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Abstract

A method is given for solving Ax = b and
minlAx - bl, where the matrix A 1is large and sparse.
The method is based on the bidiagonalization procedure of
Golub and Kahan. It is analytically equivalent to the
method of conjugate gradients (CG) but possesses more favor-
able numerical properties. The Fortran implementation of
the method (subroutine LSQR) incorporates reliable stopping
criteria and provides estimates of various quantities includ-
ing standard errors for x and the condition number of A.
Numerical tests are described comparing LSQR with several
other CG algorithms. Further results for a large practical
problem illustrate the effect of pre-conditioning least-

squares problems using a sparse LU factorization of A.
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1. INTRODUCTION

A numerical method is presented here for computing a solution z to

either of the following problems:

Unsymmetric equations: solve Ax = b

Linear least squares: minimize ||Ax - Hl,

where A is a real matrix of dimensions m by n and b is a real vector. It
will usually be true that m > n and rank(4) = n, but these conditions are
not essential. The method, to be called algorithm LSQR, is similar in
style to the well-known method of conjugate gradients (CG) as applied to
the least-squares problem (Hestenes and Stiefel [11]). The matrix 4 is
used only to compute products of the form Av and A%u for various vectors v
and «. Hence 4 will normally be large and sparse or will be expressible
as a product of matrices that are sparse or have special structure. A
typical application is to the large least-squares problems arising from

analysis of variance.

CG-1like methods are iterative in nature. They are characterized by
their need for only a few vectors of working storage and by their
theoretical convergence within at most n iterations (if exact arithmetic
could be performed). In practice such methods may require far fewer or
far more than » iterations to reach an acceptable approximation to z. The
methods are most useful when A is well-conditioned and has many nearly
equal singular values. These properties occur naturally in many applica-
tions. In other cases it is often possible to divide the solution
procedure into a direct and an iterative part, such that the iterative
part has a better conditioned matrix for which CG-like methods will
converge more quickly. Some such transformation methods are considered

here.




Algorithm LSQR is based on the bidiagonalization procedure of Golub
and Kahan [10]. It generates a sequence of approximations {xk} such that
the residual norm HrkH2 decreases monotonically, where r, = b - Ax,.
Analytically the sequence {xk} is identical to the sequence generated by
the standard CG algorithm and by several other published algorithms. How-

ever, LSQR is shown by example to be numerically more reliable in various

circumstances than the other methods considered.

The Fortran implementation of LSQR is designed for practical applica-
tion. It incorporates reliable stopping criteria and provides the user
with computed estimates of the following quantities: =z, r =b - Az, ATr,

Hr"z, ll4ll 7, standard errors for z, and the condition number of 4.

1.1 Notation

Matrices will be denoted by 4, 3, ..., vectors by v, w, ..., and
scalars by a, B, ... . An exception is ¢ and s which will denote the
significant components of an elementary orthogonal matrix, such that
e® +8% = 1. For a vector v, o]l will always denote the Euclidean norm
||v[|2 = (vTw)¥. For a matrix A, |lA|| will usually mean the Frobenius norm,
HAHF = (Zafj)% and the condition number for an unsymmetric matrix 4 is
defined by cond(4) = |la|| ||4"]] where 4" denotes the pseudo-inverse of 4.

The relative precision of floating-point arithmetic will be €, the

smallest machine-representable number such that 7 + € > 1.
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2. MOTIVATION VIA THE LANCZOS PROCESS

In this section we review the symmetric Lanczos process [13] and its
use in solving symmetric linear equations Mx = b. Algorithm LSQR is then
derived by applying the Lanczos process to a particular symmetric system.
Although a more direct development is given in section 4, the present
derivation may remain useful for a future error analysis of LSQR, since
many of the rounding error properties of the Lanczos process are already
known (Paige [19]).

Given a symmetric matrix M and a starting vector b, the Lanczos process
is a method for generating a sequence of vectors {vi} and scalars {ai}, {Bi}
such that M is reduced to tridiagonal form. A reliable computational form

of the method is as follows: -

The Lanczos process (Reduction to tridiagonal form)

(a) B1v1 = by

(b) w. = Mv. - B.v.

1 1 % 2~1 (2 1)
- ¢ (4 ’ L
o, v, ¢ =72,
o ), - 2 « Vs
B‘L+'I ?‘L+1 w‘l, az v‘L

where v = 0 and each B, > 0 is chosen so that il vi|| =1 (i > 0). Prior to

termination at the first zero B.

i41? the situation after k steps is summarized

=
Wk Vka + Bk 1vk 1ekI (2.2)

where Ty = tridiag(Bi, o, ) and Vi = [v1 '”2""'”1(]' If exact arith-

Bi+1
metic is used then VkTVk = J and so Bi+1 must vanish for 7 = n, if not

before, but in any event equation (2.2) holds to within machine precision.

RPN - ) 5 i N T
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Now suppose we wish to solve the symmetric system Mz = b. Multiplying
(2.2) by an arbitrary k-vector Y whose last element is Ny, gives Mkak =
Vkayk + Bk+1”k+1”k‘ Since Vk(81e1) = b by definition, it follows that if

y; and x;, are defined by the equations

Tkyk = 8191 (2.3)

x, = Vi (2.4)

then we shall have Mxk =p + ”k8k+1”k+1 to working accuracy. Hence x;, may

be taken as the exact solution to a perturbed system, and will solve the

original system whenever nk6k+1 is negligibly small.

The above arguments are not complete, but they provide at least some
motivation for defining the sequence of vectors {wk} according to equations
(2.3) and (2.4). It is now possible to derive several iterative algorithms
for solving Mr = b, each characterized by the manner in which Yy is
eliminated from (2.3) and (2.4) (since it is not practical to compute each
Y explicitly). In particular, the method of conjugate gradients is known
to be equivalent to using the Cholesky factorization " LkaLkT and is
reliable when M (and hence Tk) is positive definite, while algorithm SYMMLQ
employs the orthogonal factorization T ™ Zka to retain stability for
arbitrary symmetric M. (See Paige and Saunders [21] for further details of

these methods.)

We now turn to a particular symmetric (but indefinite) system, namely
r
= (2.5
T & )

which is well known to solve the least-squares problem,min {|Ax - b||, for

arbitrary 4 and b. If the Lanczos process is applied to the partitioned

et e o L GEEERNNT L ML L
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matrix and rhs vector in (2.5), the recurrence relations (2.1) simplify

to give one of the bidiagonaliz. ion procedures to be discussed in the next

section. Purthermore, after 2k+1 iterations the tridiagonal system corres-

ponding to (2.3) has the form

i a1 11
@, 0 B, n
82 1 a, T,
it o 0 B n o
T2k+1y2k+1 = 2 3 2 | = B1e‘I (2.6)
B B B Nk
8k+1 1 ka1
po | o

following appropriate change in notation.

System (2.6) is indefinite and could be dealt with as in algorithm

SYMMLQ, i.e., using the orthogonal factorization Tors1 = Lors19%4r-

However, this factorization proves to be essentially the same as for a
general tridiagonal matrix without any convenient simplification. Thus a

specialized form of SYMMLQ could capitalize on the simplified form of the

Lanczos process, but it would not take full advantage of the structure

inherent in (2.6).

Instead we observe that a simple symmetric permutation of (2.6) gives

an equivalent system of the form

I Byl B.ey
BT = (2.7)
X Y 0
e '-‘\3” P . - ﬂ..‘




where B, = bidiag(Bi,aiJ is a lower bidiagonal matrix of order k+1 by k.
Comparing (2.7) with (2.5) immediately reveals another least-squares
problem, min ”Bkyk - B1e1H. This does have a convenient structure and can

be solved reliably using an orthogonal factorization of B,, as in the

]{7
least-squares algorithm of Golub [9].

To summarize: an application of the Lanczos process to the problem
min ||Az - b|| leads to a series of subproblems min 1By, - 8,1l which can
be effectively dealt with using a conventional QR factorization of B,. This

observation forms the basis for algorithm LSQR.

i




3. THE BIDIAGONALIZATION PROCEDURES

In the previous section it was noted that the recurrence relations
(2.1) simplify when the Lanczos process is applied to the least-squares
system (2.5). (In fact both Vk and Tk have special structure.) The result
is one form of the bidiagonaiization procedure of Golub and Kahan [10]. For
future reference we shall state the proccdurg in two different forms and
give some unexpected relationships between the forms. It will then be
possible to derive algorithm LSQR directly and relate it to various other

algorithms that have been proposed.

For brevity we shall call the procedures Bidiag 1 and 2. The notation

used emphasizes the connections between them.

/

Bidiag 1 (Starting vector b; reduction to lower bidiagonal form)

(a) B,u, =b oV, = ATu

171 2 /5% it
i ) (3.1)
) Bypidpsn = A0y = aguy v
T % &l Ty e
%ar"ier T A Ui T Braa¥s

The scalars a, > 0 and B, 2 0 are chosen so that |ju,|| = [lv,|| = 7. With

the definitions

& s B 9
Uk = [u1,u2,...,uk] " Bk = | o,
Ve B LD D vy ] B2 %y
e |l bl e A
B3
g
Bk+1
L 4

(where B, is the rectangular matrix introduced in section 2), the recurrence
k




relations (3.1) may be rewritten as

Upeq(B,8,) = b . (3.2)

AVy = Uy By 2 (3.3)

ATUk+1 T VkBkT i ak+1”k+1ek+1T * (3.4)

If exact arithmetic were used then we would also have Uk+1TUk+1 = T and

VkTVk = I, but in any event the above equations hold to within machine

precision.

Bidiag 2 (Starting vector ATb; reduction to r bidiagonal form)
2141ag < uppe

(a) 91v1 = 4% 3 P, = AV,
() 0;,105,, = 4Py - 0;0; - | (3.5)
208 L, G5 e
PiviPier = AP0y~ B544Pg
Again, p. > 0 and 6, 2 0 are chosen so that "pi” = ”vill = 1. In this
case, if
P, = [p1,p2,...,pk] s By = —51 6, ; e
Vk = [v1,v2,...,vk] & P, e3
>
Pr-1 O
| -
we may rewrite (3.5) as
Ve(0e) =4b (3.6)
AV, = PR, (3.7)
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L o T T
AP = Vil * O iVt (3.8)

and with exact arithmetic we would also have PkTPk = VkTVk R

Bidiag 2 is the procedure originally given by Golub and Kahan (with
the particular starting vector ATb). Either procedure may be derived from

the other by choosing the appropriate starting vector and interchanging A

and AT.

3.1 Relationship between the bidiagonalizations

The principal connection between the two bidiagonalization procedures
is that the matrices v, are the same for each, and that the identity
B, %, = Ry'R, : (3.9)
holds. This follows from the fact that v, is the same in both cases and Yy
is mathematically the result of applying k steps of the Lanczos process
(2.2) with M = ATA. The rather surprising conclusion is that Ry, must be
identical to the matrix that would be obtained from the conventional QR .

factorization of B,. Thus

QB = ) (3.10)

where 9 is orthogonal. In the presence of rounding errors these identities
will of course cease to hold. However, they throw light on the advantages

of algorithm LSQR over two earlier methods, LSCG and LSLQ, as discussed in

section 7.4.

The relationship between the orthonormal matrices Uy and P, can be

shown to be
r

- = —.’.‘.—
Upar = [0y up,) Ek ll"kll] X (3.11)

A A 1 i
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for some vector - We also have the identities

2 2 2 -
@y + B, =0, > @B, = 8,
2 - S 2 & ’
a; + 61:"_1 p; o+ ei 5 aiei p{_iei for i > 1,

(.17}
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4. ALGORITHM LSQR

The quantities generated from 4 and b by Bidiag 1 will now be used
to solve the least-squares problem, min ||b - Az .

Let the quantities

xk = 'kak (4.1)
r, = b - Axk (4.2)
trer = 848y - By (4.3)

be defined in terms of some vector Yi It readily follows from (3.2)

and (3.3) that the equation
w Th Uk+1tk+1 (4.4)

holds to working accuracy. If the colums of Upyq Were exactly orthogonal
we would have ||m |l = |t .|, which immediately suggests choosing Yy to

minimize ”tkn” . Hence we are led naturally to the least-squares problem

min ||g.e. - Bkyk" (4.5)
Yy, :

which forms the basis for LSQR.

Computationally it is advantageous to solve (4.5) using the standard
QR factorization of B, (Golub [9]), i.e. the same factorization (3.10)

that links the two bidiagonalizations. This takes the form

] (4.6)

A St i
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where Q = Qk,k+1"‘Q2,3Q1,2 is a product of plane rotations (e.g.

Wilkinson [27]) designed to eliminate the subdiagonals B,s Bys +.. of B, .
The vectors Yy and L could then be found from
By = fk s (4.7)
0
”
™ Tk G SN 4.5)
_¢k+1

However, Y in (4.7) will normally have no elements in common with Y
Instead we note that (R, fi 1 is the same as (R, . f;_,] with a new row

and column added. Hence, one way of combining (4.1) and (4.7) efficiently

is according to

"

2, = ViR T = Dufy (4.9) )

where the colums of b, =1ld, d, ... ;) can be found successively from

the system 1?kTDk'r = VkT by forward substitution. With do =z =0 this

gives
d » L (v, - 0,4 ) (4.10)
k ok 'k TkTk-1 . :
Ty =Xy .+ 0 d (4.11)

’

and only the most recent iterates need be saved. The broad outline of

algorithm LSQR is now complete.

