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I. INTRODUCTION

In transmitting blocks of data through a communications system, ensuring

that the system is in synchronization is vital. Each frame or block of

data contains a header of information. These headers are checked to ensure
that the system is still in sync. There are two possible ways that the
header may not be correct: first, some bits may be transmitted wrong or
secondly, the system could be out of sync. Once sync has been lost, some
corrective action has to be taken,during which the system may be down. In
order to ensure that the system is not taken down for bursts of transmission
errors an up/down counter is used to monitor its behavior.

The counter has N+1 slots labelled 0,1,...,N and a pointer that is moved
up or down according to whether the header is correct or not. Usually, if
the header is correct the pointer is moved up one slot - unless it is at N in
which case it remains there. The number of slots that the pointer is moved
down is the subject of this investigation. We analyze the case where the
pointer is moved down K(<N) slots when the header is wrong. We assume that if
the pointer is within K slots of zero, then the pointer is moved to zero
when an incorrect header appears. Once at zero, the pointer remains there
and the system is assumed to be out of sync. The focus of the study is the
random variable which describes the elapsed time from startin§ at slot N until
the pointer is at zero for the first time. This random variabie represents
the time until checking the system to see if it is still in sync once the
counter has been reset.

If p is the probability an arriving header is wrong, and q=1-p that it

is right; then the system can he modelled as a Markov chain and the




analysis can be carried out in a straightforward manner. In section II,
this is done; section III contains some numerical examples. Finally,
section IV gives some concluding statements.

This problem was generated because of conversations the author has had
with Dr. Stan Lorens of R710 and Mr. Walter Roehr of R740. Dr. Lorens pointed
out that the Naval Research Lab (NRL) has written a specification for an Ad-
vanced Narrowband Digital Voice Terminal (ANDVT) [1]. The linear predictive
coder in this terminal will be capable of extracting frame sync. The frame
synchronization shall consist of two modes: sync acquisition and sync main-
tenance. The sync maintenance function is the one that is analyzed in this
technical note. For the ANDVT it consists of a counter numbered 0 to 15.
When a correct sync bit is received, the counter is incremented by one. If
the check bit is incorrect it is decremented by two. Once the counter
reaches zero, sync has to be réacquired. So therANbVT sync maintenance is a
speéial case (N=15, K=2) of our general counté;. |

Dr. Lorens stated that to the best of his knowledge no analysis had been
done to determine if the NRL specification was satisfactory. Mr. Roehr added
that it would be desirable to have the capability to work at more general parameters
than just N=15 and K=2 as in the NRL specification. These conversations have
resulted in the mathematical analysis and computer implementation of these
results presented in this technical note. The author is grateful to Dr. Lorens
and Mr. Roehr for bringing this problem to his attention.

As a closing comment to this section we point a related piece of work by
Smith [2]. He considered the more general problem of acquiring and maintaining
sync. In this paper a more extensive reference list of related work on this

problem is given.
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II. MATHEMATICAL ANALYSIS

As we mentioned in the preceding section, the system can be modelled as a
Markov chain. For a discusg;;h of these types of stochastic processes, see
(31, [4], [5] or [6]. We will use some definitions from Markov chains.

The reader should refer to the texts cited above for an explanation of un-
familiar terms.

Let Xn be the random variable representing the position of the pointer just
after the header was observed for the nth time. We adopt the convention
that the observation of the header and the subsequent changing of the placement
of the pointer occur simultaneously. The random variables Xn’ N=T 42,5 0000
can take on the values 0,1,...,N. Since the probability that the header is
correct, q, does not depend on n, the value Xn takes on only depends on Xn-]
and as such forms a Markov chain. In Markov chains the most important element
which governs how the chainsprogress in time is called the probability transi-
tion matrix, usually denoted by P. The i,jth entry of this matrix gives the

probability that Xn=j given that X_ .=i for all i and j. For the Markov chain

n-1
being considered here the probability transition matrix, P, is given by

0 1 2 K K+1 ' N-1 __

0 1 0 0
1 P 0 q 0 0

2 p 0 0 q

pa (1)

K 0 q

K+1 0 p 0 0 q 0

N-1 0 p o0 0q

N 0 po0 0 0q
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The 2zero state is called an absorbing state in that once this Markov
chain goes tnere, it never leaves. If q=l the state N would also be absorbing,
but in the application to up/down counters, q is probably close to but not
equal to 1.

