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FOREWORD

This report documents the first phase of the effort performed for the Naval Sea
Systems Command Code 06H1 on contract N00024-77-C-6251, under Project Ser-
ial Number SF 11 121 160, Task 20929, and covers the period from October 1977
to October 1978, It includes all of the technical material found in the three =~

—QuaArte¥rly Reports plus work performed in the fourth quarter, connective material,

the conclusions of first phase, and the approach for the second phase of the study.
This study has as its goal to examine the application of adaptive filters to perform
passive sonar bearing tracking. The first major steps toward this goal have been
realized via a combination of statistical modeling and analysis that has been
verified via computer simulation.
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I. INTRODUCTION

This is the final report on the first phase of a study contract to examine the applicability
of adaptive filtering to passive sonar bearing tracking. The study was motivated by
certain limitations in existing split-beam trackers that might be removed by using an
adaptive filter canceller. In particular 1) an adaptive filter does not require a-priori
power spectral information on the signal and noise fields, 2) because the filter charac-
teristics are adjusted iteratively (time-varying), the filter has the capability to track
dynamic (non-stationary) inputs and 3) since all the correlation information between
split array outputs is contained in the adaptive filter canceller weights, the potential
exists to perform both broadband and narrowband tracking simultaneously, using all

the signal energy rather than separating the energy as in current tracking systems.

This report contains the results reported in the first three quarterly reports with some
modifications and new results obtained during the fourth quarter effort. The body of
the report is organized so as to present a summary of the results of the analytical
effort. The details of the analyses are found in the Appendices.

0. STATEMENT OF PROBLEM

The work effort has been focussed on studying the following set of analysis tasks asso-
ciated with using the adaptive filter as a bearing tracker:

1.0 Analysis of the application of adaptive filters to bearing tracking.

1.1 Determine the best method for obtaining the delay parameter  from the
adaptive filter weights. Compare the bias and variance from this method of
estimating + to that obtained from existing split beam trackers.

1.2 Determine the sensitivity of tracking performance to unknown signal and
noise power spectra.

1.3 Evaluate the bias caused by plane wave interference on tracker performance.

1.4 Investigate the design of an adaptive tracker which can use both broadband
and narrowband sigr 4 components simultaneously to estimate target trach.
Determine if the ambiguities in the adaptive weights can be resolved for
narrowband inputs.

2.0 Analysis of adaptive filters with non-stationary inputs.

2.1 Determine the closed form transient response of an adaptive line enhancer
having linearly changing input signal frequency from the matrix eigenvalues.




-

2.2 Model broadband dynamic inputs into the adaptive tracker and analyze
the time response and mean squared-error of the cancelled (error)
output.

3.0 Simulation, test and evaluation using computer generated data.

- 3.1 Model the adaptive tracker on the HAC simulation facilities and determine
performance using synthetic data. Determine tracker bias and variance as a
function of signal bearing rate, S/N ratio, and plane wave interference.
Broadband and narrowband signals as well as combined broadband and narrow-
band signals are to be used.

III. SUMMARY OF RESULTS

The results of this study are divided into seven parts. The first part deals with the
selection of the adaptive filter configuration to perform bearing estimation. Both sum
beam and split-beam tracker configurations were studied.

The second part deals with the extraction of the bearing (or delay) estimate from the
adaptive filter, keeping in mind that the AF is basically operating as a waveform esti-
mator. For broadband inputs, the delay estimate is chosen to correspond to the peak
value of the weights. The third part deals with a frequency domain equivalent model
of the time domain adaptive filter that enables the variance of the adaptive filter delay
estimator to be calculated. The variance of the delay estimator is compared to the
Cramer-Rao Lower Bound (CRLB) for the variance of any unbiased estimator. The
fourth part deals with practical implementation of the delay estimator that, because of

the discrete-time locations of the filter taps, differs from the theoretical continuous-

time model whose performance was analyzed in Part 3. The discrete time implemen-
tation consists of an interpolation routine following the adaptive filter that uses the

weight values to interpolate delays between the taps. The degradation of the interpola-
tion model, as compared to the continuous estimator, is investigated.

E The fifth part deals with the performance of the adaptive filter bearing estimator as a
tracker for signals that are changing bearing. Three signal models are considered ~ 3
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single frequency signals (narrowband inputs), broadband spectrally white signals, and
broadband non-white signals. In each case, it is shown that the adaptive filter is capa-
ble of tracking changing bearing. A related dynamical problem is also investigated;
the-response of the adaptive filter to a linearly-varying-frequency sine wave.

The sixth part deals with the simulation of the adaptive filter bearing estimator in both
the time domain filter configuration and its frequency domain equivalent. For a wide
variety of simulation parameters, the two configurations are shown to perform equally
well and to vield close agreement with the theoretical predictions. It also compares
the adaptive tracker performance to that of a conventional tracking system.

The seventh part deals with the conclusions of the study that are based upon the results
of the previous six parts. These conclusions are related to the future tasks to be per-

formed in Phase 2 of the overall study.

Part I - Selection of the Adaptive Filter Configuration for a Bearing Estimator

It would have been highly desirable to apply some type of optimization theory to the
selection of the structure containing the adaptive filter and constituting the bearing
estimator. For example, what structure, using the adaptive filter, yields the minimum
variance unbiased estimate of bearing in the class of allowable structures. Unfortu-
nately, no such optimization theory exists nor does it appear feasible to attempt to
derive a theory. Instead, based upon some reasonable assumptions about what struc-
tures might be useful for bearing estimation, two bearing estimator structures were
selected on an ad hoc basis and studied in detail.

The two bearing estimator structures, sum beam and split-beam, are shown in Fig-
ures 1 and 2. It is shown in Appendix I that the sum-beam system tends to obscure
the signal correlation properties necessary for the adaptive filter to track. ?‘I‘hc hydro-
phone noises produce residual correlations on the beams which the adaptive filter
treats as a signal process. To decorrelate the noises, one must form beams from
separate elements, so that the two inputs to the adaptive canceller are not linear com-
binations of the same set of processes. This motivated the consideration of the split-
beam processor of Figure 2. It is shown in Appendix I that the split-beam system
offers the capability of correctly estimating the delay between the two split-beam inputs.
Furthermore, in Appendix IV, it is shown that the performance of the split-beam
adaptive bearing tracker is very near to the theoretical lower bound on performance of
any tracker. This latter result lends strong support to the ad hoc selection process.
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Part II = Estimation of Bearing Estimates from the Adaptive Filter Weights

The structure for estimating bearing (delay) is shown in Figure 3. The left half-beam
output is selected to be the desired signal and the right half-beam is selected to be the
input to the adaptive filter. Ideally the filter should insert a delay equal to the signal
arrival time difference between the two half array phase centers. Hence, one weight
(at-t.he correct delay on the delay line) will be unity and all other weights will be zero.
However, because the filter is a tapped delay line, only discrete values of the time
delay can be estimated exactly by observation of a single non-zero weight. Thus, de-
pending on the spectra of XL(t) and XR(t), more than one tap weight will be non-zero.
If we also include the effects of noise, it is conceivable that several weights will be
non-zero even if the true delay occurs precisely at a tap on the delay line. Hence,
some kind of algorithm is needed for determining the correct location of the peak of
the weights from noisy sample values of the weights taken at discrete times. The
particular algorithm is discussed in Appendix V.

A theoretical analysis of the performance of the bearing estimation scheme in Figure 3
requires statistical knowledge of the filter weights after convergence. Although the
mean values of the weights can be determined as a function of the signal and noise
powers and the algorithm gain coefficient u, the variance of the time domain weights
in the presence of correlated inputs to the two half-arrays cannot be determined
directly at this time. Knowledge of the weight variance is necessary in order to com-
pute the variance of the bearing estimate. Because of this lack of statistical knowledge
about the system Figure 3, an equivalent frequency-domain adaptive bearing estimator
is studied in the next section. The alternate configuration is analyzed and used to
predict the performance of the system in Figure 3. Subsequent analysis and simula-
tions verify the equivalence of the two systems.

Part III = Frequency Domain Equivalent of the Time Domain Adaptive Filter Bearing
Estimator

Figure 4 shows an alternate structure for the split-beam adaptive bearing estimator
that displays more clearly the ability of the device to track both broadband and narrow-
band signals. Most conventional trackers are designed to handle either narrowband
signals or broadband signals but not both. For example, a bearing tracker that uses

a phase-locked loop (PLL) to measure the difference in phase between two half-arrays
can effectively track narrowband signals where the phase of a carrier with slowly




varying envelope can be followed. However, broadband signals, which do not have
a well-defined carrier are not tracked well by a PLL.

The split-beam adaptive bearing tracker can track either broadband or narrowband
signals since the adaptive filter doe's not need to know the signal statistics a priori.
The delay of a broadband signal will be seen as a relatively large peak in the weight
values at the correct delay setting. The delay of a narrowband signal will be seen as
a phase delayed set of sinusoidal filter weights. In t.h\is-c{se. the delay will display
itself most easily by FFT'ing che weights and selecting theh{gest output of the phase
estimator in Figure 4.

The significance of the above arguments is that the split-beam adaptive bearing tracker
automatically configures itself as a broadband or narrowband tracker as the situation
requires. This means that the device is able to track on all the incoming signal energy,
whether broadband or narrowband. The processor of Figure 4 is a method for exploit-
ing this behavior. The peak in the adaptive filter weights, or in the Fourier transform
of the weights is used to determine the inter-array delay or phase shift.

Figure 4 indicates the structure for extracting bearing estimates from the time-domain
adaptive filter. For comparison, Figure § shows a frequency domain analog of the
time domain adaptive filter. In Figure 4, it is noted that the entire broadband input is
the input to M tap adaptive filter. The error signal over the total band controls the
weight adjustment algorithm. On the other hand in Figure 5, the input is divided into
narrow frequency bins with each narrowband input and error signal controlling the
adjustment of a single complex weight for each bin. Since the weight adjustment in
each frequency bin occurs independently of errors in other frequency bins, it is not
obvious that the two implementations are equivalent. In Appendix I, for the case of

a broadband signal in noise, it is shown that the implementations in Figures 4 and
converge to essentially the same steady-state weight vector and mean~square error

if the FFT time window in Figure 5 is large in comparison to the time delay difference
between the signals at the adaptive tracker inputs, Furthermore, by examining the
difference equations for the mean value of the weights, it is shown in Appendix II that
the time responses are equal. The weight fluctuations are also compared and shown
to differ by a ratio that is approximately unity for u«vnz small.




Having verified the equivalence of the time and frequency domain adaptive bearing
estimator configurations, we now proceed to determine the performance of the fre-
quency domain bearing estimator.

Thé performance of the broadband adaptive filter tracker reqﬁires the mean and vari-
ance of the weights with both signal and noise present. The configuration initially
proposed operates entirely in the time domain using a tapped delay line (Figure 4).
This is contrasted with the structure in Figure 5 wherein the beam outputs are pre-
filtered using, for example a Fast Fourier Transform (FFT) and a single complex
adaptive filter weighting is used on each FFT bin on each split beam. The time delay
between split array phase centers corresponds to a different phase shift at each fre-
quency. The adaptively filter outputs can subsequently be recombined to produce a
broadband output if desired. The key assumption being employed is that the obser-
vation time is relatively long compared to the inverse of the bandwidths so that Fourier
coefficients provide an adequate second-order statistical realization of the broadband
process itself.

If the input processes are wide-sense stationary over the observation time, then
disjoint spectral outputs are uncorrelated. Since the input data is assumed to be a
narrowband gaussian random process, the disjoint bins therefore provide statistically
independent outputs. Thus each complex tap is operating on independent data just as
the time domain taps along the delay line are assumed to operate on samples that are
independent in time. This interpretation casts the analysis in a form that is tractable.
In Appendix III, the mean and variance of the complex weight is calculated with both
signal and noise present. This result is then used to obtain steady-state tracker
performance,

The principle results of Appendix III are
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where

a = normalized signal correlation between two half arrays
612 = signal power
qn2 = noise power
- u - algorithm feedback coefficient
E = denotes statistical expectation

Furthermore, the steady-state mean-square error is given by
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The above results can be used to determine the performance of a continuous version of
the adaptive bearing estimator shown in Figure 3. Figure 6 differs from Figure 3 in
that the tapped delay line in the adaptive filter is assumed to be infinitely dense (i.e.,
the tap separations are infinitesimal). This allows us to view the weight values as a
function of a continuous parameter, say v, rather than as a function of a discrete
parameter, m, as in Figure 3. The advantage of this viewpoint will be evident shortly.

We furthermore assume the time domain-frequency domain equivalence of Fig-
ures 4 and 5 is valid as verified in Appendix II and apply the results of Appendix [II to
Figure 6.

The model and statistical weight analysis of Appendices II and III are used to make a
first-order approximation analysis of the time-domain adaptive filter when configured
as a bearing estimator. This analysis uses the model in Figure 5 for broadband inputs.
The objective is to operate the broad adaptive filter (in any implementation, time or
frequency domain) and compare its performance with the Cramer-Rao Lower Bound
(CRLB). The parametric behavior at low signal-to-noise ratios is a fundamental
concern of the analysis. It is shown in Appendix IV that the variance of the split-beam
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adaptive bearing estimator is very near to CRLB lower bound on the variance of any

split beam estimator.

The variance of the estimator is within 0.5 db of the CRLB. Hence, the.split~-beam
adaptive bearing estimator performs close to the theoretical lower bound on the vari-
ance of any unbiased estimator. Hence, the adaptive bearing estimator is nearly
optimum and, in effect, makes a maximum likelihood estimate of the bearing without

a priori knowledge of the signal and noise spectra. The price of unknown input spectra

is the 0.5 db difference in performance in comparison to the CRLB.

Part IV - Delay Estimation with a Discrete Adaptive Tracker

In Part 3, an expression for the variance of the bearing estimate of a continuous
adaptive filter configured as an adaptive tracker was developed. The estimate is
based upon determination of the peak of the continuous impulse response of the
adaptive filter. In practice, however, the adaptive filter is discrete in time and of
finite length, and the peak of the impulse response must be determined by interpo-
lating between the discrete sample points. The interpolation process increases the
variance of the bearing estimate with respect to that of the continuous case.
Appendix V describes a numerical method of determining the peak of an interpo-
lated impulse response, and develops an expression for the variance of the esti-

mate using this method.




Part V — Adaptive Bearing Tracker Performance for Dynamic Signals !

The previous analysis has considered the behavior of adaptive bearing estimator for
signals at a fixed bearing angle; that is, how does the performance of adaptive bearing
estimator compare to the CRLB for static signals. Although the static analysis gives
a gBod indication or how the estimator performs, the real case of interest.is in the
tracking mode where the bearing angle of the target is changing. In Appendix VI the
time-varying mean weights are derived for a signal that is moving such that the delay
between split-array phase centers is linearly changing with time. Three signal models
are considered - a narrowband signal, a broadband spectrally white signal and a
broadband non-white signal. For the single frequency case, the mean filter weights
correct for a frequency shift and phase precession due to the angular movement of the

target in bearing. For a spectrally white process, the mean filter weights are a
travelling wave with a decaying exponential envelope. Tracking the bearing involves
estimating the delay location of the leading edge of the weights. For the broadband non-
white signal, the mean weights behave in a similar manner to the previous case except,
because of correlation between the taps, the peak of the travelling wave is much larger
and the decaying exponential envelope is dependent on the signal dynamics and correla-
tion. Thus, tracking non-white signals is easier than tracking white signals.