4 A ety N
P b A M i o i S S b AT
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4.1 Recurrence relations

The QR factorization (4.6) is determined by constructing the k-th
plane rotation Qk few.a to operate on rows k and k+1 of the transformed

(B, B.e,] to annihilate 8k+1' This gives the following simple recurrence

relation:

= 23 2 (4.12)
% "% Bk+1 %41 é 0 Pre+1 ¢k+1

where 31 = a,, $1 z 8,, and the scalars Cy and 8; are the nontrivial
elements of @ PO The quantities Bka are intermediate scalars that
>

are subsequently replaced by Pres P

The rotations @ x4, are discarded as soon as they have been used in
(4.12), since @, itself is not required. We see that negligible work is

involved in computing the QR factorization to obtain Rys fi and $k 1

Some of the work in (4.10) can be eliminated by using vectors
wy, = pkdk in place of dk' The main steps of LSQR can now be summarized
as follows. (As usual the scalars a, 2 0 and B; 2 0 are chosen to normalize
the corresponding vectors; for example, av, = Al'ru1 implies the computa-

e T - -
tions v, = A%, a, = |lv,ll, v, = (1/a,)v..)
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Algorithm LSQR
1. (Initialize.)
B1u1 =bh , a,v, = ATy1 - e =0 5, - O
3, =B, 51 -a,

2. Fori=1,2,3,... repeat steps 3-6.

3. (Continue the bidiagonalization.)

@) By, 4y = AV; - o,
. .
(b) % e1Vi41 A Uie Pi41Ys

(8) p. ot e, BN

(b) e, =p0./p;

1 1 1
(€) &; =8;,,70;
) 6, = 8;0,,,
@) Py = -c;0.,
) ¢, =c.0,
® 9340 = 89

5. (Update z,w.)
@) zp==x , * (0, /00,

() Wy = vy = (05,7000,

6. (Test for convergence.)

Exit if some stopping criteria (yet to be discussed) have been met.

: e oS, SRS
- e e At -
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5. ESTIMATION OF NORMS

Here we show that estimates of the quantities ||rk|| . HATrkII | ||xk|| ;
[4]] and cond(4) can be obtained at minimal cost from items already required

by LSQR. All five quantities will be used later to formulate stopping rules.

knowledge of ||4|| and perhaps cond(4) can also provide useful debugging
information. For example, a user must define his matrix 4 by providing two
subroutines to compute products of the form Av and A"u. These subroutines
will typically use data derived from earlier computations, and may employ
rather complex data structures in order to take advantage of the sparsity
of 4. If the estimates of ||4]| and/or cond(4) prove to be unexpectedly high
or low then at least one of the subroutines is likely to be incorrect. As
a rule of thumb we recommend that all columns of 4 be scaled to have unit
length (”AeJ.H =1, 4j=1, ..., n), since this usually removes some
unnecessary ill-conditioning from the problem. Under these circumstances,
a programming error should be suspected if the estimate of ||4|| differs by a
significant factor from nJ’ (since the particular norm estimated will be
llall) -

For the purposes of estimating norms we shall often assume that the
orthogonality relations UkTUk = J and VkTVk = I hold, and that

||U;,||2 = || V,(||2 = 1. In actual computations these are rarely true, but the

resulting estimates have proved to be remarkably reliable.

5.1 Estimates of [ir,||_and [|4™r, |

From (4.4) and (4.8) we have
r,o= 8, .Uy @y e (5.1)
k k41 k+1%k “k+1 -

(which explains the use of r, in (3.11)) and hence by assuming l/kHTU,“_1 =/

we obtain the estimate
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el = Oppy = BiSkBhoq---8, (5.2)

where the form of $k+1 follows from (4.12). LSQR is unusual in not
having the residual vector r, explicitly present, but we see that HrkH

is available essentially free. Clearly the product of sines in (5.2)

decreases monotonically. It should converge to zero if the system Az = b

is compatible. Otherwise it will converge to a positive finite limit.

For least-squares problems a more important quantity is ATrk, which

would be zero at the final iteration if exact arithmetic were performed.

From (5.1), (3.4) and (4.6) we have

A T Ty, T
Ary = O (B O Phin®har V% ke

% T e

i $k+1Vk[Rk o]ek+1 AR W C L0 L
The first term vanishes and it is easily seen that the (k+1)th diagonal
of 9 is -¢;. Hence we have

ATr

k™ (O 1% Vi 2} ‘
and

s 2
ll4 rk” e $k+1ak+1|ck| (5.4)

to working accuracy. No orthogonality assumptions are needed here.

5.2 An estimate of |l |l _

The upper bidiagonal matrix R; may be reduced to lower bidiagonal

form by the orthogonal factorization

=
R

Ek (5.5)

where @, is a suitable product of plane rotations. Defining Ek by the

system

ikzk = f} . (5.6)




|
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it follows that z, = (Vkﬁé.bfk = (Vkézr)ik = W%Ek . Hence, under the
assumption that VkTVk = ] we can obtain the estimate

=gl = 5l - (5.7)
Note that the leading parts of Zk, %> W% and Ek do not change after

iteration k. Hence we find that estimating kaH via (5.5)-(5.7) costs only

13 multiplications per iteration, which is negligible for large n.

5.3 Estimation of HAHF and cond(A)

It is clear from (3.1) that all the v, lie in the range of AT and are
therefore orthogonal to the null space of 4 and ATA. With appropriate

orthogonality assumptions we have from (3.3) that

B, B, = V ATAV,
and so from the Courant-Fischer minimax theorem the eigenvalues of BkTBk
are interlaced by those of 4"4 and are bounded above and below by the
largest and smallest nonzero eigenvalues of ATA. The same can therefore
be said of the singular values of By, compared with those of 4. It follows

that for the 2- and F-norms,

I8l < flal | (5.8)

where equality will be obtained in the 2-norm for some k < rank(4) if b
is not orthogonal to the left-hand singular vector of A corresponding to
its largest singular value. Equality will only be obtained for the F-norm
if » contains components of all left-hand singular vectors of A corres-
ponding to nonzero singular values. Nevertheless we will use ”Bk"p as a
monotonically increasing estimate of the size of A.

The foregoing also implies that Béer = RkTRk is nonsingular and for

the 2- and F-norms




19

-1 + +
17 | P | I (VA T (5.9)
The remarks on equality are the same, except now ''largest singular value'

1s replaced by "'smallest nonzero singular value'.

Combining these results with the definition B = VkRk-1in (4.9) now

gives

1 < 1Bl llogll < llall 14"]| = cond(a) (5.10)

for the 2- and F-norms. Hence we take ”Bk”F“Dk”F as a monotonically
increasing estimate of cond(4), which starts at the optimistic estimate

I8, 1, 1, = 7.

Use of Frobenius norms allows the estimates to be accumulated

: 2 2 2 2 2 2 2
cheaply, since [|B,||.“ = [|8,_,Il," + ag + By and (o7 = D, _Lll7 + lla Il”.
n
The individual terms in the sum ||dk||2 . % Giéz can be used further for

1%

estimating standard errors, as we show next.

5.4 Standard errors

In regression problems with m > n = rank(4) the standard error in

the i-th component of the true solution z is taken to be s; where

2
o) 3 |~I-P——'—'—qgil-o..
i m-n **

(5.11)

and 0, = eiT(ATA)-1ei is the 7-th diagonal element of (A"4)"'. Now from

(3.3) and (3.10) we have v,"a"av, = R, "R, which with (4.9) gives

% P
Dy ATADy, = T

Assuming that premature termination does not occur, it follows that with

1

exact arithmetic DnDnT = (A"2)"", and we can approximate the o, . by

MR L TOT-un) s P aresN
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(k)

and the 9 are monotonically increasing estimates of the O

(k) for each 7, and

In the implementation of LSQR we accumulate ey
upon termination at iteration k we set 7 = max(m-n,1) and output the square

roots of

2
2 W amll” g
b ¢ 1 11 i
as estimates of the s in (5.11). The accuracy of these estimates cannot
be guaranteed, especially if termination occurs early for some reason.

However, we have obtained one reassuring comparison with the statistical

package GLIM (Nelder [171).

On a moderately ill-conditioned problem of dimensions 171 by 38,
(cond(A) = 703, relative machine precision = 10'11),an accurate solution

x, was obtained after 69 iterations, and at this stage all si(k)

agreed to
at least one digit with the s, output by GLIM, and many components agreed

more closely.

A further comparison was obtained from the 1033 by 434 gravity-meter
problem discussed in section 10.3. For this problem a sparse QR factoriza-
tion was constructed, @4 = [jgf] , and the quantities 0,; were computed
accurately using Hmvi =e,, Gy = Huiﬂz. Again the estimates of si(k)
from LSQR proved to be accurate toat least one significant figure, and the
larger values were accurate to three or more digits.

Note that siz estimates the variance of the 7-th component of x, and
(k)2

that 8; approximates this variance estimate. In an analogous manner we

could approximate certain covariance estimates by accumulating
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(k) O”(k—1) + 8.8 fn)

07:.]. = i ik ,;k ~ Oi,] =) ’

for any specific pairs (¢,j), and then computing
2
b - Az ™ )
L 1j

on termination. This facility has not been implemented in LSQR and we have
not investigated the accuracy of such approximations. Clearly only a limited

number of pairs (Z,j) could be dealt with efficiently on large problems.

# - 4 Y
2, 1




22

} 6. STOPPING CRITERIA

An iterative algorithm must include rules for deciding whether the

b current iterate x, is an acceptable approximation to theAtrue solution z.
Here we shall formulate stopping rules in terms of three dimensionless
quantities ATOL, BTOL and CONLIM, which the user will be required to
specify. The first two rules apply to compatible and incompatible systems

respectively. The third rule applies to both. They are:

S1:  Stop if [l < BTOL|[B|| + ATOL|[A]| [l,]l -
1477
{ $2: Stop if ———=—- = AIOL
' llall e |
S3:  Stop if cond(4) = CONLIM . /

We can implement these rules efficiently using the estimates of [lr, ||, el

etc., already described.

The criteria S1 and S2 are based on allowable perturbations in the
data. The user may therefore set ATOL and BTOL according to the- accuracy
. of the data. For example, if (4,b) is the given data and (Z,E) represents

the (unknown) true values, then
- ATOL = ||4 - 4| /(4|
should be used if an estimate of this is available. Similarly for BTOL.

Criteria S3 represents an attempt to regularize ill-conditioned

1 systems.
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6.1 Compatible systems

To justify S1, let iy b - Az, as usual, and define the quantities

8, = BiOL|p|| + ATOL||A]| [kall h

k
, Yk
i"k
hy, = ATOL{A]} [iz, | B

Then r), = g, + hy,, and

T
A + hkxkﬂ~ z;, = b -
T k T

.Tk .’Ck

so that x; is the exact solution for a system with both 4 and b perturbed.
It can be seen that these perturbations are within their allowable bounds
when the inequality in S1 holds. Hence, criterion S1 is consistent with
the ideas of backward rounding error analysis and with knowledge of data
accuracy. Since this argument does not depend on orthogonality, S1 can be .

used in any method for solving compatible linear systems.

6.2 Incompatible systems

Stewart [25] has observed that if

I'k = b o Axk
and ry - b - (4% Ek)xk
T
rr, A
where E, - - M
2
I

then (A + Ek)Tik = (0, so that x and ;k are the exact solution and residual
for a system with 4 perturbed. Since IIEkll2 = ”ATTk” / Hrkﬂ, the perturbation

to 4 will be negligible if the test in S2 is satisfied.
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In our particular method it happens that Ekm = 9, since (5.3) shows

k
V4, is theoretically orthogonal to ATrk. Hence ;k = 1, SO

i

that x,
both and r, are exact for the perturbed system. This strengthens the

{ case for using rule SZ2.

In practice we find that HATrkH / Hrk” can vary rather dramatically
with k, but it does tend to stabilize for large k, and the stability is
more apparent for LSQR than for the standard method of conjugate gradients
(see HAT}kH in Figures 3 and 4, section 8). Criterion 52 issufficient to
ensure that x; is an acceptable solution to the least-squares problem, but
L the existence of an easily computable test that is both sufficient and

g necessary remains an open question (Stewart [25]).

6.3 Ill-conditioned systems

Stopping rule S3 is a heuristic based on the following afguments.
Suppose that A has singular values 0,20,2... 20 >0. It has been
observed in some problems that as k increases the estimate “Bk”F”Dk”F &
cond(4) in (5.10) temporarily levels off near some of the values of the
ordered sequence 01/0,, 01/02, ey 01/0n, with varying numbers of itera-
tions near each level. This tends to happen when the smaller o, are very
close together, and therefore suggests criterion S3 as a means of
regularizing such problems when they are very ill-conditioned, as in the
discretization of ill-posed problems (e.g. Nashed [16]).

For example, if the singular values of 4 were known to be of order

3 -6 7

1, 0.9, 1077, 1077, 10”", the effect of the two smallest singular values

could probably be suppressed by setting CONLIM = 10%.

A more direct interpretation of rule S3 can be obtained from the fact

that z; = Dkfk' First, suppose that the singular value decomposition of A

- f BT ) Y
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is 4 = uxv" where v = V'v = w" = 1, 1 = diag(0,,0,,...,0 ), and let
A(r) & UZ(r)VT
be defined by setting B i ¥ oan W0 N 0. A common method for regularizing

(r) = VE(r)+ P

the least-squares problem is to compute x U"b for some r < n,

)

since it can readily be shown that the size of x(r is bounded according to

(r)
hall, 1= e,

S Pe——

= ),
l|2|| r

cond (4

[R1]

In the case of LSQR, we have ||z || < o lllIE]l and so if rule S3 has
not yet caused termination we know that “Bk”F”xk” / |Ip|| < “Bk”F”Dk”F < CONLIM.

