action (see
section 9.3.2.8). It is a tool for testing for am ON/OFF
condition of a switch vhich is set by the user.

The switch is a single byte (character) in core which is
set to an EBCDIC zero for OPF and an EBCDIC one for ON. The
switch is designated by a sysbol which can be defined with
a DEFINE statement by the user or can bhe automatically
defined by the systenm.

The form of the switch clause is operand, followed by
the keyword OFF or ON.

Exaaple -

eeeQR THE GOSWTCH IS QN...

149

FILE MAINTENANCE (FM)

In the preceding example, if the character represented
by the symbol GOSWTCH contains a one, the clause will be
true.

The switch operand can only be a defined area (by the
user or systemnm).,

The keyword (ON) can be ON or OFF.

9.3.1.5 Bit Mask Test

The bit mask test allows a user to scan a field on a
character basis, vwhile testing for the presence of
designated bits wvwithin a character. The bit "mask |is
specified as a series of ones and zeros. If less than eight
are specified, =zeros will be padded to the right. If more
than eight are specified, they will be truncated on the
left.

When an ON (or NOT OFPF) condition is specified, if any
bit in any character of the field being scanned matches, the
result is true. For an OFF (or NOT ON) conditon, if all of
the designated bits in any character of the field being
scanned are off, the result is true,

The form of the bit test is; operand, keyword (BIT), bit
mask, keyvword (ON, OFP, NOT ON, or NOT OFPF).

Example -

IE EIELD BIT 10111111 IS ON...

In the preceding example, if any bit of any character of
FIELD is a one, other than the second bit, the clause will
be true.

Example -
If EIELD BIT 10111111 IS QFF...
In this example, a true condition will result only when

all of the bits, or all bits but the second, are zero for
any character of FIELD.

150

FILE MAINTENANCE (FM)

The bit mask 1is designated as an unsigned numeric
literal value composed of ones and zeros.

9.3.1.6 New Record Test

when a file record cannot be found for a transaction, a
nev file record is automatically crcated by the File
Maintenance capability. There are times when the user would
like to knovw when this condition exists, This can be
determined by the new record test. The example below
illustrates how to specify this condition.

Example -
+AND NEW RECORD...

The next example illustrates how a test for an old record
could be designated by use of the condition negation.

Example - _ e

+++QR NOT NEW RECORD...

9.3.1.7 Job Complete Test

For the user who wishes to perform an action at the end
of the maintenance run, the job complete test is provided.
This test is particularly useful in producing "maintenance
summaries”, It would only be used in Range logic
statements. :

The following example illustrates how the job complete

test would be used to test for the end of the run and for
not the end of the run.

151

R TP NV

FILE MAINTENANCE (FM)

Example =
«eeIF THE JOB IS COMPLETE... «e«AND THE JOB IS NOT
COMPLETE...
9.3.1.8 Overflow Test
The test for OVERFLOW statement is used after a compute
statement to determine whether overflow has occurred. The
test must be ‘made before a second COMPUTE statement is

executed or the status of the first statement is lost. The
example following illustrates the overflow test.

Example -

«oolE QVERFLOW IS ON... ...IF OVERFLOW IS QOFF...

9.3.2 Action Statements

Action statements specify a function to be performed.
The operations which they specify to be performed may be
uncondi tional or they may be based on the satisfaction of a
prior condition.
9.3.2.1 Data Movement

There are two statements which can be used to move data
from a specified source to a specified destination.
9.3.2.1.1 The MOVE Statement

There are two forms of the MOVE statement. The first is
a simple movement of the data from a source 1location to a
destination location. The second is the movement of the
data from a source location via a conversion subroutine or
table.

Example -

«++HMOVE FIELDA TO EIELDE...

152

¥ R BT

‘ E e

FILE MAINTENANCE (FHN)

The preceding example illustrates a simple MNOVP
statement. FIELDA may reference transaction data, data file
data, indirect data, defined constants, defined work areas
or literal values., FPIELDB may reference data file data,
indirect data or defined vork areas. Data mode
compatibilities will automatically be checked and field
lengths will automatically be adjusted. If partial field
notation is designated, it will be checked to determine
whether it is within the boundaries of the data field. When
moving coordinate fields, to or from EBCDIC fields,
conversion to and from internal format automatically occurs.

Exaaple -

...HOVE FIELDA TO PIELDB USING TABLE STATES,
EXIT ILLST...

The preceding example illustrates the movement of data
through a conversion table, PIELDA and FIELDB may reference
the same types of data as for the simple mnove. The data
characteristics for FIELDA are checked against the input
characteristics for table STATES and the FIELDB data
characteristics are checked against the output
characteristics for table STATES. The exit label (ILLST) is
the label of the NFL statement to which control will be
given if the table is not successful in converting the data.

In either of the MOVEs, FPIELDA may not be a variable
data file field or set. If FIELDB is a variable data file
field or set, any existing variable data_in FIELDB will be

Leplaced Py the contents of FIELDA. If PIELDB is a major
control field, a varning diagnostic will be printed wvhen the

logic statement is compiled and the move will be allowed.
IF FIELDB is a secondary control field (subset ID), the move
will be allowed without any warning diagnostic to the user.

Note: When alpha or decimal data is moved to an alpha or
decimal field, the °*MOVE®' instruction uses a 360 ALC MOVE
instruction wvhich moves left to right through each field one
byte at a time. Therefore, caution must be used vhenever
overlapping portions of the same field are used as the
operands of a 'MOVE' instruction (e.g. MOVE FIELDA 2/4 TO
FIELDA 3/5.¢4)

153

i
el t—————————

FILE MAINTENANCE (FM)

9.3: 2. 1,2 The ATTACH Statement

The ATTACH statement is used only to move data to a
variable set, It differs from the MOVE to variable set in
that instead of replacing the existing contents, the data to
be moved is appended to the existing data.

Example -

«ATTACH FIELDA TO FIELDB...

In the preceding example, assuming ¢that FIELDB is a
variable set, the contents of FIELDA would be appended to
the existing contents of FIELDB, FIELDA may reference
transaction data, data rile data, indirect data, defined
constants, defined work areas or literal values. FIELDB may
reference data file data wvhich are variable sets.

9.3.2.2 The COMPUTE Statement

The COMPUTE statement is used to specify one or more
arithmetic operations and to store the result in the
designated result field. The general format of the COMPUTE
statement is the result field folloved by the = (equal
character) followed by the arithmetic expression.

Example -
COMPUTE FIELDA = Arithmetic Expression

In the preceding example, the final result of the
expression to the right of the = character will be placed in
the location designated as FIELDA., FIELDA may reference
data file data, indirect data or defined work areas.

The arithmetic expression can consist of operands
separated by arithmetic operators. The operands may
reference transaction data, data file data, indirect data,
defined work areas, definea constants or numeric literals.
The arithmetic operator may be a + - =*= / character
indicating addition, sutktraction, multiplication, or
division. The arithmetic operator must be preceded and
followved by a blank character.

154

| S —

FILE MAINTENANCE (FPM)

Parentheses may be used ¢to alter the sequence of
arithmetic operations. Expressions within parentheses are
evaluated first. When parenthesized expressions are in a
nest of parentheses, evaluation begins at the innermost
level and continues until the outermost parenthesis level is
reached.

The multiplication and division operators are at a
higher precedence level than the addition and subtraction
operators. In expressions containing consecutive equal
precedence operators, evaluation will be performed from left
to right.

Note: Only integer arithmetic may be performed. Division
of a value by a 1larger value produces a zero result.
Therefore, careful consideration must be given to the
sequence of operations. Full word binary logic is used, so
the maximum value resulting from any operation is restricted
to t2,147,483,647.

