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I  INTRODUCTION 

This report examines the orbital and attitude mechanics of a passive 

space array and describes a mechanism for its deployment.  Such an array, 

first proposed by Joseph C. Yater in the mid-60s, consists of an ordered 

set of scattering elements.  Incident electromagnetic radiation scattered 

from these elements is reinforced at certain angles to provide a powerful 

return signal (see Figure 1). 

SRI is conducting a program to demonstrate the feasibility of this 

array concept.  The concept will be implemented by attachment of the 

scattering elements to a semiflexible cable.  The cable is to be placed 

in a geostationary orbit, where it will be maintained in a vertical 

attitude by the gravity gradient. 

This program to develop and demonstrate the passive-space-array 

concept is in its second year.  Work done during the first year, 

covered in Summary Report-Phase I, dated April 1975, concentrated on 

feasibility.  Several factors affecting orbit and array stability were 

considered.  These included collapse of the array due to solar pressure, 

distortion of the orbit due to solar pressure, and libration pumping 

due to orbital eccentricity.  Elementary models were used to study these 

effects,  in addition, extensive use was made of the Flexible Spacecraft 

Dynamics Program (FSDP), a program designed to deal with gravity-gradient 

satellites having flexible appendages. 

Various configurations involving supported arrays were considered 

and rejected because of difficulties in meeting straightness requirements, 

especially for arrays on the order of a kilometer in length that may be 

useful in communications systems.  An array consisting of relatively 

  —rrrrrr-  '!   INIHH   ■!■■■ 
..:;'■          • - " 
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• 150 m TOTAL LENGTH 

WEST COAST 
STATION 

NORTH POLE LINEAR 
ARRAY 

LA-3323-1R 

FIGURE  1      CONFIGURATION  OF  FEASIBILITY DEMONSTRATION 

massive balls supported on a thin  cable evolved as a means  of  satisfying 

diverse requirements.     This configuration is a departure from the  light 

ribbon that was originally considered^   and that was found  to collapse 

and  to be blown out of orbit due  to solar pressure.     The  substantially 

higher mass-to-area ratio of  the beads than that of  the ribbon provides 

the needed margin for feasibility.     The conclusions drawn from the first 

year of work are that it is feasible  to put this array into  synchronous 

orhlt,   and that it will remain  stable there. 

i 
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During the first year we found that the lowest normal vibration 

mode of the cable, the libration mode, is straight (unlike that of a 

cable hanging in a gravity environment).  Therefore, a flexible cable 

could become straight and thereafter librate as a rigid body without 

internal relative motion.  Such a libration would persist unless some 

mechanism for damping was provided.  Two mechanisms for damping libration 

were identified and studied.  Both involved adding structures to the 

ends of the array in order to introduce flexure into the lowest libration 

mode.  Flexure of the cable that supports the array wil] dissipate energy 

through internal friction, ultimately leaving the structure in the 

desired stable gravity-gradient equilibrium position. 

The FSDP simulation was unable to deal with the complexities of the 

proposed tip arrangements.  Hence, evaluation of the two libration- 

damping methods remained as a part of the task being reported here. 

The first year of work also identified several deployment mechanisms. 

This work was important because the array configuration is intimately 

related to the deployment scheme selected. 

The work being reported herein is a continuation and elaboration of 

the work discussed in our first summary report. Most of the subsequent 

effort has been directed toward the design of a test array 150 m long, 

consisting of 10,000 scattering elements.  This array length was 

selected for a feasibility demonstration purpose.  A much longer array 

(1500 meters), with 100,000 scattering elements, is considered more 

appropriate for later systems application.  The theories that have been 

developed are applicable to arrays of any length, but most of the 

calculations presented are concerned with the shorter test array. 

J, -—~  
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II  APPROACH 

A.  General 

We have investigated a large number of com1;J nations of array con- 

figurations and deployment mechanisms.  The approach has been to examine 

each candidate combination to evaluate its feasibility in terms of the 

various constraints that are imposed by the deployment process and the 

subsequent requirements of capture by gravity gradient, attitude stability, 

and orbital stability. We found that many combinations meet several of 

these requirements.  However, the configuration described in the 

following sections seems best to meet the overall system requirements. 

Many of the requirements are actually or seemingly in conflict. 

For example, a very light array is attractive from the standpoint of 

launch requirements.  In contrast, a heavy array having a large ratio of 

mass to surface area is desirable to minimize the effects of solar 

radiation pressure.  A very flexible array is desirable in the interest 

of obtaining straightness under the weak forces of gravity gradient. 

On the other hand,, an array having considerable stiffness is desirable 

to minimize the risk of tangling during deployment. 

To avoid distortion by solar radiation pressure, it is desirable to 

make the array homogeneous-i.e., to make each section exactly like every 

other section.  Also, the deployment process is greatly simplified if 

the array is essentially homogeneous.  In contrast, libration damping 

requires that the ends of the array have a configuration that is in some 

way significantly different from that of the rest of the array. 

m 1   •' — 
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The deployment process would be greatly simplified if the launch 

vehicle were perfectly stationary in orbital space for a time fully 

adequate for the deployment process.  Actually^ the transtage of the 

TITAN III-C maintains approximate stability by a cycling process that 

produces accelerations and motions that are inconveniently large for the 

planned deployment process.  The time available for deployment is limited 

by this cycling process and by the small amount of fuel and battery energy 

that will be available after both prime payloads are discharged. 

The array must remain straight to within a few centimeters and 

stationary in space to properly serve its communication function.  However, 

prior to deployment it must be stored in some reasonably compact container. 

This pair of requirements leads to the choice of a stiff but highly 

elastic wire as the supporting element.  The apparent conflict between 

flexibility and stiffness is resolved by the use of limited-motion 

joints that are quite free for small motions but that prevent larger 

motions. 

We have investigated the candidate array structures in two supple- 

mentary ways.  First we have treated the individual effects that influence 

the orbital and attitude dynamics of each configuration.  This approach 

provides for tractable analysis and makes it possible to check special 

cases.  Secondly, we have used an overall simulation modeling all of the 

essential effects on orbital and attitude dynamics simultaneously in 

specific cases. 

B.   Analysis 

By limiting our attention to small-amplitude cable motions we were 

able to use linearized theoretical models so that each effect on orbital 

and attitude dynamics could be investigated individually.  By this 

method we have determined the normal modes of vibration for the cable. 

mktiji ■ rM±z ...        . .  I -  ...    ,   .ii-rt-:^-*-*^-^ .teiimrfiMllfa^ ■■..:...■. 
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The iriportance of these modes is that, once identified, they can be 

introduced as initial conditions into the more complex simulation models 

in order to permit investigation of the damping of the lower-order modes. 

This procedure makes it unnecessary to wait for higher-order modes to 

damp out.  The higher modes would be introduced into the simulation only 

if an arbitrary cable shape were used as an initial condition. 

C. Simulation 

Two types of simulations were used—the Flexible Spacecraft Dynamics 

Program at Computer Sciences Corporation and an SRI-developed, finite- 

segment model.  The Flexible Spacecraft Dynamics Program uses modal 

analysis.  For specified initial mode shapes this program calculates the 

time behavior of the amplitudes of these modes.  A summation of the 

individual modes gives the shape of the cable.  At SRI we chose to pursue 

a finite-element approach—that is, the cable was considered to be 

composed of a finite number of rigid links.  In the limit of a large 

number of modes and a large number of links, the two techniques become 

identical.  At the other extreme, where only a few modes and a few 

elements are used, the two techniques yield different results.  The 

Flexible Spacecraft Dynamics Program uses three modes on each of two 

limbs, or six independent variables, while the SRI program has modeled 

arrays of up to ten segments. 

D. Array Configurations Modeled 

We set out to examine the orbital and attitude dynamics of four 

array configurations. 

(1) A free cable 

(2) A cable with tip masses 

A much larger number of links can be modeled in the SRI program with 

increased computer run time. 

7 
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(3) A cable with tip masses attached by means of hys- 

teretic springs ("bouncing tip mass" arrangement) 

(4) A cable with tip masses having large moments of 

inertia. 

Cases 3 and 4 are of primary interest because they correspond to 

systems in which the lowest normal mode includes curvature, which may be 

used to damp libration.  Cases 1 and 2 are more tractable problems that 

were used to develop our intuition and to provide a basis on which to 

formulate the more complex problems. 

The spring-mass arrangement shown in Figure 2 corresponds to the 

third configuration.  It is patterned after the Applied Physics Laboratory 

TRAAC satellites, also illustrated in the figure.  Libration causes 

extension and contraction of the spring.  Coriolis forces associated with 

outward and inward motions of the tip mass cause that mass to lag or lead 

the natural libration motion of the array,  Libration energy is dissipated 

in flexing both the cable and the spring.  The energy required to extend 

the spring is greater than that recovered when the extension is reduced. 

This hysteresis of the spring mechanism, augmented by coatings on the 

spring, was the energy dissipation mechanism used in the TRAAC 

satellites. 

We have determined that the affect of the spring-mass damper on the 

satellite motion is considerably different for in-plane than for out-of- 

plane motions.  Specifically, for small-amplitude libration, the damping 

effect disappears in the out-of-plane direction.  Figure 3 demonstrates 

this result.  For the in-plane case, the libration rate is added to 

the orbital rate, n.  The increment in 9 about the orbital rate makes 

a significant difference in the centrifugal acceleration of the mass, 

causing the spring to extend. 
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(a)    TRAAC SATELLITE (b)    THE SPACE ARRAY 
LA-3323-58 

FIGURE 2      BOUNCING-TIP-MASS CONCEPT 
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ARRAY ANGULAR VELOCITY (0) 
LA-3323-59 

FIGURE 3  FOP.CE ON SPRING DUE TO LIBRATION 

In the out-of-plane direction, the rate of the libration is added 

to zero.  As shown, a small change in 9 from zero gives no significant 

change in the centrifugal acceleration and therefore no spring extension 

(and damping).  Our concern with this phenomenon is that out-of-plane 

damping will decrease as the libration amplitude decreases.  The approach 

to alleviating this difficulty is to transfer energy from the out-of- 

plane motion to the in-plane motion.  This can be acromplished by tuning 

one of the in-plane modes to a frequency at which this mode can be 

excited by forces at twice the natural frequency of the out-of-plane 

libration.  This tuning increases damping for small libration, out-of-plane 

amplitudes. 
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The natural frequency required of the spring-mass arrangement 

corresponds to a period an order of magnitude greater than the one-hour 

period of the TRAAC satellite.  To achieve this frequency^ the spring 

—8 
must be very 'soft"—i.e., 8.5 x 10  N/m for a tip mass of one kilogram, 

Our concern is whether such a spring can be built without excessive 

length or fragility, both of which contribute to softness.  Additional 

concerns are whether the exact tuning frequency could actually be 

established and whether the mechanism could be successfully deployed. 

The tip-inertia concept is similar to that of the bouncing tip 

mass in that the basic idea is to make the natural behavior of the tip 

mass different from that of the rest of the array.  A tip mass with 

large inertia would tend to travel back and forth without rotating. 

Attacunent of this tip at a position other than the center of gravity 

of the array would give rise to a set of rocking frequencies that 

interact with the medal frequencies of the cable itself. 

We envision the tip body as an extension of the cable.  In the 

gravity environment on earth the tip would be indistinguishable from the 

rest of the array, but in space the wire would assume a preset curvature. 

If the natural frequency of this wire were well above the libration 

frequencies of concern, the tip would appear as a rigid body.  Figure 4 

illustrates the concept. 

The viscous magnetic damper has also been investigated but appears 

to offer no advantages.  The magnetic field gives a reference against 

which damping of relative motion can take place.  A magnet tends to 

align with the field and is viscously coupled to the housing, either by 

fluid or eddy current.  -his device is space-proven and is an accepted 

means of libration-damping for conventional gravity-gradient satellites 

at synchronous altxtuce. However, it is not clear how the damper could 

be attached to the space array so as co take advantage ox the magnetic 

11 
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LA-3323-60 

FIGURE 4  TIP-INERTIA CONCEPT 

f..eld. Furthermore, additional discouraging factors are:  (1) The 

smallest available damper is about the size of a fist—I.e., much larger 

than the array beads; (2) the magnetic field at synchronous altitude is 

distorted by the solar wind so that, depending on the orbital relationships 

and the intensity of solar activity, the magnetic field may be perturbed 

by many degrees and thereby give rise to an unwanted periodic disturbance; 

12 
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(3) in the steady state, the viscous magnetic damper applies a constant 

torque to the array which increases the problem of designing a flexible 

structure.  Because this approach has no demonstrable advantage over the 

tip-inertia concept, and has a host of discouraging features, it was not 

pursued further. 

E. Deployment Method 

The approach to finding a deployment method has been to compare 

various proposed schemes against the attitude requirements, keeping in 

mind the most likely configuration of the array.  Probably the most 

severe criteria are that the deployment mechanism be simple, that it be 

able to fit aboard the launch vehicle as a secondary package, and that 

it be capable of using the attitude-control system of the transtage. 

These criteria have strongly affected the design of the array as well 

as the deployment method. 

F. Other Considerations 

A variety of  secondary factors have been evaluated in the  course 

of  the work,   usually  to ensure that a particular effect is not important. 

Our approach has been  that of  a design engineer;  we first identify  the 

dominant considerations,   and then check and continue to check on the 

other concerns  that were at first ignored.     There  is no way  to ensure 

that every  relevant factor has been considered short of  the actual 

experiment.     However,   we have made a diligent effort  to avoid overlooking 

any important detail  and have supplemented our own efforts by exposing 

our concepts to a variety of  people,   both in and out of  the  satellite 

business,   and have followed up the  suggestions given. 
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III     ANALYSIS  RESULTS 

A.       General 

The equations of motion of the array have been formulated with 

respect to an orbiting reference system.  The local vertical has been 

chosen as one of the coordinates, and the orthogonals for the in-orbit 

and out-of-orbit planes are the other two coordinates.  We have assumed 

a linearized gravity gradient and small-amplitude deflections of the 

array.  Equations for the first four array configurations mentioned 

above, as well as analytical or numerical solutions, are given in 

Appendices A and B.  Our results are summarized in this section.  The 

reader should note that the small-amplitude assumptions apply only to 

the analysis.  The computer simulations, discussed in Section IV, are 

not so restricted. 

liL^ji^ 

B. Free Cable 

As reported in Summary Report—Phase I, the shapes of the normal 

modes of the free array are Legendre polynomials in both the in-plane 

and out-uf-plane directions.  The first several of these polynomial 

shape functions (eigenfunctions) of the free array are shown in 

Figure 5.  Also shown are the harmonic frequencies (eigenvalues) for 

both the in-plane and out-of-plsne modes.  As noted earlier, the first 

mode is straight—i.e., its motion is similar to the librational motion 

of a rigid body.  As noted in Appendix A, n is the orbital frequency, 

which, for a geostationary satellite, is one cycle in 24  urs. 
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MODE  1 

MODE;    FREOUENCY 
in  plane I out of  plane 

n - ORBITAL RATE 
i _ MODE NUMBER 

LA-3323-61 

-.CURE 5      GRAV.TY-GRAD.ENT NORMAL MODES FOR FREE CABLE 

Cj       cable with Tip Masses 
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increase with increasing tip mass.     The effect 
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CO = FREQUENCY 
n = ORBITAL RATE 

m = TIP MASS 
0= CABLE LINEAR DENSITY 
l. = CABLE LENGTH 
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LA-3323-62 

FIGURE 6      MODAL FREQUENCIES OF CABLE WITH TIP MASSES (in-plane) 
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m 

FIGURE 7      MODAL FREQUENCIES OF  CABLE WITH 

TIP MASSES (out-of-plane) 
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increasing tip mass.  n,e ordinates give the frequency compared with 

the orbital frequency, and the abscissas show the value of the tip mass, 

m, normalized to the total mass of the active portion of the array. 

Several important conclusions may be drawn from these figures. 

First, for all the nodes above the first, the frequency increases 

as m increases, and the difference between frequencies for the in-plane 

and out-of-plane modes becomes smaller.  Second, there are three modes 

that do not change frequency as the tip mass increases.  Two of these 

are out-of-plane modes and one is an in-plane mode.  The in-plane mode 

is the familiar libration mode.  Once again, attention is called to the 

fact that this libration mode remains straight and has a fixed frequency 

for any array displacement regardless of the mass distribution or the 

array length,  m the out-of-plane case, the higher of the two modes that 

do not change in frequency is the out-of-plane libration mode.  The 

lowest frequency mode, whose frequency is exactly that of the orbital 

rate, actually corresponds to an orbit with a slight inclination from 

the reference orbit.  The two orbits then move with respect to one 

another with a frequency of one cycle per orbit. 

in order to prvent distortion of the array shape by solar pressure, 

the tip masses must have a projected area-to-mass ratio that is the same 

as that of the cable. 