Since ||B ||, usually increases to order “A“F quite early, we effectively have
4l Nl

121l

which is exactly analogous to the bound above.

CONLIM ,

6.4 Singular systems

It is sometimes the case that rank(4) < n. Known dependencies can
often be eliminated in advance, but others may remain if only through errors

in the data or in formulation of the problem.

With conventional (direct) methods it is usually possible to detect
rank deficiency and to advise the user that dependencies exist. In the
present context it is more difficult to provide such useful information,
but we recognise the need for a method that at least does not fail when
applied (perhaps unknowingly) to a singular system. In such cases we again
suggest the parameter CONLIM as a device for controlling the computation.
Our experience with LSQR on singular problems is that convergence to an

acceptable solution occurs normally, but if iterations are allowed to
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continue the computed x;, will begin to change again and then grow quite
rapidly until
lall =, |
2]

1 (6.1)

[3

(while ”rk” remains of reasonable size). The estimate of cond(4) typically
grows large before the growth in T A moderate value of CONLIM (say I/ng

may therefore cause termination at a useful solution.

In some cases it can be useful to set CONLIM as large as 1/¢ and allow
x; to diverge. In this context we note that the algorithm SYMMLQ [21] can
be applied to singular symmetric systems and that extreme growth in the
resulting ||z, || forms an essential part of a practical method for computing
eigenvectors of large symmetric matrices (Lewis [15]). By analogy, in the
presence of rounding errors LSQR will usually produce an approximate singular

vector of the matrix A. In fact, using (6.1) and “”k” < |b|| we see that the

normalized vector x, = x, / kaH will usually satisfy
£E, = (b - ry)
Ml
llAll
s~—e(b = »,)
Izl k
= 0(¢)||A||

for large enough ¥, and hence will lie very nearly in the null space of A.
The vector Ek may reveal to the user where certain unexpected dependencies
exist. Suitable new rows could then be added to 4, or certain linear con-

straints could be applied directly, as described in section 9.4.

Vi
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7. OTHER METHODS

Several other conjugate-gradient methods are discussed here. All
except the first (CGLS) are stated using notation consistent with sections

3-6, in order to illustrate certain analytic identities.

7.1 CGLS

If the conjugate-gradient method for symmetric positive definite
systems is applied naively to the normal equations ore ATb, the method
does not perform well on ill-conditioned systems. To a large extent this
is due to the explicit use of vectors of the form ATApi. An algorithm
with better numerical properties is easily derived by a slight algebraic
rearrangement, making use of the intermediate vector Ap; (e.g. Hestenes
and Stiefel (11]). It is usually stated in notation similar to the

following.

Algorithm CGLS

T 2
1. Set 7’0=b, 30=Ab’ P1=809 Y0=“80” » xO=0.

2. For 7 =1,2,5... repeat the following:

@ q;=4p,

® =y, / lag?
(c) B "y .t aibi
@ rpery, -0
(e) 8; = ATri

B v = el

(g) 81: = /Yi-‘l

() Pyyy = 8g * Bypy
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A practical implementation of the method would also need to compute
lle:ll, llz;|l and an estimate of [|4]| in order to use the stopping criteria
developed in section 6. Otherwise the method is clearly simple and
economical. Analytically it generates the same points z, as LSQR. There
is no simple connection with either of the bidiagonalizat;ons, but the

vectors V4 and di in LSQR are proportional to 8; and P; respectively.

7.2 Craig's method for Az = b

A very simple method is known for solving compatible systems Ax = b.
This is Craig's method, as described in Faddeev and Faddeeva [7]. It is
derivable from Bidiag 1 as shown by Paige [18] and differs from all other
methods discussed here by minimizing the error norm ka - z|| at each step,
rather than the residual norm ||b - Axk” = |latz, - z)||. We review the

derivation briefly.

If Lk is the first k rows of Bk ’

i By %

—

then equations (3.3) - (3.4) describing Bidiag 1 may be restated as

AV ® Uhe® B it Be® 5
k= %k T PrertMre®i 7.1)

A Uk - VkLk

.} ad
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Craig's method is defined by the equations
Lkzk = 8121 ¢ x, = szk 5 (7.2)

and we can show from (7.1) that the residual vector satisfies
~ £y e
r = b - Aszk = 'Ck8k+1uk+1 and hence Uy r, 0 . We can therefore

expect r, to vanish (analytically) for some k < =.

The vectors 3 and z, are readily computed from

K
G = IR s Tt T 9%

where % = -1. Since the increments v form an orthogonal set there is no
danger of cancellation, and the step-lengths ¢, are bounded by lg, | < szH =
kaH < |lzll. We can therefore expect the method to possess good numerical

properties. This is confirmed by the comparison in section 8.

7.3 Extension of Craig's method

A scheme for extending Craig's method to least-squares problems was
suggested by Paige in [18]. The vectors in (7.2) were retained and an
additional vector of the form Vi, was computed in paraliel. On terminafion,

a suitable scalar Y, Was computed and the final solution taken to be
x, = (szk) - Yk(kak) = kak : : (7.3)

In the present context this method may be interpreted as a means of solving

the least-squares system (2.7), viz.

Bk tk+1 B1e1
= (7.4)
k Y 0 '

using the fact that the underdetermined system Bthk+1 = (0 has a unique
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solution apart from a scalar multiple. Thus if we partition BkT and trs

T _ (- I — ¥ 1
Bk:l“ﬁ el * B ¥V 5

for some Vg0 the system Iyt = -a.e

1

according to

, can be solved casily by forward sub-

stitution, and then from the top half of (7.4) we obtain the required

equations

M1

—t— ) Yk - Bk+1ck/(8k+1mk - ?k) .
k-1

Ilkwk =

using straightforward notation. The first equation indicates that w,, can
be computed by forward substitution, thus allowing Vi, to be accumulated
as the algorithm progresses. The second shows how Y, can be computed at

each step (if desired) and at the final iteration for use in (7.3).

In the original presentation of this method the danger of cancellation.

in (7.3) was recognized, in the event that szk and kak”k were large and
nearly equal. When the system A2 = b is compatible the danger does not

exist because each vector Vi is the same as in Craig's method and remains

of reasonable size. We have observed in practice that HwkH actually

diverges with increaging k, but the scalars Y; converge to zero at a
greater rate. The points Xy, = V2 - P if computed, are at all
stages identical to those produced by LSQR, and for sufficiently large k

are computationally just x, = szk'

When b does not lie in the range of A we find that severe cancellation
can occur, with the y, stabilizing at a moderate value but szH andlh%“
both diverging. For this reason the extension of Craig's method must be

discarded.

e
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Note that the divergence of szH in these circumstances shows that Ly
in (7.2) can be much more ill-conditioned than 4. If Bidiag 1 is used as
in [17] to estimate the singular values of 4, it is the singular values of

Hk rather than Lk that are relevant.

7.4 LSCG and LSIQ

A second algorithm for least-squares problems was given by Paige [18].
This is algorithm LSCG, based on Bidiag 2. In the notation of section 3 it

1s defined by the equations
R, "Ry, = © =y (7.5)
R R T T ik :

and implemented in the form Rk?fk = e1e1 y Ty = (VkR;1)fk . Given the
relations between the two bidiagonalizations we now recognize that this is
analytically equivalent to LSQR, but numerically inferior, since it is
effectively solving the least-squares problem mh1HBkyk - B,e,ll by using the
corresponding normal equations. (The latter are BkTBkyk = BkT81e1 = aB.e

and by (3.9) and (3.12) this is equivalent to (7.5a).)

Algorithm LSIQ (Paige and Saunders [20]) is a refinement of LSCG, but
again it is based on Bidiag 2 and the above normal equations and is there-
fore inferior to LSQR on ill-conditioned problems. The refinement has been
described in section (5.2), giving Xy, = kEk where Wk is theoretically
orthonormal , the intention being to avoid any possible cancellation that
could occur in accumulating z, = Dpfy = (VkR;1)f} . The same refinement
can easily be made to LSQR, and it was implemented in an earlier version of
the algorithm for the same reason. However, we have not been able to detect
any numerical difference between x, = F%Ek and z, = Dkfk in the two versions

of LSQR, so the fear of cancellation appears to have been unfounded. We

SC—
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have therefore retained the slightly more economical z, = Dkfk’ which also

allows cond(A4) to be estimated from HDk as already described.

7

Algorithms LSCG and LSLQ need not be considered further.

7.5 Chen's algorithm RRLS

Another algorithm based on Bidiag 2 has been described by Chen [4].

This is algorithm RRLS, and it combines Bidiag 2 with the so-called residual-
reducing method of Householder [12]. In the notation of section 3 it may be *

described as follows. The residual-reducing property is implicit in steps

2(b) and 2(c). ’
Algorithm RRLS 4
l ]
" - & ¢
1. Set b, 61v1 = A'D, Wy, =V, X 0

2. For < =1,2,3,... repeat the following:

(a) PPy = Ay
[P
(b) A, " %y
(c) e ™ Toan = NPy :

- 2
) 8,954 = APy = 90, '

(e) TR T (Ai /pi)”i
(5) Wy, v - O, /o
where the scalars p; and 6, are chosen so that HpiH = HviH - P,

As with CGLS, a practical implementation would also require HriH and

2

k
2
llz;ll. The square root of the sum 3 (0 + 0,

i=1
used to estimate ”A”F and HATriH can also be estimated cheaply.

2 2
) = IR Jl"= 1B, ll;° could be

Note that the vectors v; are generated as in Bidiag 2, but the vectors

p; come instead from step 2(a). Substituting the latter into step 2(d)
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shows that RRLS requires explicit computation of the vectors ATAwi
(ignoring normalization by p;). Unfortunately this must cast doubt on the
numerical properties of the method, particularly when applied to compatible
systems. Indeed we find that for some systems Az = b, the final norms ||r.||
and Hxi - z|| are larger, by a factor approaching cond(4), than those

obtained by CGLS and LSQR. This is illustrated in section 8.3.

A second algorithm called RRLSL has been described by Chen [4] in
which the residual-reducing method is combined with Bidiag 1. However, the
starting vector used is 4A4'b (rather than b), and products of the form ATAwi
are again required, so that improved performance seems unlikely. Chen

reports that RRLS and RRLSL behaved similarly in all test cases tried.

In spite of the above comments we have also observed ill-conditioned
least-squares problems for which RRLS obtains far greater accuracy than
would normally be expected of any method (see section 8.4 for a possible
explanation). Because of this unusual behavior we have investigated a

residual-reducing version of LSQR as now described.

7.6  RRLSQR

If the residual vector r; is explicitly introduced, algorithm LSQR as
summarized in section 4.1 can be modified slightly. First, the residual-

reducing approach requires step 5(a) to be replaced by the two steps

P, % p, - XD , o, + AW,
1 Pia1 iPi g -1 . Al A

- R 2 . : .
where p. = Ao, and A, = Py P /“pi“ - (In this case p. is unnormalized.)
Second, the product Aw; can be used to eliminate Av, from Bidiag 1, leading

to an alternative method

2 Pi

Brarieyy = Ay - 17z 1l Piaa (7.6)
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for generating each B, and U (This result is difficult to derive, but

the key relation is p, /“pi” = e /“ri-1” + s.u

5 ; , which may be

1+1

deduced from (3.11).)

The remainder of LSQR is retained, including the QR factorization of

Bk' The coefficient of in (7.6) can be expressed in several ways;
for example
‘{_j‘ —6- 1 oL (’.1(12...(1.
P SR = = O e l
Hri_1“ o; i BBy Bg

where 7. comes from the system Lz, = B.e, of Craig's method. Different
formulae lead to different iteration paths but no variation appears to be

consistently better than the rest.

A summary of the resulting algorithm follows.

Algorithm RRLSQR

& o b, B.u =D, a0 =AY

$, =8 p, = a

2. Pori=1,2,3 ... vepeat steps 3-6.

3. (a) p; = Aw;
(b) A = ot gl
(c) " Yot NPy
(D) Bypqigyy = Py = P /07y,
(@) ay, vy = ATuy, - By

4, Compute Pps Cps By» ei as in section 4.1, step 4.

+1° Pisr? ¢12+1

5. (&) @ = w0,
)  wg,, = Vg = (84, /Pgluy

6. Exit if appropriate.

-

g
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This adaption of Bidiag 1 to obtain RRLSQR is analogous to (and was
motivated by) Chen's adaption of Bidiag 2 to obtain RRLS. Note however that
there are no products of the form ATAwi. In practice we find that RRLSQR
typically performs at least as well as LSQR, as measured by the limiting

Hxi - z|| attainable. Furthermore, it attains the same unusually high
accuracy achieved by RRLS on certain ill conditioned least-squares problems.
On these grounds RRLSQR could sometimes be the preferred method. However,
1ts work and storage requirements are significantly higher than for the

other methods considered.

7.7 Storage and work

The storage and work requirements for the most promising algorithms
are summarized below. Recall that A is m by »n and that for least-squares
problems m may be considerably larger than n. Craig's method is applicable

only to compatible systems Ax = b, which usually means m = n.

