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FOR EWORD

I. This report documents the first phase of the effort performed for the Naval Sea
Systems Command Code 06H1 on contract NO002j 77-C—Q,~~~ under Project Ser-
ial Number SF 11 121 160, Task 20929 , ana covers the period from October 1977

1. to October 1978. It includes all of the technical material found in thi~1iFeë
Qu4rLerly treports plus work performed in the fourth quarter , connective material ,

-- the conclusions of first phase , and the approach for the second phase of the study.
This study has as Its goal to examine the application of adaptive filters to perform

* passive sonar bearing tracking. The fi rst major steps toward this goal have been
- realized via a combination of statistical modeling and analysis that has been

verified via computer simulation.
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I. INTRODUCTION

This is the final report on the first phase of a study contract to examine the applicability
of adaptive filtering to passive sonar bearing tracking. The study was motivated by
certain limitations in existing split—be am trackers that migh t be removed’by using an
adiptive filter canceller. In particular 1) an adaptiv e filter does not require a-priori
power spectral information on the signal and noise fields , 2) because the f i l t e r  charac-
teristics are adjusted iterat ively (time—varying), the filter has the capability to track
dynamic (non-stationary ) inputs and 3) since all the correlation information be tween
split array ou tputs is contained in the adaptive filter canceller weights , the potential
exists to perform both broadban d and narrowband tracking simultaneously, u sing all
the signal energy rather than separatin g the energy as in current trackin g systems.

This report contains the results reported in the first three quarterly reports with some
modifications and new results obtained during the fourth quarter effort. The body of
the report is organized so as to present a summary of the results of the analytical
effort. The details of the analyses are found in the Appendices .

U. STATEI~1ENT OF PROBLEM

The work effort has been focussed on studying the following set of analysis tasks asso-
ciated with using the adaptive filter as a bearing tracker:

1. 0 Analysis of the application of adaptive filters to bearing tracking.

1. 1 DetermIne the best method for obtaining the delay parameter from the
adaptive filter weights. Compare the bias and variance from this method of
estimating to that obtained from existing split beam trackers.

1. 2 Determ ine the sensitivity of tracking perform ance to unknown signal and
noise power spectra.

1. 3 Evaluate the bias caused by plane wave interference on tracker perform ance.

1.4 Investigate the design of an adaptive tracker which can use both broadban d
and narrowband sigr .~ components simultaneously to estimate target track.
Determine if the ambiguities in the adaptive weights can be resolved for
narrowband inputs.

2. 0 Analysis of adaptive filters with non-stationary inputs .

2. 1 Determine the closed form transient response of an adaptiv e line enh anccr
hav ing linearly changing inpu t signal frequency from the rn a t rL~ eigenvaJut ’~ .

i
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2.2 Model broadband dynamic inputs into the adaptive tracker and analyze

the time response and mean squared—error of the cancelled (error)

output.

3. 0 Simulation , test and evaluation using computer generated data.

- 3.1 Model the adaptive tracker on the MAC simulation facilities and determine

performance using synthetic data. Determine tracker bias and variance as a

function of signal bearing rate , S/N ratio , and plane wave interference.

Broadban d and narrowban d signals as well as combined broadband and narrow -

band signals are to be used.

III. SUMMA RY OF RESULTS

The results of this study are div ided into seven parts. The first part deals with the

selection of the adaptive filter configuration to perform bearing estim ation. Both sum

beam and spilt-beam tracke r configurations were studied.

The second part deals with the extraction of the bearing (or delay) estimate from the

adaptive filter , keeping in mind that the AF is basically operating as a wavefo rm esti-

mator. For broadband inputs , the delay estimate is chosen to correspon d to the peak

value of the weights. The third part deals with a frequency domain equivalent model

of the time domain adaptive filter that enables the variance of the adaptiv e filter delay

estimator to be calculated. The variance of the delay estimator is compared to the

Craxner-Rao Lower Bound (CRLB) for the variance of any unbiased estimator. The

+ 
fourth part deals with practical implementation of the delay estimator that , because of

the discrete-time locations of the filter taps, differs from the theoretical continuous-

time model whose perfo rm ance was analyzed in Part 3. The discrete time Implemen-

tation consists of an interpolation routine following the adaptive filter that uses thc

weigh t values to interpolate delays between the taps. The degradation of the interpola-

tion model, as compared to the continuous estimator , is investigated.

The fifth part deals with the performance of the adaptive filter bearing estimator as a

tracker for signals that are changing bearing. Three signal models are considered -
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single frequency signals (narrow band inputs), broadband spectrally white signals, and
broadband non-white signals. In each case , it is shown that the adaptive filte r is capa-
ble of tracking changing bearing. A related dynamical problem is also investigated;

+ 
the-response of the adaptive filter to a linearly—varying-frequency sine wave.

The sixth part deals with the simulation of the adaptive filter bearing estimator in both
the time dom ain filt er configuration and its frequency dom ain equiv alent. For a wide
variety of simulation parameters , the two configurations are shown to perform equally
w ell and to yield close agreement with the theoretical predictions. It also compares
the adaptive tracker performance to that of a conventional tracking system.

The seventh part deals with the conclusions of the study that are based upon the results
of the previous six parts. These conclusions are related to the future tasks to be per-
formed In Phase 2 of the overall study .

Part I — Selection of the Adaptive Filter Configuration for a Bearin g Estimator

It would have been highly desirable to apply some type of optimization theory to the
selection of the structure containing the adaptive filter and constituting the bearing
estimator. For example, what stru cture , using the adaptive filter , yields the minim um
va riance unbiased estimate of bearing in the class of allowable stru ctures. Unfortu-
nately, no such optimization theory exists nor does it appear feasible to attempt to

+ 
deriv e a theory . Instead , based upon some reasonable assumptions about what stru c-
tures migh t be useful for bearing estima tion , two bearing estimator structures were
selected on an ad hoc basis and studied in detail .

The two bearing estimator structures , sum beam and split-beam , are shown in Fig-
ures 1 and 2. It is shown in Appendix I that the sum-beam system tends to obscure
the signal correlation properties necessary for the adaptive filter to track. ~,rht’ hydro- 

+

phone noises produce residual correlations on the beams which the adaptive f~lter
treats as a signal process. To decorrelate the noises , one must form beam s from +

separate elements , so th at the two inputs to the adaptive canceller are not linear com-
binations of the same set of processes. This motivated the consideration of the split-
beam processor of Figure 2. It Is shown in Appendix I that the split-be am systcm
offers the capability of correctiy estimating the delay between the two split-beam inputs.
Furthermore , In Appendix IV , It is shown that the performance of the split-beam
adaptive bearing tracker is very near to the theoretical lower bound on performance of
any tracker. This latter result lends strong support to the ad hoc selection process.
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+ Part II — Estimation of Bearing Estimates from the Adaptive Filter Weights

The structure for estimating bearing (delay) is shown in Figure 3. The left half- beam
output is selected to be the desired signal and the righ t half- beam Is selected to be the
inp~ut to the adaptive filter. Ideally the filter should insert a delay equal to the signal
arrival time difference between the two half array phase centers. Hence , one weight

~at the correct delay on the delay line) will be unity and all other weights will be zero.
+ Howeve r , because the filter is a tapped delay line, only discrete values of the time

delay can be estimated exactly by observation of a single non- zero weight. Thus , de-
pending on the spectra of X L (t) and XR (t), more than one tap weigh t will be non-zero.
If we also Include the effects of noise , it is conceivable that several weights will be
non-zero even if the tru e delay occurs precisely at a tap on the delay line. Hence ,
some kind of algorithm is needed for determ ining the correct location of the peak of
the weights from noisy sample values of the weights taken at discrete times. The

+ particular algorithm is discussed in Appendix V.

+ A theoretical analysis of the performance of the bearin g estimation scheme in FIgure 3
requires statistical knowledge of the filter weights after convergence. Althou gh the
mean values of the weights can be determined as a function of the signal and noise
powers and the algorithm gain coefficient ~~, the variance of the tim e domain weights
in the presence of correlated inputs to the two half-arrays cannot be determined
di rectly at this time. l’~nowIedge of the weight variance is necessary in order to corn-

+ 
pute the v ariance of the bearing estimate. Because of this lack of statistical knowledge +

abou t the system Figure 3, an equivalen t frequency-domain adaptive bearing estimator
is studied in the next section. The alternate configuration is analyzed and used to
predict the performance of the system in Figure 3. Subsequent analysis and sim ula-
tions verify the equivalence of the two systems.

Part III — Frequency Domain Equivalent of the Tim e Domain Adaptiv e Filter Bearin g
~~stimator

Figure 4 shows an alternate structure for the split-beam adaptive bearin g estimator
that displays more clearly the ability of the device to track both broadband and narrow -
band signals. Most conventional trackers are designed to han dle either narrowb an d
signals or broadband signals but not both . For example , a bear ing tracker that uses
a phase—locked loop (PLL) to measure the difference in phase between two half-array s 

+

can effectively track narrowband signals where the phase of a carrier with slowly

4
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+ varying envelope can be followed. However, broadband signals, which do not have
a well-defined carrier are not tracked well by a PLL.

The split-beam adaptive bearing tracker can track either broadband or narrowband
signals since the adaptive filter does not need to know the signal statistics a priori.
The del ay of a broadband signal will be seen as a relatively large peaJ~ in the weight
values at the correct delay setting. The delay of a r .arrowband signal will be seen as
a phase delayed set of sinusoidal filter weights. In th~iS~~ase, the delay will display
itself most easily by FFT’thg the weights and selecting the targest output of the phase
estimator in Figure 4. +

The significance of the above argum ents is that the split—beam adaptiv e bearing tracker
automatically configures itself as a broadband or narrowband tracker as the situation
requires. This mean s that the device is able to track on all the incoming signal energy ,
whether broadband or narrowband. The processor of Figure 4 is a method for exploit-
ing this behavior. The peak in the adaptive filter weights , or in the Fourier transform
of the weights Is used to determin e the inter-array delay or phase shift .

Figure 4 IndIcates the stru cture for extracting bearing estimates from the time-domain
adaptive filter. For comparison , Figure 5 shows a frequency dom ain an alog of the
time domain adaptive filter. In Figure 4 , it is noted that the entire broadband input is
the input to M tap adaptive filter. The error signal over the total band controls the
weigh t adjustment algorithm. On the other hand in Figure 5, the Input is divided into
narrow frequency bins with each narrowband inpu t and error aignal controlling the
adjustment of a single complex weigh t for each bin. Since the weigh t adjustment in
each frequency bin occurs Independently of errors In other frequency bins , it is not

+ obvious that the two implementations are equivalent . In Appendix 11, for the case of
a broadband signal in noise , it is shown that the implementations in Figures 4 and 5
converge to essentially the same steady-state weight vector and mean-square error
if the FFT tim e window in Figure 5 is large in comparison to the time delay differencc
between the signals at the adaptive tracker inputs. Furthermore , by examining the
difference equations for the mean value of the weights , it is shown in Appendix LI that
the time responses are equal . The weigh t ~uctu ati ons are also compared and shown
to differ by a ratio that Is approximately unity for 

~ small.5
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Having verifIed the equivalence of the time and frequency domain adaptive bearing
estimator configurations , we now proceed to determ ine the perfo rmance of the fre-
quency domain bearing estimator.

Th~ perform ance of the broadband adaptive filter tracker requires the me~.n and van-
ance of the weights with both signal and noise present. The configuration initially
proposed operates entirely in the time domain using a tapped delay line (Figure 4).
This is contrasted with the structure in Figure 5 wherein the beam outputs are pre-
filtered using, for example a Fast Fourier Transform (FFT) and a single complex
adaptive fi l ter  weigh ting is used on each FFT bin on each split beam . The time delay
between split array phase centers corresponds to a different phase shift at each fre-
quency. The adaptively filter outputs can subsequently be recombined to produce a
broadband ou tput if desired . The key assumption being employed is that the obser-
vation tim e Is relatively long compared to the Inverse of the bandwidths so that Fowier
coefficients provide an adequate second-order statistical realization of the broadband
process itself.

If the Input processes are wide-sense stationary over the observ ation time, then
disjoin t spectral outputs are uncorrelated. Since the input data is assumed to be a
nar rowband gaussian random process , the disjoint bins therefore provide staUstlcally
independent outputs. Thus each complex tap is operating on independent data just as

+ 
the tim e domain taps along the delay line are assumed to operate on samples that are

+ + Independent in time. This interpretation casts the analysis in a fo rm that is tractable.
In Appendix ifi , the mean and variance of the complex weight Is calculated with both
sIgnal and noise present. This resul t is then used to obtain steady—state tracker
performance.

The principle results of Appendix LIT are
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where
norm alized signal correlation between two half arrays
signal power
noise povb’er

- ~ algori thm feedback coefficient

+ E denotes statistical expectation

Furthermore , the st eady- state mean—square erro r is given by
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The above results can be used to determine the performance of a continuous version of
the adaptive bearing estimator shown in Figure 3. Figure 6 differs from Figure 3 in
th at the tapped delay line In the adaptive filt er is assumed to be infinitely dense ~i. e.,
the t ap separations are infin.itesimal L This allow s us to view the weight values as a
function of a continuous parameter , say -, rather than as a function of a discrete
parameter , m , as In FIgure 3. The advan tage of this viewpoint will be eviden t shortly.

We furthermore assume the time domain-frequency domain equivalence of Fig-
+ ures 4 and 5 is valid as verified in Appendix U and apply the re sults of Appendix LU to

• Figure 6.

The model and statistical weight analysis of Appendices II and III are used to makc a 
+

first—order approximation analysis of the time—domai n adaptive fi l ter  when configu red
as a bearing estimator. This analysis uses the model in Figure 5 for broadband input - .
The objective is to operate the broad adaptive filter (in any implementat ian , tim t or
frequency dom ain) and compare its perform ance with the Cramer-Rao Lower Boun d
(CRLB). The parametric behavior at low sign al-to-noise ratios is a fundamental
concern of the analysis. It is shown in Appendix IV that  the variance of the sp lit-b~am
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adaptive bearing estimator is very near to CRLB lower bound on the variance of art y
• split beam estimator.

The variance of the estimator is within 0.5 db of the CRLB . Hence , the-split-beam

adaptive bearing estimator perfo rm s close to the theoretical lower bound on the vari-

ance of any unbiased estimator. Hence , the adaptive bearing esti mat or .is nearly

optimum and , in ef fect , makes a maximum likelihood estimate of the hearin g wt1hou~
a priori knowledge of the signal and noise spectra. The price of unkn own input spectra

is the 0. 5 db diffe rence in performance in comparison to the CRLB.

Part IV — Delay Estimation with a Discrete Adaptive Tracker

In Part 3, an expression for the variance of the bearing estimate of a continuous

adaptive filter configured as an adaptive tracker was developed. The estimate is

based upon determination of the peak of the contin uous impulse response of the

adaptive filter. In practice , however , the adaptive filter is discrete in time and of
• finite length, and the peak of the impulse response must be determined by interpo-

lating between the discrete sample points. The inte rpolation process increases the

+ 
variance of the bearing estimate with respect to that of the continuous case.

Appendix V describes a numerical method of determining the peak of an Interpo-

lated impulse response , and develops an expression for the variance of the esti-

mate using this method .

8
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Part V — Adaptive Bearing Tracker Performance for Dynamic Signals

The previous analysis has considered the behavior of adaptiv e bearing estimator for
signals at a fixed bearing angle; that is , how does the performance of adaptive bearing
estimator compare to the CRLB for static signals. +~lthough the static an~.lysis gives

• a g~od indication ot how the estimator perform s, the real case of interest- is in the
tracking mode where the bearing angle of the target is changing. In Appendix VI the
time—varying mean weights are derived for a signal that is moving such that the delay
between split—array phase centers is linearly changing with time. Three signal models
are considered - a narrow band signal , a broadband spectrally white signal and a
broadband non-white signal . For the single frequency case, the mean filter weights
correct for a frequency shift and phase precession due to the angular movement of the
target in bearing. For a spectrally white process , the mean filter weights are a
travelling wave with a decaying exponential envelope. Tracking the bearing Involves
estimating the delay location of the leading edge of the weights. For the broadban d non-
white signal, the mean weights behave in a similar manner to the previou s case except ,
because of correlation between the taps, the peak of the travelling wav e is much larger
and the decaying exponential envelope is dependent on the signal dynamics and correla-
tion. Thus , trackin g non—white signals is easier than tracking white signals.