A subject related to the tracking behavior of the adaptive filter is treated in Appendix VI
The transient behavior of the LMS adaptive filter is studied when the filter is configured
as a canceller operating in the presence of a fixed or variable complex frequency sine-
wave signal buried in white noise. For a fixed frequency signal, the mean weights are
shown to respond to signal more rapidly than to noise alone. For a chirped signal, a
fixed parameter matrix first order difference equation is derived for the mean weights
and a closed form steady-state solution obtained. The transient response is obtained

as a function of the eigenvectors and eigenvalues of the input covariance matrix. Suf-
ficient conditions for the stability of the transient response are derived and an upper
bound on the eigenvalues obtained. Finally, the mean-square error is evaluated when
responding to a chirped signal. The gain coefficient of the LMS algorithm is determined
that minimizes the mean~square error for chirped signals as a function of chirp rate
and signal and noise powers.

Part VI - Simulations

The last part of this report deals with simulations of adaptive bearing trackers in both
the time and frequency domain implementations followed by time domain interpolation.
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The simulations serve three purposes:

1) Verification of the equivalence of the time and frequency domain implementa-
tions of the tracker,

- 2) Support for the theoretical model of the frequency domain implementation,

. 3) Provide initial sets of data for design of the adaptive bearing tracker,

Figures 17 - 46 show the delay estimates as a function of the various system parame-
ters indicated on the figures.

In order to verify the results of the previous sections and the appendices, the adaptive
tracker has been simulated on the computer. The simulation is configured to imple-
ment both the time and frequency domain trackers, and provides for broadband or
narrowband signal inputs with a variable delay between the simulated array inputs.

The capability is included to band limit the input via a finite impulse response (FIR)
filter in each input path. The delay may also be varied linearly with time. A sin (x)/x
interpolator, as described in Appendix V, is included to estimate delays when the

true delay lies between discrete filter taps. A phase estimator, corresponding to the
narrowband case, is also included. Figures 13 and 14 illustrate the simulation for
time and frequency domain trackers, respectively,

A primary result of the second quarterly report was that the time delay can be ex-
tracted from the weight vector even at low signal-to-noise ratios where the reduction

in mean square error is small. For a broadband signal with a delay equal to an inte-
gral number of sampling intervals, this would be evidenced by the filter weight corre-
sponding to the correct delay appearing larger than the other filter taps. The ability to
distinguish that the correct tap is largest at input signal to noise ratios as low as -20 dB
has been verified by simulation. Figures 15, 16, and 17 show the time domain weight

vector as a function of time for one sample interval (0.4167 msec) delay between tracker
inputs for a broadband signal with 0, -10, and -20 dB signal-to-noise ratios, respec-
tively. The 2nd weight, corresponding to one unit of delay, clearly has the largest

mean value in all cases. Figures 18, 19, and 20 show similar results with the sig-

nal delayed 3-sample intervals between inputs.

The results of the simulations using the frequency domain implementation verify the
analytical prediction of the steady state weight vector derived earlier in the report.
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Table 1 below gives the value of the largest steady state time domain, mean weight
for broadband examples simulated with the frequency domain tracker. The remaining
weights should have mean zero in steady state. These results can be predicted using
equation (8) of Appendix II. The theoretical predictions can be compared to the simu-
lation results given in Tables 3 through 8. These show the time domain weight vector
as a function of time for each of the six cases of Table 1. The value of the weights

shows good agreement with the above analytical results once the weights approach steady

state, as they have in the lower part of each table. It should be noted that each 2400
iterations constitutes one second in these simulations. The tables also indicate that it
is possible to determine the correct delay from the weight vector for these signal-to-
noise ratios, since the correct weight is largest in all cases.

TABLE 1. PREDICTED VALUE OF LARGEST STEADY STATE MEAN
WEICHT IN THE TIME DOMAIN

Simulation Results Largest Steady State !
SNR U Delay in Table No. Mean Weight i
0 dB e , Figo 3 W, = 0.4375 |
0 dB e 3 4 W, = 0.3125 |
-10 dB 2710 1 5 W, = 0.0795
1048 | ok 3 6 ’, W, = 0.0568
-20 dB- - s 1 7 W, = 0.00867
-20 dB s 3 8 W, = 0.00619

Using the delay interpolator described in Appendix V, a number of simulations with
broadband signal have been run. The inputs to the adaptive tracker are low pass fil-
tered with a cutoff of 800 Hz and sampled at 2400 Hz. A 16-tap time domain filter is
used to provide the weights to the interpolator, which has its bandwidth parameter, B,
matched to the filter input bandwidth, 800 Hz. Figures 21 through 23 show the delay
estimate, ? versus time for p= 2—10 and an actual delay halfway between the 8th and
9th taps (3. 541667 msec), with signal-to-noise ratios (SNRs) of 10, 0, and - 10 dB.
The one standard deviation (1c) limits for the estimate as predicted using the results
of Appendix V is also shown. Figures 24 through 26 show the same cases with a

-14

feedback coefficient of u= 2 ~°, which reduces the variance of the estimate. Finally,
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Figure 27 shows a -20 dB SNR case with u=2""", These cases are repeated for the
actual delay coincident with the 8th tap, or 3.3333 msec, in Figures 28 through 34.

The following observations may be made concerning these simulation results:

(1) For static delays, the adaptive tracker with interpolation between weights can

provide high accuracy delay, and hence, bearing estimation for broadband
targets. Table 2 below, converts the delay estimate accuracies obtained in
the simulations shown in Figures 21 through 27 to broadside bearing accu-
racies for split arrays with a 7.5 and 75 foot spacing between phase centers,

TABLE 2. BEARING ACCURACIES FOR TYPICAL ADAPTIVE TRACKER

SIMULATIONS WITH BROADBAND INPUTS

r.m.,s, Bearing Error
SNR m Figure No. 7.5 Ft Baseline 75 Ft Baseline
10 gL 21 .187° 1.87°
10 g id 24 0570 .57°
0 o 22 .67° 6.7°
0 714 25 .185° 1.85°
-10 g~ 14 26 .877° 8.77°
-20 g ks 27 5.88° 58.8°

@)

3)

As pointed out in Appendix V, p must be set sufficiently small to assure that
the mean of the pez;k weight vector exceeds the standard deviation if accu~
rate estimation is to result.

The results of the simulations are in excellent agreement with the predictions

given in Appendix V, as long as u is set sufficiently small. This is most
evident in Figure 11. Further, the criterion for setting u given in that
appendix, is verified by the simulation results. For example, from Appen-
dix V, p = 2710 ig marginal for an SNR of -10 dB, and Figure 23 shows that
occasionally the weight maximum appears in the wrong bin.

Selection of u sufficiently small to make the mean of the weights excecd the
standard deviation requires small 4, and hence, long time constants for

12




operation with low SNR targets. This raises some question as to whether an
adaptive filter with these long time constants can track a moving target. It
can be seen from the simulations, however, that estimation within the pre-
dicted accuracy is achieved in less than a single time constant. For example,
the time constant for the simulations with u= 2'14 is 6. 28 seconds, but the
estimate is within predicted steady state limits within nominally 1 second.
This suggests an ability to track dynamics while utilizing large time constants
to give high accuracy estimates of static targets.

(4) When u is marginal for a particular SNR, so that occasionally the peak weight
appears in the wrong tap, the estimate falls within predicted steady state
error limits most of the time. In this case large deviations from the average
could be rejected as "wild points, "' and the remaining values would be good
estimates.

In order to relate these results to existing trackers, a first order performance com-
parison between the adaptive tracker and a clipped two point correlator tracking scheme
is provided in Appendix VIII. The latter is similar to many existing tracking systems.
The comparison is not valid for high signal to noise ratio, and should be used only to
compare the two trackers in terms of order of magnitude of performance. This is
because the assumptions necessary to make two trackers of markedly different struc-
tures equivalent in some sense can only be considered approximate. Table 9 shows
the bearing accuracy predicted for both the adaptive tracker and the clipped two point
correlator for several typical cases, along with the results of the simulations. The
results are for the same broadband signal considered in Table 2, with the target
stationary at broadside of a split array with 7,5 ft between phase centers. The per-
formance is comparable with the adaptive filter having slightly smaller variances for
all cases.

Appendix VI of this report considered the ability of the adaptive tracker to track
linearly varying delays. Such a delay is representative of a target with constant bear-
ing rate passing through broadside relative to the split array centers., Simulations

were run with the same adaptive tracker/interpolator configuration used in the stalic
runs, but with the delay varying linearly with time. Again, the input is broadband,
and both tracker inputs are bandlimited to 800 Hz. The adaptive filter has 16 taps,
and the interpolator bandwidth is matched to that of the input.

13




TABLE 9. COMPARISON OF BEARING ACCURACY OF AN ADAPTIVE
TRACKER WITH CLIPPED TWO POINT CORRELATOR
TRACKER WITH EQUAL TIME CONSTANTS

r.m.s. Bearing Error
Predicted, Simulation, Predicted, clipped
SNR M adaptive tracker adaptive tracker two point correlator
0 e 819° .67° 2.57°
0 g~ 14 .202° .185° 642°
- -10 a e 53 .877° 3.54°
-20 2~16 5.89 5.88° 16.25°

In Appendix VI, it was shown that the mean weight vector, as a function of time is a
peak at the actual instantaneous delay between array halves, moving through the filter
at the delay rate of change, and with an exponentially decaying trailing edge. This
analysis is verified by Figure 35, which shows the weight vector at 5000, 6000, and
7000 iterations for a 10 dB signal and a delay changing at 1.0 msec per second. TFig-
ure 36 shows another view of the behavior of the weight vector with time. Here, the
delay is changing at 0.2618 msec per second, u = 2"10, and the signal-to-noise ratio
is 10 dB. The peak of the weight vector can be clearly seen moving through the tilter
with time.

A more quantitative assessment of the tracking behavior of the adaptive tracker can
be had from Figures 37 through 39, showing the delay estimate as a function of time
for a linearly increasing delay of 261. 8 usec/sec. This is representative of a 19/sec
target at the split array outputs of an array with 75 feet between phase centers. Fig-
ures 37 and 38 show the estimate for the 261.8 usec/sec case with u = 2-10 and SNRs
of 10 dB and 0 dB respectively. The same rate of change is shown for u = 2= and
SNR of -10 dB in Figures 39.

Part VII = Conclusions and Relationship to Phase 2

It can be concluded that the application of an adaptive filter to split beam bearing
tracking has the potential to offer performance improvements as discussed in the
introduction. In the static case, bearing estimates are comparable to the Cramer-

Rao Lower Bound. In the dynamic case, time averages of simulated weights behave
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as the theoretical predictions for the mean of the weights. In addition, both narrowband
and broadband signals can be tracked with the same processor, suggesting that all tar-
H get energy can be used for tracking.

The results reported herein strongly motivate continuing the effort in the followtng
areas of investigation: 3

: (1) Analyze the sensitivity to plane wave interference, correlated noise (both
spatially and temporally), multipath, unknown statistics, and tracking
dynamics.

(2) Through analysis and simulation determine the effects of the following on
the adaptive tracker performance:

(@) Multipath

(b) An array of sensors

(c) Multiple targets to be tracked at different bearing rates
(d) Multiple interferences to be removed

(e} The number of filter taps required

(f) The design of filter feedback and gain control parameters

(3) From the above analysis derive a system configuration and simulate on a
computer. Evaluate the system performance using computer generated data
and actual sea data recordings to be provided by the Naval Sea Systems
Command.

(4) Compare systems performance from the above evaluation with the
Cramer-Rao Lower Bound and with existing Bearing Deviation Indicator
tracker performance.

(5) Formulate an optimal tracker structure based on the above evaluation and
suggest implementation into real time hardware.

15
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APPENDIX I
SUMMED BEAM VS SPLIT BEAM BEARING ESTIMATION

The steady state results for adaptively cancelling one beamformer output from another
are examined for two beams in a single summed array and for identically steered
outputs of a split-beam array. In both cases, the filter weights and the resulting mean
square error are derived. A plane wave signal, a plane wave interference and noise
are present at each hydrophone. Energy arrival angles are initially assumed to be
known with one objective being to assess the sensitivity of the process to errors in
steering for use as a bearing tracker. The power spectra for all waveforms is kept
completely general, but is assumed to be known a priori.

Summed Beam System

The situation being studied is shown in Figure 1. The signal, interference and noise
spectra at the kth array element are denoted by s(w), i(«), and nk("") respectively.
The waveforms are zero mean and mutually uncorrelated. At any frequency, w = 2=f,
the vectors of these waveforms at all the hydrophones can be expressed as follows:

ej *
eJ2¢I
Lw) = : i(w) = Dyw) i(w)
ejM¢I
e?¢s
eJ%s
S(w) = . s(w) = Ds(w) s(w)
ejm¢s
I-1

i o i —




n, («)
ny(w)
N(w) =
- n
M(w)
where
= w4
cbl = w - sin ¥
Lot oraeils
¢S = U-c- sin \Ps

¢ = interference energy arrival angle
¢_ = signal energy arrival angle
i(w) = interference spectrum at frequency w
s(w) = signal spectrum at frequency w
d = uniform element spacing
¢ = sound speed

The progressive delay vectors, DI(w) and Ds(w), represent the propagation of the

plane wave interference and signal along the uniformly spaced M element line array.

Two summed beams are formed using uniform shading. The steering vectors are
Dl(w) and Dz(w). where

ej‘¢2
e12¢2
Dz(w) ¢ w Ls1p2

Mo

e )

The beam steered in the neighborhood of the signal is the target beam, denoted by
d(w). The reference beam steered to the interference is the input to the adaptive
filter, denoted by x(w).

I-2




d(w) = D" (w) Dyw) i(w) + D; (@) Dy(w) s(w) + D, () N(w)

X(w) = D, (@) Dyw) i(w) + D, (w) Dy(w) s(w) + Dy (w) N(w) : ;

where the symbol + denotes the complex-conjugate transpose operation. To form the
steady state complex weight at a single frequency requires calculating the cross~
spectrum of d with x and the power spectrum of x. Thus,
+ + +
E [d(w) x*(w)] = Dl [DI DI PI + Dst PS + QPn] D2
* = * - +

E [x(w) x*(w)] = D2 [DIDIPI + Dst P:5 QPn] 02
where the frequency arguments on the D's have been dropped for convenience, and
where

E[NN]| = QP,

Q = normalized spatial covariance matrix of the noise

The complex weight, B(w), is

E{dx*
B(w) = )
Dl [DIDI pI E DSDS Ps i QPn] D2

=

D, (DD, Py+D.D, P, + QP ] D,

The error ¢, is

€(w) d(w) - B(w) x(w)

(D, - BD,"] [Dyi(w) + D s(w) + N(w)]

I-3




and the mean square error, E[ |€| 2], is

+ + + - +
E(|e| %] = (D, - BD,) (DD, P, +DD_ P_+ QP | (D,-BD,)

To facilitate writing E[ | € | 2], let us define the following spatial responses.