Now we are in position to define the random variable that we wish to
study. Suppose at some instant, denoted by 0, we observe the system and the
pointer is pointing at the ith slot, i.e., X0=i. We want to study the be-
havior of the system as it goes to zero for the first time. We define Y; to be
the random variable representing the time (in number of observations of the
header) until the pointer is at zero for the first time, given that the initial
observation of the pointer is at the ith slot. We are really interested in
YN but need the more general definition for the development. Note that YN
represents the time until checking for sync once the counter has been reset.

Let us define

-
"

Pr{Y,=n}
(2)

Pr{Xn=0,Xn_]#0, Xn_2¢0,...,X]f0!X0=i}.

We are interested in studying fN n,the probability of the pointer being
at zero for the first time at the nth observation of the header given that it
was initially set at the Nth slot. For a general K,p, and N the exact solution

for fN . is difficult; some special cases will be discussed in section IV, but

a simple recursion relation allows one to iteratively solve for fN « For
n=1 we have (fg 4=1, f; 40 i>1)
fi,] =<p 191,250 .4K (3)
0 i=K+1,K+2,...,N
4
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and for n>2 (notef, ~ = 0 here) we have

N fal, 2 B
fi,n= qfi+1,n-1+pfi-K,n-1 i=K+1,K+2,...,N=1 (4)
N, n-1"PFN-K,n-1 =K.

The development of equation (4) is as follows: if the initial observation of
the pointer is at the ith slot and we want to go to zero at the nth observa-
tion for the first time,we consider what happens at the first observation.
For i=1,2,...,K we can go to the (i+1)st slot with probability q (header
correct); once at the (i+1)st step we have to go to zero for the first time in

n-1 observations. The latter quantity is f by the homogeneity of the

i+1,n-1
Markov chain. With probability p we would go to zero from these slots but

n>2 in equation (4),and since we stay at zero there is no contribution to 1

fi,n for this event.

For i=K+1,K+2,...,N-1 we can move up one slot with probability g to i+l
or drop back K to i-K with probability p,and then go to zero in (n-1) observa-
tions. Finally, for i=N we stay at slot N with probability q or drop back
to N-K with probability p. The form of equation (4) makes it.idea11y suitable
for implementation on the computer.

The exact solution fN,n for a general K is difficult, but a form of solution caﬁ

be obtained via generating functions. Define for i=1,2,...,N and z|<] (Ho(z)=1)

1,(z) = 1 f, "; (5)
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then from the first part of equation (4) we have

1 (z)=qzn, ., (2)+pz; (6)
the last term on the right hand side of equation (6) comes from fi 1° For
i=K+1,...,N-1

1;(2)=qzn, ,; (2)+p2il,; _,(2) (7)

and finally for i=N in equation (4), one gets
(1-qz)my(z)=pzmy_,(2). (8)

The solution technique for ni(z) is a standard one for these types of
equations and follows the development given in [5]. Equation (7) suggests a

trial solution of the form ni(z)=xi(z). Substituting this form of solution in
ﬁéquation (7) Ene geté

quK+1(z)-AK(z)+pz=0. (9)
Let xr(z), r=1,2,...,K+1, be the roots forthis equation, then the general solu-
tion to equation (7) is given by

