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COMPRESSION OF EPHEMERIDES BY DISCRETE
CHEBYSHEV APPROXIMATIONS

INTRODUCTION

There are many users of satellite ephemerides. Users of data from a satellite such as
LANDSAT need the satellite’s position to correlate the data with a specific location on the
earth. The ephemerides of navigation satellites are stored onboard and transmitted to users.
Ground stations need ephemerides for antenna pointing. In orbit-prediction programs, the
ephemerides of the planets and moon are needed to compute their effects on satellite orbits.

An ephemeris can be provided in several ways. It can be in tabular form, in which the
user interpolates between points to obtain positions. Orbital elements (such as NAVSPASUR
1-or 5-card element sets) can be provided from which the ephemeris is reconstructed by
using a Brouwer Theory orbit generator. Another method is to represent the ephemeris
using polynomial approximation. In this method, the user is supplied with the degree of the
approximating polynomial and the coefficients needed to construct the polynomial.

This program began from the desire to develop an efficient method for storing and
processing satellite ephemerides onboard satellites. Participation of the senior author in the
National Bureau of Standards experiment of broadcasting time from geosynchronous sate!-
lites 11.3) generated the problem of loading astronomical ephemerides in the memory of
microprocessors and microcomputers. The specific goals are

1. To compress the ephemerides, thereby reducing the occupancy in core and the
duration of loading into core,

2. To cover as wide a time span as the recipient equipment will admit , in order to
confer it with maximum autonomy,

3. To guarantee as much accuracy as the real-time operations will require,

4. To make the processing of the compressed ephemerides as fast as possible.

Polynomial approximation with Chebyshev polynomials can achieve all of these goals.

APPROXIMATION TECHNIQUES

Inte’~olation Polynomials

Polynomial interpolation may help somewhat in compressing conventionally tabulated
almanacs. Newball [4J reports how an interpolation in Chebyshev polynomials helped in

Manuscript submitted September 8, 1978.
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DEPRIT, PICKARD AND POPLARCHEK

making the files of the JPL Development Ephemeris Number 96 [5] five times shorter than
their homolog in the JPL Ephemeris Number 69 [61. However, for an ephemeris produced
by a numerical integrator of order n and step At, interpolation polynomials are valid over
intervals equal to nAt. We are interested in polynomials extending over 10 to 40 times that
interval. From a predictor-corrector of order 10 at the step of 500 s applied to 24-h satellite,
the extraction of a polynomial approximation valid for 2, 3, or even 5 days is proposed.

Least-Squares Approximation

Forsaking interpolation polynomials, we turn to approximation polynomials. Let f(r )
be one of the ephemeris elements. Define the error y(r) of a finite expansion by forming the
difference