<
1]

response of array steered to ¢,, to energy arriving at <PI

1!
response of array steered to ¢,, to energy arriving at ¢
2 I

response of array steered to ¢,» to energy arriving at "
response of array steered to @5y to energy arriving at ¢ 3

response of array steered to ¢)» to energy arriving at ¢,

For a uniformly-shaded, uniformly-spaced line array.

M

- (30 (-0 sinT (& -6
=E

sin 1/2 (¢,-¢,)

e Wi
sin -5-(4)2 ~ :bs)

e ® -¢5) Sn1/2 (& ~6)

) (0 -8y  sing (618

sin 1/2 (d1-%5)

For o . and ‘31 substitute ¢I for¢s.

I

The mean square error can then be written as

2. _ 2 2 & 2 2 2
E[l€|°] = lall PI+las| PS+D1 QDIPn-*-lBI [(BI) Pl+|(351 P

+D, QD,P_ ]—2 Re | B'(ayfy Py *ogp, Py + D GD,P,) |

S

l




where
+ ' 2
R 1"1r‘*"’s"s l;sj”ﬁ PPy
+
[8¢|"P * |Bs | “P + Dy "QD, P,

For the special case where the noise is uncorrelated spatially from element-to-element,
the matrix Q=I, the MxM identity, and the mean-square error is:

P, 2 |

{‘M G2 )P, *+ PoPp(GyGop - G 1Gyg) 1

2 2
+ PP, (MGls " MGZs = GlstsGm)

2 2
3 + Pl.Pn (MGZI + MG1I +2 GIIG2IG12)

Cog Py * Sy, P, tME, |
where g
§
M 3

sin 3 (®,=4y) ‘

Cab ~ sin1/Z (6,74 '

and the complex weight, B(w), is

. Gy CorPr + GygCogPp + G1oPy ;ML) 4 -4,) |
Gyp Pp*Gyg Py + MP, |

An interesting example occurs for the case of correct steering, for which ¢1 = ¢s
and ¢2 =¢; . For this case

Gg=Gy =M

Gy = Gyg= Gy | IR




and

2 3 g 2
M*-G,% (B, + PP, (M?-G %) + MP_P_+MP P .
2

E(le|?) =

2
M PI +G12 Ps -o-MPn

Of additional interest is the case of a single plane wave broadband interference to be

cancelled. This can be evaluated by setting P s=0 and examining the extent to which PI
is removed from the mean square error. Thus
M+1
=J (557) (9,-95)
Bw) = e 4 % S
M

and

Note that for this case the interference is completely removed and the weight is
independent of the interference power. The reason for this is that the noise at the two
beam outputs has a deterministic correlation placed on it by the beamformer. This
correlation is exactly the same as the correlation on the interference, which is the
sidelobe gain. Thus, the filter weights due to the noise correlation are the same as
the weights needed to cancel the interference. When interference is added to the
acoustic field, it is cancelled regardless of the interference-to-noise ratio, because
the filter weights do not have to change to accommodate the interference correlation.
This will not be the case if the noises are correlated spatially or if the steering

vectors are not precisely aligned to the energy arrival angles. Then the noise corre-
lation on the beams are not exactly the same as the interference correlations and the
adaptive filter will have to change to cancel the interference. For small interference-
to-noise ratios, the filter would not change to cancel the interference because the
resulting increase in noise power at the output would exceed the reduction in output

power due to removing the interference.




The extent of the filter weights in time is twice the maximum time difference for

propagation from the reference beam to the target beam. For example, when the tvo
beams coincide, i.e., sin ¢ = sin P there exists just one weight at t = 0. If the

reference is at forward endfire and the target is at aft endire, then sin vl—si.m‘2 =2

and the total filter delay is ZM% » which is twice the time for the wavefront to

propagate across the aperture of the array. ;

It can be concluded that the correlation on the beams due to the noise is helping to |
cancel the interference. This is a desirable result when performing a post-beamformer
interference cancellation (PIC), but it obscures the ability to identify signal correla-
tion properties for tracking. The noises produce residual correlation on the beams,
which the adaptive filter treats as a signal process. To decorrelate the noises one
must form the beams from separate elements, so that the two inputs to the adaptive
canceller are not linear combinations of the same set of processes. This motivates

considering the split-beam processor, in the next section.

Split-Beam System

The split-beam configuration is shown in Figure 2. The 2M-array elements are
divided equally and a beam is formed with both sub-arrays steered to the target. The
objective is to subsequently process to get a refined estimate of the signal energy
arrival angle and to automatically follow bearing and spectral changes.




The adaptive filter steady state impulse response is the inverse transform of the
single frequency complex weights. The impulse response, which is approximated by

the discrete filter weights, is

- ©
b = f B(w) ej“’tz%‘:-’

-

. M. 4 .
sin 5 W= (sin¢ -sing,) ot dw

27

_ 1 [T i) wd (sin g - sin g,
M c 1 2 q
sin 1/2 ke (sin@, -sine,)

-0

Ses M .
o k[T Jut -j(d,-,) k dw
% j " z b T 2T
k=1

M
-0
e A & .
. ﬁ z / Wt gmiwg (sin@ - sing,) %
k=1 "-o
M
1 - d . . ;
=M z 6(t-kg(sm#1- szn¢2))
k=1

# The filter weights are shown in Figure 7 for this special case.




& v

The adaptive filter will converge to minimize the mean square error, i.e. to minimize
the powerin €. This implies that implicit within the filter is estimation of the trans-
formation to make the waveform x look as much as possible like d. If propagation
delays or those shifts are the only differences between the half-array outputs, then
one should be able to extract this information from the filter weights and the filter
should be able to track reasonable dynamics.

Analysis of the steady-state performance in Figure 2 procedes in the same way as
the previous section. The signal energy arrival angle is ¢s. from which a vector of
propagation delays, D S(w), is formed. The steering direction, ¥, from which the vector
D(w) is formed, is close to but not exactly ¢S. Thus
d . i
ejwc sin »‘S QW sin v
R [
e]w 2c sinv

D@ = |- . D(w) =
jwMS sin ¥ jwM 3 sin
e S5 e’ c

and just as before,

d(w) = D'(w) Dy(w) s(w) + D+Nd(w) {

jMds

x(w) = D'(w) D sw) e s(w) + D*Nx(w)

I-9
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where N d and Nx are uncorrelated and all processes are zero mean. To form the
complex filter weights one needs the cross correlation of d with x and the auto-
correlation of x.

E [d(@) X*(@)] Ko

D'D.D.De S(w)

E [x(w) x*(w)]

ot +* G
D Dst D Ss(w) +D QD Sn (w)

where Ss(w) and S n(c:.:) are the power spectra of s (w) and Nx(w), and where for con-
venience the frequency argument of the stearing vectors has been dropped. The
complex weight is

— E[d w) X* u]
Bw) = ‘[‘i}: x(:L‘L) X ()]

o
ID*DSI o “IM9Ss (4

= 2
(D‘ Dsl Ss(w) + D™ QD Sn(w)

For the case where the noise is uncorrelated spatially from element-to-element, the
matrix QL Also, leta(w) denote the spatial response of the array steered to v to
energy arriving at g Thus

o(w)= D (w) Ds(w)

and

: -
o2 1M 0 sty g (g

B(w) = |2
|| Sg (w) + MS_ (w)

The resulting error power spectrum is

2| (w)] - Sy(w) + MS, (@)

E(|e(w)[?] = MS_(w)
e o o (@) |2 8@) + MS, ()

The filter transfer function , h(t), is the inverse Fourier transform of B(w). It is
this function which the adaptive filter attempts to approximate with its finite taps.

I-10
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@
h(t) =/ e 1t Bw) ‘2’—‘,‘:

-0

s 2
g f = jee-MBsmyy Sk w| dw
2
£ o) [Ps()+Ms, (@)
In the broadband case both Ss(w) and Sn(w) can initially be considered to be spectrally
flat, i.e. independent of w. Then

2
ey & fm o Jutt - M3 sinyg) Fs la(z‘”)l %:g
@ |*pgamp, T

-0

Notice, that even with white input spectra, the power spectrum at the beamformer
output is colored by the frequency dependence of the spatial response, o (w). Since

. M+l d . : s Ny chipein ke o el
e e A (sin¥ -sin 415) sin Zw;(smw- sinv o)

a(w) = e 2

e Wi !
sin 52 (sin siny s)

for a uniformly spaced and uniformly shaded line array, it can be seen that only for
perfect steering, i.e. $ = ¢s does a(w) not depend on frequency. For that special

case,

@
M2P ejw(t- _I%g sin us)
h(t) = He
M(MP_+P ) 2=

=®

s 2

M2P +MP
s n

MP_/P
o W
1+MPS/Pn

Md
e sin \Ps)

and the adaptive filter forms a single weight at the correct inter-phase center delay.




APPENDIX I
COMPARISON OF TIME AND FREQUENCY DOMAIN ADAPTIVE

i

TRACKERS WITH BROADBAND SIGNAL INPUTS

1. 5 Steady State Equivalence of the Time and Frequency Domain Adaptive Trackers |
* with Broadband Signal Inputs

This appendix considers the equivalence of the time domain and frequency domain
implementations of the adaptive bearing estimator, shown in Figures 4 and 5, respec-
tively. In the case of a broadband signal in noise, it is shown here that the two imple-

mentations converge to essentially the same steady state weight vector and mean
square error if the FFT time window is long in comparison to the time delay differ-
ence between the signal at the adaptive tracker inputs.

For the broadband signal case, the time domain inputs to the tracker can be
written as

X(t) = s) +n_(t)

dt) = st - ATg) +ny(t) ")

where s(t), nx(t), and n d(t) are zero mean, stationary random processes, uncorrelated
in time and independent of each other. Let the delay between the two inputs, A, bea
multiple of the sampling interval, Tg. An FFT is performed on both x(t) and d(t) every
RTg seconds, so that each frequency domain filter iterates every RTg seconds. With
M the FFT size, R = M corresponds to FFT processing without overlapping or gaps
between time windows, R < M corresponds to overlapping FFTs and R > M indicates

gap processing.

The 2 input to the adaptive filter in the k™ FFT bin is given by

< -j 2nk
X ) = ) s [(n+iR) Tgl +n, [(n +iR) Tgl| e o )
n=(0




T

T ——

= ‘J'—glnk
Dk(1)=n§o Slm+iR-8)Tel *nglm+iR) Tl e N - @)

The adaptive filter in the kth FFT bin has a single complex weight with a mean steady
state value given by

W Ba (B @)
*
where Rt = E[X 0 X @]
Ryt = E [D, 0 X, 0] -

For the particular case being considered here, the covariances are as follows.

M-1 M-l
R *=E[2 ) S[(n+iR)Ts] +n_ [0+ R) Ty]

{s [(m +iR) Tg]

K n=0 m=0o0
.-gir(n-m)k
s 2 2
+nx[(m+iR) Ts] e =Mo? +Ma 6)

using the independence of s(t) and ny(t), and the fact that both are uncorrelated in
time. Also

M-1 M-1
Rgy*=E [ TR ,s [@+ iR -a) Tg[+ ny [@ + iR) T] {{S [(m + iR) T]
n=0 ‘'m=o0
| gw ELYW (M

- 2 -jm
——mM-m)k =M -A)6 " e
+nx[(m+iR)Ts] e o x ] P

This results because E| s [(n + ik) Ts] s* [(m + iR +4) Ts], = 0 except when m = n =3,
and this occurs only (M -4) times over the range of the double summation.
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Therefore the mean steady state weight in the kth frequency bin is

— M-y dsz - —2;7'[-Ak ;
W= e (8)
= k M (o 2, 2)
s “mx
The error output for this weight is
2m
2 | =—-Ak
) 3 M A) dy =} M -
¢« (W=D @ - m e X @ (9)
9% * onx )
so the mean square error in the kth bin is
2

- 2 o 2
2 2 M-4 s
E[ek (1)] —Mas [1 -<-—~M ) <°sz +0n2) ] +M gnd (10)

In order to compare the steady state results with that of the time domain filter,
we need the inverse FFT of the vector of complex frequency domain weights. From
(8), it can be seen that the n‘:h time domain weight will be

(

M-l j2,. nk 0 ) n#A,

a, = — ¥ O 2
S ™ -4) ¢ n=0, 1, ... M-1 (11)
<
2 2
M(o_, t+o ), n=4,
8 nx

\

The corresponding total mean square error is

2 2
M - o

2 1 2 2 -a 2

E[‘ (i’]"’z Z E[‘k“’}"’s l}'(MM> 2862]‘%(1

1
M k=0

o-3

=g o
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These are to be compared to values attained by the time domain weight vector,

0 ’ DﬁAv
o b = L2 n=0,1..., M-1 : (13)
8 s n=4,
¢72+D'n 2
5 X

and m ean square error,

2
¢
E(z(i) = |1- —-2—3——2 02+ an (14)
t crs+an - d

Comparing (11), (12), (13), and (14), it can be seen that for A= 0 the two filter
implementations yield identical steady state results. Further, if the delay,A, is a
small fraction of the FFT size, M, then

and the two implementations are essentially the same in steady state. This places a
specification on the size of the FFTs to be used in the frequency implementation of an
adaptive tracker. It is also interesting to observe that the steady state of the frequency
domain implementation of the adaptive tracker does not depend upon R. This means
that, at least with respect to steady state performance, use of overlapping or gap FFT
processing will not affect the tracker performance.

