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Abs tract

A method is given for solving Ax b and

minlAx - b11 2 where the matrix A is Large and spar se.

The method is based on the bidiagonalization procedure of

Golub and Kahan. It is analytically equivalent to the

method of conjugate gradients (CC) but possesses more favor-

able numerical properties . The Fortran implementation of

the method (subroutine LSQR) incorporates reliable stopping

criteria and provides estimates of various quantities includ-

ing standard errors for x and the condition number of A.

Numerical tests are described comparing LSQR with several

other CG algorithms. Further results for a large practical

problem illustrate the effect of pre-conditioning least-

squares problems using a sparse LU factorization of A.

~~~~~~~~~~~~~~ ~~~~~~—
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I . I~T~ROI1JCTION

A ntmerical method is presented here for computing a solution x to

either of the following problems:

Unsyur~tric equations: solve Ax b

Linear least squares: minimize IIAx - b112
where A is a real matrix of dimensions m by n and b is a real vector. It

will usually be true that m � n and rank(A) n, but these conditions are

not essential. The method, to be called algorithm LSQR, is similar in

style to the well-known method of conjugate gradients (CG) as applied to

the least-squares problem (Hestenes and Stiefel till) . The matrix A is

used only to compute products of the form Av and ATu for various vectors v

and u. Hence A will normally be large and sparse or will be expressible

as a product of matrices that are sparse or have special structure. A

typical application is to the large least-squares problems arising from

analysis of variance.

CG-likc methods are iterative in nature. They are characterized by

their need for only a few vectors of working storage and by their

theoretical convergence within at most n iterations (if exact arithmetic

could be performed). In practice such methods may require far fewer or

far more than”~ iterations to reach an acceptable approximation to x. The

methods are most useful when A is well-conditioned and has many nearly

equal singular values. These properties occur naturally in many applica-

tions. In other cases it is often possible to divide the solution

procedure into a direct and an iterative part, such that the iterative

part has a better conditioned matrix for which CC-like methods will

converge more quickly. Some such transformation methods are considered

here .

— 
— 4 — — - - .

I  — -~ ‘.r - . •~~~~. ~A .~~~~ — -
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Algorithm LSQR is based on the bidiagonalization procedure of Golub

and Kahan [10]. It generates a sequence of approximations 
~~~ 

such that

the residual norm Irk11 2 decreases monotonically, where = b - Ask.

Analytical ly the sequence 
~~~ 

is identical to the sequence generated by

the standard CG algorithm and by several other published algorithms. How-

ever, LSQR is shown by example to be numerically more reliable in various

circumstances than the other methods considered.

The Fortran implementation of LSQR is designed for practical applica-

tion . It incorporates reliable stopping criteria and provides the user

with computed estimates of the following quantities: x , r = b - Ax , A Tr ,

11r11 2, IAII~, standard errors for x , and the condition number of A.

1.1 Notation

!~ trices will be denoted by A , i~, ..., vectors by v , w , ..., and

scalars by Ct , ~ 
An exception is c and a which will denote the

significant components of an elementary orthogonal matrix, such that

C
2 

+ 8~ = 1. For a vector v , ilv:l will always denote the Euclidean norm

I1v 11 2 = (vTv)4. For a matrix A , h A i l  will usually mean the Frobenius norm,

llAIl~ = (Ect~.i~ and the condition number for an unsyninetric matrix A is

defined by cond(A) = hA il iVii where A~ denotes the pseudo-inverse of A .

The relative precision of floating-point arithmetic will be c, the

smallest machine-representable ni.mter such that 1 + t 1.

_ _  

_ 1~- -
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2. ~4)TIVATION VIA WE LANCZOS PROCESS

In this section we review the syninetric Lanczos process [13] and its

use in solving syninetric linear equations Mx = b. Algorithm LSQR is then

derived by apply ing the Lanczos process to a particular syninetric system.

Although a more direct deve1opment is g iven in section 4, the present

derivation may remain useful for a future error analysis of LSQR, since

many of the rounding error properties of the Lanczos process are already

known (Paige [19]).

Given a syninetric matrix M and a starting vector b , the Lanczos process

is a method for generating a sequence of vectors {v~} and scalars {ct.}, {B ~}

such that M is reduced to tridiagonal form. A reliable computational form

of the method is as follows: -

The Lanczos process (Reduction to tridiagonal forr~)

(a) 81 v1 = b .

(b) w . = Mv . - B.v.
1- t t l  2 1

a. = v.Tw .  i —1 ,2,....7, ~1~. 1~. •

~~~ . V. = W .  - C t . V .
1..+1 i,+1 1.. 2.- 2.-

where V
0 

E 0 and each � 0 is chosen so that II v.~I = 7 (i > 0). Prior to

termination at the first zero the situation after k steps is sumarized

by

V~T~ + Bk+1 t
~k+18k (2.2)

where Tk tridiag(B~, a~, B~~1) and Vk [v 1,v2,... ,vkl. If exact arith-

metic is used then Vk
TVk — I and so must vanish for i — ~z , if not

before , but in any event equation (2.2) holds to within machine precision.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — —
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Now suppose we wish to solve the synunetric system Mx = b. ?4iltip lying

(2.2) by an arbitrary k-vector whose last element is 
~k 

gives WkY k =

VkTkYk 
+ 

~k+i~ k+i~
k •  Since b by defin it ion , it follows that if

and are defined by the equations

Tkyk ~1e1 (2.3)

I - 
5k Vkyk (2.4)

then we shall have Mxk 
= b + flk~k÷1

0k+1 to working accuracy. Hence 5k may

be taken as the exact solution to a perturbed system, and will solve the

original system whenever 
~k~k+i 

is negligib ly small.

The above arguments are not complete, but they provide at least some

motivation for defining the sequence of vectors 
~~~ 

according to equations

(2.3) and (2.4). It is now possible to derive several iterative algorithms

for solving Mx = b , each characterized by the manner in which is

eliminated from (2.3) and (2.4) (since it is not practical to compute each

~k 
explicitly) . In particular , the method of conjugate gradients is known

to be equivalent to using the Cholesky factoriz ation = L
kVkLk

T and is

re liable when M (and hence T
k
) is positive definite, while algorithm SY*ILQ

employs the orthogonal factorization Tk = LkQk to retain stability for

arbitrary synmetric M. (See Paige and Saunders [21] for further details of

these methods.)

We now turn to a particular synmetric (but indefinite) system, namely

[A
c Al [;] = 

[:] 

(2.5)

which is well known to solve the least-squares prohlem ,min hA s - bhI , for

arbi trary A and b. If the Lanczos process is applied to the partitioned

— — ‘ —  — _________________________ - - -— 
— - — --w

- - - ~~~~~~ -~~~--
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matrix and rhs vector in (2.5), the recurrence relations (2.1) simplify

to give one of the bidi agonaliz. ion procedures to be discussed in the next

section. Furthermore, after 2k+1 iterat ions the tridi agonal system corres-

ponding to (2.3) has the form

2 Ct
1

a1 0 82 111

82 1 U
2

T
2k+,y2k+l 

E a2 112 = (2.6)

Uk 0 8k+i

I 
T
k+l

following appropriate change in notation.

System (2.6) is indefinite and could be dealt with as in algorithm

SYM~LQ, i.e., u.sing the orthogonal factorization =

However , this factorization proves to be essentially the same as for a

general tridiagonal matrix without any convenient simpl ification. Thus a

specialized form of SYI~t.1LQ could capitalize on the simplified form of the

Lanczos process , but it would not take full advantage of the structure

inherent in (2.6).

Instead we observe that a simple syninetric permutation of (2.6) gives

an equivalent system of the form

[ T  

B

k] [t k ] [ 8 e ]

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where B
k 

E bidiag(~~,rx~) is a lower bidiagonal matrix of ordcr k+i by k.

Comparing (2.7) with (2.5) imediately reveals another least-squares

problem , mm I IB ky k 
- 8 .~e 1l~. This does have a convenient structure and can

be solved reliably using an orthogonal factorization of Bk, as in the

least-squares algorithm of Gol ub [9] .

To suninarize: an application of the Lanczos process to the problem

mm lA x  - b it leads to a series of subproblems nun hI B ky k 
- which can

be effectively dealt with using a conventional QR factorization of Br,. This

observation forms the basis for algorithm LSQR.

I

I
I
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3. ThE BII)IAWNALIZATION PROCEJIJRES

In the previous section it was noted that the recurrence relations

(2.1) simplify when the Lanczos process is applied to the least - squares

system (2.5). (In fact both Vk and have special structure.) The result

is one form of the bidiagonalization procedure of Golub and Kahan [10]. For

future reference we shall state the procedure in two different forms and

give some unexpected relationships between the forms. It will then be

possible to derive algorithm LSQR directly and relate it to various other

algorithms that have been proposed.

For brevity we shall call the procedures Bidiag 1 and 2. The notation

used emphasizes the connections between them.

Bidiag 1 (Starting vector b; reduction to lower bidiagonal form)

(a) = h , ct1v1 
= ATu,

(3. 1)(b) 
~~~

. u. = Au. — a.u.2.+ 1 2.+ 1 2. 2. 1-
- ~

a. ‘,. = A~u. 
- 8. V .

2.+ 1 i,+ 1 Z-+ 1 ~ +1 1.

The scalars cz~ > 0 and B. � 0 are chosen so that lIu~lf — lhv~ll = 7. With

the defin itions

Uk [u 1,u23. . .,u~
) , Bk

1v 1,v2,. . .,V
k

] , 
82

83

Bk+i

(where Bk is the rectangular matrix introduced in section 2) ,  the recurrence
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relations ( 3.1) may be rewritten as

Uk l (B
l e l

) b , (3.2)

AVk = Uk+lBk , (3.3)

T T TA = VkBk + ak+lvk+lek+l . (3.4)

If exact arithmetic were used then we would also have U = I andk+i k+i

Vk
Vk 

= I, but in any event the above equations hold to within machine

precision .

Bidiag 2 (Starting vector ATb; reduction to upper bidiagonal form)

(a) 01v1 
= ATb , p 1p1 

= Av 1 .

T(b) 0~~1v~÷.~ = A - p~v~ (3.5)
= 1, 2,

= Av~~1 
-

Again , p . � 0 and � 0 are chosen so that II~.Ii = iIv~h I = 1. In this

case , if

, R
k P 1 0~ 

-

V
k 

E [V
l,V 2,...,Vk

] , ~ 
03

ak—i 0k

we may rewrite (3.5) as

Vk(O le l
) = A Tb , (3.6)

AVk = PkRk , (3.7)
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ATPk 
= Vl<Rk + Ok+l vk+l ek , (3.8)

and with exact arithmetic we would also have Pk
TPk Vk Vk

Bidiag 2 is the procedure originally given by Golub and Kahan (with

the particular starting vector ATb). Either procedure may be derived from

the other by choosing the appropriate starting vector and interchanging A
Tand A .

3.1 Relationship between the bidiagonalizations

The principal connection between the two bidiagonaliza-tion procedures

is that the matrices V
k are the same for each, and that the identity

T TBk ~
“k 

- Rk Rk - (3.9) )
holds . This follows from the fact that is the same in- both cases and Vk
is mathematically the result of applying k steps of the Lanczos process

(2.2) with ?.I - ATA. The rather surprising conclusion is that nnist be

identical to the matrix that would be obtained from the conventional QR

factârization of Bk. Thus

[Ri
Q B ,~, ’~ f 

k
1 (3.10)k~~ LOJ

where is orthogonal . In the presence of rounding errors these identities

will of course cease to hold. However, they throw light on the advantages

of algorithm LSQR over two earlier methods , LSCG and LSLQ, as discussed in

section 7.4.

The relationship between the orthonormal matrices Uk and 
~k ~~~ be

shown to be

Uk+l t1’k Uk+l) [Pk iI~fi] ~ic (3.11)

_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _-- _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _-.

— - - — 
—. _

~
- - ~~~~
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for some vector rk . We also have the identities

p1
2 

, a181 = 0 1
(3.12)

c*j
2 + 8~÷~ 

= p
~ + 0~ , a~B~ 

= p1, 10 .  for -1 ~ I

- T -- ~~~~~~~~~~ -. - ~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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4. ALWRITFt4 LSQR

The quantities generated from A and b by Bidiag I wil l  now be used

to solve the least-squares problem , mm ~~ 
- A4 . 

-

Let the quantities

Xk k~k

r
k

b I4xk (4 .2)

tk+l 8~e1 - 8k~”k 
(4 .3)

be defined in terms of some vector It readily follows from (3.2)

and (3.3) that the equation

rk = U
k+l

t
k+l (4 .4)

holds to working accuracy. If the columis of Uk+l were exactly orthogonal

we would have lIrklI = lltk~~D , which ini~ diately suggests choosing 
~k 

to

minimize IItk+l l!. Hence we are led naturally to the least-squares problem

mm II8~
e
~ 

- B
kYk IJ (4.5)

which forms the basis for LSQR.

Co~iputationa11y it is advantageous to solve (4.5) using the standard

QR factorization of Bk (Golub [9)), i.e. the same factorization (3.10)

that links the two bidiagonalizations. This takes the form

p 1 02 •1~~
P S  : s

r 1 i ~k ~
‘k 1 2 3  

:
2

~k iB k 81e1 1 — I : (4.6)
L -‘ L •k+1J ak-i ek •k_ 1 

~~
j_ 

-~~~~~~- -

- 
k+i

-~~~~~~~~ ~~ . v - —

- x _ _._i_ ~~~~~~~~~~~~~ ------- ~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~ _I_~~.*—_ —j-
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where 
~k ~k k+-I~ ~~ 3~1 2 is a product of plane rotations (e.g.

Wilkinson [27;) designed to eliminate the subdiagonals 82,  8 3 P . . .  of Bk.
The vectors and tk+l could then be found from

(4 .7)

r o l
t

k+l 
— Qk

T 
. I (4.8)

However , 
~k 

in (4 .7) will normally have no elements in co~mnon with

Instead we note that [Rk ~~ 
is the same as [Rk l  ~k-i~ 

with a new row
and colum~ added. Hence, one way of cothining (4.1) and (4.7) efficiently
is according to

xk 
= VkRk 

1

~k 
(4 . 9)

where the cohmms of [d~ d2 ... dk ] can be found successively from
the system Rk

TDk
T - Vk by fotward substitution . With d0 = = 0 this

gives

dk ~~ 
(vk 

- ekdk l ) (4 .10)

Xk - sk_ l + *kdk (4.11)

and only the most recent iterates need be saved. The broad outline of
algorithm LSQR is now cosi lete. 

-

I i

_ _ _ _ _ _ _   -

— -- - 
— 

- —
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4.1 Recurrence relations

The QR factorization (4.6) is determined by constructing the k-th

plane rotation 
~kk+~ 

to operate on rows k and k+i of the transformed

[B k 81e 1 ] to annihilate This gives the following sinçle recurrence

relation: 
-

rOk 8k 0k 0 
~k1 r~k 

0k+i ~k 1I I = I I (4.12)
[8k 

_ c
k 8k+1 a

k+l 0j 
[
0 

~k+i ~k+i]

where a1 , 
~~ 

8
~
, and the scalars ck and 8k are the nontrivial

¶ elements of 
~k,k+~ • The quantities 

~k’0k are intermediate scalars that

are subsequently replaced by 
~k’ ~k •

The rotations 
~k, k+i are discarded as soon as they have been used in

(4.12) , since itself is not required. We see that negligible work is
involved in conputing the QR factorization to obtain Rk , 

~k 
and 

~k+ 
- •

Some of the work in (4 .10) can be eliminated by using vectors

Wk Pkdk in place of dk . The main steps of LSQR can now be suiinarized

as follows. (As usual the scalars � 0 and � 0 are chosen to normalize
the corresponding vectors ; for exanple , u .~v 1 = A Tu 1 inplies the conputa-
tions = A T

U
1 , a1 

= II~~’ ~~1

-~~~ ~~~~~~~~~~~~~~~~~ - -

- 

~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~ - 
a-- -- 

- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -
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is

Algorithm LSQR

1. (Initialize.)

