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CURRENTS ON GENERALIZED YAGI STRUCTURES

INTRODUCTION

This report evaluates properties of currents on an infinite linear array of parasitic radia-
tors when one of the radiators is excited. In practical applications Yagi antennas use arrays
of parasitic electric dipoles. Therefore the detailed analysis deals with a generalized Yagi
(dipole) structure. The structure has been generalized by allowing the dipole antennas to be
inclined at an arbitrary angle to the array axis; in a conventional Yagi the dipoles are per-
pendicular to the array axis.

When the array is excited, the currents at each radiator may be decomposed into a
surface-wave component plus a correction component. The surface-wave currents are of
particular importance in design, and their wave properties are found for various angles of
inclination of the dipoles.

Calculations are carried out within the framework of a network formulation. The in-
tegral solution obtained from this formulation is used to demonstrate the interrelation
between the properties of the army of short-circuited radiators excited parasitically and
those of the same structure when each radiator is excited by a real generator, as in a phased
array. Analytical (closed) forms previously obtained in phased-array studies are used to elimi-
nate numerical difficulties due to slow convergence of the series which arise in previous
treatments of long Yagi antennas. For the special case of dipoles inclined at the angle
arctan /" arcsin V%/ - 54.740 to the array axis, the functional form of the solution sim.
plifies remarkably. The surface-wave and (feed) correction currents are then explicitly eval-
uated, in the complex plane, as a pole-residue contribution and a branch-cut contour integral.

As recounted by Professor Uda 11,2], the Yagi-Uda antenna was invented in 1926.
Further practical and theoretical studies were undertaken, but, as noted by Ehrenspeck and
Poehler 131, in the late 1950's there existed no rigorous solution of the Yagi problem. The
experimental results were restricted to special cases, with no attempt made to find a connec-
tion between them. Ehrenspeck and Poehler developed general design principles for long
Yagi antennas. Their experiments demonstrated the dominant role played by the surface.
wave parameters in determining the performance of this antenna. This is now well understood
within the context of surface-wave antenna design 14 ].

The variation of the phase velocity of the surface wave on infinite Yagi structures was
analyzed by Sengupta I5S. Mailloux [6,71 provided a complete solution, including excita-
tion coefficient, for the infinite Yagi structure excited at one element of the structure. lie
then applied these results to finite Yagi arrays, obtaining excellent agreement with experi-

ment and with an alternative thenry for such arrays by King and Sandier 181. Gately et al.
191 showed that a comparatively simple calculation which treats the dipoles of the Yagi

Manusctipt submittud Augutt 30, 1978.
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array as minimum-scattering antennas [10,11] also yields similar results for finite arrays. For
any given array configuration, even if it includes a large number of elements, such direct
calculations of radiation from a finite array no doubt now provide the most convenient
route to accurate results. On the other hand, because of the many variables, estimates for
appropriate designs continue to be most readily derived from the surface-wave point of view.

In the next section of this report the problem posed by a linear array of identical
parasitic radiators is given a generic network formulation. A formal solution in the form of
an integral is obtained for the currents produced on such a structure when a single element
is excited (the Green's function currents.) The technique for solution was described by
Mailloux [61 and follows closely that employed in the analysis of phased arrays [12,13].
In the present report it is shown that the active impedance (the input impedance to any
antenna element when all are excited with uniform amplitude and uniform phase difference •)
is intimately connected with the surface-wave parameters. In particular, surface waves can
occur only for values of t denoted ts corresponding to the "invisible region" in phased-array
parlance. For such values no radiation occurs, and the active impedance is reactive. The ratio
of surface-wave velocity to the velocity of light is kD/t., where WD is the element spacing in
electrical radians and ts is a zero of an active impedance as a function of phasing angle. It
would seem that analyses carried out on a variety of phased-array structures can now be
turned to account in the design of surface-wave antennas.

In Refs. 12 and 13 Wasylkiwskyj and Kahn analyzed an infinite linear array consisting
of dipoles (minimum-scattering antennas) oriented at an arbitrary angle with respect to the
array axis. An essentially closed form for the active impedance is available from Ref. 12.
This form simplifies remarkably for dipoles inclined at the angle 00 = arcsin V/MS-• arctan VT2:
The special nature of this angle for dipoles was first noted by Hazeltine [141 ,* The third
section of this report is devoted to the Yagi structure consisting of dipoles inclined at this
special angle. For this case the formal integral solution can he evaluated by contour integra-
tion in the complex plane. The surface-wave components of currents at the antenna terminals
are evaluated as pole-residue contributions, and the remaining components of current are
evaluated as branch-cut integrals. On the infinite structure these branch-cut "correction" or
space-wave components of current are the only ones giving rise to radiation away from the
structure. In contrast to the surface-wave components, which retain a constant amplitude
along the structure, the correction components decrease with distance for antenna elements
removed from the one excited. It is found that this decreasw is at least as rapid as 1/n, where
n is number of elements removed from the excited element. In a Yagi array this type of cur-
rent would be reponsible for "feed radiation."