-




2. Transient Comparison of the Time and Frequency Domain Implementations

The two implementations can be compared by examining the difference equations
for the mean value of the weights in both cases using the inputs in the previous section.
For the time domain, the difference equation for the mth weight is

W+l =W_(n)+u [d(n) 5 Wy () X (n)] X @ (15)
p

which when averaged is

E l:wm (n+ 1)] = E [.wm (n)] +u|E [d(n) xmm>] -E [xm(m 3 W@ X,m)

P
(16)
From the previous section,
$ 1)
E[d(n)xm(n)] = E( S (n -A)+nd (n)] [S(n- m) +nx(n-m)J ‘
‘ g2 for m= A
= (17)
1 0 otherwise
and
: )
E [Xm ) 3 Wp (n) Xp (n)] E [Wm (n)] (Os + Un (18)
P
so that
" el 2 . 2 35
E [wm e 1)]_ E[wm (n)] [l e (o; +on ) ] k% ma
-5

R,
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i ik

where
) = ) (19)
i 0 otherwise

In the frequency domain, the difference equation for the mean of the complex weight
on the kth FFT bin, is

E [Wk (n)] + E{ [Dk (n) - Wk (n) Xk (n)] Xk‘ (n) %

E [\X"k (n)] }1 - E[ l X, (n)lz] : +4 E [Dk (n) xk* (n)] (20)

l-:[Wk (n + 1)]

[}

These terms were also evaluated in the previous section, where

x 7
E[xk(n)xk (n)J = M(a32+ an2>

and
2r Ak
G 2 W
E[Dk(n)xk m| = m-a) o? e
Thus
_j2rak
;[wk(n+;)]=E[wk(n)]{1-pM(Usz+ on2)} +H (M -4) asze n e

This expression can be inverse transformed to return to a time domain weight vector for
comparison with the time domain implementation. By transforming back,

E [wm (n+1)] = E [wm (n)][l -uM (07 crnz)] u M -0) csz 5. 22)
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Equations (19) and (22) are now to be compared for transient response and weight
fluctuations. This is most readily done for the A= 0 case. If the feedback coefficients
are distinguished from one another by letting u_ and u I;.be the time aqd frequency
domain coefficients respectively, then

“1- = B

Kp = My 23)

to equate the two difference equations. The steady-state results than agree exactly,
where for A= 0 the windowing effects are neglected.

The time constant for the adaptive algorithm is Tc = ?}1—13 . The input power,
in

Pjp, islargerin the time domain by a factor of M, which is precisely the factor by which
M is larger than Mo Thus the p Pin product is the same for both systems and there-
fore the time responses are equal.

The fluctuations of the weights can be compared using results derived in the
second quarter report. For the time domain filter with uncorrelated inputs

2
MT‘T n, T

nlf.m Va.r[ W_ (n) | Ho] = -
@® m 2 - (m+2)“T Gn,T_

and for the frequency domain

o

HponF

lim Var |W, (n)] =
n-o k 2 - 2“ o P
F n,F~

Again, for the time domain implementation, cnz T 18 in the full band, whereas for the

frequency domain "n.2 F is in the FFT bin, so that

PO




Thus for the frequency domain

2
R T8 o 2/
o TR Maed n“/ M
A lim Var [Wk (n)l Ho] = 3 3
n- o 2-2p; %n 2-2u°n/M
M
and for the time domain
H Ta'n2 VA
lim Var [Wm (n,)] = 5 3
S50k 2-(1\'[‘*'2)14,1,(:n 2-@4;12)“0:1
The variances differ by the ratio
2
-2k o
2 N n

) 2-(M;{2)“°n2

which is approximately unity for uvnz small.

It is thus concluded that for all practical purposes, the frequency domain adaptive
filter model is equivalent to the time domain adaptive filter.
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APPENDIX II
MEAN AND VARIANCE OF A SINGLE COMPLEX TAP WEIGHT
WITH SIGNAL AND NOISE INPUTS

" In narrow bands at the FFT output, the adaptive filter is a single complex weight.
The weight update equations are given by

W(n+l) = W) + pe(n) x *(n)

¢(m) = d(n) - y(n) = error (cancelled) waveform
y(n) = W(n) x(n) = filter output

d(n) = reference waveform

Xx(n) = input data sequence

W(n) = complex weight
p = feedback coefficient.
Thus the filter is described here at the nth time iteration on the data sequence of a

particular FFT bin. One such device operates on each of the FFT bins spanning the
signal bandwidth.

Consider again the structure in Figure 5, where the common plane wave component
is denotéd by I(n). Then

d(n) al(n) + n, (n)

x(n) = I() + ny(n)

where o is the complex coefficient for the inter-array phase shift.




It is assumed that the input sequences are zero mean, gaussian, independent of
one another, and uncorrelated in time.

The error sequence ¢ (n) is

T ¢m = al(n) - W(n)(n) +n,(m - W(n) ny(n)
The mean square error is
= 2 2 o121
Elle@®] = Ejlfetm - Warm)® ¢ [lnl @|* +|n, @W ()| ]‘

The variance of the weight, Var W(n)], is needed to compute the output power. The
weight variance is computed as follows. The weight update equation is rewritten as

as

2 *
W(n+l) = W(n) [1 =4 |x(n)| ] + pd(m)x (n)

The solution to this difference equation is given by

n n n
i 2 » | 2
W(n+l) = W(o) 1 - p|x(k) 4 E d( ) 1- )
kl]o ( I ) Ih‘.!!"l'—‘o i k'—‘g'*'l [ o i \ ]




The initial weight W(o) can be set to zero.

Let

n

- Fm) = d(m)x‘(m) n [1 -p]x(k)’z]

k=m+1 : 4

Averaging to obtain the mean weight yields

n n n
E[Wm+)] = » Z E[Fm)] = » Z E[dm)x (m] [] E[l-pjx (k)]z]

‘, m=o0 =0 k=m+1
{ 2 n-m
i £ 2 ” 2
' DI [1 “"2]
m=o

where it is assumed that

E[d(m)x*(m)] =

\ femi?] - o

For d(m) = oI(m) + nl(m)
and x(m) = I(m) + nz(m)

where n and n, are independent,

2 2

and
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The summation can be expressed in closed form as

2
T n+l
a’1 f 2, 2 |
E W(n+1) = —— 1_[1-‘4(0 +0 )]
( ] c2re ® | I n J
L I n
In steady state,
lim "12
g TURE] = g =
1

To obtain the variance the mean squared weight is needed.

n n n
B waen | = 2 Y D EF@mrr@) = w? ) E(|Faw |3
o

m=0

The single sum is treated first.

n n

El| Fm) |3)= E}Id(m)x m|? ] [ [l-ulx(p)l 2] [l-ulx(q)l 2]:
p=m+1 g=m+1

=E[]d(m)x(m)i2] ﬁ E:[l-plx(pﬂz]z)
p=m+l

—

The expectation separates because the terms in the product involve inputs at later times,

which are uncorrelated. Using the gaussian assumption,
2 2.2 2 2 2 2 4
=0 e @f?] = (je1%2 0 77) fr?+e,7) 2t

E:l[l-ulx(p)l Z]EZ; - 12u(of oo ?) ¢ 28 (o 40 %)

ks st

i e o




Thus

n P‘[|a|°.2+°- 2][ &, ]+2|°12 5
u2 mZoE['F(m) |21= | Ic 2012)[2 -2u(o_ +0' ]

. [1-( -Zp.a' +0'12)+ ( )2)“*‘1]

The double sum term in E [W2 (n+1)] involves E[F(m)F(q)] which is treated as follows

n n I
EFmF@) = Ejdmx mdax@ [| [ [1ux @] [1mix 0
I p=m+l v=q+l
In the double sum, gq<m, so that
n n n n m
S i T S
p=m+l v=q+l : p=m+l v=m+1 v=q+l

Thus, since both p and v range over indices that are greater than m and q,

E[F(m)F*@)] = E{ ﬁ ﬁ [I‘PI"“’)F] [1’“"‘ (V)Iz] l

p=m+1 v=m+l ‘
- :
*
3 E:d(m>x*(m)d(q)x @ ] [1-ulx (V)lzh
v=q+1

The first expectation is identical to E[F2 (m)]. evaluated previously. The second
expectation, since q is always less than m, is

m
E%d(m)x*(m)d(q)x*(q) I [l-plx (v)'z]{=E[d(q)x*(q)]E;d(m)x‘(m)[l-plx (m){z]{

v=q+1

m-1

n E [l-p{x W) 2]

v=q+l
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The expectation in the center is

*
E{d(m)x (m) - ud(m)xa(m)} e ""’12 ¥ 2P°°iz<°12+"n2)
Cembining the above,

p n-m
E[Fm)F*@Q)] = l 1-2u ( 0’12+ o,nz) + 2}*2(0_12*.0_“2 )2 l

-q~1
I=

; [1’“(°'Iz+°n2) ,012014 ‘ I’ZP(“12+‘TDZ)]

The double sum term is then

n m-1
»2 z Z E[Fm)F*@)] = Hzlal2 vl4l1‘2“("12+“n2)]
m=0 Q=0
n s
[ B
m=0
m-1 -
- Y [t
fo o)

= p2|a|2¢14 [1'2H<‘712+°'n2 )]

- TR VR 3
) | 120 (o 40,2420 (T "0 )
m=0

1-[1-ufer a2 )|
) 2

to )
qn
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Thus in steady-state, ~
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To obtain the variance, subtract the mean steady-state weight squared, with the result
that

2[(}a| 1 o +c2|

0'12 [ 2-24 o-Iz+cn2> I
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For a special case, if 0-12 >>cn2
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To determine the cancellation level, the above result is used in the evaluation of the

Var(W(=)] =

mean squared error, i.e., the power in the canceller output. } 7
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If, in addition, ue,z << 1, then

CE[lc@i?] s aved o ?
and the common waveform has been cancelled down to the uncorrelated noise flow.
For the tracking problem, the low signal-to-noise ratio case is more critical.

For cnz > 012 ’

I R (R R

The time response is given by the time constant, + . for the LMS algorithm (1)
which can be approximated by

T il -
c 2uPin

where

A = time between iterations
Pin = total input power.
These results can now be used to evaluate tracker performance in Appendix IV.




APPENDKX IV
VARIANCE OF THE SPLIT BEAM ADAPTIVE BEARING ESTIMATOR
AND COMPARISON TO CRLB

With reference to Figure 6, for the continuous adaptive filter, it i{s assumed
that

X, ® = st-Ssme)+n o

Xg ® = s®t) + ng®)
where s(t), np ), and np (t) are zero mean, white random processes on [“’L' wU] with
power Ps. PN. and PN. respectively.
Also

d = distance between phase centers of half arrays
¢ = speed of sound
0 = angle between plane wavefront and axis of phase centers

The length of the adaptive filter is assumed to be long in comparison to the correlation
times of the random processes involved.

Let the steady-state impulse response of the filter be h(t) and the transfer function
H(w). The mean value of the impulse response is the Wiener filter, so, from
Appendix III, the corresponding mean transfer function is

P -ngame

EHw] = 35 e
Pg+ Py

and the correlation of the transfer function is

2 v WP(2Pg + P\]
(Pg + Pp) [2-2u(Pg +

E[H(wl)ﬂ'(wz)] = — 6((»1 -w

)
o) 2

ps s =-J(w l-wz)-gsin 0
: Pg+ P .
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The angle, 6 , is to be estimated by determining the value of r for which the impulse
response, h(r), 1s a maximum. This {s an estimate of the delay between arrivals of
the signal wavefront at the half array phase centers, and can be converted to a bear-
ing estimage, & , using

-4
T cllnB- -

The value of 8 for which h(r) is peaked corresponds to the value for which the derivative
of h(r) with respect to 6 is sero. In the neighborhood of the zero crossing the derivative

of the impulse response is approximately linear. The fluctuations in the derivative of
the transfer function then map through the linear function to provide an estimate of the
mean square error in the angle estimate. Thus the mean value of the derivative of
the transfer function, the standard deviation of the derivative of the tranafer function,
and the slope of the mean of the derivative of the transfer function are required, at
the point where & = 8. Then the errors in the transfer function can be mapped into
the errors in one's ability to extract the peak of the transfer function as follows:

varl’? [ahrgg] / -

i T-o sin 6
eIl

varl/2 (8] =

or
36

This approach is motivated by the treatment of BDI spilt beam trackers by MacDonald
and Schultheiss in Reference [1). The derivative of the impulse response and its

statistics are

®©
34; h(r) = %w f jw H(w) & dw
-®

() i P§ d
E[ddhfT ] 'z—lnf 10pg+ Py o IVc SN0 g

-

dw w sin [ w(r - %ame)]
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where the band is assumed to be limited to (W @y The mean value of the derivative
passes through zero when r= d/c sin 6, so that determination of the zero crossing pro-
vides an unbiased estimate of 6. The variance of the derivative is needed as well.

e[ - o[ (82)°] -[42] -

Note that the mean value of the derivative is zero-when 3 = @ so that the variance is
the mean square value at this point.

-l )
Var[ 4 (2«) ij w, E H(ul) at(wz)] oV 179 gy, dw,

where v=r-d/c sin 6. Using the correlation of the transfer function, the variance is

dh 3 @® @ v -
VQF [ 1—9’-] 3 [ f Kl Wy wy ej ((-)1 “'2’ 2r) (ul - uz) dul duz
- V=D

(2m)

f f K,w, uzel"(“ﬁ @o) dw, dw,
(2")

where

1 (PS * PN) [2' 2u (Ps e pN)]

2

P
%= (5o )
8 s* Py

The second integral is zero, when v = 0, and the delta function reduces the first
double integral to a single integral, with the result that

ver[ S ] » A il o ]

@m? (Pg* Py (2-2 (Pg + Py)] L 3




where again the processes are band limited to (wy, @ ). Since T= d/csin @,

E N

The denominator of the expression for Var [0] is
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The behavior with extreme cases of signal-to-noise ratio is of interest. For Ps > PN,

. A 1/2
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and for Ps <«< PN’
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The critical concern is the behavior of the variance at low signal-to-noise ratios.

The objective therefore is to compare the above expression with a performance
measure which is invariant with processor structure. The Cramer-Rao Lower
Bound (CRLB) is such a measure. The last equation in this section is therefore related
to the CRLB in the next section.

COMPARISON WITH THE CRLB #

The Cramer~Rao Lower Bound (CRLB) provides a lower bound on the variance
attainable by any unbiased estimate of a2 parameter. It is computed in Reference [1)
and repeated here for comparison with the variance obitained by the adaptive filter
bearing estimator. From equation (19) of [1].

-1/2 , -1/2
P ol
var P gy s * ¢ Ps /Py s Si0RG. 3
doose VT | 1+2Pg/Py 3
For small signal-to-noise ratios, i.e., Ps << PN'
-1/2
3% w3
1/2 Ve i o o By
Var [6) 2 = 3
dcosev'T Ps

where a total observation time of T seconds is assumed, PS/PN is the signal-to-noise
ratio at the split array output, and d is the distance between half array phase centers.

Since “PN applies to the discrete version of the adaptive filter and the CRLB uses
continuous data we must relate the discrete adaptive filter weight updates to a continu- 1
ous process. Let u d and u c correspond to the feedback coefficients in the discrete ‘
and continuous versions respectively. In discrete form

W(n +1)a) = Wna) + Ky ¢ (md) x (nd)

or

Wi +1)4) - W@a) _ ud ¢ (04) X (04)
A a
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Taking appropriate limits provides the differential equation form, i.e.,

B = h 0z

Thus for the contimious case B, = "‘d/A' This can also be interpreted as tbmgh the
power spectrum in the contimious case is the discrete power spectrum times A, with
u fixed in both.

One other term must be reconciled for the two expressions to be compared, the
relation between pPN and the value of E[lI(w)] at t = . Previously it was assumed
that the mean transfer function E[H(w)] had reached a steady state value when deter-
mining Varl/ : [6] above. Actually E[H(w)] is a function of t and the expression for
E[H (w)] used in computing Varl/ 3 [3 ] above is E[H juw,» )]. We desire E[H(w, t)]
where t = 0 is when the filter is turned on. It is easy to show that the continuous time
approximation to E[H(w, t)] is

P -jw%sine -t/T
L m c
Ps + PN e 1=

-t/T
E(H(w, »)] [l-e °]

where T 2 is the time constant associated with the mean weights.