8 1u 1 = b , a1v1 = A TU , , = , x = 0

2. For i 1,2,3,... repeat steps 3 - 6.

3. (Continue the bidiagonalization.)

(a) 
~i+i ’~~+i 

— 44V~ - -

(b) a
~+1 v~+1 

= ATu~+1 - 
~i+i~i

I
4. (Construct and apply next orthogonal transformation.)

(a) = (
V~~~2 

+

(b) ~~~~~~~~~~

(c) 8~ =

(d) 0
i+1 

=

(e) 
~~~~~~~~~ 

=

(f) 
~~~~~~~~

(g) ~~~ — 8i4~i

5. (Update x,w.)

(a) x~ = ~~~ + (
~~./p. )w.

(b) w,~~1 
= v~~.., - (e

~+~ /~~)w~ .

6. (Test for convergence.)

Exit if some stopping criteria (yet to be discussed) have been met.

• -~ - 
-~~~~~~ - V - .  

-
~~~~~~

— ~~ 
— — -
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S. ESTIMAT ION OF NOR~~

Here we show that estimates of the quantities lirk il , IIA TrkII, 
~~k

11 ’

h A Il and cond(il) can be obtained at minimal cost from items already required

by LSQR. All five quantities will be used later to formulate stopping rules .

Knowledge of 1.411 and perhaps cond(A ) can also provide useful debugging

information. For example, a user must define his- matrix A by providing two

subroutines to compute products of the form Av and ATu. These subroutines

wi ll typically use data derived from earlier computations, and may employ

rather complex data structures in order to take advantage of the sparsity

of A. If the estimates of h A i l and/or cond(A ) prove to be unexpectedly high

or low then at least one of the subroutines is likely to be incorrect . As

a rule of thuith we reconinend that all columns of A be scaled to have unit

length (iIAe~~ 
= 1, j = 1, . . .,  n ) ,  since this usually removes some

unnecessary ill-conditioning from the problem. Under these circumstances ,

a progranmting error should be suspected if the estimate of hA i l differs by a

si gnifican t factor from n4 (since the particular norm estimated will be

For the purposes of estimating norms we shall often assume that the

orthogonality relations uk
T 11k = I and vk

Tvk 
= I hold , and that

Ibu~,ii 2 !IVk If 2 I. In actual computations these are rarely true, but the

resulting estimates have proved to be remarkably reliable .

5.1 Estimates of hjr kiI and II A TrkIL
From (4.4) and (4.8) we have

‘‘k = 
~k+l Uk+l Qk ek+l (5.1)

(whi ch explains the use of in (3.11)) and hence by assuming Uk+l
Tuk+l ~

we obtain the estimate

— -p~~~
. -~~
- -
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iirk ib = 

~k+i 
= 813k8k_ 1 . . .8 ,~ , (5.2)

where the form of 
~k+i 

follows from (4.12). LSQR is unusual in not

having the residual vector rk explicitly present, but we see that Irk11
is available essentially free. Clearly the product of sines in (5.2)

decreases monotonically. It should converge to zero if the system Ax = b

is compatible. Otherwise it will converge to a positive finite limit.

For least-squares problems a more important quantity is ATrk , which

would be zero at the final iteration if exact arithmetic were performed.

From (5. 1), (3.4) and (4.6) we have
- 

ATrk = •k+,(v
k
B
k 

+ ak+l vk÷l ek l ) Qk ek+l

= 
~k+1~

’
k[~

?
k 0]ek+, + 

~k+l
ak+l (ek+l Qk ek+l)vk+l

The first term vanishes and it is easily seen that the (k÷i)th diagonal

of 
~k 

~ S _ck. Hence we have

T —A r
k 

= - (~ k+,~ i<+1
ck)vk+l (5. 3)

and
T

iA rkhi = 
~k+l

ak+l k~k l (5.4)

to work ing accuracy . No orthogonality assumption s are needed here .

5.2 An estimate of IlxkiI
The upper bidiagonal matr ix  Rk may be reduced to lower hidiagona l

form by the orthogonal factorizat ion

Rk~k
T 

= 1~ (5 .5)

I - 

where 
~k 

is a suitable product of plane rotations. Defining 
~k 

by the

system

= 
‘~k 

(5.6)
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-- 
_

it follows that xk (V
k
Rk

1
)fk 

(V
kQk

T
~~k 

W
kak . Hence , under the

assumption that Vk
TVk 

= I we can obtain the estimate

hiXkil = IIZk~ 
(5.7)

Note that the leading parts of Zk , ~~ and do not change after

iteration k. Hence we find that estimating IIxkIi via (S.5)-(5.7) costs only

13 mul tiplications per iteration, which is negl igible for large n.

5.3 Estimation of Il A ii~ and cond(A)

It is clear from (3.1) that all the lie in the range of A T and are

there fore orthogonal to the null space of A and ATA. With appropriate

orthogonality assumptions we have from (3.3) that

T T TBk Bk
_ Vk A A V k -

and so from the Courant-Fischer minimax theorem the eigenvalues of Bk
TBk

are interlaced by those of ATA and are bounded above and below by the

largest and smallest nonzero eigenvalues of ATA. The same can therefore

be said of the singular values of 8k compared with those of A. It follows

that for the 2- and F-norms ,

~ 11.411 , (5.8)

where equality will be obtained in the 2-norm for some k ~ rank(A) if b

is not orthogonal to the left-hand singular vector of A corresponding to

its largest singular value. Equality will only be obtained for the F-norm

if b contains components of all left-hand singular vectors of A corres-

ponding to nonzero singular values. Nevertheless we will use as a

monotonically increasing estimate of the size of A.

The foregoing also impl ies that Bk
TBk 

= Rk
TRk is nonsingular and for

the 2- and F-norms

• 
— -~ — - — -  - — - - V

— — V - - - - - — - ~~~~~~~ -
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= uu h1k~ ~~ ilA~!I . (5.9)

The remarks on equali ty are the same, except now “largest singular value”

is replaced by “smallest nonzero singular value”.

Combining these results with the definition = vkRk in (4.9) now

gives

I � 1B~1j hi Dk ii S 
~~ hiX’ Il = cond(A) (5.10)

for the 2- and P-norms. Hence we take iILlk lipIiLIkjI p as a monotonically

increasing estimate of cond(A), which starts at the optimistic estimate

il~9~ IlpIiD~ lip = 1.

Use of Frobenius norms allows the estimates to be accumulated

cheaply, since iiBk IIF 2 hi B k_ l hl !,2 
+ + 

~k+l 
and hID~II~ = hiD~~1!I~ + iIdk II 2 .

The individual terms in the sum iidk hl 2 E can be used further for

estimating standard errors, as we show next.

5.4 Standard errors

In regression problems with rn > n = rank(A) the standard error in

the i-th component of the true solution x is taken to be where

8~~ 
Ii b - 

~~~~~ (5.11)
r n - n

and o . .  e .T M TA
_ l

e .  is the i-th diagonal element of (A TA1~ . Now from

(3. 3) and (3.10) we h ave Vk
TATAvk = Rk

TRk ,  which with (4.9) gives

T T

V Assuming that premature termi nation does not occur, it follows that with

exact arithmetic D~D~ T 
= (A TAi~~, and we can approxima te the ciU by

- V. - - -- — — - T ~~~--- ---- *
—
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0 J k)  ( • ; I )
k

I) l(~~
V . . Since DkDk

T 
= + (J kdk ,  W(~ have

V 
~ 

(k) 
= 

~, 
(k—i) 

~ 

2 
, ~~ .

and the are monoton ically increasing estimates of the a . .

In the imp l ementation of LSQR we accumulate 0• (k) for each i , and

upon termination at iterat i on k we set 1. = max(m-n , 1)  and output the square

roots of 2
(k) 2 Il l ) - /lXkII (k)

- 

i

as estimates of the :~~. in (5.11). The accuracy of these estimates cannot

be guaranteed , especia l ly  i f  termination occurs early for some reason .

However , we have obtained one reassuring comparison with the statistical
I

package GUM (Nelder [171).

On a moderately ill-conditioned problem of dimensions 171 by 38,

3 • . . . — i i(cond (A ) 10 , relative machine precision 10 ) ,  an accurate solution

was obtained after 69 iterations , and at this stage all s
1~~~ agreed to

at least one dig it w ith the a~ output by G U M , and many components agreed

more closel y.

A further comparison was obtained from the 1033 by 434 gravity-meter

prob l em discussed in section 10.3. For this problem a sparse QR factoriza-

t ion was constructed , ~ = [
~

] , and the quanti t ies ci
~ 

were computed

accurately u’.ing 11T7, = = ii v~II 2. Again the estimates of

from LSQR proved to be accurate to at least onesi gnificant figure, and the

larger ‘;alues were accurate to three or more digits.

Note that  estimates the variance of the i-th component of x, and
(k)2 .that ~ approximates this variance estimate. In an analogous manner we

• could approximate certain covariance estimates by accumulating

~~~~~~~~~~~~~~~~~~~ 
- - - -  — —  — — 

~~~~~~~~~~~~~~~~~~~~~ 
— — —

~~~~~~ -— — — —

- ~~~~~~~~~~~~~~~ . - ~~~~ -~~:
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(k)  
= ~ 

(k—i) + 6 6 
(a) oij ij ik~jk’ ii -

for any specific pairs (i,j), and then computing

ltb - Ax
k 11 2 (U

1

on termination . This facility has not been implemented in LSQR and we have

not investigated the accuracy of such approximations. Clearly only a l imited

number of pairs (i,j) could be dealt wi th efficiently on large problems .

——‘-V.— --. _~___~ .- — ---— — p.— — - —— ~~~~~~~~~~~~~~~ — V—— — — — --  — _ - - - — 7W ~~;t .. _ 
— 

- - . . - - ---------- ~ ---.------ ~~- -- V
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6. STOPPiNG CR iTl ~R l A

An iterative algorithm must include rules for deciding whether the

current iterate is an acceptable approximation to the true solution x.

Here we s h a l l  fo~~~late stopp ing rules in terms of three dimensionless

quan t i t i e s  XJOL, BTOL and CONLIM , which the user will be required to

specify. The f i r s t  two rules app ly to compatible and incompatible systems

respective ly. The third rule applies to both . They are :

Si : Stop i f  lIr k Il ~ BTOL JIb II + ATOL f1A(~ iix k f i
A Tr

S2: Stop if � ATOJ.
IIA~I 

~
‘k 11

S3: Stop if cond (A ) � CONLIM .

We can implement these rules efficiently using the estimates of Iir’~II, ik l i i F , ,
e tc . ,  already described . -

The criteria Sl and S2 are based on allowable perturbations in the

data. The user may therefore set ATOL and BTOL according to the- accuracy

of the data. For example, if (A ,b) is the given data and (~4 ,b)  represents

the (unknown) true values , then

ATOL = h A  - i
~lf l u A u

should be used if an estimate of this is available. Similarly for BTOL.

Criteria S3 represents an attempt to regularize ill-conditioned

system.s.

1

V 
- 

-- 

- • 

- — 

- -
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6. 1 Compatible systems

To j u s t i fy  SI , let 
~k = b - Ask as usual , and define the quantities

l~’i ~)L~b + AFOLIIA ‘~ k ’’
BTOL~b~

ATOLjjA ~ ~~~ 
~ V

- k

ilien rk = + hk ,  and

hkxk
T

A + _
~ j~~ 

Xj~ = b -

Xk xk

so that 5k is the exact solution for a system with both A and b perturbed.

It can be seen that these perturbations are within their allowable bounds

when the inequality in Si holds. Hence, criterion Sl is consistent with

the ideas of backward rounding error analysis and with knowledge of data

accuracy. Since this argument does not depend on orthogonal i ty , Si can be -

used in any method for solving compatible linear systems.

6.2 Incompatible systems

Stewart [25] has observed that if -

rk 
= b -

and rk - b -  (A +E
k
)x
k

r r TA
where E = . J ~.L...k 2IJrkiI

then (A + Ek
) T

~ k 0, so that xk and are the exact solution and residual

for a system wi th A perturbed . Since iI Ekii 2 = l i A
T

~ < ii / lirkil , the perturbation

to A wil l be negli gible if the test in S2 is satisfied .

_______________ — —-

i 
__i V- -—-- 

- ~~1~~~ t~~~~ _
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In our particular method it happens that = 0, since (5.3) shows

that = is theoretically orthogonal to A Trk . Hence r
k 

= 7’k’ SO

both 5k and are exact for the perturbed system. Thi~; ctrc’npthens the

case for using rule S2.

In practice we find that IiA
Trkii / Ii rk ii can vary rather dramatical ly

with k , hut it does tend to stabilize for large k , and the stability is

more apparent for LSQR than for the standard method of conjugate gradients

(see !IA
TrkII in Figures 3 and 4, section 8). Criterion S2 is sufficient to

ensure that is an acceptable solution to the least-squares problem, but

the existence of an easily computable test that is both sufficient and

necessary remains an open question (Stewart [251).

6.3 Ill-conditioned systems

Stopping rule S3 is a heuristic based on the following arguments.

Suppose that e4 has singular values o~ > > ... � -‘ 0. It has been

observed in some prohlem.s that as k increases the estimate

cond(A ) in (5.10) temporarily levels off near some of the values of the

ordered sequence 0
1
/0

1 , 
o~/a~, . . . ,  ~~~~~ with vary ing numbers of itera-

tions near each level. This tends to happen when the smaller are very

close together, and there fore suggests cri terion S3 as a means of

regularizing such problems when they are very ill-conditioned, as in the

discretization of i l l-posed problems (e.g. Nashed [16]).

For example , if the singular values of A were known to be of order

1 , 0.9, io~~ , io
_ 6

, ~~~~ the effect of the two smallest singular values

could probabl y be suppressed by setting CONLIM = IO~.