1 

D'  Bouncing Tip Mass 

The small effect of the bouncing tip masses on out-of-plane libration 

can be increased if one of the in-plane modes is tuned to a frequency 

four times the orbital rate.  This "parametric" tuning causes the in-plane 

mode to be excited by the out-of-plane libration.  Figure 8 shows how a 

spring-and-tip-mass combination could be selected to accomplish this.  We 

note that for each value of the tip mass there are two in-plane modes that 

can be tuned to the desired frequency-one odd and the other even. 
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FIGURE 8  MASS AND SPRING VALUES TO PRODUCE IN-PLANE MODE WITH A 
FREQUENCY OF 4 n 

We have examined the bouncing-tip-mass configuration for the special 

case in which one of the in-plane normal modes had a natural frequency 

of four times the orbital rate.  For this tuned system, the spring 

extension is 90° out of phase with the angular deflection of the cable. 

That is, when the cable is at its maximum deflection and stationary, 

the tip mass is at its equilibrium position and moving with maximum 

speed. 
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Even when the spring-mass is selected to give an in-plane natural 

frequency of four times orbital rate, the out-of-plane damping goes to 

zero as the libration angle goes to zero.  This is not a serious concern, 

however, because damping down to a few degrees of libration is adequate. 

The decision to use the bouncing-tip-mass depends on several practical 

questions of implementation; in theory, the method can be made to work. 

The practical questions are (1) whether a spring-mass can be 

built with a natural frequency an order of magnitude lower than that of 

the TRAAC satellites (which took considerable development) ; (2) whether 

the frequency of that system can be controlled to sufficient accuracy 

to give the tuning required to augment the out-of-plane damping; and 

(3) whether the system could be deployed.  Because of these practical 

concerns, and because of the early positive results on the tip-inertia 

scheme discussed in the following section, effort was focused on the 

latter method. Were the bouncing tip mass to be pursued further, the 

next analytic step would be to determine the sensitivity of the out-of- 

plane damping to tuning. 

E.  Large Tip Inertia 

Solutions have also been achieved for the motions of the array with 

the large tip moments of inertia shown in Figure 4.  The solutions are 

very similar, except for minor perturbations, to those of the tip-mass 

cases.  These perturbations are of the kind anticipated—that is, there 

is distortion of the mode shape from those associated with the cable 

and tip masses.  This distortion is the greatest at the tips of the 

cable and can either be toward the local vertical or away from it, 

depending on the parameters chosen for the tip body.  This inter- 

dependence of mode-shape distortion and tip-body parameters is shown in 

Figure 9 for the lowest mode.  When the distance from the center of mass 

to the point of attachment of the tip body is small, resulting in an 
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LOCAL 
VERTICAL 

LOCAL 
VERTICAL 

ARRAY SHAPE WITHOUT 
TIP INERTIA 

(a) (b) 
LA-3323-65 

FIGURE 9  FIRST MODE SHAPE WITH TIP INERTIA 

oscillating frequency of the tip body less than the libration frequency, 

the array departs from straightness toward the local vertical as shown 

in Figure 9(a).  In this case, the angle made by the tip body is out 

of phase with the libration angle. 

When the distance from the attachment point to the center of mass 

of the tip body is large, the oscillation frequency of the tip body is 

greater than the libration frequency.  Consequently, the array libration 

mode departs from straightness away from the local vertical as shown in 

Figure 9(b).  In this case the angle of the tip body is in phase 

22 
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with the libration angle.  The greatest amount of damping can be 

achieved when the length of the tip body is chosen to achieve 

resonance—that is, when the tip body rocks back and forth at the same 

frequency as that of the array libration. 

It should be noted that there exists a minimum value for the 

distance b (see Figure 4) between the point of attachment and the center 

of gravity of the tip body for which the tip body will be stable.  The 

tip body tends to line up in the gravity gradient with its longest axis 

in the local vertical.  In order to put the axis of the largest moment 

of inertia in the direction of the local vertical, it is necessary to 

apply a restoring torque greater than any gravity-gradient destabilizing 

torque.  This implies that the distance from the center of gravity of 

the tip body to the point of attachment to the array is great enough so 

that the moment arm generated an angular deflection of the attachment 

joint times the body force gives a sufficient torque to counter the 

natural tendency of the loop to be upset. 

It is practically impossible to r.ake a tip body that is radially 

symmetric, and this fact was included in the analytic considerations. 

With such a lack of symmetry, there will be a tendency for the longer 

axis to lie in the orbital plane. 

F.   Summary 

Analytical and numerical results have been generated to examine 

the behavior of the array with the candidate libration-damping 

schemes.  The validity of the analyses is supported by internal 

consistency and by conformity to known results.  For example, 

(1)  The numerical solutions for the frequencies of the 

cable with tip masses degenerate to give the fre- 

quencies for the free cable when the magnitude of 

the tip masses goes to zero. 
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(2) The tip mass, called for when an infinitely stiff 

spring is required to achieve tuning in the bouncing- 

tip-mass case, corresponds to the mass of a simple 
tip mass. 

(3) The tip-inertia solutions are similar to the tip-mass 
solutions. 

(4) Numerical solutions for the tip inertia agree with 

approximate analytic solutions. 

(5) The frequency of straight modes is independent of 
linear density. 
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IV COMPUTER SIMULATIONS 

A. General 

The Flexible Spacecraft Dynamics (FSD) Program that was used in 

the first phase of this project has been further modified for use in 

Phase II.  In addition, during the current phase of the project we have 

written our own program which is described in Appendix C.  A side-by- 

side description of the two programs is presented here in Table 1 to 

show how they complement each other. 

Table 1 

COMPARISON OF SIMULATION PROGRAMS 

FSD Program SRI Program 

Origin and Location: 

The Flexible Spacecraft Lynamics 

Program was written in the 1960s 

by Mr. Edward Lawler of the AVCO 

Corporation, Waltham, Mass.  T e 

program was resident at the God- 

dard Spacecraft Center, Greenbelt, 

Md., in the care of AVCO repre- 

sentatives.  In 1974, this group 

became a part of the Computer 

Sciences Corporation, Silver 

Spring, Md., where the program is 

currently located.  The program 

was developed under Government 

contract and is government 

property. 

Origin and Location: 

The SRI Program was written by 

Dr. Arthur R. Tobey under this con- 

tract.  The program is resident at 

SRI; the code is a deliverable to 

the government. 
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Tatale  1   (continued) 

Purpose: 

This program was developed to 

deal with the IMP class of satel- 

lites.  Specifically, the program 

is atale to model satellites with 

a central body and up to a dozen 

flexible booms, plus momentum 

wheels and magnetic dampers.  The 

program was used to study and de- 

sign the Radio Astronomy Explorer 

(RAE) satellites and most recently 

it has been used in the planning 

studies for the GEOS-C spacecraft. 

Code and Machine: 

The FSDP is written in FORTRAN 

for IBM equipment. 

Method of Analysis: 

The FSDP uses modal analysis. 

The amplitudes of assumed modes, 

taken to be the generalized co- 

ordinates, are computed by the 

program.  Up to 3 modes in each 

of two directions can be con- 

sidered for each of the booms. 

Major revision of the program 

would be required to accommodate 

additional variables. 

Orbit: 

Purpose: 

This program was written specifi- 

cally to study the gravity- 

gradient dynamics of the space 

array. 

This program calculates orbital 

position and is capable of using 

simple or sophisticated gravita- 

tional models. 

Code- and Machine: 

The SRI program is written in 

FORTRAN for CDC equipment. 

Method of Analysis : 

The SRI program uses a finite- 

element analysis—that is, the 
array is considered to be composed 

of straight links with joints in 

taetween.  No assumption needs to 

tae made as to plausitale mode 

shapes.  This program has been 

written to accommodate up to 10 

links of individually specified 

lengths in the arraj.  A greater 

number of links can be modeled 

tay increasing memory allocated     j 

to link positions. 

Orbit: 

This program assumes an orbit 

based on a simple earth gravita- 

tional model.  Eccentricity can be 

included.  The effect of solar pres- 

sure on the orbit is not calculated, 

and the effect of earth oblatv3ness 

is not considered.  
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Table 1 (continued) 

Damping: 

The FSDP calculates damping for 

each mode on the basis of the gra- 

dient change of curvature and ad- 

justs the corresponding modal 

amplitude accordingly. 

Sffect of Solar Pressure on Shape: 

The FSDP considers that the 

array is a uniform cylindrical 

cable. 

Coordinate System: 

The FSDP is written primarily 

for spacecraft with large central 

bodies. The coordinate systems 

chosen to express the satellite 

attitude and configuration are 

the Eulerian angle of the central 

body and the amplitudes of the 

modes of flexures for the beams. 

The central angle and the three 

generalized coordinates allowed 

for eich of cwo booms gives a 

description of the cable in one 

plane in terms of seven variables. 

Other Features: 

This program calculates a rela- 
tive Hamiltonian which is a mea- 
sure of the energy of the config- 
uration. 

Other features are also avail- 

able, such as a fast Fourier 

analysis to determine the fre- 

quency of various satellite 

motions. 

Damping: 

The SRI program explicitly con- 

siders viscosity in the joints. 

Resistance to motion is provided in 

proportion to the rate of change of 

the angle of the joint.  Nonlinear 

viscous properties can also be 

used.  Individual joint behavior 

can be specified. 

Effect of Solar Pressure on Shape: 

The SRI program considers that 

the array is made up of spheres 

and that these spheres can shadow 

each other. 

Coordinate System: 

The SRI program is written to 

give the position and orientation 

of each link in terms of the co- 

ordinate system defined by the 

local vertical and the in-plane 

and out-of-plane directions. Ten 

variables are needed to describe 

the complete position of the array 

in one plane. 

Other Features: 

This program calculates relative 

energy so that the amount of damping 

can be determined. 
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B.  Simulation Results 

1.   Test Cases 

Both computer programs have been run :or a variety of test 

cases in order to verify that the programs are working properly.  These 

cases included observing that the lowest mode remains straight for the 

fret cable and for the array with tip masses.  Furthermore, the programs 

were used to verify the small-amplitude analytical solutions.  In par- 

ticular, we have verified most of the analytically predicted normal 

modes for the bouncing tip, mass and for the tip-inertia configurations. 

When the correct mode shapes are used as inputs for simulations, 

oscillations occur at the predicted frequencies.  In addition, the two 

programs have been checked against each other; the same input conditions 

yield similar results. 

2.  Comprehension Runs 

Several different runs have been made to reinforce our under- 

standing of the array attitude dynamics.  A number of those runs are 

discussed in the following paragraphs. 

We have studied the effects of varying the distance from the center 

of mass to the point of attachment of the tip body with inertia, and 

the overall array behavior.  In this study, which used the SRI program, 

the array was considered to be composed of two components.  The first 

component is a long, rigid member of length equal to that of the active 

portion of the array.  A tip mass is attached to one end of the rigid 

member.  The second component is a tip body with inertia attached to the 

opposite end of the rigid member.  The mass of the "tip inertia" is equal 

to the tip mnss at the opposite end.  The initial condition chosen was 

an in-plane libration angle of 10° with no initial velocity.  We 

expected that the results of this simple model would not differ 
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significantly from those of a symmetric array with many links, because 

the shape of the libration mode is nearly straight.  This expectation 

was verified by running one simulation of an eight-link array with 

symmetrical tip inertias.  The resulting tip-body angles in one orbit 

were within 5% of those obtained from the simple model.  Thus the simple 

model allows exploration of variables with a minimum of computer time. 

Figure 10 shows our results.  The ordinate is the angle of the tip 

body, and the abscissa shows the array's orbital position.  One can see 

that when the length, b, between the center of mass of the tip and 

the attachment point is large, the tip body tends to librate at fre- 

quencies considerably higher than those of the array.  As b '^ shortened. 
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FIGURE  10      SIMULATION  RESULTS WITH TIP INERTIA AND NO DAMPING, r = 5 m 
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a resonance condition is passed through and the tip-body motion becomes 

180° out of phase with respect to the libration.  For the case shown, 

the value of b to achieve the resonance is one-third of a meter.  Where 

there is no damping, the shape is independent of the linear density. 

Figure 11 shows the results of test runs with different amounts 

of linear damping at the joints.  The lower curves show the percentage 

of the initial energy remaining as a function of time.  As the viscosity 

in the joint is increased, the rate of energy dissipation increases up 

a maximum and then decreases as the joint becomes so stiff that the 

tip inertia tends to oscillate with the array as a rigid body.  Although 

there is an optimum Joint viscosity, substantial departures from the 

optimum degrade the damping performance only slightly.  Figure 11 

shows that the three values of viscosity that give the greatest damping 

range over a factor rf 6. 

The joint damping is given as a ratio of the torque applied in a 

joint (N--m) to the angular rate of change of the joint (s ).  The 

units of the joint damping coefficient, y,   are thus N-m-s.  When 

damping is involved, the array behavior is not independent of the linear 

density, a, but is similar only when the dimensionless grouping ■^:— 

has the same value.  If we find that the optimum damping for a a 

50-kg array is in the neighborhood of y = 0.005 N-m-s, we can infer 

that similar behavior would be achieved from a 20-kg array (constructed 

from aluminum rather than steel) with y =  0.002 N-m-s. 

Runs have also been made starting with greater and lesser amplitudes, 

and, as expected, the period of oscillation decreases with increasing 

amplitude.  We have also simulated cases starting with kinetic energy 

but no initial displacement of the array. 
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One of  the interesting features  that is expected and appears  in 

our  simulations   (but is absent  in  the  small-amplitude analysis),   is 

that   out-of-plane  libration transfers  energy to in-plane  libration. 

Figure  12  shows the result of  a  simulation of  the motion of  a  rigid 

body beginning with 20°  of  out-of-plai e  libration angle.     Some  of  the 

energy from this libration mode  is  transferred,   giving rise  to in-plane 

libration.     Also shown in this  figure are data for the same body with 

an  initial  angular displacement  of  40°.     As can be  seen by  comparing 

the  data,   the  larger initial  libration produces disproportionally 

greater coupling between out-of-plane and in-plane motion.     At very 

small  angles the coupling disappears. 

-40 
-*-     ORBITAL POSITION 

100 200 300 

ORBIT POSITION—deg 

400 

LA-3323-68 

FIGURE  12      OUT-OF-PLANE-TO-IN-PLANE COUPLING  FOR  RIGID  BAR 
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V    DEPLOYMENT 

A.       General 

Deployment is integral to orbital and attitude considerations, 

because the deployment provides the initial conditions.  In the case of 

a completely passive satellite, such as the space array, the deployment 

is the last phase in which the behavior of the array can be affected. 

The requirements of the deployment and several candidate mechanisms 

were examined in Summary Report—Phase I.  The desired function of the 

deployment is to put the array into its stable equilibrium condition. 

That is, the array should be (1) straight, (2) pointed toward earth, 

(3) rotating at the orbital rate so that it will continue to be earth- 

pointing, and (4) tranquil and at low stress.  It should be possible to 

stow the array on the transtage so that it is not damaged by the launch 

environment. 

B.  Me thod 

Several deployment mechanisms have been considered. They can 

generally be classified as mechanically assisted, naturally assisted, or 

inertial.  The use of booms or of rockets to position the array fall in 

the category of mechanically assisted deployments. Although booms could 

conceivably be used to deploy the 150-m test array, booms to deploy the 

1.5-km array lengths being considered for systems applications are out of 

the question.  The rocket-assist concept becomes applicable for very 

long arrays where the gravity-gradient strength is sufficient to tolerate 

the turbulent forces involved.  This may be possible with the 1.5-km 

arrays and larger.  The deployment mechanism most frequently conceived 
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for long tethered bodies takes advantage of the gravity gradient to 

separate the bodies. This type of deployment would be a naturally 

assisted deployment. Note that other forces such as the solar pressure, 

which is normally considered to be a difficulty, could conceivably be 

used to assist the deployment.  In order to take advantage of the gravity 

gradient, however, initial separation must be achieved by other means. 

These other means generally are to give an initial velocity to a part 

or parts of the array. When these initial velocities dominate the 

deployment, then the deployment is what we call a quick inertial deploy- 

ment. Gravity-gradient-assisted deployments are most desirable where 

very large (several kilometers) arrays are being deployed.  For arrays 

of shorter length, and in particular the 150-m test array, the gravity- 

gradient forces are too small to assist the deployment. Thus, we have 

focused on quick inertial deployments. 

The basic strategy of our selected deployment is to launch each 

subsequent bead into the identical trajectory.  In this way the string 

of beads would be projected into a straight line with zero tension from 

bead to bead, and it would make no difference how the beads were inter- 

connected.  In order to get the one rotation per orbit, a linearly 

increasing transverse velocity can be added to each subsequent trajectory. 

Such a linearly varying transverse velocity could be provided either by 

uniformly accelerating the deployment mechanism in the transverse 

direction or by slowly changing the direction of the trajectory.  The 

angular rate at which the trajectory should be changed corresponds to a 

negative orbital rate with respect to the fixed stars, or a negative 

twice-orbital rate with respect to the rotating frame of reference.  This 

would require a control system comparable to that required for making 

telescopic time exposures.  The existence of such systems allows us to 

infer that an attitude-control system could be constructed that would 

give a nearly perfect deployment.  However, the actual system will have 
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to function in a more adverse environment since it must tolerate the 

control system of the transtage selected.  For the test satellite this 

will be the TITAN III-C launch vehicle. 