Example -

A+B-C*D/E

The preceding expression, because of the order of process-

ing vould have the same result as
(A+B) = ((C*D) /E)
vhile
A+B*C-D/E
would have the same result as

(A+ (B*C)) = (D/E)

9.3.2.3 Subset Positioning Statements

To reference a data field belonging to a periodic set,
that set nmust be activated or be pointing to a subset
belonging to that set. NFL provides three statements to
pecrform the functions of activating and "stepping" through
a set; each statement has an exit. The exit designates the

155

- ittt

FILE MAINTENANCE (FM)

label of the statement to be given control if there are no
subsets or if a set becomes exhausted.

9.3.2.3.1 The LOCATE Statement

The LOCATE statement will activate the first subset of
a set.

Example -

-»«LOCATE SET EIELDA , EXIT NOSS...

The preceding example would cause the first subset of
the set in which PIELDA belongs to be activated. If there
are no existing subsets for that set, control would be given
to the statement following the 1label NOSS. FIELDA may
reference a data file field, indirect data, or the actual
set number may be designated. The exit label, NOSS, may be
the label of any statement other than a procedure label.

9.3.2.3.2 The STEP Statement

The STEP statement will cause the next subset of a set
to be activated.

Example -

«+«STEP SET FIELDA , EXIT ENDSET...

In the preceding example, the next subset of the set in
vhich PIELDA is a field vwill be made active, If there are
no other subsets to be made active the exit will be taken.
FIELDA may be referenced as a data file field, indirect data
or as the actual set number. The exit label, ENDSET, may be
the label of any statement other than a procedure label.

9.,3.2.3.3 The POSITION Statement
The POSITION statement can be used for all subset

positioning. The basic positioning actions which can be
done with the POSITION statement are:

156

Jijipians

IR s e LT R L

FILE MAINTENANCE (FPHN)

a. The POSITION statement can be used to position set
to the first subset within the set.

Example -

+++ROSITION TO THE FIRST SUBSET FOR FIELDA , EXII
NOSS...

The preceding example would cause the first set of the
set in which PIPLDA belongs to be activated. If there are
no subsets belonging to that set, control will be given to
the statement following the label NOSS which must not be a
procedure 1label. FIELDA may reference a data file field,
indirect data or as the actual set number.

b. The POSITION statement can be used to position a
set to the next subset in a set.

Example -

«+«PQSITION TO THE NEXT SUBSET POR FIELDA , EXIT TO
ENDSET...

The preceding example would cause the next subset for
the set in which FIELDA belongs to be made active. If there
is no additional subset, control will be given to the
stateaent following the label ENDSET (must not be a
procedure label). PIELDA may reference a data file field,
indirect data or be the actual set number.

Ce The POSITION statement can be used to position a
set after the last subset in a set. This is a
useful tool to build a newv subset at the end of a
set. :

Example -

«e+PQSITION APTER LAST SUBSET POR FIELDA...

The preceding example would cause, in effect, the next
action for that set to be after the last subset of the set
(the only valid action against that set would be build
subset or delete set), Note that there is no exit in the
example. An exit can be specified; however, the exit will
never be executed, i.e., it 1is ignored. PIELDA may

157

A Kl W 4 i

FILE MAINTENANCE (FH)

reference data file data, indirect data, or be the actual
set number.

d. The POSITION statement can be used .to position a
set to the subset in which a designated field of
that set contains a designated value.

Exaaple -

...BQSITION TO PIELDA IN FIELDB, EXIT TO NOHIT...

The preceding example would cause the following:

If the set in which FIELDB belonged was inactive, the
first subset would be activated and the contents of
FIELDB compared with the contents of PIELDA, If an
egqual condition exists that subset will be activated.
Othervise, the set containing FIELDB will be stepped and
the compare made until an equal condition exists or the
set becomes exhausted.

If the set has no subsets or if it is exhausted without
an egual condition, control will be given ¢to the next
statement following the NOHIT label (may not be the
label of a procedure).

If when the statement is executed, a subset of the set
to which PIELDB belongs is active, the subset will be
stepped and the compares will commence with that subset.

Note: If a set is stepped past the last subset (effectively
the set becomes inactive), ¢the next execution of the
POSITION statement will cause the search to begin with the
first subset.

In the preceding exanaple, FIELDA may reference
transaction data, data file data, indirect data, defined
constants, defined work areas or literal values. PIELDB may
teference a data file field or indirect data.

158

> ol PSS

FILE MAINTENANCE (FN)

9.3.2.4 Auxiliary Output Statements

There are four forms of auxiljary output available in
NFL. The statements to format and output each form are
identical except for the statement identifier and the number
of devices which can be designated. The data to be output
is specified as a list. NFL automatically formats the data
as a continuous string of data. If the value is binary, it
vill be converted to an EBCDIC value. The converted length
of a binary data file value will be the 1length designated
wvhen the file was structured. The converted length of a
binary work area will be 10 characters. Coordinates which
are in internal form will be converted to external form. If
the coordinate was defined as a field, the resulting length
vill be that designated vhen the file wvas structured. If
the coordinate was defined as a group, the resulting length
will be 15 characters per point. Blanks are not
automatically inserted between data values, If they are
desired, they must be designated by the user. If the systena
provided constants, BLANK, BLANKS, ZERO, ZEROS or ZEROES are
designated for output, the length will be one character.
The 1list of operands to be output may be transaction data,
data file data, defined constants, defined work areas or
literal values. The total number of bytes specified by all
auxiliary output instruction operands cannot exceed 994.
NIPS adds six bytes to the specified data and the DCB LRECL
is 1000. Vviolation of this limit will result in a Systea
001 ABEND (I/C ERROR, RECORD TOO LONG). :

9.3.2.4.1 The PRINT Statement

The PRINT statement is used to log data on a printer
during a FM update run. Twc printers can be designated. 1If
a printer is not designated in the PRINT statement, the
default is printer 1. 1In the TP mode, printer 1 designates
the display teraminal and printer 2 an OMQ display device.
Example -

«+«PRINT FIELDA,* ¢, FIELDB,* °*,PIELDC...
«+«PRINT ON 2, FIELDA,PIELDB, FIELDC.

159

FILE MAINTENANCE (FM)

The first example illustrates the PRINT stateaent
defaulting to printer 1; the second illustrates the method
for specifying the printer.

Note: The printer specification (on N, where N is 1 or 2)
must immediately follow the statement identifier. If the
total length of data is greater than 132 c~haracters, lines
of 132 characters will be printed until the total length |is
exhausted.

9.3.254.2 The PUNCH Statement

The PUNCH statement is used to punch data onto cards.
Two punches can be specified. If a punch is not specified,
default is to punch 1.

Example -

-++BUNCH FIELDA, FIELDB, PIELDC...

The preceding example would resulct in the contents of
FIELDA, FIELDB and PFIERLDC being punched in cards. If the
total length is greater than 80 characters, B80-character
records will be punched until the total number of characters
is exhausted.

9¢3.2.4.3 The WRITE Statement

The WRITE statement is used to output data on a
sequential output file. As many as five output devices can
be designated., If the device is not designated, it defaults
to auxiliary device 1; i.e., the device specified on the
FM.AUX1 DD card.

Example -

SRITE ON 3, EIELDA, EIELDC...

The preceding example would cause the contents of
FIELDA, FIELDB and FIELDC to be formatted and a record equal
to the total length output on auxiliary output device 3.

160

oSl i al e . EL N PR Y QRIS S L A

rafhhl L

PILE MAINTENANCE (FH)

9.3.2.4.4 The DISPLAY Statement

The DISPLAY statement is provided to assist the terminal
operator in correcting erroneous transaction data when using
the online update capability of Source Data Automation
(SODA) .

Example -
eeees DISPLAY SPIELD, °*TUBE MESSAGE',.