Storage Kork
m n m n
Craig
(Az = b only) u, Av 2, v 3. 4
CGLS r, q &y Dy 8 2 '8
LSQR u, Av Ty V; W 3 &
RRLS r, p x, v, v, Ap g 5
RRLSOR Py s P T, Uy 0 6 6

All methods require the starting vector b. If necessary this may be
overwritten by the first m-vector shown (r or u). The m-vector Av shown

for Craig and LSQR represents working storage to hold products of the
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form Av and A" u. (An n-vector would be needed if m < n.) In some applica-
tions this could be dispensed with if the bidiagonalization operations

Av - au and A"u - Bv were implemented to overwrite u and v respectively.
Similarly the n-vector ATp for RRLS could in some cases be computed without

extra storage.

The work shown for each method is the number of multiplications per
iteration. For example, LSQR requires 3m + 5n multiplications. (A further
2n multiplications are needed to accumnulate estimates of cond(4) and
standard errors for z.) Practical implementations of CGLS and RRLS would

require a further m + » muitiplications to compute H,}

and HxiH for use in
stopping rules, although this could be limited to every tenth iteration,

say, without serious consequence.

All methods require one product Av and one product AT each iteration.

This could dominate the work requirements in some applications.




37

8. NUMERICAL COMPARISONS

Here we compare LSQR numerically with four of the methods discussed
in section 7, denoted by CRAIG, CGLS, RRLS and RRLSQR. The machine used

=12

was a Burroughs B6700 with relative precision € = 0.5 x 8 ~0.7x10" "',

The results given here are complementary to those given by Elfving (6],
who compares CGLS with several other conjugate-gradient algorithms and also

investigates their performance on problems where 4 is singular.

8.1 Generation of test problems

The following steps may be used to generate a test problem min||b - Az||
with known solution .
1. Choose vectors z, y, z, ¢ and diagonal matrix D arbitrarily, with

lly]l =llz|l = 7. (For any chosen m > n, the vectors should be of dimen-

sions n, m, n and m-n respectively.)

I -2y, Z2=1- 223, A=Y

2. Define %

"

3. Compute #om Y[O] s b=Azx+r.

The minimal residual norm is then ||r|| = ||le||. Since 4 and D have the same

singular values, the condition of the problem is easily specified.
The particular problems used here will be called
P(myn,d,p)

to indicate dependence on four integer parameters, where d represents
duplication of singular values and p is a power factor. The matrix p is
of the form diag(oip) with each 0; duplicated d times. Specific values
for x, y, 2z, »~ and D were generated as follows:

Li o™ (el ni=l, M=l iy 85 0y O)T.
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2, y; = sin(4ni /m), £y * cos(4ni /n), followed by normalization so that
lyll = ll=ll = 1.

5 ¢ = (1/”7, "2/”1, 3/’") . i(m-n) /m}T.

4., o, = [Eillifq d/n , where integer division is used for the term in

d

parentheses. Choosing n = gqd to be a multiple of 4 leads to 4 copies

of each singular value:

Pl [1 L e _J
RET NPT A S NN S
[For reference, this gives: -
= 1
lell = ntn/8)%, el = flell = 252 (m-n1/8)%,

lall, = l2ll,, = (2/5)%,  cond(a) = cond(p) = (6 /o )P = ]

The orthogonal matrices Y and Z are intended to reduce the possibility
of anomalous numerical behavior. For example, when LSQR was applied to

four cases of the problem P(70,10,1,8) the following error norms resulted:

Case loggllzx - =l 2
(m=n=10, cond(4) = 10%) k=60 &0 100 120
1|4 = YDz (as above) e TR S
204 =1y 0.5 -84 -85 -a.1
304 =Dz e R R TN
4la=0n -9.4 -9.4 -9.4 -9.4

Since each case was a compatible system Az = b, we normally would expect

an error norm approaching ||| scond(4)«¢ = 1072

, so that case 1 is the most
realistic. 1In case 2 the error was concentrated in the first and second
components of ) (with the remaining components accurate almost to working

precision), whereas in cascs 3 and 4 the final z, was virtually exact in
k

spite of the high condition number of 4.
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Although cases 2 - 4 represent less expensive test problems, it is
clear that results obtained from them could be very misleading. In the
following sections we use only case 1. Even these test problems may be

less than completely general. This is discussed in section 8.4.

8.2 Ax = b; failure of CGLS

Figure 1 illustrates the performance of five methods on the ill-
conditioned system P(10,10,1,8), i.e. m=n=10, one copy of each singular
value, cond(4) = 10°. The quantities 10810”Pk” and log10ka - z|| are

plotted against iteration number k.

This example distinguishes the standard conjugate-gradient method
CGLS from the remaining methods. All except CGLS reduced [lr, || and

ka - k“ to a satisfactory level before k = 120.

Also apparent is the erratic behavior of HrkH for method CRAIG, a
potential penalty for minimizing ka - z|| at each step without regard to
HrkH. In theory all other methods minimize ””k” at each step and also

reduce ka - x|l monotonically.

If any method is to be preferred in this example it would be LSQR,
since it reached limiting accuracy at iteration 76 and stayed at
essentially the same point thereafter. With values ATOL = BTOL = ¢ the

stopping rule S1 as implemented in LSQR would have caused iteration at

k = 76 as desired.

8.3 Ax = b;, failure of RRLS

Figure 2 illustrates the same five methods applied to a larger

problem P(40,40,4,7), in which each singular value is repeated four times

and cond(4) = 10’. In this case all methods except RRLS reduced HrkH
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satisfactorily to about 1072 for k = 105. For method RRLS, llr, [l remained

5

of order 1077 for k > 30 up to k = 250, and zero digits of accuracy were

obtained in .

A similar disparity between RRLS and the remaining methods was
observed on the problems P(40,40,4,p), p = 5,6, cond/A) = 10P. 1n fairness,
Chen (4] did not intend RRLS to be applied to compatible systems. However,

the success of the other least-squares methods suggests that this is not an

unreasonable demand.

8.4 min||Az - b||; high accuracy by RRLS and RRLSQR

Figure 3 shows the performance of four least-squares methods on the
ill-conditioned problem P(20,10,1,6). Since cond(4)? = 10" = 1/e, we

would normally expect at most one digit of accuracy in the final L. This
is achieved by LSQR and CGLS, with LSQR showing a smoother decrease of

1%

In contrast, the residual-reducing methods achieved at least six

digits of accuracy in - Similarly, three or four digits of accuracy were

obtained on the problem P(20,10,1,8), for which cond(4) = 108 is so high
that no digits could be expected. At first sight it may appear that the
residual-reducing methods possess some advantage on least-squares problems.
However, this anomalous behavior cannot be guaranteed; for example, it did
not occur on P(80,40,4,6), as shown in Figure 4. Also, the final value of
”ATrﬂ! is no smaller than for LSQR and this is really the more important

quantity.

Part of the explanation for these occasional anomalies may lie in the
following. Suppose the original data (4,b) have solution and residual

(z,7), while perturbed data (4 + 64, b + §b) have (= + &z, r + 6n). If
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A + 64 has full column rank then it is straightforward to show that
sz = (A+64) (sb-6az) + (a+smTa+6a)) " 6aTr .

In the present example € = 0.7x10" "', llall, = 2, cond(a) = 108, (B = 2.4,
llzll ~ 27, |I*ll =7. If the perturbations were caused by rounding errors in
the initial data then ||64]] = €, ||6b|] = €, and the first term in the
expression for 8x could be about as large as 1074 in norm, and the second
could be of order 7. Figure 3 suggests the second term is unusually small
for the RRLS and RRLSQR computations. Looking at the particular form of
the test problem, if we write

YElr,r), A=rm, r=Iip,

we have
o~ /
(a+sm)t = a*t =77y T,
and the second term in éx is effectively
2"z 641 ¢ .
Now suppose 64 is simply an equivalent perturbation in A caused when 4

multiplies a vector » in our test case. Using the results of rounding

error analyses given by Wilkinson [27],

i

(A+684)v = f‘Z(Y1fZ(Df‘Z(Zv))) = (Y, +8Y )(D+8D)(2 +82)v
where H§Y1H * L”Y1“ etc., and so

64 = 6Y1(D+GD)(Z+62) + Y1(D<SZ+6D(Z +682)) .
Using this 84 in the second term for éx effectively gives

2" (1 + 07'282TD) (1 + D7 6D)8Y Y 0
which is bounded above by about 7%x107% in norm, rather than 7 as expected.
This gives a hint of what might be happening above, since a more realistic
problem would not admit such a relation between rounding errors and
residual. This does not invalidate the other numerical comparisons, but it

does emphasize the care needed when constructing artificial test problems.
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8.5 min||4z - b|]|; normal behavior

Figure 4 illustrates more typical performance of the four methods,
using the least-squares problem P(80,40,4,6) for which cond(A) = 10°,
All methods reduced HATrkH to a satisfactory level, and the final error
norm is consistent with a conventional sensitivity analysis of the least-
squares problem; in this case no more than one significant digit can be
expected. Note that CGLS converged more slowly than the other methods.
It also displayed rather undesirable fluctuations in HATrkH considerably

beyond the point at which the other methods reached limiting accuracy.

8.6 Some results using greater precision

Algorithm LSQR was also applied to the previous four test problems on
an IBM 370computef using double precision arithmetic, for which
€= 2.2 x10_16., With increased precision, LSQR gave higher accuracy and
also required fewer steps to attain this accuracy. This is best seen by
referrihg to the figures. In Figure 1 the log of the residual reached
-14.4 at the 48th step and stayed there; the log of the error was then -4.6

but decreased 20 steps later to -9.3 and stayed there. In Figure 2 the

logs of the residual and error were -73.8 and -8.0 at step 44 and differed

negligibly from these values thereafter. In Figure 3, log10HAT}kH = -174.6
and log ||z, - || = -6.0 at k = 32 and thereafter, while in Figure 4,
1og10”ATrkH = ~13.9 and ]og10ka - z|| = -4.6 at k = 36 with little change

for larger k.

1

=




43

10g,llz; - <

10g10"rk“
‘r;;— . & &

}_100'mc'

o= O0LS B o

- RRS

o o LS@\
__12 4 - M

0 M P 0 P O P P P o po o

Figure 1. An ill-conditioned system Ax = b, n = 10, cond(4) = 108,
CGLS is unable to reduce ||rk|| or ||a:k - z|| satisfactorily.
CRAIG exhibits severe fluctuations in ||rk||.
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Figure 2. An ill-conditioned system Az = b, n = 40, cond(4) = 10°.
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Figure 3. An ill-conditioned problem, min||Az - b||, m = 20, n = 10, cond(4) = 10°
RRLS and RRLSQR achieve anomalously high accuracy in Zy .
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Figure 4. An ill-conditioned problem, min|[4z-b||, m=80, n =40, cond(4) = 10°.
All methods obtain a satisfactory solution, although
CGLS exhibits slower convergence and undesirable fluctuations in IIATrkII.
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9. TRANSFORMATIONS

Here we discuss various ways of transforming the problem min||Az - b||

with a view to reducing the total work required for its solution.

As in the case of symmetric systems Axr = b (e.g. Chandra [3]), the
main aim behind scaling, partitioning, splitting, etc. is to improve the
distribution of the singular values of 4 so that at least one of the

following occurs:

(a) cond(4) = o___Jo

. is reduced, where ¢ _. 1is the smallest nonzero
max’ “min

min
singular value;

(b) the number of distinct singular values is reduced.

Application of a conjugate-gradient algorithm to the transformed problem

should then result in more rapid convergence.

9.1 Partitioning by columns

It sometimes happens that the matrix 4 occurs naturally in the form
A = [B (] where the first partition B has special structure. For example,
B may be block diagonal, or the matrix B'B may be diagonal or tridiagonal.
In other cases cond(4) may be large primarily because cond(B) is large.
We now show that as long as B has full column rank, we can always transform
the problem min|l(B2 (] [z] - b|| into one of better condition and reduced
size. The strategy is to compute z separately using a conjugate-gradient
method on a problem of the form

min||7Cz - Tb|| (9.1)
2

for some matrix 7 and then obtain y using a direct method on the problem

min||By - (b - C2)|| . (9.2)
Y

The form of 7 will depend on how much is known about B, but in all cases

we shall have condr7r) < cond(a) .
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In general, let the QR factorization of B be

I"

B=iF 7] = YR
0

where QT = [Y Z] is orthogonal and R is upper triangular. I[f B has only
a few colums then it is possible to construct ¢ and # cheaply using a
product of Householder transformations or a product of plane rotations.

In other circumstances only Y and R will be known, while if B is very large
perhaps only R can be stored economically. In the latter case, it may be

necessary to obtain R from the Cholesky factorization 8T8 = Bk .

It can now be verified that any of the following matrices may serve as

T im (9.1);
P s T
ok L S
7, = 22T 7, =T - BB """ « 1 - B 'RTHT,

In the first case, given that @ is orthogonal, we have

min||Ax - b|| = min||QAx - ¢b||
R YT(,"I Y YTh
—mnf -
0 z°C L2 Z*b

min||z%cz - 2Th||

since we can obtain y from Ry + vTcz = v"b for any z . (This is equivalent to

to (9.2).) Clearly we have cond(4) = cond(gA) > cond(z7c) .