A subject related to the tracking behavior of the adapti~ e filter is treated in Appen dix VU.
The transient behavior of the LMS adaptive filter is studied when the filter is configured
as a canceller operating in the presence of a fixed or variable complex frequency sine-
wave signal buried in white noise. For a fixed frequency signal , the mean weights are
shown to respond to signal more rapidly than to noise alone. For a chirped signal , a +

fixed parameter matrix first order difference equation is derived for the mean weights
and a closed form steady—state solution obtained. The transient response is obtained
as a function of the eigenvectors and eigenvalues of the input covariance matrix. Suf-
ficient conditions for the stability of the transient response are derived and an upper
bound on the elgenvalues obtained. Finally , the mean-square error is evaluated when
respondin g to a chirped signal. The gain coefficien t of the LMS algorithm is determ ined
that minimizes the mean—square error for chirped signals as a function of chirp ratc
and signal and noise powers.

Part VI — Simulations

The last part of this report deals with simulations of adaptive bearing trackers in both
the time and frequency domain implementations followed by tim e dom ain interpolat ion.

9
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The simulations serv e three purposes:

1) Verification of the equiv alence of the time and frequency dom ain implementa-
tions of the tracker ,

- 2) Support for the theoretical model of the frequency domain implementation ,

- 3) Provide initial sets of data for design of the adaptive bearing t racker.

Figures 17 - 46 show the delay estimates as a function of the various system parame-
ters Indicated on the figures.

in order to verify the results of the previou s sections and the appendices , the adaptive
• tracker has been simulated on the computer. The simulation is configured to imple—

ment both the time and frequency domain trackers , and provides for broadband or
narrowband signal inputs with a variable delay between the simulated array inputs .
The capability is included to band limit the input via a finite impulse response (FIR )
filter in each Input path . The delay may also be varied linearly with time. A sin (x), x
interpolator , as described In Appendix V, Is included to estimate delays when the
tru e delay lies between discrete filter taps . A phase estimator , corresponding to the

+ narrowban d case, is also included. Figures 13 and 14 illustrate the simulation for
time and frequency domain trackers , respectively.

A primary resul t of the second quarterly report was that the time delay can be ex-
tracted from the weigh t vecto r even at low signal-to—noise ratios where the reduction
In mean square error is small. For a broadband signal with a delay equal to an inte-
gral number of samplin g interv als, this would be evidenced by the filter weigh t corre-
sponding to the correct delay appearing larger than the other filter taps. The ability to
distinguish that the correct tap is largest at input signal to noise ratios as low as —20 dB
has been verified by simulation. Figures 15, 16, and 17 show the time domain weight
vector as a function of time for one sample interval (0.4167 msec) delay between tracker
inputs for a broadband signal with 0, -10, and -20 dB signal-to—noise ratios , respec-
tively. The 2nd weight , corresponding to one uni t of delay , clearly has the largest
mean value in all cases. Figures 18, 19, and 20 show similar results with the sig-
nal delayed 3—sample intervals between inputs .

The results of the simulations using the frequency domain implementation verily the
analytical prediction of the steady state weigh t vector derived earlier in the report.

10 
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Table 1 below gives the value of the largest steady state time domain, mean weight
for broadband examples simulated with the frequency domain tracker. The remaining
weights should have mean zero in steady state. These results can be predicted using
equation (8) of Appendix II. The theoretical predictions can be c~ompared to the stmu-
latlon results given in Tables 3 through 8. These show the time domain weight vector
as a function of time for each of the six cases of Table 1. The value of the weights
shows good agreement with the above analytical results once the weights approach steady
state , as they have in the lower part of each table. It should be noted that each 2400
iterations consti tutes one second In these simulations. The tables also indicate that it
is possible to determ ine the correct delay from the weight vector for these signal-to—
noise ratios , since the correct weight Is largest in all cases.

TABLE 1. PREDICTED VALUE OF LARGEST STEADY STATE MEAN
WEIGH T IN THE TThIE DOMAIN

Simulation Results Largest Steady St a te
SNR 

_________ 
Delay in Table No. Mean Weight

0 dB 
— 

2_ 10 
- 

1 3 W2 = 0. 4375

0 dB 2
_b 

4 W4 0. 3125

- • —10 dB 2 _10 1 5 W 2 0. 0795

—10 dB 2_ 10 3 6 0. 0508

—20 dB 
- 

2_14 1 7 W2 0. 00867

—20 dB 2 _ 14 3 8 W 4 0. 00619

Using the delay interpolator described In Appendix V, a number of simulations with
broadban d signal have been run. The Inputs to the adaptive tracker are low pass fil-
tered with a cutoff of 800 Hz and sampled at 2400 Hz. A 16-tap time domain filter is

+ used to provide the weights to the Interpolato r , which has its bandwidth parameter , B,
matched to the filter input bandwidth , 800 Hz. Figures 21 through 23 show the delay
estimate, ~ versus time for M = 2 b0 and an actual delay halfway between the 8th and
9th taps (3. 541667 msec), with signal—to—noise ratios (SNRs) of 10, 0 , and - ~O dB.
The one standard deviation (I o~) limits for the estim ate as predicted using the results

F . of Appendix V Is also shown. FIgures 24 through 26 show the same cases with a
feedback coefficient of ~i= 2 14, which reduces the variance of the estimate. Finally ,
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Figure 27 shows a —20 dB SNR case with ~h = 2~~ ’. These cases are repeated for the
actual delay coincident with the 8th tap, or 3. 3333 msec , in Figures 28 through 34.

The following observations may be made concerning these simulation results;

(1) For stati c delays, the adaptive tracker with interpolation between weights can
provide high accuracy delay , and hence , bearing estimation for broadband
targets. Table 2 below, conve rts the del ay estimate accuracies obtained in
the simulations shown In Figures 21 through 27 to broadside bearing accu-
racies for split arrays with a 7.5 and 75 foot spacing between phase centers.

TABLE 2. BEARING ACCURACIES FOR TYPICAL ADAPTiVE TRACKER
SIM ULATIONS WITH BROADBAND INP UTS

r. in. S. Bearing Error

SNR 
___________ 

Figure No. 7. 5 Ft Baseline 75 Ft Baseline

10 2
_10 21 .187 ° 1.87 °

10 24 .057° .57°

0 2
_10 

22 .67° 6.7°

0 2 14 25 .185° 1.85°
A

—10 2 ’~ 26 .877 ° 8. 77

—20 2_ 16 27 5.88 ° 58.8°

As pointed out in Appendix V, ~z must be set sufficiently small to assure that
the mean of the pe~k weight vector exceeds the standard deviation if accu- 

+

rate estimation Is to result. 
+

(2) The results of the simulations are In excellent agreement with the predictions +
given in Appendix V, as long as j~i is set sufficiently small. This Is most
evident In Figure 11. Further, the criterion for setting ~z given in that
appendix , is verified by the simulation results. For example , from Appen-
dix V , ~ = 2 10 Is marginal for an SNR of -10 d13, and Figure 23 shows that
occasionally the weight maximum appears in the wrong bin. 

+

(3) SelectIon of ~z sufficiently small to make the mean of the weights exceed the
standard deviation requires small ~~~, and hence , long time constants for

12
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operation with low SNR targets. This raises some question as to whether an
adaptive filter with these long time constants can track a moving target. It

can be seen from the simulations , however , that estimation withth the pre-

- 

dicted accuracy is achieved in less than a single tim e constant. For example,

the time constan t for the simulations with ~~~ = ~~~ is 6. 28 seconds, but th.~
• • estimate is within predicted steady state limits within nomInally 1 second.

This suggests an ability to track dynamics wh il e utilizing large time constant s

to give high accuracy estimates of static targets.
(4) When ~ is marginal for a particular SNR , so that occasionally the peak weight

— appears in the wrong tap , the estimate falls within predicted steady stale
error limits most of the time. In this case large deviations from the aver agt~
could be rejected as “wild points , ” and the remaining values would be good
estimates.

In order to relate these results to existing trackers , a first order performance com-
parison between the adaptive tracker and a clipped two poin t correlator tracking scheme
is provided in AppendL ’ VIII. The latter is similar to many existing tracking systems.
The comparison is not valid for high signal to noise ratio , and should be used only to
compare the two trackers in terms of order of magnitude of performance. This is

+ because the assumptions necessary to mak e two trackers of markedly diff erent struc-
tures equivalent in some sense can only be considered approximate. Table 9 shows
the bearin g accuracy predicted for both the adaptive tracker and the clipped two poin t
correlator for several typical cases , along with the results of the simulations. The
result s are for the same broadband signal considered in Table 2 , with the target

+ • stationary at broadside of a split array wIth 7 . 5 ft between phase centers. The per-
formance is comparable with the adaptive filter having slightly smaller variances for
all cases.

Appendix VI of this report considered the ability of the adaptive tracker to track
linearly varying delays . Such a delay Is representative of a target with constan t bear- +

ing rate passing throug h broad side re lative to the split array centers. Sin i uiaz ions
were run with the sam e adaptive tracker~lnterpolator confi guration used In the statii -

run s, but with the delay varying linearly with time. Again , the input is broadb and ,

and both tracke r Inputs are ban dlimited to 800 Hz. The adaptive f i l ter  has 16 taps .
and the interpolator bandwidth is matched to that of th e input.

13
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TABLE 9. COM PARISON OF BEA RI NG ACCURACY OF AN ADAPT IVE
TRACKER WITH CLIPPED TWO POINT CORRE LA T OR

TRACKER WITH EQUAL TIME CONSTANTS

r.m.s. Bearing Error

Predicted , Simul ation , Predicted , ci ippedSNR adaptive tracker adaptive tracker two t oint correlator
o 2~~0 .819 ° .67 ° 2.57 °

o ~~~ .2 02 0 .185 ° .642 °

- —10 2 ’~ 1.3 ° .87 7 ° 3. 54 °

—20 2 _ 16 5.8° 5 .88 ° lb .25 °

in Appendix VI , it was shown that the mean weight vector , as a function of t im e is a
peak at the actual instantaneous delay between array halves , moving through the Utter
at the delay rate of change , and with an exponentially (lecaving trail in g edge. This
analy sts is verified by Figur e 35, which shows the weight vector at 5000 , 6000 , and
7000 iterations for a 10 dB signal and a delay chan ging at 1.0 msec per second. Fig-
u re 36 shows another view of the behavior of the weight vector with time. h ere , the
delay is changing at 0. 2618 msee per second , ~z = 2~~0, and the signal-to-noise ratio
is 10 dB. The peak of the weight vector can be ckarlv seen moving throug h the filte r
with time.

A more quantitative assessment of the tracking behavior of the adaptive tracker can
be had from Figures 37 through 39, showing the delay estimate as a function of time
for a linearly increasing delay of 261.8 ~zsec/sec . This is representative of a l° ” scc
target at the split array outputs of an array with 75 feet between phase centers. Fig-
urea 37 and 38 show the estimate for the 261.8 Msec/see case wLth~ L = 2 10 and SNIIs +

of 10 dB and 0 dB respectively. The same rate of change is shown for ~i = 2.14 and +
SNR of -10 dB in Figures 39.

Part VU — Conclusions and Relationship to Phase 2

It can be concluded that the application of an adaptive filter to split beam hearing
tracking has the potentiaL to offer performance improvements as discussed in the
introduction. En the static case, bearing estimates are comparab le to the Cramer-
Rao Lower Bound. In the dynamic case, time averages of simulated weights behave

14
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as the theoretical predictions for the mean of the weights. In addition , both narrowban d
and broadband signals can be tracked with the same processor, suggesting that all tar-
get energy can be used for tracking.

The results reported herein strongly motivate continuing the effort in the following
areas of investigation :

(1) Analyze the sensitivity to plane wave Interfe rence , correlated noise (both
spatially and temporally), multipath, unloiown statistics, and tracking
dynamics.

(2) Through analysis and simulation determine the effects of the follow ing on
the adaptive tracker performance:

(a) Multipath

(b) An array of sensors

(C) Mul tiple targets to be tracked at different bearing rates

(d) r~Iu1ttple Interferences to be removed

(e) The number of filter taps required

(f)  The design of filter feedback and gain control parameters

(3) From the above analysis derive a system configuration and simulate on a
computer. Evaluate the system performance using computer generated data
and actual sea data recordings to be provided by the Naval Sea Systems
Command.

(4) Compare systems performance from the above evaluation with the

Cramer-Rao Lower Boun d and with existing Bearing Deviation Indicator
tracker performance.

(5) Formulate an optimal tracker structure based on the above evaluation and
suggest Implementation into real time hardware.

15
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APPENDIX I
+ SUMMED BEAM VS SPLIT BEAM BEARING ESTIMATION -

The steady state results for adaptively cancelling one beamformer output from another
are examined for two beams in a single summed array and for identically steered
outputs of a split-beam array . In both cases, the filter weights and the resulting mean
square error are derived. A plane wave signa.l, a plane wave Inte rference and noise

+ are present at each hydrophone. Energy arrival angles are initially assumed to be
known with one objective being to assess the sensitivity of the process to errors in

+ 
steering for use as a bearing tracker. The power spectra for all wavefo rms is kept
completely gene ral, but is assumed to be known a priori.

Summed Beam System

The situation being studied is shown in Figure 1. The signal , interference and noise
spectra at the kth array element are denoted by s(~ ), i(~ ), and 

~~~~ 
respectively.

The waveforms are zero mean and mutually uncorrelated . At any frequency, ~ = 2-f ,
the vectors of these waveform s at all the hydrophones can be expressed as follows:

e~~ I
e
~
2
~

I

1(w) = : i(~ ) = D 1(w)  i (w)  -

e~~s
e~

2
~s

S(w) = S(w) D3(w) s(w )

ej m
~s

I—I ’

-—  -— ~~~~~~~~-- -~~~~~~- I
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~~~

n
1

(w)

- n (w)
M

where

=

=

= interference energy arrival angle

= signal energy arrival angle

i(w) = inte rference spectrum at frequency w

s(w) = signal spectrum at frequency w

S ci = uniform element spacing

c = sound speed

The progressive delay vectors, D~ w) and I)8(w), represent the propagation of the
plane wave interfe rence and signal along the uniformly spaced M element line array.

Two summed beams are formed using uniform shading. The steering vectors are
D1(w) and D2 ( w) ,  where

e~~ 2 
+

D ,(w)  : ,

ejM
~~

The beam steered in the neighborhood of the signal is the ta rget beam , denoted by
d(w).  The reference beam steered to the interference is the input to the adaptive
filter, denoted by x(w).

1—2
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d(~ ) = D1~ (w) D1(w) i(w) + D1~(w) D5(w) 8(w) + D1 (w) N(w)

X(u) = D2~(w) D1(~ ) i(~~) + D2
4 (w) D8(w) s(w) + D2 (w) N(w) 

-

where the symbol + denotes the complex-conjugate transpose operation. To fo rm the
steady state complex weight at a single frequency requi res calcul ating the cross-
spectrum of d with x and the power spectrum of x. Thus,

E [d(w) x *(w)J = D1~ (D1 D1 P 1 + DSDS P + Q P ]  D2

E (x(w) x 4(w) 1 = D2 (D 1 D1 P 1 + D5D8 P + QP~) D2

where the frequency arguments on the D’s have been dropped fo” convenience, and
where

E(NN J =

Q = normalized spatial covariance matrix of the noise

The complex weight, B(w) , is

B w  E[dx *j
E (xx4f

.4. - -
- 

D1 [D~D1 P1 + D 5D5 P5 + Q P J D 2
D2

’ (D1D~ P1 ÷ D8D8 PS + ~~~~ 
D2

The error ~~, is

= d(w) - B(w) x( w)  +

+ 

= (D1~ - BD 1 [D 1 i(w) + D5 s(~~) + N(w )J

‘—3 ,.

La _
_ __ _

_ _ _

_ _ _ _ _ _ _  

_ _ _ _ _

_ _  
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and the mean square error , E[ l e t  2~, ~~

E[ C 
21 = (D1 

- BD2 ) [D 1D1 P1 + DSDS I~ + QP~J (D1-BTh2)

To facilitate writing E[ I 2~, let us define the following spatial responses.

a 1 = D1
:

Di 
= response of array steered to 

~
‘l’ to energy arriving at

= D2 D1 = response of array steered to 
~2’ to energy arriving at

+ = D1~D~ = response of array steered to 
~~~~