Figure 13 shows an artist's concept of the deployment mechanism 

and storage canister.  The array is shown coiled, similar to a spool of 

twine, and resting in a canister.  Constraint means will be provided 

for support in the launch environment; an elastic diaphragm for this 

purpose is shown in Figure 13.  The canister will be bolted to the 

transtage and the driving drums solidly affixed to the canister.  Only 

the lightweight guide tube will be pivoted to provide the directional 

correction, should that be needed. 

The entire mechanism will be launched with the end of the array 

led through the drive sprockets and the guide tube and with the con- 

straint mechanism in place.  The deployment sequence consists in removing 

the constraint and then quickly accelerating the drive sprockets to the 

deployment velocity. 

C.  Transtage Detail 

The TITAN III-C transtage, now regarded as the designated launch 

vehicle, has a statistically described limit-cycle attitude-control 

system.  The transtage cycles from +1/2° to -1/2° from its set position 

in all three axes. This cycling of position together with the fact that 

the pitch and yaw attitude control jets also accelerate the transtage 

creates special problems that are considered in detail in Appendix D. 

Our tentative conclusion is that the deployment must take place at a 

few feet per second in order to overcome the acceleration effect, and 

that the attitude-control system will not support a deployment 

sufficiently quiescent so that the attitude can be maintained by the 

gravity-gradient forces alone.  It has been noted that if the array is 
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FIGURE  13    BLOWUP OF  DEPLOYMENT MECHANISM 
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made up of stiff sections of wire instead of being completely flexible, 

then sufficient energy can be absorbed in the flexing of this wire to 

give a stable deployment. As noted in Appendix D, the guide tube can 

significantly reduce spurious transverse velocities, but a complete 

elimination of them would also require motion of the deployment 

mechanism relative to the transtage. 

A deployment with no average rotation will be achieved if the 

forward and backward rocking motions of the transtage cancel each 

other.  In this case, the deployed array would start with an initial 

libration of 36°, which would have to be damped out by the tip-inertia 

process.  By initiating the deployment on a forward angular motion in 

the orbit plane, one can ensure that the transverse velocity will never 

give rise to a negative average in-plane rate.  If the deployment is 

completed during a reverse motion of the transtage, the average angular 

rate of the array may be near one revolution per orbit. Thus, the 

anticipated libration values resulting from this deployment technique 

are 36° or less. 

D.  Orbital Distortion 

Figure 14 shows the eccentricity of the orbit generated as a 

function of the deployment velocity when the array is deployed from a 

transtage in a perfectly circular, synchronous orbit. A deployment 

velocity of 5 m/s would generate an orbital eccentricity of 0.0027, a 

value that is somewhat greater than the tolerance limits we have 

selected for the array orbit. This difficulty could be overcome by 

making an adjustment of the velocity of the transtage just prior to 

deployment, or making the deployment at a chosen time in an imperfect 

orbit of the transtage so that a nearly perfect array orbit results. 

37 

■■-* -'- - — - iioaj :'- ■ •■■ - 
; '• • 



mmmiimmimMfiiiG^^ 

■ 

UPPER LIMIT 
0.01  r 1 1    |   | IIH 

MAKE 
CORRECTION 

0.0001 

0.00001 

i i inm 

0.001 r— DESIRED 

t Z 
o 
DC - 
1- 
z 
UJ 

B 
UJ / 

ECCENTRICITY DUE TO DEPLOYMENT VELOCITY 

(FROM CIRCULAR ORBIT) 

I      I    I   I Hill I      I    I   I II III I I    I   II I II 

0.1 1.0 10 

DEPLOYMENT VELOCITY—m/s 

100 

LA-3323-79 

FIGURE  14     ECCENTRICITY DUE TO  DEPLOYMENT VELOCITY 

E.       Tests 

Various parts of the deployment mechanism have been built and 

tested. Arrays having bead densities from aluminum to lead, and with 

stiffness parameters ranging from completely flexible to that provided 

by a 1-mm-diameter steel wire have been driven out from between a 

drive wheel and a mating flexible roller.  The consistency of the bead 

trajectores has been examined as a function of the deployment variables, 

The beads appear to be deliverable without a guide tube within a total 

angle of one degree, where the spectrum of disturbance is at high 

frequency (i.e., there is no correlation between the delivery angle of 

beads spaced a meter or more apart). 

The concept of accelerating a stiff section of the bead array to 

5 m/s within one meter has been experimentally verified. An analysis 

of the acceleration behavior remains to be completed. 
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A complete model is presently being prepared for testing. This 

model wii1. confirm parameters for the design of the prototype package. 

The tension of 2.34 newtons involved in the deployment at 5 m/s 

dominates the array behavior within the deployment mechanism.  It seems 

likely, therefore, that testing of the concept and the mechanisms 

developed can be accomplished in the earth's gravity environment. 

,■..:..:.:,:.;.. 
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VI    ARRAY  STIFFNESS CONSIDERATIONS 

A.       General 

There are several reasons why it would be desirable lor the array 

to have considerable stiffness instead of being completely flexible. 

This section presents the advantages and disadvantages of such 

stiffness. 

B.  Reasons for Stiffness 

1.  Prevention of Collapse During Deployment 

As explained in Section V, the array is to be spun or fired 

out of its storage chamber.  Ideally, each bead would follow the 

preceding bead in exactly the same trajectory.  In a perfect deploy- 

ment of this kind the desired equilibrium conditions would be attained 

immediately. 

For economic reasons, the deployment mechanism will be bolted 

directly to the launch vehicle. Consequently, the deployment will be 

perturbed by any motion resulting from vehicle station-keeping.  In 

particular, since the launch vehicle uses a limit cycle in its attitude 

control, successive beads will be subjected to different deployment 

conditions—i.e., the station-keeping process will impart to the beads 

velocities that are transverse to the intended direction. These 

transverse velocities carry with them undesired kinetic energy, which 

might exceed the gravity-gradient potential energy and hence might 

collapse a flexible array. 
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If the array has stiffness, some of this kinetic energy will 

be expended in bending the array, in addition to overcoming the gravi- 

tational potential.  Hence, stiffness would provide another sink for 

spurious kinetic energy introduced during the deployment, consequently 

increasing the probability of deployment success. 

2.  Tolerance to Compressional Forces 

When the array is in its stable equilibrium position, all 

portions of the array are under tension.  However, under some circum- 

stances the forces within the array are compressional.  In the worst 

case the magnitude of the compressional force is one-third the value 

of the tension in the stable position.  If we assume that the array 

might sometimes approach this unstable equilibrium position, either as 

a consequence of large-amplitude librations or through the necessity 

of capturing from tumbling, then stiffness would help to avoid collapse 

of the array,  furthermore, sufficient stiffness will prevent buckling 

and help ensure straightness during deployment. 

The motion of a thin, long, rigid body with large-amplitude 

motion is considered in Appendix E.  The principal result is contained 

in the phase-plane plot of Figure 15. Demarkated regions in this 

figure include forward and backward tumble of the array, and gravity- 

gradient capture of the array.  The indicated regions of compression 

intersect other regions of behavior. As shown, capture from backward 

tumble (that is, tumble opposed to the rotation direction) could take 

the array through the point of maximum compression. Capture from a 

forward tumble, on the other hand, would never subject the array to a 

compression of more than half the maximum value.  Also indicated is the 

fact that the array would never be subject to compressional forces if 

the amplitude of libration can be limited to a maximum of 66°. 
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3.   Increased Damping Rate 

As has been shown, all the motions of the array under the 

gravity-gradient forces are slow—i.e., comparable with the orbital 

rate—even if large tip masses are added.  If the array were given some 

stiffness it would vibrate as a beam as well as a gravity-gradient 

controlled cable. This beam behavior results in faster relative motion, 

with a period measured in seconds, which could be used to accelerate 

the dissipation of energy. 

4#  Avoidance of the Collapsed State 

As shown in Appendix F, the mutual gravitational effect of 

the balls is small but is not entirely negligible. For example, an 

array consisting of half a dozen balls would collapse on itself even 

if it were initially extended along the local vertical.  More generally, 

the collapsed state is a stable equilibrium state for any completely 

flexible array. Addition of only a very small amount of stiffness 

completely avoids the possibility of entering this state. 

C.  Reasons for Avoiding Stiffness 

We rely entirely on gravity-gradient forces to straighten the 

cable, as required for reinforcement of electromagnetic scattering. 

There is no way that stiffness can improve upon the straightness 

resulting from those forces, but there are at least two ways in which 

stiffness could degrade it. 

1.  Residual Shape 

The residual shape of wire produced on earth is an important 

factor affecting the array performance in space.  For example, if the 

wire had a residual radius of curvature of one kilometer, a 150-m length 
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would have a displacement at the center of the array of nearly 3 m. 

This displacement is two orders of magnitude larger than that which 

gives tolerable electromagnetic performance. 

2.   Thermal Strain and Excitation 

Even if all residual strain were removed, a stiff array would 

be distorted by thermal strains resulting from solar heating. The 

deflection due to these strains is important in itself.  However, there 

is an additional concern that the periodic nature of the thermal 

strains might excite orbital or attitude perturbations.  Several 

satellites with extended booms appear to have experienced such 

excitation. 

Appendix G shows a calculation of the temperature distribution 

in a wire exposed broadside to the sun. The thermal gradient that 

causes strain (or bending) is a function of the surface radiation 

properties and the thermal conductivity of the wire.  Curiously, the 

amount of bending is independent of the size of the wire.  Calculations 

of the thermal strain, given in Appendix G for a beryllium copper wire, 

indicate that thermal effects will produce a radius of curvature near 

50 km. Although this degree of curvature is small, it produces a 

deflection of several centimeters at the midpoint of the array.  Con- 

sequently, thermal excitation is of concern.  It is noted that the 

actual deflection of the array would probably be less than that cal- 

culated because approximately two-thirds of the wire is constrained 

within the beads of the array. 

D.  The Chosen Array Structure 

Certain advantages result from making the array stiff, whereas 

other advantages result from making it very flexiDie.  Fortunately, 
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a compromise is available that preserves all the advantages of both 

choices.  This compromise is to make the array of stiff sections 

joined by hinges that permit only a limited amount of deflection, on 

the order of 3° of motion.  Si?ice only small motions are permitted, 

the array appears stiff to greater deflections.  Hence, during deploy- 

ment, a large amount of energy can be accommodated by the flexing of 

the relatively stiff sections of wire. Then, when the energy is 

dissipated and the- array quiets down, the structure is flexible so that 

residual stresses and thermal excitation do not disturb its shape. The 

joints provide this needed flexibility. 

Measurements are currently under way to determine how much curvature 

can be expected in various kinds of wires manufactured by different 

techniques. This information together with simulations of the electro- 

magnetic performance of arrays constructed with these wires will set 

an upper limit on the length of array segments that can be used for the 

array.  It is reasonable at this point to suppose that the array will 

be composed of sections of between one meter and ten meters long. 

It should be noted that the flexible-cable analysis and the cal- 

culations of energy during deployment assuming beads on a wire are both 

still valid, but only in a limited range. The flexible-cable analysis 

applies only when the joints do not go to their stops, and the energy 

calculations apply only when the joints do go to their stops.  The in- 

between region is of interest, but the details are not crucial.  We 

are assured by these separate analyses that deployment will not collapse 

the array, and that the array will achieve the desired straight, earth- 

pointing position. 

■ 
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VII  ORBITAL CONSIDERATIONS 

A.  Interference with Other Satellites 

It is planned that the array will be carried as a piggyback 

package on a launch vehicle whose primary mission is to deploy other 

satellites.  It is therefore necessary to demonstrate that there will be 

no interference between the array and the other satellites. 

The envisioned deployment sequence is shown in Figure 16.  This 

figure is a modification of a figure from a TITAN III-C handbook. The 
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FIGURE  16       REPRESENTATIVE DEPLOYMENT SEQUENCE 
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deployment sequence proceeds as follows. After the first satellite 

is released^ the transtage is rotated by 90° and accelerated an 

additional five feet per second. This procedure is repeated after the 

release of the second satellite. Finally^ the deployment of the space 

array takes place along an earth radial.  It might be desirable to make 

a slight upward or downward adjustment to the velocity of the transtage 

before deployment of the array^ in order to avoid introducing eccen- 

tricity to the orbit of the array. 

The Euler-Hill equations have been written to describe the relative 

motion of the three bodies in the local reference frame of one of the 

prime satellites.  Solution to these equations shows that the closest 

point of approach of an upwardly deployed array to the second satellite 

should be about 20 km after the first day.  This distance increases 

thereafter.  If the array is deployed downward, the corresponding 

distance of closest approach is 50 km. 

The satellites that are to be deployed before the space array 

contains thrusters to move them into test positions and subsequently 

into operational positions. The calculations that we have performed, 

of course, do not consider the possibility of collision during these 

movements, although they could easily be performed were the data 

available.  However, the calculations do give assurance that there will 

be large separations and that it is possible to achieve the transfer of 

these satellites from their test position to their operation positions 

without any interference from the array. 

3. Inclination of Orbit and Earth Oblateness 

t 

Because the ecliptic plane is not aligned with the equatorial plane, 

and because the moon does not lie exactly in the ecliptic, forces will 

be exerted by the sun and the moon that will tend to change the 
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inclination of the array orbit.  The calculations shown in Appendix I 

indicate that, starting with an equatorial orbit, the inclination will 

increase to 17° and return to zero during a 50-year period.  This 

inclination of the array orbit decreases the possibility of interference 

with station-kept satellites that remain in the equatorial plane. 

Although the sun and the moon have a significant effect on the 

inclination of the orbit, their effect on the gravity-gradient environ- 

ment of the satellite is negligible.  This is shown in the following 

comparison of the gravity gradients from the earth, the sun, and the 

moon.  The gravity gradient of the earth is used as a reference. 

Earth 

1.0 

Sun 

7.36 X 10 
-6 

Moon 

1.604 X 10 

As shown in an earlier report, orbital eccentricity excites 

libration in a uniform cable array.  We therefore were concerned that 

eccentricity might have some pumping effect on the normal modes of the 

more complex array structure. Furthermore, if other than circular 

synchronous equatorial orbits are considered, it becomes necessary to 

evaluate secondary perturbations of the earth's gravitational field. 

In particular, for inclined orbits, the oblateness of the earth is 

important because it can pump array libration as does orbital eccentricity. 

Our analysis of forced libration due to eccentricity and to 

oblateness of the earth is summarized in the following equations: 

, 

2 /Re\ 2 
cp + 3n cp = 6.5J    I—I     sin i  sin 2nt + 2en    sm (1) 

1       -- 
-■' ■ - ■■ ■ 

+  4n ^   =  7.5J (■f)     Sin 2i sin nt 
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where 

cp = In-plane libration angle 

= Out-of-plane libration angle 

i = Inclination of crtait 

6 = Orbital angle from perigee 

-3 
J = Orbital constant due to oblateness (1.08 X10  ) 
2 

R = Earth radius 
© 

r = Orbital radius. 

From these equations, we conclude that the in-plane; forced, steady- 

state oscillation amplitude is equal to the eccentricity.  This con- 

clusion is a well-known result. 

For oblateness we find 

Amplitude of 9 = 6.5J \—]    sin i (3) 

Amplitude of ^ = 2.5J I—|  sin 2i (4) 

The worst case for in-plane oscillation is the polar orbit; oblateness 

will cause an amplitude of 0.01°.  The worst case for out-of-plane 

oscillation due to oblateness is the 45° inclined orbit where an 

amplitude of less than 0.004° results.  Thus, the effect due to oblate- 

ness is negligible for all synchronous orbits. 

A possible parametric excitation of the out-of-plane libration due 

to eccentricity was considered.  Our result showed stability with a 
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limit-cycle amplitude proportional to the fourth power of eccentricity. 

As long as nearly circular orbits are involved (i.e.. e < 0.01)  this 

effect is negligible. 

C.  Effects of the Sun 

The sun has several additional effects on the array and on 

altitude and orbital dynamics.  These effects result from solar pressure 

and solar heating of the array. 

Solar pressure tends to distort the orbit, and to collapse the 

array. Both of these considerations apply to completely uniform cables 

as well as to irregular structures, and both are discussed in the 

Summary Report for Phase I.  We note that the orbital distortion and 

collapse of the array can be prevented by a design that satisfies 

straightforward criteria previously developed. 

An additional distortion of the array can result if the array has 

a nonuniform area exposed to the solar pressure and a nonuniform area- 

to-mass ratio, and if the beads have nonuniform optical properties. 

This last consideration is probably the most serious, since the optical 

properties may change with time.  Calculations of deflection due to 

inhomogeneities in area-to-mass ratio were given in Summary Report- 

Phase I, leading to the conclusion that uniformity was an essential 

consideration. Appendix J gives calculations to show how differences 

in optical behavior for a few selected beads affect the array. Once 

again the conclusion is that uniformity is an essential consideration 

for the final design.  However, the numbers that have been obtained 

for deflections in simple cases lend confidence to the assertion that 

sufficient, long-term uniformity can be achieved. 