A more direct interpretation of rule S3 can be obtained from the fact

that 5k Dkfk. First , suppose that the singular value decomposition of A

——V — ---—-—V.— — — — V.-- 
~~~~~~~~~~~~~~~~~~~~~ - -

- 
VP’ - ________  

V —
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is A = u~~
T where u

Tu = ~
Tv = vvT 

= i, E = diag(o1 ,o2,... ,o), and let

(r) 
=

he defined by setting 0
r+1 

= • - = o,~ = 0. A comon method for regularizing

the least-squares problem is to compute ~~~~~ Iu1!~~~7/
”
~b for some r �

since it can readily be shown that the size of is bounded according to

11 A 11 2 IIx~~II
__________  — cond(A~~~).Ilbil

In the case of LSQR, we have � II~~II~IIbII and so if rule S3 has

not yet caused termination we know that hIBkIIpIIxk II / IIbII < 
I!B k Ij pIIDk IIp < CONLIM .

Since Ih B k Ih F usually increases to order IIA II F quite early, we effectively have

IIA IIF 1
~ k

1’ < CONLIM
IIb II

which is exactly analogous to the bound above .

6.4 Singular systems

It is sometimes the case that rankM) < n. Known dependencies can

often be eliminated in advance, but others may remain if only through errors

in the data or in formulation of the problem.

With conventional (direct) methods it is usually possible to detect

rank deficiency and to advise the user that dependencies exist. In the

present context it is more difficult to provide such useful information,

but we recognise the need for a method that at least does not fail when

applied (perhaps unknowingly) to a singular system. In such cases we again

suggest the parameter CONLIM as a device for controlling the computation .

Our experience with LSQR on singular problems is that convergence to an

acceptable solu tion occurs normally , hut if iterations are allowed to

— I ~~~~~~~~~~~~~~~~~ — 

— — — — —
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continue the computed 5k will begin to change again and then grow quite

rapidly until

hA il ihxk!i
_______ — (6.1)

lib iI F .

(while 1
~ k

1 remains of reasonable size). The estimate of cond(A) typically

grows large before the growth in s,,~. A moderate value of CONLIM (say 7/,4)

may therefore cause termination at a useful solution .

En some cases i t  can be usefu l to set CONLIM as large as 1/c and allow

sk to diverge. In this context we note that the algorithm SY!+ILQ [211 can

he applied to singular symetric systems and that extreme growt h in the

resulting hIXk l I forms an essential part of a practical method for computing

eigenvectors of large symetric matrices (Lewis [151). By analogy, in the

presence of rounding errors LSQR will usually produce an approximate singular

vector of the matr’x A. In fact, using (6.1) and - we see that the

normalized vector X
k 

xk / ihxk Ii will usually satisfy

— 1
Ax = — (b - r )

k

hi A t t
£ 

1j~~
(b - r

k
)

= Oft) I IA II

for large enough k , and hence will lie very nearly in the null space of A.

The vector xk may reveal to the user where certain unexpected dependencies

exist. Suitable new rows could then be added to A , or certain linear con-

strain ts could be applied directly, as described in section 9.4.

- V. -- - — ,~~~~— — -~~~~~~~~~~~ --

x A_~ .-. —~ 
— V.—
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7. OThER MLThOI)S

Several other conjugate-gradient methods are discussed here. All

except the first (CGLS) are stated using notation consistent with sections

3 - 6, in order to illustrate certain analytic identities .

7.1 CGLS

If the conjugate-gradient method for syninetric positive definite

systems is applied naive ly to the normal equations AT/tx = ATb , the method

does not perform well on ill-conditioned systems. To a large extent this

is due to the explicit use of vectors of the form ATAp~ . An algorithm

with better ntnnerical properties is easily derived by a slight algebraic

rearrangement, making use of the intermediate vector Ap . (e.g. Hestenes
1.

and Stiefe l [i i]) .  It is usually stated in notation similar to the

following.

Al gorithm CGLS

1. Set r
0 h , B0 ATb , p 1 a , y~ = (ls~Il 2, x = 0.

2. For i = 1,2,s... repeat the following:

(a) q~ 
= Ap~

(b) cz~ = y~~1 / ll~ ll 2
(c) x~ = +

(d) r~ r~_ 1 - a~q~
(e) 8- = ATr .

(f) ‘r~ = H8~ll2

(g) 8~
(h) p’~~1 8~ + B

~
p
~

- V - V - V % ~~~~~~~~~~~~~ (~~~~~~ ~~~~~~~ ~~~~~~~
‘ - - -~~~~~ - -~~~~~~ ‘
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A practical implementation of the method would also need to compute

hlr~lI, llx~ and an estimate of II A II in order to use the stopping criteria

developed in section 6. Otherwise the method is clearly simple and

economical . Analyticall y it generates the same points x2 as LSQR. There

is no simple connection with either of the bidiagonalizations, but the

vectors and d. in LSQR are proportional to and p~ respectively.

7.2 Craig’s method for Ax = b

A very simple method is known for solving compatible systems Ax = b.

Th is is Cra ig’s method, as described in Faddeev and Faddeeva [7). It is

der ivable from Bid iag I as shown by Paige [18] and differs from all other

methods discussed here by minimizing the error norm Itxk - xli at each step,

rather than the residual norm J J b  - AxkJ J = J~
A (x

k - x)JJ . We review the

derivation briefly.

If Lk is the first k rows of Bk , . 
-

1 
- p

~2 a2

8k ak

then equations (3.3) - (3 .4) describing Bidiag 1 may be restated as

A
TL/ : 

UkLk
+ $k+luk÷l

ek 

- 

(7.1)

- - - V—.—--~~~ —— -——-—— ___ - T ’~~~~~~~~~~ — ~~-_ - ~~ —_ -  — - — p ~~~~
_ _ _ _  _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _____
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Cra ig ’s method is defined by the equations

LkZk 
= ~1e1 xk 

= VkZk , (7 .2)

and we can show from (7.1) that the residual vector satisfies

r
k 

b - A V
kak 

= _
~k~k+1

Uk+1 and hence Uk
T
rk 

= 0 . We can therefore

expect rk to vanish (analytically) for some k < n.

The vectors and X
k 

are readi ly computed from

= 
~~
/ak)ck l  3 = Xk_l +

where E -1. Since the increments form an orthogonal set there is no

danger of cancellation , and the step-lengths ç,~ are bounded by ‘~k
t ~ 

I!Zk hh =

lix Ii s I lx ii . We can therefore expect the method to possess good numericalk

properties. This is confirmed by the comparison in section 8.

7.3 Extension of Craig ’s method

A scheme for extending Craig ’s method to least-squares problems was

suggested by Paige in [18]. The vectors in (7.2) were retained and an

additional vector of the form Vkwk was computed in parallel. (~ t termination,

a suitable scalar was computed and the final solution taken to be

Xk 
= (V

kzk) - 
~k~~

’k~
”k~ 

V~JJ J < . (7. 3)

In the present context this method may be interpreted as a means of solving

the least-squares system (2.7) , vi z.

[i Bkl tk+l [81e11
I T  I — I  I (7 .4)
Bk 0

using the fact that the underdetermined system Bk
Ttk+l 0 has a unique

V. - 

_ _ _  .T .:_ . _ -- a..- - .~~ . ... ... ~~~~~~~~~~ 
-

. 

.

. ...~~~~~~ 
•

.

.

.. ~~~~~~~~~~~~
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solution apart from a scalar multi ple . Thus if We partition R
k
T and

according to

Bk
T [a1e1 ~k] ‘ 

t k+ l  Y
k[1]

for some 1k’ the system Lktk = - (i
1
e

1 
can be solved easily by forward s1-

stitut ion , and then from the top half of (7.4) we obtain the required

equations
r j 1

T~k
b) k = 

‘ 1k 1’k+i
~ k 

/ 
~~k+i~ k -

k-i  J
using stra i ghtforward notat ion. The first equation indicates that tl.’k 

can

he computed by forward substitution , thus allowing Vkok to be accumulated

as t he al gorithm progresses . The second shows how can be computed at

each step (if desired) and at the final iterat i on for use in (7 .3) .

In the orig inal presentation of this method the danger of cancel la t ion -

in (7.3) was recognized, in the event that Vkzk and 
~k~

’
k~k 

were large and

nearly equal . When the system Ax = b is compatible the danger does not

exist because each vector is the same as in Craig’s method and remains

of reasonable size. We have observed in practice that iiwk ii actually

diverges with increasing k , hut the scalars 1k converge to zero at a

greater rate. The points xk = V
kzk - YkVkWk ,  if computed , are at all

stages identical to those produced by LSQR, and for sufficien tly large k

are computationally just xk = V
kZk .

When h does not lie in the range of A we find that severe cancellation

can occur , wi th the 
~k 

stabilizing at a moderate value hut f l t~ f l and II Wk iI
both diverging . For this  reason the extension of Craig ’s method must be

disca rded .

_______ ______________________ -  T .  — —

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-.-. -~~ - - -~ -~~~~~_ -
- -~~~~
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Not e that  the divergence of hl a kij in these circumstances shows that

in (7 .2 )  can he much more ill-conditioned than A.  If  Bidiag 1 is used as

in [171 to es t imate  the singular value s of A , it  is the singular values of

Bk rather than T’k 
that  are relevant .

7.4 LSCG and LSLQ

A second algorithm for least-squares problems was given by Paige [18].

This is algorithm LSCG, based on Bidiag 2. In the notation of section 3 it

is defined by the equations

TRk Rky k 
= 01e1 , = Vk~J J, (7.5)

and implemented in the form Rk
Tf k = = (V kR

1
)fk . Given the

relations between the two bidiagonalizations we now recognize that this is

analytically equivalent to LSQR, but numer ically infer ior , since it is

effectively solving the least-squares problem minhlBkyk - 8,e~Ii by using the

corresponding normal equations. (The latter are Bk
TBky k = Bk

TB 1C 1 
= cz1 31e 1

and by (3 .9) and (3.12) this is equivalent to (7.5a).)

Algorithm LSLQ (Paige and Saunders [20 ]) is a refinement of LSCG, but

again it is based on Bidiag 2 and the above normal equations and is there-

fore inferior to LSQR on ill-conditioned problems. The refinement has been

described in section (5.2), giving xk = Wkzk where Wk is theoretically

orthonormal , the intention being to avoid any possible cancellation that

could occur in accumul ating xk = D l<f k E (V
k
R
~

1
)fk - The same refinement

can easily be made to LSQR , and it was implemented in an earlier version of

the algor ithm for the same reason. However , we have not been able to detect

any niinerical difference between xk = Wk3k and xk = Dkfk in the two versions

of LSQR, so the fear of cancellation appears to have been unfounded. We

-— — V. — - - - - — - - - , — .— -- —
~~~~~

---

- - .  - . -~~~~~A’ - -
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have therefore retai ned the slightly more economical xh. = r kfk, which also

allows cond(A ) to he estimated from ilDk II p as already described .
Algorithms LSCG and LSLQ need not he considered further.

7.5 Chen ’s aljorithm RRLS

Another algorithm based on Bidiag 2 has been described by Chen [41.

This is algorithm RRLS, and it combines Bidiag 2 with the so-called residual-

reducing method of Householder [12]. In the notation of section 3 it may be

described as follows. The residual-reducing property is implicit in steps

2(b) and 2(c).

Algorithm RRLS
I

1. Set = b , 01
z,

1 
= ATb 

~~ 
= v 1 , ~~ 

= 0

2. For i = 1,2,3, . - . repeat the following :

(a) p1p~ = Aw.

(b) A .  =

(c) r .  = p. - A .p .1, i~— 1 -z, i~

(d) ~~~~~~ = ATp~ — p
1

v~

(e) x~ = + (A. /

(f) w~~1 
= v~4~1 

— 

~
0i+1 / P~)w~

where the scalars and 0 .  are chosen so that 
~~~ 

= Ilv~Ii = 1 -

As with CGLS, a practical implementation would also require ~~ and

Ilx~iI . The square root of the sun E (p.2 + ~~~~~ = ii R k iip2 
= lIBkiip2 could be

used to estimate ii A lI ~ and 
~f A

T
r~~il can also be estimated cheaply.

Note that the vectors v .  are generated as in Bid iag 2 , but the vectors

come instead from step 2(a). Substituting the latter into step 2(d)

- _________ - V - -----V. —

- ~~~~~~~~~~ 
- V

.
- V. V~- ~~~~~~~~~~~~~~ - -
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shows that RRLS require:-; exp l i L i t  computat ion of the vectors A TA w .

(i gnoring normal izat ion by ~~~ Unfortunatel y this must cast doubt on the

nimierical properties of the method , particularly when applied to compatible

systems . Indeed we find that for some systems Ax = h , the final norms llr~ll
and ~

x1 - x~ are larger, by a factor approaching cond(A ), than those

obtained by CGLS and LSQR. This is illustrated in section 8.3.

A second algorithm called RRLSL has been described by Chen [4] in

which the res idua l — red ucing method is combined w i t h  Bidiag 1. However , the

starting vec tor used is AA Tb (rather than h), and products of the form ATAw~

are again required , so that improved performance seems unlikel y. Chen

reports that RRLS and RRLSL behaved ~imi l ar 1y in all test cases tried.

In spite of the above comments we have also observed ill-conditioned

least-sq ua res problems for which RRLS obtains far g~~~ter accuracy than
F would normall y he expected of any method (see section 8.4 for a possible

explanation). Because of this unusual behavior we have investigated a

residual-reducing version of LSQR as now described .

7.6 RRLSQ~

If the residual vector p . is  explicitly introduced, algorithm ISQR as

sun~nari zed in section 4.1 can he modi fied slightl y. First , the residual-

reducing approach requires step 5(a) to be replaced by the two steps

r. 1’ . - A .p . , x . = x.  + A .w .l_ i~— i  ~~~ 1_ l~— i  -i- i

where r •  = Aw~ and A~ = T / lip~Ii 2 . (In this case p . is unnormalized.)

Second, the product Aw1 can be used to eliminate Av7
; from Bid iag 1, leading

to an alternative method

p .
= Aw~ — r~~ 1 (7 .6 )

2. —i

— 
— 

-I—- — V.-~~——.-— 
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for generating each and ~~~~~ . (This result is difficult to derive , hut

the key relat i on is p1 / I I p~f I = ~~r1 1  / j j r1 ~j + , which may be

deduced from (3.11).)

The remainder of LSQR is retained , inc l uding the QR factorization of

8k • ‘The coefficient of r. 1 in (7.6) can he expressed in severa l ways ;

for example

~~~~ 
~

T
~
)
i 

= 
2 

= ( 1 )
i_ 1 ~i~ 2~~~

1j

IIr~
_
~II v 

~ 1~~2 -

where comes from the system Lk~k 
= of Craig ’ s method. Di f f e rent

formulae lead to different iteration paths hut no variat ion appears to be

consistentl y better than the rest.

A s~wrnary of the resulting al gorithm follows .

Algorithm RRLSQR

1. r0 b , 8 1 u 1 = h , z1 v 1 
= A TM 1 , w

1 
= v 1 , x~ 

=

= 
~~~~~

‘ 
~~~~ 

= -

2. For ~ = 1,2,,
~, ... repeat steps 3-6.

3. (a) p .  = p4w.

(b) = ~~~~ /iI r~II 2
(c) = r~~ 1 - A 1p1

Cd) 1~. 1
u.

1 
= 

~~~~ 
— ~p1 /~~.)r~~1

(e) cz.
÷1 v~~ 1 

ATu~~ 1 
-

4. Compute p~ , 
~~~~

., i ; .,  O l
1~ ~~~~~1 ’ 

~~~~~~~~~ 

as in section 4.1 , step 4.

5. (a) x .  = x.  -~- A .w .
2. 2 . i  2- 2.

(b) w .
1 

= - 

~
0i+i /p 1

)w~

6. Exit if appropri;It ( .

_ _ _ _  ___ —--V. . -

_______ - -  ——- .--- -- - ~~
.
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This adaption of B id iag  I to obtain RRLSQP is analogous to (and was

motivated by) Chen ’s adaption of l3idiag 2 to obtain RRLS. Note however that

there are no products of the form A T/l w1. In pract ice we f ind tha t  RRLSQR

typ ic ally perform.s at least as well as LSQR , as measured by the limi ting

Lc. - x~ attainable. Furthermore , i t attains the sam e unusual ly  hi gh

accuracy achieved by RRLS on certain ill conditioned l east-squa res problems.

On these grounds RRLSQR could sometimes he the pre ferred method . However ,

its work and storage requirements are si gn i ficant ly hi gher than for the

other methods considered .