yf r )  = f f r )  — 
~~~~~~~ c1p1f r )

O~~j~~m

where p , p1,. . . , p ,~ are prescribed polynomials while the coefficients c0, C1,. - - , c,~ are
to be determined. Instead of forcing y(r) to vanish at prescribed points (as an interpolation
requires), the average error is obtained by integrating over the finite range a ~ r ~~ in
which the function f(T) shall be represented .

Conventional astronomers usually define the average error by the definite integral

~ 2 _ 1J ~~y2fr) dT

and determine the coefficients c~ of the expansion by the prescription that 9~ be as small as
possible. Least-squares approximations always have a definite solution since an essentially
positive quantity always assumes a definite absolute minimum.

The problem is greatly facilitated if the base polynomials satisfy orthogonality condi-
tions of the kind

J f,(r) ~ k~~
) = 0 for I

a

Chebyshev polynomials are orthogonal.

Considerable effort has been spent in the least-squares approximation of planetary
ephemerides in series of Chebyshev polynomials. The primary example is Carpenter ’s
theory of the five outer planets [7] : following the method outlined by Clenshaw [8,9],
Carpenter develops a least-squares approximation of the right-hand members of the plane-
tary equations, then integrates formally the resulting Chebyshev series. The approximation
is iterative: starting with polynomials representing uncoupled elliptic Keplerian motions, it
ends up with series of several hundred terms representing the deviations of the orbits of
Jupiter, Saturn, Uranus, Neptune, and Pluto from Keplerian motions in the interval from
1800 through 2000. Comparison with a numerical integration [10] from 1653 through
2060 produced displacements less than 0 ‘Ol after the third iteration and less than 0~001
after the fourth.

2
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Series of several hundred terms are not practical . Least-squares approximations of
astronomical ephemerides in Chebyshev polynomials are currently derived from convention-
ally tabulated ephemerides. The orbit generator Goddard Trajectory Determination System
(GTDS) for satellites of the earth or the moon takes its almanacs for the sun , the moon , the
sidereal time, and its corrections due to precession and nutation from Chebyshev series of
degrees which vary between 10 and 20. These series are valid over time intervals of 20 to 30
days and are constructed from either the JPL files or the Improved Lunar Ephemerides [11].

Techniques of this kind have been in use in producing ephemerides which serve to
automatically drive antennas and signal transmissions [121 - They have been transposed to
the problem of tracking specific features at the moon ’s surface [13,14]. With the advent of
programmable pocket calculators available at the drugstore counter, the U.S. Naval Observa—
tory is now experimenting with a new type of alman ac where the major tables of the
American Ephemeris and Nautical Almanac are compressed into standard ized Chebyshev
series [15] .

Chebyshev Approximations

The disadvantage of least-squares approximations is usually the absence of an estimate
of the error. The difference between the function and its polynomial approximation in
least-squares oscillates with nonuniform magnitude; normally minimal in the middle of the
range, the amplitude may greatly increase toward both ends of the interval. A uniform
approximation produces an error whose absolute maxima and minima are equal in absolute
value over the entire interval. With a uniform representation, there is no need to anticipate a
“transient” regime at the beginning of the range wherein the maximum possible error de-
creases, and a “degradation ” regime at the end of the range where one should expect the
maximum error to start increasing again in absolute value.

The topology subjacent to the Chebyshev approximation is the metric

~,* = 

~~~~~~~ 
Iy(r) L

The purpose of the approx imation algorithm is to find the coefficients for which y *
would be minimum. The method is based on a conjecture of Chebyshev proved by Borel
[161. If g(x)  is a function continuous in the closed interval (a, b) ,  then there exists a unique
polynomial of best approximation of given degree n. The error of this approximation reaches
its extreme value at n + 2 points at least (there may be more) with alternating signs at these
n + 2 points.

Stiefel [17] has set up an iterative method to yield a best approximation in a finite
number of steps. Assume that a sequence (r 1) of ii + 2 points has been selected in the inter-
val and that a polynomial series

~(r)  = ~~~~~ c1 T,(r)
0~~j~~n
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has been obtained such that the errors

y . = f(r1) 
— 4(r 1) 1 < I ~~ n + 2

have the same absolute value, say y0. Consider the maximum y * over the whole interval. If
y * = y°, then the polynomial series is the best approximation; otherwise y* > y0 . Then
select one of the points r at which the maximum error is reached, exchange it with one of
the points in the reference set, and go back to constructing a levelled approximation, i.e.,
one for which the errors at the reference points are all equal in absolute value, but alternate
in sign .

Stiefel’s algorithm will confront the programmer with two difficulties: (a) levelled
approximations are easy to construct [18] , but only if Haar ’s condition is satisfied at the
reference points; (b) locating the extrema of the error functions outside the reference points
requires that one is capable of determining accurately the first derivative f ’(r). If the func-
tion f is known in literal form, calculating f ’(r) usually presents no problem.

A program (in PL/I, IBM Level F) to implement Stiefel’s iteration [19,20] has been
developed , and it has been applied to those astronomical ephemerides which are derived
from theories, namely

1. the corrections due to nutation from Woolard ’s theory,

2. the coordinates of the sun , Mercury , Venus, and Mars from Newcomb’s theory of
the inner planets,

3. the coordinates of the Galilean satellites of Jupiter from Sampson’s tables.

The results are definitely encouraging. For instance, polynomials of degree 14 are sufficient
to cover a sidereal period (about 230 days) of Venus at the accuracy of the American
Ephemeris. Similar results are obtained for Mars. The situation is less favorable for Mercury.
Our experience with the Galilean satellites suggests that the error which an approximation
of given degree generates is determined for its principal part by the average eccentricity of
its orbit . This correlation will be analyzed more closely later on.

A case where Haar ’s condition was violated has not been encountered.

The precision of the first and second derivatives is critical. A straightforward derivation
of the semianalytical expressions given by a theory is safe , but a numerical differentiation
by finite differences is not [21].