, to energy arriving at

= D2 D8 = response of array steered to p2, to energy arriving at

V = D1D2 = response of array steered to 
~~~~

, to energy arriving at

For a uniformly-shaded, uniformly-spaced line array .

— 

-j (~~~ ) (&~-c~~) sin ~~ (é1 -
— e 

~~ ~~ (4~-4~)

- M

- M+]. sin —

= e~ 
~~~~ 

- 

~~ sin 1/2 (é2 ~~~~~~~~

V — 

-j (~~ ) sin
+ 

— e sin 1/2

For a 1 and substitute d 1 for ~~~

The mean square error can then be written as

I 2] = 1a1i 2 p
1 + t a t  ÷ D1~~QD1P + 1B 1 2 

[(P 1)2P1 +

+ —

+ 
+ D2 QD2P ]_2 Re B (a 1~1 P 1 +a ~~ E~ + D1 QD9P~)

1-4
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where

— 
~~ 

~ 
~~~~~~~~ +o~~3 ~p + D1’QD2P~

- 

B — 

I~ iI
2Pi Ps I 2 ~

)
s + Dz~~

1)21)
~

For the special case where the noise is uncorrelated spatially fro m elemen t-to-element ,
the matrix Q 1 , the MxM identity, and the mean-square error IS:

{ (M2-G12
2)P~

2 + P8P1 (G15G21 
- G11G28 )2

+ + ~~~~~~~~ (MG 18
2 
+ MG28

2 
- 2 G15G25G12)

2 
+ P~P~ (MG 2J ~ + MGJ + 2 G11G21G12)

E[ I e I  I = 2 2G21 P1 + G25 P5 + MP

where

sth~~ ~~a ’~~Gal, = sIn 1/2

+ 
and the complex weight , B(w), is

B(w) = 
011G21P1 + GiSG2SP~ + G12P~ 

e J~~~
) 1~~2~G21 P1 + G25 - ~~ 

+ MP~

An inte resting example occurs for the case of correct steering, for which
+ and~~2 = . For this case + 

+

G15 = G 21 = M

G11 = G 25 = G 12

‘-5
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and

E[ I e f 
2~ = 

(M2-G12
2) [P 2 

+ 
~s~ I (M2-G12

2) 
+ M P P  + MP1 PHI.

- M P 1 + G12 P5 + MP~

Of additional interest is the case of a single plane wave broadband interference to be
cancelled. This can be evaluated by setting P~=O and examining the extent to which P1
is removed from the mean square error. Thus

M+1—j ~ 2 ) 
~ 1 2 ~ GB ( w ) = e

“I

and

(M2 - G  2) P
E [ I E ( ~ j /=  M

= 0I s
t
~2 4~l

Note that for this case the interference is completely removed and the weight is
independent of the Interference power. The reason for this is that the noise at the two
beam outputs has a deterministic correlation placed on it by the beamfo rme r . This

+ correlation is exactly the same as the correlation on the interference, which is the
sidelobe gain. Thus, the filter weights due to the noise correlation are the same as
the weights needed to cancel the interference. When interference is added to the
acoustic field , it is cancelled regardless of the interference-to-noise ratio, because

+ the filter weights do not have to change to accommodate the interference correlation. 
-

+ 

This will not be the case if the noises are correlated spatially or if the steering

+ 
vectors are not precisely aligned to the energy arrival angles. Then the noise corre- 

+

latlon on the beams are not exactly the same as the interference correlations and the
adaptive filte r will have to change to cancel the interference. For small interference-
to—noise ratios , the filter would not change to cancel the interfe rence because the 

+

resulting increase in noise power at the output would exceed the reduction in output
power due to removing the Interfe rence.

1—6
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The extent of the filter weights in time is twice the maximum time difference for

+ propagation from the reference beam to the target beam. For example, when the tv+ -o

beams coincide, I. e., sin = ~~ ~~ 
there exists just one weight at t = 0. If the

reference is at fo rward endu re and the target is at aft end.ire, then sin c1-sin~2 = 2
and the total filter delay is 2M~ , which is twice the time for the wavefront to
propagate across the aperture of the array .

It can be concluded that the correlation on the beam s due to the noise is helping to
cancel the interference. This is a desirable result when performing a post-beamformer
interference canceUation (PlC), but it obscures the ability to identify signal correla-
tion properties for trackin g. The noises produce residual correlation on the beams,
which the adaptive filter treats as a signal process. To decorrelate the noises one
must form the beams from separate elements, so that the two inputs to the adaptive
canceller are not linear combinations of the same set of processes. This motivates
con sidering the split-beam processor , in the next section.

Split-Beam System

The split-beam configur ation is shown in Figure 2. The 2M-array elements are
divided equally and a beam is formed with both sub-arrays steered to the target . The
objective is to subsequently process to get a refined estimate of the signal energy
arrival angle and to automatically follow bearing and spectral changes.
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The adaptive filter steady state impulse response is the inverse transform of the
single frequency complex weights. The impulse response, which is approximated by

the discrete filter weights, is -

+ 

h(t) = ejW t
~~~

= .j
~j  f~~e i(~j~~

) (44 (S1fl 4~1~ siU~~2) Srn-~ (A)~~~~ (sln~1-sin~2) e~~t~~~
J sin l/2 w~. (sin4’~-sinQ2) 2~’- 

+

M
= ej

~ t 
~~ e ~~~~~~ 

k

-~~ k=1
M

— 1 ~~ I j~ t -jw~ (sin~ - sin4 ’ ) d~
~~M L  , e e c  I 2 - ~~

k=1 —~~

M
= 

‘

~~~

‘ 

~(t — k ~- (sIn~’1 — sin4’2))

The filter weights are shown in Figure 7 for this special case.

k.i 
— 
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The adaptive filter will converge to minimize the mean square error , i. e. to minimize
the power in e.  This implies that implicit within the filter is estimation of the trans-
formation to make the waveform x look as much as possible like d. If propagation
delays or those shifts are the only differences between the half-array outputs, then
one should be able to extract this information from the filte r weights and the filter
shoUld be able to track reasonable dynamics.

Analysis of the steady-state perform ance in Figure 2 procedes in the same way as
the previous section. The signal energy arrival angle is from which a vector of

+ propagation delays, D5(~ ), is formed. The steering direction, ~~ , from which the vector

+ 
D(~,) is formed, is close to but not exactly Y5. Thus

sin 
~s e1” sin ‘~

e~
°’ 2~ sin y

D
5
(~~ ) : ,D(~~~) 

=

~~~~~~ sIn~~

and just as befo re,

d(~.,) = D~(~ ) D5(c~.,) s(w) + D~Nd(w)

x(w) D~(~ ) D5(w) e3M~~ s(~ ) + D4 N ( ~ )

I
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where Md and N~ are uncorrelated and all processes are zero mean . To form the
complex filter weights one needs the cross correlation of d with x and the auto-
correlation of x.

- 
E [d(w) x*(w)] = D~DSDS D e j M

~~ 5(w)

E (x(w) x *(w)] = D~D8D D  S8(w) + D~ Q D S~ (w)

where S~(w) and S~(w) are the power spectra of s (‘4 and N~(w) , and where for con-
venience the frequency argument of the stearin g vectors has been dropped. The
complex weight is +

B = E[d(’4 x~ ( ) ]  = 
!D~D I  

2 
e ~~

M
~~s~(w)

(‘4 EJx( ’4 x~ (‘4J 2
D D S~ S5(w) + D’ QD S (w)

For the case where the noise is uncorrelated spatially from element-to-element , the
matrix Q=L Also, let a (w) denote the spatial response of the array steered to to
energy arriving at Thus

a(w)~ D (w) D(~1,)

+ and

1a12 e -j M sin 
~~~ s ~~B(w) = 2 

+5 s _

~at S (~
) +

The resulting error power spectrum is

2fr~ ~~~ 
2 S ( w )  + MS~(w)

E ( J + € (w ) 12 1 = M S ( w )  2
+ Ia (w) S5(w) + MS~(w)

The filter transfer function , h(t), is the inverse Fourier transfo rm of B(w). It is
this function which the adaptive filter attempts to approximate with Its finite taps.

+ 1—10
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+ h(t ) L i ~
B
~ ~

= e j w(t-M sin Y )  
S5(w) ~a (‘41 

2 -

J fa(w) I2 58(w)+MS~(~’) 2~

In the broadband case both S5(w) and S~(w) can initially be considered to be spectrally

flat , I. e. independent of w. Then

h(t) = 
f 

e .iw (t - M~ sifl 4~5) ~~
8 10’ (‘4 

2

-~~ I0’ (’4 I 
~s~~

1
~n

Notice , that even with white input spectra , the power spectrum at the beamformer

output is colored by the frequency dependence of the spatial re sponse, a (‘4. Since

M+1 d . . . M d - + . +-j (—) w— (sin 4~ -sin ‘
~ 

) sin .~~ ~~~— (sin~~- sin y
2 c S 

— dsin ~~- (sin 4 -  sin~~5)

for a uniformly spaced and uniformly shaded line array, it can be seen that only for

perfect steering, I. e. = does a(w) not depend on frequency . For that special

case,

2 
r e3~~

t_ ~~~ sin
M P  I c - ,

h(t) / = M(MPs+Pn) 
j

M2P5 Md - -
= 9 6(t~~~~- sin~~5)

M P 5+MP~

MP /P
= 1+MP 5/P~ ~ ~~~~~~~~~~~~ sin

and the adaptiv e filter fo rm s a single weigh t at the correct inter—phase center delay.

I—il
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APPENDD~ U -

COMPA RISON OF TIM E AND FREQUENCY DOMAIN ADAPTIV E
TRACKERS WITH BROA DBAND SIGNA L INPUTS 

-

1. Steady State Equivalence of the Time and Frequency Domain Adaptive- Trackers
- with Broadban d Signal Inputs

This appendix considers the equivalence of the time domain and frequency domain
implementations of the adaptive bearing estimator , shown in Figures 4 and 5, respec- -

tively. In the case of a broadband signal in noise , It is shown here that the two imple-
mentations converge to essentially the same steady state weight vector and mean
square error if the FFT time window is long in comparison to the time delay differ- 

- 
-

+

ence between the signal at the adaptive tracker inputs. + +

For the broadband signal case , the time domain inputs to the tracker can be

written as

x(t) = s(t) + n (t) -

d(t) = s(t - A T 5) + ~ld(t) (
~

)

where s(t), n~
(t)

~ 
and nd(t) are zero mean, stationary random processes, uncorrelated

in time and independent of each other. Let the delay between the two inputs , A , be a

multiple of the sampling interval , T5. An FFT is performed on both x(t) and d(t) every

RT 9 seconds , so thai each frequency domain filter iterates every RT 5 seconds. With

M the FFT size, R = M correspond s to FFT processing without overlapping or gaps 
+

between time windows, R < M corresponds to overlapping FFTs and R >  M indicates

gap processing. 
—

Tb. Input to the adaptive filter in the k~~ FFT bin Is given by 
+

M-l -j - k
s L t n  + IR) T5] + 

~~~ 
1( n + IR) T5) e (2)

fl-i +

+ . - — - -- .5---
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and

M—l - 2
Dk (l) = E J s  

[ ( n + I R - A )  T5J + nd [(fl + LR) TSJ J  
e N

The adaptive filter in the k th FFT bin has a single complex weight with a mean steady
state value given by

Wk = R da* / R *  (4)

+ 

+ 

where R,~ * = E [X.K (i X k (i)]

Rda* = E [Dk (i) Xk (1)]

+ For the particular case being considered here , the covariances are as follows.

R,~~* =E[ E 
rn~~oI

S [(n +iR ) Ts] + n x~~
n + i R ) Ts]j  ~~S [(m~~ iR ) T ~]

— (n-rn) k
+ n [(m + IR) Ts]j  e ~ = M ~

2
8 + M(r~ (6)

using the Independence of s(t~ and n~(t) , and the fact that both are uncorrelated in
time. Also 

- 

+

R~j ,~*=E E~~~s[n +j ~ -A) Ts]+ nd [(n + iR) Ta l J  Is [(rn + IR) T5] 
+

2 1T 2 _~—j~j .—Ak (~) 
- 

+

e

This results because s [(n + 1k) T5] 5* [(m + iR +A) T5] = 0 except when m • n -A,
and this occurs only (M -A) times over the range of the dc~able summation. 

+

11-2
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Therefore the mean steady state weight in the kth freq uency bin is

— 
(M A) . 2 • —~j~k -

Wk
_ 

2 2 e (8)

+ - M ( 0 ’~ 
+~~~

+5 
The error output for this weight is

+ 

2 2
~~A k

+ 
(M -A) d 5 

- j  lvi ,,

- k~~ 
= Dk (j) — 2 2 e ~~~ (j ) (9) -

+ M ( o 5 + c~~~ )

+ so the mean square error in the kth bin is +

E [ k
2 

~~] 
= Ma~

2 
[i _(M~~~)2( + : 2) ] + M 

~d 
(10)

In order to compare the steady state results with that of the time domain filter ,

• we need the inverse FFT of the vector of complex frequency domain weights. From

(8), it can be seen that the ~th time domain weight will be

—  i M-1 j .~--.nk 0 ~ U

+ ~
+ 

a~ = M k = o k 
M = 

~~ 2 
~~~

= 
~~, ~~, .. .M-l (11)

M ( ~i5 +~~~~~~ ), n A ,
x

+ The corresponding total mean square error Is

E [~
2

(i)] = 
1 M - l  

E[~ k (I)] 
= 2 

~ 

~~~~~~~ 
~~2:s

2
~~

2] 
~~ 2

+5 -+ 
- _ :~~~~ ~+~~~:
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These are to be compared to values attained by the time domain weight vector,

0 , n,~ A ,

b- = 2 n = 0, 1. ..., M—l . (13)n
- S 

,

2
S flx

and m ean square error ,

E [~ 
2~ (i)] = [i - 

(~~ 2:~~~~)] ~~2 
+ 

~~d
2 (14 )

Comparing (11), (12), (13), and (14), it can be seen that for A= 0 the two filter
Implementations yield identical steady state results. Further , if the delay , A + ,  is a
small fraction of the FFT size , M, then +

M - ~~~~H M - 1

and the two implementations are essentially the same in steady state. This places a
specification on the size of the FFTs to be used in the frequency implem entation of an
adaptive tracker. It is also interesting to observe that the steady state of the frequency
domain implementation of the adaptive tracker does not depend upon R. This means
that, at least with respect to steady state performanc e, use of overlapping or gap FFT
processing will not affect the tracker performance.
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2. Transient Comparison of the Time and Frequency Domain Implementations

+ 

The two implementations can be compared by exam ining the difference equations
for the mean value of the weights In both cases using the inputs in the previou s section.
For the time domain , the difference equation for the mth weight is 

-

W (1~ 
+ 1) = W (n) + i~ [d(n) -~~~~ W~ (n) Xp (n)] X (n) (15)

which when averaged is

E 
[W 

(n + 1)] = E [.Wm 

~
] + 

~ 
~~ 

[d n  X (n)] - E [ X n  ~~ W (n) X~~n~ ] 
j

(16)

From the previous section,

1 )
E [d (n ) x m( n ) ] = E

~~ LS (n _A+ ) + n d (n ) ] [s(n _ m ) + n ( n _ Z f l )
j~~

( tT~~2 for m A
= +

~~ 
(] 7)

-+ ( 0 otherwise

and 

E [X m (n) ~~ W (n) X (n)~ E [W (n)] (
~~ 2 ÷ ~~ 2 )  (l~ )

so that +

E [w ( n +  l)] E [W m (n)~ [~ (~~2 ~~~ 2) ] 
~ ~ mA

11—5 

‘~~~~~~~ + - +~~
_
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where

( i  if m = A

6m A  = 
- (19)

- ( 0 otherwise

In the frequency domain, the difference equation for the mean of the complex weight
on the kth FFT bin, is

E [ Wk (n + 1)] = E [W k (n ) ]  + ~ E { [Dk (n) - Wk (n) Xk (n)] Xk (n) }
= E [W~k (n)] ~ 1 - ~i E[ 1 Xk (n) l ] 

1 + ~z E [Dk (n) Xk (n)] (20) 
+

These terms were also evaluated in the previou s section, where +

E (n) X k (11)] 
= M ( ~~2 

+ ~~ )
and

2ir Ak 
+5

E [Dk (n) X~~ (n)] = (lvi -A) a 2 e~ 
M 

+

Thus

£ [wk (n + 1)] = E [W k (n)] { 1 - ~ M ( ~ 2 
+ a 2

)} + M (M -A) a 2 e ~ (21)

Thi s expression can be inverse transformed to return to a time domain weight vector for
comparison with the time domain Implementation. By transforming back,

E [w (n+1)] = E [W (n)][1 -~~M (~~ 2 a 2
)] ~ M (M -A) a 2 6m A (22~ ~ F
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Equations (19) and (22) are now to be compared for transient response and weight
fluctuations. This is most readily done for the A 0 case. If the feedback coefficients
are distinguished from one another by letting 

~ 
.
~ 

and ~Fbe the tim e and frequency
+ domain coefficient s respectively , then

= $4 -

= M p  (23)

to equate the two difference equations. The steady-state results than agree exactly ,
where for A = 0 the windowing effects are neglected.