The identified thermal effects are bending, lengthwise straining, 

and possible change in the behavior of the joints.  The bending is a 
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differential temperature problem and has been dealt with in this report 

(see Appendix G). These stresses are one of the principal reasons for 

making a segmented array.  Lengthwise strain is important because it 

changes the moment of inertia of the array (and could be a parametric 

or pumped excitation), and because, if it happens fast enough, it could 

accelerate the array more than the gravity gradient.  These average 

temperature effects have been considered and reported in the Summary 

Report for Phase I.  The daily temperature variation will not exceed 

100oC for the worst-case orbit, where the array sometimes points directly 

toward the sun and sometimes is broadside to the sun.  In this same 

orbit, when the array is eclipsed, the temperature will drop an addi- 

tional 800C. Appropriate coatings can reduce these values.  In the 

earlier report we have discounted the possibility of a pumped 

instability, or of the ends of the array snapping together due to 

rapid shortening.  The libration amplitude will vary somewhat as the 

moment of inertia is changed by thermal extension of the array.  The 

joints will have to be designed and lubricant selected to give the 

desired joint behavior (i.e., the viscosity must remain within about 

six, as discussed in Section IV) over a temperature range of -80oC to 

+20oC. 
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VIII  STATUS AND CONCLUSIONS 

The orbital and attitude behavior of the passive-communication 

space array has been studied through analysis and computer simulations. 

We have examined alternative tip configurations that provide libration 

damping.  These studies, together with manufacturing and deployment 

considerations, have led us to the selection of an array design that 

promises to be readily deployable and stable in orbit.  This array will 

have inertial tips and it will be made from sections of stiff wire on 

which the scattering elements will be placed.  These sections will be 

hinged together through viscous joints that are limited in their motion. 

This construction technique results in an array that is flexible for 

small deflections and relatively stiff for large deflections.  This 

type of array can be captured from tumble and can be made to have a 

libration-damping time constant of less than two months. 

Deployment of the entire array including the tip bodies can be 

accomplished from a driving device on the transtage.  The deployment 

rate will be about 5 m/s in order to minimize the effect of acceleration 

of the transtage due to the attitude-control system.  Orbital correc- 

tions of the transtage are recommended to give the most nearly circular 

orbit for the array.  Deployment will be initiated on a forward- 

tilting motion of the transtage.  Depending on the attitude behavior 

of the transtage, the array will be deployed with a maximum libration 

of 36°. 

The preliminary design parameters for the 150-m test array are as 

follows.  The main array will be made up of 75 two-meter sections of 

steel wire approximately 1 mm in diameter.  Attached to this wire will 
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be 10 one-centimeter aluminum spheres with center-to-center spacings 

of 1.51 cm.  Twenty percent additional length, preformed into the 

pigtail tip-inertia arrangement, will be provided at each end.  This 

inertial tip arrangement will be 5 m in radius (when deployed) r.nd have 

a drop of one-third of a meter from its point of attachment to its 

center of mass.  The joint connecting the end of the array to the tip 

inertia will be capable ox large excursions; the other joints will be 

limited to 1° to 3° of deflection. 

The test array has been designed so that it will capture from 

tumble without collapse.  Although such design is not realistic for 

much longer arrays, the possibility of their tumbling is also remote. 

Considerable effort is now going into the design and testing of 

joints that produce the desired kind of behavior. This effort will 

lend support to the analysis and simulation described herein. 

The reasons for the present array design are summarized as 

follows: 

1-cm beads 

150-m test length 

1.51-cm spacing 

5-m tip-body radius 

Resonant at the electromagnetic trans- 

mission frequency. 

Sized to test concept with available 

ground facilities. 

Electromagnetic requirement for dif- 

fraction pattern. 

Large enough to give less than two-month 

damping time constant; greater size would 

give more damping but would begin to 

effect the array shape during libration. 

Sized primarily not to be excessively 

large; already adds 40% to the mass 

of the array. 

Not covered in this report. 
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0.33-m drop to 

center of mass 

2-m sections 

l0-to-3o included 

angle in limited- 

motion joints 

Aluminum beads 

l-mm-diam steel wire 

Gives resonant excitation of tip-inertia 

by array. 

Selected to give straightness to within 

0.001 m assuming a radius of curvature 

of 100 m.  Should the residual curvature 

prove to be sufficiently better, this 

length may be increased.  Residual rather 

than thermal strain will be the dominant 

consideration. 

Mast be small so that wire is bent to 

absorb energy. An included angle less 

than 9.6° will prevent the 2-m sections 

from wrapping around on themselves with- 

out stress. The smaller angles ensure 

that the array cannot find a non-straight 

equilibrium position. 

Minimum kinetic energy relative to 

bending energy. 

Gives sufficient bending stiffness to 

ensure deployment from TITAN III-C limit- 

cycling transtage. Ensuring stability 

from buckling is a second consideration. 
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Appendix A 

ANALYTICAL FORMULATIONS 

-1 
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Appendix A 

ANALYTICAL FORMULATIONS 

1.  Coordinates and the Equation of Motion 

We use a reference frame attached to the center of mass of the 

cable.  This reference frame moves in a circular orbit of radius r as 

shown in Figure A-l.  The x-axis (with unit vector i) is defined by the 

direction of the radius vector from the center of the earth, the y-axis 
—* 

(with unit vector j) lies in the orbital plane, and the z-axis (with 
—♦ 

unit vector k) is perpendicular to the orbit plane. 

We consider the motion of a uniform, perfectly flexible cable or 

chain.  The equation of motion for an array element, ds, located at 

position p with respect to the origin of the chosen reference system, 

can be written as 

ads [p* + 2 (nk X p) + nk X (nk X p)] 

z       —»       —♦ —>       —> -, 
= ads n[3(i'   p)i-p]+ [string tension termsJ (A-l) 

where 

s = Length along the array 

a = Linear density 

n - Orbital rate 
—» 
p = Position vector 
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' CENTER OF 
MASS OF 
CHAIN 

CENTER OF EARTH 

LA-3323-71 

FIGURE A-1       COORDINATE SYSTEM 

60 

•■-. 

(-v..vs'.>.i_„i:,ij.,:a-J,.; ^;.J. 

,    ,    ■,...;, f     .   .   ..-    :..-.;..        ..,;.    ■,.■.      _     ■.    .   . .       ■.■,■■:■;■. ■    .   ■   ■.        -       ....■■■■      -. 'n..■:.,■    1:.... ■:■■:. ^..X-J,.      :'■ ..    -..,.  .      --..■.;.    ■-J...   . U^.^^ ...■.....:.., ■ .-;.■■.- ■,.'/.;■ .■..;.., 



?PPWISr!PW8»PWW?WeHWPB!?!WiPW»WW|!55!l !BtH,W.w^,.^•.^l - '«!J-u'iMWI«WMWlWiWJ-W^^-*^!W',yi(j»,WJ 

2.  Small-Amplitude Approximations 

If the cable is nearly straight, and in a nearly vertical position 

dx s ds, and the position vector can be approximated by 

P ^ xi + y^t) j + z(x, t) k 

then the bracket, noted previously as string-tension te 

written as 
rms, can be 

dT 
dx -if(T£)-M^ 

(A-2) 

(A-3) 

where T is the cable tension.  Furthermore, we can assume that the 

cable tension is near its equilibrium value and that this tension is 

nearly independent of the cable displacement.  Thus a linearized dif- 

ferential equation for the equilibrium tension, T , can be written as 
e 

dT 

dx 

e    „2 
= 3n  xcr (A-4) 

The solution of this equation depends on boundary conditions, which 

for the free cable are zero tension at its ends.  Hence, we obtain 

3   2 
T  = - a n 
e    2 (A-5) 

where L is the total length of the array. 

The components of the vector equation (A-l) can now be written 

explicitly to give the desired equations of motion for the cable.  The 

equation for the component in the i direction is not solved identically 
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but. has an unsatisfied term that depends on y; however, for small 

deflections this term is small, and our approximations are valid.  The 
-»    -> 
j and k components are 

y = 
3  2 
— n 
2 

z  = — 
3 2 
n 

2 
- x 

dx2 

„2     dy 3n    x — 
dx 

d2z 
2 

2       dz 
3n    x — . 

dx 
2 

• n z 

(A-6) 

(A-7) 
dx 

Equations (A-6) and (A-7) are separable in the independent variables 

x and t.  The following harmonic forms are obtained: 

00  itD.t 

y(x,t) = 2e ^ yi(x) 

co icu .t 

z (x, t)  = y^e    J z. (x) 

(A-8) 

(A-9) 

3«  Normalization of the Equations of Moti on 

The equations of motion of the cable depend on its tension, which 

is a function of the tip arrangement.  Therefore, it would b-i advantageous 

to normalize these equations in such a way that the tip arrangement 

affects only the boundary conditions.  This approach suggests a normali- 

zation based on the variable §, given by 

§  = 
x 

(A-10) 

where a ' is the distance to a zero-tension point, which may be outside 

the array. 
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Using this variable,   the differential  equations for the  shape functions 

of  the harmonic solution can be written  as 

2 2 
2    d v dy 2 u) 

(1  - F   )  ?-2- _ 2E:   — + —=- y    =    0 v        b   '       2         b   dE 2 y 

d^ b 3 n 

a -i) .2.   d2z 

d§ 

„   dz 
255f + Kf1) 0. 

(A-ll) 

(A-12) 

The cable tension and normalization variable for three cases—no 

tip masses, a single tip mass, and two equal tip masses—are shown in 

Figure A-2.     In the case of  the free  cable. 

a    =    L/2 (A-13) 

and the boundary conditions are applied  at §  = ±1.     For one  tip mass 

at the upper end of the array > 

a    =    — 

1  + 
2m 
aL 
m 

1 + ~r aL 

and the boundary conditions are applied  at 5  = -1 and §     = 

For two equal  tip masses. 

(A-14) 

2m 1 + s: 

-IV 1 + 
4m 
aL 

(A-15) 

and the boundary conditions are applied at §  = ± f7 4m 

aL 

63 

ML ^-.v..,: ■■■■:.,:...*.;.^.s.i. ■■'—"•'" ■■■  ■   -:'--'- ■' ■ iiiiliii.iiiiMi,ii''ar:i 



^"'"'"'''''rPRfJipWBWPSiip^ 

"      ! 

I   .■ 

? = -*- 
(L/2) 

1 +^ 

? = 
X               OL 

L/2    1 + 2m 

aL 

L/2 

CTL 

LA-3323-72 

FIGURE A-2      ARRAY TENSION  FOR VARIOUS CONFIGURATIONS 
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The solutions for the tip-mass cases considered above are consistent 

with the assumption that the equilibrium tension exists in the cable when 

the cable swings through small amplitudes.  An additional approximation 

must be made, however, when dealing with the bouncing tip masses or with 

tip inertia configurations. For these cases, the tension will change 

with the bouncing or rotating of these devices.  The approximation of 

constant cable tension with time is still justified if we also assume 

either that the tip masses are small (compared to the array) or that 

small array motions are involved.  Provided either of these assumptions 

is satisfied, the normalization factor for a pair of bouncing tip masses 

is 

a = 
L */   4m / 
-1/1+ — I 1 + 
2 f   aL \ 

2 X 

(A-16) 

where X is the equilibrium length of the spring (the distance between 
e 

the end of the array and the bouncing tip mass at equilibrium).  For 

the case in which large inertial tips are connected to the ends of the 

array using a rigid link of length £ ,   and b as shown in Figure 4, 

a = — V 4m 
1 + — 

aL 
1 + 

2(b + ij 
(A-17) 

In the last two cases, the boundary conditions are applied at 

2a 
(A-18) 

The problem can also be solved for a single tip attachment or any 

combination of the tip arrangements described. 
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4.   Boundary Conditions 

The boundary conditions to be used with Eq. (A-ll) or Eq. (A-12) 

are given in this section. 

a. Cable with Free End 

The boundary condition at a free end is that the cable 

deflection must remain finite. 

b. Cable with Tip Mass 

The cable is straight at the point of attachment to a tip 

mass—i.e. 

A
2
     ^2 o y    a  z 

(A-19) 

05 ä§ 

c.   Cable with Bouncing Tip Mass 

To establish the boundary conditions for this case, we 

balance the components of force at the tip in the x-direction and in 

the direction of interest. 

As we have noted earlier, the bouncing tip masses provide 

no linear damping for out-of-plane libration if the cable is undergoing 

small-amplitude motions.  To achieve damping we need to mechanically 

tune the natural frequency of the composite structure so that it is 

parametrically excited by the out-of-plane motion.  This means tuning 

one of the in-plane normal modes to a frequency of 4n.  We have deter- 

mined the boundary conditions for such a tuned array in the following 

manner. 
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The x-direction force balance gives 

• •   K     K  . 
x +-x + — x - 2ny 
s  m s  m  s 

(A-20) 

where 

x  = Spring stretched length 
s 

K  = Spring constant 

K'  = Damping constant 

The y-direction force balance gives 

T dy 
2n x + y ± - -r 

s m dx 
= 0 

+ upper end 

- lower end 

(A-21) 

where T at the tip is 

2|    i T = m 3n x 
end 

(A-22) 

Eliminating the  spring-length variable,   x  .   between Eqs.   (A-20)   and 
s 

(A-21) and making the harmonic substitution results in the following 

boundary condition: 

dy 

3n 
1 + 

4n 

K  K7- 
— + — jcu 
m  m 

- U) 

(A-23) 

Ids 

The equilibrium length of the spring has been taken to be zero, and 
the equilibrium position of the mass is taken to be at the tip. 
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d-   gable with Tips Having Large Values of Inertia 

The in-plane inertial tip boundary condition can be obtained 

from the equations goveraing the rotation of the tip inertia and the 

displacement of the end of the cable.  These equations are 

I 6  = -3n 
z bT + K^ 

dx 
end 

(A-24) 

m(y ± b'e') = TTdy 
dx 

upper end 

end  \lower end, 
(A-25) 

where 

9 = In-plane angle of tip mass from local vertical 

b = Distance from the center of mass of the tip 
inertia to its attachment point 

Ix,y,z     =    Moment of inertia about respective axis 

and the tension T at the tip is 

T = m 3n  (|x   I + b) 
end' (A-26) 

Eliminating 9 from these equations  results  in an in-plane 

boundary condition of 

§ *y 

3 W L + 2b | 
1   - (21) iz 

1 + 
I   - 1 

y       x     3 
1   /u)\2 my 

n / 

mb(b + L/2)   + 
IC'.i jcu 

3n 
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The out-of-plane boundary condition must include yaw because out- 

of-plane tipping (roll) is coupled to yaw.  Thus we must write an 

equation for roll, cp, an equation for yaw, \ji, and an equation for the 

out-of-plane cable displacement, z.  The cable is assumed to have no 

torsional inertia, but its stiffness and damping are included.  We have 

I lit + (I  - I ) n * + (I  -I  -I)ncp = Q     (A-28) 
x     z   y   T    z   y   x   ' 

Q = 

-kj -  k even modes 

odd modes 
(A-29) 

(I +1 -I ) nA + I cp + 4(1 -I ) n 
x  y  z       y      z x -(' -fbr+K^ rS 

m (z + n z T bcp)  = T T 
dz 
dx 

(A-30) 

(A-31) 

For simplicity, we have ignored torsional effects.  The above equations 

can be combined to eliminate the variables \|; and cp.  This manipulation 

yields the following out-of-plane boundary condition: 

§az 
(u) -n ) 

2 
3n k* ;) 

2  2v  2 m(ci) -n ) b 
2 , 

C - B /A . 

(A-32) 

where 

A 

B 

C 

2      2 
(U I  +n  (I-I)+k + jüuk ' 

x       z y 

oun (I -I -I ) 
z y x 

2      2 2 
-0)1  +4n  (I-I)+ 3bn m 

y        z x H) 

(A-32a) 

(A-32b) 

(A-32c) 
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5.  Solutions to the Equations of Motion 

Solutions have been obtained by both analytical methods and numeri- 

cal methods on the computer.  Cases have been studied both ways to provide 

cross checks. 

a. Free Cable 

The oscillations of a free cable can be decomposed into normal 

modes whose shapes are Legendre polynomials for motions both in the 

orbital plane and out of it.  These Legendre shapes and their corre- 

sponding eigenvalues (frequencies) are shown in Figure 5.  The require- 

ment that the amplitude be finite at the tip limits the selection to 

series that terminate (e.g., to the Legendre polynomials). 

b. Cable with Tip Masses 

The numerical method described in Appendix B was used to 

obtain the appropriate eigenfunctions (normal mode shapes) and eigen- 

values (frequencies) for the cable with tip masses.  The values of the 

parameter m/oL examined were 0.0, 0,1, 0.2, 0.3, 0.5, and 1.0 These 

values cover the realistic range of tip mass to cable mass ratios. 

For m/crL = 0, which corresponds to the free-end case whose 

solution we know analytically, the numerical technique yielded the same 

eigenvalues and eigenfunctions for the lowest even and odd modes as 

obtained by the analytical approach.  This concurrence of results gives 

credence to our solutions. 

Numerical solutions were written out for 5, 10, and 31 joints in 

the half cable—i.e., matrices of the orders of 5, 10, and 31 were solved- 

for the in-plane case.  This was done in order to refine the analysis. 

