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1. INTRODUCTIO N AND SUMMARY

• 1, 1 INTRODUCTION

Radomes affect the performance of aIrborne radar and guidance systems by reducing
guidance accuracy and radar range . These system effects limit existing missIles, and
they restrict the development of newer missiles that have increased speeds , higher
altitudes, greater frequency bandwidths, or smaller dimensions . The need for im-
proved accuracy requires accurate methods for radome analysis. Although adequate
methods exist for designing radomes that enclose antennas with diameters greater
than several wavelengths, these methods faIl for smaller antennas and radomes. The
development of small or broadband radomes Es largely empIrical so that data are
available only after a radome Is fabricated and tested. This approach is tedious and
expensive, and it delays the synthesis of systems. A more general, analytical design
method Es desirable .

The development of a general design method requires a model that relates radorne
composition and configuration to system effects . The lInk is the physical effects of a
radome; namely , boresight error , attenuation, and sidelobe level Encreases. These
three effects can be qualitatively and quantitatively derived from farfield patterns of
the antenna En the radome . * Consider sum mode patterns with and without radome as
En Figure i-i. Attenuation or loss Es the reduction in intensity at the peak of the main
beam, and boresight error Es the angular shift of the beam peak. For monopulse or
conical scan antennas , boresight error Es the angular shift of the tracking minimum
instead of the peak. Sidelobe levels changes are the changes En the intensity of sub-
sidiary maxima In the antenna pattern.

Antenna patterns are computed by evaluating diffractEon integrals. We assume
receiving operation En order to consider plane waves incident on the radome. The
complex-valued amplitude of a rectangular component En the radome-bounded region Es

ER 
= JJFTE’C~A

where E1 Es the Encldent field amplitude , F Es the receiving aperture distribution, and
T Es the radome transmittance, which Es a complex-valued function of positIon for fixed
frequency, wave polarization , and incidence direction. The integration extends over
the region in wI~ c1~ F has nontrivial magnitude. The receiving power Es assumed pro-
portional to IE I
*The pattern depends on the orientation of the antenna in the radome as well as fre-
quency and wave polarization direction.

1—i
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1
The transmittance T En Equal~Ior~, (1) descrIbe s the electromagnetic effects of the
radome. If we write T = T e~~ , A ~ is the phase delay produced by the radozne.
The quanti ty A~~ is significant because It determines equiphase surfaces , and the tilt
of these surfaces4rom the plane, Incident wave Es , to first order , proportEonal to
boresight error. Figure 1-2 suggests a distorted wavefront. Because T strongly
influences boresight error , Its accurate computation is necessary for accurate per-
form ance predictions.

The transmittance depends on several electromagnetic wave processes. The known
• mechanisms are suggested in Figure 1-3 for externally Incident plane waves. The

direct wave usually has the largest magnitude. For large radomes and antennas the
direct w ave can be accurately computed over most of the apertu re area by approxi-
mating the radome as locally plane. However , this approximation fatis En the shadow
of the tip because the radius of curvature of the radome tip approximates the wave-
length. Some evidence exists for a scattered wave centered at the tip or the edge of
a wedge.3

Data for other radomes suggests that it a wave Es scattered by the tip, the wave is
very directional ; a simple cylindrIcal or spherical wave may be an overly approximate
assumptIon. Any tip scattered wave becomes more significant as the diameter of the
receiving antenna Es reduced because the projection of the tip region becomes a larger
fraction of the aperture area. Tip diffractio n may be more important for direction-
finding antennas that sense the difference between fields for halves of the aperture ; for
larger angles of arrival, the direct waves encounter large radii of curvature and pro-
duce balanced fields that cancel , but a tip wave would have distinct phase values.

The reflected wave, which comes from the shadowed side of the radome, occurs for
incidence directions sufficiently far from axial incidence. The angle Is approximately
that of a cone tangent to the radome because the incident wave must first propagate
through the directly illuminated side. The reflected wave increases sidelobe levels ,
and it causes boresight error for larger gimbal angles.