The result for 7, is proved similarly using the fact that the matrix ¢

below is orthogonal. Thus:

W




S >

[0 ‘ [¢]
min||Az - b|| = min|lQ r - Ql [l

£5 LD

g = bE-
R re [ [y 'y

= minl| i () - . i

0 2z°C ||a 22°b

L J b

e i s L -
Again it is clear that cond(4) =z cond(ZZ ¢). In fact the operator
By = 22" is of no use in practice, but it serves to prove the result for the
1

remaining cases, using the relations T H¥ it and Y = BR™

On numerical grounds T 2" should be used whenever possible,
particularly if cond(%#) is large. Also, this is the only operator for

which the transformed problem (9.1) has a reduced row dimension.

If 7= T3 or 7 = 7, must be used, it is important to note that
7=7"=7" is a projection operator. When 4 and » are replaced by T¢ and
Tb in Bidiag 1, the vectors in (3.1) satisfy Tu, = u;. Hence the matrix-
vector products required in the conjugate-gradient algorithms are TCv, and
just c"u, (not CTTui).

Note also that the product Tﬁvﬂ may be regarded as the original

matrix A operating on a vector, thus

TCv, = Cv, - Bz, = A

where z. solves the least-squares problem mjnHBai - CuiH. Each iteration
is therefore essentially the same as for the original problem min||4x - b||
with the addition of a single subproblem involving the partition B. From
this point of view, partitioning is analogous to preconditioning symmetric
systems Az = b via the splitting 4 = M - N, in which the only extra work
required is the solution of a subproblem Mz, = r, (e.g. Concus, Golub and

O'Leary (5], Chandra [ 3]).

A " P v : i Al
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A trivial example of partitioning arises whenever the parameters being
estimated include a constant term (the mean). 1In this case, 4 = [¢ (']
. S b
where e is a column of ’/'s. Writing x = [ ], we would then use

2
T= (I - %(%ﬂv in (9.1), solve for z and then estimate the mean using

U eT(b - Cz)/m. This is nothing more than the well known practice of
: —_ — T !
"subtracting off the mean'" (note that 7b = b - pe, where u = ¢ b/m) and it

remains good practice in the present context.
A very general development of partitioning in a recursive sense has
been given by G.N. Wilkinson (26]. From one point of view this covers the

situation where the first partition B can itself be partitioned.

9.2 Partitioning by rows

A simpler situation occurs when the matrix 4 has the form
B
C
where B is nonsingular and is such that systems of equations involving B
and BT can be solved efficiently. An algorithm called PARTCG was developed
by Chen (4] for this situation, and he reports excellent results on a large

practical problem for which B was triangular.

It is worth noting that algorithm PARTCG can be derived by transforming
the normal equations (878 + ¢Tc)z = (BT ¢T1b to obtain the equivalent
system

(I + B'T(,'T(‘13‘1)y =7 B TTw

(where Bz = y) and then applying the symmetric conjugate-gradient algorithm.
From this point of view it would appear preferable to retain the least-

squares formulation and solve the problem

5
minfl| |y - b |
CB

d

Ioe nos AT cacnlabeas meinth e "M an v an
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This approach is a particular case of preconditioning. It is
discussed by Bjorck in his comprehensive survey of direct and iterative
methods for sparse least squares (11. The first work along these lines
appears to be that of Liuchli [14]. In general we may expect the method
to be successful only if B is well-conditioned, or if HCH—1H is of moderate

size.

9.3 Scaling and preconditioning

The simplest form of preconditioning is column scaling, in which the

original problem is replaced by
min||ADy - bl|, x = Dy (9.3)

for some diagonal matrix pD. Normally it must be left to the user to

compute D from his knowledge of 4 and to use it appropriately in his matrix-
product subroutines. In the'ubscncc of better information the results of
van der Sluis [24] indicate that each colum of 4D should have the same
Euclidean length, say 7. Thus the j-th diagoénal of D is usually

6j = ] /(ajTaj)%, although this should not be at the expense of exaggerating

the influence of inaccurate data. A convenient method for excluding any

unwanted columns of A is to set the corresponding Gj = 0.

Note that the original matrix A often contains a high percentage of
unit coefficients. In such cases a user should treat A4 and D as separate
operators when implementing the matrix-vector products, since over a series
of 500 or 1000 iterations the computation of w = Dv, p = Aw can be substan-

tially cheaper than scaling the data explicitly and using p = (AD)v.

By analogy with (9.3), a more general approach to preconditioning is

to employ some stable factorization of A, say




A=,,U=Dﬂ

in which the left-hand factor L has better condition than 4, and the right-
hand factor U is nonsingular. We assume that U/ will be a sparse matrix and
that systems of equations involving U and u" can be solved efficiently.

There are now two equivalent but distinct possibilities:

min||Zy - b, solve Uz (9.4a)

1]
<

min||4v™"y - b||, solve Uz (9.4b)

1}
S

The advantages of each depend on the origin of L and U. In some cases L
may have the same sparsity as 4, thus favoring (9.4a). A nontrivial
example of this is given in section 10.2. Otherwise (9.4b) may be

preferred since it does not require L to be stored.

A promising approach towards automating this form of preconditioning
is to use Gaussian elimination with row and column interchanges to produce

a conventional sparse LU factorization with [ trapezoidal and U triangular:

P}./IP2 = LU = Dv\] .

For convenience we shall ignore the permutation matrices P, and Py, but the
vital point is that they can be chosen so that L and U remain quite sparse
and that either L or U can be kept reasonably well-conditioned. The use of
an LU factorization for (small, dense) least-squares problems was first
suggested by Peters and Wilkinson [22] with cond(r,) being kept small so
that the normal equations LTLy A corresponding to (9.4a) could be
solved without serious numerical difficulty. In the present context it is

again cond(L) that must be controlled, but this time the principal motive
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is to ensure reasonably rapid convergence when a conjugate-gradient

algorithm is applied to (9.4).

The use of a sparse LU factorization for accelerating the convergence
of CGLS was first suggested by Bjorck in [1]. We give some promising
experimental results in section 10. Another form of automatic precondition-
ing has been given by Bjorck and Elfving [2] in their algorithm CGPCNE.

This uses the SSOR operator obtained from A"4 and has significant advantages
in terms of simplicity and efficiency. (For example, the sparse factoriza-
tion of 474 is performed implicitly and is therefore not subject to the
usual problems associated with fill-in.) A future comparison of LU- and
SSOR-preconditioning will be of great interest. Note that both methods
require explicit access to the rows or colums of 4 (thus 4 cannot be

represented inproduct form), but this will not often be a restriction.

9.4 Linear constraints

Equality-constrained problems of the form

min||4Ax - b|| subject to Cx =d (9.5)

arise in many applications. Without loss of generality we may assume that

¢ has full row rank. The combined matrix [é} will usually have full column

rank.

If a statistical model happens to be 'overspecified'", i.e. the matrix
A is known to contain column dependencies, the user will normally wish to
impose some simple restrictions which do not increase the residual norm
but do remove ambiguity from the solution. (For example, a particular sub-
set of the parameters z may be required to sum to zero.) Thus with appro-

priate ¢ and 4 it will be known in advance that

A b
min||Az - b|| = mdnu[ :]x . [ } |
c d

——
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and the constraints will be satisfied at the solution if they are simply
included as additional rows of 4 and b. This procedure is easy to

implement, but it does increase the size of the least-squares problem and
the approximations x, will not necessarily satisfy Cx), = d throughout the

iterations.

More generally (whether 4 is singular or not), a factorization of the

constraint matrix may be used to solve (9.5). For example, let

R i

QT = : CEtr 1,
0

RTy=d 3 e =b - AYy ,

where @ is orthogonal and R is upper triangular. The unconstrained

problem

min||AZz - ¢|| (9.6)

can be solved by a conjugate-gradient method, and the solution to the

m y
original problem is then z = Ql[”]. The operator 4z in (9.6) should not
be formed explicitly, since @ will normally be computed as a product of

01

eclementary transformations. Thus Z should be used in the mle=QT[‘

Il
g i oY
Similarly, ¢ = b - AQ {Q}'

This procedure reduces the dimension of the least-squares problem to

- g 4 ; ¥ S
be solved, and any iterate 2, will give a point x, = Q" that satisfies

?
"k
Cxy = d. 1f the constraints are nearly dependent, the solution of HTy = d
1s ill-conditioned and this will normally be revealed by growth in the
vectors y and <. However, the presence of constraints should not impair

the convergence of a conjugate-gradient method on (9.6), since with @

orthogonal it is casily shown that cond(4Z) < cond(4) regardless of cond(C).

s
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If ¢ is large and sparse it would be more efficient to compute a

stable triangular factorization of the form

- [1]

using Gaussian elimination with row and column interchanges. The above
procedure may then be applied with L and ¢ in place of ¢ and R. In this
case we have 7 = LT[?} and the bound on the condition of the reduced problem
is weakened to cond(Aé} < cond(4) cond(Z) < cond(A) cond(Z). This may not

be of serious consequence since in practice the interchange strategy can

usually keep cond(L) moderate while maintaining sparsity in L and U.




e M o

R — - - " o o

56 .

10. AN APPLICATION IN GEOPHYSICS

The Fortran implementation of LSQR has been applied recently to some
least-squares problems arising from the analysis of gravity-meter observa-
tions (Woodward [28]). The formulation of the undérlying model is similar
to that described by Reilly [23]. (The purpose is to estimate the mean J
value of gravity at each of a series of stations and to determine a set of
instrumental parameters for each gravity meter, including drift rate and a

correction to the calibration.) 1

We have taken one such set of observations to obtain a representative

test problem

min|| Az - b| , A=AD (10.1)

in which A, is 1033 by 434 with each row containing 5 nonzero coefficients,

the first two being unity. The diagonal matrix D was chosen to normalize

the colums of A, and to exclude some containing insufficient data. Ignoring

excluded colums, 4 is effectively 1033 by 320 and of full rank. Since

6]l = 6000 and ||r|l = Hb - Az|| = 0.75 for the solution x, the system being !

solved is almost compatible.

The times quoted below are seconds of processor time using unoptimized
Fortran code on a Burroughs B6700. All condition number estimates are
those obtained by LSQR. The stopping rule S2 was used with ATOL = 1078
(see section 6). Thus for a given operator A (which in some cases was I or

aU”") a solution was accepted when the estimate of HAT}kH/ (|1l ”rkH)

decreased below 10°%.

10.1 Original formulation

Even with column scaling as indicated in (10.1), the rate of convergence

of LSQR proved to be very slow. Figure 5 shows a plot of log |lr, || for the

:
TR N TR R —




&7

first 600 iterations, and the steady growth of the estimate of cond(4).

After 1600 iterations the run was terminated with

T
|l and Jla7r [l/Cllall {lr I
still as large as 0.92 and 10™% respectively. (Thus llr, |l had not yet entered

the usual long flat ''tail".) It appeared that cond(4) 10° and that well

n

over 2000 iterations would have been required to reach a satisfactory

solution.

As an aside, this was the longest run performed and therefore best
illustrates the accuracy of the norm estimates in section 5. After 1600
iterations the estimates of “rk"’ ”ATrkH and kaH were correct to eight,
five, and eight digits respectively, a very satisfactory result. The value
“Bk”F ~ 56 over-estimated HAHF = /320 ~ 18 by a noticeable amount in spite
of the bound (5.8). This is typical and in fact desirable, given the /

manner in which ||4|]| is used in the three stopping criteria of section 6.

10.2 Preconditioning with LU factors

In order to test the preconditioning in (9.4), a sparse LU factoriza-
tion of A was computed in the form !
fo" [‘U .
s ME LJ (10.2)
using Gaussian elimination with row interchanges. The nonzeros in U were
stored compactly by rows, and the rows of 4 were eliminated one by one in

their natural order. Thus each Lj represents a stabilized elementary

transformation of the form

A, 1 3 2 (39,3}




were required to eliminate each row in turn. This gives 4 = LU where I,

1s stored in product form as the operator
-1,-1 -1

£
L=f0 I Lk ... :
L },

The multipliers were constrained to satisfy |AJ| < 1/1 for some pivot
tolerance 1+ (0,1), thus allowing the usual compromise between sparsity

and stability. Since [ and U proved to be very sparse, 1 = 0.99 was chosen
to minimize cond(Z). The number of nonzeros in A, L and U were about 5600,

6500 and 1500 respectively, and the factorization time of 10 seconds was

negligible.

Some statistics for the three equivalent forms of problem (10.1) are

summarized in Table 1. It is clear that LU preconditioning leads to a _ /
significant reduction in computation time for this particular problem,

with only a moderate increase in storage requirements.

Condition Total Time per Total
Operator (estimate) iterations iteration time

5

4 >10 >2000 1.0 >2000
]

L 3500 390 2.4 920

e 3500 400 1.3 520

Table 1. Application of LSQR to three equivalent problems:
min||Az - b||, min||Ly - b||, min|lav=y - B]|.

Note that in an LU factorization with row interchanges, cond(L) is not
directly related to cond(4). (For example, [ itself is independent of the
column scale of A.) In this case, cond(L) = 3500 is rather higher than we
might have wished. This is partly due to the colums of unit coefficients

in A which generate many multipliers that are '"worst possible", i.e. |Aj| s 1.
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Better numerical properties could be expected if the elimination were
performed column-wise rather than row-wise (cf. Wilkinson [27, pp. 162-

166 1) . However, a more complex data structure would then be required for
efficiency, and since many of the AJ would still be of order I the reduction

in cond(z) could prove to be only slight.