'IIouftine (141 discovered that the static coupling between parallel magnetki toils (more generally diiotes)
was ellminated when the colts are inclined to a line connectUng their ctnters at the special anttle 00
stctan '/%A Not only the static coupling torm inversely proportWons) to the cube of the coil se•atatlon but
also a dynamic term inversely proportional to the square of the semparation are eliminated. Only the dynamic
ridiation term inversely proportional to the separation remains, The author is grateful to Dr. Harold A.
Wheeler for bringing llaeltine's cdiscovery to his attention. (1D. Wheceer has dicutsed ilareltlne's discovery
in a rocent book IUaceItine the Professor. published by the Hazelitine Corporatlon, Greenlawn. N.Y.. in
1978.)
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The last section deals with the parameters of surface-wave components on the general-
ized dipole Yagi structures. On the one hand, except at the one special angle treated in the
third section, the complexity of the integrand in the formal solution would seem to preclude
a corresponding complete evaluation. On the other hand the form obtained for the active
impedance [12] is convenient for computation. Consequently it becomes economical to
compute the actual variation of surface-wave parameters with frequency for any particular
structure of interest. Examples of such calculations are given. For conventional Yagi struc-
tures (00 = 9 0 0) surface-wave solutions have been found only for cap-iztive (short) dipoles.
It is shown that, for sufficiently small angle of inclination 00, surface waves can also exist on
arrays of inductive dipoles. In the computations the mutual coupling between antennas is
(apart from a scale factor) approximated as the coupling between minimum scattering
antennas having radiation patterns of short dipoles. Theretore results obtained for inductive
dipoles apply, strictly speaking, to short inductively loaded dipoles. Because of the slow
change of the radiation pattern, the theory of mutual coupling between minimum scattering
antennas indicates that these results approximately apply to arrays of (unloaded) dipoles
somewhat longer than 1/2 wavelength.

NETWORK FORMULATION

An infinite array of identical antennas uniformly spaced along a straight line or axis is
characterized at the terminals of the antennas by voltages V. and currents In, where the
subscripts denote the mth and nth antennas. Those terminal quantities are related by the
open-circuit impedance coefficients Zm n .

V _ ZinnIn(1)

In view of the symmetry of this array, the impedance coefficients depend only on the separa.
tion between the mth and itth antennas (n - rri)D, where D is the separation of adjacent
antennas. Thus Z,, is a function of only the difference

V - it f. (2)

Lorentz reciprocity in the electromagnetic field iniplies that the matrix of impedance coeffi-
cients is symmetrical:

Zmn 471.M (3)

It follows that

411 P Z1 -z_,. (4)

The basic network relation (1) can therefore be rewritten as

Vm Uf •3 Zv, m~v • (5)

VT.. e

. i• This is an infinito.ordor, linear, finite-differanco equation.

;. 3
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Let us assume that only one of the antennas, the Rth antenna, is excited by a voltage
generator Eg with internal reactance X0 (Fig. 1). The remaining antennas are each terminated
in a like reactance Xa; they are excited only parasitically through mutual coupling. These
conditions constrain the terminal voltages and currents to

Vm ~Eg bmj -X4Im , (6)

where 6 m gis the Kronecker delta:

65M 1, R , (7a)

When these constraints are inserted into the difference equation (5), the result is

Eg 6m, ZV + jXa 60L, 'M )-(8)

To solve the difference equation (8), one can introduce the Fourier transform, of the
currents I.:

4Q)J" (94)

and, inversely,

1 '* t eif i t (b

left

Pit. I - Infinite an-ay of identical am~oun.

Elf
4
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From this definition it follows that the Fourier transform of the currents IM +. is e-im .0 ):

1 '[v=0Q) e-jv] e-jt dt. (10)

The Kronecker delta is given by

6MV •" e-j(m-RA• dt•. (11)

On insertion of the integral representations (10) and (11), difference equation (8) becomes

t-f~e-j~-Ad (zu + iX606o) 2v (Q) e-~An'+ PA dt. (12)
21rf

Interchanging the order of summation and integration and equating the resultant transforms,
one may solve for 4Q()

E ej~t

xa + Q(•) ' (13)

where

ŽQZ - ~ e (14)

The superscript M makes explicit the dependence of the solution on excitation at the port of
the fth antenna only. The currents 142) which constitute the solution of (8) (in effect a
Green's function solution) may then be recovered from (13):

It is clear from (15) that the properties which distinguish tie terminal currents on one parti-
cular a•my from those on another reside entirly in X* and the functional form of Q(Q) 1151.
From symmetry considerations or from (16)

In the tea of this report the sup pt Q will be suppressed by setting R-0.