DISCRETE CHEBYSHEV APPROXIMATIONS

A problem arises if the Chebyshev approximation technique described in the previous
section is applied to orbits of artificial satellites around the earth. These orbits are usually
given in the form of tables at equidistant times because they are derived from a numerical
integration and a literal development. No reliance can be mad e on the Steifel-Remez algo-.
rithm to compress such ephemerides. The construction proposed by Golub [22] would not
produce with enough accuracy the dates at which Remez’s ripplings occur .

4
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The following compromise was found to be successful: in the range -1 ~~ r ~ +1,
select a sequence (r 1)0~ ~ ,,~ and solve the overdetermined linear system

ffr .) = c . T. (r .) (O~~~ i~~~ m, n < m)
0~~j~ ‘it

in the sense of Chebyshev , i.e., determine the coefficients (c1) which minimize the error
estimate

= 

~~~~~ 

Iffr 1) — E c1T1(r1)I .
0~~j ~~n

To accomplish this, a very efficient algorithr . established by Barrodale (23,24) can be used.
It is basically the simplex algorithm applied to the dual of the lin.~~ programming defined
by the minimization of the maximum error. At first a simplicial basis is built and a starter is
determined to enter a cycle of exchanges which , in a finite number of steps, leads eventually
to the optimum sequence

Barrodale ’s program is written in the Fortran dialect WATFOR. The authors of this
report have modified it to relax the syntactical restrictions imposed by WATFOR , to satisfy
the stylistic rules adopted in structured programming, and to insert it in production pro-
grams which compress by segments a conventionally tabulated ephemeris stored in a sequen-
tial file. The program is available upon request to the office of the Space Systems Division at
the U.S. Naval Research Laboratory . Its input dispositions have been developed to process
large ephemerides files; this version is available at the Charles Stark Draper Laboratory.

Illustrations

As a test of what discrete Chebyshev approximations can achieve in compressing
ephemerides, consider the ephemerides of the moon.

In principle, a continuous Chebyshev approximation can be used. The lunar ephem:ri s
may be calculated from the semianalytical theory known as the Improved Lunar Ephemeris
(type j  = 2). But the multivariate Fourier series contains several hundred terms, and it is not
practical that such a large series be evaluated repeatedly not only for the coordinates (as
they must be in any case) but also for their first and second derivatives with respect to the
time.

Dr. Van Flandern of the U.S. Naval Observatory provides a program which optimizes
the tabulation of a lunar ephemeris at equidistant times from the amended series in the
Improved Lunar Ephemeris. The primary interest is in testing how wide a range could be
covered while maintaining the precision retained in the American Ephemeris and Nautical
Almanac. The errors in absolute value pred icted by the algorithm are presented in Table 1.
The range is expressed in days ; the deviations AU, IW, Aa, and ~ 8 in longitude, latitude,
right ascension, and declination are expressed in units equal to i0~~ radian, while the error
I~r is in units of 1O 9 times the earth radius. The table shows that a full period of the
moon may be covered by Chebyshev polynomials of only degree 24 at a precision of 0 ’035
in the angles and of 16 m in the distance (comparable to the accuracy maintained by the
American Ephemeris and Nautical Almanac).

5
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Table I — Compression of Lunar Ephemeris

Range Degree ~ U ~Ar

6 332 259 28897 4840 5674
7 96 56 529 1706 635
8 40 4 437 401 157
9 32 3 323 40 7

10 48 3 316 53 11
12 45 3 264 46 11
14 42 3 226 43 10
16 39 3 198 40 10
20 36 2 131 37 9
24 34 2 102 35 9
28 31 2 90 32 8

10 256 81 576 630 603
12 44 7 164 823 806

21d 14 107 59 3133 6746 2752
16 36 11 2213 1901 357
18 28 3 1988 377 132

28d 18 71 40 2453 5425 1337
20 39 15 2321 5196 699
22 38 4 2791 525 136
24 36 2 2471 171 35
28 23 2 1274 25 6
40 33 2 1557 34 8
44 31 2 1457 32 7

30d 20 34 44 3304 1317 1019

56d 24 23157 17245 291736 184845 141263
36 316 211 4493 2998 2773
44 83 16 2170 809 109
50 76 5 1549 94 36

A similar analysis of possible ranges and degrees was made for the satellite SMS.-B of
NOAA. The orbit was produced by GTDS, the geocentric coordinates being filed at the rate
of one state vector every 15 m m .  A shorter filing step would have improved the accuracy of
the interpolation in the data set. The best residuals predicted by Barrodale’s algorithm
turned out to be comparable to the interpolation errors. Table 2 suggests the type of per-
formance that one may expect from the compressed ephemerides. At the National Bureau
of Standards, in the present stage of development, accuracy requirements are moderate
without being acute, but it is critical to secure as long an autonomy of the equipment
installed at Wallops Island as is compatible with a time broadcast to better than 10 ps to
general users. In that context, it is quite encouraging to read in Table 2 that several days of

6 
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Table 2 — Compression of Ephemerides
for the 24-h Satellite SMS-B

Range Degre~ ] [ ~ U [ IW

0d 25 4 
— 

575 43 310
8 3 3 4

12 2 2 1
16 0 0 0

0d 50 8 228 9 5
12 5 3 4
16 4 3 3
20 2 2 2

0d 75 8 860 64 43
12 9 6 6
16 5 4 4
20 4 3 4

12 83 11 5
16 5 5 7
20 5 4 5
24 5 4 4

16 3165 401 19
20 347 56 9
24 55 12 6
28 15 5 6

20 11676 2019 110
24 2424 502 37
28 617 124 13
32 226 31 7

4d 24 36057 6433 389
28 5984 1068 67
32 2974 529 39
36 968 201 18

5d 28 67211 13197 798
32 16257 2718 186
36 4653 780 55
40 3345 585 42

.1 7 
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ephemerides may be compressed in Chebyshev series of reasonable degree. There, the
residuals between data from integration and values from minmax approximations are in cm
for the distance rand in i0~~ degrees for longitude U and latitude V.

In Fig. i, the error in distance is plotted for an apprc.zimation of degree 20 over two
days. The curve is typical of a discrete Chebyshev approximation. The rippling character is
well in evidence; maxima and minima are not quite at the same height, which shows that the
Chebyshev series narrowly misses being the best appro~imation of degree 20 for the distance
over two days.

Fig. 1 — Error curve for a discrete Cheby shev approximation

8
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Selection of the Reference Points

High-frequency oscillations of the truncated series around the true function are always
present. With a least-squares approximation they are very noticeable and interfere most
adversely with an efficient polynomial synthesis. The error plot in Corio [251 is a striking
illustration of ~5’e Gibbs phenomenon: for a 24-h satellite, an error of less than 1 m around
noon causes wik oscillations of 10 km on both sides of midnight. Corio’s figure is in sharp
contrast with the error curve in Fig. 1.

Fejer ’s rule of taking the arithmetic mean

1 ~~~ S~(r)
0~ j~ it

where