However, we are primarily concerned with the lower-order modes (four 

even and four odd); hence the matrix of the order of 10 is sufficient. 

This is true because the higher-order modes are readily and rapidly 
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damped by friction in the joints.  The numerical results for the tenth- 

order matrix are given in Table A-l.  The eigenvalues for the modes are 

shown in Figures 6 and 7 of the main text.  One should note in reading 

the table that the last value given in the eigenfunctions corresponds to 

a point 95% of the way to the end of the cable. 

c.  Bouncing Tip Mass 

Because we are interested only in the case where the tip 

mass is designed to provide a normal mode with an in-plane frequency of 

4n, the solution strategy is simplified.  All one does is integrate the 

differential equation for the shape function with UJ set equal to 4n, and 

check at each point to see whether the boundary condition has been 

satisfied.  This is what we have done. 

Figure A-3 shows the spacewise integration starting with odd 

and even cable-center conditions.  The odd shape shows no reversals in 

curvature; hence there is only one mode to be dealt with.  The even 

shape shows a reversal in curvature; hence, depending on the parameters, 

one of two different even modes is involved.  Figure 8, in the main text 

gives a design curve to produce the normal modes of the desired frequency. 

This figure specifies the required value of spring constant for a given 

value of tip mass.  We note that for a given tip mass, we can select the 

spring to tune either the odd or the even mode to the 4n value. 

A check on the results is provided by the tip mass value at 

which the even mode calls for an infinite spring constant.  This value 

should, and does, correspond to the cable-with-tip-mass case that gives 

(ju = 4n. 
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d.  Large Tip Inertias 

(1)  Numerical Solution 

A solution for the eigenfunctions and eigenvalues of 

cables with large inertial tips is obtained by a numerical technique 

that is an elaboration of that already used for the tip masses.  This 

more complicated numerical method is also described in Appendix B.  We 

note that a complete numerical solution of the bouncing-tip-mass problem 

could be obtained by this method if it were needed. 

For the numerical calculations we have taken the inertial 

tip to be a circular loop of wire with radius, r, and a linear density 

equal to that of the cable.  For this configuration. 

I  = m r 
x 

I   = I 
y    z 

1 2 
2 m r 

(A-33) 

(A-34) 

where 

m = 2TcrCT . (A-35) 

In addition to the radius, the other important variable 

to be specified for the tip is the distance, b, between its center of 

mass and its point of attachment to the array.  If b is too short, the 

loop will not be stable in a horizontal orientation but will instead 

tend to orient its axis of largest moment of inertia in that direction. 

For this "instability" not to occur, the following condition must be 

satisfied: 

I  - I  H- mb — > 0 
z   x     2 
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Another consideration in selecting b is to .ake the natural frequency 

of the tip mass, when alone in a gravity-gradient field, equal to that 

of the cable libration.  With this matching, one would expect large- 

amplitude motions for the tip mass and consequently faster damping of 

^he cable libration.  The matching condition is 

I  = rab - . 
x      2 (A-37) 

For the case of the circular inertial tip. Condition (A-36) can be put 

m the form [using Eqs. (A-33) and (A-34)] 

b 

L 
a '1 (A-38) 

K 

where 

-I   ■ 
Note that 1„ this equation „hen the constant k = l.o, „e have the 

desired „atoh (resonanoe), and when t = i „e reaoh the stahlllty llmit 

of expression (A-36). 

in computing the eigenfunctions for this array configura- 

tion, all permutations of r/L = o.04; 0.033?, 0.03, and 0.02, and of 

X = 2.5, 1.5, 1.0, 0.75, and 0.5 were examined.  T^e results of the 

first four even and odd modes are printed in Table A-2.  Again, the 

value of the eigenfunction is not given at the tip but at a diltance 

within 5% of the tip; however, an extrapolated tip value is also given 

The amplitude of the modes has been normalized to give a maximum deflec- 

ts of unity.  The tip angle, also printed in a dimensionless form, can 

be found from either Eq. (A-24) or Eq. (A-25). 
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2>  Approximate Analytic Solution 

Because of the similarity of the two configurations, one 

can reasonably assume that the solution to the tip inertia problem will 

be similar to that of the tip mass problem.  That is, the solution for 

the lowest mode will be the straight libration mode plus a si* 

perturbation. 

y = 5 + e y. 
(A-39) 

Substitution of this equation 

after sora^ manipulation, 

into the differential Eq. (A-ll) yields, 

2 
d y dy. 

(l - 5 ) 
d§ 
--^•^yo-5 - o 

(A-40) 

whose solution is 

=    -^ tn   (1  - I2) + 50(e) (A-41) 

Hence, 

=    A?   [1  - l^11   (1  " ^   + 0(e   )] 
(A-42) 

where 

(!) -.)- I'2-6' 
(A-43) 
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The use of Eq. (A-42) and the boundary condition given in 

Eq. (A-27) allows us to arrive at an approximate relationship between 

e and values of r/L and b/L (,ur k) : 

1 + m * * s 24« 1 + 
2b 

1 - - 

1 - 

- „    .   (A-44) 

f   -I 
2b   2 " 6 

1 +  
L     2k 

The values of e found from the above equation are close to thosr that 

can be inferred from the ta'  ation of our numerical results.  In 

particular, we find that when 0.5 < k < 1.0, the tip of the cable 

bends \nward, and the natural frequency is slightly increased.  When 

k > 1.0, the tip bends away from the local vertical, and the natural 

frequency is slightly decreased. 
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Appendix B 

NUMERICAL METHODS USED IN THE SIMULATIONS OF THE OSCILLATING CABLE 

by 

Samuel Schechter 
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Appendix B 

NUMERICAL METHODS USED IN THE SIMULATIONS OF 

THE OSCILLATING CABLE 

Numerical solutions are usually generated by writting the steady- 

state equations of motion of a system in finite-difference lorm.  This 

procedure results in a matrix equation that can be manipulated by 

standard computer routines to yield the eigenvalues and eigenfunctions 

that correspond to the frequencies and modes of vibration of the system. 

In the case of the tip inertia, however, the boundary conditions 

contain the natural frequency information.  The matrix to be solved thus 

contains entries that are only known after the matrix itself is solved 

by the conventional means.  An iterative procedure to obtain the 

eigenvalues could be used—that is, the eigenvalues could be estimated 

to give all the matrix entries and the matrix solved.  If the eigen- 

values so obtained matched the assumed values, the problem would be 

solved; otherwise a new eigenvalue would be assumed and the process 

repeated. 

This appendix discusses a relatively new, expanded matrix method 

for generating the desired eigenvalues and eigenfunctions without 

iteration.  One should note that because of the expanded matrix, this 

method generates spurious eigenvalues and cigenfunctions that are 

sometimes difficult to distinguish from the desired solutions. 

1.  The Eigenvalue Problem 

We write Eqs. (A-ll) and A-12) in the form 
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- (fy')' = .^y 

- (fzV = az 
where 

F2        ,        dy        ,  _  2/i\ ;   _  2/x:  _     \ 
?   '   y     =  d?   '        '  sin j      '-3^2        V 

The boundary conditions for y are of the form 

y(o) =  0    odd case 

y'(o)   =  0    even case 

(D 

where 

t, = 
/          4m 

F(5) = 25y'/y 

b    =  1  +  b   ,     b     i 
1                  o         o 

--  2b/L 

(B-l) 

(B-2) 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

(B-7) 

(B-8) 

and q » Q(a) = B given function of 1,   and b/L = a given constant.  The 

boundrry conditions for z are the same as for y except that   is replaced 

A 

by 1,   and Q may be changed. 

The problem is to determine the eigenvalues  I (or :)   and the 

corresponding eigenfunctions y (or z) that satisfy Eqs. (B-l) through 

(B-5).  Because q is a function of \,   the eigenvalue problem is in 

general nonlinear.  For q s 1, and m = 0, we obtain odd or even Legend« 

polynomials depending on the boundary condition at y(o). 
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2.   Numericnl Approximation 

We will use a finite difference approximation to solve the differen- 

tial equations over the interval (0,^) ; we give the details only for 

the y function.  We employ a standard centered difference technique 

over a uniform mesh given by ?  = k • h, for k = 0, 1, 2 N, and h 
K 

is the mesh interval given by 

h = ?/(N - 1/2) 

where 

? = (§N + ?N+l)
/2 = Nh + h/2 - h   +  h/2 

(B-9) 

(B-10) 

Our   approach   is   to   set   y(|   )   =  y     and  obtain   an   approximation   at  f   , 

2 k 

with  an error constrained   to be on  the order of   h   .     That   is, 

- (fyV =  [- f-y^ + (r + f;)yk - f^J/h2 + 0(h2) 

where (B-ll) 

fk  =   '   -   ('k   *  2)       '        0   S  k   ^  N     . (B-12) 

For example,   with  this  equation  and   the  symmetric   (even)   boundary 

condition  at   the  origin   (y     ay),   the   first   iteration   at   ?   =  0 
1-1 * 

becomes 

af   y     -   2f   y     =  h 
00 o   1 (B-13) 

since  f f   . 
o 

The other boundary  condition—i.e.,   Eq.   (B-5)— 

written using 

at §  » §  can be 

y(?) - y - (yN+1 + yJ/2 
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y'ih - y' - ( yN+l   -  yN)/h ' 

as 

•(yN+i - yN) = h^ • (yN 
+ yN+1)/2 (B-W) 

again with an accuracy of the order of h2.  Elsewhere, for 1 - k < N, 

we use Eq. (B-ll) to get 

where 

e. y.    ,   +   a   v     +  e       y =  h     v 
k k-i      k k     k+rk+i        'yi (B--15) 

e,    a -  £ 
k k 

2  .     .2 

KD- i-(--0(^ J L 
(B-16) 

Vl   =  "   fk  = 

a     = 
k [e,    + e 

k1        k+1 

2. v2n 
(^ + j) -. 1 - (2(k +1) - i) (I) (B-17) 

(B-1H) 

Now,   we  let 

and  rewrite Eq.   (B-14)   as 

\ = h n 

where 

q0 = f q       TO = 1/2 ?
+

h 

(B-19) 

N  yN+l 
= 2 ^^N 

+ yN+1) - qoA(yN + yN+1)     (B-20) 

Then Eqs. (B-15) and (B-20) can be written in matrix form as follows: 

Ay = ^B y (B-21) 
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where 

and 

(y0.y.y2. •••. y^J 

0 

A 
o 

Vl 

0 .    .    . 0 -1 1 

(B-22) 

(B-23) 

and 

as 

A  is a tridiagonal square matrix of order N+l with (a^^ a
N) 

its main diagonal, Ue^,   ...,   ^ as its superdiagonal, (e^e^ 

e ) as its subdiagonal, and zeroes elsewhere. 
* * *'  N 

The matrix B  is given by 

0 . . . 0 q 

(B-24) 

where I is the unit matrix of order N+l.  Since q is in general a function 

of \   ,   Eq. (B-21) represents a "nonlinear" eigenvalue problem.  To solve 

this system for a general q would require special techniques; however, 

in our problem q is a continued fraction.  This allows us to transform 

our problem into a generalized (but linear) eigenvalue problem: 

Ay - ^y (B-25) 

where B is independent of X. 
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3.   Solution of the Eigenvalue Problem 

The function q = Q( :) often has the form 

where 

1 - 

^N qi 

b  K 
2 

3       1       - 
V 

b     +  b  \ 
3          4 q

2 

(B-26) 

(B-27) 

We assume this is valid for our case.  In order to reduce our problem 

to the form of Eq. (B-25). we introduce a new variable y   Defined by 
N+2 

N+2       qi (yN + y. i+ij 
(B-28) 

This   allows  us   to  reexpress   Eq.   (B-20)   as 

- v., + y. N N+l       2b q 
(y      +    y \   a  -   \y (B-29) 

which is in a linear format, with T = T /b, .  Likewise the relation 
o  1 

for q  yields 

b K 
2 

y„ n = y„ + y» N+2   q   N+2   N   'N+l 
2 

(B-30) 

q  = b  + b A H2   3   4 
(B-31) 

Now, we introduce another variable defined by 

yN+3  q  yN+2 
2 

Then Eq. (B-30) can be written in the form 

(B-32) 

-v-v   +y   =  \h y 
•^N   N+l   N+2    2 N+3 

(B-33) 
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which is also in a linear fornat.  Finally, from Eq. (B-32; we get the 

lin ar equation 

b y 
3 N+3 N+2 

b Ay 
4 N+3 

(B-34) 

(This process is analogous to t he evaluation of a polynomial by nesting 

of variables.) 

By combining Eq. (B-21) with Eqs. (B-29), (B-33), and (B-34) we 

obtain the desired form for Eq. (B-25). 

Since each of our equations, except (B-33), involves only three of 

the variables and since the most efficient methods for solving Eq. (B-25) 

will be applied to either tridiagonal or Hessenberg matrices, we will 

change Eq. (B-33) by eliminating y   Thus if we subtract Eq. (B-33) 

from Eq. (B-29) we get 

2y        - y 
Nfl       •yN+2 •il yN+2   "  b2yN+3J (B-35) 

which replaces Eq. (B-33) and which involves only three variables, 

The final system can then be written as AY = A.BY or 

i    0       0 0 " 

A 
o 

• • 

e         0 
N+l 

0 

0. ..0 -1 1       0 0 

0. . .0 0 2     -1 0 

0. . .0 0 0     -1 b 
3 

N+l 

N+2 

N+3 

= A. 

1   u u o   • 

i ! 
• • 

■   i 0 0 0 
r 
! o T/2 0 

0   i   0 T/2 -b 
2 

! o 0 -b 
4 

yN+l 

•N+2 

yN+3j 
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■1.   Particular Ca ses 

Parameters for either in-plane or out-of-plane oscillation of the 

extended tip mass are given by 

b = (3/2)Kb /h 
* o 

b3 = 3b K - 3/2 

b^, = -3/4h 
4 

(B-37) 

To get the case of free ends we let b =0 (thus b = 0), 
bo = 1. 

and b4 - 0.  A similar simple modification applies to the bouncing ti 

masses. 

In all the cases, if we wish to obtain the odd cases, in which y(o) 
= 0, we merely set a  = 1 

e1 - 0 in the A matrix, and made the first 

row of the matrix B all zero. 

Note that the matrix A is trid^agonal (and thus Hessenberg), while 

B is an upper triangle in the general case. This allows us to directly 

use the method of Moler and Stewart.1 

For the case of a constant q. as in the free-cable case, we may use 

B = I and operate with Eq. (B-25) to get a standard tridiagonal eigenvalue 

problem.  A simple transformation ran be used to symmetrize Aj so that 

much faster computational methods can be employed.  We also hL available 

for the latter case the choice of getting only the first few eigenvalues 

and vectors.  This is not so in the Moler-Stewart algorithm.  Thus in the 

extended-tip-mass case all the vectors and eigenvalues are computed, 

and a typical run takes about 1.5 min for N - 10.  The symmetric free- 

cable case takes about half as much t^,e.  In the forme: computation 

C B. Mol 

E 
• B. Moler and G. W. Stewart, "An Algorithm for Generalized Matrix 

igenvalue Problems," SIAM J. Numer. Anal.. Vol. 10, pp. 241-256 (1973) 
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we  also compute   the  value 

where 

©„(^    ■   3(b   F  -   l)/b  FQ 
R 1 o    o 

n   = 3/2 a 
o 

F  -   3^   y    /y   a 

and the approximations for y  and y   are used as In Eq. (B-14) 
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Appendix C 

THE  SRI   SIMULATION  PROGRAM 

by 

Arthur R.   Tobey 
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Appendix C 

THE SRI SIMULATION PROGRAM 

1-       Purpose of the Simulation 

The behavior of a manv-imked chain orbiting the earth with 

arbitrary Initial conditions may be very complex.  Analytical solutions 

to the many coupled differential equations describing the chain dynamics 

are very difficult to obtain, and have been generally restricted to 

motion in one plane, single modes of oscillation (simple shapes), and 

small displacements from the ideal vertical orientation.  Such analysis 

is essential to understanding ,^he problem but leaves many unanswered 

questlons-for example, coupling between oscillations transverse to and 

in the orbital plane, effects of complex initial conditions, and large- 

displacement phenomena. 

The purpose of developing the simulation is to extend our under- 

standing of the dynamic of an orbiting chain or cable, and to investi- 

gate and evaluate various complex end devices designed to damp unwanted 

libration energy from the system.  Simulations allow us to investigate 

the dynamics of the cable and its associated end devices by providing 

rigorous treatment of motion in three dimensions; such a treatment 

cannot be reasonably obtained through analytical solutions. 

2-  Design and Limitations of the Simulation Program 

As currently envisioned, a 15G-meter chain could be made up of as 

many as 10,000 individual ball-jointed links.  If each of these were 

assigned two independent degrees of freedom, 20,000 simultaneous 
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equations would have to be solved lor 20,000 accelerations during each 

iterative step of simulation.  Clearly, simulation is not without its 

limitations.  The SRI simulation accommodatPa up to ten straight sections 

with distributed mass.  These sections i.links) are hinged together at 

their ends.  Two of these links may be end devices with additional 

degrees of freedom—e.g., elongation in the case of springs and rotation 

In ^^p case of cylinders (also referred to as tip inertias).  Some point 

on the chain (we have chosen the top) must be selected as a reference 

point and given three additional degrees of freedom to locate the chain 

in space.  Thus our 10-link approximation can require the solution of as 

many as 25 simultaneous equations for as many accelerations during each 

iterative step of simulation.  For this many, or more, acceleration 

variables, computation time and cost tend to increase with the square 

of the number of links. 