Wwhen this instruction is executed during a SODA run, it
causes the displayed transaction field ($FPIELD) to be
underscored with “a key to the message provided as the
literal °'TUBE MESSAGE®'.

When this instruction is executed during a batch FM run,
it causes the message to be printed on the Ordinary
Maintenance error log (see section 6.2.9). '

9.3.2.5 The BUILD Statement

The BUILD statement causes a nevw subset to be created.
The nevw subset is created at the point where that set is
active; i.e., if the set has not been positioned after the
last subset processed, existing subsets are "pushéd down" in
the set and the newly created subset inserted at the active
point. After the subset has been created, the new subset is
made active, No data is moved to the subset as a result of
the BUILD statement,

Example -

+++BULLD SUBSET EIELDA...

The preceding example causes a nev subset to be built
for the set in which FIELDA belongs. PIELDA may be data
file data, indirect data or the actual set number,

161

et A -

P—

FILE MAINTENANCE (FM)

9.3.2.6 The DELETE Statement

_« The DELETE statement is wused <ither to delete the

record, to delete a set, to delete the currently active
subset, or to clear a field.

ae The DELETE record is illustrated in the following
example,

Example -~

++«DELETE BECORD...

The preceding example informs FM that the current data
record is to be deleted. After execution of this
instruction, no further processing is performed against the
current data record and a return is made to FM.

be The DELETE set is 1illustrated in the following
example,

Example =~

...DELETE SET FOR PIELDA

The preceding example causes the entire set to which
FIELDA belongs to be deleted. FIELDA may be data file data,
indirect data or the actual set number.

Ce The DELETE subset is illustrated in the following
example,

Example -

+«+DELETE THE SUBSET FOR FIELDA... -

The preceding example would cause the currently active
subset for the set in which FIELDA belongs to be deleted.
After the subset is deleted, the next subset (if any) is
made active. FIELDA may be data file data, indirect data or
the actual set number.

d. The DELETE field is illustrated in the following
example,

162

i e s KR i o i

- 3

Py

PILE MAINTENANCE (FM)

Example -

««eDELETE PIELD FIELDA...

The preceding example would cause one of the following
results depending on FIELDA: :

o If numeric, FIELDA would be set to zero.
o If alpha, FIELDA would be set to blanks.
o If a coordinate, FIELDA would be set to =zero.
o If a variable field or set, the variable field

or set would be deleted.

9.3.2.7 The DEPINE Statement

The DEPINE statement is used to define constants and
work areas. A constant is simply a wvay to define a literal
value which can be referenced with a symbol. Data cannot be
moved to a constant. Work areas are just what the name
implies, and are used for the temporary storage of data.

There are ¢two types of wvork areas. One is a systenm
provided logic statement work area consisting of a 999-byte
EBCDIC area and a 20 full word binary area., Data can be
passed from one 1logic statement to another or retained
between data records by use of this type of work area. The
second type, or logic statement internal work area, is
unique to the logic statement in which it is defined. Any
data which is moved to it is lost between data records.

Each define assigns a symbol ¢to the work area or
constant. The symbol is then used to reference the area or
constant. An error will occur if the same symbol is defined
more than once or if a defined symbol is the same as a data
file field name.

9.302.7.1 Defining a Constant

The following examples illustrate how a constant |is
defined.

163

L-w-_"A e—

FILE MAINTENANCE (FM)

Example -

-«+-DEFINE HEADER AS °LIST OF RECORD IDS UPDATED'...

««<DEFINE PI AS +314... '

In the first example, HEADER is the symbol assigned to
the alpha literal value. When that symbol is referenced in
a NFL statement the 1literal value will be used. In the
second example, PI is the symbol assigned to the numeric
value.
9¢3e247.2 Defining an Inter-logic Statement Work Area

To define an area in the system provided EBCDIC vork
area, one identifies the symbolic name to be assigned to the
area and the relative positions within that area in the form
WN/M where N is the relative position of the first character
and M is the relative position of the last character.

Example -

-+DEFINE SAVE AS §71/80...

In the preceding example, SAVE is the symbolic name
assigned to characters 71 through 8F of the EBCDIC work
area. These characters can then be referenced by the NFL
condition and action statements by the symbolic name, SAVE.

Defined areas in the EBCDIC work area can be overlapped.

Example -
«e+DEPINE DAY AS §1/2...
«+«DEFINE MONTH AS H3/S5...
++«DEEINE IEAR AS H6/7...

«e«DEFPINE DATE AS 81/7...
In these examples, DATE overlaps DAY, MONTH, and YEAR.

164

ahe

48

FILE MAINTENANCE (FHN)

A binary work area 1is assigned a symbolic name by
identifying the name followed by the designated word in the
form BN where N is a word number between 1 and 2@ inclusive.

Example -

+«+-DEFINE COUNT AS B4...

In the preceding example, COUNT is the symbolic name to
be assigned to the fourth binary word in the system-provided
binary work area.

9.3.2.7.3 Defining an Intra-logic Statement Work Area

A logic statement internal wvwork area is defined by
specifying the symbolic name and designating the number of
characters to be assigned to that symbolic name. The number
of characters is designated by the form #N where N is the
number of characters to he assigned.

Example -
++«DEFINE HOLD AS #10/...

In the preceding example, a 10-character area will be
reserved and can be referenced using the symbolic name HOLD.

9.3.2.7.4 Defining and Tnitializing an Area

A vwork area can be defined and initialized with a value
each time that the logic statement is executed. When using
this capability, the define sequence requirements (section
9.2.3.3) should be considered. To specify that a defined
area is to be initialized with a value, the area definition
(sections 9.3.2.7.2 and 9.,3.,2.7.3) is followed by the
keyword VALUE followed by the literal value or one of the
system-provided constants (SYSDATE, ZERO, ZEROS, ZEROES,
BLANK, or BLANKS).

Example -

+«+DEEINE SAVE AS §71/80, VALUE IS BLANK...

165

i o

FILE MAINTENANCE (FH)

In the preceding example, a 10-character area in the
system work area will be assigned the symbolic name SAVE.
That area will be initialized to blanks each time the logic
statement is executed.

Example -

..DEFINE COUNT AS B4, VALUE IS 0...

In the preceding example, the binary work area will be
assigned the symbolic name COUNT. Each time that the 1logic
statement is executed, it will be initialized to zero.

Example -

.-DEFINE HOLD AS #10, VALUE IS 'ABCDEFGHIJ'

In the preceding example, the 10-character work area
will be assigned the symbolic name HOLD. Each time that the
logic statement is executed, it will be initialized to the
value ABCDEFGHIJ.

9.3.2.8 The TURN Statement

The TURN statement is used to set a 1-character area to
an ON or OFF status. The area may be defined by the user
with a DEFINE statement or he can let the system define it
for him, If the system defines the area, it will be a logic
Sstatement internal wvork area.

The TURN statement is primarily for use with the switch
test condition, The user designates the switch setting he
desires to be set with the TURN statement. Later, he can
test for that condition with the swvitch condition. The
switch is set to an EBCDIC zero for off or one for on.

Example -
esoe TURN SWITCHA ON...
In the preceding example the area (switch) having the

symbolic name SWITCHA will be set to an EBCDIC one. If no
area has been defined with the symbolic name SWITCHA, an

166

RSP

o ta

o Arg— T Sf e e e — Y

FILE MAINTENANCE (FM)

area will automatically be defined and given the symbolic
name SWITCHA.

SWITCHA may only referance defined (by the user or
system) areas.

9.3.2.9 Execution Sequence Changing Statements

There are two NFL statements (not counting exits fron
other action statements) which alter or change the sequence
of executing statements.