In the phased.array literature (12.16,171 Q() is identtfied as the active impedance, which
is the input impedance at any element of the infinite array when all elements are excited by
generalto of uniform amplitude and constant phase difference (Q radians). Therefore an

5
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i- .nate connection exists between the characteristics of the parasitic array and those of the
same array of antennas employed as an active phased array. The implications of this connec-
tion will be developed subsequently.

A significant difficulty arises in the evaluation of the currents In from (15) when the in-
tegrand has singularities for values of Z in the interval -v < t < r. As will be discussed from
several points of view, particular singularities contribute surface-wave components of current.
These particular singularities occur at the roots s(P) of

ja + Q(Q) - 0. (17)

Clearly a necessary condition for occurrence of a root in (17) is that the real part of the active
impedance Q(Q) vanish:

•___Re WO• = 0. (18a)

It is well known that for closely spaced arrays. 0 < kD < it, symmetry considerations dictate
a range of values of t in which (18a) holds, the so-cagled "invisible" region of phasing angles
[12,16,171

kD< ItI<v. (18b)

Therefore real roots of (17) quite generally lie in that range. Further, it can be shown that,
due to the reciprocity conditions (3) and (4), these roots occur in pairs with opposite sign
(Appendix). If tP) is areal root of (17), then 4P is also a root, which will be denoted

t-P) a ,(P), p tt,..(

Surface-wave components of current (compo.ents that maintain a constant magnitude
from one antenna element to the next and a constant phase difference from one element to
the next) ate found on closely sVaced arrays. These waves have phase velocity

(p) C. ,(20)

where c is the velocity of light. In view of (18b) they are "slow waves."

The total currents 1. are conveniently dlsected into surface-wave and correction
comPonentS

:I -10 +left. (21a)

where

lsnt t o #•ll(21b)

Isn is by definition a surface-wave component of current (with the superscript p being
omitted, because only one surface wave is assumed for simplicity). The absolute value in

6
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(21b) is justified by the symmetry of the problem. The unknown amplitude s0 can be de-
termined from the Fourier transform of (21a)

1= - (i) + ica), (22a)

where

s(•) = /s e'jlnls"+Jn = s + 1 + 1-e(_= 122b)
so _ n I e-i(N÷s) s1, (2b

with the requirement that 4,() be nonsingular at t =, [61. If no other (type of) singularities
are present, the currents l^n may then be evaluated straightforwardly from .ra.) and the
inverse transform (9b). When other types of singularities do occur, these must be examined.
If they are integrable, no further analytical difficulties (but quite possibly further numerical
difficulties) may be involved in the evaluation of lcn:

Slea 1 •¢() e-Jxt dt. (22c)

An alternative means for evaluation of the currents is accessible when the analytical

properties of Q(Q) can be determined in detail. Extension of Q(Q) into the complex " plane

>r n 0, (23)

brings with it the elegance and power of functionrtheoretic techniques for integrmtion. As a
function of the complex vahr" , the active impedance function will be denoted by q(Q).
lWhe• -v 1,

The currents 1. ae then given by the €ontour-integyal formula

N wjJ jX*(0
C

which is equivalent to (16) whei t is the unit circle in the t plane, properly indented about
any shigularities. The proper indentations may be determined by intrWucing a small
amount of dissipation (which moves the singularities off the unit circle) and then passing to
the limit of zero loss 141. An example of such a contour will be shown in Fig. 4a& connec-
tion with the partIcular case of inclined dipoles consdered in the next setoa.

47
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When the integral (25) is evaluated by deforming the contour C about the singularities
of the integrand, the residue contribution, due to a simple pole st " on the unit circle,
is readily identified as a surface-wave current. In general

Sn g d (26a)

(Eg •ti (26b)

The preteding formulation is readily generalized to an infinita array of a given complex
of antennas 113). The given complex, termed a subarray of antennas, may comprise one or
more multiport antennas (Fig. 2) or simply an ordinary subarray of several identical one-port
antennas. Suppose the antennas in each subarray have M input ports. Then the impedance
coefficients of the infinite structure may be denoted by 2 , R. 7aTi. -I 1, 2, ... , where,
for example, iff identifies the Mth port of the ruth subarray. The Lorent reciprocity condi-

tion (3) is then replaced by

ZW2 M (27a)

t

jaij
:.1

(4

iia
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With the adoption of matrix notation within the subarray,

Z Z (27b)
--r n nm'

where Z denotes the transpose of the M-by-M matrix Z . From symmetry (2) it follows
that =nm =nm

Z =Z =Z . (28)
=inn =v -- V

Accordingly the basic network relation can be written as

Yn= • Z I , (29)

where V and I are M-dimensional column matrices:

[V i ;m V2;m~** VM~fl] (30a)

and

4-n I1;n 2;n, IM;] j (30b)

The solution of (29) proceeds in a fashion entirely parallel to the solution of (5). In particular

+(R . _ -~-~ t (31)

is obtained parallel with (15). Surface-wave currents may opeur and are again attributable to
singularities of the integrand in (31), that is, to real roots tw of the determinant:

det[J~+.~j 0 (32)