~~~ (O~~~ j ~~~ n)
0<k ~~j

eliminates completely the Gibbs phenomenon [261. Yet it must be said that the method
approaches the limit value very slowly. The method of smoothing the coefficients of the
approximation [27,28] is a somewhat simpler process; it does not eliminate the oscilla-
tions but cuts down their amplitudes.

On the whole, however, much can be accomplished toward damping the Gibbs oscilla-
tions by securing a nonuniform distribution of the approximation points which crowds the
points near the two end points r = ±1 of the range. The effectiveness of this method is
illustrated in Fig. 2, (a) and (b). Plotted here are error curves corresponding to polynomial
approximations of a 12-b satellite of eccentricity 0.01 and inclination 63.4° over two peri-
ods. Twenty-five points were used to generate the approximations of Fig. 2(a) and sixty
points were used for those of Fig. 2(b). The polynomial approximations corresponding to
the three plots of each figure were generated as follows:

Plot 1: Reference points were located at the zeros of the Chebyshev polynomial of
order 25 (Fig. 2(a)) and 60 (Fig. 2(b)) . The Barrodale algorithm was used.

Plot 2: Reference points were uniformly distributed . The Barrodale algorithm was
used.

Plot 3: Reference points were located as in Plot 1, but least-squares fitting was used.

The contrast in results between a uniform and a nonuniform distribution of reference
points is most striking when only 25 points are used, but the effect is still significant for 60
points. In Fig. 2(a), the accuracy of the approximation corresponding to a uniform distribu-
tion deteriorates steadily and drastically from the midpoint to the end points of the interval.
The case for the uniform distribution is not nearly so bad if 60 points are used, but errors at
the very end points still extend by a factor of 10 above those corresponding to nonuni-
formly distributed points. The third plot in each figure is included for comparison between
the least-squares fitting and the Barrodale algorithm. The results are essentially the same for
these two methods. The error curve of a least-squares fit for uniformly distributed points is
very similar to the second plot and has not been included in Fig. 2.