!

.E[H(U ’ t)]

Furthermore we assume that the variance of the weights has already reached
steady-staie so that no correction for a transient variance term is required. From
Appendix III, it can be seen that the time constant of the variance is approximately
half as large as the time constant of the mean for K (112 + ornz) << 1.

Thus, taking into account the transient mean weight, for the continuous comperison,

the variance of the adaptive filter bearing estimate becomes

-1/2 -1
wel 9 .8 !
varl/2 (3] - cVZr_ Py (#PN> o, S l_et/Tc
2d cos ¢ Ps a 3
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The convergence time for the adaptive process, i.e., the time for the root-mean-
square-error learning curve to decay by 1/e of its initial value, is

T, --‘J—N
so that
-1/2 _1
3 3
1/2 cJ2r o 1 e e YT |
Var [6] F—_— -p—- —-——r— l-e
s 2dcos@ VT, °S ]

Comparison with the CRLB at low signal-to-noise ratios results in the following ratio

=1
1/2 -T/T
Vi [Q] R - T c
CRIB R /) A { it ]

The optimum selection of T % involves the trade-off between weight vector noise and
mean value. Table 10shows the ratio for various T/T e The minimum is at approxi-
mately T/T . 1 and is 1.13. Hence, the split-beam adaptive bearing tracker is only
about 0.5 dB degraded from the CRLB.

It can thus be concluded that the adaptive filter can be used to estimate bearing in
close proximity to the theoretical limits in performance. Although its performance
degrades at low signal-to-noise ratios, so does that of all processors. Indeed, the
split beam adaptive filter tracker behaves just as the CRLB, throughout the entire
range of signal-to~noise ratios and bandwidths.
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APPENDIX V
DELAY ESTIMATION WITH A DISCRETE ADAPTIVE TRACKER

In the preceding section, an expression for the variance of the bearing estimate of a
continuous adaptive filter configured as an adaotive tracker was developed. The esti-
mate is based upon determination of the peak of the continuous impulse response of the
adaptive filter. In practice, however, the adaptive filter is discrete in time and of
finite length, and the peak of the impulse response must be determined by interpolating
between the discrete sample points. The interpolation process increases the variance
of the bearing estimate with respect to that of the continuous case. This section de-
scribes a numerical method of determining the peak of an interpolated impulse re-
sponse, and develops an expression for the variance of the estimate using this method.

Let the discrete adaptive filter weights be denoted h(st) form =0, 1, ... M-1, with
Ts the sample interval and M the number of taps in the time domain adaptive filter.
The value of the weight vector at some time, t, between filter taps cen be interpolated
as

m-1 sin 2 B(t-mT )
s e Z himig =3 B(t-mT) @)
m=0

This is a truncated expansion of the discrete samples in series of orthonormal func-~
tions. If the h(st) are samples of a perfectly bandlimited impulse response, h(t),
then (1) can be considered as a finite approximation to the sampling theorem.

In the adaptive tracking system, we are only interested in the location of the peak of
hl(t)’ not in the entire function, so a numerical method is used to locate the peak.

The peak of hl(t) will be in the vicinity of the h(m'r.) with the largest value, so if the
largest weight occurs for m = q, then the initial guess for the location of the peak is

to < qu

The slope of hI(t) will be zero at the maximum, so a bisection technique is used to
find the zero crossing of

e P




| M-1

| cos 2 B(t-mT,) sin 2 B(t-mT )

| by = z h(m'r-)[ —— - e @)

m=0 8 2 B(t-mT')
By observing the sign of h'I(t). at the current estimate, t,, a new estimate is
computed as
b = Y+ 1 [ LAY ] 8 3)

where

8 { = current step size

I [ B'(t,) ] =

Each time h'l(th-l) and b‘I(tl) bhave opposite sign, the zero crossing has been passed,
and the step size is divided by some F > 1. The procedure stops when

and

+1 if h'l(tl) >0

-1 lfh'I(tl) <0

-€s h'I(tj) <€ 4)

in which case tj is the estimated location of the zero crossing, and hence, the esti-
mated delay between the tracker inputs.

The variance of this estimate can be determined in the same way as that using the con-
tinuous adaptive tracker in the preceding section. When the tracker is implemented in
the frequency domain, as shown in Figure 5, the mean and variance of the complex
weight in the kth frequency bin has been shown, neglecting windowing effects,

which are unique to the frequency domain implementation, to be
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We let H(k) = Wk' 8o that the time domain weights can be written as

| M-1 j%;.rmk
hmT,) = g z H(k) e ™
k=0 ;

Now, consider an interpolated impulse response, hI(t), using a general interpolation
function, f(t), that is

M-1
hy(t) = z h(mT,) f(t-mT,)
m=0
M-1 M-1 2w
j—mk
= L z 2 H(k) f(t-mT ) e M 8)

=0 k=0

Following the method described for the variance of the estimate with the continuous
adaptive filter, the variance in the determination of the peak of hI(t) can be computed

as
dh(t)
1/2 1
Var [_at ]
vart/? [’E J - ®)
& dhy(t)
o ot,
at i
t=t,

Now, assume that the inputs to the adaptive filter are bandlimited to some bandwidth,
Bs, so that

H() = Ofork > (J=1) = [Bs'rsj%- 10)

where lx] is the largest integer less than or equal to X. Further, in order for h(mTy)
to be real, we require

H(k) = H*M-k) (1)
Using (8), it can readily be verified that
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j=—@m,-my)k
: f'(t-szs)em 178 12)

and
JE [ h'(t) ] M-1 M-1 2w
j5=mk

—— -k > EmH®] > remT)e M (13)

k=0 m=0

We want the mean and variance of the weights in (5) and (6) to meet the constraints of
(10) and (11). This leads to

(

P -13%ak
p-—;-P—e , 0=k=sJd-1
SN

E[HEK] = 0 y J-1 < k < M-J (14)

P -j%'A(M-k)
\Ps*p e sy M-J <k = M-1

N

and (
pMP (2P +Py)

(PS+PN) (Z—ZpM(PS+P

, 0k <J-1orM-J sk sM-1
)

Var [H(k)] (15)

L 0 , 9~1 <k < M-J

Using this in (12) and (13), we obtain
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Note that KI depends upon the input bandwidth, and the choice of interpolator function,
f(t), but not on the signal to noise ratio. This is analogous to the term

-1/2

in the expression for the variance using a continuous adaptive filter. Equation (16)
can be further simplified by writing the summations on k in closed form as

|
J-1 2w sin (m,-m,)
ST (m, -m, )k [M 172 ] .
Re 2 e M™13 = cos [(J—Ml) 4 (ml-mz)] a7
K=0 sin [ﬁ- (m, -m,)
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This gives

1/2
M-1 M-1 sin [%g(ml-mz)]
M 2 z £'(t,-m T )¢ -m,T,) cos [(i;-}) 7 (m mz)]
m,=0 m,=0 sin [ﬁ(ml-mz)]
KI =
M-1 sin —ﬁ(A-m)]
z f"(tz-mT.) cos [(’%}) o (A-m)]
m=0 sin [ﬁm-m)]
a9
For the interpolation function used here, (1), we have
cos 27B(t_ -mT_) sin 2wB(t_~-mT,)
e T x e — 20) E
z s 2wB(t z--m'l‘s) ‘
f'(0) = 0 2
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2
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Using (19), (20), and (21), KI can be evaluated numerically on the computer for any
choice of signal bandwidth, BS. interpolator bandwidth, B, filter size, M, and sample
interval, T’. The c’?mputed value of KI can then be used to compute the variance of
the delay estimate, tys from (16), for selected signal-to-noise ratio and u. Note that

for typical values of u, M, and (PS+PN). the factor

3 |mPy @P +1>N)(p +Py)

in (16) is essentially independent of M, the filter length.




It must be noted here that this result applies only when the variance of hI(t) falls in the
linear portion of h'I(t) near the peak of E[hl(t)J. This is equivalent to saying that the
largest of the discrete weights must be in the vicinity of the true peak. This will be
true when the mean of the largest weight is large in comparison to the variance of the
weights. For a particular input signal to noise ratio, this can be assured by selecting
the feedback coefficient, u, sufficiently small.

A number of simulations of an adaptive tracker using this interpolation scheme have
been performed using the configuration shown in Figure 13. Using the results in this
section, the estimation performance has been calculated on the computer, and is
shown in the graph of Figure 11 as a function of SNR and for several values of u. Also
shown are sample variances of the estimates derived from the computer simulations
described in section 6. It can be seen that when y is sufficiently small, the theo-
retical predictions and simulation results agree quite well. However, when u is not
small enough to be consistent with the assumptions of this section, the variance of the
estimate is much larger. This is because fluctuations in the weight vector cause the
largest weight to appear in a bin other than the peak of the mean weight vector.

In order to select u sufficiently small to achieve the predicted results, we want u such
that the mean of the largest weight is large in comparison to the weight variance. Fig~
ure 12 shows the ratio

= Mo
R -

vart’? w

as a function of SNR for several values of u, and for the configuration simulated above.
Comparison with results of the simulations indicates that R must be nominally 1.5

to give the predicted results. Then, for example, if performance were required down
to -20 dB for the simulation, u s 2-17  would be required.

In order to give some feel for the meaning of these results in terms of bearing estima-
tion, Figure 11 also shows predicted variance of a bearing estimate for a broadside
target for two arrays, a small tactical array with 11. 46 feet between split array phase
centers, and a towed array with 114.6 feet between phase centers.

e A ot oo,




APPENDIX VI
TRACKING BEHAVIOR OF THE MEAN WEIGHTS FOR VARIOUS SIGNAL
MODELS AND A LINEARLY-TIME-VARYING DELAY

1. Tracking Behavior of an Adaptive Filter Tracker for Single Frequency Inputs

with Linearly Time-Varying Bearing in Uncorrelated Noise

An LMS adaptive filter is configured as a canceller between two half array beamformed
outputs to perform split beam bearing tracking. The tracking performance is analyzed
for a narrowband signal that is moving such that the delay between split array phase
centers is linearly changing with time. The time varying mean weights are derived in

both transient and steady state conditions and compared with previous results.

The LMS adaptive filter is configured as a bearing tracker in Figure 2. The objective
is for the adaptive algorithm to properly estimate and track changes in the propagation
time between split arrays and map that time estimate into an estimate of signal energy
arrival angle. The narrowband signal case in uncorrelated noise is treated herein, It
is assumed that ©(t) is such that the delay, r(t), between array phase centers is linear

with time. Since

rt) = & sinog)

o

for a split array aperture of d meters in a sound speed of C, meters/sec, the assumption

of linear, r(t) corresponds to assuming small linear 8(t), such that sin ©(t) ~ ©(t) and

d
+t) ¥ = () = ct.
CO




The model for the moving case is as follows. The output of the upper beamformer in

Figure 2 produces the reference waveform, d(t), where

d(t) = A cos (wotn- @) + nl(t)

The filter input is the lower beamformer output

x(t)

A cos (wot - t)+ @)+ nz(t)

C

wd
A cos(wot - -2 sin O(t) + ¢) +0,(t)
o

A cos y(t) + b, (t)

where y(t) is the total signél phase. The frequency of the signal portion of x(t) is the

time derivative of ¢(t), so that

2rf(t) = i‘%‘(-l = wo(l-ad- cos e(t)det )
o

Thus the effect of the moving plane wave signal is to introduce a frequency shift on the
sine wave. The ability of the adaptive filter to track this moving frequency shift will

now be analyzed.

ANALYSIS
The algorithm for changing the complex weights in the adaptive filter is given by

Wnel) = W)+ p [d) - X @Wm) X" @
= W@+ [dm) X @) - X* @XT @Wao) 1)
where
i W(n) = filter weight vector & time sample n
d(n) = desired signal at time sample n
X(n) = observed data vector of samples within the tapped delay line

VI-2
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and where the symbols * and T denote complex conjugate and vector transpose respec-
tively. Figure 8 shows the data vector X(n) in the tapped delay line. The scalar d(n)
is

jw_nat

o

dm) = og e + nl(nAt) 2)

and the vector X(n) is

ju @At - r@At))
e

jo, @AL~6 - r(@AL-5))
e

ju, (0AL=26 - ~(nAt-26)

XMm) =0 e + N

jwo (nAt-Mé - r(nAt-Moé))

" @)

where

6 = time delay between taps
At = algorithm sampling time (usually At = §)

M = number of taps.

The equation of the mean weight vector is obtained by averaging (1) and assuming that

the data sequence X(n) is independent over time.

EW@+1)] = EW(@)] + u} R4x(® =R (@) ElW(n)l= @)
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Using the inputs in (2) and (3), R ax and Rxx are calculated as follows:

Dm) =

R_m = EX@mX Tm) = o

Ry® = EM@ X @) = o%

2

the uncorrelated noise.

Je r(mat)
e 0

ju, [r(nat=6) + 6]

jwo [r(nAt-MéS) + M6)

S

|

jw _T(RAt)
|

jo  [r(nat-6)+6]
o 7

j& [r@At-M8) + Ms)
e

e

arity of the input processes. Define the matrix D (n) as follows:

VI-4

©®)

ju, [r(nat-ké) - 7(nat-16) + (k-1)8] )

|

(6)

where k and 1 range from O to M and I is the MxM identity matrix for the covariance of

Note that both second order statistics are dependent on nAt, reflecting the non-station-

M




Then

E Ry @) = azs D(n) (8)

2
Rxx(n) -ozs D(n) D.T(n)+ % I (9)

If ~(¢t) = ct, as assumed at the outset, then

!

1 \
Jo_ (1-c)
e (o]
jwo ¢ nat
Dm) = © » e"‘o et i o)
jau _ (1-c) Mé
o
c / (10)
and
° jwo ¢ nAt
Ryx@ = o'ge D(0) 11)
R_@) = o% D(© D) T 4 cil (12)

Using (11) and (12) in (4), the mean weights are

jwo cnat

EW@eD) = | 1-ufo 21402 DD T 0] | EWel « uo? e D(0) a3)
I n S ‘ S

The difference equation (13) can be solved explicity for E[W(n)]. Assuming that
E{W(0)] = 0, i.e. zero initial conditions,

jw_c (m1)at e
EW@)] = uczse . (1-A7"} (1-A™) D(O) (14)

where

PR [1 -y (onz 1+0% D(O)D(O)'r;)] 5) |
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E[W@m)] = %%5[1 - i%’I,B_DD ]{1 [ (l-u(o +Mozs))]n } D

EW()] = (m.l)T:'lBTAf[l - ( -u(o +M025>) ]

Equation (21) is the transient behavior of the mean value of the weight vector. Note
that it is time varying, even in steady state, since the phase term a"ml) does not

decay as n - =. In steady state, if

M (cn2+Ma§)< 1




T ——-

|
E |
|
|
{

b vy o B o

then

1
jo_ (1-c)6

Um EW(@)] = o @1 TBMB

+
n-—e®

jw o (1-c)Mé
\, 22)

The weights are all of magnitude

02
Hoga

8
- (23)
s 1l-a+wau <on2+Mazs )

but have a phase that is precessing acro'és the tapped delay line as time progresses. The
weights may be viewed as a sinusoid at the shifted frequency of the input, w il 1-¢), with
a phase that is "barber polling'" along the delay line. The weights are shown in Figure 9

as time changes.