The time constant for the adaptive algorithm is T~ ~~
-
~~
-p . The input powe r ,

Pine isla rgerin the time domain by a factor of M, which is precisely the factor by which
is larger than 

~~~~~ 
Thu s the ~ 1’ln product is the same for both sy stems and there-

fore the time responses are equal.

The fluctuations of the weights can be compare~ using results derived in the
second quarter report. For the time domain filter with uncorrelated inputs

T
+ u r n  van w (n) Ho] =

L m

and for the frequency domain

2 +

r 
P

F~~~~ fl ,F

lim Var 1W , 
(n) I =

“ t ~~~~~~~

~ F

Again, for the time domain Implementation , 
~ ri

2 T is in the full ban d , whereas for the
frequency domain ~~~~ F is In the FFT bin , so that

2 2
~T n , T ~~~~~ F

11-7
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Thus for the frequency domain

- 

u r n  Var [wk (n) H0] = F a 
= 

$4 U fl2/~ - :
2 _ 2 $ 4 ~~ an 2 _ 2 $ 4 a f l/M

and for the time domain

u r n  Var 1w (~] = ~~ T a 
~

2 

2 
$4 a

fl2/~f 
2

L 
m 

~~~~~~~~~~~~~~ 
2 - ( M ± 2 ) $ 4 a~

The variances differ by the ratio

2
2 _ 2 1L- ° n

2 _ ( M~~ 2 ) l .~7~
Z

+ which is app roximately unity for $4a
11

2 small.

It is thus concluded that for all practical purposes , the frequency domain adaptive

filter model Is equivalent to the time domain adaptiv e filter.

1.
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APPENDIX III
MEA N AND VARIANCE OF A SINGLE COMPLEX TAP WEIGHT

WITH SIGNA L AND NOISE INP UTS

- 

In narrow bands at the FFT output , the adaptive filter is a single complex weight.
The weigh t update equations are given by

W(n+l) = W(n) + ~~ (n) ~~~(fl )

~ (n) = d(n) - y(n) = error (cancelled) waveform

y(n) = W(n) x(n) = filter output

d(n) = reference waveform

x(n) = inpit data sequ ence

W(n) = complex weight
+ = feedback coefficient.

Thus the filter is described here at the nth time iteration on the data sequence of a
particular FFT bin. One such device operates on each of the FFT bins spanning the
signal bandwidth . +

+

- - Consider again the structure in Figure 5, where the common plane wave component
is denoted by 1(n). Then

+ d(n) = a 1(n) + n1(n)

x(n) = 1(n) + n2(n)

where a is the complex coeffi cient for the inter-array phase shift.

+ I

rn-i

+5 
~~~~~~.5__+- - +~~~- _ ~~~~~

+
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It is assumed that the Inpu t sequences are zero mean, gaussian , independent of +

one another, and uncorrelated in time.

+ The error sequence t (n) is 
-

— (n) = aI(rt) — W(n)I(n) + n 1(n) — W(n) n2(n)

The mean square error is

E [~~ (n)~2] = E~ I[aI(n) — w(n) 1(n) 1 2 
+ [ i

2
~~~2 (n)w~~~2il~

The variance of the weight, Var [W(n)J, is needed to compute the output power. The
weight variance is computed as follows. The weight update equation is rewritten as

as

W( n+ 1) = W(n) [i 
_
~i~x(n) l 2] + }.~.d(n) x (n)

The solution to this difference equation is given by

W(n+l) = W(o) 
k=o 

(1 $4 } x~~); 2
) ~~~~~~~~~~~ d(m) x*(m) 

k=~~+l~~~~~~~~~~
1

where

k n+1 
~ 1 

+5

+

I 
+

111—2
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The initial weight W(o) can be set to zero.

Let

- F(m) = d(m)x *(m) 11 [1~~~~x~ ic)I 2]
k=m+1

+ Averaging to obtain the mean weight yields

E [W(n+1)] = 
~~ E(F(m)] = ~~ E [d(m)x*(m)) [1 E [1_~~x (k)J 2]

m=o m=o k=m+1

+5 n
= 

~~~ ~~~~

2[1
_
~~~~~~~

2]

~~~~fh +

where it is assumed that

E[d(m)x *(m)) = +

E [Ix (m)1 2] =

For d(m) = aI(rn) +

and x(m) = 1(m) + n2(m)

where n1 and n2 are Independent,

~. 2 
= aa 1

2

and

2 2 2
= 0 1 + ~n +

111—3

+5 ~~~~~ -—~~~~~ 
~~~~~:
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The summation can be expressed in closed form as

2

- 

E [w(n+i)) = 2 
i_ 

[i-. I.L (p 1
2+ ~~2 )] ~

1n steady state,

2
Uxn E [W(n+ 1)] = 

a 2 + a 2

To obtain the variance the mean squared weight is needed.

+ El jW(n+1) j 2~ = ~2 ~~ E(F(m)F*(q) ] = ~2 
~~ E[ J F(m) 12 1

m=o q=o m=o

n rn-i
+2~2 ~~ ~~

m=o q=o

The single sum is treated first.

E[I F(m) 1
2] E~~I d ( m)x (m)1 2 

~ fl ~~~~~~~~~~~~~~~~~~~~~~~
p=m+i q=m+ 1

= E [ld  (m)x (m) j 2] [
~ 

E ~ [1_~~x (p)1 2] ~
p m+l

The expectation separates because the terms in the produ ct involve inputs at later tImes, +5

which are uncorrelated. Using the gaussian assumptIon, +5

E [I d (m) x (m) 1 2] = ( I a I
2
~i

2 +~~n2) (~~2 +~~~2) + 2 ~al 2
~1

4

E
~I[1_$4Jx(p) I 2 ] I 2~ = l_ 2 $4 (a .1

2 
+ ,.~2 )  + 2 1.L2 ( 2  +~~~2)2 +

-i -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~--— +5- - - - - . 5+  - —rn - +5
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Thus

2 E 2 - __________________________

m=o °‘n +0
1 

_ 2
~ (a•n ~~ 

-

+5 . — 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
n+i} 

-

The double sum term in E [w2 (n+1)J involves E [F(m)F(q) ] which is treated as follows

E[F(m)F*(~ ] = E ~d(m) x*(m) d(~~x*(~ fl fl [i_ ~~x (p)~2] [i_ ~~ (v)~2]I

p=m+1 v=q+ i

In the double sum, q<m, so that

n n n n m

fl fl ) f l  11 1 1 (
p=m+i v=q+ 1 . p=m+1 v~m+1 v=q+1

+5 

Thus, since both p and v range over indices that are greater than m and q,

E[F(m) F*(q) J = E~ fl fl [i-~ x (p)12] [1~~ Ix (v)1 2]
p=m+l v=ni+]

+5 m
* * r 21~E d(m)x (m)d(q) x (q) fl L1~~I~

c (v)~
v=q+1

The first expectation is Identical to E [F2 (m)], evaluated previously. The second
expectation, since q is always less than in , Is

E ~d(m)x *(m)d(q) x*(q) fl [i_ ~ x (v)J 2]~ = E[d(q) x *(q)) E~d(rn~x*(m) [l_ ~~x (m~I 2]~
v=q+1

rn — i 
E[1.-~~x (v)12]

v=q+i
111—5

Ilik _ +
-
~~~~~ +5 
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The expectation In the center is

* 3 )  2 2 / 2 2
E~d(m) x (in) - .d(m)x (m)~ = aa 1 - 2I .~.a1i~ ~~ ~~

Combining the above,

- 2 2 \  2/  2E(~~(m)F*(qj) = Ji..2i ~~( or j  + u~ ) + 2 1.I. ~~ +o
~ 

/

m— q—i 2 2
~ (~r~~ 

2) ) 
~ 

2 a1 4 1-2 ~ (a’j ~cr~ )

The double sum term is then

n tn-i
2 2 4 2 2+ 2 E(F(m)F*(q) ] = ~~ ~i 

i_2
~~(0_I +~~

m o  q=o

~~~ l l_ 2 $4(0_1
2
+a~

2 ) + 2 $ 4
2 

(0_1

2 2)2
)

f l t n

L i  

. [i_ ~(0_I
2+ 0_ 2) ) m-q-i

= .L 2 1a1 2 1T1 i
i_2~ (uI

2+a~2 )~

2 2  2 2 n—m

~~~~~~~~~~~~~~ 
(0_i ~ ) I

___________________

~~ (0_ ~ 
+0_

fl 
)

~ 

~~~~ + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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ii rn-i

~2 EEF(rn)F*(aJJ = ~~ 2)]
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Thus in steady-state, -
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To obtain the variance, subtract the mean steady-state weight squared, with the result

that

2 ~~~~~~~ 0. 2+0. 2 )
Var[W( xi )) = 

(0.1
2
+0

fl
2) 1 2_2# .~(0.~2+a~2 )  I

Por a special case, if 0.~2 >>0. 2

~J. o•~ (
~°I 

+1~
Var[W( r )) — 22_2

~

To determine the cancellation level, the above result is used in the evaluation of the

mean squared error , I. e., the power In the canceller outpit.
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For the special case where a~
2

>> ~~
2

E [i ~ ~ ~ ~~~~ ~~
2 2 (1 - ~aI )
2-2

LI in addition, Ma 1
2 

<~ i, then

• ~~~~ (~ )t 2 ]  ~ (1 +1 0,12) a 2

and the common waveform has been cancelled down to the uncorrelated noise flow .

For the tracking problem, the low signal-to-noise ratio case is more critical.
For ,. 2

E [j (~ ) J 2 ]  an2( 1 + Ma n
2 I~ I 2 + i )  

+ !a 2
~~crt

2

• The time response La given by the time constant, r 0, for the LMS algorithm (1)
• which can be approximated by

C 
- 2~Pin

where

= time between Iterations
Pin total inpat power.
These results can now be used to evaluate tracker perfo rm ance in Appendix rv.
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APPENDIX IV
VARIANCE OF THE SPLIT BEAM ADAPTIVE BEARING ESTU~iATOR

AND COMPAR~~ON TO CRL B

With reference to Figure 6, for the continuo us adap tive filte r , ft is assumed
that

XL (t) - s(t _
~~ sin e)+n L (t)

X~ (t) a $(t) + n R (t)

where s(t) , 
~L 

(t~, and 
~ R (t) are zero mean, white random processes on 

~~~~~ 
~~~~ 

with
power ‘~ ~~~ 

and 
~N’ 

resp.ctlv.ly.

Also

d a distance between phase centers of half array s
o spe.dofs~ ind

angle betwee n plane wavefront and axis of phase centers

• The length of the adaptive filter is assumed to be long in comparison to the correlation
tim es of the random processes involved.

Let the steady—state Impulse response of the filter be h(t) and the transfe r function
H (~ ). The mean value of the impulse response is the Wiener filter , so, from
Appendix UI, the corresponding mean transfe r function is

P5 -j 4aine
E (H( w)3 a

S N

and the correlation of th. transfer fUnction is

2 ~ MPN
(2P5 + ~N1

E(H(~1)H*(w2)J — (P5 + ~~~ 
12 2 M(~5 + ~ N~

1 ~ -
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Th. angle, 6 ,  is to be estimated by d.t.rmlning th. value of ‘for which the im~aila•
response, h(r) , Is a maximum. This Is an estimate of the delay between arrivals of
th, signal wav front at th. half array phas. centers, and can be converted to a bear-
ing .stimag., ~ , using

I —

The value of ê for which h(~) is peaked corresponds to the value for which the derivative

of h(r) with respect to e is sero. In th. neighborhood of th. zero crossing the derivat ive

of the im~ilse response Is approximately linear. Tb. ftuc~aationi in the derivative of
the transfer fUnction then map thr ~agh the linear fUnction to provi de an estimate of the
mean square •rror In the angle estimate . Thus the mean value of the derivati ve of
the transfer fUnction , the standard deviation of the deriva tive of the tr ansfer fUnction ,

and th. slops of the mean of the derivativ• of the transfer fUnction are required, at

the point where ~ - 8. Then the errors in th. transfer fUnction can be mapped Into

the errors in one ’ $ ability to extract the peak of the transfer fUnction as follows :

var 1~’2 r ah(T) 
~1/2 L a~~J dVar tO)  — sin e

3 E C ~~~
) ]  /

This approach Is motivated by the treatment of BDI spi lt bea m trackers by MacDonald
and Schulthelss In Reference [I) . The derivative of the Impilee response and its
statistics are

h(r) 
~~ i” H(~ ) e~’~’dw

E [ d htr)
] - -

~~~ 1 ~ ~S~~
1’N •-i’4 sin 8 ,JWt d~

— 4 
~ “N [ u sin - sin 8)]
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wher , the bend is assumed to be limited tO (W L,~ U). The mean value of the derivative
*5555 through uro when r — d/e sIn 8 , so that determination of the zero crossing pro-
vides an unbiased estimate of 6. The variance of the derivative is needed as well, 

a

Var [~~~~~] _ E [ (  
~~~~~~2

] ~~E2 [.~~~~]

Note that the mean value of the derivative is zero when - e so that the variance is 
a

the mean square value at this point..