9
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!-iilil~~J u M.J1~RfuI~0 12 24 0 12 24 0 12 24
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(a) Twenty-five refere nce points

4 _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _

~~O 24 0 2 0 24
TIME IN HOURS

(b) Sixty reference points

Fi g. 2 — Error curv es for the 24th -degree fit

Only when a large number of reference points is used can the results of a uniform dis-tribution match the results of a nonuniform distribution. Figure 3 shows how well the Bar-rodale maximum fitting error estimates the true maximum error over the entire interval as afunction of the number of reference points used. The solid curves indicate true errors andthe dashed curves indicate errors given by the Barrodale routine. Curves 1 correspond to thecase where the reference points are taken at the zeros of the Chebyshev polynomial of ordergiven by the x-axis. Curves 2 correspond to the case where the reference points are uniform.ly distributed . The 12-h satellite orbit used previously was also used in generating theseplots. For these cases, it takes 60 to 100 uniformly distributed points to match the accuracygiven by 25 nonuniformly generated points. Furthermore, although the predicted error isless for uniformly distributed points than for nonuniformly distributed points, the trueerror is greater for the uniform distribution, even if a large number of points is used. Thus,while the true error is underestimated in both cases, reliable prediction is at least possibleeven with only 25 reference points when they are concentrated near the end points of theinterval.

With proper crowding of the reference points toward the end points, the error oscil-lates with the same order of magnitude throughout the range . The error profile for a least-squares approximation is now similar to that of a discrete Chebysh ev approximati on . Thelatter , however , would still be preferabl e since it produc es an estimate of the least maximum

10
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Fig. 3 — Comparison of polynomial approximations using uniform and nonuniform
reference-point distribution s for several numbers of reference points

error that may be reached for a given degree. This specific information is critical in the
design of a microprocessor or in the programming of a minicomputer to process compressed
ephemerides.

Convergence and Eccentricity

To get an idea of how well a Chebyshev series can appro~imate orbit functions, the
Barrodale algorithm has been used to generate approximatin~ ~oIynomials for elliptic orbits
of different eccentricities. The following discussion and accompanying tables give a rough
estimate of what order is needed to approximate a given Keplerian element to within a
specified error.
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DEPRIT , PICKARD AND POPLARCHEK

Tables 3-6 show results from a 12-h orbit of various eccentricities. The inclination was
63.4° and the argument of perigee was on the equator. The approximating polynomials were
generated by using 60 reference points over the interval of consideration; the points were
chosen at the zeros of the Chebyshev polynomial of degree 60. The maximum error in fitting
these 60 points was given by the Barrodale algorithm, and this error was used initially to
determine the lowest degree needed to fit the entire interval to within the specified error.
The resulting approximating polynomial was then compared to the actual function at 500
points over the interval to determine the true maximum error. The maximum error given by
the Barrodale algorithm is always optimistic to some degree, and in some cases this causes
the minimum degree to be underestimated. Experience so far indicates that for small to
moderate eccentricities the maximum error at the 60 points is optimistic by no more than
about 10 to 20 percent. Thus, only when this error falls very close to the maximum error
specified is it necessary to increase the order to ensure the desired accuracy over the entire
interval. It is stressed, however, that in general, this holds only when the reference points are
chosen with a concentration near the end points of the interval. If a uniform distribution of
points is used, it takes considerably more points to achieve the same accuracy. In the tables,
an asterisk indicates that the degree needed is greater than 59.

Tables 3-6 show results for the radius component and for the x-component in an Earth-
fixed cartesian coordinate system. Results for the y- and z-components are analogous to
those for x. Problems were encountered in fitting latitude and longitude, and these are dis-
cussed separately.