For up to ten links, the choice of segmentation is a simulation 

option in our program.  Many end-device tests have been run inexpensively 

with only two links, the chain as one and the end device as the other. 

In principle, minor programming changes covId adapt the program to any 

number of links, subject only to possible loss of precision in the 

solution of an excessive number of sinultaneous equations. 

Ideally, we should like the chain to exr-ute a circular orbit at 

synchronous altitude, hanging perfectly vertical at all times.  We have 

chosen to describe the motions of the chain relative to a coordinate system 

in which it world be at rest in the ideal case—namely, a coordinate 

system centered at the center of mass of the chain, executing an earth 

orbit, with the Z-axis always pointing toward the center of the earth. 

This is a moving-reference system, with centripetal acceleration toward 

the center of the earth and rotation in inertial space.  Furthermore, 

because we allow orbit cllipticjty, this rotation is not necessarily 

108 

 L 



■ i m  ■"■ 

constant.  Two axes ox our reference frame lie in the orbital plane, the 

downward vertical Z axis, and the X axis, which we take perpendicular 

to the Z axis and pointed in the general direction of satellite travel. 

For a synchronous orbit, the X axis is directed to the East—i.e., 

toward the rising sun.  Our Y axis is chosen to complete a right-handed 

cartesian coordinate set, thus being perpendicular to the orbit plane 

and pointing south.  The vector orbital angular velocity R .ias the 

direction of the negative y axis, and is parallel to and has the same 

sense as the earth's rotational velocity vector. 

In order to confine our solution to the cable motions relative to 

the moving reference frame, we must include as body forces not only the 

gravitational force but also kinetic reaction terms resulting from the 

motion of the reference frame. Force per unit mass in our moving 

reference frame has the following cartesian components: 

F  = (Q2 - H/R3) + Oz + 2^2 (C-l) 

F = - U/R y 
y 

(C-2) 

F ■ (0 + 2^/R )z - O-x - 2Qx (C-3) 

where 

0 = Magnitude of the orbital angular velocity 

M' = The gravitational constant multiplied by the 

mass of the ^arth 

R ■ The distance from the center of the earth to 
the center of the moving coordinate system 

x  v. & z = Cartesian coordinates measured in the moving 

reference frame 

and lotted quantities arc time derivatives. 
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These are gravity-gradient forces that vanish for a mass element 

at rest at the center of the coordinate system.  Terms evolving u 

are due to earth gravitation, which is linearized in the region of the 

satellite.  All other terms are exact.  Terms involving Q2 arise from 

the centrifugal force, and those involving fi represent the Cariolis 

force.  The terms in Ci  are less familiar and will be nonzero only for 

elliptical orbits.  All except the gravitational terms are kinetic 

reactions, which appear as explicit forces when we confine our attention 

to motion in the moving-axis system. 

In applying Lagrange's method to the formulation of the differential 

equations for the motions of the links and end masses, we have chosen 

the following generalized coordinates.  For eacn link, including end 

devices, the pitch angle, a, is measured in the orbital plane from the 

downward Z axis toward the forward-pointing X axis.  Thus, positive 

Pitch is "nose up" in aeronautical terms.  Roll angle, 0, i. measured in 

the pitch plane from the orbital plane toward the positive Y axis. 

Positive roll is thus counterclockwise to one facing in the direction of 

travel.  Fixed lergths of the links representing the segmented cable do 

not appear as coordinates; however, for a bouncing-tip-mass device the 

length of the spring enters as a generalized ccordinate.  In the case of 

a cylindrical end device, its angle of rotation about its axis also 

enters as an independent coordinate.  Finally, the cartesian coordinates 

of the top of the cable-plus-end-device assembly fix the position of 

the chain in the coordinate system.  (For a top-mounted end cylinder, 

the center of mass of the cylinder is so chosen.) 

Since the forces, Eqs. (C-l) to (C-3), are nonconservative-i.e., 

not expressable as partial derivatives of a potential function-we usc 

Lagrange's equation in the following form: 

110 

^_ - 
.• • 



—— mm-m "-■*W" 

dt ^q   Bq - Q. + Q. (C-4) 

where 

T = Total kinetic energy of the system in the 

moving coordinate system 

q ■ One of the generalized coordinates 

q = Corresponding generalized velocity 

Q = Associated generalized external force 
K 

Q = Associated generalized internal force due 

to hinge friction, spring damping, etc. 

Since the mass of the chain is distributed along its length, 

computation of the total kinetic energy involves an integration over 

the total mass of the system: 

-IP dm (C-5) 

where v is the velocity of the mass element, dm, in the moving reference 

frame. Ultimately, T must be expressed in terms of the generalized 

coordinates and velocities. 

otaining the generalized external forces also requires integrations 

over the total mass of the chain and its end devices—i.e.. 

/or 
F * JT2 dm (C-6) 

where F dm is the vector force on the mass element dm, with the com- 

ponents of F given in Eqs. (C-l) through (C-3), and r is the vector 
o 
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locating  the  element dm with respect  to  the  origin of   the  coordinate 

system. 

The  generalized dissipative  forces may be  obtained by  a  technique 

attributed  to Lord Rayleigh.     With  this   technique, 

QK- 

53 

Sq, 
(C-7) 

where the Rayleigh dissipation, 3, for hinge damping can be expressed 

as 

3 

N-l 

- DY^ i/jS   - B     V + cos Bj  cos I   , U. - or,  ,) 
2     Z-^   )\i i+l) i 1+1 \ 1 1=1/ 

i=l 

2 ( 
(C-8) 

for a chain with N links. 

This brief outline of our approach to obtaining the differencial 

equations of motion of the chain in space has an apparent simpli- cy 

that masks the very considerable labor required to actually evaluate 

the many terms that make up the final set of equations.  The largest 

and most complicated subroutine of the simulation program is concerned 

almost entirely with the computation of matrix elements composed of 

these terms. 

3.   Run-Time Options 

The simulation program is organized for parametric studies.  Most 

parameters are initialized with realistic default values, minimizing the 

number of input cards required to initiate simulation.  Parameter values 

entered for one case carry over to the next, so that only change cards 

plus a START card arc required to initiate successivo cases in the same 

run.  Input cards arc formatted with a ten-column alphanumeric 
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field for the card name, followed by up to seven ten-column floating- 

point fields for input parameter data.  Descriptions of the input para- 

meters are given in the following: 

(1) Chain Parameters 

• MASS (total mass of chain exclusive of end devices). 

Default value is 50 kilograms. 

• LINKS (number and lengths of links into which chain is 

to be segmentec).  Maximum number is ten.  Lengths 

of individual links may be specified.  Default is 

one 150-meter link. 

• \Nü DAMP (hinge damping constants).  Individual damping 

constants may be specified for each hinge. 

Default is no damping, 

(2) End Devices.  Prefixes T- and B- designate the top and 

bottom of the chain.  Devices may be intermixed at 

opposite ends of the chain, but only one device may 

occupy a given end. 

• T-MASS, B-MASS (end mass affixed directly to end of 

chain).  These options do not add links 

to the chain.  Defaults are zero end 

masses.  Entered with zero-mas" value, 

these cards will effectively remove 

end devices entered for a previous case. 

• T-SPRING, B-SPRING (end mass, resonant frequency, 

spring damping time constant, 

equilibrium length, initial length, 

initial stretch rate).  These options 

add a link to the top and/or bottom of 

the chain.  Resonant frequency is for 

vertical motion in the gravity-gradient 

field.  Equilibrium length is the length 

that would be assumed if the chain were 

straight and vertical, at "rest" in a 

circular orbit.  The distributed mass 

of the spring is zero. 
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• T-CYLNDR, B-CYLNDR (mass of cylinder, diameter, height, 

drop to center of mass, initial spin 

rate).  These options add a link to the 

top and/or bottom of the chain.  Axis of 

the cylinder is the line joining the end 

of the chain and the center of mass of 

the cylinder. 

• T-BOOM, B-BOOM (end mass, distributed mass, length).  These 

options add a link to the top and/or bottom 

of the chain.  This is a rigid beam attached 

to one end of the chain. 

(3) Orbital Parameters.  The simulation is currently written for 

an average synchronous orbit. 

• EPSILON (eccentricity of orbit).  Default is zero, 

circular orbit. 

(4) Solar Pressure.  Forces due to solar radiation pressure will 

be ignored unless this card is entered.  Although provision 

is made for the entry of a reflection coefficient, the 

current status of the program is that solar radiation is 

assumed to be totally absorbed.  In computing solar radiation 

forces on end devices^ the assumption iri made that they 

exhibit the same ratio of mass to projected area as that of 

the chain illuminated at right angles to its length.  Self- 

shadowing by adjacent beads of each link is accounted for; 

however, shadowing of one link by another or by end devices 

is not.  Radiation pressure is cut off in the earth's shadow. 

Orbit perturbation due to solar pressure is not computed. 

• SOLAR (bead diameter, center-to-center bead spacing, 

reflection coefficient). 

(5)  Program Control 

• STEP (orbit degrees per integration step).  Third-order 

prediction algorithms preserve adequate precision 

under most circumstances if a step size of one 

orbit degree (the default value) is used, corres- 

ponding to about four minutes of real time. 

• ORBITS (number of orbits to be completed in simulation). 

Default value is one orbit.  The first orbit 

terminates at an orbital angle of 360 .  If 

simulation is initiated at an orbital angle other 
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than zero (see START), this orbit will be a 

partial one. 

• PRINT (print interval in orbit degrees, diagnostic prini. 

flag, centering print flag).  Default values are 

ten orbit degrees, no flags.  The diagnostic print 

option displays the numerical values of all the 

array elements involved in the simultaneous solution 

for all of the accelerations, along with those 

solutions, at each iteration.  It has been retained 

beyond the debugging phase because it has proven 

useful in understanding unexpected (though correct) 

behavior as well as pinpointing the cause of 

pathological behavior.  In the absence of perturbing 

forces, the center of mass of the chain and end- 

device system should follow the center of our moving 

reference frame, which travels in a nynchronous 

orbit.  In order to prevent the accumulation of 

roundoff and prediction errors, we reccnter the 

chain at each iteration.  The centering printout 

option displays the cartesian displacement and 

velocity corrections.  It is useful in determining 

the adequacy of the STEP value selected for a (riven 

situation, and it permits us to check the first- 

order effects of solar radiation pressure. 

(Modification of the shape of the chain resulting 

from solar radiation pressure is due to selective 

shadowing and appears as a second-order effect.) 

(6)  Initial Conditions.  Except for the START parameters, initial 

conditions, along with all the parameters listed for the 

above-described input cards, are preserved from case to case 

within a given computer run. 

• ANGLES (link number, alpha, beta).  Links are counted 

from the bottom, including end devices.  Initial 

pitch angle (alpha) and roll angle ^beta) are 

assigned to the link whose number is entered and 

to all higher-numbered links.  Thus, for a 

straight initial configuration at any angle, a 

single card siffices.  Curved initial configurations 

are achieved by entering several cards in order of 

increasing link number.  Default values are zero 

pitch and zero roll—i.e., the cable hangs 

straight ai.d vertical. 
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• TUMBLE (initial pitch rate, initial roll rate).  These 
initial values apply to the whole chain and end 

device as a system and cannot be assigned to 

Individual links selectively. Default values are 

zero pitch rate, zero roll rate. 

• START (Julian date, hour, minute, initial orbit angle). 

Julian date and local time at initiation of 

simulation are required to position the sun for 

solar-pressure computation.  The sun is «irectly 

overhead on Julian day 81 at 12 hours 0 minutes, 

moving 23.45° meridians with a period of 365.24 

days.  Initial orbit angle is measured from perigee 

in the direction of satellite travel.  A START card 

is required for the initiation of each case in a 

stacked run.  Cards beyond it on the input tile 

pertain to the following case. 

4.  Normal Output 

Printout from a simulation run falls into three categories- 

verified input, parameter summaries, and simulation results.  Data in 

the first two classes are headed by a print line identifying the 

computer program, giving the compilation date of the version being run, 

a job identifier, and the date and time of the run.  Time advances from 

case to case, so that the order of a sequence of cases can be 

reconstructed. 

a.  Verified Input 

Input data are displayed in a card-image format in order as 

entered."  If data on a given input card are incomplete or unreasonable, 

all data on that card may be zeroed out, essentially nullifying that 

card.  Printout will show the modified values.  Cards entered for 

previous cases are not repeated—only the additional cards required to 

initiate the current case are displayed in the heading for that case. 
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b.   Parameter Summaries 

Values of all variable parameters and initial conditions not 

displayed elsewhere are summarized in a header to the simulation results 

of each case.  Data are repeated here from case to case so that full 

infomation will be available if cases are separated. Additional derived 

information is displayed to assist in evaluation of results. 

Inclu-'ed among these data is a computed value for the minimum 

energy of the system as measured in the moving coordinate frame. This 

value is a negative quantity representing the potential energy of the 

cable and end devices hanging straight and at rest in the ideal orbital 

configuration.  (The zero reference corresponds to all of the mass of 

the system concentrated at the center of coordinates where all external 

forces vanish).  The minimum energy represents the depth of the potential 

well corresponding to ideal deployment-i.e., it is a measure of the 

inherent stability of the ideal configuration. 

c. Simulation Results 

Each page of simulation results is headed by a print line 

identifying the computer program, giving a page number, and including 

two ixems of computed data.  The first, EXCESS ENERGY, is the total 

energy of the chain and its end devices, measured in the moving reference 

fraxne, less the minimum energy. This is the amount of energy that must 

be removed fro. the system by one or more dissipative mechanisms in 

order to achieve the ideal configuration.  The second item, RELATIVE 

ENERGY, displays, on page 1 of the printout, the ratio of the excess 

energy to the absolute value of the minimum energy, and is a measure of 

how far above the bottom of the potential well the initial energy level 

lies.  On subsequent pages, RELATIVE ENERGY is the ratio of the excess 

energy at that point in the simulation to the initial excess energy-- 
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i.e., to the value printed on page 1.  These values provide a ready 

index as to how rapidly (or slowly) the system is approaching the ideal 

configuration.  The current algorithm for computing excess energy fails 

for elliptical orbits. 

Each page of simulation results consists of six records, each 

representing a snapshot of the chain and end-device configuration after 

successive print intervals.  The first record on page 1 displays the 

initial configuration.  The first line of each record contains the 

following data:  orbit number, orbital angle, Julian date, local time 

in hours and minutes, stretch of end springs (if any), rotational 

velocity of end cylinders (if any), and tip-to-tip loss (length of 

ideally straight chain minus tip-to-tip distance in present configuration) 

The next three lines display the cartesian coordinates of the ends of 

each of the links of the chain and end devices.  The last twe lines are 

a printout of the pitch and roll angles for each of these links. 

Using the default value of print interval (ten orbit degrees), 

each orbit yields six pages of printout, and excess energy is computed 

and printed .^very 60 orbit degrees. 

5.   Program Checkout and Verification 

The current version of the simulation program has evolved through 

a large number of modifications.  The initial version was a half-chain 

simulation, devoid of end devices, with lumped link masses.  Starting 

with that relatively simple model, testing and verification have been 

done on each successive version, with the help of built-in diagnostics 

(many of which have since been removed).  Teriods of small librations in 

and transverse to the orbit plane have been checked against  oil- 

established theory.  Correct behavior of end devices has been confirmed 

for a number of limiting cases.  All in all, several hundred test cases 

have been run and carefully analyzed.  This step-by-«<-ep procedure, with 
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many test runs at each phase of modification, has built our confidence 

in the correctness of our simulation results. 

All of the theory underlying thic simulation has been derived 

from first principles and is well understood. We have not let 

unexpected results go unexplained.  Thus we have developec a thorough 

understanding of the simulation.  This understanding has made it 

relatively easy to spot and correct the inevitable logic errors and 

programming bugs that occur in the development of a program of this 

complexity.  Furthermore, this understanding permits us to make major 

modifications to the program as required by the ongoing research, with 

confidence that we are maintaining the basic integrity of the simulation. 

6.  Current Modifications 

The program is undergoing modifications of the following nature: 

(1) co allow use of a larger number of links, e.g. as the 

75 of the full test array 

(2) to allow the length of links to be individually specified. 

Since most of the bending occurs at the ends of the array, 

these need to match the existing conditions more exactly. 

(3) to ~i.low the behavior of each joint to be individually 

specified 

(4) to permit damping of the forms 

Torque = A [a   - a 
\  i   i+l/ 

and 

Torque ■ A tan  B 

(A and B constants) 

la   - a      \ 
\  i   i+l/ 

These allow the cxaminatior of nonlinear joint behaviors. 
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Appendix D 

DEPLOYMENT CONSIDERATIONS 

1.   Launch Vehicle 

The prototype space array is to be carried into orbit as a secondary 

or tertiary package on the transport stage (transtage) of a Titan III-C 

vehicle.  Two synchronous launches are scheduled in 1977 for the 

Air Force 777 Program.  These are potential hosts for the test space 

array. 