Guided waves exist En radomes. The modes are hardly cataloged for any special case.
In general , evidence exists for slab guided modes in wedges and cones. Near the tip,
the radome may be a hollow circular waveguide. Guided modes are negligible in many
applIcatIons if the aperture Es large , but they are growing in importance for newer
smaller seekers that have antennas with small clearance from the radome. In addition ,
a guided wave can excite a tip diffracted wave and scattering at the base.

*1References are designated by a numerical superscript. They are collected In
Section 6.

1—2
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Until recently the direct wave was the main concern. However the other wave proces-
ses, which had produced rather subtle effects on systems, have become more signI-

• ftcant as radome boresight error slope requirements become more stringent. In
addition low sidelobe antennas require accurate design methods especially for reason-
able bandwidths.

This report describes analyses and experiments on wave propagation through hollow
dielectric shells. The purpose was to better describe the wave processes shown in
Figure 1-3. Our aim was to analyze wavefront structure and the excitation of the
various wave processes to estimate magnitude of the constituent fields . The results
have helped develop anisotropic structures to reduce boreslght error and Its variation
with wave polarization. Although completely polarization independent radomes seem
unlikely, some reduction of this problem seems possible with dielectric gratings or
periodically perforated metallic structures. Finally the results of the research are
expected to help the analysis of high temperatures on radome boresight error.

ERROR

‘ I’ . .L~
Oss

FL025

Figure 1-1. Radome Effects from Antenna Patterns
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1, 2 SUMMARY

~ This report describes analyses and experiments on wave propagation thro ugh hollow
dielectric shells . The purpose was to describe quantitatively the wave process in

• rado mes. see Figure 1-3. ~Specifically we sought to analyze wavefront structure and to
estimate the magnitudes of the elementa ry waves that combine to fo rm the wavefront.
The research applies to the design of new missile radomes, to the analysis of aero-
dynamic heating on radome performance, and to the development of anisotropic radomes
that reduce the polarization dependence of radome perfo rmance . .~

Section 2 summarizes the theory, which is the moment method. It is restricted to two—
dimensional problems in its present fo rm . Section 3 describes calculated results for
plane waves incident on flat slabs and on hollow wedges for a range of incidence direc-
tions. Emphasis is on perpendicular polarization , but data for parallel also are given.
Results are given for several slab and wedge dimensions . Section 4 describes near-
field experiments. The results are compared with computed ; and an accuracy criterion
is given. Section 5 interprets the results. The measured and computed results show
guided waves are strongly excited on slabs and wedges , The moment method correctly
gives the magnitude of excitation. An independent model predicts spacings of fringes
fo rmed by inte rfe ring guided and refracted waves. Scattering by edges also occurs .
These processes plus propagation through and reflection from the flat sides of a wedge
produce complicated fields . A connection was made between observed boresight erro r
properties of axially symmetric radoi-nes and guided waves.

1-6/ 1—6



2. ANALYSIS

2.1 INTRODUCTION

Radome analysis requires approximations because few radomes are bounded by sur-
faces that are complete co-ordinate surfaces in separable systems. Cylinders ,
spheres, and large flat sheets can be analyzed by boundary value methods; however ,
ogival radomes usually are analyzed with diffraction integral s, and the radome is
described as locally flat. Although approximate methods are often adequate, their
accuracy is unknown in many cases. Discrepancies between measured and computed
quantities are largest for small antennas and small radonies.

The causes of the discrepancies are only partially known. The approximation of local
planeness En computing transmittance Es mentioned by several authors. Our experience
suggests additional causes, namely undersampllng in computing transmittance. To
appreciate undersampling consider Figure 2-lA. A single incident wave normal, a
direct ray, passes through a point in the radome-bounded region. Transmittance is
computed by approximating the radome as locally flat. This method gave good accura-
cy when the antenna in the radome had diameter 10 w avelength , but it failed for an
antenna, diameter wavelength in a smaller radome. In contrast , the method suggested
by Figure 2-iC gave excellent accuracy for the smaller radome. We interpret these
results to suggest that the radome surface must be adequately sampled. Sufficiently
dense sampling introduces the variation of the surface normal into a sum of terms that
describe transmittance at a point. The lack of this variation in the direct ray method
seems a cause of discrepancies.