In the static case, c=0, a =1, 3 = crzs/anz, and

1
jw &

2 2
o%/o

EW(e)] = —2
1+M t'rs/crn

jw M6
\e e / (24)

which agrees precisely with previously derived results for the LMS algorithm in steady

state with a staionary sine wave input in uncorrelated noise.
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Conclusions

The transient and steady state tracking behavior of the mean value of the LMS adaptive
filter tracker weights has been derived. The filter corrects a frequency shift and
doppler precession due to the angular movement of the target in bearing.

2. Tracking Behavior of an Adaptive Filter Tracker for a Broadband White Signal
with Linearly Time-Varying Bearing in Uncorrelated Noise

The adaptive filter split-beam bearing tracker analysis is now extended to include
a broadband spectrally white input signal that is moving in bearing. The time varying
mean weights are derived in both transient and steady state conditions.

The LMS adaptive filter is configured as a bearing tracker in Figure 8. The objective

is for the adaptive algorithm to properly estimate and track changes in the propagation time
between split arrays and map that time estimate into an estimate of signal energy arrival
angle, A(t). It is assumed that g(t) is such that the delay, 7(t), between array phase
centers is linear with time. Since

T(t) = éi‘ sin O(t)
0

for a split array aperture of d meters in a sound speed of C, meters/sec, the assumption
of linear 7(t)corresponds to assuming small linear 4(t), such that sin 4(t) = 9(t) and

T(t) = CEO- o(t) = ct.

The input signal, s(t), in this case is a zero mean Gaussian random process that is

spectrally white over the band corresponding to the sampling frequency. The total signal

power is crg and the total uncorrelated noise power is a:. As in the prior analysis, one

split array output, d(n), is the desired signal for the adaptive process, and the other is
the input, x(n), to the adaptive filter, The ability of the adaptive filter to track the bear-
ing changes in the broadband plane wave signal process is analyzed in the next section.

Analysis

The algorithm for changing the complex weights in the adaptive filter is given by

Wn+l) = W) + p [dn) - XT @Wo) X* ()

H

W) + ¢ [d@) X* @ - X* @XT mWwn)) (o8]

VI-8

it e

el




s Y Y TS T 2 A S AR R TSR o

where
W(n) = filter weight vector at time sample n
d(n) = desired signal at time sample n
X(n) = observed data vector of samples within the tapped delay line

@ and where the symbols * and T denote complex conjugate and vector transpose respec-
tively. Figure 11 shows the data vector X(n) in the tapped line. The scalar d(n) is

d(n) = snat - r(ndt)) + n, (ndt) )
and the vector X(n) is

s(nat)
s(nAt - §)
X@) = s(nat - 26) + N, (nAt)

s(nAt - MJ) )
where

6
At
M

/]

time delay between taps
algorithm sampling time (usually At = §)
aumbear of taps.

n

It is assumed that 7(t) = ct and that the signal is white, so that

E (s(n) s(m)] = °s2 A @-m) ()
where

A(n-m) & ‘ 1 if n=m |

( 0 otherwise ]
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The difference equation for the mean of the adaptive filter weight is:
EW@+)) = [I - 4R ()] E W)l +uRgy ()

where
u = feedback coefficient
I = MxM identity matrix
Rax(n) = E[dM) X*(n))
Rex@ = ERX@m) X" Tm)

If Ryx(n) is independent of n, and if the initial mean weight E[W(0)] = O, than

equation (5) can be re-written as

& 3 n-k-1
EW@)] = u g f-wuR,] Rix

()

(6)

The second order statistics can be calculated from the input waveforms, as follows:

R_m= (02 +0¢51
= (crs cn)
A (cnAt)
A (cnAt - )
ol A (cnAt - 26)
Rdx(n) Ts ‘
[ A (cnAt - Mé) 1

Using (6), the mean weight vector at the nth iteration is given by

-1 o D-k-1 A(ckAt)

EW(n)] = twsz RZ; (1 -wu (":“’n" A (ckA-8)

A(ckAt = M)
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In the static case, ¢ = 0 and only the first weight is non-zero, with mean value

2

) 2 g 8
EWM@m) = —5—— (1=(1=-p@+c") | (10)
(o] 02*02 S n
S n

which converges to the Wiener Filter for the broadband stationary case as n = «,

In the dynamic case, the weights are a moving set of spikes that are changing with amplitude
as the signal moves and as the weights converge. The total weight vector is the sum of the vector:
in (9). The weights can be viewed as a sliding window of exponentially growing responses, or as
a moving weight at the leading edge that leaves behind it an exponentially decaying wake.

This can be seen by examining the weight at the leading edge of the response. In 9),
the leading edge will occur at the latest time. If the filter is sufficiently long so that the
response still falls within the tapped delay line, i.e., M > n, then the amplitude and
location of the leading weight are found by examining the term in the summation for which
k=n- 1. The amplitude of the leading edge is uasz and its location is at tap number
¢(n-1) (assuming that At=4). If c = 1 then the signal moves one tap per iteration and
the adaptive filter tracks the movement. If the signal changes more slowly, then ¢ < 1
and the leading edge moves more slowly then the iteration rate.

For the special case where c = 1 the weight vector in (9) can be readily expanded,
as follows, lettingr=1-pu (crs2 + o;f )e

r“‘l\ 0 \ 0 \ 0 \ 0 \
0 rh=2 0 . 0
E[W(@n)] = uo: 0 + 0 + nt N S I » . (11)
. . 0 . .
= * . 0 .
: 3 . el
. . . 0 3
. . . . 0
0 0 0 0 0




.

Equation (12) shows the decaying wake behind the leading weight which shifts along
the delay line as n increases. Figure 10 shows this effect.

For ¢ <1 the weights move more slowly and the basic model herein tends to become
less realistic. The signal sequence used is totally uncorrelated in time. In general this
is not the case. The impact of this assumption is to have weights respond only at the
exact correct alignment of input delays and tap delay values. In the band limited, non-
white signal case, correlation will exist even at non~integer delay shifts, and larger
weight responses should be expected at the leading edge for slower moving signals. It
is shown in the next section that the amplitude of the leading edge decreases monotonic-
ally with c from 0'82/ (cs+2crnz), (the value for ¢ = 0), to y.a': ,» (the value for which
movement is so fast that the signal samples decorrelate totally at each time sample).

The extent of the wake and the height of the leading edge will depend on signal dynamics.

Conclusions

The transient and steady state tracking behavior of the mean value of the LMS adap-
tive filter tracker weights has been derived for a spectrally white process with linear
time varying bearing dynamics. The filter weights are a moving tap which leaves be-
aind it an exponentially decreasing wake. Tracking the bearing involves estimating the
delay location of the leading edge of the weights.

3. Tracking Behavior for Band-Limited Broadband (Correlated) Signal with
Linearly Time-Varying Bearing in Un-Correlated Noise for Small Signal-to-
Noise Ratios

The adaptive filter split-beam bearing tracker analysis is now extended to include
band-limited broadband (correlated) signals that are moving in bearing. The time-
varying mean weights are derived from the transient and steady-state conditions for
low signal-to-noise ratios.

The conditions of the previous section hold with one extension. The signal spectrum
is no longer white. Equations 2 and 3 of the previous section are still valid. However,

R dx(") and Rxx(n) (Equations 7 and 8 of the previous section) are now given by




Rdx(n) E Rs (cnAt)
Ry (cndt-3)

5 (cnAt-M3J)

R_ @) =o-n21'+ a2 R (5 .

N\

N\

SYM

where

2 {cnAt|
plcnAt-§|
plcnAt-258|

plant -M3|

R (Mb)) I+(r A

Since R (n) is independent of n, for[E W(o)] =0

n-1 n-k-1

EWm =4 D [1 -nyx]

k=0
let
R = (1 -;urj) I-y.rr:/\

and

P IckAt-4 |

plckAt-Mdl

Ry (K
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then
n-1
E[W(n)] = ucsz Z gkl D(k)
k=0
Assume small signal-to-noise ratio, i.e., asz<< onz.

Thgn

R__ (n) zd’:l

xx(
1 2
R = (1 - ucn) I
If we select At = §, i.e., iterate at the sample rate, then the mean weight for small
signal-to-noise ratio is approximately

2 nl-l 2 n-k-1 pcké
E[W].(n)] R, Z <1 '“an> plck—llé
k=0 2. :
plpk-2l6

The jth weight:

n-1
n~k-1 :
E@N(n)] ~ uo'sz Z (1 -ua':) plck=jlé
k-0

Assume that the filter is long enough so that M = n-1, and let j = Mc so that we are at

the end of the filter. Forr = 1 - uanz
M
k0
= -k
‘ “0’2 M pMéc z (rpcG)
k=0
\
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This is the transient behavior of the mean weight for small signal-to-noise ratios. In
steady-state, i.e., M arbitrarily large, one can readily see the relationships between
signal correlation, P, signal dynamics, ¢, and algorithm dynamics, .

2
Krog
im EW (M) 2 —_—
Mc % = rpcs
M-
02
EOy

"

1-[1 -,m:] s

There are several cases of interest. If p= 1, then the signal is totally correlated
from tap to tap, regardless of signal dynamics. For this case

o?

EW, () = =
Mc 02
n

which is a small signal-to-noise ratio approximation to

which is what one would expect in the static case.

If P=0, the signal is totally un-correlated and again signal dynamics should not
affect the result. For this case,

EWyo( )] = po

VI-15




which agrees with the results of the previous section (Equation 12) where dynamics
tended to de-correlate the signal.

If there are no signal dynamics, i.e., ¢ = 0, then

2
Is

EW, (©) = —
_ Mec a,:

independent of P, which is again the expected small signal-to-noise ratio static result.

The tradeoff between dynamics and signal correlation can be seen by examining
& tori P*P iy e expression for E[WM c(eo)]. As ¢ decreases P°® 1ooks more like
unity and signal looks more correlated. As c increases P (which is less than one) is
raised to a higher power and the signal has become less correlated.
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APPENDIX VII

Transient behavior of the LMS Adaptive Filter response to variable
frequency spectral lines.

ABSTRACT

The transient behavior of the LMS adaptive filter is studied when configured as a
canceller operating in the presence of a fixed or variable complex frequency sine-wave
signal buried in white noise. For a fixed frequency signal, the mean weights are
shown to respond to signal more rapidly than to noise alone. For a chirped signal, a
fixed parameter matrix first-order difference equation is derived for the mean weights
and a closed-form steady-state solution obtained. The transient response is obtained
as a function of the eigenvectors and eigenvalues of the input covariance matrix. Suf-
ficient conditions for the stability of the transient response are derived and an upper
bound on the eigenvalues obtained. Finally, the mean-square error is evaluated when
responding to a chirped signal. The gain coefficient of the LMS algorithm is determined
that minimizes the mean-square error for chirped signals as a function of chirp rate
and signal and noise powers.




INTRODUCTION

The LMS adaptive filter has been proposed and used in situations where the statistics
of the input processes are unknown or partially known [1'3}. The structure of the LMS
algorithm for adjusting the weights of the adaptive filter requires quadratic operations
on stochastic input data which, in general, are difficult to analyze. Under the
assumption of statistically independent data samples, the mean weight vector and the
covariance of the weight fluctuations have been obtained for a variety of stationary input
data statistics [1'11]. Special configurations of the LMS algorithm, such as noise
cancelling (4] line enhancing[4'6’8'9' 11]' spectral analysis.[s' 12) and single fre-
quency line detection[7'lo]. have been studied in considerable detail. The special
characteristics of the LMS filter configuration have been used to aid in the analysis

of the behavior of the algorithm.

The purpose of this paper is to present some exact analytical results for the LMS
algorithm configured as an adaptive noise canceller when the input process consists of
a chirped sine wave in additive stationary v hite noise. Although some previous work

on LMS algorithm behavior in a non-stationary environment has been published [13-16},

only one [16)

has investigated the response of the LMS algorithm to chirped sinusoids
in white noise. The analysis is performed by assuming the chirping is slow enough
so that a quasi-stationary model for the mean weights can be used. In this paper,
exact analytical results are obtained for the chirped sinusoidal signal with arbitrary
chirp rate. Since the adaptive cancelling of dynamic signals is a key element in
cancelling, line enhancing and frequency tracking, the analytical results for the above

model have wide applicability.

Two principal results of this paper are
1. A closed form analytical expression for the LMS mean weights in a dvnamic
signal environment.
2. Explicit trade-off results between filter parameters, weight variances,
mean-square-error, and input signal dymamics.
&
The latter result is of special interest since it shows explicitly the compromise
between fast adaptation in order to respond to variations in the input statistics and
slow adaptation to reduce the fluctuations in the adaptation process itself.
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For the narrowband signal in white-noise case, the configuration shown in Figure 40
can be used to model the above LMS algorithm functions.

With reference to Figure 40,

j(w, nat + o (nat?/2 +0)
dm) = oe *+ 1, (ndt)

A is chosen so that nl(nAt) and nl(nAt -4) are un-correlated. On the other hand,
because the desired signal is a chirped sine-wave, it decorrelates more slowly than
the noise.

B <R RV T SRS GNP~ AT ORI



DYNAMIC MODEL FOR THE INPUTS

The algorithm for changing the complex weights of the adaptive fliter is given by (17l

W(n+l) = Wn) +p [:d(n) - XT(n) W(n)] X*(n)

= W) +p [d(n) X*(n) - X*(n) XT(n) W(n)] 1
where W(n) = filter weight vector at time n, d(n) = desired signal, X(n) = observed
data vector at time n, and where * and T denote complex conjugate and vector

transpose respectively.

Averaging equation (1) and assuming 1) the data sequence X(n) is statistically inde-
pendent over timeu-* lxmd 2) the present weight vector and the present data vector are

statistically 'mdepencleutll 1 yields

E(Wn+l)] = E{W@)] + p[Rdx(m - Rxx(m E [W(n)}] (

where Ru““ = E [d(nX*(n)], Rxx(m =E [X'(mxT (m].