APPLICATION TO AN INFINITE ARRAY OF INCLINED DIPOLES

An infinite, uniform, linear array of electric dipoles, each inclined at angle 00 to the
array axis, is shown in Fig. 3a. Let the input impedance to one of the dipole antennas taken
from the army be

[' 9
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'4/

D D /
Fig. 3a - Infinite linear array of metal rods (radius a and

length b) or short-circuited electric dipole antennas

t'QUIVALENT ACTUAL

ANT EHNNA TERMINALS

CNMS ANTENNA

-ACTUAL ANTENNA
TERMINA,_S

ACTUAL LOAD
(SHORT CIRCUIT)

EQUIVALENT LOAD

FOR CMS ANTENNA

Fig, 3b- Dipole and equivalent canonical-minimum.
scattering (CMS) antenna circuit

z a"a + iX4 (33)

in free space. To use theory developed for minimum.scattering antennas to calculate mutual
impedance [9,11,17), each antenna is modified through the addition of the series reactance
circuit shown in Fig. 3b. At terminal bb' each dipole is closely modeled by a canonical.
minimum -scattering (CMS) antenna with input impedance R.. Teminals ce' are in aCl respects
equivalent to the oiginal antenna terminals aa, With respect to the terminal bb' the im.
pedance coefficients for the army, normalized to R., are given by [11,12]

ZV 20  J (kDlIl-•n-•0 + kDivl 3 O200. P*0, (34&)

1, V a0, (34b)

where the particular sphericas Hankel tunctions are [181

10
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(2 e-jz

h (Z) (35a)0 z

and

(( -j-) (35b)

and where k = 2w/X, D is the distance between adjacent dipole centers, and D V v I = D in - m I
is the distance between the mth and nth dipole centers. It was noted following (1) that the
mutual impedance depends only on the distanc, between the mth and nth dipole centers and
thus on kD I m -. n ] kD I v 1. Impedance quantities without the caret are normalized to Ra.

An infinite Yagi structure is obtained when the dipoles are short-circuited at the termi-
nals aa' of the antennas. Putting the short circuit at the terminals cc' shows that the Yagi struc-
ture is equivalent to the array of CMS antennas at terminals bb' terminated in reactances k
When an ideal generator is placed in series with this reactance at one of the antennas, the
problem of finding the terminal currents at all antennas is a particular example of the network
problem formally solved in the preceding section. As was pointed out in that section, the
features distinguishing various infirite Yai datructures are concentrated in the functional form
of the active impedance Q(t) for all phasing angles t, -w < < wr, giver by Eq, (14). A highly
convergent form of this impedance was previously obtained by Wasylkiwskyj and Kahn [12].

When the dipoles are inclined to the array axis at the special angle

sin 2 O0 2 (36)

the mutual impedance (34a) simplifies to [12,14*1

Sg=, = h(02) ('kD~v) (37)

The active impedance is then given by the closed form

Q(M) .-L-0 In 2 cos kD Cost 0< <kD. (38a)

I -. ln[21coskD -cost], kD< Itl<i. (38b)

For dipoles spaced more than 1/2 wavelength apart (kD > w) the active impedance has a
nonvanishing real part for all values of •. All surface-wave roots tP) of (17) can therefore be
found** using (38b):

*Footnote on patio 2.

* 'Sencupts ) det~vs f i similar from. However, his mull was intended as an approximatio fonr roots of thec• onventions! Yagi t Uruct with U. -w/2.
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In the preceding section (Eq. (25)) the general solution for the currents In was formu-
lated as a contour integral in the complex i - tieJi plane:

g f(40a)
In= 21rj +jXa + q(G)

C
Here

q( --) = Ln(1-°uý) + 1-D Ln(1-) (40b)

1 - Ln ( + (40c)

in which

eJD, (40d)

with q(r) repiesenting the continuation of (38) into the complex t plane, the contour C
1-.ing ,he unit circle Iý I t indented as shown in Fig. 4a, and the notation Ln ý" denoting
the principal branch of tne natural logarithm function:

Lnt' = Intl' + ji', - (41)

The active impedance furction q(r), and consequently the integrand in (40a), has four
bcanch pobits, at

0. (42)

The branch cuts, correspoindfng to (41), have bcen chosen to run between 'o and a and
between 1!o and 0 Time integrani also his poles at the zeros of the denominator

SI ) n given by (a9), and at a pole ot the numerator which occurs at infinity when
n <-1 The contour C is indent&e about the branch points onl; vo avoid ambiguities in the
drawing, ncie the singuliadties at the&; j_.ints are integraLe. On the other hand, tht i-identa-
tions at the aukface-wave poles QP)are essential and are dictated by uniqueness of i iw solu-
tion for the currents. A detailed discuss'n of these points is contabid in the Appe'vix.