9.3.2.9.1 The GO Statement

Normally, NFL statements are executed sequentially in
the order that they are read into the system. The GO
statement can be wused to change ¢that order. Only a
statement label can be designated as the point to continue
execution., That label may be a procedure label (unless the
GO 1is inside a procedure definition (see section 9.2.3.2))
or a statement label. If it is a statement label, it nmust
be at the same level (within or without a procedure) as the
GO statement. If a GO to a procedure label 1is executed,
return from the procedure will be to the next sequential
statement following the GO, If it is not a procedure label,
control is not automatically returned.

Example -

eesGQ TO LOG BLSE.+«s «eeL0OG: PRINT...

The preceding example illustrates a typical use of the
GO statement, Assuming that a condition precedes the GO
statement, 1f the condition is true, the order of statement
execution 1is changed to the statement following the label
L0OG. It is not a procedure statement, thus control will not
be returned,

Example -

+++GQ TO 3UM, MOVE... eesSUH: PROCEDURE...

167

o e A e -

FILE MAINTENANCE (FNM)

The preceding example illustrates the use of the GO
statement to execute a procedure. When the procedure has
completed execution, execution would resume wvwith the MNOVE
statement following the GO statement,

9¢36249.2 The RETURN Statement

The RETURN statement when wused within a procedure
returns control to the mainline statement or when used in
the mainline, terminates execution of the logic statement.
If control by the procedure was gained from a GO statement
(see section 9.2.3.2), execution of the RETURN statement
would cause control to be returned to the next statement
following the GO. If control was gained by the procedure by
the "drop through" method, execution of the RETURN statement
will cause control to be returned to the next statesent
following the procedure ®ND statement.

The RETURN statement has no operands. Examples in
section 9.2.3.2 illustrate the use of the RETURN statement.

9.3.3 Control Point Identifiers

There are several statements which cause no condition to
be satisfied or action to be performed. Their primary
function is to identify statement groupings or control
points.

9.3.3.1 The NOTE Statement

The NOTE statement actually is not even a control point.
It is simply a means for the user to insert commentary text
between NFL statements.

The NOTE statement has one operand. It is an implicit
literal enclosed in quotes. The NOTE statement can appear
between any ¢two statements but should not appear between a
label and its associated statement.

Example =

«++HMQVE DATIA 3/5 TO MONBUC NOTE 'MONTH ONLY IO WORK

168

u . > e TR, e

FILE MAINTENANCE (FM)

AREA'

In the preceding example, the NOTE statement is used to
explain the characters being moved.

9.3.3.2 The PROCEDURE Statement

The PROCEDURE statement identifies the beginning of a
group - of statements which will be treated as a unit. The
PROCEDURE must be preceded ty a label. This label is called
the procedure name.

9.3.3.3 The END Statement

The END statement identifies ¢two control points. It
identifies the end of a procedure and/or it identifies the
end of the logic statement. It has no operands.

Example -
NFL Conditions and Actions

PROC1: PROCEDURE
Conditions and Actions
END

PROC2: PROCEDURE
condition and Actions
END

END.

The preceding example illustrates a logic statement
containing tvo procedures. The first END statement
eacountered terminates the group of statements vhich
cosprise procedure PROC1. The second END statement does the
same for the procedure PROC2. The third END statement
terminates the entire logic statement.

169

 ———————— N ———

[—

FILE MAINTENANCE (FMN)

9.3.3.4 The ELSE Statement

The ELSE statement identifies the beginning of a group
of action statements vwhich are to be executed only if a
preceding condition was false, This statement is not
required and it should only be used when there are both true
and false actions (true actions consist of those actions
immediately following the condition and continuing until an
ELSE or CONTINUE statement is encountered). False actions
commence with the first action following the ELSE statement
and continue until a CONTINUE statement is encountered.

Example -

«««IF THE COU

UNT IS GREATER THAN 10
*2 ELSE MOVE 2

T I UTE COUNT = COUNT
EROS TO COUNT CONTINU

.Q_._
UE..

In the preceding example, if the condition is true, the
COMPUTE statement would be executed. If it is false, the
MOVE statement would be executed. Any number of actions
could appear where these two actions appear.

9.3.3.5 The CONTINUE Statement

The CONTINUE statement identifies the point, following
a condition, that execution of nonconditional statements is
resumed. There are no exceptions; each IF statement mnust
have associated with it a corresponding CONTINUE statement.
All NFL statements which follov an IF statement are
considered to be part of the IF statement., To terminate an
IF block, a CONTINUE statement is required.

Example -

eeoIF FIELD IS NOT EQUAL TO BLANKS MOVE PIELD TO REC
CONTINUE...

In the example above, if the condition is true,
execution is resumed with the next statement following the
CONTINUE after the true actions are performed. If the
condition is false, execution is resumed with the next
statement follovwing the CONTINUE statement.

170

i Y

bl S L o

FILE MAINTENANCE (FM)

Example -

+++1F FIELD IS NOT EQUAL TO BLANKS MOVE FIELD TO REC
ELSE MOVE REC TO FIELD CONTINUE...

In the preceding example, if the condition is true,
processing is the same as in the previous example., However,
if the condition is false, the false actions (those between
the ELSE statement and the CONTINUE statement) are executed;

execution then is resumed with the next statement following
the CONTINUE statement.

9.3.3.6 The Language Identifier Statement

The 1language identifier statement consists of the
characters NPFL. It wmust appear as the first statement
folloving the transaction descriptor deck (or the library
action control card if there is no TDD). It identifies the
language of all statements between it and the END statement
wvhich terminates the last NFL logic statement.

Example -
Library Action Control Card
Transaction Descriptor Deck
NFL
Condition and Action Statements

END.

In the preceding example, the language is identified as
NFL. All statements between it (NFL) and the logic
statement END card must be written as NFL statements.

POOL statements may be compiled in the same execution as
NFL statements, Grouping of NFL statements is recommended.

171

FILE MAINTENANCE (FM)

9.4 NFL Logic Statement Examples

The following examples illustrate the setup of the PN
run deck for updating the Logic Statement Library, and the
use of some of the NFL 1language statements. All of the
examples pertain to the TEST36f0 file.

All of the sample logic statements, with the exception
of the range statement, perform updates with transactions
from the report *RPT360'. The different transaction formats
within this report are identified by the letters 'A' through
'G*' in columan 1 of the transaction.

Comments in the form of NOTE statements are shown in
each of the logic statements. The logic statements
illustrated in sections 9.4.3 to 9.4.5 and sections 9.4.7 to
9.4.8 are the NFL equivalents of the POOL statements in
sections 7.5.3 to 7.5.5 and section 7.5.7 to 7.5.8,
respectively. The 1logic statement in section 9.4.6 is the
equivalent of the logic statements in sections 8.1 and 8.2.

9.4.1 FMS Control Card

The following FMS control card would be used to execute
the 'LIB' pode of PM to perform updates for the Logic
Statement Library for the TEST369 file:

$FMS/LIB, TEST360

9.4.2 Library Action Card to Add a Report
The following card would be used to add the report
'RPT360' to the Logic Statement Library. The transaction ID
field, for transactions within this report, is located in
column 1,
$AR,RPT360,1
This card could also have been punched as follovs:

172

b —

!m'mx AR SO

FILE MAINTENANCE (FH)

However, since the transaction ID field is only one byte
lonyg, the '-1' is not required.

9.4.3 Logic Statement Setup

The following example illustrates the organization of
the 1library action card, the TDD cards, the language
identifier card, and the NPL statement cards for an
Exception 1logic statement. The sample statement perforas
updates with the 'A' transaction format of the report
‘RPT360°.

The first card for the stateaent is the library action
card. This card specifies that the statement is to be
permanently added to the library. It also specifies that
the statement will perform updates with the 'A' transaction
of report ‘'RPT36@°', and that the fixed data in that
transaction format is 8¢ bytes long. The transaction does
not contain any variable data.