Another cause of discrepancies seems to be the omission of some wave processes from
most analytical methods. As mentioned in Section 1, guided waves , scattering by the
tip, and by the base of the radome exist, but these waves are usually omitted from
numerical analyses. A main objective of this project was to determine the magnitude
of the distinct wave types in radome-bounded regions.

2-i



I
Because accurate radome analysis is Involved , we considered simpler problems, the
hollow dielectric wedge and the flat slab, both with fini te width, as shown in Figure 2-2.
In addition, we considered the half cylinder. These problems are preliminaries to

• axially-symmetric radomes. We considered two directions of wave polarization. One
is TM or perpendicular polarization. The other is TE or parallel polarization. The
approach is to utilize the moment method for the numerical solution of Integral
equations.

The theoretical basis for the analysis of slabs, hollow wedges, and hollo~ c4yllnders is
• the moment method; in particular , a form developed by J. H. Richmond. ‘ The next

two subsections summarize the theory.

2.2 TM CASE, OR PERPENDICULAR POLARIZATION

The starting point is an integral equation for the scattered electric field. This equation
is derived from Maxwell’s equations with the definition t1~ t E T, the total field , which
is the field in the presence of a scatterer5is the sum of E , the incident field , which is
the field without the scatterer , and the E the scattered field . That is

E T = E
I

+ E
S. (1)

MaxwelPs equations are then rewritten In the form of the free space equations with a
polarization current that describes the effect of the dielectric scatterer. For perpen-
dicular polarization the integral equation gives the scattered field as

E S(x ,y) = (1k2/4) If  ( , c_ i ) ET(x1,y?)H
0

(
~

) 
(kp )dx ’dy’, (2)

where P = [(x-x’) 
2 

+ (y-y’) 
2 

~ 
1/2, with (x, y) th91~

o-ordinates of the observation
point and (x’, y’) those of the integration point . H ‘ ‘(k P) is a zero order Handel
func tion of the first kind , it represents an outwar8 going wave wtth~our assumed time
c1nventlon exp (-i w t), with t time and frequency ~~~~. By adding E in Equation (2) to
E , we obtain an integral equation for ET.

ET 
— Qic2

/4) f f (  ?C_ l) ET(x t ,y t)H
0~~ (kp ) dx ’dy’ = E1. (3)

To solve Equation (3), divide the two dimensional dielectric scatterer into ~~lls like
those in Figure 2-3. The cells must be small enough to justify assuming E constant
En any one cell. We assume the relative dielectric constant ~ is constant in any one
cell. From Equation (3) ~‘e get

ET 
— (ik2/4) f f  ( 

~
c
~~

_l) E (x
~~

, y ) H~’~(k p )dx’dy’ = E1. (4)

2—2



In EquatIon (4) m is an index that labels the cells, and N is the total number of cells.
In fact Equation (4) is a system of N equations . The next step is to evaluate the double
integrals In Equation (4) . This integration is straightforward for cells that are right
circular cylinders of radius a and with infinite length (In the z’ direction, which is
perpendicular to the x’,y’ plane) . There are two cases to consider. in one, the ob-
servation point is outside the cell. If n denotes the integration cell and m the obser-
vation cell, then for m ~ n

( i k 2/4)I = (—i ir ka/2)J 1(ka) H~~~ (k ~
, mn~’ - 

(5)

where p denotes the distance between (x , y ) and x , y ) ,  I Es the double integral
in Equati~~’(4) , and J1 denotes the first ord~~ ~~ ssel fux~~ti~n. In the second case,

• ( i k2/4) I (—1/2) [ir k a H1~ 
1
~(ka) + 21] . (6)

WIth Equations (5) and (6), we obtain

• N• V C E T EI , (7)
m n n  m

n =1

for 1 ~ m ~ N. The C are matrix elements.mn

To find E T it is necessary to solve the system of Equation (7). This solution may be
found by iRverting the matrix (C ). The matrix Env,~rsion is restricted by storage
capacity of computers because tI~ assumption that E is constant In any one cell
requires small cells. The small dimensions require large N for structures compar-
able in size to practical radomes.