K+1

ni(z)=r§]ar(z)>\:.(z), (10)

where “r(z)’ r=1,2,...,K+1, are to be determined.
These K+1 unknowns may be found from the K equations given in equation (6)
and the one given by equation (8). Using these equations and equation (10) one

gets the following K+1 equations in ar(z); for 1=1,2,...,K

K+1 i
r‘E]ot,.(z)[x,.(Z)(1-qzx,,(2))]=pz (1)




and
E]ar(z)m-qz)x'ﬁ(z)-pzxﬁ"((z)} = 0. (12)

Thus, equatiens (9), (11) and (12), can be used to solve the problem.
ror practical application, this solution becomes cumbersome although the re-
sults for K=1 provides some insight and is now given. For K=1, there are

two roots of equation (9); they are

_ 14+/1-4pgz®

K](Z)
2qz (13)

and

/ 2
AZ(Z) = ]_-ﬁim.z__ .

2qz (14)

Since
15 (2)=a) (2)2] (2)+ap(2)33(2),

using equation (11) for K=1, one finds

1= ay(2)+a,(2). (15)

Using this result in equation (12), az(z) is given by

5 (l-qz)x¥(2)-pzx1N'1(Z) J (16)

| ol
; DZ(Ag'](2)-A¥'1(Z))+(1-q2)(x¥(2)-xg(2))

E These results may be used to find an analytic expression for the expected value

{ of Yy, E(YN). That is,

' N N N

E(YN)=HN(])= q(p ‘ﬁ )+Np (g-p) . (17)
p (2p-1)(q-p)

For a general K, a simple expression for even E(YM) is difficult to obtain.

7




Although one may use equations (6), (7), and (8) to recursively find all

the moments of YN’ we find the mean, E(YN), and variance, Var(YN), of YN

from HN(z). Using the basic definitions we have
E(YN) = my(1)
and

" ! |
Var(Yy) = my(1)+my(1)-y (12
Let Hisn;(1),then using equatiors (6) and (7) we have

E. = 1+qE i=1,2,...,K (18)

i i+1

and

E. = 1+qE; j=K+1,K+2,...,N-1. (19)

i i+] -K
Note we have used the fact that ni(1)=1. From equations (18) and (19) one

+pEi

sees that Ei for i=2,3,...,N can be expressed in terms of E] so let us define

£, = C(3,1)E+C(1,2); (20)

that is, E; is a constant,C(i,1), times E, plus another constant C(i,2),

with C(1,1) and C(17,2)=0. Using equation (18) we have

c(i-1,1) 1225 35000 o KF]
qc(i,1) = {’ : (21)
c(i-1,1)-pC(i-1-K,1) j=K+2,...,N
and
C(i-1,2)-1 V=2 5350w v gt
ac(1,2) { —
C(i-1,2)=1-pC(i=1-K,2) i=K+2,...,N

From equation (8) we have

PEy = T+PEy_yo (23)

P TR PN SO P /PN P ————— L WSS V-



which can be used with equations (19) and (20Q) to find

£ = _1+P(C(N-K,2)-C(N,2)) (24)
P(C(N,1)-C(N-K,1))

Thus, one can recursively evaluate C(i,1) and C(i,2), using equation (24) to

find E] and then set
EN = E(YN) = C(N,])E]+C(N,2).

In order to find Var(YN) one has to find n;(l); this can be done in the

same manner we found nN(1). For i=1,2,...,N, let

T-(]) = D(T',.I)F-l"'D(i,Z),

F1 i

obviously, D(i,1)=1 and D(i,2)=0. Proceeding as before we have

D(i-1,1) $1=2,35 .. s K¥]
qD(i,1) = (25)
D(i-1,1)-pD(i=-1-K,1) ti=K+2,...,N
and
D(i-],2)-2qu 21=2,3,...,K+1
qD(1,2) =
D(i'],Z)'pD(i‘]-KQZ)‘Z.‘- :i=K+2,-..,N (26)

where Zi=2qE1+2pEi_]_K. Again, using equation (8) we have

PID(N-K,2)-D(N,2)] + 2qE\+2pEy_

Fy = (27)

and Fy = D(N,])F]+D(N,2).