In practice the algorithm sampling interval (At) is usually chosen to correspond to
the delay § between the taps of the adaptive filter. Furthermore (At) is usually
chosen to correspond to independent samples of the noisy data. Hence the delay

is chosen to be integer multiples of (At) in order for the noises in the two inputs
to be un-correlated. On the other hand, the longer that A is chosen, the less

correlated is the signal component. Thus choice of A = § is the best that can be
accomplished, ¢

When the input consists of a complex sine-wave with linearly-varving frequency in
additive noise,

gt +0t2/2 +0)

dit = 0‘. e + n(t) 3

*Other integer values of § for the bulk delay A can be studied using the subse-
quent analysis and the results show that A = § yields the best filter performance.
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where %2 = signal power, w = signal frequency, w = rate of change of signal
frequency, ¢ = random phase of signal and the noise is independent of the signal
with noise power onz and normalized covariance matrix G, then

R’o((n) = c 2 G+ g D(n) D‘(n) “4)
| R, ( =0 % D@ ®)
| dx s

& where
Y j-.. jw 6 2“"
, DT(n) g (e ejb /2, .....
% jw mé RE. 2.3
it ejwmé n ejm R e
|

= W MO a2 R Sn e,
ej o ej(«-Mé a- e]M S .‘,/2) 6)

with M = number of complex weights.

Using Eqs. (4) and (5) in Eq. (2) yields

E(Wn+l)] = [I-— ® (an2 G+ 082 D(n)D"(mT)] E[Wmn)) + poszD(n) (M

For white noise, G =1, Define

o 2

M@ = I+-S2 DmD*m " ®
g
n

For any n, the eigenvectors of M(n) are the vector D(n) and any set o;'(M-l) vectors
orthogonal to D(n). The associated eigenvalues are

A 092
el
n
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12 = 13-... -XM.].

Note that the eigenvalues are independent of time. All the time variations in M(n)
are contained in the eigenvectors. This special property of M(n) is exploited to

obtain closed form solutions for Eq. (7).
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SOLUTION OF EQ (7) FOR THE MEAN WEIGHT BEHAVIOR

Since M(n) is Hermitian, there exists a unitary transformation P(n) which diagonalizes
M(n) for each n,

=7 ,
= A = \
Pn) M(n) P "(n) Diag (Al. )\2 ats Am’ (10)

The }‘i are not functions of n. Due to the special form of D(n),

jw A
DT(n) =e © ve DT(o) (11

s it i -

where
o .0
“V'= Ditg (s a7 e s aM). a-= eJ"‘JZ

Also P(n) can be written in terms of the eigenvectors of M(n),
At l
P*(n) \/ﬁ_E)(n)' R (M), ... Rm_l(n)] (12)

where® = conjugate transpose and Rl' Rz SO RM_1 are M-1 mutually ortho-normal
vectors, also orthogonal to D(n) for each n. Using Eq. (11),

Pm) = Po) (VH" (13)

Using Egs. (8), (11) and (13) and defining Z(n) = P(n) E(w(n)], Eq. (7) can be written 4
in terms of Z only as

Z@+l) = PO) V* P10 [I-po’nz)\] Z(@) + .msz P(0) V* D(©0) (14




Since Eq. (14) is a constant coefficient linear difference equation, with P(0) = Po, it
follows that

n
_ T
z@ = P, V* P [1 ho x]$ Z(0)

n m-1
+u0 2 z p vep i 2>\]) P_V* D©) (15
rY% o o L ‘ o
m=1

Before investigating the general case of Eq. (15), consider the fixed frequency
sinusoid signal case when V = I and Eq. (15) simplifies to

e n ]
n m-1
Z(n) = [I'P" 2)\] Z(0) +po * E [I-pc 27\] S (16)
n s n
m=1

where ST = (/M, 0, 0, ... 0). Expressing the matrix sum in closed form s

2 asz 7\-1 2, .n
z@ =[1uo, \] zo e s[r- awo, 2] an
n |

Thus, using Eq. (9), the compnents of Z(n) are given by

n /o 2/0 2 An '
2,(0) = [1 - p(cn2 + Mosz)] 2,(0) +.;M_a:=/_;nz&_ ‘ll . [1 : p(c,“'z,rm asz)] ‘

2|
zj(n) = [1 - p.O’n ] zj(O) 18

j=23,....M
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Hence, for p(on2+M caz) < 1, the response of the weights to the signal frequency is
more rapid than to any other frequency. If zj(O) =0,j=1,2,...M, then zl(n) is the
only response,

‘/ﬁasz / "n2 ‘

z,(m = ———2———21 = Mds /Un ‘

1 -[1- " (on2+Masz )]n: 19y

Transforming back to the original coordinate system,

8 2 - 2 ‘ n
Ewm] = P~ Zm =—SL8 '{1 - [1 -u (crnz + Masz)]
(o4

1-I>Mo's/n

Hence; the mean weights are scaled versions of the desired signal response. From
Eq. (18), note that the time it takes the filter to adapt from zero initial conditions and
learn the signal is less than the time required to forget the signal if it disappears.

D(0) (20)

That is, from Eq (19), if zj(O) =0, j=1,2, ... M, signal response time is propor-
tional to 1 - p(on2+Ma 2). If the signal suddenly disappears so that zl(O) # 0, then
from Eq. (17) with oy 0, the decay time towards zl(n) =0, is proportional to

2
l-p.O'n 3
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STEADY-STATE WEIGHT BEHAVIOR

The explicit solution of Eq. (14) requires evaluation of the eigenvalues and eigenvectors

of the matrix operator in brackets in Eq. (15) (see Appendix). However, the steady-
state solution to Eq. (14) is obtainable without knowledge of the eigenvalues. In Eq. (15),
set Z(0) = 0 (zero initial conditions) w}lthout loss of generality, Let Q be the matrix of

1

eigenvectors of the matrix P OVOPO'

the matrix of eigenvalues. Thus

2
KO, A‘ and A = Diag (A, Ageee .\m)be

n
m-1
Zm) = ucsz Z [Q AQ 1] P V*D(o)
m=1

n-1
5 - uasz E 3 Q'1 P, V*D(o) (2L
m=0
But
n-1 AR -l 1-A B
Z m _ 1 S,
A Diag : (22)
1-A 1-.\2 1- \m
m=0
for ['\il<1 for all i, and
(23)

n-1
lim m _ -1
n-=°§ AT = (I-A)
m=0
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In Appendix I, it Is shown that |A  |<1, forall i if 0 < 4 (0 2Ma?) <2. Letz, =
lim Z(n). Then, using Eq. (23), Eq. (21) becomes

z, =po lQu-v7 Q7 P V* DE)

88
2 : 2 -1
A [\ - @ -po ) 1! D(0) .

e =
1+po” D, [V-(l-panz) 1] b

i The steady-state weights are the quantities of interest. Note that they will be time
varying, even though the adaptive filter is in steady-state. Here, steady-state implies
that the adaptive filter has converged, interpreted as the convergence of the trans-
formed weight vector Z(n). However, the filter has converged to a time-varying
solutign to follow the time-varying, non-stationary input signal. Thus, when Z - is
inverse transformed back to the mean value of the weights, the transform is via the
eigénvectors of the input covariance matrix, which are time-varying. Let E[Wss(m]
denote the mean value of the steady-state weights at time n.

E[Wss(n)] E P_l(n) Zgs

-1
2 2
g POg [V-(l-p.an ) I] D(n)
M

1*“%22 L
jokes® _ (

k=1 e

(251

1~y onz)

As a check, Eq. (25) can be compared with the steady-state value of the weights in |
the stationary case, i.e., with @ =0, For that case V =, D(n) = D(0) and

E[Ws s(n)] & == D{0) (26)

which agrees with Eq. (20) when n =,




Computer evaluation of the steady-state mean weights in Eq. (25) is presented in
Figures 41-44 for f =5 Hz/sec? and in Figures 45-48 for f = 1,25 Hz/sec2. In all cases,
the filter has 128 taps with u = ,1. The signal-to-noise ratios are varied from

unity to 10-2. The figures display the magnitude and phase of the weights across the

filter.

Three interesting phenomena are displayed in these figures:

1. As the signal-to-noise ratio decreases, the adaptive filter uses more
of the taps but at lower amplitudes,

2. The tap phases follow the movement of the linearly varying frequency
input,

3. Asf increases, the taps at the far end of the line contribute relatively
less to the filter output than those taps at the beginning of the line.

These phenomena can be explained as follows:

-

1. The two sources of randomness that contribute to the filter output mean-
square-error, are input noise and algorithm noise (weight misadjustment). The
contribution of the input noise to the mean square error decreases linearly
with the number of taps whereas the algorithm noise increases linearly

with the number of taps. Thus, at high input signal-to-noise ratios, the
algorithm noise is the limiting factor and few taps are needed. At low

input signal-to-noise ratios, input noise is the limiting factor and a

large number of taps are needed in order to reject the input noise.
Eventually algorithm noise becomes the significant factor.

The figures show only the mean values of the steady-state weights at a
particular instant of time after the filter has converged. Hence, there
should be a quadratic phase shift with the tap number in accordance with

D(n) in Eq. (6). Comparison of Figures 42-44 with Figure 41 and Figures 46-48
with Figure 45 shows that the steady-state weights do display this behavior,
The filter trades off coherent integration (proportional to the number of
significantly non-zero weights) against the phase changes required at each
tap to follow the chirped signal. Since the phase change required at each
iteration for each tap grows linearly with tap number (entries in V),

weights at the far end of the line must make large phase changes in com-
parison to those at the beginning of the line. Note that the quadratic

phase correction along the line, D(0), is independent of time. Hence,
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once the filter estimates fo and f, it knows D(o) and can introduce these
phase corrections statically. On the other hand, the filter must change
phase by the entries in V at each iteration. Large phase changes are

most easily made when the magnitude of the weights are small. In Fig-
ures 42-44, A¢ = &% = 2 /10M radians and in Figures 46-48, A0=2 /40 M
radians. Hence the Mth weight has to change by /5 and = /20 radians,
respectively. In order to accommodate these large phase changes for the
same algorithm step size, the weights of the far end of the line must be
smaller than those at the beginning of the line. As f decreases, the dif-
ference in phase changes at the two ends of the line decreases and the filter
can make use of significant values for the weights at the far end of the line.
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THE MEAN SQUARE ERROR IN STEADY-STATE

The error, € (n), is the difference between d(n) and the filter output, WT(n) Xm). Its
mean square value is given by

E ﬂe(nj 2] = E:[d(n) - wTm x@] [d*@ - W' o x*m] :
= Efam do*]- EvTo x@ ¢* @] - Efdm %o x2m]
+ EEVT(n) X@ W) X*m) ]
Using the assumptions preceding Eq. (2),
E[Ie(n)lz} - (052 iy Unz) - 052 2 Re :E Wl D(n)= + E[WT(m X@ W) X"‘(nl] (28)

The middle term in brackets in Eq. (28) can be evaluated using Eq. (25) and is given
by

M
Y

D -1
)
Efw_ ] bm = . 29)
[ ss )] o= M -1 =

The last term in Eq. (28) can be evaluated as follows. Let the weight vector be
written as a mean value plus a zero-mean fluctuation process.

W(n) = E(W(n)] + ¢(n) (30)
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E[WT(n) Xm wHm) x‘(n)] = E[w*(n)] E[x-(n) XT(n)] E[W(n)]

+Eftm xo xT @ ) 31)

The first term in Eq. (31) is known. The second term in Eq. (31) is

E[;+(n) X*m) XT(n) ;(n)] = E[g "o E [x*m xTm) ¢ (n)]
< (02 + 0 2)E[fm i)

=(02+02)M02 s (32)

assuming the weight ﬂuctua;ions are stationary, uncorrelated from tap-to-tap, and
have the same variance ¢ e for each individual weight. Thus, using Eqs. (31) and
(32) in Eq. (28) yields

1 - E[W@)| D@

E l]e(n)lzl = Usz R °n2 [1 + ElW(n)FE IW(m! ]

e
+M(oz+02) . > 33)
2~ (M+1) wo_

£ 7
where ¢~ has been approximated by the weight fluctuations under noise alone“’ e

The first term in Eq. (33) represents the error in estimating the chirped complex
exponential signal. The second term is the sum of the noise power in the reference
channel and the noise power passed by the mean weights of the adaptive filter. The
last term represents the weight misadjustment variance multiplied by the total input
power.,

o
Eq. (33) normalized by the total input power, has been evaluated as a function of pcrn'
for M = 16, 32, 64, signal-to-noise ratios of 0 and +10 dB and various b.tz. In
Figures 49-54, the trade-off can be seen between static and dynamic contributions to
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total mean-square error. In each cz;se. there is an optimum selection of p.O’nz

which minimizes the deleterious effects of signal errors, input noise and weight
misadjustment noise., Comparison of the filter performance for increasing input
signal~to-noise ratios verifies improved system performance. On the other hand, for
sufficiently large wr  and SNR = 10 dB, it is seen that the normalized man square
error increases as M increases. This effect is due to the weight mis~adjustment
noise exceeding the longer coherent integration gain obtained with larger filters. As
bgz decreases, a point is reached where sufficient smoothing time is available
(small uo nz) to reduce the weight misadjustment noise to a level so that improved

performance is obtained for longer filters (e.g. &¢ 2.4x 107,

It can be seen from Figures 49-54 that the optimum selection of p_o-nz, for a given filter
length M and signal-to-noise ratio, varies in the same manner asw ;2. As & §2
increases, a larger value of pc‘nz is required to achieve the minimur; mean-square
error- However this minimum mean-square error increases as ¢t . The filter
has-less time to learn the statistics of the signal and hence must make a larger
mean-square-error as the price for tracking a faster moving signal. It is somewhat
difficult to determine the point where the LMS algorithm loses track of the signal

since mean-square error is not a good measure of tracking performance.
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CONCLUSIONS

A mathematical model of the mean weight behavior for the LMS adaptive filter has
been presented when the filter is operating as a single frequency line enbancer and
line follower. For a fixed frequency complex sine wave input, the LMS filter weights
have been shown to respond to signal and noise more rapidly than to noise alone. This
implies that the filter learns more quickly that a line has appeared than it is able to
forget that the line is turned off.

When the signal frequency is changing linearly with time, the mathematical model
predicts a time-varying behavior of the filter mean weights necessary to respond to
the changing signal frequency. As the chirp rate increases, the filter reduces the
relative amplitudes of the weights so as to adjust the effective filter length to optimally
match the properties of the signal. That is, for example, suppose the filter designer
selects a filter of length M = M;. However, the chirp rate is sufficiently large so that
the change in signal frequency, between algorithm iterations, is greater than the band-
width of the filter. Then, the LMS algorithm will automatically scale the amplitude of
its w;-.lghts to have an effective length M2, M2 <M1, such that the signal remains
inside the adaptive filter between iterations. As long as the signal frequency lies
within the LMS filter bandwidth, the LMS filter algorithm can track the changing fre-
quency since there is sufficient correlation between the two inputs to drive the LMS
algorithm in the correct direction.