7.7 Storage and work

The storage and work requirements for the most promising al gorithms
I

are si1Tni~arized below . Recal l that A is m by n and that for least-squares

problems m may be considerably larger than n. Crai g ’s method is applicable

onl y to compatible systems Ax = h , wh i ch usually means iv = n.

m 
Storage

Craig
(Ax = h onl y) u, Av x , V 3 4

CGLS r , q  x ,p , a 2 3

LSQR ~~~~ Av x , o , w .~

RRLS r , p  x , v , w , A p 4

RRLSQR r, u , p x, v , w 6 .‘,

~~~~~

All methods require the starting vector b. If necessary this may he

oven~ri tten by the f i r s t  rn-vector shown (r or u). The ni-vector Av shown

for Craig and LSQR represents work i ng storage to hold products of the

- _—~~~~~~~~ 
— . - _______________- —V__________ -- --— -—V - V ,~~~

. — 
‘., 

— - —
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form Av and ATt~. (An n-vector would be needed if iv n .)  In some applica-

tions t h i s  could be dispensed with if the hidiagonalization operations

Av - CrA and ATu - By were implemented to overwrite u and a respectively .

Similarly ~he s-vector A Tp for RRLS could in some cases be computed without

extra storage.

The work shown for each method is the number of multiplications per

iteration . For example, LSQR requires 3m + 5n mult ipl icat ions . (A further

2n multiplications are needed to accumulate estimates of cond(A) and

standard errors for x . )  Practical implementations of CGLS and RRLS would

require a further iv + n ~s.it iplicat ions to compute I~eiI and Fx.~ for use in

stopping rules, although this could he l i m ited to every tenth iteration ,

say, without serious consequence.

- All methods require one product Av and one product AT?, each iteration .

This could dominate the work requirements in some applications.

—---V.-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - ---___ - - - - - —V.- - —4~~ - - ---4— —
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8. Nt~tERICA 1. COMPARISONS

Here we compare LSQR numerically with four of the methods discussed

in section 7, denoted by CRA I G, CGLS, RRLS and RRLSQR. The machine used

was a Burroughs B6700 with relative precision c = 0.5 x8 12 
O .7x 10~~~.

The results given here are complementary to those given by Elfving [6],

who compares CGLS with several other conjugate-gradient algorithms and also

i nvestigates their performance on problems where A is singular.

8.1 Generat i on of test problems

The following steps may be used to generate a test problem lnin llh - AX IF

with known solut ion x.

1 . Choose vectors x, ~~~, a, c and diagonal matrix D arbitraril y, with

II~II = IIz~I = 1. (For any chosen m > n , the vectors should ~s- of dinien

sions n , iv , n and rn - n respectively.) 
-

2. Define Y i - z = r - 2~~2
T
, = 

~
[ : 

- -

3. Compute p 
y[ °]  , h = Ax + r

The minima l residual norm is then HP = 
~~~~~~~~ Since A and 1) h a V e  the ~~~~~~~~~

singular values, the condition of the problem is easily specified .

The part i cular problems used here will be called

- 
P(m ,n,d,p )

to indicate dependence on four integer parameters, where d represents

duplicat ion of singular values and p is a power factor. The matrix D is

of the form diag (o1~
) wi th each a~ duplica ted d t imes . Specific va1t~ s

for x , y ,  a, - -~ and D were generated as fo]lows:

1. x = ( n — I , n— 2, n—3 , . .. , 2, j  0)T•

— 

~~~~:. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-V.-- ,

~~~

.------ — 
- 

~~~~~~~ —- 

- — -  - 
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2. = s in ( 4 v i/ m) , ;:L = c o s (4 n i/ n ) , followed by normalizat ion so that

Ii~!I = = 1 .

3. ~ = ( 1/ rn , -2/ rn , 3/ rn, . .. ,  + (rn - n)  / m) T .

4 = [ i _ 1 + d )  d/ n , where integer division is used for the term in

parentheses. Choosing n = qd to be a multiple of d leads to d copies

of each singular value:

1 2 2(o.) — —, .., —
‘ 

—
, . . .,— , . ..,  — , . . . ,  —

fFor reference, this gives: -

n(n/3)~ , ~r[~ = 
ni n 

((i v -  n) /3)

IkII~ = PI D PI~ (n/3)4, condM) = cond(D) (0 /0 )P qP .]

The orthogonal matrices Y and Z are intended to reduce the possibility

of anomalous numerical behavior. For example, when LSQR was applied to

four cases of the problem P ( 70 , 10,1,8)  the following error norms resulted:

Case 1og,0~(s~ - x~f
(rn=n=10 , cond (A ) = 108) k=6 0 80 100 120

I A = YDZ (as above ) —0. .3 —3. 3 —3. .3 —3. 3

2 A = I’D -0. .5 -3. 9 -3 .9 —4.  1

3 A = DZ -2. 1 -5 .9  -5 .9  -9 .2

4 A = D — 9 . 4  — 9 . 4  -9 . 4 —9.4

Since each case was a compatible system Ax = h , we normally would expect

an error norm approaching ~x~I . cond (A) .r  J Q~
2 so that case 1 is the most

realistic. In case 2 the error was concent rated in the first and second

components of xk (with the remaining components accurate almost to working

precision), whereas in cases 3 and 4 the final .x-~. was vi rtually exact in

sp i te  of the h ig h condi t ion  niinhcr of A.

I
-V - 

-

- ~~~
_
~i~fY~ - .  -
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Altho ugh cases 2 - 4 represent less expensive test problems, it is

clear that results obtained from them could he very misleading. In the

following sections we use only case 1. Even these test problems may be

less than completely general . This is discussed in section 8.4.

8.2 Ax = b; failure of CGLS

Figure 1 illustrates the performance of five methods on the ill-

conditioned system P (1 0 , 1O , 1,8) , i.e. m = n = 1 0 , one copy of each singular

value, cond(A) = 108. The quantities log
10J!r~lj and log

10ljx~ - ~ are

plotted against iteration number k.

This example distinguishes the standard conjugate-gradient method

CGLS f rom the remaining methods . All except CGLS reduced I r k 11 and
lIx k - Sk IP to a satisfactory level before k = 120.

Also apparent is the erratic behavior of Irk11 for method CRAIG , a

potential penal ty for minimizing I!xk 
- x~ at each step without regard to

In theory all other methods minimize II~k II at each step and also

reduce - ~~ monotonical ly.

If any method is to be preferred in this example it would be LSQR,

since it reached l imiting accuracy at iteration 76 and stayed at

essentiall y the same point thereafter. With values ATOL = BTOL = c the

stopping rule Si as implemented in LSQR would have caused iteration at

k = 76 as desired .

8.3 Ax = b; failure of RRLS

Figure 2 i l lus t ra tes  the same five methods applied to a larger

problem P(40,40,4,7) , in which each singular value is repeated four times

and cond(A ) 10~ . In this case all methods except RRLS reduced

- - - 

- -,- 

-- 

- 

- - -  

V

~~~~~~~~~~

-

~~~~~~~~

- - — -

~~~~~~~~~- 
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satisfactorily to about 10~~ for k 105 . For method RRLS , PIr kIl remained

of order 10~~ for k ? 30 up to k = 250 , and zero di gits of accuracy were

obtained in xk.

A similar disparity between RRLS and the remaining methods was

observed on the problems P (40 ,40 ,4 ,p ) , p 5,6 , cond tA ) = IO U. In fairness,

Chen [4] did not intend RRLS to be applied to compatible systems. However,

the success of the other least-squares methods suggests that this  is not an

unreasonable demand.

8.4 min~jAx - b l i ; high accuracy by RRLS and RRLSQR

¶ Figure 3 shows the performance of four least-squares methods on the

ill-conditioned problem P(20,i0,1,6). Since cond(A)2 = 10
12 

~
- i/c , we

would normally expect at most one digit of accuracy in the final This

is achieved by LSQR and CGLS, wi th LSQR showing a smoother decrease of

IIA TrI~Il.

In contrast, the residual-reducing methods achieved at least six

digits of accuracy in x~. Similarly, three or four digits of accuracy were

obtained on the problem P(20,10,1,8) , for which cond(A) = io~ is so high

that no di gits could be expected. At first sight it may appear that the

residual-redtx ing methods possess some advantage on least-squares problems.

However , this anomalous behavior cannot be guaranteed; for example, it did

not occur on P(80,40,4,6) , as shown in Figure 4. Also, the final value of

I i A
TrkH is no smaller than for LSQR and this is real ly the more important

quantity.

Part of the exp l anation for these occasional anomalies may lie in the

following. Suppose the origina l data (A ,b) have solution and residua l

~~~~~ while perturbed data (A + 6A , b + 
~b) have (~ + &i~, + Sr). If

______-- _ _ _ _ _--- - - — --~~~~~~~.- — -  —- ~~ 2

— — - -~~--~~~- --4- -——- - -  - —  __ -
~~~~~~~~~ ~~~~~~~~~~~ .
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.4 + ~A has full column rank then it is straightforward to show that

(A+&4)~ (ób — SA~
) + ( ( A + & 4 ) T ( A + 6A ) )~~ oAT~~.

In the present example c 0.7x10~~
1
, hA Il 2 = 1 , cond(A) = io

6, IIb II 2.4 ,

hI~Il - 17, ~~I 1. If the perturbations were caused by rounding errors in

the initial data then II6API c, I I 6b I I  ~, and the first term in the

expression for óx could be about as large as 10~~ in norm, and the second

could be of order 7. Figure 3 suggests the second term is unusually small

for the RRLS and RRLSQR computations. Looking at the particular form of

the test problem, if we write

I [Y~,Y~ ], A = Y 1DZ, ~ 
= Y~c,

we have
+ + T i  T(A+ ~SA) ~~A = Z D  I’1

and the second term in 5x is effectively

ZTD 2 Z 6A TY 2c .

Now suppose SA is simply an equivalent perturbation in .4 caused when A

mult ipl ies  a vector v in our test case . Using the resul ts of rounding

error analyses given by Wilkinson [27],

(A + ÔA) v  E fZ(Y1f1 (Dfl 
(Zv))) = (Y~ + t5Y~) (D + ~D) 

(Z i- 6Z)v

where Ik~1II cJ IY~Ib etc. ,  and so

6Y 1 (D+~ D)(Z +6Z) + Y 1 (D~Z+~ D(Z +~ Z))

Using this 6A in the second term for óx effectively gives

z
T
D~~(I + D~

l ZoZ TD)(I + D
1 6DhSY~~Y2c

which is bounded above by about 7 x io_ 6 in norm , rather than 7 as expected.

This gives a hint of what might be happening above, since a more realistic

problem would not admit such a relation between rounding errors and

residual. This does not invalidate the other nunerical comparisons, but it

does emphasi ze the care needed when constructing artificial test problems.

_ _ _ _ _  _ __ — - - — -- -- — - -~~-- - V.-

—-V — - —— — —  .- .- ~-
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8.5 min~ikc - h h l ; normal behavior

Figure 4 illustrates more typical performance of the four methods,

using the least-squares problem P(80,40,-1 ,’:) for which cond(A ) = 106 .

All methods reduced IA
TrkII to a satisfactory leve l , and the fina l error

norm is consistent with a conventional sensitivity anal ys~~ of the least-

squares problem ; in this case no more than one significant digit can he

expected. Note that CGLS converged more slowly than the other methods.

It also displayed rather undesirable fluctuations in hI A
Trk~ considerably

beyond the point at which the other methods reached limitin g accuracy.

8.6 Some results using greater precision

Algorithm LSQR was also applied to the previous four test problems on

an IBM 37O computer using double precision arithmetic , for which

c 2 .2x10
16
. With increased precision, LSQR gave higher accuracy and

also required fewer steps to attain this accuracy. This is best seen by

referring to the figures. In Figure 1 the log of the residual reached

-14.4 at the 48th step and stayed there; the log of - the error was then -8.6

but decreased 20 steps later to -9.3 and stayed there. In Figure 2 the

logs of the residual and error were -13. 8 and -8.0 at step 44 and differed

negligibly from these values thereafter. In Figure 3, log10
~pA Tr~ = -24.6

and log
10 IIx~ - xII = -6.0 at k = 32 and thereafter, while in Figure 4,

1og10
~JA
Tr~p p = — 1 3 . 9  and log10 IIx~ - x II = —4.6 at I— = .36 with little change

for larger k.

-- 1 -

L_._ - -  _ _ _  
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2 
log

10Il x~ -

- —2

log~0 II r ~ It

A. -~~~~ - -~~~~- ~~~.--‘.- ‘~

~4 Q o  
- _ _  

-

~~~~~~

‘C 
— PRLS

G - L.SQR
- -12 • — ~ .~SQR

~3a ~U p0 ~~ ~00 ~10 ~20

Figure 1. An ill-conditioned system A2 — b , ii — 10, cond (A ) - 10
g
.

CGLS is unable to reduce II r k II or I I x k - xfl satisfactorily.

CRAIG exhibits severe fluc tuations in lirk il.

_ _ _ _ _ _ _ _   - - -  —--V ~~~~~ - - -
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log10 II ~, —

- -

—4
- log10 llrkII

-8 
-

~~~~~
- cP~IG 

-

L~~~ 
C(7L5
F~LS 

-

-

+
-

10 21J 30 ~ ~f) r~fJ 70 8( ~L 1 (XJ 11 C 20
1 I I I I I ._

Figure 2. An ill-conditioned system Ax — b , n - 40 , cond(A) 
~~~~~~~~

RRLS is unable to reduce IIrkII or IIx~ - xli satisfactorily.

V.. — — — -.- ~~~~~~ - -~ --- — 
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2

a. a. a. .i ~

log1Q llx~ - xli

- --4

F- -6 
I 

I I ~~~~~~~~~~~~~~~~~~~~~ 
-#

1

/ 

-

- 

‘
~
# .

- (.G-L.S 
- 

-

I — R’~L~
- C- \U-

—

~ 12 + 
—

61 7(J or’
-_ - I ~~~~~~~~~~~~~~~~~~~ __________ L _ _ _ _ . _ __ V.. 1 I I

Figure 3. An ill-conditioned problem, minhlAx - b l!, in — 20 , n - 10 , cond(A) — 10~
RRLS and RRLSQR achieve ano~~lously hi&i accuracy in x k .
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log10 ilx~ - xli

-

, 

I 

- /

~~~~~~~~~
g10 llA

Tr~

H -

—1 1)
~~~~~~~~~~ CGLS

, - PFLS
- LSQR

-12

10 20 30 50 ~0 ‘0 80
I J_ _________ I 

- 
I

Figure 4. An ill-conditioned problem , minhiAr-bIi , m 80, n - 40 , cond(A ) io6.
All methods obtain a satisfactory solution, although

CGLS exhibits slower convergence and undesirable fluctuations in iIA TrkiI .
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9. TRANSFORMAT ION S

Here we discuss various ways of transforming the problem min~ Ax - bit

with a view to reducing the total work required for its solution .