Experience suggests the following conclusions in regard to fitting the cartesian compo-
nents of elliptic orbits. Large eccentricity causes the greatest difficulty in fitting orbit fu nc-
tions. The degree needed to achieve a specified accuracy becomes sensitive to eccentricity
when it exceeds 0.01 and extremely sensitive when it gets above 0.1. Not only does the
necessary degree become large, but the accuracy improves very slowly with increasing degree.
As Tables 3 and 4 show, the increase in degree needed to improve the accuracy by i~

-
~ is

only 4 for e = 0.001, but jumps to 20 for e = 0.5 and to 40 for e = 0.75. Extending the
time interval of consideration also has a great effect on the degree needed to fit , but this is
not a problem inherent to the particular coordinate of interest. The pertinent question in
this case is whether or not it is advisable to fit one large-degree polynomial rather than two
smaller degree polynomials to two or more periods of an orbit. Tables 5 and 6 show that for
small eccentricities, two periods can be fitted with less than double the degree needed to fit
one period. For e = 0 5 , however, more than triple the degree is needed for two periods.
The general conclusion appears to be that the cartesian coordinates of orbits can be fitted
very well if the eccen4~!i.eity is small, but with difficulty when the eccentricity is large.

The discussion above still holds when one tries to fit either latitude or longitude, except
that the inclination has a very definite effect on the results. In fact, the longitude for a
63.4° inclined orbit is already very difficult to fit , so that results in Table 7 are for a 10°
inclined orbit . This sensitivity to inclination is attributed to the very rapid change of longi-
tude at high latitudes. Aside from the sensitivity to inclination , fitting the longitude is gen-
erally more difficult than fitting the cartesian components and , therefore, results are shown
for only one period. Fitting the longitude for orbits of inclination greater than 45°, even for
one period, is deemed impractical. When it is desired to fit the longitude of an inclined orbit ,
the procedure should be to first rotate the coordinate system so that the x-y plane coincides
with the orbital plane.

12
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Table 3—  Minimum Degree Necessary to Fit Radius Components of
Elliptic Orbits Over One Period

Degree

Max. Error O.Ot 0 00j t 0.Oit 0.5t o.75t
10 km 0 4 4 6 12 28
1km 0 4 6 8 18 30

lOO m 0 6 8 12 24 42
lOm 0 8 10 12 26 48
i m  0 8 12 16 34 *

lndicate s that the degree needed is greater than 59.
t 5~~ ent~jcity

Table 4 —  Minimum Degree Necessary to Fit X-Component of
Elliptic Orbits Over One Period

Degree

Max. Error 0.01 O.OOlt 0.011 O.l~ ( )5t O.75~

10km 9 9 9 11 15 18
1km 11 11 11 13 17 31

lOO m 13 13 13 15 25 42
lOm 15 13 15 17 31 49
i m  15 15 15 19 35 *

lndicates that the degree needed is greater than 59.

~Eccentricity

Table 5 — Minimum Degree Necessary to Fit Radius Component of
Elliptic Orbits Over Two Periods

Degree

Max. Error O.& O.OOl~ () 0]t 01t O.5~

10 km 0 6 8 16 59 *

1km 0 8 12 22 * *
lOO m 0 10 14 28 * *

lOm 0 12 18 36 * *
i m  0 14 22 42 * *

lndicates that the degree needed is greater than 59.
t &centL.icity

13
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Table 6—  Minimum Degree Necessary to Fit X-Component of
Elliptic Orbits Over Two Periods

Degree

Max. Error O.O~ 

— 

0j t ~~~

10 km 16 16 18 24 * *
1km 18 18 20 32 * *

lOO m 20 20 24 38 * *
lOm 22 24 28 45 * *
lm  22 26 30 52 * *

lndicates that the degree is greater than 59.
tEccentricity

Table 7 — Minimum Degree Necessary to Fit the Longitude
of Elliptic Orbits Over One Period

Max . Error Degree Max. Error
(Radians (Sec. of
x 10 6 ) O.Ot 0 001t O.Ol~ O.l~ O.5~_— 

Q ’75t Arc)

1000.0 7 5 7 7 13 27 206.0
100.0 9 9 9 9 19 35 20.6
10.0 1.1 13 13 13 23 45 2.06
1.0 15 15 15 15 29 55 0.206
0.1 17 17 17 17 35 * 0.0206