We have investigated the interface power and the telemetry speci- 

fications of the Titan III-C transtage, not only to gauge the feasibility 

of our concepts but also to structure some of our preliminary designs. 

Summary Report—Phase I includes a figure showing one of our early 

deployment concepts relative to this transtage.  The space and weight 

requirements we have taken are those of the Titan III-C system with 

777 satellites as the primary packages. 

Since the deployment from the transtage will require a substantial 

period of time, it is necessary to consider the motions of the tran- 

stage itself.  The purpose of this appendix is to consider the Titan III-C 

attitude control system and the implications it has for the deployment 

of the space array. 

2.   Attitude Control System 

The hydrazine tank and other features of the control system arc 

shown schematically in Figure D-l.  The rocket engine modules operate 

in an oif-on mode for discrete intervals.  Attitude control is maintained 
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by a limit-cycle procedure; appropriate rockets are fired to maintain 

the desired angular position to a tolerance of half a degree.  Since the 

rocket thrust is not reproducible, due to variation in fuel pressure and 

wear of the rocket and control valves, the rates of the three limit 

cycles can be described only statistically. 

Table D-l summarizes the pertinent attitude-control information; 

shown are the pitch, yaw, and roll rates at the 3a limit, together with 

the limit-cycle tolerance.  Since the deployment mechanism will not be 

located at the center of gravity, these angular rates and positions 

translate into linear displacements, which are also shown on the table. 

Available gyro information and the transtage orbital rate are also shown. 

It is important to note that the integrated rate or position ability of 

the gyro is considerably better than that indicated by the rate readout 

value^ since the gyro drift rate is less than k  degree per hour. 

Table D-l 

ATTITUDE  INFORMATION FOR  TITAN  II1-C 

Transtage control 

Pitch and yaw rate 

Roll rate 

Position 

Control-System 

readout rate. 

Analog 

Digital 

Orbital Rate 

Angular 

Motion 

of Transtage 

0.45o/s 

0.75o/s 

0.5° 

3a values 

G.GlVs 
0.005o/s 

0.00417o/s 

Linear 
Motion at 
Mechanism 

2.4  cm/s 

2.6  cm 

0.017 cm/s 

0.0087 cm/s 
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Three potential difficulties have been identified.  First, the rate of 

change of the transtage attitude is large compareci to the orbital rate; there- 

fore, rate control cannot be used during the deployment.  Second, and even 

more serious, the limit cycling during the deployment will introduce trans- 

verse motion to the beads that might cause the array to collapse as shown 

in Figure D-2.  A third difficulty results from the fact that while the 

motors that control the roll operate in equal and opposite pairs, 

imparting torque only, the pitch and yaw rockets all fire aft, thereby 

accelerating the transtage forward.  The implications of these problems 

are discussed in inverse order. 

FIGURE D-2 EFFECT OF TRANSVERSE VELOCITY 
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3.  Acceleration 

The calculations in this section are based on the attitude informa- 

tion already given in Table D-l and on the following data:  the transtage 

will have a mass (m) of 4,200 lbs, and an inertia (I) of 2400 slugs/ft at 

the time of our deployment.  The thrusters act with a moment arm (IJ 

of 62.6 inches.  These figures come from the manufacturers' literature. 

Our assumptions and calculations will be given in metric units. 

The forward thrust of each system can be calculated from the 

following equation: 

Force 
I Aq a 

I    La 
t 

(D-l) 

where a  ■ transtage angle from set position. 

If the mass of the transtage is known, the resultant acceleration 

can be computed.  The results of these calculations are given in Table D-2, 

which shows the force from both the pitch and yaw systems operating at 

the same time at the la, 2a, and 3a rate values.  Also shown is the 

resulting acceleration, assuming there are no forces opposing the th .-st. 

Although these accelerations have small values, their integration over 

reasonable deployment times results in significant displacements.  Table 

D-3 -'iows these displacements as functions of deployment velocity.  If 

the Deployment takes place at 1 m/s, the time to deploy the 150-m active 

section plus the two pigtail ends amounts to 210 s.  During this time 

the transtage, if it is yawing and pitching at the 3a value, will move 

nearly 230 m.  Since this translation is greater than the length of 

material deployed, the situation is unacceptable.  At greater deployment 

velocities—for example, at 5 m/s~the time to deploy is considerably 

reduced, and even at the 3a yaw and pitch rates, displacement during the 

deployment is less than 10 n. 
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Table D-2 

FORWARD FORCE AND ACCELERATION 

FROM COMBINED YAW AND PITCH THRUSTERS 

• 

(deg/s) 
Force   (N) 

Acceleration 
(m/s) 

1 a 

2 a 

3 a 

0,15 

0.30 

0.45 

3.21 

12.86 

28.93 

5.8   X 10~ 

-3 
2.3   v   10 

5.2   >'   10"3 

Table D-3 

FREE  SO ACCELERATION  DISPLACEMENT 
AT VARIOUS DEPLOYMENT  RATES 

Vj   (m/s) 
d 

Time   to Deploy   (s) JJACC dtdt   (m) 

1 210 115 

2 105 20.0 

5 42 4.59 

10 21 1.145 

The   foregoing calculations do not  include   the  reaction  force  of 

the deployment   itself.     Table D-4 shows   these   reaction  forces  versus 

deployment  velocity  for  arrays  assumed  to be made  up of   aluminum spheres 

and uranium spheres.     These  two materials   are  selected  for  these sample 

calculations  because  they  represent  the  extremes  of   the  range  of density 

available  and  are materials   that have  been considered   for  the  array. 
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Table D-4 

DEPLOYMENT REACTION FORCE 

Vj (m/s) 

Force Using 

Aluminum Spheres 

(N) 

Force Using 

Uranium Spheres 

(N) 

1 0.0936 0.648 

2 0.374 2.59 

5 2.34 16.2 

10 9.36 64.8 

Deployment velocity squared times linear density. 

We note that at a deployment velocity of 5 m/s for the aluminum array 

we have a reaction force of 2.34 newtons (N), which is small compared to 

the 28.93-N thrust of the yaw and pitch jets when operating at the 3a 

values. However, the 3a value represents an extreme, and forces at the 

la value occur nearly 707c of the tine.  The 1-G force is 3.21 N, compar- 

able with the reaction force.  In a deployment at these conditions it 

is likely that the transtage will not move at all.  If uranium beads 

were used, the array tension at the deployment mechanism would be in 

the neighborhood of 13 N. 

I '; can be seen that because of the forward acceleration of the 

transtage, it is necessary to deploy at rates in the m/s range. 

Increasing the velocity of deployment has two effects.  The first is to 

decrease the time during which transtage motion can affect the deploy- 

ment, and the second is to increase the reaction of the array against 

the transtage.  A deployment velocity of about 5 ft/s with the aluminum 

array design can be expected to give a deployment in which the transtage 

moves less than a meter under normal conditions.  Even und ■ the worst 

conditions the transtage moves a distance that can be tolerated. 
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4.   Transverse Velocity 

The rotation rate ol the array—one revolution per day—amounts to 

a velocity difference, between the ends normal to the direction of the 

array, of about 1 cm/s.  As shown in Table D-l, the motion at the 

deployment mechanism due to transtage cycling amounts to 2.4 cm/s at the 

3a rate.  While this number will probably average out to a much lower 

value over several cycles, the comparison between the two numbers shows 

that consideration must be given to the attitude motion of the transtage. 

A better way of evaluating the effect of the transverse velocity 

is to compare the kinetic energy stored in the transverse velocity with 

the potentials capable of absorbi-: that energy.  If the kinetic energy 

exceeds that of the potentials available, one must assume that the 

array will collapse. 

a.  Kinetic Energy 

There are two sources of tiansverse velocity.  If the beads 

are not ejected in the desired direction, they will have a transverse 

velocity proportional to the sine of the angle from the desired direction. 

The second source of transverse velocity is transverse velocity of the 

deployment mechanism itself.  The second source is significant when the 

deployment mechanism is not located at the center of gravity of the 

vehicle.  These two sources of transverse velocity are shown in Figure D-3. 

We note that the two sources of transverse velocity are 90 out 

of phase.  Therefore, the total transverse velocity in one plane is the 

sum of two orthogonal vectors: 

? 2    • 2 
= (a   V ) + (la) 

t max d max 
(D-2) 
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deployment 

la)  ORIENTATION  ERROR 

0—v.     X 

vt = c d 

(b)   RATE  ERROR 

SA-3323-4 

FIGURE  D-3    SOURCES OF TRANSVERSE VELOCITY 

The  total kinetic energy   (DE)   can be written 

-L/2 

0  V     dx (D-3) 

or 

a  h V 
KE  = 

(D-4) 

Substitution of the 3o rate and assumption of a deployment 

speed of 5 m/s gives a total kinetic energy of 9.31 x 3"3 N-m, about 

three quarters of which comes fro» the term with the deployment velocity. 

Use of a guide tube stabilized to cut the angular error to a maximum of 
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one-tenth of the limit-cycle error would cut the contribution due to the 

deployment velocity by a factor of 100, virtually eliminating that 

contribution to the kinetic energy.  Reference to the attitude-control- 

system figures of Table D-l shows that this should be easily possible. 

With this angular correction from the guide tube, the transverse kinetic 

-3 
energy is reduced to 2.00 X 10  N-m.  The same attitude information shows 

that the undesired motion could be eliminated by mounting the deployment 

mechanism on a x-y table capable of 5 cm motion in both directions.  In 

-5 
this case, the total kinetic energy would be reduced to 9.31 / 10  N-m. 

Trans 'erse velocities are also introduced by the deployment 

mechanism itself.  These have been measured in laboratory tests on 

freely jointed arrays and were found to be of a random high-frequency 

nature with an amplitude about 1% of the deployment velocity.  Because 

of the random nature of the disturbance, we suspect that the error is 

primarily due to mechanical tolerances in the test arrays that were 

deployed from the mechanism.  In a completely flexible or freely jointed 

array this relatively large transverse velocity would be the dominant 

concern.  Since the frequency is high, the er.ergy is quickly dissipated. 

For an array with a stiff support, the energy is easily accommodated 

as beam loading.  In an; case, the smaller transverse velocities 

arising from transtage motion at the lower frequencies remains an 

important factor that we will work to reduce. 

b.   Gravity-Gradient Potential 

The energy (PE) required to collapse the array from its gravity- 

gradient (GG) stable position to a point mass can be given by 

PE 
2   3 

n o L 

GG 
(D-5) 

We shall refer to this as the gravity-gradient potential energy 
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Substitution of the values for an aluminum test array at 
-4 

synchronous orbit gives a value of the potential energy of 2,09 X 10 

N-m.  This value is smaller than the transverse kinetic energy even 

when guide tube control is assumed.  Therefore, we conclvde that it is 

not practical to deploy such an array by these means where the gravity 

gradient potential is the only sink for the energy. The transverse 

energy with J-y control to eliminate the motion of the deployment 

mechanism does yield a transverse kinetic energy that is smaller than 

the gravity gradient potential.  The margin of safety, however, it not 

large, and the approximate nature of the calculations provides no great 

confidence in the results.  It is prudent, therefore, to seek another 

source of potential energy. 

as 

C.  Bending Potential Energy 

The energy involved in bending an elastic beam can be given 

PE 
Beam 

L/2    / ^ \ 

-L/2 

dx (D-6) 

where El is the stiffness, x is the coordinate along the beam, and y is 

measured from the undeflected position.  We assume that y is given as 

y = A sin — x 
'        V 

d 

(D-7) 

where U! is the frequency of the limit cycling. With this assumption 

the potential energy of bending a beam with a circular cross section 

can be given as 
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PE 

2     4     4 
nA Er mJ 

Beam '  16(1  -  d/s)  V^ a 

(D-8) 

where r is the radius of the beam-i.e., wire running through the beads. 

The term in parentheses is a correction term corresponding to the fact 

that all bending takes place betweer the beads.  A bending potential 

energy of 6.48 X lo"2 N-m is given by evaluation of Eq. (D-8) for the 

following conditions: 

11   2 
E = 2.07 X 10  N/m  (steel) 

A = 5 m 

r = 0.0005 m  (0.001 m diam, 40 mil) 

L = 150 m 

uu = 1.414 rad/s  (3 O  value) 

d = 0.010 m 

s = 0.015 m 

V - ö m/s . 
d 

This figure is considerably larger than the kinetic energy, and the 

resulting deflections will be less than five meters. 

If the transtage cycling occurs at the one-sigma rate, this 

bending potential energy has a considerably smaller value since the 

wavelength is much longer.  At the same time, however, the transverse 

kinetic energy is also reduced. 

It should be noted that Eq. (D-4) for kinetic energy and 

Eq. (D-5) for the gravity-gradient potential both contain the linear 

density of the array.  Changing the density will not change the relative 

proportions of those two energies.  The bending potential energy, 
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Eq. (D-8), does not contain the linear density of the array.  To make 

this potential large compared with the kinetic energy, one should make 

the linear density small. 

One should also note that the gravity gradient-potential energy 

is a strong function of the array length.  This is to say that for very 

long arrays, the potential energy will eventually dominate.  Hence, 

resistance to bending is not required for very long arrays, but is 

needed for the test array, because it is relatively short in terms of 

the gravity gradient. 
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Appendix E 

RIGID-ROD MOTIONS, STRESSES, AND BUCKLING 
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Appendix E 

RIGID-ROD MOTIONS, STRESSES, AND BUG: JNG 

1.   Introduction 

The purpose of this appendix is to determine whether a flexible 

array will be subjected to compressive forces during capture from tumbling. 

2.   Solution 

To examine this question, consider a long, thin, rigid body tumbling 

in pitch.  The incremental tension along the body can be written 

2 1     2 
dT -- Odx n  13 cos  9 

I        2 I     efl 
3 cos e  - 1 + ^1 + -) (E-l) 

where 

dx = Incremental distance along the body 

6 ■ Angle from the local vertical 

0 ■ Linear density of the body 

n = Orbital rate. 

We are especially interested in the locus of points on the 9- 

plane chat describes the zero-tension condition, given by 

3 cos2 e-l+(l+-j =0  . 
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The equation of motion can be written by equating the rate of 

change of angular momentum to the restoring torque as follows: 

-3n sin 9 cos 9 (E-3) 

By noting that 

; d9 (E-.') 

one can write Eq. (E-3) in the 9 and 9 phase plane coordinates as 

• •       3  2 
9de  = - - n  sin 29 d9 

2 
(E-5) 

Intpgration of this last equation yields 

n 
cos 2G + C (E-6) 

where C is a constant.  Closed curves in the phase plane are separated 

from unterminating ones by the solution of Eq. (E-6) that passes through 

0.  For this solution the constant, C, equals 2/3, and the 

equation of the separatrix can be written 

''2'   e 

(!) = i (1 + COS 2e>   * (E-7) 

This equation and Eq. (E-2) are plotted in Figure 5 of the main text. 

It should be noted thi' a reverse tumble will pass through the region of 

compression and finally coincide with the decay path of a decreasing 

positive tumble.  An interesting point is that the positive tumble will 

also pass through a comprcssive region.  This can be deduced from the 

separatrix of Eq. (E-7), which intersects the zero-tension line at 9 = — , 

• e 
9-0, and at 9 = SI.T'T  — = -1.  Between these two locations the separa- 

n 

trix passes through a regiun that indicates cumpressive stresses in the 

array. 
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Maximum compression occurs at the point 9 = 71.05°, - - -0.5625. 

The incremental tension here is 

dT  ■ odx n  (-0.49219) (E-8) 

The largest closed curve (labeled capture region) does not pass into 

the compression region. This curve corresponds to an array whose maximum 

libration amplitude is 66.344°.  A short portion of the closed curve is 

shown in the figure.  The locus touches the zero-tension locus cp at the 

9 
coordinates 9 - 62.275°, - = -0.4078. 

n 

3.   Buckling 

The behavior of a flexible array in the phase-plane regions that 

correspond to compression is a complicated question that we have not 

addressed.  In the case of stiff arrays, however, the behavior can be 

classified according to whether the array is buckled or not.  It should 

be noted that "buckling" does not imply plastic behavior or a destruction 

of the array, but only that the array is not capable of remaining straight 

under the applied (body) forces.  If the array is buckled, there is the 

question of the amplitude of the distortion.  In the case of no buckling, 

there is no sudden change in the array behavior, and for practical pur- 

poses compression has no effect on the structure. 

A simple, conservative estimate will be used to demonstrate that 

the test array will not buckle, even under the most severe gravity 

gradient compression.  Assume that the central compression of the array, 

which occurs during recovery from a negative tumble. 

„2 /       A 
— iLm + o —I 
2  \      4 / 

(E-9) 
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supPortln6 .t!« -c o. tM «,...    .o. t- ft .rW tM. c0ntra 

loading  is 

9 3 4 
jt  El £ E (E-10) p = ""T=   r 

.,lch glvcS P - 4.. X IC"
6 N.  Since .h. conSen,atlvo .ucKUn. ica. for 

the «„ a„ay » .cater tKan the ecntrai c-pre-ion, »c arc „.ure. 