As in the case of synunetric systems Ax = b (e.g. Chandra [31), the

main aim behind scaling , partitioning , splitting , etc. is to improve the

distribution of the singular values of A so that at least one of the

following occurs :

(a) cond(A ) = 0
~~~

/Gmin is reduced , where 0min is the smallest nonzero

singular value ;

(b) the number of distinct singular values is reduced.

App lication of a conjugate-gradient algorithm to the transformed problem

should then result in more rapid convergence.

9.1 Partitionin g by columns

It sometimes happens that the matrix A occurs naturally in the form

I = 
~B C] where the first partition B has special structure. For example,

B may he block diagonal , or the matrix BTB may be diagonal or tridiagonal.

In other cases cond(A) may he large primarily because cond(B) is large.

We now show that as long as B has full column rank, we can always transform

the problem min~![B C] - bit into one of better condition and reduced

size . Inc strategy is to compute z separately using a conjugate-gradient

method on ~i problem of the form

n u n  TCz - mIt (9. 1)

for some matrix T and then obtain y using a direct method on the problem

mi nhi Ry - (b - Cz)hl . (9.2)

Inc form of 7’ will depend on how much is known about B, but in all cases

we shal l have cond(7c) - condM)

- _ ... .. .. . - - _ _ V ~~~~~~ V~~~~~~~~~~~~~~~ - — - ———- — - ——-—--~~~~~~ - - - ,—. —

- - - — — .  V
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In general , let the QR factorization of B he

B = [Y Z1 = Y R
0

where QT E [Y Z] is orthogona1 and R is upper triangular. If B has only

a few cohmuis then it is possible to construct Q and 8 cheaply usi ng a

product of Householder transformations or a product of p lane rotations.

In other circumstances only Y and 8 will be known , w h i l e  if B is very large

perhaps only R can be stored economically. In ~. hC’ latter case, it may he

necessary to obtain R from the Cholesky factorization 11T1~

It can now be verified that any of the following matrices may serve as

7’ i n ( 9 . 1 ) :
I

r = z T ~ 
_ 1~~~~~~,T

= , = I - B(B~B) 1B~ = t - BR 1
R~~li~~.

In the first case, given that Q is orthogonal , we have

fnlnhIAx - bit = minhjQAx - Qh I l

rR YT(V 1 r~ 
ryThl

= miniI [ 
ZT(V] L~ 

- 

[Z
Th]t

= nun 1 - zThIi

since we can obtain ~ from Ry + = for any a . (This is equivalent to

to (9. 2 ) . )  Clearl y we have cond (A) = cond(QA) cond(ZTC).

The resul t  for is proved similarly using the fact that the matrix Q

below is orthogonal. Thus :

o YT1

V / V /~

_ _ _ _ _  
_ _ _  I V .

___________________ — - . -- - — —- — - - — — -
-

- - _ - - - V.- - - — - -  - -i- - - -V ~V
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r o
mi n ilAx — 

~!I = mi n I J Q I - ‘ —

L A ]  L’~i

r I? ~T(. 1 r~i 
- 

Y 1h ~1= I I I  V

L° ~~~~~ _I ~:] ZZ ”b]

• Aga in  i t  i s  clear that cond (A ) -
~ cond (ZZTC). In fact the operator

V 
= ZZT is  of no Us e  in pr: i ct ice , hut it se~~es to prove the result for the

remain ing  cases , using tIR’ r 1ations 
~

‘
2 

= T3 
= T

4 and 
y =

On numerical groLmds 7’
~ 

= shou ld he used whenever possible ,

p a r t i c u la r ly  i f  cond( !~) is large . Also , t h i s  is the onl y operator for

which the t ransformed problem (9.1) has a reduced row dimension .

I f  T = 73 or 7 = 74 
must he used , i t  is importan t to note that

T = 7
2 

= is a projection operator. When A and h are replaced by TC and

Tb in Bidiag 1, th e vectors in  (3 .1) sa t i s f y Th1 = u 1 . Hence the matr ix-

V. vector products required in the conj ugate-gradient al gor ithms are TCv . and

V T T
)ust ( U (not C Tu.).

p Note also that the product TCv . may he regarded as the original

matrix A operat ing on a vector , th us
-a .

= Cv. - 13z~ 
= ~

where solves the least-squares problem minhIBa~ 
- ( ‘~j i .  l~ach iterat i on

is therefore essentially the same as fo r the orig ina l problem min !IAX - bit

w i t h  the addi t ion of a single subproblem involving the partition B. From

this point of view , p a r t i t i o n i n g  is analogous to precondi t ioning symetric

system.s Ax = h via the sp l i t t i ng A = N - N , in which the only extra work

required is the solution of a suhprobl em Ma1 = r7
. (e.g. concus , C~lub and

* O’ I~e~u~y 1 5 1 , Chand ra I 3 1).

V. — ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
-___•__ - - ~
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A t r i v i a l  examp le o f part i t i o n i n g  arises wheneve r the parameters bei ng

~~ i mated include a constan t t e rn  (the mean) .  In t h i s  case , A [‘  (
V

r~1where ~ is a coltniin ot !‘ s. W r i t ing x = j , we would then use

T = (r — ~ in (9. 1) , solve fo r and then est imat e the mean using

= e’t’ L — Cz)/m . Thi s is nothing more tha n the wel l  known pract ice of

“subt ract ing off  the mean” (note that Tb = - ~e , where ~ = (l b/rn) and it

remains good practice in the present context .

A very general development of partitioning in a recurs i ve sense has

been given by G.N. Wilkinson [261. From one point of view this covers the

situation where the fi rst partition B can i t se l f  be partitioned.

9 .2 Pa r t i t i o n i ng by rows

A si mpler s i tua t ion  occurs when the m a t r i x  A has the form

A L I
where B is nonsingular and is such that systems of e.quat i ons involving B

and BT can he solved efficientl y. An algorithm called PARTCC was deve loped

by Chen H I for this situation , and he reports excellent results on a large

practic al problem for wh i ch B was triangular . -

I t  is worth not i ng that al gorithm PARTCG can he der i ved by t ransforming

the nonna l equat ions (B TB ~ = [8T CT ]!, to obtain the equivalent

System

(I + B
_ T
CTCIf l ) [1

(where lix = y) and then applying the synunetric conjugate-gradient al gorithm .

From this point of view it would appear preferable to retain the least-

squa res formulat ion and solve the prob l em

r’ i
m m lii 1 ‘~ 

— h

I — ~~~ . ! . I . . .  I .. .. V ’ V ’~ IV’

V . I~~: ~~ IT~~~I~~. T1’T:~~I _ _ _ _ _
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This approach is a part  i c u l a r  case of p r econd i t i on ing .  It  is

discussed by Björc k in his comp rehens i ve survey of direct and i t er a t i v e

methods for sparse least squa res i l l .  Vrne fi rs t work along these l ines

appears to  he that  of I1~iuc h l i  [14 1. In  general we may expect the method

to he successfu l only if B is well-conditioned , or if II CB 1 I I is  of moderate

si ze.

9 .3  ~ca l i ~~~and_p~~conditioning

The simplest  form of preconditioning is column scaling , in which the

original problem is replaced by

minitADy — h i! , x = Dg (9.3)

for some diagona l matrix D. Normally it must be left to the user to

compute D from his knowledge of A and to use it appropriately in his matrix-

product sub rout i nes . In the absence of better informat i on the resul ts of

van tlc r Slui s  124 1 ind i ’:ate that each col1Vmu~ o f - A D  should have the same

huclidean length , say 1. Pius  the ,j-th diagonal of D i s usually

= I / (a ~~a i ~ a l t hough t h i s  should not he at the expense of exaggerating

the inf luence  of i naccurate d ; i t a .  A convenient method for excluding any

unwanted col~ ims of A i s to set the corresponding 6~ = 0.

Not e that the or ig inal m a t r i x  A often contains a high percentage of

un i t  coefficients. In such cases a user should treat A and D as separate

operators when imp l ementing the matr ix-vector  products , since over a series

of .500 or 1000 i terations the computation of w = Dv , p = Aw can be substan-

tiall y cheaper than scaling the data explicitly and using p (AD)v.

By analogy w i t h  (9.3) , a more genera l approach to precondit ion i ng is

to en~)loy some stable factorization of A , say

-- ~~~~~~~~~~~~~~~~~~~
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A = L (J =

I in which the left -hand factor L has better condition than A , and the right -

hand facto r U is nonsingular. We assume that ii w i l l  be a sparse ma t r ix  and

that systems of equa t ions i nvolving II and UT can he solved e f f i c i en t l y.

There are now two equivalent hut distinct possibilities :

min~ Ly - hi ! , solve lix = y ; (9.4a)

minhIAU 1
1, — b it , solve Ux = y . (9 .4b)

The advantages o f each depend on the origin of L and U. In some cases £

may have the same spa rsity  as A , th us favoring (9.4a). A nontrivial

exan~ le of this is given in section 10 .2.  Othen~ise (9.4b) may be

pre ferred since it does not require L to he stored .

A promising approach towards automating this form of preconditioning

is to use Gaussian elimination with row and column interchanges to produce

a conventional sparse LU factorization with L trapezoidal and U t r i a n g u l a r :

P
1AP2 = LU = N

For conven i ence we shall ignore the permutation matrices P1 and P2, hut the

vital point is that they can he chosen so that L and U remain quite sparse

and that e i the r  L or U can he kept reasonably well-conditioned . The use of

an Lii factorization for (small , dense) least-squares problems was fi rst

suggested by Peters and Wilkinson 122] with cond(11 ) being kept small so

that the normal equations LTLY = LTb corresponding to (9.4ai could be

solved without serious rnuiierical difficulty . In the present context it is

again cond(L) that must he cont rolled , but t h i s  time the princ i pal mot ive

— -_---,-- — - —-V - -- -- V~~~~ - -

- — ~ -~~.~~~ :‘ V - -~.-



53

is to ensure reasonably rapid convergence when a conjugate-gradient

al gorithm j s  applied to (9 .4 ) .

The use of a sparse LU factorization for accelerating the convergence

of CGLS was first suggested by Björck in II]. We give some promising

experimental results in section 10. Another form of automatic precondition-

ing has been given by Björck and El fving [21 in their algorithm CGPcNE.

This uses the SSOR operator obtained from .4TA and has significant advantages -

in terms of simplicity and efficiency. (For example, the sparse factoriza-

tion of ATA is performed implicitly and is therefore not subject to the

usual problems associated with fill-in.) A future comparison of LU- and

¶ SSOR-preconditioning will be of great interest. Note that both methods

require explicit access to the rows or columns of A (thus A cannot be

represented in product form) , hut this wi l l  not often be a restriction.

9.4 Linear constraints

Equality-constrained problems of the form

minhtAx - bit subject to Cx = d (9.5)

arise in many applications. Without loss of genera lity we may assume that

C has ful l row rank . The combined matrix [
~
j will usually have full column

rank. -

If  a statistical model happens to be “overspecified”, i.e. the matrix

A is known to contain column dependencies, the user will normally wish to

impose some simple restrictions which do not increase the residual norm

but do remove ambigui ty from the solution . (For example , a particular sub-

set of the parameters x may be required to sum to zero.) Thus with appro-

pria te C and d it  wi l l  be known in advance that
m l  bl

mi nhi Ax - bII mini! I I x -

LCJ dJ 

— -—- -— ,
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and t he oiis t  r ; i i n t s  w i l l  he sat i s l V i e d  at the solut  ion if they are simp ly

inc l uded as add i t  i ona l rows of A and b. V III I S  procedure is easy to

imp lement , but i t  doe s increase the s i ze  of the least - squares prob l em and

the approximat i ons xk w i l l  not n e c e s s a r i l y sat  i s f y ( V x
k 

= d throughout the

iterations .

More generally (whether A i s  s ingu lar  or n o t ) ,  a facto r i z at i o n  of the

const rai n t matrix may he used to sol ve (9 .5 ) .  For example , let

QC
T 

= [ 1?~~ q

¶ R
T

Y = d , = b - A Yi1

where Q is orthogonal and B is upper t r i angular .  The unconstrained

problem

min IiAZz — ~-~Ii (~) .6)

can be solve d by a conjugate-gradient method, and the solution to P1

original problem is then x = QTEY] . The operator Az in (9.6) should not

be formed explicitl y, since Q will norr.~al1y he computed as a produc t of

~i 1
elementary transformat ions. Thus Z should he used in the form Z - .

ryl - L~J
Similarly, = b — nc!

T~
0j .

‘I’his procedure reduces the dimens ion of the least  - squa res prob l em to

he solved, and any iterate zk will give a point xk = 
~
dTLl

k} 
that sat i~~f i - ~

= d. if the constraints are nearly dependent , the solution of ~~~ 
V

is ill-condition ed and this will normally he revealed by growth in  t he

vectors ~, and ~~. Howeve r , the presence of constraints should not impair

the convergence of a conjugate-gradient method on (9.6), since with Q

orthogona l it is easily shown that cond(AZ) cond(A) regardless of cond(C).

‘-V.— - - —- l~- - 
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If  V’ is large and sparse it would be more efficient to compute a

stable triangular factorization of the form

LCT = [~~]

using Gaussian elimination with row and col~~~ interchanges. The above

procedure may then be applied with L and U in place of Q and P. In this

case we have Z = LT[~ and the bound on the condition of the reduced problem

is weakened to cond (AZ) � cond(A ) cond(Z) � cond(A) cond(L). This may not

he of serious consequence since in practice the interchange strategy cart

usually keep cond(L) moderate while maintaining sparsity in L and U.

•1
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10. AN APPLICAT I ON IN GEOPHYSICS

The Fortran implementation of LSQR has been applied recently to some

least-squares prohlem.s arising from the analysis of gravity-meter observa-

tions (Woodward [28]). The fornvlation of the underlying model is similar

to that described by Reilly [23]. (The purpose is to estimate the mean

value of gravity at each of a series of stations and to determine a set of

instrumental parameters for each gravity meter, including drift rate and a

correction to the calibrat ion.)

We have taken one such set of observations to obtain a representative

test problem

min !inx - b ii , A = A D  (10.1)

in which A~ is 1033 by 434 with each row containing 5 nonzero coefficients,

the first two being unity. The diagonal matrix D was chosen to normalize

the colunris of A0 and to exclude some containing insufficient data. Ignoring

excluded columns , .4 is effectively 1033 by 320 and of full rank. Since

i i b ii  6000 and iirli = - Axii 0.75 for the solution x, the system being

Folved is almost compatible.

The times quoted below are seconds of processor time using unoptimized

Fortran code on a Burroughs B6700. All condition number estimates are

those obtained by LSQR . The stopping rule S2 was used with ATOL = 10~~

(see section 6). Thus for a given operator A (which in some cases was L or

AU 1
) a solution was accepted when the estimate of iiA

Trk ii/  ( hA i l  iir k i l )

decreased below l0~8.

10.1 Original fornula t ion

Even with colirri scaling as indicated in ( 1 0 . 1 ) ,  the rate of converg ence

of LSQR proved to be very slow. Figure 5 shows a plot of 1og~iir~ii for the

______________________________________  - ,— —- -V
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first 600 iterations , and the steady growth of the estimate of cond(A).

After 1600 iterations the run was terminated with Irk !! and liA
Trk!i/ (ii A hi ir~t!)

still as large as 0.92 and 10~~ respectively. (Thus Irk i! had not yet entered
the usual long flat “tail”.) It appeared that cond(A) 10~ and that well

over 2000 iterations would have been required to reach a satisfactory

solution.

As an aside, this was the longest run performed and therefore best

illustrates the accuracy of the norm estimates in section 5. After 1600

iterations the estimates of Irk11 , liA
Trkil and iix kii were correct to eight,

five, and eight digits respectively, a very satisfactory result. The value

llBk iI F 56 over-estimated hi A ii~ 
= 18 by a noticeable amount in spite

of the bound (5.8). This is typical and in fact desirable , given the

manner in which ii A i i is used in the three stopping criteria of section 6.

10.2 Preconditioning with LU factors V

In order to test the preconditioning in (9.4), a sparse LU factoriza-

tion of .~i was computed in the form

r ol Eul
.L 3L 2L 1 = ‘ (10.2)

LA ] L°j
using Gaussian elimination with row interchanges. The nonzeros in U were

stored compactly by rows, and the rows of A were eli minated one by one in

their natural order. Thus each L. represents a stabilized elementary

transformation of the form

• 

[A ~ 

~
] 

or (10.3)

suitabl y intedded in the identity matrix of order n” + ~~~, and several Lj

~ 1~~~ - — —-V - — — — ,__ — —-V — -

V - V  V ~~~~ V~ l~~_



I

SR V

were requt red to  I l i m i r i a t e each row in tu rn . Vf l~~~j 5  gj ~~~ .4 = 1.11 where i,

is stored in product fo rm as the operator

I, = [0 1 II, 1
L2

1
L 3

1
...~

The multi pliers were constrained to satisfy 
~~~~~~ 

1/i for some pivot

tolerance i (0 , 1) , thus allowing the usual compromise between sparsity

and stabilit y . Since L and U proved to he very sparse, T = 0.99 was chosen

to m i n i m i ~ c cond(L) . r’nc number of nonzeros in A , L and U were about 5600 ,

~)5OO and ],‘ u/ ) respectivel y,  and the factor i za t ion t ime of 10 seconds was

neg l i gib le .

Some statistics for the three equivalent forms of pioblem (10.1) are

suninarized in V l V ah le  1. I t  is clear that Lii precondit ioning leads to a

significan t reduction in computat i on t ime  for this particular problem,

w i t h  only a moderate increase in storage requirements.