Preparatory to evaluatin& the integral in (40a), the contour C may be deformed about
the singularities of tOw intcgrnd as shown in Fig. 4b tot n > 0 and as shown in !ig. 4c for
n < 0. In either case the integral naturally sepprates into the two components given by (21a).
A surface-wave contribution I n arises front the pole, and a correction .ontribution I arises
from integration around the br4ah cut. For n ' 0 the circula- arc of large radius in Fig. 4b
does not contribute.

12
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(p)

Fig. 4a - Contour of integration C, indented Fig. 4b - Deformed contour equivalent to C in Fig.
around singularities on the unit circle 4a when n > 0

x

Fig. 4U - Deformed contour equivalent to C i Fig.
4A when a < 0

13
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The general form of the contributions due to the (simple) poles has already been stated
as (26a) or (26b). Substitution in (26a) of the active impedance function (40c) or substitu-
tion in (26b) of the active impedance (38b) for the dipoles inclined at the special angle (36)
yields

(Jn~p) cos kD - cos
,s -s n(p) .~e-j t (43)

The function

Vgn(p) -= +1, p > 0,

-1, p < 0,

accounts for the sense in which the contour circling the pole is traced. In view of the relation
(19) which is verified by (39)

I8n ls(-n) (44)

as expected from symmetry.

The integral around the branch cuts must be evaluated numerically. For n > 0 an ap-
propriate form is readily obtained by use of (40b) and the relations

Ln(1-o ) - ln(Y-l) +jv, 0>n> 1, (45a)

for the inward portion of the path of integration and

Ln(1-ou) - in(in-1)-jr, 1<n<ao, (45b)

for the outward portion. The result is

-n-

+ -a j L ( ) -Rd (46)
1 _ L)]

For n > 0 it is easy to estimate the variation of I. The denominators in (46) are AX + q(M)
evaluated near the branch cut. Each denominatocras some finite minimum absolute value

14
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independent of n. It does not take on the value zero; that value occurs only at the roots
Integration then yields

Ic j ,n>O0, (47)

where A is independent of n. Thus IIcn I decreases at least as fast as 1/n.

For n < 0 the integrand diverges as " -• o. It is convenient to deform the contour C as
shown in Fig. 4c. An appropriate form of the branch-cut integral is readily formulated by use
of (40b) and the relations

Ln(l-j) In(1-,q) +yr 1> 0 i> 0, (48a)

for the inward portion of the path of integration and

Ln1• In l(1 -n) -jir, 0 < i <1, (48b)

for the outward portion of the path of integration. The result is

EgeJnkD F -n-1

of I{( ) + jx a -j Ln [( 1 i) (1 -2T)
I .1

•-n-1

1' -i d,. (49)

Integration then yields

where B is independent of n. Thus I I I again is shown to decrease at least as fast as 1/n. Inview of symmetry only one of the integZf in (46) and (49) need be evaluated. In fact, using
the trnsformation i- 1ji /, one verifies directly that

left = C(-n)" 51

The currents I and Ia, were computed for a Yagi structure consisting of an army of
dipole antennas inclined to the array axis at the special angle 0 - 64.74' and spaced
D 0.200 m apart. ach dipole rhas length b a 0.400 m trd rdus a - 0.0063f m. Absolute
length& are specified to emphasize that the curve shows the true frequency dependence of aYagi structure of fixed geometry. Of course this structure can he scaled in the usual way
from the assumed frequency or design wavelength of 1Im. The dipole radius was selected to

15



KAHN

allow comparison of the results of the next section, for 00 = 90', with those of Mailloux.
The normalized self-reactance of the dipole X has been taken from Jordan [19,20]. The
input reactance is normalized by dividing by the input resistance. This normalized value is
the same whether referred to the loop or the base (center) of the antenna. The formulas for
the antenna impedance are summarized in the next section by (53) and (54). Significant
current ratios are plotted in Fig. 5 for a range of free-space wavelengths around 1 m

(kD = 1.257).

At 1 m or less the self-reactance of the dipole is high, allowing only small parasitic
currents to be induced on the dipole structure. The surface-wave currents, such as do exist,
propagate at nearly free-space velocity. At higher frequencies (kD > 1.257) the dipoles
approach resonant length. The lower self-reactance allows high currents to be induced on the
dipoles. The surface wave is strongly coupled to the slow-wave structure and propagates at a

-j.

0

L.20 130I

.10L

Fil. 6 - Space-wave (correction) component of the
current relative to the surface-wave component at
the feed point and the relative surface-wave veloc-
ity, computed for an infinite array of dipoles Inclined
at Oo vartan 7 w 5 4 .7 40 with dipole radius
a - 0.00635 m, dipole length b u 0.400 4, and di-
pole spacing D 0.200 m
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velocity much below free-space velocity.* The unattenuated surface-wave component of the
current becomes large relative to the space-wave component, which in addition decays away
from the excited element. The rate of decay of the space-wave component of current is
shown in Fig. 6. It is seen to be slightly more rapid than the lower bound 1/n developed in
(47) and (50).