Direction solution of equation 7 is being studied. The next section gIves calculations
for four special cases that were chosen to reveal some aspects of wave propagation In
and around radomes.

2.3 TE CASE OR PARALLEL POLARIZATION

This case is more complicated than the preceding because another term arises in the
integral equation since the gradient of the scalar potential contributes to the electric
field ,

E = -  Vø -  -~~~~~~~~~ . (8)
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With the co-ordinate system of Figure 2-2, the incident field is

E1 
= (x ,y) + ~ E’ (x,y); (9)

The total field E has a similar representation. Two sets of coupled equations result,
we obtain

N
V (A E + B  E ) = E ’
L mn xn mn yn

n=1
(10)

N
V (C E + D  E
L mn xn mn yn yni

n=1

where A , B , C , D are matrix elements; their definitions are given in
Referen~~~4. mn mn mn

2—4
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Figure 2-2. Orientations of Slabs and Hollow Wedge.
The dashed lines show where the field was evaluated.

For the wedge, a range of Incidence directions was considered.
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Figure 2-3. Approximating a Hollow Wedge with a Set of Right Circular Cylinders.
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3. COMPUTATION

• This section gives the results of moment calculations for slabs, hollow wedges, and
hollow hemi-cylinders. The co-ordinate systems of Figures 3-1, 3—2 , and 3-3 were
utilized. Cell radius a was chosen to make the sum of the areas of the approximating
cylinders equal that of the scattering object. Frequency was 9. 375 GHz. Dielectric
constant IC was 2.6; to simulate acrylic plastics which we utilized in experiments.
Loss tangent was zero; this approximation Is good because the value for acrylic
plastics is 0. 006.

3.1 PERPENDICULAR POLARIZATION

3. 1.1 SLAB: 4 IN. WIDTH, NORMAL INCIDENCE

The fields inside the slabs were computed at the center of the approximating cylinders
to study nwnericai convergence and to compare the results with those for infInJ~ely
broad sheets. Incidence was normal as in Figure 2-2a. Figure 3-4 shows E I
inside a slab, width 4 in. and thickness 0. 25 in. Cell radius a was 0. 143 In. ; spacing
was 0. 25 in. The number of cells N was 17. Note the valuç1~ fluctuate about that for
infinite fiat sheets. For comparison, Figure 3—5 shows IE I inside the same slab,
but for N = 120 and for smaller cells. For the slab midplane the results are similar
for both values of N , but the oscillations have greater amplitude in Figure 3-5. The
field also depends on Y within the slab.

The power transmittance (the normalized intensity J E T/E
u 2 outside the slab) of the

0. 25 in. thick slab is shown in Figure 3-6 for N 17 and in Figure 3-7 for N = 120.
These figures illustrate how transmittance computations depend on N.

Figure 3-8 shows J E T/El I 
2 for a slab with thIckness 0. 125 In. In this case the slab

was approximated with a single row of 33 cylinders.

3. 1.2 SLAB: 10 IN. WIDTH, NORMAL INCIDENCE

As the width of a slab increases we expect the field to approach that computed for an
Infinitely broad slab. Therefore we considered a second, broader slab, width 10 in.
The internal field magnitude is shown in Figure 3-9 for two thicknesses, 0. 125 and
0. 250 in. Figure 3—10 shows transmittance at several distances behind the 0. 25 in.
slab; all are in the nearfield of the slab. Figure 3-U shows transmittance for the
0. 125 in. slab. Note in Figure 3—11 the transmittance differs slightly from that for
a fiat slab in the central half of the slab, but nearer the edges the moment method
result oscillates about the flat sheet value.
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3. 1. 3 SLAB WITH DIELECTRIC STRIPS

FIgure 3-12 shows an array of dielectric cylinders that represents thin strips on a
dielectric slab. Slab thickness was 0. 125 in. , and width was 4. 38 In. Each strip was
0.30 In. high and 0.060 in. thick. The slab was represented by 36 cylinders each with
diameter 0. 0~1 ii. ,, 

and each strip had 5 cylinders, diameter 0. 034 in. Computed
values of I E /E I - are shown in Figure 3-13 for normal incidence on the slab with
strips. -

The effects of the strips on power transmittance Is illustrated in Figure 3-14, which
shows the computed data for the slab with and without the 15 strips. The strips in-
crease transmittance averaged over the slab by approximately 1/3 dB.