We have given a recursive method for easily computing E(YN), Var(YN) and
the complete probability density function of YN. In the next section we

give some numerical examples using these results.

10
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IIT. SOME NUMERICAL EXAMPLES

In this section we give three numerical examples using the results pre-

sented in section II. The first is given in Table I; the probability density func:

tion of the number of observations of the header until the pointer goes from
N=15 to zero for the first time is given. For that table, K=2 (i.e., the
NRL specification) and p was set equal to .6, .7, .8, and .9. The
reason for the large values of p is to ensure that non-zero values of f15,n
are basically given when n<40. Since K=2 we have f]S,n=o for n<7; that is,
it takes at least 8 observations for the system to drop to zero. It is inter-
esting to point out the oscillatory nature of f15,n for a fixed value of p.
Consider p=.8, then f]5,9=.26844, f]5’10=.05369 and f15’11=.16106; thus
these probabilities depend on K and how the sample function of Y15 may proceed
to zero.

Tables II and III give values of the mean and variance of the time until
checking for out sync for N=15 and fixed different values of p and K. One of

the most interesting facts that can be seen in these figures is that

E(Y,5)2Var(Y,g), (28)

(where 3 means approximately)for p small. This fact was not true for the
parameters used in Table I. The fact that the parameters selected for
Tables II and III are more representative of real world values tends to make
the result given by equation (28) more promising for future work. This idea

will be discussed in the next section.

1




Another interesting and important fact that can be seen is that the

performance of this up/down counter is extremely sensitive to the values of

p and K. From Table II, for K=2 when p changes from .01 to .5, the expected
time to check to see if the system is out of sync changes from 1.09x10]5 to
275. If a header is arriving every .0225 seconds, then this number corres-
ponds to checking for sync either every 18.7x106 years or every 6.1875 seconds,
Similarly, the p fixed and K varying we have the same sort of results; see
p=.05 in Table II. These results indicate that setting the specification at

a given value of K is extremely critical and should be studied in more depth.

12
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TABLE I. PROBABILITY DENSITY FUNCTION FOR TIME UNTIL CHECKING IF
OUT OF SYNC (N=i5, K=2)
p
fN,n
n 6 47 8 9
] 8 .01680 .05765 .16777 .43047
9 .05375 .13836 .26844 .34437
10 .02150 .04151 .05369 .03444
N .05375 .11414 .16106 11192
12 .09374 .15627 .15247 .05458
; 13 .03956 .04950 .03221 .00577
: 14 .06525 .08748 .06073 .01156
15 .09392 .10130 .04967 .00496
16 .04176 .03384 .01107 .00055
17 .05748 .04909 .01689 .00089
18 .07520 .05252 .01296 .00036
19 .03495 .01835 .00302 .00004
20 .04348 .02378 .00407 .00006
21 .05373 .02432 .00302 .00002
22 .02592 .00883 .00073 .00000
23 .03023 .01003 .00091 N
24 .03596 .01056 .00066
25 .01790 .00396 .00017
26 .01998 .00453 .00019
27 .02312 .00441 .00014
28 .01183 .00170 .00004
29 .01278 .00187 .00004 _
30 .01449 .00180 .00003 ‘
31 .00759 .00071 .00001
32 .00890 .00076 .00001 ;
33 .00892 .00072 .00001 ~
34 .00477 .00029 .00000
35 .00493 .00030 |
36 .00343 .00028 |
37 .00296 .00012 g
38 .00301 .00012 j
39 .00328 .00011 v |
40 .00182 .00005 .00000 . .00000 !
E(Yyg) 18.209 13.603 10.880 9.109
Var (Y, ) 52.539 18.828 7.080 2.219