SURFACE-WAVE CURRENTS ON GENERALIZED
INFINITE YAGI STRUCTURES

In this section the dispersion characteristics of the surface-wave currents on arrays of
arbitrarily oriented dipoles will be computed. As in the case of the specially inclined dipoles

o10,

0;

S. F BOUNDI

4

ELEWNT NAW*R.NHN (LOGARITI4?aCALE)

Fig. B - Decay along the Yuigi structure of the
-po.-wave component of the current relative
to the surfackewave component, computed for
an infinite array of inclined dipoles with the
same 0 ,, a, b, and D as in Fig. 6 and for 3 free-
spaee wavelength of I si (kD- 1.257)

*The characteristics of the surface wu, are also found by Interpolating for 0- 54,74 on the wavenumber

diagram to be iresented as Fig. 7. The slopt. of a line from tihe origin to a point on a dispersion curve is the
relative phase velocity of the corresponding surf.e wave v/k. given by (20).
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of the preceding section, the generally oriented dipoles are easily covered by the network
formulation given in the second section. The currents excited by any one driven dipole are
given by (15), and the dispersion relation for the surface-wave components is given by (17).
Nevertheless analytical difficulties arise due to the increased complexity of the active im-
pedance Q(Q). Although these difficulties stand in the way of a complete solution along the
lines obtained in the preceding section, the dispersion relation is readily solved numerically
for the surface-wave parameters.

When the more general expression for the mutual impedance (34a) is substituted into
the formula for the active impedance (14), the resulting series may be summed by an exten-
sion of the methods employed in the Appendix. This sum, found in Ref. 12, is

Re3Q() • 12 02 1sin2 0 +17-r si 2 0 I< D < 7r, (52a)

(C ())o O 2~ 0) 2kD 0'

- 0, k.D< I t<it, (52b)

and
ImQ() U()(cos2 0 -½sin2 0) + w(t)sin2 00 (52c)