5Indicat~ that the degree needed is greater than 59.
t Eccentricity

DERIVATIVE OF A CHEBYSHEV SERIES

Clenshaw has proposed a recursive algorithm to evaluate expressions of the type

f(r) = 
~~~~~ c,T,(r)

O<j~~n

in a straightforward manner, i.e. without expanding the Chebyshev polynomials. It is defi-
nitely of interest to supplement the procedure with one to calculate f ’(r) immediately from
f(r ) without having to execute and expand the derivatives. This means that in cases where
the time rates of the ephemeris coordinates would be of use, one would not have to generate
and transmit polynomial approximations for the derivatives. The procedure is based on the
following lemma [291 :
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Let (p
~)~ 

(o
~,), 

and (u3~) (for 0 <1) be three sequences of functions such that

p + a 0p 0 = O

~ n+2 + c+~.°~+~ 
+ = 0 (n ~ 0).

Given the sum

f (r) = ~~~~ c1p1 f r ) ,
O~~j ’~ n

construct the sequence (b1) 0~~~ ,~ +2 by recurrence starting with

b~~ 2 = 0, b~~ 1 = 0

and looping through

b1 + o~(r) b1~1 + (3 . (r)b .~2 = c1

for j  decreasing from n to 0. Then the value of fat  r is the sum

f (r) = (b0 + c~ (r) b1 ) p 0(r)  + b1p 1(r) .

When p~ is the Chebyshev polynomial of degree j, Clenshaw’s fundamental recursive
identities are satisfied by

= -r, = -2r f or I ~~ 1,

for I ~~0.

Therefore, the series (ba ) is given by the recursive equalities

b~~ 2 ~~~~~ = 0

b1 = 2 r b1~1 — b 1~2 + c 1 f or n~~~j~~~l,

and it yields the final result

f(r) = b1r — b2 + c0.

In order to apply Clenshaw’s lemma to the evaluation of f ’( r) ,  introduce the variable 0
such that

r= cos 0

I 4
15
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and reca ll that, in terms of 0 ,

7’, = cosj0. ( j  ~ 0).

Now putting

C)~(r) = sin (1 + 1)0/sin 0,

it is found that

T,f r)  = j U11  Ci ~ 1)

and that

= ( j  + l) c ,41U,.
0~~j ’~n

From the obvious identity

U,(r) = 2r U~ 1 f r )  + 
~ j-2 = 0,

it is f ound that the f unctions U, verify the conditions of Clenshaw’s lemma for

cc~~= -2r and $3~~= 1  f o r j > Q .

Hence the sequence

b~ 41, b~ = 0,

= 2rb1_1 — b1~2 + (j + 1)c1 (n-l >j ~~ O)

leads to the evalurtion

f ’(r) = b0.

Note that the above algorithm is shorter and simpler than the one proposed by Broucke [301.
In both procedures, the sequence (b.)  is not properly a one-dimensional array (onedoes not need to save the intermediate va~lues (6,)) but a three-cell push-down stack. ThusClenshaw’s procedures are particularly suited to microprocessors or microcomputers de-signed around the chip of a pocket calculator.

CONCLUSIONS

The problem of transmitting and processing ephemerides in real time has troubledastronomers now for some time. It is generally thought that approximations in Chebyshevpolynomials are the solution to the problem.
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The shorter the range of approximation, the lower the error. But if the degree is al-
lowed to take somewhat large (in excess of 10) values, the range may easily extend over
several orbital periods. This contradicts the conclusion drawn by VanDierendonck [31) that
approximations by polynomials cannot cover more than a full period of the orbit.

Proper crowding or the data points at both ends of the range damps the Gibbs oscilla-
tions at the extremities to the extent that the error curve of a least-squares fit tends to
acquire the uniform rippling character of a Chebyshev (also called minmax or “best”) approxi-
mation. Nevertheless, discrete Chebyshev approximations are favored because they rely on
global error to iterate the calculation of the coefficients and thus produce directly an esti-
mate of the maximum error over the range. On the whole, they produce shorter series, i.e.,
without tails; the range of the coefficients is narrower, and this facilitates the task of eco-
nomically sizing the bit length to stack the coefficients in the transmission message. On this
point though, the reader should be cautioned against believing that the authors advocate a
particular set of elements as being the most economical one. It so happens that, either for the
24-h satellites or for the moon, the context in which the series would be used requires
spherical coordinates. it is likely that orbital elements rather than coordinates would be
more economical: the slow-varying elements would give rise to polynomial approximations
of very low degree, and only the fast-varying element would reach the kind of high degrees
mentioned previously in Tables 1 and 2. For orbits at low inclinations with small eccen-
tricities, the ideal coordinates [32] or a variant thereof called the equinoctial elements is
suggested[33].
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