3. 1. 4 SLAB, 45° INCIDENCE

For 450 incidence , as In Figure 2-2b, the internal field , at the centers of the cylinders
approximating a slab, is shown in FIgure 3-15 for six values of N(10, 11, 21, 41 and
42) correspondIng to six distinct slab lengths . The intensity outside the slab is shown
in Figure 3—16 for N = 41; in this case intensity was evaluated on the line 0.225 in from
the slab midplane and on the shadowed side. This line is 0.1 In. fro m the slab. The
intensity on a transverse line parallel to the Incident wavefront is shown Lu Figure 3-17
for two values of N(4 1 and 42) .

The internal fields , Figure 3-15 depend on N , but this dependence has a physical
rather than numerical cause. The deep minima result from guided waves Interfering
with internal plane wave fields; we justify this interpretation in SectIon 5. The small
rapid oscillations result from interference of guided waves travelling in opposite
directions; see SectIon 5. Addition of another cylinder increased the path length of
one of the waves by approximately ir, causing maxima and minima of the small
oscillations to alternate in locations.

Another physical cause exists for fluctuations on transverse paths as in Figure 3-17.
The Increase of N extends the slab. For small N the end of the slab is closer to the
source than the observation points. The larger N the end is farther from the source.
Figure 3-18 Illustrates this point through calculations of the scattered field.

3. 1. 5 SLAB, GRAZING INCIDENCE

For grazing incidence as in Figure 2-2c, Figure 3-19 shows the intensity of the total
field In a 0. 25 in. thIck 10 in. long slab. The field was evaluated at the cei~e~s of
the fells for two values of N(40 and 41). We see from the 4 dB value of I E I that
I E I exceeds the unit magnitude of the incident field.
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I
The external intenst ty~~ ~j i Figure 3-20 for two lines parallel to the slab plane , and
Figure 3—21 shows I E I at a larger distance.

3. 1.6 WEDGE , 0. 25 IN. THICK, AXIAL INCIDENCE

For a hollow wedge, as in Figure 3-22 shows IE TI inside the walls for several values
of N, where (N-1)/2 cells are In each wall and one cell is at the tip. The field on
transverse paths (fixed y values) is shown in Figure 3-23 for the wedge represented
by two slabs of equal thickness, and In Figure 3-24 for two slabs of slightly different
thIckness. Note the additional variation in the second case. The field variation on
the symmetry plane is shown in Figure 3-25.

To obtain a comprehensive view of the field we drew contour plots of the scattered5field; see Figure 3-26 for magnitude an~ 3-27 for phase. The biggest value of I E I
was 1.65 compared to the unit value I E I

3. 1.7 WEDGE , 0. 125 IN. THICK WALLS

Figure 3—28a and b shows the field intensity inside a hollow 90° wedge, thickness
0. 125 In. , with walls 10 in. long; results are given for four incidence directions 0 1
equal to 0° , 22.5° , 45° , and 67.5° . Note 0~ equal 0° gives axial incidence; 0~
equal 45° gives normal incidence on one slab and grazing incidence on the other. The
value 67.5° gives reflections.

Because many graphs are necessary to represent the field behind a wedge, we pictorial-
ly displayed the data. Figures 3-29 and 3—30 show these plcts of the scattered field
E S for the wedge with 0. 125 in. thick walls. The data were quantized into 11 levels
so the representation is rather coarse. Therefore we increased the number of levels
to 22; see Figure 3—31 and 3—32.

3. 1.8 HE MICYLINDER

FIgure 3-33 shows the geometry. The hemicylinder had diameter 4. 8 In. and thickness
0. 125 in. The direction of the incident wave was specified by the angle 0 . The hemi-
cylinder was approximated by a set of small solid cylinders , radius a, on a hemicircie
of radius R. See Figure 3-34. Computations were done for R equal 2. 5 in. and a
equal 0. 071 in. ; P the distance between hemlcylinders was . 125 in.