where

U( '(kD) 3 [2.404 +fo (kD x)- jn2sinkrx + (/D + -x)In2sin dx

0 00

I-liD -tD
~~~~~D 24 4+ ~h~)nsn-x x

and (with a factor 3/2 added that is missing in Ref. 12)
3

w) - In 2 (c sin-E osD)+ Ink 2<iA-x < ,< r (52d)

-• tln2 (coskD - cost), "•<hD <I . (52g)

18
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The reactance of the dipole k may be obtained by any independent means. Herein
results quoted from Jordan and Bafmain [19,20] are used. Within the approximations em-
ployed for mutual coupling, the physical dimensions of the dipole (length and radius) enter
only through the value of the input impedance Aa + jk•a:

½ha 15[(2 + 2 cos b)s 1 (b) - (cos b) s1 (2b)

- 2(sin b) Si(&) + (sin ) Si(2b)] (53)

and

jXa -15{(sin b) (.y+ ln(...Ž-) + 2 Ci(b) -Ci(2b^)]

-(cos) [2 Si(b) - Si(2&)] - 2 Si(&) (54)

where b is the dipole length kb in electrical radians (b being the dipole length in meters), a is
the dipole radius ka in electrical radians (a being the dipole radius in meters), a/b 4 1, -y is
Euler's constant (0.5772), and Sl(x), Ci(x), and Si(x) are defined as

SW(x) = Y dy. (55a)

Ci(x) .fcos;Ydy, (55b)

and

Si(x) dy. (55c)Jo Y
0

The normalized values of antenna impedance

a + I 1 + it./A (56)

do not depend on the current point on the antenna chosen for reference.

The characteristics of the surface wave obtained from the solution of the dispersion re-
lation (19) may be displayed in various ways. Perhaps the most universal way is a wavenumber
diagram: kD vs t,. For convenience of scale in Fig. 7 to follow, these parameters will be
divided by 2w to obtain DfA and DAA1 (fractional wavelengths).
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The general features of the wavenumber diagram are well known [41, and special aspects
for the case of the normal Yagi structure (0 = 900) are discussed by Mailloux [211. In par-
ticular Mailloux discusses the possibility of wave solutions for antennas of length X/2 < b < X
(inductive antennas). He concludes that the antennas must be capacitive to support a surface
wave. The present computations, shown in Fig. 7, agree with those of Mailloux and confirm
this conclusion for the case 00 = 90r. The region of capacitive antenna length, approximately
bfA < 0.5, is restricted to a region of each diagram that is below

D bD D D_-.5p (57)
-b b

For example, in Fig. 7a this capacitive region is below DA 0.5 D/b 0.5 (0.200)/0.300
= 0.33.

However, when 0O :f O, it is evident just from the form of the imaginary part of Q(Q),
given by (52c), that inductive dipoles will generally lead to solutions for some 0 less than
90g; unless u(Q) - 0, Im Q(Q) will change sign as 00 -• 0. Figure 7 shows wave soYutions when
bI > 0.5 for 00 30" and 00. In the computations (Fig. 7) the mutual coupling between
antennas has (apart from a scale factor) been approximated by the mutual impedance
between canonical-ininimum-scattering antennas having the radiation pattern (in the open-
circuited-array environment) of short dipoles (Eqs. (34) and (52)). Therefore results
obtained for inductive dipoles apply, strictly speaking, only to short inductively loaded
dipoles. Because of the slow change of the radiation pattern with dipole length, however,
the theory of mutual coupling between minimum-scattering antennas [ 17? indicates that
these results are approximately applicable to arrays of (unloaded) dipoles somewhat longer
than 1/2 wavelength. In Fig. 7 the input impedance given by (53) and (54) is specified in
terms of a fixed dipole length b, fixed dipole radius a, and the free-space wavelength X. Of
course the form of (54) plays a large role in detenrining the frequency dependence shown.

A part of the active impedance lRa Q(Q) in the range 0 < I •} < kD, although it does
not enter into the resonance calculations (Re Q(Q) 50, 0kD < I • < it), is readily compmred
for short and 1/2-wavelength dipoles. This portion of the active.impodance summation can
be rigorously expressed in terms of the radiation patterns (121

where R0 is the Input resistanue to tw winttnna element in the ololncircuitod array environ-.
ment. For a CMS antenna ft. : R , which has been normalized to 1. In (58) PO(0,0) is the
radiation pattern of in element in'the open.circuited -rray environment, normalized to unit
radiated power. For the readily computedI spxcial case of collinear dipoles (0 .0)

"Tr ( 59)

for short dipoles (52a) and
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(a) Dipole length bu 0.300 m (b) Dipole length b , 0.340 m
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-~- - -//
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!//
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Fig., 7 -- Wev~numWe dialpams f"r a surfieo waev on ati Infinite Yogi ltructume with a dipote radius
ao 0.00636 at, a diot spadiq D) 0. 200 a. and varius taindWtioa -W40" so
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R•v ir c 0s2(- )
Re Q() =7.658 kWD (60)

for half-wave dipoles [12,17,191. (In (60) an error in the coefficient of the corresponding
expression (37) of Ref. 12 and (78) of Ref. 17 has been corrected.) Although the functional
form is different, numerically the patterns and consequent variations of Re Q(Q) are similar.
In the range 0 < I < 1< 0.6 kD the two differ by less than 10%.

Figure 8 illustrates several features of significance in the computations. The first feature
is the dependence of the active reactance Im Q(Q) on t. The second is the solution of the
resonance relation t, at the intersection of the negative-antenna-reactance (-X,) line with
the active-reactance line. The third is the extreme sensitivity of the solution (Q) to small
changes in antenna reactance for larger values of t (the slowest waves). Because of this
sensitivity the solution becomes unreliable, hence ¶he dispersion curves in Fig. 7 have been
broken off.

Independent results with which the present theory may be compared are available for
only the conventional Yagi structure, with 00 900, and consequently only for antenna
reactances corrsponding to inductive dipole lengths b < X/2. A comparison w-h the theory
of MaIlloux [7) is shown in Fig. 9. The relatively simple expression for antenna reactance
used (Eq. (54)) is at about the limit of its range of validity 41 teo.ms of dipole radius 1191.

A possible application of the new information on Yagi structures contained in Fig. 7 is
in design of a mechanically compenwated broadband Yagi antenna. The well known condition
for optimum directivity of a Yagi surface-wave antenma (Hansen.Woodyard) is cited by