In this context it is normally cond(y) that reflects the condition of
A. There was no growth in our particular U (largest off-diagonal element
= (.7) but the largest and smallest diagonals of v were 1.0 and 0.00021 res-

pectively, giving the conservative estimate: cond(U) = 5000.

Perhaps the most surprising result is that the numerical performance
of the operator A" was not significantly different from that of L. This
means that the bound cond(AU") < cond(4) cond(y) = 10% is fortunately not
operative, even though 4 and vl are applied as separate operators. It is
an open question how far this would remain true as cond(4) and cond(i/)

1

increase, but as long as it does remain true Ay~ is much less expensive

to use.

-1 : . .
The speed advantage of AU = over L is largely due to the unit coeffi-
cients in A and to the intrinsic simplicity of the relevant subroutines.

This could be expected in other practical applications.

Figure 5 compares the decrcase of anH for the operators 4 and AU~

the latter being indistinguishable from /.

10.3 A problem-dependent transformation

Prior to implementation of the above preconditioning the slow conver-
gence of LSQR on (10.1) necessitated a reconsideration of the problem

formulation. Briefly, it was noted from the structure of A that the
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nonunit coefficients could be translated to give a more favorable
distribution around zero (Woodward [28]). Algebraically, the columns of A,
occurred in pairs of the form [e «] in which the vectors ¢ and a
possessed the same sparsity pattern (with ¢ containing unit coefficients).

The shift « = a - ye was applied to each such pair, where p = cTa/e”e

was the mean of the nonzeros in «. This amounted to a column transformation

]
Z =10

|
I
such that ¢ and a were orthogonal. The usual column scaling then made each

pair of colums orthonormal.

The effect here is another precdnditioning via the factorization
A = ?;T in which 7 is unit upper triangular and Z; has the same sparsity

O

as A_. Convergence of LSQR on the problem

minl[/z- b , A=%D (10.4)

proved to be greatly accelerated, as shown in Figure 6. Compared to the
original problem (10.1), the reduction in cond(4) was clearly important.
From the sharp drops in HrkH it seems that another contributing factor was
an increased repetition of singular values. Unfortunately a further
"automatic" preconditioning via 4 = LU appeared to negate the latter
effect, as shown in Figure 6. The smooth decrease in HrkH and the long

""tail'' before stopping criterion S2was satisfied indicates that I = Al ' has
its singular values spread rather uniformly throughout their range.
Some statistics for the transformed problem (10.4) are summarized in

Table 2. Again the operators L and A" have virtually the same numerical

properties.

e

Rt &

R -




61

’
7
/
/
! <14000
/
/
T ~
/ 412000
/
7~
7
-
% 410000
< 8000
g
E
2
< 16000
S
=
§ 4000
i 2000
r-—-_l‘— - 0
1072 11352 R 10°®
100 200 300 400 500 600
lteration number, k
Figure 5. Comparison of min||4x - b| and min||AU'1y - b||
for problem (10.1).
1 = log||lr|| for operator 4.
2 =1log,|lr |l for operator av .
3 = estimate of cond(4).
4 = estimate of cond(aU”').
The numbers marked on 2 are those tested against ATOL in stopping
criterion S2, i.e. estimates of HLTrkII/(HL” ey ll) where z = av',
Results for the operator [, are essentially the same as for ay™'.




i 43000
o )
p E
. 2
P
!
P &
# b
42000
41000
10
10°¢ 10°®
100 200 300 400

feration number, k

Figure 6. Similar comparison for the transformed problem (10.2).

1
2
3
4

= log HrkH for operator 4.

= log [|r,|| for operators aU~', I.

= estimate of cond(4).

= estimate of cond(AU-1) = cond(T).

Operator Condition iterations iteration time

Total Time per Total

A 3100 250 1.0 250

A 3200 376 2.4 880
AU 3100 371 i 460
Table 2. Application of LSQR to three equivalent

forms of problem (10.4).
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10.4 Comparison with @/ factorization

The transformed problem (10.4) was also solved directly using a sparse
orthogonal factorization

0] R

{

1
| =
e - [ (4 = | ~ He = e ,
7 ;’IJ L 0 I [}) /IJ F (

where @ represents a product of plane rotations analogous to the row-wise
elimination (10.2). The factorization was reasonably sparse: @ = 33000
plane rotations, F = 9000 nonzeros. It was implemented as efficiently as
possible subject to processing the rows of A in their natural order. Some
ecconomies could be achieved using different row orderings, e.g. Gentleman
[8], but the factorization time of 380 seconds is representative of the
great expense of @R- compared to LU-factorization. Computation of the
standard error estimates (from R - see section 5.4) required a further 160

seconds.

Comparison with the operator 4 in Table 2 shows that LSQR furnished
an equally accurate x and rather less accurate standard errors in about
half the time required by the direct method. The storage requirements (and
incidentally the paging activity in the B6700 virtual memory environment)
were also substantially less. These advantages of the conjugate-gradient
approach to least squares must become more apparent with increasing problem

size, as long as the relevant matrix operator remains well conditioned.

10.5 A larger problem

Finally, to indicate the effect of problem size, we note some results
for a similar example which contained approximately twice as many observa-
tions (and hence twice as much data defining 4). Column means were

subtracted as before, giving problem (10.4) with A 1850 by 825.
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In solving this case, LSQR obtained the estimate cond(4) =~ 3200,
essentially the same as for the smaller problem. About 500 iterations
and 1000 seconds of processor time were required, a four-fold increase in

total work.
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11. SUMMARY

The aim has been to present the derivation of an algorithm and details
of its implementation, along with sufficient experimental evidence to suggest
that the algorithm compares favorably with other similar methods and that it
can be relied upon to give satisfactory numerical solutions to problems of

practical importance.

Reliable stopping criteria were regarded here as being essential to any
iterative method for solving the problems Ax = b and min||Az - b||. The
criteria developed for LSQR may be useful for other solution methods.
Estimates of |4]|, cond(4) and standard errors for z have also been developed

to provide useful information to the user at minimal cost.

Finally, some results obtained using a sparse LU factorization of 4
illustrate an effective method for accelerating convergence on ill-conditioned

problems.
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APPENDIX A: FORTRAN PROGRAMS
Listings are given here of the following Fortran routines:

1. LSQR - the principal subroutine inplementing the sparse
least-squares algorithm.

2. Auxiliary routines required by LSQR.

NORMLZ - normalize a vector to unit length.

SAXPY - compute ax + y for scalar a and vectors x, y.

SNRM2 - compute the euclidean norm of a vector.

ATIMES - a sample routine for computing the product p = Av.

ATRANS - a sample routine for computing the product p = ATu.

3. Routines for generating a test problem.

HPROD - apply a Householder transformation to a vector according
top = (I - 22zT)v, where |jz]| = 1.

LSTP - generate a least-squares test problem FP(m,n,d,p) of the
form described in section 8.1 of this paper.

TEST - request generation of a specific test problem and then

solve it using LSQR.

4, A sample main program calling TEST.

These routines are written in the PFORT subset of ANSI Fortran (Ryder
and Hall [2]). There are no machine-dependent constants. Conversion between
single and double precision is accomplished by interchanging the following

characters throughout:

ABS Cmmmm> DABS
REAL C=mm=> REAL#8 or DOUBLE PRECISION

SQRT e DSQRT

The routines SAXPY and SNRM2 cerrespond to two members of the BLAS collection
(Lawson, Hanson, et al [1]). For improved efficiency the BLAS versions should
be used when available. The appropriate double precision routines would then
be DAXPY and DNRM2.

(1) LAWSON, C.L., HANSON, R.J., KINCAID, D.R. AND KROGH, F.T. Basic linear
Algebra Subprograms. Research Report SAND77-0898, Sandia Laboratories,
Albuquerque, New Mexico, 1977.

[2] RYDER, B.G. AND HALL, A.D. The PFORT Verifier. Computing Science
Technical Report 12, Bell Telephone Laboratories, Murray Hill, New
Jersey, 1973 (revised 1975).
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SUBROUTINE LSOR( M,N,MAX,R,P,U,V,W,X,SE,
ATOL,, BTOL,CONLTM, TTNLIM, NOUT,

TSTOP, RNORM, ANORM , ACOND )
INTEGER M,N,MAX, ITNLIM,NOUT, I STOP
REAL B (M) ,P(MAX) ,U(M) ,V(N),W(N),X(N),SE(N),

ATOL,BTOL,CONLTM, RNORM, ANORM , ACOND

LSOR FINDS A SOLUTION X TO THE FOLLOWING PROBLEMS. ..

(UNSYMMETRIC EQUATIONS) SOLVE A.X = B,

(LINEAR LEAST SQUARES) MINTMIZF NORM(R) WHERE R = 8 - A X,

IN WHICH A IS A REAL MATRIX OF DIMENSIONS M BY N AND B TS A

GIVEN M-VECTOR. NORMALLY RANK(A) SHOULD BE N, WTTH M >= N, )
BUT THIS TS NOT ESSENTIAL (E.G. SOME OF THE ROWS AND COLUMNS OF

A MAY BF ZERO).

THE MATRIX A IS INTENDED TO BE LARGE AND SPARSE. IT IS ACCESSED
BY MEANS OF TWO SUBRQUTINE CALLS OF THE FORM

CALL ATIMES( V,P,M,N )
CALL ATRANS( U,P,M,N ) /

WHICH MUST RETURN THE PRODUCTS P = A.V AND P = A(TRANSPOSE) .U
FOR GTVEN TNPUT VECTORS V AND U,

SUBROUTINES ATIMES AND ATRANS ARE TO BE SUPPLIED BY THE USER.
THEY MUST NOT ALTER V OR U RESPECTIVELY. THE LENGTH OF THE

.QUTPUT VECTOR P IS RESPECTIVELY M AND N, RUT IN EITHER CASE

THE ARRAY PARAMETER P MAY BF DECLARED TO HAVE LENGTH MAX(M,N).
(THIS MAY BE USEFUL IF P IS USED FOR WORKSPACE BEFORE EXTT.)

NOTE. THE NUMBER OF ITERATIONS REQUIRED BY LSOR DEPENDS
CRITICALLY ON THE CONDITION NUMBER OF THE MATRIX A. POOR
SCALTINC OF THF COLUMNS OF A SHOULD BE AVOTDED., THIS CAN
USUALLY BE TAKEN CARE OF WHEN PROGRAMMING SUBROUTINES ATIMES
AND ATRANS. 1IN THE ABSENCE OF BETTER TNFORMATTON THE NONZERO
COLUMNS OF A SHOULD BE SCALED SO THAT THEY ALL HAVE THE SAMF
EUCLIDEAN NORM (USUALLY 1.4).

PARAMETERS
M TNPUT THE NUMBER OF ROWS TN A,

]
N INPUT THE NUMBER OF COLUMNS IN A, ?
MAX INPUT MAX(M,N). USED ONLY TO SPECIFY THE LENGTH |

OF P 1IN THE DIMENSION STATEMENT ABOVE, 3
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INPUT THE RHS VECTOR OF LENGTH M,

OUTPUT RETURNS THE VECTOR A (TRANSPNSE).R, WHERE
R=8B - A.X TS THE RESIDUAL VECTOR CORRES-
PONDINGC TO THE COMPUTED SOLUTION X.

oOuTPUT RETURNS THE RESTDUAL VECTOR R = B - A X,
WORKSPACE

WORKSPACE

OuTPUT RETURNS THE COMPUTED SOLUTION X.

OUTPUT RETURNS STANDARD ERROR ESTIMATES FOR THE

COMPONENTS OF X.

NOTE. THE FOLLOWING DISCUSSTION OF TOLFERANCES 1S
IN TERMS OF A QUANTITY EPS WHICH STANDS FOR THE
RELATIVE PRECISION OF FLOATING-POINT ARTTHMETIC
ON THE MACHINE BEING USED. TYPICAL VALUES ARE

BURROUGHS B6704 SINGLE PRECTSION, FPS = 1.MAE-1]

CDC 6600 ,7600 SINGLE PRECISION, EPS = 1.MAE-14

IBM 360,370 STNGLE PRECTSION, EPS = 1.G4E-6
DOUBLE PRECISION, EPS = 1.04D-16h

UNIVAC 110@ SERIES SINGLE PRECISTON, EPS = 1.04FE-8
DOUBLE PRECISION, EPS = 1.0D-18

(ALL VALUES APPROXIMATE) .

INPUT AN ESTTMATE OF THE RELATTVE ACCURACY OF

THE DATA DEFINING THE MATRTX A,
ATOL WILL NORMALLY BE TN THE RANGE
EPS TO SORT(EPS) .

SUGGESTED VALUE -- ATOL = 1AAA*EPS

INPUT AN ESTIMATE OF THE RELATIVE ACCURACY OF
: THE DATA DEFINING THE RHS VECTOR B, -
BTOL WILL NORMALLY BE TN THE RANGE
EPS TO SQRT(EPS).
SUGGESTED VALUE -- BTOL = 17AAQ*EPS

INPUT AN UPPER LIMIT ON COND(A), THE APPARENT
CONDITION NUMBER OF THF MATRIX A (IGNORING
KNOWN STNGULARTTIES). TITERATIONS WTLL
TERMTINATE TF A COMPUTED ESTTMATE OF COND(A)
EXCEEDS CONLIM, THIS IS INTENDED TO PREVENT
CERTAIN SMALL OR ZERO SINGULAR VALUES OF A
FROM COMING INTO EFFECT AND CAUSTNG UNWANTED
GROWTH IN THE COMPUTED X. HFNCF TT MAY ASSTCT
IN REGULARIZING TLL-CONDTTIONED SYSTEMS.