13




TABLE II. EXPECTED TIME UNTIL CHECKING IF OUT
OF SYNC FOR N=15*

) .01 .05 0.1 0.2 0.3 0.4 8.5
1 | 8.87x10%% | 1.78x10'% | 2.9x10™* | 2.39x10° | 1.45x10° | 6.48x103 | 2.40x102
2 | 1.09x10"5 [ 1.70x10% |3.27x10% | 6.40x103 | 2.36x102 | 5.47x10" |2.75x10]

3 | 6.62x10° | 7.68x10% |1.17x10% | 2.28x102 | 4.69x10" | 2.25x10" | 1.46x10]

7 {1.97x10% |9.08x10% | 6.81x10" | 2.46x10] 1 1

4 | 2.07x10 1.43x10° |1.01x10

5 | 6.94x10° | 2.64x103 |2.46x10% | 3.7x10" | 1.58x10" | 1.07x10" |7.8x10°

2 118002 | 2.51x10" ] p p

6 9.67x104 7.62x10 1.28x10° | 8.54x10™ |6.4x10

1 0

0

7 | 3.74x10% 3.89x102 7.35x10] 2.01x10] 1.11x10° | 7.8x10 6.07x10

8 |4.68x103 [1.71x102 |4.60x10" | 1.51x107 | 8.6x10° |5.95¢10° la.51x10°

3 0 0 0

9 | 2.55x103 |1.16x10% |3.57x10' | 1.28x10" | 7.55x10° | 5. 33100 la.13x10

10 | 1.78x103 |9.22x10" |3.04x10" | 1.16x10" | 7.08x10° |5.11x10° la.03x10°

1 1

1 | 1.39x10% |7.8ax10' [2.73x10" | 1.09x10 0

6.86x10°0 | 5.04x10° la.01x10

12 | 1.14x10% |6.95x10" |2.53x10' | 1.06x10" |6.76x10° | 5.02x10° |a.00x10°

13 | 9.79x102 |6.3ax10" |2.39x0" | 1.04x10" |6.71x10° |5.01x10° a.0ox10°

1

14 | 8.61x102 |5.9x10" [2.30x0" | 1.02x10" |6.69x10° |5.00x10° l.00x10°

2 0

15 | 1.00x102 |2.0x10" |1.0x107 | 5.00x10" |3.33x10° | 2.50x10° b.oox10°

*This time is the number of sync maintenance checks that have to be made. To con-
vert this to time one has to multiply this number by the expected time to
transmit a frame.

14




TABLE ITI. VARIANCE OF TIME UNTIL CHECKING IF OUT OF
SYNC FOR N=15

: .01 .05 0.1 0.2 0.3 0.4 0.5

1 | 7.86x10%° | 3.17x10%8 | 8.5x10%8 | 5.69x10'8| 2.00x10'2 | 4.14x107 | 3.83x10%
2 [1.21x10% | 2.87x10'8 [ 1.4x10"% | 4.07x107 | 4.57x10* | 1.34x10% | 1.91x10?
3 | 4.39x10"% | 5.9x10"7 [1.4x108 |4.57x10° | 1.2x10% | 1.69x102 | 4.79x10]
4 | 4.30x10" | 3.87x108 |8.1x10° | 3.39x10° | 2.81x10% | 6.56x10" | 2.38x10
5 | 4.8x10"7 | 6.91x10% |[5.65x10% | 8.94x10% [ 1.24x10% | 3.66x10' | 1 S1x10]
6 | 9,35x10° | 5.71x10% | 1.18x10% | 3.92x10% | 7.3x10" | 2.42x10' | 1.02x10]
7 1 1.39x10% | 1.46x10° |4.52x103 | 2.27x10% | 4.77x10" | 1.65x10" | 7.2x10°
8 |2.19x107 | 2.8x10* |1.78x10% | 1.44x10% | 3.79x10" | 1.53x10' | 7.4x10°
9 |6.51x10% | 1.28x10% |1.05x10% | 1.04x10% | 2.91x10" | 1.16x10' | 5.4x10°
10 |3.16x10% | 7.85x10% | 7.30x10% | 8.17x10" | 2.38x10" | 9.4x10° | 4.5x10°
11 | 1.91x10% | s5.58x10° |5.71x10% | 6.79x10" | 2.01x10" | 8.4x10° | 4.15x10°
12 | 1.20x10% | 4.25x10% |4.69x10% | 5.89x10' | 1.81x10" | 7.9x10° | 4.05x100
13 | 9.47x10° | 3.45x10% | 4.01x10%| 5.20x10" | 1.70x10" | 7.7x10° | 4.01x10°
14 | 7.31x10% | 2.91x10% | 3.53x102 | 4.89x10' | 1.63x10" | 7.6x10% | 4.00x10°
15 | 9.9x10* | 3.80x10% |9.0x10% | 2.0x10" | 7.77x10" | 3.8x107 | 2.0x10°