Figure 3—35 shows Intensity lE T/Eu 2 for ~ = 90° at two values of y. For compari-
son, the figure also shows values computed with a ray tr~pin~ method that approxi-
mates the radome as locally flat. The phase delay arg E /E is show n In Figure 3-36.
Figures 3-37 and 3—38 show intensity and phase for 0 1 = 45°.
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Because anisotropic gratings have been utilized to Improve radomes , we applied the
moment method to their analysis. Figure 3-39 shows the geometry. Transmittance
is shown in Figure 3-40 for o . = 00 .

3.2 PARALLEL POLARIZATION

3. 2. 1 SLAB: 0. 125 IN. THICK, GRAZING INCIDENCE

Figure 3-41 I E TI ins~1e ~ s~ab, thickness 0. 125 in. length 4 In. for grazing incidence.
Figure 3-42 shows I E /E I outside the slab at five lines parallel to the slab.

3. 2. 2 SLAB: 0. 235 in. THICK, GRAZING INCIDENCE

FIgure 3—43 shows IE T1 inside a slab, thickness 0. 235 in. , length 4 in. for grazing
incidence. Results are shown for ~~ , sizjg1~ row of cylinders, N = 17, and for two rows
N = 68. The external intensity IE /E I is shown In Figure 3-44.
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Figure 3-3. Geometry for Hemi -Cvlinder and Incident Wave Directions
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Figure 3-4. Internal Field Magnitude for 1/4 in. x 4 in. x iS in. Slab , K = 2. 6 ,
for Normal Incidence. Calculated for N = 17 , a = 0. 143 in. , P = 0. 25 in.

at y = 0. The arrow shows the value predicted by flat sheet theory.
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Figure 3-5. Internal Field Magnitude for 1/4 in . x 4 in. x 18 in. Slab , K = 2. 6 , for
Normal Incidence. Calculated for N = 120 , a = 0. 053 in. , p = 0. 100 in.

Hexagonal Arrangement of Cells for s = 0 ( — ) ;  for ‘ = ±0. 08 in. (----). The
arrow shows the value predicted by the theory of flat sheets

at the central row of cylinders.
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Figure 3-7. Power transmittance of slab in Figure 3—6 ut calculated N = 120 ,
a = 0.053 i n . ,  p = 0. 10 in.
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FIgure 3— 8. Power transmittance of 0. 125 by 4 . 0 in. slab : K = 2. C , 0~ = 90° .
33, a=  0.0715 in., P= 0.125 in.
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Figure 3—9 . Total Field Amplitude in Dielectric Slab , K = 2, 6, Normal Incidence.
Computed for N = 41, a = 0. 143 in. , P = 0. 25 In. (for 1/4 In. thickness the dashed

curve) and N 81, a = 0.0715 In. , P = 0. 125 in. (for 1/8 in thickness the solid curve).
The arrows Indicate the values predicted by flat sheet theory .