The mathematical model of the mean weight behavior has been used for selecting u,
the adaptation coefficient of the algorithm, for a wide variety of signal and noise
parameters. The criteria of optimality was that of minimizing the filter output mean
square error, since the error is the driving term in the weight adjustment algorithm.
(An alternate criteria, based on a signal detection model using the filter output, could
also be a candidate for optimization.) A set of curves of normalized mean-square
error as a function of signal-to-noise ratio and chirp rate were obtained. From these
curves, the following observations can be made:
1. For a given signal-to-noise ratio and chirp rate &62, there exists an
optimum selection of u that minimizes the overall mean square error.
2. For slowly changing signal frequency, the m2an square error exhibits a
relatively broad minimum. This is because a large range of uUnz will
follow the slowly changing signal frequency yet allow sufficient smoothing
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80 as to keep the weight misadjustment noise below a certain minimum.
On the other hand, for a rapidly moving signal frequency, mismatch in
selection of By 2 can cause a significant lncrease in mean-square error as
compared to the optimum selection of pa

3. As a system designer, one would choose a KO, that would be optimum for
the fastest chirp rate expected. The mean square error would always be
upperbounded by the mean square error for the fastest chirp rate.

Rt

Vi-18




T IE———

2.

-3
.

10.

11,

12,

REFERENCES

B. Widrow, P. Mantey, L. Griffiths and B. Goode "'Adaptive Antenna
Systems, ' Proc. IEEE, Vol. 55 pp. 2143-2159, Dec. 1967.

B. Widrow ""Adaptive Filwers' in Aspects of Network and System Theory,

R. Kalman and N. DeClaris Eds, New York: Holt, Rinehart and Winston,
1971, pp. 563-587.

L.J. Griffiths "A Simple Algorithm for Real-Time Processing in Antenna
Arrays,” Proc. IEEE, Vol. 56 pp. 1696-1704, Oct. 1969.

B. Widrow et al., ""Adaptive Noise Cancelling Principles and Applications, "
Proc. IEEE Vol. 63 pp. 1692-1716, Dec. 1975.

L.J. Griffiths ""Rapid Measurement of a Digital Instantaneous Frequency, "
IEEE Trans. Acoust. Speech, Signal Processing ASSP-23, pp. 207-222,
Apr. 1975.

J.R. Zeidler and D. M. Chabries ""An Analysis of the LMS Adaptive Filter
used as a Spectral Line Enhancer, "TN 1476 Feb. 1975, Naval Undersea
Center, San Diego, California.

P.L. Feintuch and N.J. Bershad '"Signal Detection Using Adaptive Filters,"
1976 IEEE Int. Symp. on Inform. Th., June 21-24, 1976, Ronneby, Sweden.
L. Griffiths, J. Keeler and R. Medaugh '""Detection and Convergence Results
Relating to the Performance of an Adaptive Line Enhancer', Dept. of Electri-
cal Engr., University of Colorado, Boulder, Colorado, Dec. 1976.

S. T. Alexander, J.R. Zeidler and P. M. Reeves "An Analysis of ROC Per-
formance Evaluation of the Adaptive Line Enhancer, ' Tech. Rpt. Naval Ocean
Systems Center, San Diego, Calif.

S.T. Alexander, J.R. Zeidler, M. Shensa and R. Medaugh ''Detection of
Sinusoids in White Noise Using Adaptive Linear Prediction Filtering,' May,
1978 (submitted for publication).

J.T. Rickard and J.R. Zeidler '"Second Order Output Statistics of the
Adaptive Line Enhancer,' NOSC Tech. Rpt. 202, 1 Dec 1977, Naval Ocean
Systems Center, San Diego, Calif.

D.W. Tufts, L.J. Griffiths, B. Widrow, J. Glover, J. McCool and

J. Treichler ""Adaptive Line Enhancement and Spectrum Analysis, " Proc
IEEE, Vol. 65, No. 1, pp. 169-173.

vi-19

g A g pemwe o S——




13.

14,

15.

16.

1.

18.

TR ol AR

T.P. Daniell and J.E. Brown III "Adaptation in Non-Stationary Applications, "
{n Proc 1970 IEEE Symp. Adaptive Processes (9th) Austin, Texas, Paper No.
XXIv-4, Dec. 1970.

Y.T. Chien, K.S. Fu "Learning in Non-Stationary Environment Using
Dynamic Stochastic Approximation, " in Proc. 5th Allenton Conf. on Circuits
and Systems Theory, pp. 337-345, 1967.

B. Widrow, J.M. McCool, M.G. Larimore, and C.R. Johnson Jr., "Sta-
tionary and Non-Stationary Learning Characteristics of the LMS Adaptive
Filter," Proc. IEEE Vol. 64, No. 8, pp. 1151-1162, Aug 1976.

J.R. Treichler, "The Spectral Line Enhancer - The Concept, an Imple-
mentation and an Application,' PhD Thesis, Dept. of Electrical Engineer-
ing, Stanford University, May 1977.

B. Widrow, J. McCool and M. Ball "The Complex LMS Algorithm," IEEE
Proc. April 1975, pp. 719-720.

L.A. Zadeh and C. A. Desoer '""Linear System Theory - A State Space
Approach, ' pp. 575-576, McGraw Hill, New York 1963.

< ViI-20




APPENDIX. EIGENVALUES OF TRANSFORMATION MATRIX

In order to easily evaluate the m"‘h power of a matrix, the eigenvalues of the matrix
are needed. The matrix In brackets in Eq. (15) Is

. 2 -1 2 -1]
P VP (l-p.on x]-pow[po -uo P TN

1 (I-1)

2 -
P Ve [l - Koy M(O)] 2,
Since P premultiplies and Po"1 post-multiplies R=V* [I-pO’nz M(O)], it is only neces-
sary to find the eigenvalues, A, of R. The eigenvalues of R satisfy:

2 2 +
v* [1-.; (¢.21+02 DD, )] -.\l‘x

=0
(I-2)

2 2 +
Q- RO, ) I~ AV - POg DODO

where
Do = D(0) and! ] denotes the determinant.

Because of the simple structure to R, an expression for the eigenvalues can be found.
Given a matrix of the form B= A + a1b1+ where a and b are column vectors,

|B| = (Al[1 +b " A al] (I-3)
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Thus, with A = (1 - wo %) I- AV, &y =D_=b,,

‘(1-,;%2) I- AV-uo 2D D'| = \(1-pan2) I~ AV‘{I -wo,2D,"

Diag » . ‘M )D
e Y e R

= - 2M -_—§v '
[1 ‘mﬂ] ¥ 1-po, ll *% mz-l Qv ) a -A$

(I-4)

The term in brackets yields an M'th order polynomial in A\ for which there is no
general analytic solution. Eq. (I-4) must be programmed on a digital computer for

various ., orsz. c e and a.

n

Although explicit values of A are not obtainable, a simple upper bound on the eigen-
values of A and hence on the transient behavior of Eq. (21) are obtainable. This

upper bound on the eigenvalues is useful since it is an indication of the slowest possible
response of the system.

Let u be an eigenvector of the matrix in Eq. (I-1) with associated eigenvalue, Aj.
Then, withu +u =1, and gT = [\11u2 oo um]

S -1
Au=P V*P

i (I-panzx) u (I-5)

Now,

. A g, 4. ol

s =]
u (I-po “A) P bt ™ e ¥ P,

(w020 u (1-6)
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Using po‘l =P, and vi=v

|ad® =Dl pwennyff

j1
" M
+ Z \ul\Z (I-7)

i=2

1- p.(O’nz + Mcrsz) 1~ B0 n2

-

‘M
Letq = S \ul‘z <landp=1-Q =
i=2

u1‘2 <1. Then

\Allz s (l-m‘l- » (an2+Masz)\z teu- P‘anz‘z
. = ‘1— P (an2+M 0'82) 2 + q(l-ponz‘z = ‘1-» (on2+Mosz)l ; )
2 2
<il- |.L0'n2 for ‘1-;05‘2‘1— p(cn2+Mcszj (I-8)
Similarly
lAl\z X pil' ¥ (cn2+M°sz) K S Il- an ; = \b 4 (°n2+M°sz) ;
for ‘1-;; (crn2+M osz ) Iz ll- p.cnz‘ (I-9
Eqs. (I-8) and (I-9) lead to the following bounds:
@ Hp (anz + Masz) <1, assuming anz #0
lAtlz s‘ 1- p,an'z <1 (I-10)
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OR' p(o'nz + M0.2)>1but pcnz

<1, then for °n2 ¥0

2 2
' AJ < ' 1- 'mnzl <1 for p.Md‘z < 2(1-.:.0“2)

and
,-‘ ‘2 S‘l (o z+M¢r 2)' : for uMo 2 >2 (1-puo 2) (I-11)
i “#\% s pMIg "o,
In the latter case, lAll2< I p(on2+Mosz) <2
2
@ pr.on > 1 then
2 2 2\ 2
'J AJ < ll- p(O‘n + Mos ). (1_12)

and

2

A
|

<1 if p(0n2+MO‘sz) <2

Combining these, it can be seen that l.\i‘ <lifp (an2+Masz) < 2. Since ‘.\1[ <lis

the condition for existence of a steady state mean weight vector, (crn2 +M082) <2is
a sufficient condition for a steady state solution. It is interesting to note that the bound
on ’A l|2 in each case is just the magnitude of the largest eigenvalue in the stationary

frequency case, with crnz. osz. w and M unchanged. Further

18 (onz-rMasz) <2

is the condition for the convergence of the adaptive canceller in the fixed sinusoid
case. This leads to the surprising conclusion that if the mean weight vector achieves
a steady state value in the stationary case for given 0‘2. onz. M and u, then a steady
state solution will exist for those parameter values regardless of the rate of change

of frequency.
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A more direct result for convergence can be obtained as shown below. This latter
approach does not bound the eigenvalues however.

From the discussion following Eq. (I~1) it is seen that R is similar to Q and therefore

has the same eigenvalues. From [18].
n
um S A™ Loqr-art (I-13)
0% m=1

if the I..2 norm of A is less than unity, i.e., "A" <1, Inour case, R = A and

IRl = “v* [I-pd’nz (M]H s“v*“ J1-na 2 | (I-14)

-

But HV*” =1 and “I-pa AH can be evaluated explicitly as the square root of the
largest eigenvalue of the matrix [I Bo ZA] [I - po 2A]

But [I - p.anz A|is self-adjoint and has only two distinct eigenvalues.

A =1- p.(o‘nz + Mc’sz)

Ay = Ag = Ay = 1-uo? (1-15)
Hence |1 - u(cnz + Moszx <1
and

ll - pcn2'<1
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which implies IA‘| <1if

(I-16)

0< .;(unz +Mg?)<2

in agreement with the discussion following Eq. (I-12).




APPENDIX VIII
COMPARISON OF ADAPTIVE TRACKER PERFORMANCE
WITH AN EXISTING AUTOMATIC TRACKER

o A A AN 5Bt e e S

o

It is of interest to compare the performance of the adaptive tracker with a non-adaptive
tracking system. For this purpose, the automatic tracking system described in
reference [1] will be used. Figure 55 shows a block diagram of the tracker to be
considered. The input signals from the left and right half beams are hard clipped

and sampled, with the clipped signral for one side subjected to a variable delay, 7. This
delayed signal and the other clipped input are processed by a two point correlator,

as shown, which computes the correlation, ¢ (1, of the clipped signal at 7- T. The
value of ¢ (1) is either +1 or -1 for the clipped inputs. The contents of the delay
register, which determines the value of the adjustable delay, is increased by A7 when
i +1 occurs on input 2 and -1 on input 1. It is decreased by AT when +1 occurs on input

: 1 and -1 on input 2, with no change in count when the two agree. The tracker is in
steady state when ¢ (--T) and ¢ (r+T) are equal (both +1 or both -1). Assuming that the
correlation function of the input is symmetrical, this means that the value of t is equal
to the delay between the two split beam inputs.

The performance of this tracker has been analyzed in reference C1]. The analyzer
is in excellent agreement with both computer simulations and at-sea tests of the
device. For a broadband stationary target, the variance of the delay estimate was

shown to be
2 AT
il Ve o 2 @
1
8/m) |———3"] -9 (D

ei.02/ 2™
s n

where

AT = adjustable delay step size

032 = gignal power

¢rn2 = noise power

(T) = value of the derivative of the normalized autocorrelation function
of the signal at =T

1
?ss
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and T = fixed bulk delay used in the correlator.

This result is valid when the value of N is small in comparison to the width of
$gs(M-

The structure of this tracker is considerably different than that of the adaptive ;
tracker. Typically, the delay step size, AT, is set much finer than the time between 1
taps in the adaptive filter. This very high sample rate is tolerable, however, because
the system uses one bit representations of the input, so hardware is minimal. The
adaptive tracker replaces a high sampling rate with multibit processing and inter-
polation between coarser delays. In spite of the differences, the comparison of the
two is interesting in light of the wide application of trackers similar to the clipped
system.

In order to compare realizations of the two tracking schemes that are in some sense
equivalent, the time constants of the two will be made equal. For low signal-to-noise

ratio the time constant for convergence of the weight vector of the adaptive filter, E
both in mean and variance 1s in seconds

~1
% 2, 2
“at [“(08 * % )] Tat @

where T at is the adaptive tracker sample interval.
Reference (1] has shown the time constant of the clipped tracker of Figure 55 to be
& (m/2)
- ?_ 3
s
Fetd\ 5T, 52 "2ss

+
s n

where F ot is the clipped tracker sampling rate.
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It is now necessary to set ot such that "™ Tet®
tracker is normalized such that

2 2
o =
s + G'n 1

This normalization will also be applied to the input of the clipped tracker. Then,
setting (2) equal to (3) yields

ar= 1%;/ 3 @)

FtTat T+ on® 2'ss(™

and substituting in (1) gives

2
o2 _ uer
s SNR_ 2 - ;-
6 FuTali+snr (sl

Ay 2
where SNR = 0, /0‘n :

This is the variance of the time delay estimate of a clipped tracker whose time
constant has been set equal to the adaptive tracker, and is not valid at high SNR.

In part VI of this report, the performance of an adaptive tracker for a broadband
signal with an 800 Hz flat low pass spectrum was considered. Following the design
procedure for the clipped tracker given in reference (1] gives the parameters

Fot = 3,- = 2400 Hz

’
|¢ se'('r)l = 728.15 sec/sec

For the adaptive tracker considered, '1'at = (1/2400). Substituting these parameters
in (5) gives

1+ sxm)2

2
of = (1.1634 x 1078 u AGoRT ©
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It should be stressed that the expressions (5) and (6) are not a generalized compari-
son of the particular clipped tracker with the adaptive tracker. The comparison is
between an adaptive filter and a clipped tracker whose time constant has been
adjusted at each signal~to-noise ratio to be equal to that of the adaptive tracker.

This means, roughly, that the two trackers should be able to track dynamic targets
with the same rate of change, or that the time to achieve the predicted bearing
accuracy for an emerging target should be the same. Given the great difference in
the structure of the two trackers, however, this equivalence is only approximate, and
should be used only for order of magnitude comparisons, and not to predict fine
differences in sensitivity.

Reference [1]: C. N. Pryor, "A Simplified Automatic Tracking Technique for
Signal Correlation Systems,'" NOL Technical Report No. 67-152,
21 September 1967.
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