The TDD cards follow the library action card. The first
field in each of these cards is used to assign mnemonics to
the transaction data fields.

The second and third fields specify the high-order
position and the 1low-order position of the transaction
fields.

The fourth field is used to specify that a transaction
field is a major or user control field. In the example,
$RECID is a major transaction control field, and it
corresponds to the data record control group, ‘'UIC'. S$SORT
is a user transaction control field. It is not wused in
matching a transaction record to a data record, but is
associated with the record control field to control the file
processing sequence.

The fifth field in the TDD card indicates the type of
data that ¢the transaction fields will contain. The 'A?
transaction contains alphabetic (A) data and zoned decimal
(D) data only. Insertion of this field is optional, with
the default option being °'D°,

173

PILE MAINTENANCE (FMH)

The card following the last TDD card is the language
identifier card, and contains the word 'NFPL'. The word
'NFL®* may appear anyvhere between column.1 and colusn 71,
but must be in three consecutive card coluans.

The 1logic statement's function is described in the NOTE
statements which follow the language identifier card.

The logic statement first tests the new record switch by
using the condition/action statement sequence labeled TEST.
A nev record will be generated by FM when no data record can
be found with a UIC group that matches the contents of the
SRECID transaction field in an 'A' transaction. If this has
occurred, then the true actions of the condition/action
statement will be executed. The true action prints a line
vhich indicates that a new record was generated and control
is then passed to the statements following the keyword
CONTINUE. If a new record was not generated, control will
also be passed to the statements following the keyword
CONTINUE because false actions were not specified in this
particular condition/action statement sequence.

The MOVE statements move the contents of the transaction
fields to data file fields. Transaction data that is moved
to coordinate fields will be converted automatically to
internal coordinate format. The last MOVE stateaent will
store the datestime of the update into the data field LAUD
by referencing the SYSDATE system constant.

The 1last two condition/action statement sequences are
the NFL equivalent of the POOL conditional move
instructions. Transaction data $HOME will be moved to data
field HOME if it is not blank and $PERS will be nmoved to
PERS if it is not blank.

The END statement is executed next. This statement
causes an exit from the logic statement.

174

STt
AL) AL it 7 R e

B

FILE MAINTENANCE (FNM)

$ASP,RPT360,3,80
$RECID,2,7,C1,A
$SORT,8,8,C2,A
$HOME, 19,148, ,A
$ATTACH,12,12,,R7
$FUTURE,13,13,,A
$POINT,15,25,,D
$AREA1,27,37,,A
$AREA2,38,48,,A
$AREA3,49,59,,A
$PERS,73,84,,D
NFL
NOTE *THIS LOGIC STATEMENT WILL UPCATE THE LOCATION'
NOTE *'AND DEPLOYMENT AREA OF THE SPECIFIED UNIT, e
NOTE *IF A NEW RECORD IS GENERATED, A MESSAGE WILL °
NOTE *BE PRINTED AND THE TRANSACTION FIELDS WILL BE'
NOTE *MOVED TO THE DATA FIELDS®
TEST: IF A NEW RECORD
PRINT °'NEW RECORD GENERATED. ID IS - ',$RECID
CONTINUE
MOVE $ATTACH TO ATACH MOVE S$FUTURE TO FUTU
MOVE $POINT TO POINT MOVE $AREA1 TO DAPT1

MOVE $SAREA2 TO DAPT2 MOVE $AREA3 TO DAPT3

115

AR et YOI e e T i

-

FILE MAINTENANCE (FHN)

MOVE $AREA4 TO DAPTY4 MOVE SYSDATE TO LAUD
IF $HOME IS NOT EQUAL TO BLANKS
MOVE $HOME TO HOME CONTINUE
IF $PERS IS NOT EQUAL TO BLANKS
MOVE $PERS TO PERS CONTINUE

END

176

FILE MAINTENANCE (FM)

9.4.4 Use of Data Conversion

The following 1logic statement is used with b
transactions. These transactions contain only a major
control field in positions 2 through 7.

This logic statement verifies that the CNTRY and ACTIV
tfields, in selected records, contain valid data.

It a new record is generated by a 'B* transaction, the
record will be deleted and an exit from the logic statement
will be taken when the RETURN statement is executed.

If a new record is not generated, control is passed to
the statements following the keyword CONTINUF, Three work
areas are then defined to hcld the results of the conversion
routines or the asterisks error flag. Data field CNTRY will
be woved to the work area CNTBUC if the conversion by table
CTRYS is successful. If the conversion is unsuccessful, an
exit to the statement labeled ERR1 will occur and asterisks
vill be moved to the work area CNTBUC., The statement
labeled ACT performs a similar function with the data field
ACTIV. Before the logic statement exits, the results of the
twvo conversions will be printed. The system word BLANK in
the PRINT statement will insert a single blank character in
the printed line.

177

I—" ——

—

D

FILE MAINTENANCE (FN)

$ASP,RPT360,B,80
$RECID,2,7,C1,A
NFL
NOTE * THIS LOGIC STATEMENT WILL EXTRACT THE COUNTRY °*
NOTE ' CODE AND THE ACTIVITY CODE FOR SPECIFIED UNITS®
IF A NEW RECORD DELETE THE RECORD RETURN CONTINUE
DEFINE CNTBUC AS #15 DEPINE ACTBUC AS #15
DEFINE ASTRK AS '%%kkkkkkkkkkkkx?
MOVE CNTRY TO CNTBUC USING TABLE CTRYS ,EXIT TO ERR1
GO TO ACT /
ERR1: MOVE ASTRK TO CNTBUC
ACT: MOVE ACTIV TO ACTBUC USING TABLE ACTVS, EXIT TC ERR2
GO TO PRT
ERR2: MOVE ASTRK TO ACTBUC
PRT: PRINT UIC,BLANK,CNTBUC,BLANK, ACTBUC

END

178

OTE N - P .
e liad W YN BEEPOEIANSUSIIIE PO TS RO BT o e el

FILE MAINTENANCE (FHM)

9.4.5 Periodic Set Processing

The following examples illustrate ¢two methods for
updating periodic subsets. The first example uses an
Exception update statement to perform the updating of the
record. The 1library action card will add statement D' of
report type 'RPT36F' permanently to the 1logic statement
library. The TDD cards assign mnemonics to the transaction
fields, with tramnsaction field $RECID containing the major
control field of the record to be processed.

In the first example, the POSITION AFTER LAST statement
will ensure that the data file is at the beginning of the
subsets. The statement labeled POS will cause the subset of
periodic set one to be searched for the data field MECLQ
being equal to the contents of the transaction field $MEQPT.
If found, the following IF statement will modify data field
MEPSD and exit from the 1logic statement because RETURN
statements are in both the true and false actions part of
the conditionsaction statement sequence. If the subset is
not found, then an exit will be taken ¢to the statement
labeled NEW, where a new subset will be created, transaction
data wvwill be set 1into the specified fields and a message
vill be printed to indicate this action.