var - 
(2fl ) 2 LJ”i ~‘2 E [H ( ~ i) 11*(’12)] Si” ~~~~ dw1 dc~3

where u r - d/c sin 8. Using the correlation of the transfer fUnction , the variance is

var [~~~~1] — 
(2n) 2 f f  K1 w1 w2 e~”~~ 1 ~~~ (2 w ) 

~~~ ~~~~ 
d~ 1 d~ 2

+ 
1 11 K 2 w1 ‘~2 ~“ ~~ 

- “2~ dw 1 dw 2(2w) ~

where

~~N (2P~ ~~~N1
K -1

2
K2 (“S~~ ”N )

The second integral is zero, when v a 0, and the delta function reduces the first
double integral to a single integral, with the result that

v r dh(r) ’l 
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where apin th. processes are band limited to (ct, wa). Since r d/c sIn e ,

ah~1 - _ _ _  - 005 0

The de~~mInator of the e~q,ression for Var [0) is

aE [ A h f l l /  
_ _

• 

* 
L at~~ ,~~~ooa 0 L E I dhft)
ae I o dr L d ~

d ~—~~ sin 9
‘—— sin e

C w
- * cos 8 ~~~~
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~~~~~~~~~~ J dw 008 [ w(r
c sin 6~]

- cos e ~ “S 
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3; 

~
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Thua,

1/2 ~ —1/ 2
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(2P5 + “N y -
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~/i d COSO L~~~~ 
- 

~~ 
+ 

~N) J  L ~
The behavior with extreme cases of signal-to-noise ratio is of interest. For P~ >>

1 1/2
• var 1’2 

~~ 
C .i~~ ~ p ) 1/2 r W U “L

~J~ d cos 6 L

.
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and Lor PS < < PN,
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The critical concern ii the behavior of the variance at low signal-to-nois. ratios .

The objective therefore is to compare the above e~cpression with a performance
measure which is invariant with processor stractare. The Cramer-Ran Lower
Bound (CRLB) is such a measure. The last equation In this section is thprefore related
to~ths CRLB in the next section.

COMPARISON WITH THE CRLB

The Cr anier-Rao Lower Bound (CRLB) provides a lower bound on the variance
att~In~bIe by any unbiased estimate of a parameter. It Is computed In Reference [1]
and repeated here for comparison with the variance obtai ned by the adaptive filter
bearing estimator. From equation (19) of (1).

—1/2 —1/2

1/2 
- 

[ 
~
‘S~~

’
~ N “~U

3 -
Var ( 8 ]  

d cos 8 ‘ifi  
+

• 
2 

~ S’~ N

For small signal—to-noise ratios, i .e. , l’~ <<~~~~~

—1 / 2

V 1/2 > 
..fw~ ..~li. [~~~~

_
-

• d cos 0 T s L

where a total observation time of T seconds is assumed, ~~~~~~~~ the signal-to-noise
ratio at the split array outpit, and d is the distance between half array phase centers.

Since M P N applies to the discrete version of the adap tive filter and the CRLB uses
continuous data we must relate the discrete adaptive filter weight updates to a continu-
ous process. Let and ~~~ correspond to the feedback coefficients in the discrete
and continuous versions respectively. In discrete form

W((n + 1)aAi) W(n.A) + Md 
( (n.~) x (n.~)

or

W((n + l)A) - W(~.A) 
— ~d (nA) x (nA)

• w-s H
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Taking appropriate limits provides the differential equation form, I. e.,

Tlm.e for the cont~’~’ous case - Md/Al. This can also be interpreted as though the
power spectrum in the contiaioua case is the discrete power spectrum times A, with
M fixed in both.

One other term must be reconciled for the two expressions to be compared, the
relation between MP N and the value of EtII (a,) ] at t = r , Previously it was assumed
that the mean t ransfer function ECH (~ )] had reached a steady state value when deter-
mining varhu/2 C~] above. Actually ECH (~ )] is a function of t and the expression for
E(H (w)] used in computing Vanh!2 

~3] above is ECH (J~ , ~ )). We desire E[H(~ie , t))
where t — 0 is when the filter is turned on. It is easy to show that the continuous time
app roximation to E(H( ~ , t)) is

/ P \ —j ’~~ ’ sin9 r —LI T
E(H~~, t)] = (~p ~p ) e C I 1 — e C

5 ” N L

r —t/T
= E(H(~~ io )) [1_ e 

C

where T0 is the time constant associated with the mean weights.

Furthermore we assum e that the variance of the weights has already reache d
steady-state so that no correction for a transient varianc e term is required. From

• Appendix ifi , it can be seen that the time constan t of the variance is approximately
half as large as the time constan t of the mean for U €~

2 
+ < < 1 .

Thus, taking into account the transient mean weight , for the continuous comp~trts on ,
the variance of the adaptive filter bearing estimate becomes

—1/2 1

yarh/’2 
~~ = 2d ~~~ 

~N 
(~

L PN 
~ 

1/2 [‘;~ 
‘]
~ 

[1 - e~~
/’T

C]  

-
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The convergence time for the adaptive process , i.e., the time for the root-mean-
square-error learn ing curve to decay by l/e of its initial value, is

T~-

•o tha t 

-

— 1/2

Var 1/2 
(~~ j 

a c 5; ~ N [wu
3 

— “

~~ ] 

1 ~ - e
_ t

~
Tc

• 2dco s 6~iç ~~~~ L

Comparison with the CRLB at low signal-to-noise ratios results in the following ratio
• —1

Var 1
~

2 1~~1 1 /.i’~ 1i _ e ~
T
~
’T

~
CRLB ~~

r
SIT L

The optimum selection of T~ 
involves the t rade-off between weight vector noise and

mean value. Table 10 shows the ratio for various T/T C. The minimum is at approxi-

mately T/T~ 
= 1 and is 1. ia. Hence , the split-beam adaptive bearing t racker is only

about 0.5 d.B degraded from the CRLB.

It can thus be concluded that the adaptive filter can be used to estimate bearin g in

close proximit y to the theoretical limits in pe rformance. Althoug h Its performance

degrades at low signal-to -noise ratios , so does that of all processors. Indeed , the
• split beam adaptive filte r tracke r behaves J ust as the CRLB , throughout the enti re

range of signal-to-noise ratios and bandwidths.
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TABLE 10 Var 1~’2 (~]/CRLB VS. T/T~

T/T~ Vanl/’2 C&VCRLB

0. 49 1.25

- 
1.00 1.13. 

-

2. 00 1.16

4. 00 1.43 j
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APPENDIX V
DELA Y ESTIMATION WITH A DISCRETE ADAPT iVE TRACKER

In the preceding section , an expression for the variance of the bearin g estimate of a
continuous adaptive filter configured as an adaotive tracker was developed. The esti-
mate is based upon determination of the peak of the continuous Impulse response of the

• adaptive filter. In practice , however, the adaptive filter is discrete In Lime and of
finite length, and the peak of the Impulse response must be determined by interpolating

• between the discrete sample points. The interpolation process increases the variance
of the bearing estimate with respect to that of the continuous case. This section de-

• scribes a numerical method of determ ining the peak of an Interpolated impulse re-
sponse , and develops an expression for the variance of the estimate using this method.

Let the discrete adaptive fil ter weights be denoted h(m T5) for m = 0, 1 ... M-1, with
• T5 the sample inter val and M the num ber of taps in the time domain adaptive filter.

The value of the weight vector at some time, t , between filter taps “~~~~ be 1~ terpolated
as

- 

rn-I sIn 2 B(t— mT 5)
b1(t) - L h(mT 8) 2 B(t—mT ) a.)

m=0

This is a truncated expansion of the discrete samples in series of orthonornial func-
tions. If the h(mT5) are samples of a perfectly bandthnited impulse response, h(t) ,
then (1) can be considered as a finite approximation to the sampling theorem.

In the adaptive tracking system, we are only interested In the location of the peak of
h1(t), not in the entire function, so a numerical method is used to locate the peak.
The peak of h1(t) will be in the vicinity of the h(mT5) with the largest valu e, so if the
largest weight occurs for m q, then the initial guess for the location of the peak ~

to = q T 8
The slope of h1(t) will be zero at the maximum, so a bisection techniq ue is used te
find the zero crossing of

V-i 
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• M— 1 r 005 2 B(t—mT ) sIn 2 B(t—mT5) 1
h’1(t) — h(mTs) L t — mT — 2 j (2)

m—0 a 2 B(t—mT5)

By obser ving the sign of b’1(t), at the current estimate , t1, a new estimate Is
computed as

= + ~ [ h’ 1(t~) ] 8~ (3)

• where

= current step size

and
(+1 if h’i(t i) ) 0

I [h’ 1(t~) ]  =

(— 1 ff h’1(t~) < 0

Each tim e h’1(t~~1) and h’1(t1) have opposite sign, the zero crossing has been passed ,
and the step size Is divided by some F > 1. The procedure stops when

— (5 h’1(t1)~~~ (4)

in which case t~ is the estimated location of the zero crossing, and hence , the esti-
mated delay between the tracker inpu ts .

The variance of this estimate can be determined In the same way as that using the con-
tinuous adaptive tracker in the preceding section. When the tracker is implemented in
the frequency domain, as shown in Figure 5, the mean and variance of the complex
weight in the kth frequency bin has been shown, neglect ing windowing effects ,
which are unique to the frequency domain Implementation, to be

2irr 1 PsE I W ~~I =
~~~~ ~ e (5)

L ’ ~~J S 4 N

and

1/2
r i I ~MP (2P +P ) 1ar L k L s N ~ 2_Z M M~~s+I’N~ J (

V-2
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We let 11(k) = Wk, so that the time domain weights can be written as

M—1 -

h(mT5) = 
~~ 

11(k) e M (7)
k=O

Now, consider an Interpolated Impulse response, h1(t), using a general Interpolation
function, f(t), that is

M— 1
h1(t) = 

r~~O 
h(mT 5) f(t—mT8)

M-l M-i 2ir~~
= 11(k) f(t—mT8) e

1 M (8)

m=O k=0

Following the method described for the variance of the estimate with the continuous
adaptive filter , the variance in the dete rm ination of the peak of h1(t) can be computed
as

1/2 1 ~h1(t)Var

yar i/2 ri 1 = 
L 

(9)
I. 2J  

1~~ h
1
(t)

~E L ~~~~.

Now, assume that the Inputs to the adaptive filter are bandllmited to some bandwidth,
Bs, so that

11(k) = 0 for k > (J—1) = LBsTs] ~ (10)

where ~XJ is the largest Integer less than or equal to X. Further , In order for h(mT 5)
to be real , we require

11(k) = H*(M_k) (11)

Using (8), it can readily be verified that

• V-3



M— 1 M— 1 M—].

Varl/2 [h1 1(t ) ]  = ~~ Var CH(k)] ~~ ~~ f’(t-m1T5)
k~0 m1=0 m2=0

j~~(m1—m2)k
- 

f’(t—m~T5) e

and

~ E [h ’~~t ) ]  M-1 M-1 2ir
= 

g E ~~~~~ f”(t-mT5) e (13)

We want the mean and variance of the weights In (5) and (6) to mee t the constraints of
a.0 and (11) . This leads to

2ir
• ~S

• e , O~~~k~~~J— 1

E [11(k)) = 0 , J- 1 < k < M-J (14)

~s -j~~~~(M-k)
• e , M-J ~~ k~~~M-1

• and

(Ps+P N)(2_Z
~4.M(Ps+P N)) , 0 c k ~ J-1 or M-J s k s M-1

Var [11(k)) = 
• 

(15)

-

~~ 

. 0 , J - 1 < k < M - J

Using this In (12) and (13), we obtain

H

~ 

~~~~~



1/2

v 1/2 
~ 
A ~~ - ~‘~~N ~~~~~~~~~~~~~~~~ar L ~1 J - 

p5
2 2_2

~4M(Ps4P N)

1/2
- 

M ft (t
~

_m
iT5) ft (t z

_m
2Ts) [2l~e(’~~ e

J
~~~

(m1
_m

2
$)~

• n~ =0 m2=0 K=0

:~: 

f’t(t~
_mT5) 

[
2Re(~~~ e

(m_
~~~)]

1/2

• 1 ~~~~ ~~~~~~~~~~~~~~~~ 1
- 

~ 
2_ZILM(Ps+P N) j K1 (16)

Note that K1 depends upon the Inpu t bandwidth, and the choice of interpolat or function,

• f(t ), but not on the signal to noise rati o. This is analogous to the term

—1/ 2

_ _ _  

:
L

In the expression for the variance using a continuous adaptive filter. Equation (16)

can be furthe r simplified by writing the summations on k in closed form as

Re 
[ 

~~~ e
l mi-m2)k ] = 

sin [~ 
(m1~rn2)] 

cos [(~~
) ir (m1-rn 2) ]  (17)

sin [~ 
(mi-rn 2) ]

and 

Re [
~ 

e
1
~~~~~

m
~~

] 

= 

sin [~~ (A-m)] 
cos [(f) (A-rn)

] 
(18)

sin

~ • •;• •~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •.• -~~~~~~~~
•
~~~~~~~~~

--
~~



This gives

l;2

M i  M- 1. sin [~ j(m1
_m

2)]

~~ f’(t~
_m

iT.)f’(t~
_zn2T.) — 008 

[(f) 
IT (mj_m

2)]

- 

m1=0 m2=0 sin 
{~~(m1

_m
2)]

rwjM-1 s1nL 4~
m)

~~ f”(t~-mT5) cos iT (A _rn )]
m-O sin

(19)

For the In terpolation function used here, (1), we have

cos 2wB(t 5-mT5) sin 21rB(t~
_mT 5)f’(t~—mT5) = — 

‘t T — 
2 (20)

~~~~~ ~) 2 Ir B(t~
_mT 5)

f’(O) = 0

2 sin 2irB (t -mT ) 2 cos 2irB(t -mT )
— T  = Z 

— 
Z S

• 2IrB(t
~
_mT

5) (t~
_mT

5)

2~~B sin 21rB(t~
_mT 5)

(t~
_mT

3) (21)

= — 
(2irB)2

3
• Using (19), (20), and (21), K1 can be evaluated numerically on the computer for any

• choice of signal bandwidth, Bs, Interpolator bandwid th , B, filter size , M, and sample
Interv al , T5. The computed value of K1 can then be used to compute the variance of
the delay estimate , ‘

~~~~
, from (16), for selected signal-to-noise ratio and gi. Note that

for typical values of ,&, M , and 
~~~~~ 

the factor

~~~ 
____ ~~~~~~~~~~

~ L ~~~ 2~2~LM (P~+P~ )

in (16) is essentially independent of M , the filter length.
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It must be noted here that this resul t applies only when the variance of h1(t) falls in the
linear portion of h’1(t) near the peak of E[h1(t)]. This Is equivalent to saying that the
largest of the discrete weights must be In the vicinity of the tru e peak . This will be
true when the mean of the largest weigh t is large in comparison to the variance of the
weights. For a particular inpu t signal to noise ratio , this can be assured by s.elect in g
the feedback coefficient , p. , sufficiently small .

A number of simul ations of an adaptive tracker using this Interpolation scheme hav e
been performed using the configuration shown in F igu re 13. u sing the results in this
section , the estimation performance has been calculated on the computer , and Is
shown in the graph of FIgu re 11 as a function of SNR and for several values of p. Also
shown are sam ple variances of the estimates der ived from the computer simulations
described in section 6. It can be seen that when js is sufficientl y small , the theo-
retical predictions and simulation results agree quite well. However , when ~ Is not
small enough to be consistent with the assumptions of this section , the vari an ce of the

• estimate is much larger. This is because fluctuations in the weight vector cause the
largest weight to appear in a bin other than the peak of the mean weigh t vector.

• In order to select p. sufficiently small to achiev e the predicted results , we wan t p. such
that the mean of the largest weigh t Is large in compari~on to the weight variance. Fig-
ure 12 shows the ratio

E I W
L. ~~~~~~

R-
\T ar ’ 2  W

as a function of SNR for several values of p., and for the configuration simulated above.
Comparison with resu lts of the simulation s thd.t cates that R must be nomin ally 1.5
to give the predicted results. Then , for exampl e, if perfo rm ance were required down
to -20 dB for the simulation , p. c 2 17 would be required.

In order to give som e feel for the meaning of these results in term s of bearin g estim a-
tion , Figure 11 also shows predicted variance of a bearing estimate for a broadside
target for two arrays , a small tactical arr ay with 11.46 feet between split array phase
centers , and a towed array with 114.6 feet between phase cente rs .
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APPEND IX VI
TRA C KING BEHAVIOR OF THE MEA N WEIGHTS FOR VA RIOUS SIG NA L

MODELS AND A LINEARLY-TIME-VARY ING DELA Y

1. Tracking Behavior of an Adapt ive Filter Tracke r for Single Fr equency Inputs

with Linearly Time-Varying Bearing In Uncorrel a ted Noise

An LMS adaptive filter is configured as a canceller between two half array beam formed

I. outputs to perform split beam bearing tracking. The track ing performance is analyzed

for a narrowband signal that Is moving such that the delay between split array phase

centers Is linearly changing with time. The time varying mean weights are derived La

both transient and steady sta te conditions and compared with previous results.

The LMS adaptive filter Is configured as a bear ing tracker in Figure 2. The objective

is for the adapt ive algorithm to properly estimate and track change s In the pr opagation

time between split arrays and map that time estimat e into an estimate of signal energy

arrival angle. The narrowband signal case In uncorrelated noise is treated herein. It

Is assumed that 8(t) is such that the delay, r(t) , between array phase centers is linear

with time. Since

= ~~- sin e(t)

for a split array aperture of d meters in a sound speed of C0 meters/see , the assumption

of linear~ r(t) corresponds to assuming smal l linear 8(t), such that sin 8(t) ~ 8(t) and

~(t) ~ ~~~
- ~ (t) — Ct.
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The model for the moving case is as follows . The outpu t of the upper beamformer in

Figure 2 produces the reference waveform , d(t),  where

d(t) = A cos ~~~~ 0) + n1(t)

The filter input is the lower beamformer output

x(t) = A cos (w0t — r(t) + 0) + n2(t)

CQ d
A cos(w 0t — sIn 8(t) + + n2(t)

= A cos qs(t ) + n
2

(t)

where ~(t) is the total signal phase. The frequency of the signal portion of x(t) is the

time derivative of ~ji(t) , so that

2irf(t) = = - ~~— cos e(t)~~~ (t)
)

Thus the effect of the moving plane wave sIgnal is to introduce a frequency shift on the

sine wave. The ability of the adaptive filter to track this moving frequency shift will

now be analyzed.