Ehrenspeck and Poehler (31. In the notation of Fig. 7, the required relation between wave-
lengths and the length L of the Yagi director array is

li 0 2*D D D
0.468 (81)

In Fig. 10 this relation is shown u: the curve labeled "optimum" sutrimpo•ed on a (schem.
atic) wavenumber diagram for a geneiialled Yagi structure. As frequency (DA) is increared,
a conventional director structure (00 - 90) of fixed dlipole• proportioned to satisfy relation
(61) (point A) rapidly departs from this condition to point B. However, if each dipole is
rotated appropriately to an inclination 0 < 90, the optimum relation is restored at the
higher frequency (point C). Thus a direclor armry of dipoles, mechanically ganged so that
frequency and inclination track. produces optunum performnance of the diteetor at each
frequency. However, the concomitant rotation of the element pattern for each dipole does
involve some Ios of directivity.
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Fig. 8. -Calculated effects of the surface-wave phaseeshif~t-
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APPENDIX

The Ft'unctional Forms of Q(Q) and q(t)

Symmetry and Lorentz reciprocity result in relation (4) among the impedmace
coefficients:

ZV Z-1_ . (Al)

As a result the active Impedance as given by (14) becomes

WE•) ' Z0 + • Zcos lo. (A2)S~v-i

Consequently, if the equation

0iX + Q o) 0 (A3)

has a r.ot ,(P) then it has another root (P) such thatha a $ rot , suh ha

S[('~P) ( - P).A4

This is a general feature of periodic reciprocal structures 1 4,221.
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If the complex variable • = neJA is introduced, the complex active impedance function

q(P) f £ Z, .- (A5a)

can be put into the form

q(&) =Z + ZV( + ý-V). (A5b)
v-1

Consequently, if the equation

jXa + q(') 0 (A3)

has a root then it has another root (-P) such that

_ 1. (A7)
s sp

The active impedance (A2) can be summed in closed form for an anmy of dipoles
inclined at the special angle siný 00 2/3, at which angle Z. reduces to (37), which by use
of (35a) is

.eJI PkD
Z41 I IkD (A8a)

In the case v 0

zo 1. (A8b)

The remainder of this appendix deals only with this special angle, Substituting (A8a) and
(A8b) in (A2), one has

(eQ(p) - , + 1 +, (A9)

If k is assumed to have a small, negative imaginary part, so that

k =kr + jiJ,, hi 0. o (A10)

then the series

S(All)
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is absolutely convergent. Integrating term by term (limits 0 and aý) yields the first summa-
tion in (A9). On the other hand (All) is a geometric progression with the sum

1
- -" (A12)

Consequently the first sum in (A9) is also given by the integral of (A12):

S - In (1 - o•), (A13)

in which In •' denotes the natural logarithm of t'. The expression (A13) for the sum is a
multivalued function of at, since In t' is multivalued. But the sum (All) is single valued; it
converges to the principal value of the logarithmic function Ln ý' defined by

-ir < Im (Ln ý') < +it. (A15)

The second summation in (AM) may be performed similarly. The complete result is

q(') =-- Ln(1 -o( ) + 1 -- D-Ln(1 -(--). (A16)

In the limit k1  0

q(w) &Aq(e) Q(w). (Al7)

In the main text the finite Fourier transform was employed to obtain a formal solution
of the difference equation (5) for the (Green's function) currents In. The result is

I. -i
re (A18)

where the value of Q in (15) has been set equal to zero and this superscript suppressed. This
solution was obtidned without explicit reference to boundary conditions (in this case condi-
tions at In I - oo .) Without such boundary conditions or their equivalent, any solution of
the homogeneoui difference equation may be added to a given solution for the currents,
producing another solution. This lack of uniqueness manifests itself through the presence
of singularities on the path of integration. One might intuitively associate a zero of the
denominator with finite !. even for E,-+ 0, that is. with solutions of the homogeneous
equation.

A unique solution is obtained when nonzero solutions of the homogeneous equations
are excluded by introducing dissipation. Some dissipation, no matter how little, is physically
unavoidable; therefore this process selects the physically correct unique solution in the
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limit as the dissipation approaches zero. In terms of the singularities of (A18), dissipation
removes these singularities from the real path of integration -ir < t < r to complex values.
The movement of the singularities will now be studied in the complex ý plane.

The singularities in the integrand of 140a) are the branch points of q(ý): roots of
jXa + q(ý) = 0 and singularities of -(n ). The branch points of the function q(&) arise
from branch points of Ln (v') in (A16). These are listed in Table Al. As is well known, dis-
sipation produces a negative imaginary component in k, so that (AlO) applies. The effect is
to move the branch points i/o and a off the unit circle:

I llo I I ejkD I = ekj) > 1 (Al9a)

and

Ior le-ikD = ekiD < 1. (Al9b)

Table Al - Branch Points of the Active
Impedance Function q(ý)

Branch Points of Ln " Branch Points of q(')

•'=1 - ý 0 =1/0

Sbranch cut

•"=1 -Olt" 0 • ba n

Sbranchcut

Properties of the roots of (A3) and (A4) have already been discussed. Displacement of
the roots is readily calculated when dissipation is introduced in the form of a (small) real
component in the antenna self-impedance. Then (A4) becomes

RG + jXa + q(9) 0. (A20)

Expanding q(t) in a Taylor series about an unperturbed root tP) results in

q.P) [ ) .... (A21)
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By construction, to first order in • - , one has
S

R + ) " 0, (A22a)

or

-R= - (A22b)
SS

The right-hand side of (A22b) has been evaluated in another connection; from (26a) and
(43), with n = -1, the result is

-- = kD p) 'cos kD - cos -•(P)
•" •() Rk t (A23)

sin •P
S

In (A2M), forp +1
S' < IT (A24a)

and for p -1

-7 < < kD. (A24b)

The trigonometric factor is positive in the case of (24a) and negative in the case of (24b).
Consequently the root t(I) moves radially outward (along ý(I)) and the root t-1) moves
radially inward (along _j(-1)). The location of the singularilies in the presence of dissipa-
tion is illustrPted in Fig. AI.

Fig. Al - Singularitieu of Ohe Integrand In (40a) in the
complex r plane In the presence of dlislpation when
60o9 213
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