Condition Total Time per Total
Operator (estimate) iterations iteration time

A ?10~ �2000 1.0 �2000

L .3500 390 2.4 920

AU 1 
3500 400 1.3 520

Table I. Application of LSQR to three equivalent problems:

minhjAx — b li , min hi L y — b ii , mi n hI AU ’ i — b il

Note that in an 1,11 factorization with row interchanges, cond(L) is not

directl y related to cond(A). (For example , L itself is independent of the

columi scale of A . )  In this case, cond(L) 3500 is rather higher than we

mi ght have wished . This is partly due to the colunuis of unit coefficients

in A
~ 

which generate many irni ltipliers that are “worst possible ”, i.e. I A ,1! = 1.
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Better nimic rical propert ies could he expected i f the el in i l nat ion were

performed column-wis e rather than row-wise (cf. Wilkinson [27 , pp. 162-

lOb 1 1 . l kw e v e r , a more comp lex data s tructure would then he requi red for

e f f i c i e n c y , and since many of the A. would still he of orde r 1 the reduction

in cond( 1~) could prove to be only s l i ght .

In t h i s  context i t  is  no rm a l ly  cond(U) that  r e f l ec t s  the c o n d i t i o n  of

A.  The re was no growth in  our particu lar U ( largest  o f f-d i agona l  element

0.7) hut the largest and sma llest diagonals of U were 1.0 and 0.00021 res-

pectively, giving the conservative estimate : cond(U) .~00O .

Perhaps the most surprising result is that the numerical performance

of the operator All
_ i  

was not si gnificantly different from that of L. Th i s

means that the bound cond(.4U 1 ) cond(A ) cond(U) JO 8 is fo r tuna t e ly  not

operative , even though A and ii~~ are applied as separate operators . It is

an open quest ion how far th is  would remain t rue as cond(A ) and cond(~fl

increase, but as long as i t  does remain true AU 1 is much less expensi~ e

to use.

The speed advantage of 1111
1 
over T is largel y due to the unit coeffi-

cie n ts in  A and to the intrinsic simplicity of the relevant subroutines.

Thi s  could he expected in other practical appl ications.

Figure  5 con~ ares the decrease of Ir k !! I
V
or the operators A and

the latter be i ng indistinguishable from t.

10.3 A prob l em-dependent transformat i on

Prior to imp l ementation of the above precondition ing the ‘s l ow conver-

gence of l.SQR on (10 .1) necessitated a reconside ration of the prob l em

fo rmu 1 at ion . Ru i e fl y, i t  was noted from t he structure oF ,1 , that the

__________  - 4
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nonun i t  coe f f1  c I (nt -
~ could 1-e t r ans l a t ed  to giV e a mo r fa ’~ orable

d i s t r i b u t i o n  a roun d z r o  (Woodward [ 2 8 1) .  A l g c h r a i c a l l y ,  the coltnm-i s of .4

occurred in pa i rs of the form lie a] in  w h i c h  the vectors e and (1

possessed the same spa r s i t y  pattern (wi th  con ta in ing  unit coe f f i c i en t s ) .

The ~h i  ft  a = — w~ Was app l i ed  to each such pai r , where ~ = (~
T
0/(~

Tp

was the mean of the nonzeros in  ~i . Thjs amounted to a coliimi transformation

li” - r ~~ lie aI 
-~~

L ~
such that  e and ~ were orthogonal . The usual columi scaling then made each

pair  of column s orthonorma l .

ViVine ‘ Ifec t he re is another preconditioning via the fa c t o r i zat i o n
I

A = t T  in which T is unit upper triangular and has the same spars i ty

as A .  Convergence of LSQP on the problem

m in II’-i~ — h i! ‘ 
= ( 10.4 )

proved to he g rea t ly  accelerated , as shown in Figure 6. Compared to the

ori g i nal prob l em (10 . 1) , the reduction in cond (A ) was clearly important .

From the sharp drops in I r~, I l  i t  seems that another contributing factor was

an increased repe t i t ion  of singular values. Unfortunately a further

“automatic ” pr econd it ion i ng via  A = 7~U appeared to negate the la t ter

effect , as shown in Figure 6 . The smooth decrease in and the long

ItaiJ
~~

a for
~ 

stopp ingcr itc rion S2was satisfied indicates that ZV = AU~ has

i t s  s ingular  va l ues spread rather uniformly throughout their range.

Some stat istics for the transformed problem (10.4) are sumarized in

V l V ahle 2. Again the operators rand All ’ have virtually the same numerical

properties.

~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
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Figure 5. Comparison of minilAx - b !I and minIIAU 1y - bit

for prob lem (10. 1) .

1 = 1og~IIr~II for operator A .

2 = 1oggI)r~IJ for operator A ’f 1 .

3 = estimate of cond (A) .

4 = estimate of cond(AU 1).

V 

The numbers marked on 2 are those tested against ATOL in stopping

cri terion S2, i.e. estimates of IIL
TrkII/IIILI1 Itrk II) where £ = AU 1 .

Results for the operator t are essentiall y the same as for A11 1 .
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Figure 6 . Simi lar  comparison for the transformed problem (10.2) .

I = log lirk i! for operator A .
2 = log lir k !! for operators A~J-1 , r~
3 = estimate of cond(A).
4 = estimate of cond(~77

1) = cond(~).

Total Time per Total
Operator Condition iterations iteration time

- V .3100 ~..so 2.0 250

.3200 376 ~i.4 880

.3100 371 1. .~ 460

Table 2. Appl ication of LSQR to three equivalent

forms of problem (10.4).
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10.4 Comparison with~~~k fat V t o r i . ~;it ion

Th(’ t r a ns f o ni~~d p ro hler i  10 .4) was a ! so solved di rect lv  us i ng a sparse

nrthogona l factorization

r°1 rR i [()
Q ! _ I = I ~i =

L~ J LoJ Lb dj

where Q represents a product of plane rota t ions  analogous to the row -wise

elimination (10.2). The Ia ’: tor iza t ion  was reasonably sparse : Q = 4.~OOO

plane rotations, fl = ~~~O nonzcros. It was implemented as efficientl y as

possible subject to processing the rows of A in their natura l order. Some

ecconomies could he achieved us~~g diffe rent row orderings , e.g. Gent l eman

[8], but the factorizat i on time of 380 seconds is representative of the
I

great expense of QR- compared to LU-factorization . Computation of the

standard error estimates (from El - see section 5.4) required a further 160

seconds .

Comparison with the op~rator A in Table 2 shows that LSQR furnished

an equally accurate ~ and rather less accurate standard errors in about

hal f the t ime required by the di rect method . ~fte — to r :i~e requirements (and

inc i dent ally the paging activity in the R6700 virtua l memory environment)

were also substantially less. These advantages of the conjugate-gradient

approach to least squares must become more apparent with increas i ng proh l em

size , as long as the relevant matrix operator remains well conditioned .

10.5 ~~~ar~~r~p~~~lem

Finally, to indi are the effect of problem SI~~(V , we note some results

for a s i m i l a r  exa mp le which contained approximately twice as many observa-

tions (and hence twice as much dat:i defining .4). Column means were

subtracted as be fore , giving problem (10.4) with A 18.50 by / “ .‘ .
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In solving this case , IVVSQR obtained the estimate cond(~) 
V V

essen t i a l l y  the same as for the smaller prob l em. About .500 iterations

and 1000 seconds of processor t ime  were required , a four-fold  inc r ’as in

total work .

I
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ii. SUl4~1ARY

VflIe aim has been to present the derivat ion of an algorithm and details

of its imp lementation , along with sufficient experimental evidence to suggest

tha t  the al gor i thm compares favorabl y with other similar methods and that it

can be relied ~~on to give satisfactory numerical solut ions to problems of

practical importance.

Reliable stopp ing criteria were regarded here as being essential to any

iterat ive method for solving the problems Ax = b and ii: nhI A x - b it . The

criteria developed for IVSQR may he useful for other solution methods .

l~stimates of m u ,  cond(A ) and standard errors for x have also been developed

to provide useful information to the user at minimal cost.
I

Fi n a l ly ,  some results obtained using a sparse tO factorization of A

i l lus t rate an e f fec t ive  method for accelerating convergence on ill-conditioned

r rob I ems .
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APPENDIX A: FORTRAN PROGRAMS

Listings are given here of the following Fort ran rout i nes:

I. LSQR - the principal suhrout i ne inpiementing the sparse
least-squares algorithm.

2. Auxiliary routines required by LSQR.

NORMIV.Z - non iul iz e  a vector to un i t  length .
SAXPY - compute (L.r + y for scalar a and vectors x, y.

SNRM2 - compute the eucl idean norm of a vector.

AT IMES - a sample routine for computing the product p = Av.

IvrRANs - a samp le rout i ne for computing t~ ’~ product p = ATU.

3. Routines for generating a test problem.

HPROI) - apply a h ouseholder transformation to a vector according
to p = (T — 2aaT)v , where Ia !! = 7.

LSTP - generate a least-squares test problem / ( - ~,n,d,p ) of the
form described in section 8.1 of this paper.

TES1
V 

- request generation of a specific test problem and then
solve it using LSQR.

4. A sample main program calling TEST. d

These routines are written in the PFORT subset of ANSI Fortran (Ryder

and h ail [2i). There are no machine-dependent constants. Conversion between

sing le and double precision is accomplished by interchanging the following

characters throughout :

ABS <- - - -> DABS
REAL ~~~--  - ->  REAL*8 or DOUBLE PRECISION
SQRT < - - - - >  DSQRT

The rout i nes SAXPY and SNRM2 correspond to two members of the BIAS collection
( Lawson , Hanson , et al 11]). For improved efficiency the BIAS versions should

he used when available. The appropriate double precision routines would then

he DAXPY and DNRM2.

[1] LAWSON, C.L., HANSON , R.J. ,  KINCA ID , D .R . AND KRO~-l , F.T. Basic Linear

Al gebra Subprograms . Research Report SAND77-0898 , Sandia Laboratories ,
Albuquerque , New Mexico , 1977.

12) RYDER, B.C. AN1) HALL, A .D. The PFORT Veri fi er . Computing Science
Technical Report 12 , Bell Telephone Laboratories , Merray Hill , New
Jersey, 1973 (revised 1975).

~-~~--~~ ----— - - — - - -— -  -~~~ ---- -- — - ---V - -- — -—



70

~; F W O t J T T N F  LSQR ( ~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 ATOI,,9TO L ,CONLIM ,TTNr ,TM ,1J0,vr ,
2 TSTOP ,R N O R M , JOPM ,F~C(~HH

C

T N T F G F P  M ,N ,M A X ,~~TNLIM ,NOU’r,NmOP

PEA!. B ( M) , P (  M A X )  , I] ( M )  , V ( ‘ . J )  , W (  N )  , X ( N )  , SF; ( N )
1 ATOL ,BTOL ,CONLtM ,RNOPM ,ANOR M ,ACOND

(V
~

C
c L SQR F I N D S  A SOLUTION X TO “HF FOLLOWING P POR L F M ~~...

C (UNSYMMET PIC FO~J A T I O N ~~) SO LVE A .X  = B ,
C

C ( L I N E A R  LEAST SOtJARES) M T N T M T Z F  N O R M ( P )  WHERE P = ‘3 —

r
r~; W H I C H  A IS A R E A L  M A T R I X  OF’ D T M F . N S T O N S  M BY N A N D  B JS A

C ( U V L N  M— V E CT OP . NflPMA LLY RANV (A) SHOULD BE N , WTTH M >= N ,
C ~~~~T T H I S  ~S Nm’ F~~~F .NTTAI, ( E . G . SOME OF THE ROWS AND COL U MNS OF

~ ‘~1t~Y HF ZERO) .
C
C T ’H: MA TR IX A IS I N T E N D E D  TO BR LARGE AND S P A R S E .  IT IS ACCESSED

BY ‘.1FANS O F TWO ‘~~‘HPOUTJM ~-: CA L l S OF THE FOR M

C CALL A T T M F S ( V , P , M , N
C A L L  A T R A N S (  ‘ Y , P , M , N )

‘
V.

C W h I CH MUST R E T U R N  TH E PRODUCTS P = A . V  AND P = A (TRANSPOSF. ) •I1
C FOR C T V F N  IN P U T  VECT O R~ V AND U .

C S!IRROUT !NES ATTMFS AND ‘~TRANS ARE TO BE SU P P L I E D  BY THE USER.
C T~U-;Y Mt ’~~T NOT ALT ER V OR U RESPECTIVELY . THE LFN GT H OF THE

OUTPUT V F~~TOR P i~ R E S P E C T I V E L Y  M A ND N , PU” TN EITHER C A S F V
C THE A RRA Y PARAME ~~F;R P MAY RE DECLARED TO HAVE LENGTH MAX (M ,N)
C ‘~H~~3 MAY HE USEFUL IF P N USED FOR WORKSPACE BEFORE EXIT .)

NOTE.  THE N U M B E R  OF ITERATIONS R E Q U I R E D  BY LSOR DEPENDS
C CRITICALLY ON THE CONDITION NUMBER OF THE MATRIX A. POOR
C SCALTNC OF’ THE COLUMNS OF’ A SHOULD BE AVOIDED . THIS CAN
C USUALLY BE TAKEN CARE OF WHEN PROGRAMMING SUBROUTINES ATIMES
C AND A TR A~:S. I N  THE ABSENC E OF BETTER INFORMATION THE NONZERO
C COLU MNS OF A SHOULD R E SCAL ED SO TH AT THEY ALL H A VE THE SAME
C EUCLIDEA N NORM (USUALLY l.~~)

C
C PARAMETERS
C

C M INPUT THE NWIBER OF ROWS IN A .

C N INPUT TIlE N UMBER OF COLUMNS TN A .
C
C’ M A X  INPUT M A X ( M ,N ) . USED ONLY TO SPECIFY THE LENCTM
C OF P TN THE DIMENSION STATEMENT ABOVE .

_______________ - - - V _ V V  — ~~~~~~~ - -U - - - —
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C
C B (M) INPUT THE RHS VECTOR OF LENGTH M .
C
C P(MAX) OUTPUT RETURN S THE VECTO R A (TPANSPOSE) .R , W H E R E
C B = B - A .X IS “'H F. RFVS T DUAL VECTOR CORRFS—
C PONDINC TO THE COMPUTED SOLUTION X .
C
C U(M) OUTPUT RETURNS THE RESIDUAL VF~~TOR P = ‘3 —

C
C V ( N )  W O R K S P A C E
C
C W ( N )  WORKSPA CE
C
C X(N) OUTPUT RETURNS THT-: COMPUTED SOLrJ~~TON X.
C
C SE(N) OUTPUT RETURNS STANDARD ERROR ESTTMATE~ FOP THE
C COMPONENTS OF X .

C NOTE. THE FOLLOWING DISCUSSION OF TOLF’R~~NC E.S I S
C IN TERMS OF A QUANTITY EPS WHICH STANDS FOR THE
C RELATIVE PRECISION OF FLOATING—POINT ARITHMETIC
C ON THE MACHINE BEING USED. TYPICAL VALUES ARF
C
C BURROUGHS B 6 7ø~ S I N G L E  PRE C I S I O N , PP S = 1. (~E—l l
C CDC ~~ ø ø , 7~~ø~ SINGLE PRECISION , EPS = Li~E—14
C IBM 36~~,37ø SINGLE PRECISION , EPS =

C DOUBLE P R E C I S I O N , EPS = l .~~D — J ~~
C UNIVAC 1l~~ø SERIES SINGLE P RE C T~~TON , EPS = l.~~F—RC DOUBLE P R E C I S I ON , F.PS = 1.~~D—l~C
C (ALL VALUES APPROXIMATE) . -

C
C ATOL INPUT AN ESTIMAT E OF THE RELAT IVE ACCURACY OF’

• C THE DATA DEFINING THE MPTPIY A.
C ATOL WILL NORMALLY RE IN THE RANGE
C EPS TO SORT(EPS)
C SUG GESTED VALUE —— ATOL = l~~~ ø *EPS
C
C BTOL INPUT AN ESTIMATE OF THE RELATIVE ACCURA CY OF’
C - THE DATA DEFINING THE RHS VECTOR B.
C BTOL W ILL  NORMALLY BE IN THE RA NGE
C EPS TO SQRT(EPS)
C SUGGESTED VALtIE -- ‘3TOL = l~~~~*EPS
C
C CONLIM INPUT AN UPPER L I M I T  ON C O N D ( A )  , THE APPARENT
C CONDITION NUMBER OF TH F MA T R I X  A ( I G N O R I N G
C KNOWN S I N G U L A R I T I E S )  . ITERATIONS W I L L
C TERMINATE IF A COMPUTED ESTIMATE OF COND (VA)
C EXCEEDS CONLIM. THIS IS I N T E N D E D  TO PREVENT
C CEKTA~N SMALIJ OR ZERO SINGULAR VALUES OF A
C FROM COM ING INTO EFFECT AND CAUSING UNWANTED
C GROWTH IN THE COMPUTED X. HFNC F’ IT MAY ASST~ TC IN REGULARIZrNG ILL—CONDITIONED SYSTEMS .