&
C B (M)
C
5 P (MAX)
C
C
C
e U(M)
e
5 V(N)
C
G W(N)
C
C X (N)
L
C SE (N)
5
c
5
C
>
€
€
c
C
€
C
C
(%
%
C
c
< ATOL
L
€
C
C
%
(% BTOL
C
C
(&
C
(2
¢ CONLIM
G
¢
C
C
C
C
C
C
g e
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ITNLIM

NOUT

ISTOP

RNORM

CONLIM WTLL NORMALLY BE TN THE RANGE

1000 TO 1/EPS.

SUGGESTED VALUE --

CONLTM = 1/(1AAA*EPS) FOR COMPATIBLF SYSTEMS,
CONLIM = 1/(1Aa*SORT(EPS)) FOR LEAST SQUARES,

NOTE. TF THE USER TS NOT CONCERNED ABOUT THE PARAMETERS

ATOL, BTOL

TO ZERO.

INPUT

INPUT

OUTPUT

U]

OUTPUT

AND CONLIM, ANY OR ALL OF THFEM MAY RE SET

AN UPPER LIMIT ON THE NUMBER OF TTERATTONS.
SUGGESTED VALUE --

ITNLTM = N/2 FOR WELL-CONDITIONED SYSTEMS,
ITNLIM = 4*N OTHERWTSE .

LINEPRINTER UNIT™ NUMBER. IF POSITIVE,
A SUMMARY WILL BE PRINTED ON UNIT NOUT.

AN INTEGER GTVING THF REASON FOR TERMINATION, ..

X = @ IS THE BXACT SOLUTION.
NO ITERATIONS WERE PERFORMED.

THE FOUATIONS A.X = B ARE PROBABLY
COMPATIBLE. NORM(R) IS SUFFICTENTLY SMALL
GIVEN THE VALUES OF ATOL AND BTOL. '

THE SYSTEM A.X = B IS PROBABLY NOT
COMPATIBLE. A LEAST-SQUARES SOLUTION HAS
BEEN ORTAINED, FOR WHTCH NORM(A.R) 1S
SUFFICTENTLY SMALL GTVEN THE VALUE OF ATOL.

THE SYSTEM IS MORE TLL-CONDTTIONED THAN
EXPECTED, AN ESTIMATE OF COND(A) HWAS
EXCEEDFD CONLTM,

THE ITERATION LTMIT TITNLITM WAS REACHED.

THE EQUATIONS A.,X = B ARE PRORABLY
COMPATIBLE. NORM(R) IS AS SMALL AS SEEMS
REASONABLE ON THTS MACHINE.

THE SYSTEM A.¥X = B IS PROBABLY NOT

COMPATIBLE. A LEAST-SQUARES SOLUTION HAS
BEEN OBTAINED, FOR WHTCH NORM(A ,R) TE AS
SMALIL AS SFEMS REASONABLFE ON THIS MACHINE,.

COND(A) SEEMS TO BE SO LARGE THAT THERE IS
NOT MUCH POINT IN DOING FURTHER ITERATIONS,
GTIVEN THE PRECISION OF THTS MACHTNE,

NORM(R) = SQRT(R.R), THE NORM OF THE FINAL
RESTDUAL VECTNOR R = B - A X,
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ANORM OUTPUT AN ESTIMATE OF THE FROBENTUS NORM OF A,
THIS IS THE SQUARE-ROOT OF THE SUM OF SOUARFS
OF THE ELEMENTS QF A, IF THE COLUMNS OF A
HAVFE. ALL BEEN SCALED TO HAVE LENGTH 1.4,
ANORM SHOULD TNCRFASE TO ROUGHLY SORT(N).
A RADICALLY DIFFERENT VALUF FOR ANORM MAY
INDICATE AN ERROR TN ONE OF THE SUBROUTINES
ATIMES OR ATRANS.

ACOND OuTPUT AN ESTIMATE OF COND(A), THE CONDITION
NUMBER OF A. A VERY HIGH VALUE OF ACOND
MAY AGAIN INDICATE AN ERROR IN SUBROUTINES *
ATIMES OR ATRANS.

TO CHANGE PRECTISTON {

TF SUBSTITUTE BLAS ROUTINES ARE TN USE, ALTER THE WORDS 1
ABS, REAL , SORT /
THROUGHOUT ROUTINES LSQR, NORMLZ, SAXPY, SNRM?2,

IF AUTHENTIC BLAS ROUTINES ARE TN USE, ALTER THE WORDS
ABS, REAL , SAXPY, SNRM2, SORT
THROUGHOUT ROUTINES LSOR, NORMLZ.

REFERENCE A BIDIAGONALIZATICN ALGORTTHM FOR SPARSE

--------- LINEAR EQUATTONS AND LEAST-SQUARES PROBLEMS,
TECHNICAL REPORT SOL 78-19, DEPARTMENT OF
OPERATIONS RESEARCH, STANFORD UNIVERSTTY, 1978

AUTHORS C.C. PAIGE M.A. SAUNDERS
------- MCGILL UNIVERSTITY, CANADA DSTR, NEW ZEALAND
LSOR. THIS VERSION DATED 2 OCTOBER 1978,

SUBROUTINES AND FUNCTIONS

OGO NGO OGO NOGOOOGOCAOOOOGCONOOOOONDOOAOOONNCOITON0

USER ATIMES ,ATRANS !
LSOR NORML?Z
BLAS SAXPY
FORTRAN ABS ,MOD, SQRT
23 s ' )| >
r X o o —— ———————————— it




29

w N~

oS

74

FUNCTIONS AND LOCAL VARIABLES

INTEGER 1,TTN,MOD,NCONV,NSTOP

REAL ABS,ALFA,ARNORM,BBNORM,BETA , BNORM,
CS,CS2,CTOL,DDNORM, DELTA , GCAMMA , GBAR,
ONE, PHT ,RBAR, RHO,RHS,RTOL,,
STNES,SN,SN2,SORT,T,TEST],TEST2,TEST3,
THETA,T1,T2,T?,XNORM, XXNORM, 7, ZBAR, ZERO

INITTALTZE

ZERO = 0
ONE = 1
IF (NOUT .GT. @) WRITE(NOUT, 1440) ™M,N,ATOL,BTOL,CONLIM,TTNLTM
CALL NORMLZ( B,U,M,BETA )
CALL ATRANS( U,P,M,N )
CALL NORMLZ( P,V,N,ALFA )
DO 20 1T =1, N
W(TI) = V(T)
X(T) = ZERO
SE(T) = ZERO
CONTINUE
SINES = ONE
BBNORM = ZERO
DDNORM = ZERO
XXNORM = ZERO
7 = ZERO
CSZ = =ONE
SN2 = ZERO
CTOL = ZERO
IF (CONLTM .GT. 7ZERO) CTOL = ONE/CONLIM
ITN =0
ISTOP = &
NSTOP = 0
ANORM = ZERO
ACOND = 7ERO
RBAR = ALFA
BNORM = BETA
RNORM = BETA
XNORM = ZERO
ARNORM = ALFA*BETA

TF (NOUT .GT. @) WRITE(NOUT, 120a)

IF (NOUT .GT. @) WRITE(NOUT, 1400) ITN,X(1),RNORM,ARNORM
IF (NOUT .GT. @) WRITE(NOUT, 1574)

IF (ARNORM .LE. ZERO) GO TO 709

~ ' BTG
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PERFORM NEXT STEP OF THE BIDIAGONALIZATION
TO OBTAIN NEW BETA, U, ALFA, V

ITN = ITN+1

CALL ATIMES( V,P,M,N )

CALL SAXPY( M, (-ALFA),U,1,P,1 )
CALL NORMLZ({ P,U,M,BETA )

BBNORM = BBNORM + ALFA**2 + BETA**)
CALL ATRANS( U,P,M,N )

CALL SAXPY( N,(-BETA) ,V,1.P,1 )}
CALL NORMLZ( P,V,N,ALFA )

COMPUTE NEXT PLANE ROTATTON FOR THE QR-FACTORTZATTON
OF THE LOWER BIDIAGONAL MATRIX B (T7.F. O0.B = R)

RHO = SORT(RBAR**2 + BETA**2)
CS = RBAR/RHO

SN = BETA/RHO

THETA = SN*ALFA

RBAR = ~CS*ALFA

PHT = CS*RNORM

RNORM = SN*RNORM

ARNORM = ARG (RBAR) *RNORM

SINES = SN¥*SIMES

UPDATE X AND THE STANDARD ERROR RESTIMATES

T]l = PHT /RHO
T2 = -THETA/RHO
) = ONE/RHO
CALL SAXPY( N, TT,M;1,.%,1
DO 354 1T = 1; W
Yy = W(I)
W(T) = T*T2 + V(T)
S = (T*T3) **)
SE(T) = T + SE(I)

DDNORM= T + DDNORM

358 CONTINUE

———
— i g ¥
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ESTIMATE NORM(X) USING AN LO-FACTORIZATION
OF THE UPPER BIDIAGONAL MATRTX R (T.F. R.O = L)

DELTA = SN2*RHO

GBAR = =CS2*RHO

RHS = PHI - DELTA*2

ZBAR = RHS/GBAR

XNORM = SQRT(XXNORM + 7BAR**2)
GAMMA = SQRT(GBAR**2 + THETA**2)
(s = GBAR/GAMMA

SN2 = THETA/GAMMA

2 = RHS/GAMMA

XXNORM = XXNORM + 7Z**2

TEST FOR CONVERGENCE

ANCRM = SORT (BBNORM)

ACOND = ANORM*SQRT (DDNORM)

RTOL = BTOL + ATOL*ANORM*XNORM/BNORM
TEST1 = SINES

TEST2 = ARNORM/ (ANORM*RNORM)

TEST? = ONE/ACOND

THE FOLLOWING THREE TESTS ARE INDEPENDENT OF THE TOLERANCES
ATOL, BTOL AND CONLIM. THEY ARE INTENDED TO GUARD AGATINST
ACCIDENTAL SETTING OF THOSE PARAMETERS TO EXTREME VALUES.
THEY ARE EQUIVALENT TO THE NORMAL TESTS USING THE VALUES
ATOL = EPS, BTOL = EPS, CONLIM = 1/EPS.

T ONE + TESTI
T2 ONE + TESTZ
T3 = ONE + TEST3
IE (T3 JLE., ONE) ISTOP
IF (T2 (LE. ONBE} ISTOP
IE (Tl JEB. ONE) ‘TSTOP

1}

"
TN J

ALLOW FOR TOLERANCES SET RBY USER

IF (ITN .GE. ITNLTM) ISTOP
I (Teeld ~BE. CTOL ) ISTOP
It (TEST?Z LB, ATOL . ) 1S5TOP
IV ({TESTL <LE. RTOL ) ISTOF

o
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SEE TIF IT IS TIME TO PRINT SOMETHING

MAaOn

IF (NOUT .LE. @) GO TO 640

IF (M.LE.4@ .OR. N.LE.4a) GO TO 40®
IF (ITN .LE. 1@} GO TO 400
IF (ITN .GE. ITNLIM-14) GO TO 4040
IF (MOD(ITN,14) .EQ. 9) GO TO 400n
IF (TEST3 .LE. 2.0*CTOL) 6O TO 400
IF (TEST2 .LE. 10.A*ATOL) GO TO 400
IF (TEST1 .LE. 1A8.0*RTOL) GO TO 44@
GO TO 600

PRINT A LINE FOR THIS ITERATION

OnNn

437 CONTINUE
WRITE (NOUT, 140®) ITN,X(1),RNORM,ARNORM,TEST],TEST2,ANORM,ACOND
IF (MOD(ITN,10) .EQ. @) WRITE(NOUT, 1540)

STOP IF POSSIBLE.