ANALYSIS

The algorithm for changing the complex weights in the adaptive filter Is given by

• W (n+1) = W(n ) ~ ~ (d(n) — XT(n) W(n) 1 X (n)

= W(n) + ~ (d(n) X*(n) - Xt (n)XT (n)W(n) J (1)

where

W(n) = filter weight vector a time sample n

d(n) desired signal at time sample ii

X(n) = observed data vector of samples within the tapped delay line

VI— 2
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and where the symbols * and T denote complex conjugate and vector transpose respec-

tively. Figure 8 show s the data vector X(n) In the tapped delay line. The scalar d(n )

is

i” nAt
d(n) = a~ e + n1(nAt) (2)

and the vector X(n) Is

7 
1% (nAt — i-(nAt))

e

• Jw 0 (nAt—ö — r(n.At—â))
e

jw (n.~t—2 6 — r(n.At—2 6 )
X ( n ) = a s 

e + N 2

J ~~~ 
(n~ t—M6 — r (nAt—Mó))

e (3)

where

6 = time delay between taps

At = algorithm sampl ing time (usually At = 6)

M = number of taps.

The equation of the mean weight vector is obtain ed by averaging (1) and assumIng that

the data sequence X(n) is independent over time.

E~~ (n+1)J = E~~~(n)J + 
~ 

R~~ (n) - R~~ (n) E~~~(n)J (4)
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Using the Inputs in (2) and (3), Rda and are calculated as follows:

I e ’
~~

j c~ [r (nA t—6 )+6J
e

* 2R~~(n) EEd(n) X (n)J = a

3% (r(nAt—M6) + M O]
e (5)

* 2 ~~o fr (n.At—k O ) — r(n.At—16) + ~k—1)a JR,~~(n) = EtX(n) X T~~)J = ~ e 7 -

+ a _ 2 1 (6) - ‘

where k and 1 range from 0 to M and I is the MxM identity matrix for the covariance of

the uncorre lated noise.

Not e that both second order statistics are dependent on nAt, reflecting the non-st ation-

arity of the input processes. Define the matrix D (n) as follows:

/ jc~ ,~(nAt )
e I H

~~~ [r(n.At—6) + 6]
e

D(n) —

~ jc~~ fr(n.At—M6) + MO)
(7)

I
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U
Then

I Rth~n) — o~~D(n) (8)

R~~(n) ‘4D(n) D~~
’(n)+ a_~

2 I (9)

If r(t) — Ct , as assumed at the outset , then

1
j~ (l-c)6

e
- 3w c nAt

Din ) = 
e 

= e
iw O cnAt D(0)

- 1 
~ 

(1-c) MO - 

-

(10)

I and

1 2 Jw c n ~ t
R da(n) a ° D(0) (11)

2 *T 2R,~~(n) = a 5 D(0) D(0) +~~n ’ (12)

I Using (11) and (12) in (4), the mean weights are

2 2 *.r )  2 jw0 cn.~t
E(W(n +1)J = I - M [ a~ I 4 0 s D(O)D (Ofl E[W (n)J +~~a~~e D(O) (13)

• The difference equation (13) can be solved explicity for E(W(n)~. Assuming that

j E~W(O)~ — 0, 1. e. zero initial conditions ,

2 3w c (m4~l)At 
—1

• 
E(W(n)J = a e (I—A ) 1I—A~~1 D(0) (14)

] where

-jw0 cAt 2 2A • e - u I ~ ~ 
D(0)D(0) (15)
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Let

-3w0 cAt
a — .  (16)

2
p a

2 (17)
— ~ (i—u 0~ )

D — D(O) (18)

Then

(I-A)~~ = - a (i_ ~w~2)J 1 [
~ 
- 

BOD~~
] (19)

and

A~D = - (a_
2 

.
~
. Mo 2

s))] D (20)

Thus

E[W nJ = 
l a(1 a 2 ) - 1~~~,3 DD*T] 

~

1 - [a(l~+fl
2+Mcr~))] } D

E~~ (n)J = a~~~~~
’
~ 

~ 
- ~n (1_P (a~2+Mu2~)

°
] 

D (21)

Equation (21) is the transient behavior of the mean value of the weight vector. Note

that It is time varying, even in steady state, since the phase term does not

decay as a ~~~~ . In steady state , if

- 
~t (a~

2+Mc~) < 1

I
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then

I i
J 3w0 (1—c)6
I c

u r n  E(W(n)J = ~~~~~~~~~

3w0 (1— c)M6
• (22)

The weights are all of magnitude

2

1+M3 i - a+a~j 
(a~~

2
+M a

2
~~
) 

(23)

but have a phase that Is precessing across the tapped delay line as time progresses. The

• weights may be viewed as a sinusoid at the shifted frequen cy of the Input , w0 (1-c), with

— a phase that is “barber polling” along the delay line. The weights are shown in Figure 9

as time changes.

In the stat ic case , c = 0, a = 1, ,3 = ~~~~~~~ and

/ ‘J w ö  \

2 2
E(W(io)] 2

1+M a5/c~

jw MO
\ e 0 (24)

I
which agrees precisely with previously derived results for the LMS algorithm in steady

state with a statonary sine wave Input In uncorrelated noise.
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Conclusio ns

The transien t and steady state tracking behav ior of the mean value of the LMS adaptive
filter tracker weights has been derived. The filter corrects a frequency shif t and
doppler precession due to the angular movement of the target In bearing.

2. Trackin g Behavior of an Adaptive Filter Tracker for a Broadband White Signal
with Linearly Time-Varying Bear ing in Uncorrelated Noise

The adaptive filter split—be am bearing tracker analysis is now extended to Include
a broadband spectrally white Input signal that is moving in bearing. The tim e varying
mean weights are derived in both transient and steady state conditions.

The LMS adaptiv e filter is configured as a bearing tracker in Figure 8. The objective
is for the adaptive algorithm to properly estimate and track changes in the propagation time
between split arrays and map that time estimate into an estimate of signal energy arrival
angle, 0 ( t) .  I t is assumed that 9(t ) is such that the delay , -r(t) , between array phase
centers is linear with time. Since

r(t) = sin 8(t)

• for a split array apernire of d meters in a sound speed 3f C0 meters/sec , the assumption
of linear ~r(t) correspond s to assuming small linear 9(t ) , such that sin 9(t) ~ 0(t) and

r(t) ~~ 0(t)  = Ct.

The input signal, s(t) , in this case is a zero mean Gaussian random process that is
spectra lly white over the band corresponding to the sampling frequency. The total sign al
power is and the total uncorrel ated noise power is cr~ . As In the prior analysis , one
split array output , d(n), is the desired signal for the adaptiv e process , and the other is
the inpu t , x(n), to the adaptive filter. The ability of the adaptiv e filter to track the bear-

• big changes in the broadband plane wave signal process is analyzed In the nex t section.

Analysis

The algorithm for changing the complex weights in the adaptive filte r Is given by

W(n+ 1) = W(n ) + u [d(n) — xT (n)W(n fl X~ (n)

W(n) + ~ Id(n) X~ (a) - X~ (n)XT (n)W (n)J (1)

- ~~~ ~~~~~~~~~~~~~~-—--
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where
W(n ) = filter weight vector at time sample n
d(n ) = desired signal at time sample n
X(n) = observed data vector of samples with in the tapped delay line

and where the symbols * and T denote oomplex conjugate and vector tran spose respec-
tively. Figu re 11 shows the data vector X(n ) in the tap ped line . The scalar d(n) is

d(n ) s(n .~t — r (n~lt)) + n1 (n&) (2)

and the vector X(n) Is

s(nAt )
s(n.~ t — 6)

X(n) s(n.M — 26) + N9 (nAt)

• s(n~~t - M6) (3)
where

6 ttn ie delay between taps
= algorithm sampling time (usually At 6)

1\E number of taps.

It is assumed that ~r(t ) r- Ct and that the signal is white , so that

E [s(n) s(m)j = A (n—rn) (4)
where

A( n—m) = ~ 1 If n=m
0 otherw Ise

V l— 9
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The difference equation for the mean of the adaptive filter weight Is:

E IW(n+1)) -Il - ~iR ~~(n)j E ~W(n)J + M R (j~ (a) (5)

where

— feedback coefficIent
a MxM Identity ma~ ix
= Efd (n ) X (n))

R,~ (n) E(X(n ) X~~ (n)J

If R,~~(n) Is independent of n, and if the initial mean weight E (W(o)J 0, than
equation (5) can be re-written as

ELW (n)J = [I - ~~~~~~~~~ R~~ (Ic) (6)

The second order statistics can be calculated from the input waveforms , as follow s:

R,~~(n) = (a5 
+ ~~ ) 1 (7)

A (cnAt)
A (cnAt - 6)

2 A (cnAt — 26)R~~(n) — (8)

A (cnA t — M 6 )

Using (6), the mean weight vector at the nth itera tion Is given by

2 2 2 n— k—i , A (ckAt)
E(W(n)J = - + ‘~~~ )J ( .~ (ckA-6) (9)

A(ck.~ t — M 6 )

P1
r l vI- io
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In the static case , c s o and only the first weight is non—zero , with mean value

o 2 
2 2~~~~

E 
~~~~~~~~ 

= 2 2 (1  — (1 — M(o~8 + °n ~ (10)
~~~8 ~~~

which converges to the Wiener Filter for the broadband stationary case as n -
~~

In the dynamic case, the weights are a moving set of spikes that a.re c!h2ng1ng with amplitude
as the signal moves and as the weights converge . The total weight vector Is the sum of the vector~
in (9). The weights can be viewed as a sliding window of exponentially growing responses, or as
a moving weight at the leading edge that leaves behind It an exponentially decaying wake.

• This can be seen by examining the weight at the leading edge of the response. In (9),
the leading edge will occur at the latest time. If the filter is sufficiently long so that the
respons e still falls within the tapped delay line , i. e. , M >  n , then the ampl itude and
location of the lead ing weight are found by examining the term in the summation for which
k = n - 1. The a.mplltude of the leading edge is ,~ r 5? and its location Is at tap number

• c(n— l) (assuming that A t = 6). If c = 1 then the signal moves one tap per Iteration and
• the adaptive filter tracks the movement. If the signal changes more slowly, then c 1

and the leading edge moves more slowly then the iteration rate.

For the special case whe re c 1 the weight vector in (9) can be readily expanded ,
as follows , letting r = 1 - 

~ (4 +

r~~~ 0 0 0 0

E(W (n )~ = + 

~ r

f l)  
+ ~~~~ r

n 3)  +( : )+
~ ~ ) J 

(11)

r Z
~~

• r~~ 2

• (12)

r ’
1
0
0
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Equation (12) shows the decaying wake behind the leading weight which shifts along
the delay line as n increases. FIgu re 10 shows this effect.

For c < 1. the weights move more slowly and the basic model herein tends to becom e
less realistic. The signal sequence used is totally uncorrela ted in time. In general this
is not the case. The impact of this assumption is to hav e weights respon d only at the

exact correct alignment of input delays and tap delay values. In the band limited , non-
white signal case , correlation will exist even at non- intege r delay shifts , and large r
weight responses should be expected at the Leading edge for slower moving signals. It
is shown in the next section that the amplitude of the leading edge decreases znonotonic-
ally with c from /(~.~+2~~~), (the value for c - 0), to ~.to , (the value for which
movement is so fast that the signal samples decorre late totally at each time sample).
The extent of the wake and the height of the leading edge will depend on signal dynamics.

Conclusions

The transient and steady state tracking behavior of the mean value of the LMS adap-
tive filter tracker weights has been derived for a spectrally white process with linear
time v arying bearing dynamics. The filter weights are a moving tap which leaves be-
.iind it an exponentially decreasing wake. Tracking the bearing involves estimating the
del ay location of the leading edge of the weights.

3. TrackIn g Behavior for Band-Limited Broadband (Correlated) Signal with
• Linearly Time-Vary ing Bearing in Un-Correlated Noise for Small Signal-to-

Noise Ratios

The adaptive filter split-be am bearing t racker analysis is now extended to Include
band—limited broadband (correlated) signals that are moving in bearing. The time-
varying mean weights are derived from the transient and steady—state condition s for

low signal-to—noise ratios.

The conditions of the pre v ious section hold with one extension . The stgn~l spectrum
is no longe r white . Equations 2 and 3 of the previous section are still valid. However ,

R~~(n) and R,~~(n) (Equations 7 and 8 of the previou s section) are now given by

Vl-12
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R~~(n) = = 

~:

plcn& -Mb I

R,~~(n) = cr~
2 ~~~~~~~~ R

5
(8) . . . R

9 
(M6) 

\ 
o~ I

(
SYM

where

/ ~o ~2ö ~M ô

A = I- ~SYM

Since R,~~(n) Is independen t of n , for [E W(o)) = 0

n-i n-k-i
E W(n) = ~~~ [~ - ~LR ,QC] •R~~(k)

let

- 

• 

and 

R (i ~~~~~~~~~~~~ 

•

i -~uT 2 A

D(k) = /p~ck&I

• P I ck At—ã

p Ick&t-MöI
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then

EIW( n) 1 = ,Lo~ D(k)

Assume small signal-to—noise ratio, i.e. , ~~~
2

<< ~~~~~~

Then v

R~~(n) 
~:

R (1 -~~c r ) I

If we select ~ t = ~~, I. e . ,  iterate at the sample rate , then the mean weight for small
signal-to-noise ratio Is approximately

2 
~~~ 2) 

n-k- i

( ~I ck — 2 Iö

I
\ ,,Ick-MId/

The j th weight :