_______ _~~~~_~~~~~~~~~~~~~ -
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C
C CV flN I IM W I IA. N O P M A L I , Y  H E  IN- TH E RA NGE 

V

C 1~~ 1~ TO 1/ E P S .
C SUGGESTED V/\LI JI-; ——
C C O N L r M  = 1/ ( 1 ø ~~~* EP S) FOR C O M P A T I B L E  SYST EMS ,
C C O N L I M  = 1/ ( 1g * S Q P T ( E P S ) )  FOP LEAST SQ UA RES .
C
C N O T E .  I F  THE U S E R  ~~ NOT C O N C E R N E D  A BOUT THE P A R A M E T E R S
C ATOL , B’POL AND C O N L I M , A N Y  OR A L T .  OF T ’lr- ’M MA Y flF; SET
C ro 7ERO .
C
C I T N L I M  I N P U T  AN U P P E R  L T M T T  ON THE N U M B E R  OF I T E R A T I O N S .
C SUGGESTE D V A L U E . .  - -

C TTNLTM = N / 2  FOP W E L L — C O N D I T I O N E D  S Y S T E M S ,
C ITNLTM = 4*N OTHERWISE .
C

C NOUT INPUT L I N E P R T N T E P  t I N T ” '  N U M B E R .  IF ’ P O SI T I V E ,
C A S U M M A R Y  W I L L  BE P R I N T E D  ON U N I T  NOUT .
C
C I STOP OUTPUT AN IN T E G E R  G I V T M G  THE R E A S O N  FOR T E R M I N A T I O N ...
C
C X = J S TIlE EXACT SOLU~~TON .
C NO I T E R A T I O N S  W E R E  P E R F O R M E D .
C

C 1 THE EQUATIONS A .X  = B A R E  P R O B A B L Y
C C O M P A T I B L E . NOPM (R) IS SPFFICTENTI.Y S M A r T ,

GIVEN THF VA LUES OF ATOL . AND BTOI..
C
c 2 THE SY S T E M  A . X  = B IS P R O B A B L Y  NOT
( V  (‘CMPA’PTBLF A LEA~~T—SQUA flES SOLUTION HAS
C BEEN OBTA INED , ~‘OP WHICH NORM (IA .R ) IS
C S U F F I C I E N T L Y  S M A L L  G I V E N  THE VT ’.T.r J Y’ OF ATOL,.
C
C THE SYSTEM T ’~ M O R E  I L L - C O N D I T I O N E D  THAN
C - EXPECTED. AN ESTIMATE OP COND (A ) qA S

C E X C E E D F D  C O N L I M .
C
C 4 THE ITERATION LIMIT TTNI.TM WAS REACHED.
C
C 5 THE EQUATIONS A .X = ‘3 A R E  PROBABLY
C’ COMPATIBLE. NOPM (R) IS AS ~MAT .L AS SEEMS

REASONAB lE ON THIS MACHINE.
C

C THE SYSTE M A . X = B IS PROB AB LY NOT
C COMPATIBLE. A LEAST-S Q UAR E S SOLUTI ON HA S
C BEE N OBTA INED,  FOR WHICH NORM (A .R) IS AS
C SMALl AS SEEMS REASONABLE ON THIS MACHINE.
C
C 7 C O N D ( A )  SEEMS TO BE SO L A R G F  THAT T H E R E  IS
C NOT MUC H POINT IN DOING FURTHER ITERATIONS ,
C GIVEN THE PRECISION OF THIS MACHINF.
(V.

C RNO R M OUTPUT NORM (R) = SORT(R.R) , THE NORM OF’ THE FINAl
C RES TOtJAL VECTOR P = B — A .X .

- 
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C
C ANORM OUTPIJT AN ESTIMATE OF THE P R O B E N I I J S  N O R M  OE A .

C THIS IS THE SQUARE—ROOT OF TU E  SUM OF SOITAPES
C OF THE E L E M E N T S  OF’ A . IF’ TUE C O L U M N C  OF A.
C HAVE ALL BEEN SCALED TO HAVE LENGTH 1J~,
C ANORM SHOULD I N C R E A S E  TO ROUGHLY SOPT (”fl
C A. RADICALLY DIFFERENT VALUE FOP ANORM M A~~
C I ND I C A T E  AN E R R O R  IN ONE OF’ THE SUI3 POUTrNF.S
C ATIME-S OR A T R F \ N S .
C
C ACOND OUTPUT AN ESTIMATE OF’ COND (A) , TH E C ON D T ’ r J o N
C NU M BER OF A .  A VERY H I G H  V A L U E  OF A COND
C MAY AGAIN INDICATE AN ERROR IN  S U B R O U T I N E ~
C ATIMES OR ATRANS .
C
C
C TO CHANGE P R E C I S I O N
C
C
C IF SUBSTITUTE BLA S ROUTI NES AR E I N  USE , A L T E R  T’-l E ~ OPDS
C ABS , RE A L , SORT
C THR OUG H OUT ROUTINE S LSQR , N O R M L Z , SAXP Y , S N R M ? .
C
C IF AUTHENTIC BLAS ROUTINES A R E  T N US E., ALTER THE WORDC
C ABS , R E A L  , SA XPY , S N R M 2 , SORT
C THROU GHOUT ROUTINES LSOR , N O R M L Z .
C
C
C REFERENCE A BIDIAG3NALIZATION AlGORITHM FOR SPARSE
C LINEAR EQUATIONS AND LEA ST—SQUARES PPORT.EM~~,C TECHNICAL REPORT SOL 7R-19 , DEPARTMENT OF
C O P E R A T I O N S  R E S E A R C H , STANFORD UNIVERSITY , 1 q 78
C
C
C AUTHORS C .C .  P A IGE M .A . GAUNDERS

C MC GILL U N J V E R S T T Y , CANAD A D S I R , NEW ZEALAND
C
C
C LSQR . THIS VERSION I)ATED 2 OCTOBFR 1978.
C
C SUBROUTINES AND FUNCTIONS
C
C USER A TT M ES,A TR A NS
C LSQR NORMLZ
C BLAS SAXPY
C FORTRAN AB S , MOD , SQRT
C

_ _  
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C
C Ft I NCTI ’ )~’ ’ AN D I.~

( A! -  VARIABLES
‘
V.

I N T E G I V ’R I , TTN , MO P , NCO N V , N STO P
R E A l  ABS , A L P A , A R N O P M , B B N OR M , 13FV TA , BNOPM ,

1 CS , C52 , CTO L , D DNOR M , DELT A , C V A M M A ,G B A R ,
2 ON E ,p H J ,Rr37\p ,RHO ,R H~~,RTO L ,
3 S T N E S ,SN ,5N2 ,SORT ,T ,T E-ST 1 ,TEST2 ,TEST I ,
4 THF ,TA , T1 , T2 , T~~, XN O R M , X X N O R M , Z , Z B A R , Z E R O

C
C
C INIT IA LTZE
C

Z E R O  =

= I
I P  ( NOU T .GT.  0)  W R I T E ( N O U T , 1 0 00 )  M , N , ATOL , BTOL , C O N L T M , T T N L I M
C A L L  NORML7 ( B ,~J , M , ’3ETA
C A L L  AT PANS ( U , P , M , N
CALL NORMLZ ( P , V , N , A L P A

DO 20 1 = 1 , N
W ( [ )  = V ( l )
X ( I )  = Z E R O

S E ( [ )  = Z E R O
20 CONTINUE

c
SINES = ONE
B BN OR M  = Z E R O
DDNORM = Z E R O
X X N O P M  = Z E R O
7 = Z E R O

• I’s2 = — O N E
5N2 = Z E R O

P CTOL = Z E R O
r E  ( C O N L T M  .GT . Z E R O )  CTOL = ONE/CONLIM
ITN
I STOP =

NSTOP = 0
C

ANORM = Z E R O
ACOND = Z E R O
RBAR = ALFA
I3N OPM = BETA
RNOPM = BETA.
XN O R M  = ZERO
A P N O R M  = A LFA *B F. T A
IF’ (NOUT .GT. 0) WRITE (NOUT , 1200)
IF (NOUT .GT . 0) WRTTE (NOUT , 1400) ITN ,X(1) ,RNORM ,ARNORM
I F  (NOUT .GT . 0) W R I T E ( NOUT , 1500)
I F  (ARNORM .LE. ZERO) GO TO 700

~__~V_ ~ 
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C
C
C MAIN ITERATION LOOP
C

C PERFORM NEXT STEP OF’ ‘rUE BIDTAGONA! ,TZATION
C TO OBTAIN NEW BETA , U , A LFA , V
C

100 ITN = ITN+1
CALL ATIMES ( V ,P,M ,N
CALL SAXPY ( M , (—A LFA ) ,U,1 ,P,1
CALL NORMLZ ( P,U ,M ,BFVT/\

(V~

BBNORM = I3 I3 NO RM + A L EA * *2  + B ETA * *2

C
(‘ALL ATRANS ( U ,P,M ,N
CALL, SAXPY ( N ,(—BETA ) ,V ,1 ,P,1
CALL NORMLZ( P,V ,N,ALFA

C
C
C COMPUTE NEXT PLANE ROTATION FOR THE O R_ FA CT OR IZA TTON
C OF THE LOWER BIDIAGONAL MATRIX B (I.F . Q.R = R)
C

RHO SORT (RBI\R**2 + ‘3ETA**2)
CS = RHAP/PHO
SN !3E9A. /Rt l ( )
THETA =

R[3A I~
PH I  C~~*RNOR ~
RNORM =

ARN~)PM ~3S (RRPR)*RNr)~ M
SINES = SN*SIUFS

C
C UPDATE X AND THE S’!’ -~~JflA k [) ERROR ESTIMATES
C

TI = PUT/RHO
T2 = —THE-TA/RHO
T3 = ONE/RHO
CA L L  S A X P Y  ( N ,T 1 , W , I , X , 1

C
DO FI~4 I = 1, N

T = W ( I )
W (I) = T~’r2 + VU )
T

= T * SF ( I)
IThMORM= T ~

- DD N ORM
V~Ø CONT I NUE

C

1

- -—- --- -------- ~~~~~~~~~ 
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C
C ESTIMATE NORM (X ) USING AN LQ~~F A~’TORTZATTON
C OF THE U P P E R  B I D I A G O N A L  M A T R I X  P (I.E . P.O = L)
C

DELTA 5N2*RHO
— GBA R = _CS2*RHO

RHS = PHI - DF,LTA*Z
Z B A R  = R H S / G B A R
X N O P M  = SORT(XXNORM + ZBAR**2)

~ T \ M M ~ = S Q R T ( G P A R **2 + rHETA**2)
CS2 = G9A I?/ GAM MA
3N2 = T’~IFTA /GAMMA
Z = UI!S/GA.!’IMA
XX NCV)RM = XXNORM + Z * * 2

C
C
C TES T FOR CONVERGENCE
C

ANORM = S O R T ( B R N O P M )
= A NOR M* SQ RT ( DD NO PM)

RTO L = RTOL 4- ATOL*ANO R~~*XN OR M/RN OR M
TESTI = SIN E S
T EST2 = A R N O R M / ( A N O R M * R N O P M )
T EST~ ONF /ACONDV 

C
C THE FOLLOWING THREE TESTS ARE INDEPENDENT OF’ THE TOLERANCES
C ATOL , BTOL AND CONLIM . THEY ARE INTENDED TO GUARD AGA INST
C ACCIDENTAL SETT ING OF THOSE PARAMETERS TO EXTREME V A L U E S .

T HEY A P E  EQUIVALENT TO THE NORMAL TFVS T S USING THE.  VALUES
C ATOL = EP S , BTOL = EPS , C O N L I M  = 1/EPS .

TI = ONE + TEST1
T2 = ONE + TEST?

= ONE + TEST1
IF (T3 .LE . ONE) TSTOP = 7
IF’ (T2 ..LF’.. ONE ) ISTOP = 6
IF (TI .LE . ONE~ ISTOP =

C
C AT.I.OW FOP TOLERANCES SET BY USER
C

IF’ (ITN .GF. ITNLIM) ISTOP = 4
I F  (TFST3 .LE. (‘PaL ) ISTOP 3
IF  (TEST? . L E .  ATOL ) T STOP = 2
IF (TESTI .LE. RTOL ) ISTOP = 1

_ _ _  - - - ~~~ ~~~~~~~~~~~~~~ p~~~~ - - ,-- — — --
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C = = = = = = = = = = = = = = = = = = = == = = = = ==  = = = = = = = = = = = = = = = = = = = = = = = = — = = = =  = = = = = = = =

C
C SEE IF IT IS TI ME TO PRI NT SOME TH I N G
C

IF (NOUT .LE. 0) GO TO 600
IF (M .LE.40 .OR . N.LE.~~0) GO TO 400V 
IF (ITN .LE. 10) GO TO 400
IF (ITN .GE. ITNLIM—10) GO TO 400
IF’ ( M O D ( I T N ,10) .EQ. 0) GO TO 400
IF (TEST3 .LE . 2.0*CTOL) GO TO 400
IF (TEST2 .LE . l0 . 0*ATOL) GO TO 400
IF (TESTI .LE. 10.0*RTOL) GO TO 400
GO TO 600

C
C P R I N T  A L I N E  FO R THIS ITE RA TION
C

400 CONTINUE
W R T T E ( N O U T , 1 40 0 )  ITN ,X (1),RNOR M ,ARNOPM ,TEST ],TEST2 ,T\NORM,ACOF’ID
IF’ (MOD(ITN ,10) .EQ. 0) W R I T E ( N O U T , 150 0 )

C = = = = =—  = = = = = = = = = = = = = = = = = = = = = = = — = = = = = —— = = = = = = = = = = = = = = = = = = = = = = = = = = = =
C
C
C STOP IF POSSIBLE.
C THE CONVERGENC E C R I T E R I A  ARE REQUI R ED TO BE MET ON NCONV
C CONSEC UTIVE ITE RA TIONS , WHERE NCONV IS SET BELOW .
C SUGGESTED VALUE -— NCONV = 1 , 2 OR
C

600 IF (ISTOP .EQ . 0) NSTOP = 0
IF (ISTOP .EQ. 0) GO TO 100
N CONV = 1
NSTOP = N STOP +1
I F  (NSTOP .LT . NCONV .AND. ITN .LT . ITNLIM) ISTOP = 0
IF (ISTOP .EO. 0) GO TO 100

C
C END OF IT ER ATION LOOP
C
‘V.
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C
C PRINT SUMMARY OE F I N A L  SOLUTION STATUS -

C
700  C O N T I N U E

IF (NOUT .LE. 0 )  GO TO 800
W RITE ( NOUT , l90~~) ITN I ISTOP
I F  ( I S T O P  .E Q .  0)  W P I T E ( N O E J T , 2000)
I F  (ISTOP .E Q . 1) WRITE(NOUT , 2100)
I F  ( I ST O P  .EO . 2) WRITE (NOUT, 2200)
IF  (I S T O P  . FC. 3)  W R T T E ( N O U T , 2 1 0 0 )
IF (ISTOP .FO. 4) WRITE (NOUT , 2400)
TE (ISTOP . E Q . 5) WRITE(NOUT, 2500)
IF (ISTOP .EQ . 6) WRITE (NOUT , 2~~00)
IF (ISTOP .EQ. 7) WPITE(NOUT , 2700)

C COMPUTE FINAL RESIDUAL R = B — A . X , AND A (TRAN~ POSE) .R
C

800 Ti = RNORM
T2 =

T3 = XNORM
CALL A T I MES(  X ,P,M ,N

DO 900 I = 1, M
U (I )  = B (I )  — P ( T )

9~ 0 CONTINUS
C

CALL NORMLZ ( U ,P,M ,RNO RM
CALL ATPANS ( U ,P,M ,N
CALL NORMLZ ( P,~Z ,N ,A RN ORM
CALL N O R M L Z ( X ,W ,N ,XNO RM
IF (LOUT .GT . ~) W P I T E ( N O U T , 30 0 0 )  BNO RM ,ANORM ,A COND ,T1 ,T2 ,T3 ,

1 RNOPM ,A RNORM ,XNORM
(V.

C FINISH OFF 1’HE STANDARD ERROR ESTIMATES
(V.