15




IV. CONCLUSIONS

We have given a mathematical analysis for the operation of an up/down
counter that is used to monitor the sync behavior of data in a telecommunica-
tions system. We close this technical note with a few remarks concerning the
work and some possible extensions.

First, from a historical point of view the formulation of the problem pre-
sented here is closely related to the classical gambler's ruin problem. This
problem is thoroughly discussed in Feller [3]. In that problem K=1 and the
state N is also an absorbing state. We have not searched the literature on

the gambler's ruin problem thoroughly enough to ensure that more work on our

problem has not been done. If further work in this area is to be done one should

look at the literature more closely.

The results that we gave were in the form of recursive relationships. As
such they are easily implemented on the computer. Two problems arise with this
type of solution: first, since no analytic expression (except for K=1) was
given for fN,n’ E(YN), or Var(YN), the exact dependency on N, K, and p can only
be ascertained by drawing conclusions from the numerical examples. It would
be desirable to have an analytic expression so that more concrete conclusions

can be drawn; although this appears to be a formidable task.

The second problem with the recursive solution is one of numerical
accuracy. The smallest value of p that we have considered in the numerical

examples is p= 0.01 for K<5 and N=15; this gave values of E(Y]s) and Var(Yls)

7 14

on the order of 10" and 10 " or greater. Numbers of this magnitude are subject
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to the numerical accuracies of the computer one is dealing with. If closed
form analytic expressions were given, this problem might be avoided as was done
for the K=1 case.

For N=K, a Tittle thought will convince the reader that

£y ™ "o :n=1,2,..., (29)
from which
E(Yy)= P! (30)
and
Var(Yy)= qp'z. (31)

These results along with equation (17) allow us to give some bounds on
E(YN) as a function of K. For N and p fixed E(YN) is minimum when K=N and
maximum when K=1. Thus, equation (17) is an upper bound and equation (30) a
lower bound on the expected number of observations until the pointer is at

zero for the first time.

We remarked in section III that for the values of p used in Tables II
and III, the mean time until out of sync was approximately equal to the
square root of the variance. Since some numerical problems could be en-
countered in evaluating the performance of the counter for p's smaller than
.001, some sort of approximation for these cases should be considered. One
possible approach is along the lines of a diffusion approximation as pre-
sented by Feller [2] for the gambler's ruin problem. It would be interesting

to see if that development could be extended to our problem.
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Finally, it should be reemphasized that the table given in section III
clearly shows that the setting of K for a fixed value of p is extremely
critical. Just changing the value of K one slot can make several orders of

magnitude difference in the results one gets. Extreme care should be taken

when fixing K. For instance, for the ANVDT we had N=15, K=2. If the

probability of the check bit being received wrong (p) changes from .01 to .5

this corresponds to having to reacquire sync every 18.7x]06 years to every
6.1875 seconds.

[t is hoped that the results presented in this paper may be used to
provide some insight into the performance of up/down counters used to ensure

the system is maintaining sync.
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