THE CONVERGENCE CRITERTA ARE REQUIRED TO BE MET ON NCONV
CONSECUTIVE ITERATIONS, WHERE NCONV IS SET BELOW.
SUGGESTED VALUE -- NCONV = 1, 2 OR 3

richrieoteleke K

607 IF (ISTOP .EQ. A) NSTOP = @
IF (ISTOP .EQ. A) GO TO 104
NCONV = 1
NSTOP = NSTOP+1
IF (NSTOP .LT. NCONV .AND. TITN .LT. ITNLIM) ISTOP = @
IF (ISTOP .EQ. @A) GO TO 149
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PRINT SUMMARY OF FINAL SOLUTION STATUS

7700 CONTINUE

IJF (NOUT .LE. @A) GO TO 8an

WRITE (NOUT, 194A4) TITN,ISTOP

IF (ISTOP .EQ. @) WRITE(NOUT, 20407)

IF (ISTOP .EQ. 1) WRITE(NOUT, 214a)
IF (ISTOP .EQ. 2) WRITE(NOUT, 22@0)
IF (ISTOP .EQ. 3) WRITE(NOUT, 234a)
IF (ISTOP .FQ. 4) WRITE(NOUT, 2474)
IF (ISTOP .EQ. 5) WRITE(NOUT, 2500)
IF (ISTOP .EQ. 6) WRITE(NOUT, 264f)

IF (ISTOP .EQ. 7) WRITE(NOUT, 2700)
COMPUTE FINAL RESIDUAL R = B - A_ X, AND A(TRANSPOSE).R

8307A T1 = RNORM
T2 = ARNORM
T3 XNORM
CALL ATIMES( X,P,M,N )

DO 900 I =1, M
WLy ="BUEYy —"P(T)
90@ CONTINUE

CALL NORMLZ( U,P,M,RNORM )

CALL ATRANS( U,P,M,N )

CALL NORMLZ( P,W,N,ARNORM )

CALL NORMLZ( X,W,N,XNORM )

IF (NOUT .GT. @) WRITE(NOUT, 3@%@A) BNORM,ANORM,ACOND,T1,T2,T3,
1 RNORM , ARNORM , XNORM

FINISH OFF THE STANDARD ERROR ESTIMATES

T = ONE
IF (M .GT. N) T = M-N
T = RNORM/SQRT(T)

DO 954 1
SE(T)
950 CONTINUE

l, N
THESORT(SE(L))

RETURN

e et e e . - R
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// 25X, 4AHLSQR == LEAST-SQUARES SOLUTION OF A.X = B
X

/ 25X, 46H(I

.E. MINIMIZE NORM(R), WHERE R =B - A,

// 25X, 8HATOL =, 1PE1@4.2, 10X, R|KHBTOL =, 1PE13.2

1
2 )
3 // 25%, 29HTHE MATRIX A HAS DIMENSTONS, T6, 5H BY, 16
A
5

/ 25X, 8HCONLIM =, 1PE10.2, 10X, SHITNLIM =, T14)

120@ FORMAT(// 3X, 3HITN, 9X, 4HX(1), 14X, 7HNORM(R), R¥X, 9HNORM(A_ R),

1 3X, 23HCOMPATIBLE INCOMPATIBLE, 4X, 7HNORM(A), 4X, 7HCOND(A)
14900 FORMAT(I6, 1PE20.10, 1PE19.1¢, 1PE12.3, 1P2E13.3, 1P2Ell.?2)

15¢8 FORMAT (1X)
190@ FORMAT (

1 / 19H NO. OF ITERATIONS , 114
2 // 19H STOPPING CONDITTON, I19)

20A#» FORMAT (1H+, 34X,
2109 FORMAT (1H+, 34X,
2200 FORMAT(1H+, 34X,
2309 FORMAT(1H+, 34X,
2400 FORMAT (1H+, 34X,
2500 FORMAT(1H+, 34X,
2604 FORMAT(1H+, 34X,
2700 FORMAT(1H+, 34X,
3008 FORMAT (

44H(THE EXACT SOLUTION IS X = @)

44H(NORM(R) TS SMALL ENOUGH, GIVEN ATOL, BTOL)
44H(NORM(A.R) IS SMALL ENOUGH, CGIVEN ATOL)
44H(COND(A) HAS EXCEEDED CONLTM)

44H (ITERATION LIMIT REACHED) »

44H (NORM(R) IS SMALL ENOUGH FOR THTS MACHTNE)
44H (NORM(A.R) IS SMALL ENOUGH FOR THIS MACHTNE)
44H(COND (A) IS TOO LARGE FOR THIS MACHINE)

)

B s

1 / 19H NORM(B) TRUE, 1PE24.14,
2 5X, 19H NORM(A) ESTIMATE, 1PE15.5,
3 5X, 19H COND(A) ESTIMATE, 1PE15.5
4 // 19H NORM (R) ESTIMATE, 1PE2A4.14,
5 5X, 19H NORM(A.R) ESTIMATE, 1PE1l5.5,
6 5X, 19H NORM (X) ESTIMATE, 1PE15.7
7 / 19H TRUE, 1PE2@.11,
8 5%, 19H FRUE, L1EBLSS)
9 5X, 19H TRUE, 1PE1S5.7)
END OF LSOR
END
T T — - e—— ————————— >
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SUBROUTTNE NORMLZ( P,V,N,BETA )
INTEGER N
REAL P(N),V(N) ,BETA

NORML? IS REQUIRED BY SUBROUTTNE LSOQOR.
IT NORMALTZES THE VECTOR P AND RETURNS THE RESULT TN V.
ON RETURN, BETA = NORM(P) AND BETA*V = P,

FUNCTIONS
BLAS SNRM2

INTEGER T
REAL ONE,SNRM2, T, ZERO

ZERO a

ONE 1

BETA = SNRM2( N,P,1 )

IF (BETA .LE. ZERO) RETURN
T = ONE/BETA

DO 29 I
V(T)

CONTINUE

RETURN

r

L, N
P{T)*T

|

END OF NORMLZ
END

SUBROUTINE SAXPY( N,A,X,INCX,Y,INCY )
REAL A,X(N),Y(N)

THIS MAY BE REPLACED BY THE CORRESPONDING BLAS ROUTINE.
THE FOLLOWING TS A SIMPLF VERSION FOR USE WITH LSQR.

Do 1w I = 1, N

Y1) = AFC{E) =Y (1)
CONTINUE
RETURN
END
REAL FUNCTION SNRM2( N,X,INCX )
REAL X(N)

THIS MAY BE REPLACED BY THF CORRESPONDING BLAS ROUTTNE.
THE FOLLOWING IS A SIMPLE VERSTON FOR USE WITH LSOR.

SNRM2 = @

PO 10 I = 1,
SNRM2 = X(

CONTINUE

SNRM2 = SQRT(SNRM2)

RETURN

END

N
I)**2 + SNPR42

—— - L
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SUBROUTINE ATIMES( V,P,M,N )
INTEGER M,N
REAL V(N) ,P (M)

COMPUTE P = A.V FOR TEST MATRIX A

INTEGER I,N1

REAL ZERO

REAL D,R,XTRUE,Y, 2

COMMON /LSCOMM/ D(10a) ,R(109) ,XTRUE(1AM) ,Y(1AA) ,Z(14¢)

CALL HPROD( V,P,Z,N )
DO 108 1=1,N

P(I) = D(I)*P(TI)
CONTINUE

IF (M .LE,. N} 60 TO 500
ZERO = 0
N1 = N+1
DO 2AA TI=N1,M
P(I) = ZERO
CONTINUE

544 CALL HPROD( P,P,Y,M )

100

RETURN

END OF ATIMES
END

SUBROUTINE ATRANS( U,P,M,N )
INTEGER M,N
REAL U (M) ,P(N)

COMPUTE P = A(TRANSPOSE) .U FOR TEST MATRTX A

INTEGER L
REAL D,R,XTRUE,Y,?
COMMON /LSCOMM/ D(104) ,R(100) ,XTRUE(124) ,Y(1AA) ,7(10A)

CALL HPROD( U,P,Y,M )

DO 14@# 1=1,N
P(I) = DLIY*P(1)
CONTINUE

CALL HPROD( P,P,7,N )
RETURN

END OF ATRANS
FND
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SUBRQUTINF HPROD( V,P,7,N )
INTEGER N
REAT, P(N) ,V(N),7Z(N)
fj
(& APPLY HOUSEHOLDER ‘TRANSFORMATT N TN aB® P = (T = 2 7 7').V
=
[INTEGFR T
REAL S
C
S =0

DO 1@ 1=1,N
QS = Z(I\*v{r\ + (;
1803 CONTINUE

g = S 4+ 8
po 240 1=1,N
PATY = V(L) = S*Z (1)
200 CONTINUE
&
RETURN
&
c END OF HPROD
END
SUBROUTINE LSTP( M,N,NDUPLC,NPOWER,B,ACOND, RNORM )
INTEGER M,N,NDUPLC ,NPOWER :
REAL 3 (M) ,ACOND, RNORM
P
C GENERATE A SPARSE LEAST-SQUARES TEST PROBLEM, A.X = B,
C WHERE A = Y.D.Z IS M BY N, D IS DIAGONAL, AND
¢ Y AND 7 ARE HOUSEHOLDER TRANSFORMATIONS.
C
C FUNCTIONS AND SUBROUTINES
[ &
o
2 TESTPROB ATIMES , HPROD
2 LSOR NORML?Z
€ FORTRAN COS,FLOAT,SIN
€
INTEGER T,JyMN
REAL ALFA,RBETA,COS,FLOAT, FOURPT,SIN,T
REAL Dy R.XTRUE,Y ;2
COMMON /LSCOMM/ D(10@) ,R(10AA) ,XTRUE(140A) ,Y(14A4) ,Z2(1720)
C
[ S
€ MAKE TWO VECTORS OF NORM 1.0, FOR HOUSEHOLDER TRANSFORMATIONS
i s s s G ) et i e )
FOURPT = 4.A*3,141592
ALFA = FOURPT/FLOAT (M)
BETA = FOURPT/FLOAT (N)
8
DO 1720 1=1,M
Y(I) = SIN(FLOAT(T) *ALFA)
10% CONTINUE
C
po 280 1=1,N
2(1) = COS(FLOAT(T)*BETA)
200 CONTINUE
| RS- - e —— - rrar——— e —— —————-——-zm
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CALL NORMLZ( Y,Y,M,ALFA )
CALL NORMLZ( Z2,Z,N,BETA )

DO 300 I=1,N
J (I-1+NDUPLC) /NDUPLC
T J*NDUPLC
0 T/FLOAT (N)
D(I) = T**NPOWER
CONTINUE

ACOND = D(N)/D(1)

DO 400 1I=1,N
XTRUE(I) = N-I
CONTINUE

CALL ATIMES( XTRUE,B,M,N )
IF (M .LE. N) RETURN

FOR LEAST SQUARES, ADD RESTIDUAL R

DO 504 1=1,N
R(TI) = 7.0
CONTINUE

9 1

MN =N

DO 6@ I=1,MN
J N+T
R(J) T*FLOAT (I)/FLOAT (M)
‘B A

CONTINUE

CALL HPROD( R,R,Y,M )

DO 709 1=1,M
B(I) = B(I) + R(I)
CONTINUE

CALL NORMLZ( R,R,M,RNORM )
RETURN

END OF LSTP
END

D
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SUBROUTINE
INTEGER

EXAMPLE DRI

TNTEGER
REAL

R4

TEST( M,N,NDUPLC,NPOVWFR )
M,N,NDUPLC,NPOWFR

VER ROUTINE FOR TESTING LSOR

ISTOP,ITNLIM,J,NOUT
B(140) ,P(1aa) ,U(170) ,v(140),
w((lea) X(1aa) ,SE(149),

ATOL,BTOL,CONLIM, RNORM, ANORM, ACOND

GENERATE SPECIFIED TEST PROBLEM

CALL LSTP( M,N,NDUPLC,NPOWER,B,ACOND, RNORM )

NOUT = 6
WRITE (NOUT,

120%) NDUPLC,NPOWER,ACOND, RNORM

SET TOLERANCES FOR LSQR

ATOL = 1.AE-19

BTOL = ATOL

CONLIM = 1.0AE+10

IF (M .GT. N) CONLIM = 1,0E+5

ITNLIM = 170

CALL LSOQR(

ATOL,BTOL,CONLTM, ITNLIM,NOUT, ISTOP, RNORM, ANORM, ACOND )

M,N,M,B,P,U,V,W,X,SE,

OUTPUT RESULTS

WRITE (NOUT,
WRITE (NOUT,
WRITE (NOUT,
WRITE (NOUT,
RETURN

FORMAT (1H1

2009)
A%A9) (J,X(J), J=1,N)
3000)

appa)y (J,SE(J) ,J=1,N)

/ 28H LEAST-SQUARES TEST PROBLEM.

// 25H SINGULAR VALUES REPEATED,

154 POWER FACTOR =, I3
// 118 COND(A) =, 1PE12.4, 8%,
11H NORM(R) =, 1PE20.1d)
20403 FORMAT(/// 9H SOLUTION)
309¢ FORMAT(/ 16H STANDARD ERRORS)
400® FORMAT(5(I7, 1PE17.9))
END OF TEST

END

EXAMPLE MAIN PROGRAM

CALL TEST(
CALL TEST(
STOP
END

17,19,1,6 )
80,40,4,2 )

I},

8H TIMES.,, 8X,

e ——— gy S+ e
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APPENDIX B: OUTPUT FROM LSQR

The following listings illustrate the solution of two test problems

using the Fortran routines in Appendix A. The problems are:
p(10,10,1,6) - an ill-conditioned compatible system Az = b,

p(80,40,4,2) - a reasonably well-conditioned least-squares problem,
min|| Az - sz .

where problem P(m,n,d,p) is defined in section 8.1. The machine used was a

Burroughs B6700. The particular tolerances input to LSQR (namely ATOL =

BTOL = 1.0E-10) requested slightly less than maximum attainable precision

for this machine.

The quantities output by subroutine LSQR each iteration are as follows.
They are expressed in terms of the current approximate solution vector x
and the corresponding residual vector R Azy .
ITN The iteration number. For larger problems a line is printed

every tenth iteration.

X(1) The value of the first component of Ty, -
NORM(R) The value of HrkH. This converges to zero if Az = b is

compatible; otherwise to a positive limit.

NORM(A.R) The value of ”ATPk”- This converges to zero in all cases.

COMPATIBLE A dimensionless quantity which should converge to zero
if and only if Az = b is compatible. It is a product of

sines g s,...s; which estimates ||| /||

INCOMPATIBLE A dimensionless quantity which should converge to zero
if and only if the optimum residual » = b - Ax is nonzero.
It is an estimate of HATrkH /’(IMI&kaH).

NORM(A) A monotonically increasing estimate of HAHF.

COND(A) A monotonically increasing estimate of cond(4) = IMI&JM+HF.
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