In the second example, the library action card is the
same. The TDD card for the transaction field *$MEQPT® is
different for the direct subset update. The control
parameter on the TDD card indicates that the field is to be
used as a subset control field. It also carries a
corresponding data record subset control field parameter.
The data field name *MECLQ' is defined as a subset control
group in the FFT. If no subset exists with a total record
control group (major control field, set number, and subset
control group) equal ¢to the update record control group
($RECID, set number, $MEQPT) a new subset is generated by PM
and the total record control group is set in the newv subset

and the new record indicator is set on. If the subset

exists, the subset is made active.
$ASP,RPT360,D,80

$RECID,2,7,C1,A

179

-

FILE MAINTENANCE (FN)

$MEQPT, 19,22, ,A
$NOEQPT, 25,27, ,D
$ADDCODE, 29,29, ,A
NFL
NOTE *THIS LOGIC STATEMENT
NOTE 'CONTAINING THE EQUIP
NOTE *SUBTRACT THE NOMBER
NOTE 'ADD CODE. IF THE SUB
NOTE 'SUBSET WILL BE BUILT
POSITION AFTER LAST SU
NOTE 'ABOVE STATEMENT FOR
POS: POSITION TO $MEQPT
IP $ADDCODE EQUALS

COMPUTE MEPSD

ELSE

COMPUTE MEPSD

CONTINUE
NEW: BUILD SUBSET FOR MECL

MOVE $NOEQPT TO MEPSD

WILL SEARCH FOR THE SUBSET®
MENT TYPE AND WILL ADD OR °*
OF ITEMS AS SPECIFI®ED BY THE'
SET DOES NOT EXIST, A NEW®

AND THE FIELDS UPDATED?

BSET IN MECLQ

CES SET INACTIVE'

IN MECLQ, EXIT TO NEW
"

MEPSD ¢ $NOEQPT , RETURN

MEPSD - $NOEQPT,RETURN

Q MOVE $MEQPT TO MECLQ

PRINT *NEW SUBSET CREATED' PRINT S$SMEQPT

END

180

FILE MAINTENANCE (FHM)

$ASP,RPT360,D,80

$RECID,2,7,C1,A

$MEQPT, 19,22, ,A,S, MECLQ

$NOEQPT, 25,27,,D

$ADDCODE, 29,29,,A

NF
NOTE
NOTE
NOTE
NOTE

NOTE

L

THIS STATEMENT WILL PERPORM THE SAME FUNCTION, °

USING THE DIRECT SUBSET UPDATE CAPABILITY.®

IF THE SUBSET DOES NOT EXIST A NEW SUBSET WILL °*

BE GENERATED AND THE SUBSET CONTROL FIELD ¢

WILL BE AUTOMATICALLY SET BY FM., °?

IF A NEW RECORD MOVE $NOEQPT TO MEPSD

PRINT

R

ETURN CONTINUE

'NEW SUBSET CREATED' PRINT $MEQPT

IF $ADDCODE IS EQUAL TO ‘A!

ELS

END

COMPUTE MEPSD
E

COMPUTE MEPSD

$NOEQPT + MEPSD, RETURN

$NOEQPT - MEPSD, RETURN

181

CONTINUE

e -

 SEONERENERS

FILE MAINTENANCE (FM)

9.4.06 Test for Numeric Data

The following logic statement illustrates a simple
method of determining if a transaction field contains zoned
decimal data. The PICTURE test is used for this function.
The PICTURE mask will contain the letter N which signifies
a numeric character test. If all characters of the field
are to be tested, then the mask will contain a number of Ns
equal to the length of the field. This statement consists
of condition/action statement sequences containing both true
and false actions. If the transaction data contains all
numeric characters, then it is moved to the data field. e
not, an error message is printed.

182

e Y . 5 e

AD=A063 432 COMMAND AND CONTROL TECWICIL CENTER UISH!NCTON DC F/6 9/2
NMCS INFORMATION PROCESSING SYSTEM 360 FORMATTED FILE SYSTEM (N==ETC(U)
SEP 78 C K HILL
UNCLASSIFIED CCTC=CSM=UN=15=T8=VOL~3

\ ATE
ILME D

s

2

li2s Jis s

FEFFEER
=
l,N
N

FEER

_.

AR

rr

13

rr
==
IM

o

=
ll=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

= e =

FILE MAINTENANCE (PHN)

$ASP,RPT360,E,80
$RECID,2,7,C1,A
$PERSONL, 19,15,,D
SREADAVG, 20,22,,D
$RITNM,25,27,,D
NPL
NOTE ' THIS LOGIC STATEMENT WILL UPDATE NUMERIC FIELDS IN'
NOTE ' THE FIXED SET. THE INPUT TRANSACTION FIELDS ARE IN'
NOTE * ZONED DECIMAL FORM., CHECKS WILL BE MADE TO DETERMINE'
NOTE * IF THE FIELDS CONTAIN NUMERIC CHARACTERS. IF AN ERROR®
NOTE * IS DETECTED, AN ERROR MESSAGE AND THE FIELD IN°®
NOTE ¢ ERROR WILL BE PRINTED®
IF $PERSONL PICTURE IS *NNNNNN' MOVE $PERSONL TO PERS ELSE
PRINT *THE PERSONL FIELD CONTAINS NON-NUMERIC CHARACTERS®
$PERSONL CONTINUE IF SREADAVG PICTURE IS 'NNN' MOVE
SREADAVG TO READAVG ELSE
PRINT °*THE READAVG FIELD CONTAINS NON-NUMERIC CHARACTERS®
$READAVG CONTINUE IP $RITNM PICTURE IS 'NNN' MOVE S$SRITNM
TO RITNM ELSE PRINT
‘THE RITNM FIELD CONTAINS NON-NUMERIC CHARACTERS' SRITNM
CONTINUE END

183

-
PR e A i

FILE MAINTENANCE (PH)

9.4.7 Production of Susmary Information

The following logic statement is a Range statement that
functions without transaction data. The library action code
for this statement contains only the function code °®S$AST*,
and there are no TDD cards for this statement. This type of
statement must be compiled on-line each time it is used.

This statement uses the job complete test ¢to determine
if the processing is cosplete. If processing is not
complete, three COMPUTF statements update the desired

statistics. When processing is complete, these statistics
vill be printed.

184

FILE MAINTENANCE (PN)

SAST

NPL

NOTE ¢ RANGE STATEMENT TO CALCULATE THE TOTAL NUMBER OF*
NOTE * UNITS IN THE DATA FILE, TOTAL PERSONNEL STRENGTH'
NOTE * AVERAGE OF TOTAL REATCINESS AVERAGE OF ALL UNITS®
NOTE * THIS INFORMATION WILL BE PRINTED ON THPE®
NOTE ' AUXILIARY OUTPUT PILE®
DEFINE COUNT AS B1,DEPINE TOTPER AS B2,DEPINE AVG AS B3
IF THE JOB IS NOT COMPLETE COMPUTE COUNT = COUNT + 1
COMPUTE TOTPER = TOTPER ¢ PPRS,COMPUTE AVG = AVG ¢
READAVG RETURN CONTINUE
PRINT BLANKS PRINT BLANKS NOTE *SPACE TWO LINES®
PRINT °TOTAL NUMBER OF UNITS~',COUNT PRINT BLANKS
PRINT "TOTAL PERSONNEL STRENGTH OF ALL UNITS-' TOTPER
PRINT BLANKS DEPINE TOTAVG AS #12
COMPUTE TOTAVG = AVG / COUNT

PRINT °*AVERAGE OF TOTAL READINESS AVERAGE-' ,TOTAVG
PRINT BLANKS END

185

B

FILE MAINTENANCE (PH)

9.4.8 variable FPield and variable Set Processing

The following logic statements illustrate the use of the
MOVE stateuent when the variable field or variable set are
referenced.

The first statement amcves information from a variable
transaction field, $VAR, ¢to the variable field COMMENT.
Existing information in COMMENT will be destroyed. When the
data transfer takes place, the data is truncated so that any

trailing blanks in the variable transaction field are not
moved.

The second statement appends information to the variable
set REPER. Since the informsation to be transferred is in a
fixed length transaction field, no truncation takes place.