E fr W(n) } 

~~~~ ~~~ 
(i 

_
~L0.1~) 

n-k-I 
~~ck-J ~ô

Assum e that the filter is long enough so that M = n-i, and let j - Mc so that we are at

the end of the filter. For r = 1 - Mo~
2 •

E [W Mc (fl)J = $~7 rM 
~~ r~~ P (k M) cb •

~cr5
2 r M ~M 8c ~~~~8) 

-k
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~~i~,. 2 r M pM 8C l _ ( r PC

1 — (rPc 
)

,.2 rM ~Mc8 rP~~ - (rP)~~~ 
-M

rP~~~-l

2 rM p (M+].)cb - 1
8 rP ~~~~~1

This is the transient behavior of the mean weight for small signal-to-noise ratios. In
- steady-state, I. e., M arbitrarily large , one can readily see the relationships between

signal correlation , P,  signal dynamics , c, and algorithm dynamics , g& .

2
1imEW ~, (M) =

l _ r p C

2
= r 21 ~~H ‘~L1 ’”’nJ~

• There are several cases of interest. 11 p = 1, then the signal is totally correlated
• from tap to tap, regardless of signal dynamics. For this case

E W
MC

( )  
~i

which is a small signal-to—noise ratio approximation to

cr:

• 

• 

cT~
2 -.V -

which L.a what one would expect in the static case.
H

If P = 0, the signal Is totally un—correlated and again signal dynamics should not
affect the result. For this case,

E(W MC ( )]
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which agrees with the results of the previous section (Equation 12) where dynamics
tended to de—correlate the signal.

If there are no signal dynamics, i. e. , c = 0, then

E W MC (oo) = — j-
• 0~n

independent of P , which is again the expected small signal-to-noise ratio static result.

The tradeoff between dynamics and signal correlation can be seen by examining
the term P~~ In the expression for EEWMc (oo))• As c decreases ~~C6 looks more like
unity and signal looks more correlated . As c Increases P (which La less than one) is
raised to a higher power and the signal has become less correlated .
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APPENDIX VII

Transient behavior of the LMS Adaptive Filter response to variable

• frequenc y spectral lines.

ABSTRACT

The transient behavior of the LMS adaptive filter Is studied when configured as a
canceller operating in the presence of a fixed or variable complex frequency sine-wave
signal buried In white noise. For a fixed frequency signal, the mean weights are
shown to respond to signal more rapidly than to noise alone. For a chirped signal , a
fixed parameter matrix first-orde r diffe rence equ ation is derIved for the mean weIghts
and a closed-form steady-state solution obtained . The transient respons e is obtai ned
as a func tion of the eigenvectors and elgenvalues of the input covariance matrix . Suf-
ficlent conditions for the stability of the transient response are derived and an upper
bound on the elgenvalues obtained. Finally , the mean-square error is evaluated when
responding to a chirped signal. The ga in coefficient of the LMS algorithm is determined
that minimizes the mean-squ a re erro r for chirp ed signals as a function of chi rp rate
and signal and noise powers.
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INTRODUCTION

The LMS adaptive filter has been proposed and used in situations where the statistics
of the input processes are unknown or partially known f 1-3)

• The structure of the LMS
algorithm for adjusti ng the weights of the adaptive filter requires quadrati c operations
on stochastic Input data which, in general , are dLfficult to analyze. Under the
assumption of statistically independent data samples , the mean weight vector and the
covariance of the weight fluctuations have been obtained for a varie ty of stationary input
data statistics ~~~~~~~~~~~ ~~ec1a1 configurations of the LMS algo rithm , such as noise
cancelling iine enhancing I4 1 6~81 9 111, spectral anaiysis , 1

~ ’ 12i and single fre-
quency line detectton 1

~~
101, have been studied in considerable detail. The special

characteristics of the LMS filter configuration have been used to aid In the analysis
of the behavior of the algorithm.

The pui~pose of this pa pe r is to present some exact analytical results for the LMS
algorithm configured as an adaptive noise canceller when the Inpu t process consi sts of
a chirped sine wave In add itive sta tionary “ bi te noise. Althoug h some previous work
on LMS algorithm behavior in a non-stationary environment has been published r 13-161,
only one has investigated the response of the LMS algorithm to chirped sinusoids
in white noise. The analysis is perfo rmed by assuming the ch i rpi ng is slow enough
so that a quasi—stationar y model for the mean weights can be used. In this paper ,

exact anal ytical results are obtained for the chirped s inusoidal signal with arbitrar y

chi rp rate. Since the ada ptive cancelling of dynamic signals is a key element in
cancelling, line enhancing and frequency tra cking, the analytical results for the above

model have wide appl icabil ity.

Two principa l results of this pa per are
1. A closed for~ analytica l expressio n for the LMS mean w eig hts in a dynamic

signal environment.
2. Explicit trade—off results between filter pa rameters , weight va riances ,

mean-squa re-erro r, and Input signal dynamics.

The latter result I s of special Interest since It shows explicitly the compromise

between fast adaptat ion in order to respond to va riations In the input statistics and

slow adaptation to reduce the fluctuations In the adaptation process itself.
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For the narrowband signal in white-noise case, the confi gura t ion shown in FIgu re 40
can be used to model the above LMS algorithm functions.

With reference to Figure 40 ,

* ,  j (~ ~~ + ~~~~~2/ 2 + 0)

V 
d(n) o5e +n1(nAt)

A is chosen so that n1(n~ t) and n1(ni t -A) are un -cor re la ted . On the other hand ,
because the desired signal is a chirped sine-wave, it decorrelates more slowly than 

V

the noise.
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DYNAMIC MODEL FOR THE INPUTS

The algorith m for changing the complex weights of the adaptive filter Li given by (171

W( n+l) W(n) + ~ [iin~ - xT1~> W(n)] X*(n)

W(n) + ~ [~ n> X (n) - X*(n) xTtn) fl~’(fl>] (i i

where W(n’~ ~ filter weight vector at time n , d(n~ desire d signal . X(nl ~ obser ’ ed
data vector at time n, and where * and T denote complex conjugate and vector
t ranspose respectively .

Averaging equation (1> and assuming 1~ the data sequence X~n~ is stati stically inde-
pendent over time hl 4h and 2> the present weight vector and the present data vector are
staUs~.ically independent~~~ yields

E(W(n+1)I = E(W(ni l + - R ( n ~ E I W( fl)1] (2 )  
V

where R~~
(n

~ = E Id(rnX *(n)h RLx( n > c E [X * ( n XT (n~1.

In practice the algorithm sampling interval (..~t) is usually chosen to corresp ond to
the delay ~5 between the taps of the adaptive filter. Furthermore (.~t) is usually
chosen to correspond to Ind ependent samples of the noisy data. Hence the delay
is chosen to be integer multiples of (a t ) In order for the noises in the two input s
to be un-corre lated . On the other hand , the longer that .~ is chosen , the less
cor related is the signal component. Thus choice of .~~ 6 Is the best that can be
accompl ished .

When the input consist s of a complex sine-wave with linearly—varying frequency in
addi tive not se,

~~d(t ) O~ e + n(t)

Other Integer values of 6 for the bulk delay .~ can be studied using the subse-
quent analysis and the result s show that -~ — 6 yields the best filter performanct’.
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where — signal power , ~~~~ — signal frequency, ~~‘ 
— rate of ~‘h~Tlge of signal

frequency, 0 - random phase of signal and the noise Is independent of the signal
with noise power and normalized covariance matrix G , then

R,~~(n) — ~~~2 
G + D(n) D*(n) T (4~

Rda(n) = a 2 D(n) (5

where

DT (n) = e ~~~~~~~~~~~~ - ~~ 2 
~/2 

e
J (

~
)
0mÔ 

J~~mô2n — 
ejm 262

~~/
’2 

e
i
~ oMó

ej~ M6 2
~~ ej~126 2

~~/2 )  (6’

with M = number of complex weights.

Using Eqs. (4) and (5) in Eq. (2) yields

E(W( n+1) J = - ~ (~7 2 o + ~, 2 b(n D*(n) T
)] EIW(n > ) + ~ c 2D(n) (7)

For white noise , G = I. Define

a 2 -

M(n) = i + _ !~ D(n)D*(n)
T (8)

For any n, the eigenvectors of M(n) are the vector D(n) and any set o~’(M—1) vectors
orthogonal to D(n) . The associated eigenvalues are

2a8
1 =

VII—5
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x
2

_
3

... = > ~~~~• 1  (9)

Note that the elgenvalues are Independent of time. All the time variations in M(n)

are contained in the eigenvectors. This special property of M(n) is exploited to

obtain closed form solution s for Eq. (7) .
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SOLUTION OF EQ (7) FOR THE MEAN WEIGHT BEHA VIOR

Since M(n ) is Hermitlan , there exists a unitary transformation P (n) which d.tagonal tzes

M(n) for each n ,

P(n ) M(n) P~~(n) = X = Diag ~Xr x 2 X rn~ 
(10)

The are not functions of n. t~ae to the special form of D(n) ,

T ~~o~~~n T
- D (11) = e V D (0) (ii,

where

9

~V = D i a g (a , a ,

Also P(n ) can be written in ter ms of the eigenvectors of M(n) ,

P~(n) =~~~~~[D(n . R1(n) , ... Rm_i (n)] (12)

where~ = conjugate trans pose and R1, R2 .. .  are M-1 mutually ortho—normal

vectors , also ortho gonal to D(n) for each n. Using Eq. (11),

P(n) = P(o) (V*)~ (13~

Using Eqs. (8) , (11) and (13) and defining Z(n ) = P(n) E fw( n)J, Eq. (7) can be written

In terms of Z only as

Z(n+ 1) = P(O ) V~ P~~(O> [i_~a~2~] Z (n) + ~a5
2 P(O ) V~ D(O) (14~ 

-
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~IIV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V . ~~~~~~~~~~~ V: ~~~~~~~~~~~~~~~~~~~~~~
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Since Eq. (14) is a constant coefficient linear difference equation , with P(O) — P0, it

follows that

Z(n ) - vs p~~
i 
[i - a 2~f 

Z(O )

+ ~.a
2 

~~~ 
v* p0

1 
[
i_~.o~2

x]~ p V~ D(O ) (15;
n 1

Before Invest igating the general case of Eq. (15) , consider the fixed frequency
sinusoid signal case when V = I and Eq. (15) simplifies to

— n -

- Z (n) = [i_~.a~
2x] Z(O ) + 1J. a 2 

~~~~~~~~n
2
~] S (16

m=1

where 5T 
= (v1

~~ 0 , 0 , .. 0) . Expressing the matrix sum in closed f orm

Z(n) = [i_~a~2~] Z(0 + s - (I-~ a 2 X >fl] (17) 

- -

Thus , using Eq. (9) , the compnents of Z (n) are given by

z1(n) = 
[i 

- ~(a~
2 
+ Ma52)] z1(O) + 

~~~~~~~~~~~ 
~ - - (a

2+Ma 2~]

Zj (fl) = - ~.an2]’~ z1
(O) (l8~

j = 2 , 3 , . . .  , M

— - - - 
_ . 

-
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Hence , for ~(O n
2+M ~~~2) < 1 , the response of the weights to the signal frequency is

more rapid than to any other frequency. If z1
(0) = 0, j 1,2 ,.. .M , then z1(fl) Is the

only response ,

z1(n) = 
J r a

5
2 /

a~ 
~1_ ~~_ a ~2 + M a 2

)]i (19~1+M a s / a n t 

S

Transforming back to the original coordinate system ,

E [W(n) I = P0~
1 2(n) = 

~ ~~~~~~~~~~ 
~~~ - - ~ (a

2 + Ma 2)] ~D(O ) (20)

Hence~~the mean weights are scaled versions of the desired signal response. From
Eq. (18), note that the time it takes the filter to adapt from zero initi al conditions and

learn the signal Is less than the time required to forget the signal if it disappears.

That is , from Eq (19), if z.(O) = 0 , j  = 1, 2 , ... M , signal response time is propor-

tional to 1 - ~(a ~ +Ma~ ) . If the signal suddenl y disappears so that z1(0) # 0 , then

from Eq. (17) with a ~~ = 0 , the decay time towards z1(n) = 0, is proportional to

1-~~~CT~
2
. 

S
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STEADY-STATE WEIGHT BEHAVIOR

The explicit solution of Eq. (14) requIres evaluation of the elgenvalues and eigenvectors

of the matrix operator In brackets in Eq. (15) (see Append ix). However , the steady-.

state solution to Eq. (14) Is obtainable witho ut knowledg e of the eigenvalues. In Eq. (15),

set Z(0) = 0 (zero initial conditi ons) without loss of generality . Let Q be the matri x of

eigenvect-orS of the matrix P0V° P0
’ ?_

~
an

2 x~ and A = Diag (A 
~~
, A 2 .~ ~~) be

the matrix of eigenvalues. Thus

n
Z(n) = pci5

2 
~~~ [Q A ~~~~~ P0V*D(o )
m 1

— ~~~~~~ P0 V~ D(o) (21 1

m 0

H 
-‘

Dl~~~~i~~~ 
‘- -\~~~ ... 1 A ]  (22>

for 1- \ ~ t < 1  for all 1 , and

= ( I— A ) ~~ 
(23)
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In Appendix l, Lt is shown t h at I A j I (1, fOr aI1 1 i f O < ~~~(cin
2 4

~M c is
2) < 2 .  Let Z

35
lirn Z (n) . Then , using Eq. (23), Eq. (21) becomes

= pa5
2 

Q(I— ~~~~~ Q’~ P0 V Dto)

— 

pd’5
2 p

0 [v - (1 — pa~2) I ]’ D(O) 
24- 

1 + pci5
2 

D
0
4 [v - (1-~a~

2) z]_i D(0) 
(

The steady-state weights are the quantities of interest. Note that they will be time

varying, even though the adaptiv e filter Is in steady-state. Here , steady-state implies

that the adaptive filte r has converged , interpreted as the convergence of the trans-

formed weight vector Z(n ) . However , the filter has converged to a time—varying

solution to follow the time—varying, non- stationary input signal. Thus , when ~~~ is

Inverse transformed back to the mean value of the weights , the transfo rm is via the

eigenvectors of the input covarlance matrix , which are time-varying. Let

denote the mean value of the steady-state weights at time n.

E[W93
(n)] = P 1 (n) Z

55

pa5
2 [v-(i_~a~

2) i] D(n)
= (25 )

1
k-I e1

~~~
6 

—

As a check , Eq. (25) can be compared with the steady-state value of the weights in

the station ary case , i. e., with ~ = 0. For that case V = I , D(n) = D(0) and

E[W55
(n)) ~ 

~ 
D(o) (26~

~~~ ___

which agrees wIth Eq. (20 ) when n —

VII —”
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Computer evaluation of the steady-state mean weights In Eq. (25) is presented In
Figures 41—44 for f 5 Hz/sec 2 and in Figures 45—48 for f 1.25 Hz/sec 2. In all cases ,

the filter has 128 taps with J.L = . 1. The signa l — to—n oise ratios are var ied from

unity to ~~-2
• The figures dIspla y the magnitude and phase of the weights across the

filter. Three inte resting phenomena are displayed in these figures:
1. As the signal-to—noise ratio decreases , the adaptive filter uses more

of the taps but at lower ampli tudes ,
2. The tap phases follow the movement of the linea rly varying frequency

input ,
3. As I increases , the taps at the far end of the line contribute relatively

less to the filter output than those taps at the beginning of the line.

These phenome na can be explained as follows:
1. The two sourc es of randomness that contribute to the filter output mean-
square—error , are input noise and algorithm noise (weight misadj ustment) . The

- 
- contr ibution of the input noise to the mean square error decreases linearly

with the number of taps whereas the algorithm noise increases l inearly
with the number of taps. Thus, at high input signal-to—noise ratios , the

algorithm noise Is the limiting factor and few taps are needed . At low
input signal-to-noise ratios, input noise is the limiting factor and a
large number of taps are needed In order to reject the input noise.
Eventually algorithm noise becomes the significant factor.

2. The figures show only the mean values of the steady-state weights at a
particular instant of time after the filter has converged . Hence , there
shoul d be a quadrati c phase shift with the tap number in accordance with
D(rn in Eq. (6) . Comparison of Figures 42—44 with Figure 41 and Figu res 46-4S
with Figure 45 shows that the steady—state weights do disp lay this behavior .

3. The filter trades off coherent integra tion (proportional to the number of

significantly non-zero weights) against the phase changes required at each

tap to follow the chirped signal . SInce the phase change required at each

Ite ra tion for each tap grows linearl y with tap number (entries in V),

weights at the far end of the line must make large phase changes In corn-
- parison to those at the beginning of the Line . Note that the quadratic

phase correction along the line , D(o> , is independent of time. Hence ,

VII- 12
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once the filter estimates f0 and 1, it knows D(o) and can introduce these 
- 

-

phase corrections statically. On the other hand the filter must chan ge
phase by the entries in V at each iteration. Large phase changes are
most easily made when the magnitude of the weights are small. In Fig-

ures 42—44 , AO = ~~~ = 2 /1O M radians and in FIgures 46—48 , ~~O= 2 /40 M
radians. Hence the Mth weight has to change by r/5 and - /20 radi ans ,
respectively . In orde r to accommodate these large phase changes for the
same algorithm step size , the weights of the far end of the line must be
smaller than those at the beginning of the line. As f decreases , the dif-
ference in phase changes at the two ends of the line decreases and the filter
can make use of significant values for the weights at the far end of the line.