T = ONE
IF  ( M  • GT . N) T = M — N
T = RNORM/SQPT (T)

p.

DO 95 0 1 = 1, N
S E ( I )  = T*SORT(SE (t))

950 CONTINUE
C

R E T U R N

- __ - — V W~~~~ V~~
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C
C

1000 F O R M A T (
1 /1 2 5X , 46HLSQR — —  LEAST—SQUARES SOLUTION OF A. X = B
2 / 25X , 46H (UE. MINIMIZE NORM(R) , WHERE P = B —

3 /1 25X , 29HTHE MATRIX A HAS DIMENSIONS , 16 , SH BY, 16
4 // 25X , 8HATOL = , IPE 1O . 2 ,  lOX , RHBTOL = , IPEIO .2
5 / 25X, 8HCONLIM = , 1PEIO .2, lOX , RHITNLIM = , 110)

1200 F O R M A T ( / /  3X , 3HI TN , 9X , 4 H X ( 1 ) , 14x , 7HNORM(R) , RX , 99NOPM (A .R)
1 3X , 23HCOMP A T IBLE INCOMP A TIBLE , 4X , 7HNORM( .A ), -~X , 71-ICOND(A ) I)1400 F O R M A T ( 16 , 1PE2O.10 , 1PE19.10 , 1PE12.3 , 1P2E 1~~.1, IP2E1J.2 )

150 0 F O R M A T ( 1X )
1900 FORMAT(

1 / 191-3 NO. OF ITERATIONS , 110
2 //  19H STOPPIN G CONDITION , 110)

2000  F O R M A T ( 1 H+ , 34X , 44H(THE EXACT SOLUTION IS X = 0) ) V

2100 FORMAT (1H-i- , 34X , 4 4 H ( NOR M ( R )  IS SMALL ENOUGH , GIVEN ATOL., BTOLI
220 0 F O R M A T ( 1H +, 34X , 44H(NOPM(A. R) IS SMALL ENOUGH , GIVEN ATOL )
2300 F O R M A T ( 1 H + , 34X , 44H (COND (A) HAS EXCEEDED CONLIM)
2 4 0 0  F O R M A T ( 1H + , 34x , 44H(ITEPATION LIMIT REACHED)
2500 F O R M A T ( 1H + , 34X , 4 4 H ( N O R M (P) IS SMALL ENOUG H FOP THI S MAC HINE)
260 0 F O R M A T ( 1H + , 34X , 44H(NORM(A.R) IS SMALL ENOUGH FOP THIS MACHINE )
2700 FORMAT(1H+ , 34x , 44H (COND(A) Is TOO LARGE FOR THIS MACHINE)
3000 FORMAT (

I / 19H NORM(B) TRUE , 1PE20 .10 ,
2 5x , 19H N O R M ( A )  ESTIMATE , 1PE1S.5 ,
3 5X , 19H C O N D ( A )  ESTIMATE , iPE 15.~
4 I I  19H NORM (R) ESTIMATE , 1PE2 0.10 ,
5 5X , 19H NORM(A .R) ESTIMATE , 1PE1S .5 , V

6 5X , 19H NORM(x) ESTIMATE , 1PE 15. 1
7 / 19i-i TRUE , 1PE2 O .l0 ,
8 5X , 19H TRUE , IPE1S .5,
9 5X , 1911 TRUE , 1PF,15.7)

C
C END OF LSQR

END
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SUBROtTTrNE NOPML7 .( P,V ,N ,BETA
I N T E G E R  N
PEAL P( N) ,V ( N ) ,B ETA

C
C N O R M L 7  IS R E Q U I R E D  BY S U B R O U T I N E  L~ QP.
C IT NORMALTZ-ES THE VECTOR P AND RETURNS THF RESULT IN V.
C ON RETURN , BETA = N O R M ( P )  ~ ND r~FT A* V = P.
C
C FUNCTIONS
C
C BLAS SNRM2
C

INTEGER I
REAL ONE ,SNRM2 ,T,ZERO

C
C

Z E R O  = 0

ONE = 1
BETA = SNRM2 ( N ,P,1
IF (BETA .LE. ZERO) RETURN
T = ONE/BETA

C V

DO 20 I = 1 , N
V ( I )  =

• 20 CONTINUE
R E T U R N

C

C END OF NOR M LZ
END

SUBROUTINE SAXPY( N ,A ,X ,INCX ,Y,INCY
REAL A ,X (N) ,Y(N)

p

C THIS MAY BE REPLACED BY THE CORRESPONDING BLAS ROUTINE.
C THE FOLLOW ING IS A SIMPLE VERSION FOR USE WITH LSQR .
C

DO 10 I = 1 , N
Y(~~) = A *X(I) + Y ( I )

10 CONTINUE
RETURN
E N D

R E A L  F UNCT I ON S N R M 2 (  N , X , TNCX
REAL X (N)

C

C THIS MAY BE REPLACED BY TH~ CORP FS PONDTNG BLA S ROUTINE .
C THE FOI.LOW J NG IS A SIMPLE VERSION FOP U-SF WITH LSOR .
C

SNRM2 = 0
DO 10 I = I , N

SNRM2 = X ( I ) * * 2  + ~NP -’12
10 CONTINUE.

SNRM2 = SQRT (S N PM2 )
• RE TURN

END

-~~ -~-—— 
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SUBROUTINE ATIMES ( V ,P,M ,N
T N’rEGER M ,N
REAL V(N) ,P(M )

C
C COMPUTE P = A . V  FOR TEST M A T R I X  A

C
I N T E G E R  I , Nl
R E A L  ZERO
REAL D,R ,XTRU E ,Y ,Z
COMMON /LSCOMM / D ( 1 00) ,R(l00),XTRUF (lO0’) ,Y (100),Z (lOO ’)

C
C

CALL HP R OD ( V , P , Z ,N
DO 100 I= 1 , N

P ( I )  = D ( I ) * P ( I )
100 C O N T I N U E

C
I F  ( M  .LE. N ) GO TO 500
Z E R O  = 0
NI = N+ 1

- DO 200 I=N 1 , M
PU)  = Z E R O

2 00 CONTIN U E
C

500 CALL HPROD ( P , P , Y , M
R E T U R N

C
C END OF A T I M E S

END

SUBROUTINE ATRANS ( IJ ,P,P4,N
I N T E G E R  M ,N
R E A L  U ( r I l )  , P ( N )

C
C COMPUTE P = A ( T R A N S P O .SF .) .U FOR TEST M A T R I X  A
C

INTEGER I
REAL D,R ,XTRUF.,Y ,Z
COMMON /LSCOMM/ D(100),R (I00),XTPUF(1001 ,Y (1 O0),Z (1’~~)

C
C

CA LL H PROD ( U ,P,Y ,M
C

DO 100 T= 1 , N
P U )  = D( I ) * P( I )

1 00 CONTI NU E
C

CALL HPROD ( P,P,Z,N
R E T U R N

C
C END OF’ A P R A N S

END 
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SUBPOUT f~’1F H P P O D ( V , P , 7 1 N
INTEGER N
H E A T , PiN ) ,V ( N )  ,‘~ ( N )

p.

C A P P L Y  qf l r i5 P i~~~~r)~~p CRAN c~PORMA .~~T ~ “n r i - r n  P = ( I  — •) 7 9 1 )  .V

C
r

C

DO I- ~~ 1=i ,N

S = Z(I)*V (1\ + 5
10 0 C O N T I N U E

C

DO 7 0H I=l ,N
P(I) = VU ) — S*Z(I)

200 C O N T I N U E
C

R E T U R N
C,

C END OF !-1PROD
F-ND

SU BRO U T I N E  L STP (  M ,N ,N DUPLC , NP OWE P ,B ,ACOND ,PNOR M

INTEGER M ,N ,NDUPLC ,NPOWER V

R E A L  B ( M )  ,ACOND ,RNORM

C G E N E R A T E  A SPARSE LEAST—SQUARES TEST PROBLEM , A .X = B ,
C W H E R E  A = Y . D . Z  IS M BY N , 0 IS DIAGON A L , AND
C Y AND Z ARE H O U S E H O L D E R  TRANSFOR MA TIONS . -

C
C FUNCTIONS AND SUBROUTINES
C
C TESTPROB A TIMES ,HP P OD
C LSQR N OR ML Z
C FORTRAN COS ,FLOA T ,SIN
C

I N T E G E R  1 ,.1 , MN
A LFA ,RET A , COS , FL OAT , F OURP I , SIN ,T

REA L D,R ,X T R U E ,Y,Z

COMMON /LSCOMM/ D (i00),R(I00) ,XTRUE (100),Y (100) ,Z(100)
I’-,

C
C M A K E  TWO VECTORS OF NORM 1. 0 , FOR HOUSEHOLDER TRANSFORMATIONS
C --. 

FOURPI  = 4.0*1.141592
A LFA = F O U R P I / F L O A T ( M )
BETA = F O U P P I / F L O A T ( N )

C
DO 100 I = 1 , M

Y ( T )  = S I N ( F L O A T ( I ) * A L F A )
100 ~‘ONTTNUE- I  C

00 200 T=l ,N
Z (T) = COSfF’LOAT(T)*BFTA )

200 C O N T I N T Y F

— —~-- - - - - - -~~-—---  —------- - -
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C
CALL N O R M L Z ( Y ,Y,M ,ALF ’A
C A L L  NORMLZ ( Z ,Z,N ,T3ETA

C
C
C SET SINGULAR VALUES FOR DIAGONAL MATRIX 0
C

DO 300 I= 1, N
J = ( I - I -4 - NDUPLC ) /NDUPLC
P = J*N DUPLC
T = T/ FLOAT(N )
D ( I )  = T**NPOWER

V 300 CONTINUE
C

ACOND = D ( N ) / D ( 1 )
C
C
C SET SOLUTION XTRUE
C

DO 400 I=1,N
XTRUE (I) = N— I

400 CONTINUE
C
C
C COMPUTE RH S B
C

CALL A T I M E S (  XT PU E ,B,M ,N
IF ( M  .LE .  N ) RETURN

C
C
C FOR LEAST SQUARES , ADD RESIDUAL P
C

DO 500 T=1 , N
R U )  = 0 .0

500 C O N T I N U E
C

T = 1
MN = M-N
DO 600 I=1 , MN

3 = N+ I
R ( J )  = T * F L O A T ( I ) / F L O A T ( M )
T = - T

6 00 C O N T I N U E
C

CALL HPROD( R ,R ,Y,M
C

DO 700 T = 1, M
BlI) = B ( I )  + R ( I )

700 CONTINUE
C

- - CALL NORMLZ ( R ,R,M ,RNORM
RETURN

C
C END OF LSTP

END

— - --V — - ~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~ ~
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S U B R O U T I N E  T ES T(  M ,N ,ND U PL C ,NPOVJF’R

INTEGER M ,N ,NDUPLC ,NPOWFR
C
C E X A M P L E  D R I V E R  ROUTINE FOR TESTING LSOR
C

Tr~JTEGER TSTO P,ITNLIM ,J,NOUT
P E A L  B ( l @ 0 )  , P ( 100)  , U ( 1 0 0 )  , V ( l 0 0 )

1 W ( i O c l ) , X ( l 0 O )  , S E ( 1 0 0 )
2 A TOL , B TOL ,CON L I M , PNORM , A NO RM , ACOND

C
C
C GENERATE SPECIFIED TEST PROBLEM
C

C A L L  LS TP (  M ,N ,NDU PLC ,NPOWER ,B ,A COND ,RNORM
C

N O U T = 6
WR ITE (NOUT , 1000 ) NDUPLC ,NPOW E R ,ACOND ,PN ORM

C
C SET TOLERANCES FOR LSQP
C

ATOL = 1.OE— 10
BTOL = ATOL
C O N L I M  = i . O E + i O
I F  ( M  .GT . N) CONLIM = 1.OF+5
rTNLIM = 100

C
CALL LSQR ( M ,N ,M ,B ,P,U,V ,W ,X ,SE ,

~ ATOL ,BTOL ,CON L TM ,I TNLIM ,NOUT ,ISTOP ,RNORM ,AN ORM ,ACONP )

• C
C OUTPUT RESULTS
C

WRITE(NOUT , 20 00 )
WPITE(NOUT , 4300) (Cr ,X (T) , •1=1 ,N)
W R I T E ( N O UT , 3 0 0 0 )
W R I T E ( N O U T , 40 0 0 )  (J , SE ( J ) , J= 1 ,N )
RETURN

C
1000 F O R M A T ( I H 1

1 / 2811 LEAST—SQUARES TEST PROBLEM .
2 1/ 25 11 ~ INGUL ~~~ VALUE S REP E ATED , 13 , RH T I M E S . ,  OX ,
3 1511 POWER FACTOR = , 13
4 1/ 1111 C O N D ( A )  = , 1 PE 1 2 . 4 , 8X ,
5 11H N O R M ( P )  , 1P E 2 O . 10 )

2000 FORMAT (/// ~H SOLUTION)
3000 F’ORMAT(/ 1611 STANDARD ERRORS)
4000 FORMAT(5 (I7 , lPEi7.~~))

C E ND OF TEST
END

C
C EXAMPLE MA IN PROGRAM
C

CALL TE ST (  10 ,10 ,1 ,6
CALL TEST( 80,40 ,4,2
STOP
END
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APPENDIX B: OtYFPIf1’ FROM LSQR

The following listings illustrate the solution of two test problems
using the Fortran routines in Appendix A . The problems are:

P ( 1O , 10, 2 ,6) - an ill-conditioned compatible system Ax = b ,

P(80,40,4,2) - a reasonabl y well-conditioned least-squares problem ,
min~ Ax - b11 2

where problem P (ri ,n, -! , p)  is defined in section 8.1. The machine used was a
Burroughs B6700. The particular tolerances input to LSQR (namely ATOL =

BTOL = l.OE-lO) requested slightl y less than maximum attainable precision
for this machine.

The quantities output by subroutine LSQR each iteration are as follows.
They are expressed in terms of the current approximate solution vector
and the corresponding residual vector = b - Axk.

ITN The iteration number. For larger problems a line is printed

every tenth iteration .

X(1) The value of the first component of xk .
• NORM(R) The va lue of lr k I~

. This converges to zero if Ax = b is
compatible; otherwise to a positive l imit .

NOR~V 1(A.R) The value of II A
Trk IL This converges to zero in all cases.

C~~1PATIBLE A dimensionless quantity which should converge to zero
if and only if Ax = b is compatible. It is a product of
sines s1s2 . 8k which estimates lirk i! /IIbII.

INC~~1PATIBLE A dimensionless quantity which should converge to zero
if and on1y if the optimum residual r = b - Ax is nonzero .
It is an estimate of I I A Trk II / (Ikt!FIIrk II) .

NORM(A) A monotonically increasing estimate of II A I! ~~.

COND (A) A monotonically increasing estimate of cond(A ) = IA l !~I~A I I ~ .

V-t -
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