.nH the test array will be uneflected by 
that buckling will not occur, and the test 

passing through the compx.ssive region. 

We note that hucKling will occur lor a sulliciently long array il 

.11 the other palters are held constant.  Further, we note that It 

is not leasiblc to prevent bucKling lor very long array lengths, 

.ecause the thicKness ol the supporting wire would beco.e prohibit.ve 

-. not a concern lor the longer arrays.  The gravxty 
Tumbling, however, is not a concern 

.„.ten. .««t inercaSeS .U. !.««>, an. tnc Can.c an „oBcnt ol 

inertia bc»een un.cpieyea an. depioye. states aiso increases ,lth 

nnri errors belore and during deployment 
length, so that disturbances and errors 

become increasingly insignificant. 

4,  conclusions 

A graauai eaptnre ire» t«bl. invoives eo^rcssive iorecs  t.at .iU 

0„oct L St,.aiBntncss oi a iie.i.ie array.    Captnre ire„ reverse    u»Me 

inv<)lvcS eo^prcssive ierces twice  tnesc ci capture iro. — J - 

Thc test array .iü net .ucUe ,he„ s„bJectcd to the — oo»pressi.e 

forces.    **** -is is not true ior ion.er arrays,   sucH arrays arc 

„et likely to be subjected to tumbling. 
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Appendix F 

MUTUAL GRAVITATIONAL ATTRACTION OF THE BEADS 
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Appendix F 

MUTUAL GRAVITATIONAL ATTRACTION OF THE BEADS 

1. Introduction 

The beads of tne array will be attracted to one another by mutual gra- 

vitational forces.  If these forces exceed the gravity-gradient force, then 

a completely flexible array will collapse.  In the absence of a tip structure 

the critical situation occurs at the end bead because this a^ray element 

is subject to the gravity-gradient force but not to tension transmitted 

to it from beads farther out.  At the same time, the mutual gravitation 

force on this bead is the greatest because all of the other beads pull 

together on this one bead in  the opposite direction to the gravity- 

gradient force (see Figure F-l). 

2. Formulation 

The gravity-gradient force, F , can be written 
g 

o 2 L 

3n - m 
2 

(F-l) 

whore 

m = 
K     3 

p - d H 6 (¥-2) 

and the variables are defined in Figure F-l. 
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GRAVITY  GRADIENT , 
FORCE 

INTRA- 
ATTRACTIVE 

FORCES 

3L      2       "  ^3 -  u)    u - a 
2 ^6 

G IP i  d' 

Ei 
n=1 

L  co2   s2 

G  d3 p 
0.574 AV     502 

Pb      120 

L -   LENGTH 

UJ «   ORBIT   RATE 

p •   DENSITY 

d ■   BEAD   DIAMETER 

G •   UNIVERSAL   GRAVITATIONAL  CONSTANT   (6.67   X   Nm2/kg) 

s = INTERELEMENT SPACING 

n=1    n 

1   -  El 
2  '   6 

LA-3323-74 

FIGURE  F-1     BEAD MUTUAL-ATTRACTION E-rABILITY CRITERION 

The mutual  gravitation force,   F  •   can be written 
m 

m 

2    
Cm ^-^  1 

2 2^  2  * 
s yr  n 

(F-3) 

Because the forces contributed by beads at large distances from the end 

bead is small, the summation to infinity provides a very good approxima- 

tion to F . 
m 

The rravity-gradient effect will dominate when 

2 2 
LüU s 

3 
Gd 

0.57 1 (F-4) 
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3.   Conclusions 

For aluminum beads and a 150-m array, the left-hand term of 

Eq. (F-4) exceeds th-. critical value by two orders of magnitude. 

If end masses are added and if the array is made stiff, this 

criterion becomes extremely conservative. 
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Appendix G 

TEMPERATURE DISTRIBUTION IN A SOLAR-IRRADIATED CYLINDER 
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Appendix G 

TEMPERATURE  DISTRIBUTION  IN A SOLAR-IRRADIATED CYLINDER 

1. Introduction 

The thermal bending of a solid cylinder (wire) will be a function 

of the temperature distribution existing within the structure.  To 

calculate this distribution, we assume that the temperature differences 

at the surface of the wire are small.  Consequently, reradiation from 

the cylinder is the same from all positions on its surface.  This assump- 

tion was checked, aid proved valid, for the solution we obtained. 

2. Formulation 

We taKe the heat f^ux at r = a to be 

'" /   M  
1\    «  ^  « 

q  (cos B - — I . - — < 9 < - 
\      n) '       2 2 

q /n, 
n 

2 
< Jt 

(G-l) 

where the variables are defined in Figure G-l. 

In terms of temperature, T, the steady-state problem is 

2 
V T (G-2) 
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LA-3323-75 

FIGURE G-1     SOLAR  RADIATION ON  CYLINDER 

152 

L 



V1 '  ' "' ™mm^wm^^mmm*mmm 

with the following boundary conditions: 

f (—-7) 
dT 

dr 
q_ 

-  — <   6 < — 
2      2 

-it < e < — 
2 

n - < e < n . 

(G-3) 

where K is the thermal conductivity.  Assuming thtt the problem is length- 

independent, the solution of Eq. (G-3) is 

T =  2^ [*n
r    +  Bnr 

n\ ^ sin nG + D cos ne) 
n=0 "   /  n n      / 

(G-4) 

Because the temperature is limited. 

B  = 0 
n (G-5) 

And, from symmetry, 

C  = 0 . 
n (G-6) 

Now, the product of ^ and Dn can be written as a single constant, A , 

and 

T = 2,     A r co s ne (G-7) 
n=0 

We then differentiate Eq. (G-7) with respect to r, multiply the 

result by cos pe, and integrate.  The An are thus selected to match 

the boundary conditions in Eq. (G-3) : 
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n=0  -i 

n-1 
n a   A cos n9 cos p9 dö 

n 

Kit 
cos p9 dö 

-71 

. n/2 

/     — cos 7 ,     K 
-JI/2 

p0 cos 6 dB (G-8) 

All the terms of the left-hand side are zero except when p = n.  Hence 

we find that A is arbitrary, and, for n ^ 1. 

A 

2Kn a 
n-1 (G-9) 

The even terms make a negligible contribution to the thermal strain 

of the overall wire because they are symmetric.  The higher-order odd 

terms are not as important as the n = 1 term (1) he< aase they have 

stresses that create some compensating moments, and (2) because these 

terms have smaller amplitudes [Eq. (G-9)J.  Hence we need consider 

only the first term, which yields a temperature profile of 

T = — r cos 
2K 

(G-10) 

and is shown by the isotherms in Figure 0-2. 

The maximum temperature gradient from this dominant, n = 1 term is 

dT 

dx 
q_ 
2K 

which is seen to be independont of the diameter of the rod. 
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LA-3323-76 

FIGURE G-2 FIRST-ORDER ODD ISOTHERMS 

3.  Conclusion 

The temperature distribution calculated in Eq. (G-ll) predicts 

that a copper rod will bend with a radius of curvature of 47 km when 

exposed to solar radiation broadside.  Such a curvature corresponds 

to a 6-cm displacement at the center of a 150-m wire.  This is more 

than desired for electromagnetic performance and raises questions of 

attitude excitation.  This effect, however, does not apply to the 

flexible cable or segmented array. 
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Appendix H 

TEMPERATURE  DISTRIBUTION   IN A  SOLAR-IRRADIATED SPHERE 
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Appendix H 

TEMPERATURE  DISTRIBUTION  IN A  SOLAR-IRRADIATED SPHERE 

With  arguments  similar  to  those  presented   in   the   introduction   to 

Appendix F,   the  governing  equation   for  a   solar   irradiated   sphere   Is 

r,2 

V   T =  0 

with the boundary conditions 

(H-l) 

dT 
„•r 

/// 

V(cos e-i) 
III 

3  
4K 

o < e < tT/2 

TT/2 < e < 

(H-2) 

The  general   solution   is 

T=Z   [V^.V""'1]    [CnPn(X)   + Vn(X>] 
n=0 

where P^CX) and Qn(X) are Legendre functions, and X - cos 6. 

of finite temperature and symmecry, Eq,(H-3) reduces to 

(H-3) 

Because 

T  =   >        A   r  P   (X) 
/   /       n       n 
n=0 

(H-4) 

where  An  =  H^C^.      The  constants  can   now  be  evaluated by   taking   the  de- 

rivative  of   Eq.    (H-4)   with  respect   to   r  and   matching the  boundary 

conditions  given   in  Eq.   {H-2).     Multiplying  by  P   (S) and   integrating 

gives 
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z "v7 nA a / P (X)P (X)dX 
n  f   n    ■ 

n=0       -1 

T-j XPs(x)dX " ^J 
P (X)dX 
s 

(H-5) 

The left-hand side is zero exce 

is arbitrary and, for n = 1, 

pt when n = s.  Hence, the constant Ao 

where 

For n > 1, 

P1(X) = X 

Al   2dK 

A  = 

.„. in     r 1 
(» f 1/2> 9  /  XP (X)dX 

n      /    n 
na K     ^ 

(II-7) 

for n odd 

(n^l) n 2 
2     a n (n-l) n even (H-8) 

These res 

project. 

Ult. will be used during the detailed design phase of the 
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Appendix 

ora ITAL CHANGES  DUE TO 
GRAVITATIONAL EFFECTS  OF 
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Appendix I 

ORBITAL CHANGES DUE TO GRAVITATIONAL EFFECTS OF THE SUN AND THE MOON 

This appendix summarizes the effects of the gravitational fields of 

the sun and moon and of the earth's oblateness on tn initially geostationary 

orbit.  Greater detail is provided in the references given below.2 ,3 

An equatorial orbit will drift due to the gravity-gradient effects 

of the sun and the moon.  The nature of the drift can be understood by 

viewing the average gravitational forces of these bodies as applied 

torques that alter the orbital angular-momentum vector.  The magnitude 

of this torque varies periodically depending on the angle that the radius 

vector from the sun or moon makes with the orbital plane.  The fundamental 

period is half that of the radius vector from the relevant body. 

As can be seen in Figure 1-1, the torque applied on an equatorial 

orbit by the sun is periodic and is a maximum at the solstices and zero 

at the equinoxes. The average of this torque applied by the sun and 

that of the moon can be added.  The total torque causes the angular- 

momentum vector to precess about the ecliptic pole.   The rate of 

'A. Kamel and R. Tibbitts, "Some Useful Results on Initial Node Locations 

for Near-Equatorial Circular Satellite Orbits," Celestial Mechanics, 
Vol. 8, pp. 45-73 (1973). 

0. F. Graf, Jr., "Lunar and Solar Perturbations on the Orbit of a 

Geosynchronous Satellite," paper AAS 75/023, AAS/AIAA Astrodynamic 

Specialists Conference, Nassau, Bahamas, July 28, 1975. 

This precession is not exactly about the ecliptive pole because the 

moon's orbit is Inclined about 5° to the ecliptic.  This perturbation 
is of second order. 
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SUMMER 
SOLSTICE WINTER 

SOLSTICE 

EQUINOX 

SA-3323-6 

FIGURE 1-1  EFFECTS OF THE SUN 

precession for a synchronous orbit is about 2.4° per year (sec 

Figure 1-2), about two-thirds of which is due to the moon. 

Oblateness of the earth contributes a torque that causes the angular- 

momentum vector to precess about the earth's pole.  As soon as the orbit 

is perturbed from equatorial, oblateness precession occurs.  For a 

synchronous orbit, this precession has a rate of about 4.8U per year 

(see Figure 1-2).  The sum of the two precessions results In a motion of 

the angular-momentum vector.  This motion is circular, centered at 

about 7.5U from the pole of the earth in the direction of the ecliptic- 

pole.  The total motion occurs at a rate of 7.4° per year.  The time 

to travel the circle is therefore about fifty years. 

From the earth the satellite motion appears as a figure eight.  The 

motion slowly grows from zero, for the equatorial orbit, to a maximum 

north-south displacement of ±15° in twenty-five years and then decreases 

again for the next twenty-five years.  In the first year, when the rate 

of growth is greatest, the displacement is less than ±1° (0.841° according 

to Ref. 2). 164 
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PRECESSION  ABOUT 
ECLIPTIC DUE TO 
SUN  AND MOON 
(d =  2.4 /year) 

ECLIPTIC POLE 

FIGURE 1-2    SYNCHRONOUS-ALTITUDE  EFFECTS 

A   few points   should  be  noted: 

(1) The periodic torques and the departure of the moon from the 
ecliptic make the angular-momentum motion irregular and not 
circular  as  suggested  by   the  average  results   presented. 

(2) A nearly-steady-state   figure eight,   as  viewed     rom   the earth, 
can be  achieved by  placing  a  satellite   into  an orbit   inclined 
7.5°   from   the   equatorial   plane   in   the   direction  of   the 
ecliptic. 

(3) The   influence   of   the   sun   and   the  moon   is  greater  with  greater 
orbital   radius,   while   the   influence  of   oblateness   is   less. 

(4) The effects discussed are orbital considerations and have a 
negligible   effect  on   array  stability. 
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AE a   side comment, we note that there are at least two kinds of 

solar-stable  orbits.  The more common one is an orbit in which the rate 

of precession about the earth pole due to oblateness is the same as the 

rate of earth orbit about the sun, so that t lie orbit always has the same 

attitude with respect to the sun.  The other kind of solar-stable orbit 

is one in which solar pressure is a dominant effect and gradually rotates 

the major axis of the orbital ellipse so that its orientation remains 

constant with respect to the sun. 
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CHANGE  IN ARRAY  SHAPE  DUE  TO  NONUNIFORM  SOLAR   ILLUMINATION 
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Appendix J 

CHANGE IN ARRAY SHAPE DUE TO NONUNIFORM SOLAR ILLUMINATION 

We will consider a completely flexible cable with a point force, F, 

applied at its center and opposed by d'Alembert distributed force, 5, 

as shown in Figure J-l.  Deflection, y, is obtained as a function of the 

distance, x, from the center of gravity of the cable.  The tension in 

the cable is assumed equal to the value it attains when the cable is in 

its stable gravity-gradient position.  Small-angle approximations will 

be employed. 

FIGURE J-1  FORCE APPLIED TO CENTER OF ARRAY 
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where 

The  differential   tension,   dT,   in  the  cable  is 

2 
dT =   -Sn^Jxdx 

n = Orbital rate     (2t/day) 

c -  Linear density    (0.094 kg/m). 

(J-l) 

The tension at the ends of the array is determined by the mass, m, of the 

two identical tip inertias located at L/ x = + L/2 on the cable. 

Consequently, 

3  2 
T = — n | l.n [Lm + ^(T -x2)] 

or 
2   2 2 

T = A  - B x 

(J-2B) 

(J-2b) 

where A and B are constants.  The relevant steady state cable equation 

is 
d    dy 
— T -r    a - 3 
dx   dx 

(J-3) 

The  boundary  condition   is   arbitrary.     At   the  point  of   force  application. 

dy 

dx 

F(2 + 3 - X) 
/   2m\ 

(L + T)T 
(J-4) 

and we note that 

J = 
2m 

L + — 
a 

{J-5) 

The problem is now completely formulated. 

Integration, expansion by partial fractions, and a further integra- 

tion gives the general result.  For a force applied at x = 0, the solution 

is 
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y = 

c   + 3 - 
l B 

2 AD 

/ Rxv        C     -  3 - , Bxv 

In ( 1   + —) +     In ( 1   - — ) + 
V A  / 2AB \ A  / 

(J-3) 

where  we   arbitrarily   take   the   integration   constant  Cr    -  0,   and   find 

C     =  F/2        . (J-7) 

Substituting the following numerical values into Eq. (J-6) 

L = 150 m 

m a 0.2 jL 

2 
F = Pd /4 (solar pressure force on one bead) 

-10 
= 3.5 X 10 

we obtain 

N 
-6    2 

(P = 4.5 X 10  N/m ,   d = 1 cm) 

x(m) 0.0 10 20 40 75 

y(m) 0.1 2.129 X 10'4 
-4 

4.064 X 10 
-4 

7.454 X 10 
-3 

1.215 X 10 

The actual force that should be considered in a more rigorour analysis 

is the difference between the average momentum applied to each bead.  This 

momentum variation can be due to a slightly different bead area and bead 

e, issivity, and a difference in emissivity around each.  Differences 

due to projected areas will be less than 0.1%. 

The force calculated in the analysis is for blackbody absorption 

on the bead.  Complete specular reflection gives the same result, 

neglecting the bead-to-bead effects.  If the bead has a black surface 

facing the sun, and a zero emissivity on the back side, the momentum 

imparted is greater by 33%.  Complete diffuse reflection momentum is 

greater than the blackbody case by 44%.  Hence, the difference from the 

average will never approach the value used in the calculation. 
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Solar-pressure distortic .s   are clearly  important.     Consideration 

will   have   to  be given   to   tolerances   in  size  and  surface-degradation 

characteristics  during   the   final  design. 
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