-.1
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THE MEAN SQUAR E ERROR IN STEADY-STATE

The error, c (n), is the dLfference between d(n) and the filter output , wT(n) X(n) . Its ..
mean square value is given by

E Ij~
(
~ 

2] = E [d(n) - wT(n) X(n)][d*(n) - W~(n X*(n)J

= E[d(n) d(n )*]_ E[WT(n) X(n) d* (n)] - E[d(n) W~(n) X*(n)]

+ E[WT(n) X(n) W~(n) X*(n) ]

Using the assumptions preceding Eq. (2) , 
- I

E [I e (n)12] = (a
2 
+ ~~2 2 Re ~W( n)1~ D(n)~ + E[WT (n) X(n) W~(n) X*(n IJ (26) 

F

The middle term in brackets In Eq. (28) can be evalu ate d using Eq. (25) and is given
by

M
a- 2

EcW53
(n)]~~

D(n) = V 

1 (29)

a
~
2 

~~~(e 1 
~~1_~ 

2
)) i

The last term in Eq. (28) can be evaluate d as follows. Let the weight vector be I
written as a mean value plus a zero—mean fluctuation process.

W(n) EIW(n) 1 + T,(n) (30)

- I  
I

I
I
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Then

E[WT(n) X(n) W 4
~(n) X *(n)] E[W~(n)] E[X*(n) xT(n)] E[W(n)]

+ E [C(n) X*(n) xT (n) ~, (n)] (31)

The first term In Eq. (31) Is known . The second term in Eq. (31) is

E[~~(n) Xt(n) XT(n) ~ (n)] E[~ ~(n) E [X*(n) xT(n)] ~ (fl)] - 
-

(p. 2 
+ a-~2) E [c

+(n) ( ) ]

(a8
2 ÷a~2)ivia~,

2 (32 i

assuming the weight fluctuati ons are stationary , un corre lated from tap-to-tap, and
have the same var iance a ~

2for each Individual weight. Thus , using Eqs. (31) and
(32) In Eq. (28) yields

Et k (n ) l 2
~ = a- 2j i  — EIW(n) l + D(n) 12 + a

~
2 

~1 + EIW(n) 14E lw(n~ I

2
~
‘ 2 2~ ___________+M j~o +a 

) 2 (33)
2 - (M+1) 

~~

where ~ 
2 has been approximated by the weight fluctuations under noise alone14’~ ’ ’~ .

The first term in Eq. (33) represents the error Lu estimating the chirped complex
e~q onential signal. The second term is the sum of the noise power In the reference
channel and the noise power passed by the mean weights of the adaptive filter. The
last term represents the weight misadjus~nent variance multiplied by the total input
power.

Eq. (33) normalized by the total input power , has been evaluated as a function
for M = 16, 32, 64 , sIgnal—to —noise ratios of 0 and +10 dB and various ~ 

2

FIgures 49—54 , the trade—off can be seen between static and dynamic contributions to

VII— 15

-- ~V ~~~~V- V_  ~~-V ~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ __~ ~~~~~~~~~ ~~~~~~~~~~~~ —
-

- -~



~~~ -~~~~~~~~~~~~~~ -- --~~~~~~~—~~-- V— -- - -

total mean-square error. In each case, there Is an optimum selection of ~a~
2

which minimizes the deleterious effect s of signal errors, Inpu t noise and weight

misadjustznent noise. Comparison of the filter performance for increasing Input

signal-to-noLse ratios verifies improved sy stem performance. On the othe r hand , for

sufficiently la rge ~~~ and SNR = 10 dB, it is seen that the no rmalized man square —

error increases as M increases. This effe ct is due to the weight mis—adjustment

noise exceeding the longer coherent Integration gain obtained with larger filters . As

decreases , a point is reached where sufficient smoothin g time is available

(small ~ %
2) to reduce the weight niisadjustment noise to a level so that improved

performance is obtained for longer filters (e. g ~ 2 
~ x 10~~). V

It can be seen from Figures 49-54 tha t the optimu m selection of ,.iCr~
2 , for a given filte r

length M and signal-to-noise ratio , varies in the same manner as~ r~
2. As ~

-

increases, a large r value of ).~~
2 is required to achieve the minimum mean—s qua re

error~ However this minimum mean-square error increases as 2- 
2 The filte r

has-less time to learn the statistic s of the signal and hence must make a larger
mean-s quare-erro r as the price for tracking a faster moving signal . It is somewhat V

difficult to dete rmine the point where the LMS algorithm loses track of the signal

since mean-square error is not a good measure of track ing perform ance.

I
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CON CLUSION S

A mathematical model of the mean weight behavior for the LMS adaptive filter has
been presented when the filter is operating as a single fr equency line enhancer and
line follower. For a fixed frequency complex sine wave input , the LMS filter weight s
have been shown to respond to signal and noise more rapidly than to noise alone. Thi s
implies that the filter learns more quickly that a line has appeared than It is able to
forget that the line is turned off.

When the signal frequenc y is changing linearly with time, the mathematical model
predicts a time— varying behavior of the filter m ean weight s necessary to respond to
the changing signal frequency . As the chirp rate increases, the filter reduces the
relative amplitudes of the weight s so as to adjust the effective filter length to optimally
match the properties of the signal. That is, for example, suppose the filter designer
selects a filter of length M M]. However , the chirp rate is sufficiently large so that
the cha9ge Ira signal frequen cy, between algorithm iterations , is greater than the band-
width of the filter. Then, the LMS algorithm will automatically scale the amplitude of
its weights to have an effective length M2, M2 <M 1, such that the signal remains
inside the adaptive fil ter between iterations . As long as the signal frequency lies
within the LMS filter bandwidth , the LMS filter algorithm can track the changing fre-
quency since there is suffi cient correlation between the two Inputs to drive the LMS
algorithm in the correct direction.

The mathematical model of the mean weight behavior has been used for selecting i~,
the adaptation coefficient of the algorithm, for a wide variety of signal and noise
pa rameters. The criteri a of optimality was that of minimizing the filter output mean
square error , since the error is the drivi ng term In the weight adjustmen t algorithm .
(An alternate criteri a , based on a signal detection model using the filter output , could
also be a candidate for optimization .) A set of curves of normalized mean-square
error as a function of signal-to—noise ratio and chirp rate were obtained . Fro m these
curves , the following observations can be made:

1. For a given signal-to-noise ratio and chirp rate ~ a2, there exists an
optimum selection of ~.t that minimizes the overall mean square error.

2. For slowly changing signal frequency , the n’~an square error exhibits a
relatively broad minimum . This is because a larg e range of will
follow the slowly changing signal frequency yet allow sufficient smoothing

VU— 17
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so as to keep the weight znlsadjus tment noise below a certain minimum .
(~i the other hand, for a rapidly moving signal frequen cy, mismatch In
selection Of~ i.O r~

2 can cause a significant increase In mean-square erro r as
compared to the optimum selection of ~~~~~~~

3. As a system designer , one would choose a that would be optimum for
the fastest chirp rate e~q ected. The mean square erro r would always be
upperbounded by the mean square error for the fastest chirp rate.
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APPENDIX. EIGENVALUES OF TRANSFORMATION MATR IX

In order to easily evaluate the mth power of a matrix, the elgenvalues of the matrix

are needed. The matrix In brac kets in Eq. (15) is

vi p
0~~ 

- ~~~~2
x] p

0 v* [p -i 
- 

2 p~~
1 

~
,]

— P0 V’ [i - ~~ M(0)] PO~
l (I-i)

- Since P0 premultiplles and P0
1 post-multiplies R V *  [I_~~rn

2 
M(0)], it is only neces-

sary to find the eigenva lues, ~\ , of R. The eigenvaluee of R satisfy :

~~~~ - 
~~ 

~ 
+ ~~2 D0Do~)I -.\I~~ ~(1 - ~a~

2) i - - a 2 D0D0
4 - 0

V ( 1—2 )

- 

- 
where

V D0 = D(O) and denotes the dete rminant.

Because of the simple structure to R , an expression for the eigenvalues can be found.

Given a matrix of the form B = A + a1b1
4 where a and b are column vectors,

B = A [i 
+ b1~ A

1 a1J 
(I-3~

I
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Th5,W IthAa(1_ ~LO~
2)I itV , a.1 D

0
a b 1,

i - - ~~ 2 
D0 

D
O+I 

l
(1_

~~~n
2) I - AVI~I - ~~~~2 

D0~

Dl~~~

((

a

2) a-A ’ ~~~ a~
2) a2_A i~~a~2)

a [i
_~~~~~2]

M
~~i _  

i _ ~~~~~
2

~~~~ 
-~~a3

2 

~~~ 
(l~~~

2)am_
~~

(1—4)

The term in brackets yields an M’th order polynomial In .-\ for which there Is no

genera anal ytic solution. Eq. (1-4) must be programmed on a digital computer for

various p. a 2 a~
2 and a.

Although explicit values of A are not obtainable , a simple upper bound on the eigen-

values of A and hence on the transient behavior of Eq. (21) are obtainable. This

upper bound on the elgenvalues is useful since it is an indication of the slowest possible

response of the system.

Let u be an elgenvector of the matr ix in Eq. (1-1) with associated elgenva lue , A .

Then , with u + u 1, and ~T 
~i1u2 urn]

= p
0 v* p0

1 
(i_i~a~

2
~) U 

(1-5)

Now ,

A ( M *
~~

4t [ = 
= u~(I a 2 X)~ ~~~~~~~~~~~~~~~~~~~~~~~

(I-~a~
2 A) ~~ 

(1—6)
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Using = P0~ and V~ — V~~
1

A 1~
2 — 

2 
~

i—i

- 

~+n
2 
+ Ma52)~ + ~

i_ p.~~2~ ~~ ~u1~
2 (1-7)

j 2

Let q = 

i—2 
u112 � 1 and p = 1-Q = 

1~~ 

12 � 1. Then

= (1_q)~1- p.(a
2+Ma 2)~

2 

~~~~~~~ 
~~2

p. (
~~2÷~~~~2)~

2 
+ q(i_~ a~2~

2 
~1-p. (a 

2+Ma 2)~ 2 )

1— p.~. 2~
2 

for ~1_p.a~2~�j 1_ p~(a 2+Ma 2
~ (1—8)

Similarly

-

~~ 
= p~i — p .  (a

2+Mo~2)~
2 

+ (1_p)~ 1_ p.O~2~ � ~1_ p ( a~2+Mo82)~
2

for !1_1.L (cTfl
2+M % 2)~� I 1_ ~~~ (1— 91

Eqs. (I-.8) and (1-9) lead to the following bounds:

~:x~ If p . ( U
2 + M a 2)~~ 1, usnmI ng a Z~~ 0

j A j
2 
�~ 1_p . %2~ < 1  (1—101
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u + Ma
1
2)>i but p.a0

2 
~ 1, then for ~~~ # 0

I A~j ~ ( i _ p .c02f < 1  forp.Ma5
2 � 2(11~o0

2)

and

2 2

~~~~ 
�~ l1~ (0~n

2+M (Ts2)l for p.Ma5
2 > 2 (1—p. %

2) (1—1 1)

In the latter case, /112 < 1 ~~ ~(a 
2+Ma 2) < 2

~~~~ If p.a0
2 > l t h en  ..

_ IA~
2 

~ i-p.fr 02 + M a 2)~ (1-12)

-

~~ and

I.\ i~
2 < 1  ~~~~~n

2+M % 2 ) < 2

Combining these , it can be seen that ~.‘i <1 u p. (a 
2 
+ Ma 2) < 2 .  SInce A < 1  is

the condition for existence of a steady state mean weight vecto r , p. (a0 +M a ) <2 is
a sufficient condition for a steady state solution. It is interesting to note that the bound

°~ in each case is just the magnitude of the largest eigenvalue in the ~~~~~~~~
frequency case, with a0

2, a3
2, p. and M unchanged. Further

p.(c0
2+Mor

32)<2

is the condition for the convergence of the adaptive canceller in the fixed sinusoid
case. This leads to the surprising conclusion that if the mean weight vector achieves

- J a. steady state value In the stationary case for given ~,
2, a0

2 , M and p., then a steady 
V

state solution will exist for those param eter values regardless of the ra te of change

of frequency.
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A more direct result for convergence can be obtained as shown below. This latter

approach does not bound the elgenvalues however.

From the discussion following Eq. (1-1) It is seen that R Is similar to Q and therefore

has the same elgenvalues. From

Urn ~~~Am-l 
— U - Af

’ (1-13)

Li the L2 norm o fA l s leea thafl UnltY, i.e. , I I A I I < 1 .  In our case , R = A a n d

U R I I  ~~V* [I_~o!0
2 (A)] Il ~~ IIV*ll ~

II — p.o0
2 X ~ (1—14 )

3.zt ji V~ 1 and ~1_p.a 2 x 11 can be evaluated explicitl y as the square roo t of the

largest eigenvalue of the matrix [i_ p.a0
2A]* [i - p.0.

2 ~].
ait [i p.o~

2 
x] is seif-adjoint and has only two distinct elgenvalues.

A 1 =

= /13 = A M = 1 - p.%
2 (1-15)

Hence - ~~~ + Mo~
2
~ <1

and

( i _ p .a02 fc i
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which Implies )A j )  <1 11

o cp. (or0
2 +M a52 ) < 2  (1—16)

In agreement with the discussion following Eq. (1-12).
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APPENDDC VIII
COMPARISON OF ADAPTIVE TRACKER PERFORMANCE

WITH AN EXISTING AUTOMATIC TRACKER

It is of Interest to compare the performance of the adaptive tracke r with a non-adaptive
tracking system. For this purpose, the automatic tracking system describe d in
reference Cl] will be used. FIgure 55 shows a block diagram of the tracker to be
considered. The input signals from the left and right half beams are hard clipped
and sampled, with the clipped signal for one side subjected to a variable delay , i . This
delayed signal and the other clipped Input are processed by a two point correlator ,
as shown, which computes the correlation, q (r~i, of the clipped signal at 1- T. The
value of 0 (r; is eIther +1 or -1 for the clipped inputs. The contents of the delay
register , which determines the value of the adjustable delay, is increased by Ar when
+1 occurs on input 2 and —1 on Input 1. It Is decreased by ~~~~ when +1. occurs on input
1 and -1 on input 2 , with no change in count when the two agree. The tracker is in
steady state when 0 (-‘~-T) and 0 tr+T) are equal (both +1 or both -1). Assuming that the
correlation function of the Input is symmetrical, this means that the value of t is equal
to the delay between the two split beam inputs.

The performance of this tracker has been analyzed in reference Ci] . The analyzer
is in excellent agreement with both computer simulations and at-sea tests of the
device. For a broadband stationary target, the variance of the delay estimate was
shown to be

2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  V

n (1)
/  

a.
5~ ~

(8/ir~ 2 2 ~ ~ ~ (T))
~~ 0. + 0 •
\ 5  0

where

AT = adjustable delay step size

(72 = signal power

(p.2 
= noise power

0 53(T) = value of the derivative of the normalized autocorre lation function
of the signal at ‘~~~ T
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and T = fixed bulk delay used in the correlator.

This result is valid when the value of La small in comparison to the width of
,ss~~~

The structure of this tracker is considerably different than that of the adapt ive
tracker. Typically, the delay step size, Al , Is set much finer than the time between
taps in the adaptive filter. This very high sample rate is tolerable , however , because

the system uses one bit representations of the Input, so hardware Is minimal. The
adaptive tracker replaces a high sampling rate with multibit processing and Inter-
polation between coarser delays. In spite of the differences, the comparison of the
two is interesting In light of the wide application of trackers similar to the clipped
system.

In order to compare realizations of the two tracking schemes that are in some sense
equivalent , the time constants of the two will be made equal . For low signal-to-noise
ratio the time constant for convergence of the weight vector of the adaptiv e filter,
both in mean and variance is in seconds

‘at = 
[
~ ((7 2 

+ (7 2)1 Tat (2)

where Tat is the adaptive tracke r sample interval.

Reference Cl] has shown the time constant of the clipped tracker of FIgure 55 to be

( 1r/2) (3)

F 1AT( ~~ 91 ( $ (T))c l~~~~+ ~ ~~~~
\ s  n /

where F~t is the clipped tracker sampling rate .
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It Is now necessary to set AT such that T0t = In practice, the Input to the adaptive

tracker is norma lized such that

5 n

This normalization will also be applied to the input of the clipped tracker. Then,
setting (2) equal to (3) yields

Ar= ~,çr
/2 (4)

FctTat ~i + SNR~ ~~~ 0t
55

(T))

and substituting in (1) gives

s~~~

2
2 2 (5)

16 F tT 
~~ + SNR~ 

(~ ‘55
(T))

where SNR = u 2/(72

This is the variance of the time delay estimate of a clipped tracker whose time
— constant has been set equal to the adaptive tracker , and is not valid at high SNR.

Lu part VI of this report , the performance of an adaptive tracker for a broad band
signal with an 800 Hz flat low pass spectrum was considered. Following the design
procedure for the clipped tracker given in reference Cl] gives the parameters V

Fct = 4 = 2400 Hz

= 728.15 sec/sec

For the adaptive tracke r conside re d , Tat = (1/2400). Substituting these parameters
in (5) gives

(1. 1634 x 1O~~) ~ (1 + SNR~
2 

(C.)
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It should be stressed that the expressions (5) and (6) are not a generalized compari-
son of the particular clipped tracker with the adaptive tracker. The comparison is V

between an adaptive filter and a clipped tracker whose time constant has been
adjusted at each signal—to—noise ratio to be equal to that of the adaptive tracker.
This means, roughly, that the two trackers should be able to trac k dynamic targets
with the same rate of change, or that the time to achieve the predicted bearing
accuracy for an emerging target should be the same. Given the great diffe rence in
the structure of the two trackers, however, this equivalence is only approximate, and
should be used only for order of magnitude comparisons , and not to predict fine 

V

differences in sensitivity.

Refe rence [1] : C. N. Pryor , “A Simplified Automatic Tracking Technique for
- Signal Correlation Systems,” NOL Technical Report No. 67-152 ,

21 September 1967 .
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