186

FILE MAINTENANCE (FM)

$ASP,RPT360,F,10,11
$RECID,2,7,C1,A
$AVR, 11
NFL

NOTE ' THIS LOGIC STATEMENT REPLACES THE INFORMATION®
NOTE ' IN THE VARIABLE PIELD COMMENT WITH THE ¢
NOTE * INFORMATION IN THE VARIABLE LENGTH TRANSACTION'
NOTE * PIELD $VAR. °*

MOVE $VAR TO COMMENT

END

$A5P,RPT360,G,80
$RECID,2,7,C1,A
$VAR,31,80,,A

NPL
NOTE * THIS LOGIC STATEMENT APPENDS THE INPORMATION IN'
NOTE * THE TRANSACTION PIELD $VAR TO THE INFORMATION®
NOTE * IN THE VARIABLE SET REPER, '

ATTACH $VAR TO REPEx

END

187

FILE MAINTENANCE (PHM)

9.5

Note:

Summary of NPL Condition and Action Statement

Syntax

The following shovws the syntax format for NFPL
conditional and action statements.

The following legends are used:

TF
DP
IA
WA
LV
PP
SN

FC

ST
SL
Pu

(]

Partial field notation for figurative constants is valiad
only for SYSDATE,

-Transaction Field Name
-Data Pile Name
-Indirect Address Name
-Work Area Name
-Literal value

-Partial Pield vValue
-Set Number

=Figuration Constant (SYSDATE,
ZERO, ZEROS, ZEROBS, BLANK,
BLANKS)

-Subroutine or Table Name

-Symbolic Statement Name

-Picture Mask designated as
an alpha LV

-Bit Mark designated as an un-
signed numeric LV consisting
of ones and zeros

-Optional Words

-Choose One Word

188

PO S G -~]

FILE MAINTENANCE (PHN)

IP Statement (Non-betveen

Ir

-

TP(PP)
DP[PP]

WA[PP] ([IS] [NOT)

IA

Relational)

EQ

WE

EQUAL [TO]
EQUALS

LT

GT

LE

GE [THAN)
LESS

GREATER

SINGLE OPERAND ONLY

189

A kst

TP PP]
DP{ PP]
WA[PP]
FC{ PP)
IA
LV

TP(PF)
DP[PF]
WAL PP]
FC(PP)
IA
LV

MULTIPLE OPERANDS

PERMITTED

TP[P?)
DP{ PP]
VA[PP)
rcl PP)
1

Lv

PR S W

PILE MAINTENANCE (FH)

IF Statement (Between Relation)

TP(PP] BT
DP[PF)

I WA[PF] [IS) [NOT] BETWEEN
IA

BETWEEN OPERAND PORMAT:

NO PARTIAL FIELD -

WITH PARTIAL FIELD -

IF Statement (Table Relation)

TP(PF)

IF DPF(PP] ([IS] [NOT] [IN]
WA[PF)
IA

IP Statement (Picture Relation)

TP(PP) PIC
IF DP(PP)
VA[PP] PICTURE
IA
190

TP[PP) TP[PP)
DFP{ PF) DF[PF]
WA[PF] / WA[PP)

FC[PP] FC[PF]
IA IA
LV LV

MULTIPLE OPERANDS
PERMITTED

NEQPT/SERV or MEQPT / SERV
NEQPT 1/2 / SER 3/4

MEQPT / SERV 3/4

MEQPT 1/2 / SERV

TAB
ST
TABLE

[IS] [wOT] PN

PR T ol . e

FILE MAINTENANCE (PHN)

IF Statement (Bit Test)

TF[PF]

DF[PP] oN
IF WA[PP] BIT BM [IS] [NOT)

IA OPF

iF Statement (Switch Test)
ON

IF WA [IS]) [NOT)
OFP

IF Statement (Status Test)

IF (NOT) NEW RECORD

COMPLETE
IF (THE) JOB [IS] [NOT]
COMPLETED
} oN
IP OVERPLOW [IS] [NOT)
oPFP

PILE MAINTENANCE (FHM)

ACTION Statements

GO (TO) SL
oN
TURN WA
OFP
DF
COMPUTE WA =
IA
WRITE
PRINT [ON n)
PUNCH
DISPLAY

TP PP] + TP[PF]
DF(PP] - DF[PF)
WA[PP] E WA[PFP]
PC(PP] / PC(PF]
IA IA
Lv LV
TP[PF) TP[PF]
DP[PP) DP(PP]
WA[PP] WA[PP
PC[PP] FC{PP)
LV LV

n = unit number

for PRINT, PUNCH, DISPLAY n may be 1 or 2

for WRITE n may be 1 through S

If (ON n] not specified, = unit 1 is assumed.

DF
BUILD SUBSET IA
SN

TP[PP]
DP(PP)
ATTACH WA[PP)
rcfer]

) 4
[(To)

192

e i

FILE MAINTENANCE (PHN)

Ly

DELETE RECORD

FIELD . DP
DELETE SUBSET = IA
SET SN
TF[PF) SUB
DP[PF) PP PF) TAB
MOVE WA[PF) ([TO) WA[PF] [USING] SUBROUTINE
PC[PF) TA TABLE
IA
LV
DP
LOCATE SET IA EXIT SL
SN
DF
STEP SET IA EXIT SL
SN

193

ST EXIT SL

-
e SRR —

FILE MAINTENANCE (PH)

TP PP]
DP[PP] DP[PF)
POSITION [TO) WA[PP] [IN) EXIT SL
IA IA
LV
DF
POSITION [TO] PIRST [SUBSET] (IN] IA EXIT SL
SN
DF
POSITION [TO) NEXT [SUBSET] [IN] IA EXIT SL
SN
DF

POSITION [AFTER) LAST [SUBSET] [IN] IA BXIT SL
SN

AS
DEFINE WA LV
TO
¥n/m
AS PC
DEFINE WA #n VALUE [IS)
TO Lv
Bn

194

o s TR e L Sy T T 7w W et e

I B .

FILE MAINTENANCE (FHN)

Appendix
Utilizing a NIPS Pile as FM Transaction Input

This appendix specifies the preparation requirements for
using a NIPS 369 FPFS data base as a transaction input file.

The high-order 1location, 1length and mode of each file
field may be obtained from the Pile Pormat Record List
portion of the FPT listing. These high-order locations are
relative # and must be adjusted to relative 1 (add 1 to each
He0. location) for FPM TDD cards. If in doubt, run an FR and
list the logic statements produced. The TDD cards of these
statements will also describe each field in the file being
revised.

If the file has periodic sets, a logic statement can be
written for each set. The LS name would be formed from two
bytes. The first byte would be an 'R' which is in position
6 (relative to 1) of every data record. The second would be
one hex byte vhich specifies the set I.D. The location of
this byte can be found under the label "H.O. SET ID' in the
Control Record Contents portion of the PFT list. Again,
this is relative to @; so add one for the TDD card. This
byte is a binary @ for the fixed set, binary 1 for the first
periodic set, binary 2 for the second, etc.

The TRANS DD statement in the FM procedure should be
overridden to describe the NIPS file. The DCB for a NIPS
ISAM file must include the parameter DSORG=IS.

The transaction source field on the FM control card
should be specified as SAM for a sequential NIPS data base
or ISAM for an index sequential NIPS data base.

Using file TEST360 as an example, the record control is

six bytes long wvhich places the SET ID at location 13 of
each file record.

195

FILE MAINTENANCE (PHM)

ae The Add Report card would appear as follows:
$AR,REPT,6,13

b. The Add Statement card for the fixed set 1logic
statement would appear as follows:

$ASP,REPT,R*,320

vhere * is a binary @ (12-0-8-1 punch) and 329 is
the set length.

196

s o

or
s

——

|

DISTRIBUTION

CCTC_CODES COPIES
C124 (Reference and Record) ——-—=-—==—cm—eceee——- 3
C124 (Record Copy) StoCk-—————=—m—memeccc e —a—— 6
C240 —mmmmm e m—————————— e 20
€315 =mmm e e e e 1
C341 (Maintenance Contractor)----==—==--cec-e-- 10
C341 (Stock)===~=r=memmm e e e ————— 70

EXTERNAL

Director of Administrative Services, Office of
the Joint Chiefs of Staff

Attn: Chief, Personnel Division, Room 1A724, The
Pentagon Washington, D.C. 20301-=-=---r—=—=-—-—=— 1

Director for Personnel, J-1, Office of the Joint
Chiefs of Staff, Attn: Chief, Data Service Office,
Room 1B738C, The Pentagon, Washington, D.C.
20301~ —— e 1

Director for Operations, J~3, Office 6f the Joint
Chiefs of Staff, Attn: P & AD, Room 2B870, The
Pentaygon, Washington, D.C. 20301~-=-==-=—=cc—e=———- 1

Director for Operations, J-3, Office of the Joint
Chiefs of Staff, Attn: Deputy Director for
Operations (Reconnaisance and Electronic Warfare)
Room 2D921, The Pentagon, Washington, D.C.

2030] ===~ mr e e e e —— - 1

Director for Logistics, J-4, Office of the
Joint Chiefs of Staff, Room 2E828, The Pentagon,
Washington, B.C. 2030lsrsrensracnammnnasmsidms 1

Chief, Studies Analysis and Gaming Agency, Attn:
Chief, FForce Analysis Branch, Room 1D928A, The
Pentagon, Washington; D.C. 2030)--===m=e~ccmecw- 1

Automatic Data Processing, Liaison Office

National Military Command Center, Room 2D901A,
The Pentagon, Washington, D.C. 2030)-~======-==- 1

197

A Sl M i st A ...

-

-

EXTLRNAL COPIES
Automatic Data Processing Division
Supreme Headquarters Allied Powers, Europe
Attn: SA & P Branch, APO New York 09055------ 1

Director, Defense Communications Agency, Office
Of MEECN System Engineering, Attn: Code 960T,
Washington,; D.0. @UIMIT=ieSw b s e 1

Director, Defense Communications Engineering
Center, Hybrid Simulation Facility, 1860
Wiehl Avenue, Reston, VA 22070--==—-===—===——~ 1

Director, Defense Intelligence Agency
Attn: DS - 5C2
Washingtan, DG QUI0T =ik i e pois 5

Commander-in-Chief, Pacific, Attn: J6331,
FPO San Franciscn, D06 10 =rmmmmemoomnmmnmmmmmptn 1

Commander-in-Chief, US Army Europe and
Seventh Army ATTN: OPS APO New York 09403--- 1 }

Commanding General, US Army TForces Command,
Attn: Data Support Division, Building 206,
Fort MoPhergdn, GR FOIDI e oo aiin o m i 1

Commander, Fleet Intelligence Ccenter, Europe,
Box 18, Naval Air Station, Jacksonville,
Florida 32212=~==-memrmceercccccne—— —————————— - 1

Commanding Officer, Naval Air Engineering
Center, Ground Support Equipment Department,
SE 314, Building 76-1, Philadelphia, PA 19112 1

Commanding Officer, Naval Security Group
Command, 3801 Nebraska Avenue, N.W. Attn: GP22,
Washington' D.C. 20390 —————————————————————— - 1

Commanding Officer, Navy Ships Parts Control
Center, Attn: Code 712, Mechanicsburg, PA 17055 1

Headquarters, US Marine Corps, Attn: System

Design and Programming Section (MC-JSMD-7)
Washington, D.C. 20380=—wscsnsnucnanvennnnnne 1
198

-
i e s — s e

ER———
Da— (S ——

EXTERNAL

Commanding Officer, US Army Forces Command
Intelligence Center, Attn: AFIC-PD, Fort
Bragg, HC 28307 ~mr e mmmmonmmimm o m o m i -

Commander, US Army Foreign Science and
Technology Center, Attn: AMXSJ-CS, 220
Seventh Street NE, Charlottsville, VA 22212--

Commanding Officer, US Army Security Agency,
Command Data .Systems Activity (CDSA) Arlington
Hall Station, Arlington, VA 22212===—~=====c=—

Commanding Officer, US Army Security Agency
Field Station - Augsburg, Attn: IAEADP,
PO Now TOLK UDNE B oo oo neii o mibin o sxiny o oo o vl as

Commander, Fleet Intelligence Center, Atlantic,
Attn: DPS, Norfolk, VA 235]1--=remmerme e ce———

Commander, Fleet Intelligence Center, Pacific,
Box 500, Pearl Harbor, HI 96860- === e—me—a-

Air Force Operations Center, Attn: Systems
Division (X0OOCSC) Washington, D.C. 2030} ==~=-

Commander, Armed Forces Air Intelligence
Training Center, TTMNIM (360 FFS), Lowry
AFB, CO 80230-m=-m== == mm o

Commander, Air Force Data Services Center,
Attn: Director of System Support, Washington,
D.C: 20330=mrmromm e nnnac o e ma e e - -—-——

Commander-in-Chief, US Air Forces in Europe,
Attn: ACDI APO New York U9332=ws=amememsmmann.

Commander, USAYF Tactical Air Command, Langley
AFB, VA 23665==~=~~~ —————— - ————————

Commander, Space and Missile Test Center, Attn:
(ROCA) Building 7000, Vandcnberq, AFB, CA

199

COPIES

P

EXTERNAL

Naval Air Systems Command, Naval Air Station,
Code 13999, Jacksonville, Florida 32212--==~-

Commanding General, US Army Computer Systems

Command, Attn: Support Operations Directorate,

FPort Belvolr, VAs—=esmiime o e womme o o s -

Defense Documentation Center, Cameron Stai:ion,

Alexandria, VA 22314

200

COPIES

12

159

S SR —

R —
-——

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETiNg PORM

[T, REPORT NUMBER z,cfvf ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
CSM UM 15-78 Volume III |

4. VITLE (and Subtitie) S. TYPE OF REPORY & PERIOD COVERED

NMCS Information Processing System 360 Formatted
File System (NIPS 360 FFS) - Users Manual

Vol II1 - File Maintenance (FM) €. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) . CONTRACT OR GRANT NUMBER(s)

DCA 100-77-C-0065 ~

9. PERFORMING ORGANIZATION NAME AND ADDRESS / 10. ::22R.A=°(.LK£=5|NYT,"PUR.Q.JEERC,T' TASK
International Business Machines, Corp.
Rosslyn, Virginia

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
National Military Command System Support Center 1 September 1978
The Pentagon, Washington, D.C. 20301 13. WUMBER OF PAGES
g , . 209
"Tmno AGENCY NAME & ADORESS(/! different lrom Controlling Oflice) 15. SECURITY CLASS. (of thie report)
Unclassified
Sa. gg&sgrpcnnon/oﬁonomc
[T6. DISTRIBUTION STATEMENT (of this Reporl)
s me y tai ro
amefon BLat e, andhig4 Virgiafa 220N,

This document has been approved for public release and sale; its distribution
is unlimited.

17. DISTRIBUTION STATEMENT (of the ebetract entered In Block 20, I different lrom Report)

16, SUPPLEMENTARY NOTES

19. KEY WOROS (Centinue on reverse olde If necessary and identity by block number)

[30. ABSTRACT (Continue on reveree oide If y and Identily by block number)

This volume defines the File Maintenance (FM) component of NIPS 360 FFS. It
describes the functioning of the component, its capabilities, limitations,
expected output results, and specifications for preparing run decks and
control cards which will serve as reference for the knowledghle user.

This document supersedes CSM UM 15-74, Volume III.

DD %'y W73 comon or 1 wov s is ossorLeTe UNCLASSIFIED
SECUMTY CLATIFICATION OF THit PAGE (When Bais Enterod)

e ————