3—8



I 

-

~ 

-~~----- .--*~~~~~~~~~~~~~~ ---- ,“-

I
.‘ E A S LR E2 ~~ I T k  0PE’~ E\ D ,~ .‘E2~iC E — ~~~~ ~~P .1LE C..LL~~.~ T E

~~-~~~~~p 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~ 2

~~
_

~~~%

GEOO6

Figure 3—10 . Power transmittance of 0.25 in. by 10 in. by is In. slab, K = 2.6 ,
N = 41; for normal Incidence a=  0.143 in., P = 0.25 In.
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Calculated: N = 81, a = .0715 in., P = . 125 in. The broken

heavy line Is the value for an infinite slab.
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Figure 3—12. Array of 11 cylinders to represent 4.38 in. wide slab
0. 125 in. thick wIth 15 strips .
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Figure 3—13. Power transmittance of 0. 125 by 4 . 38 in. slab with 15 strips : Computed
f o r N = 1 1 1, a 0 . 074 in. and o. 034 i n . , p = 0 . 125 in. and o. OG in.
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Figure 3-14. Power transmittance of 0 . 125 by 4 .38 in. slabs: i~ 2 . 6 , A
1 

= 00 ;
with 15 dielectric strips: N = 111: a 0. 071 in. : 0.034 in.

p = 0. 125 in. : 0 .06 0 in .
without strips: N = 36: a = 0.07 1 in . ;  p = 0. 125 In.
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Figure 3—15. Total Field Magnitude Inside Dielectric Slabs for 450
w A = 1.259 in.

Computed for a = 0.143 in., p = 0.250 in. The arrows show
theoretical fringe spacings for guided waves .
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Figure 3-16. Intensity in Total Field at Distance 0.225 in. from Slab Midplane.
Thickness 0. 25 in. , length lO in. Computed f o r N = 4 1, a = 0 . 143 in. , p = 0 . 25 in. ,

X = 1.259 In., K = 2 6 .  The numbers between minima are spacings in inches.
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Figure 3—17. Intensity Behind Dielectric Slab, K = 2. 6 , A = 1. 259 in. for 45° IncIdence.
Measured for 0. 23 In. x 10 in. x 18 in. slab with dipole probe at x = 4.48 in. (—).

Calculated forN=41 r);forN=42 (o). p =0 . 25 in. , a = 0 . 143 in.
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Figure 3—18. Scattered Field Magnitude Behind Slab (10 in. x 18 in. x 0.23 in.,
K = 2.6) for 450 Incidence at x 4. 48 in.
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Figure 3-19. Total Field Intensity Inside Slab 1/4 in. Thick, 10 in. Long.
N = 4 0 (—), N = 4 1 (——— ), a = O . ].43 1n. , p = O . 25 in. , ~~=2 . 6.
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Figure 3—20. Intensity Near Dielectric Slab, ,c = 2. 6, 1/4 In. x 10 in. x 18 in. ,
Calcuiated f o r N = 4 0 , a = 0 . 143 in. , P = O . 25 in. , X = 1 . 259 in.
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Figure 3—21. I ERI2 Outside Dielectric Slab, K = 2. 6 for Grazing Incidence,
With A = 1. 259 in. , P = 0. 25 in. and a = 0. 143 in.
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P=O .25 1n., a= 0.1431n.,K =2.6 atX=1.259 in. for Axial Incidence.
The horizontal dashed line gives the value for an infinitely broad slab.
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Figure 3-23. I.ntenslty Behind Hollow Dielectric Wedge, ~ = 2. 6, WIth
10 in. x 18 in. Walls, ThIcknesses 0. 226 in. and 0. 232 in . at A = 1. 259 in.

Measured with dipole probe (—). Calculated at x = 4. 48 in. ,
f o r N = 8 1 (°), f o r N = 8 3 (x), a 0. 143 1n. , P 0 . 25 i n.
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Figure 3-24. Intensity Behind Hollow Dielectric Wedge , DC = 2. 6, With
18 In. x 18 In. Walls, Thicknesses 0. 226 In. and 0.232 In. at A = 1. 259 in.

Measured with dipole probe (—). Calculated at x = 4.48 in. (x) ,
at x 4. 61 in. (°) . P 0. 25 in. , a = 0. 136 In. for y < 0,

a = 0. 130 In. for y > 0. N = 81.
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Figure 3-25. Power transmittance on symmetry plane of hollow wedge.
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Figure 3—29. Intensity and phase near 90 dielectric wedge;
sidewall lengths 10 in.; thickness 0. 125 in.
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Figure 3-34. Approximating a Hollow Hemi-Cylinde r with a Set of Solid Cylinders
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Figure 3—37. Power transmittance for the conditions of Figure 3—35 , except with
= 45~. The dashed lines show the co-ordinates of the inner

radome surface.
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4. MEASUREMENT

4.1 APPARA TUS AND PROCEDURE

The apparatus Is sketched in FIgure 4—1. It consisted of a signal generator , a network
analyzer , and a probe positioner. The probe antenna was either a half—wave dipole or
an open end wavegulde. The transmitting antenna was 20’ from the probe so the field
was approximately that of a plane wave. Measurements were maLle by moving the probe
on the paths shown In Figure 2-2, with the dielectric scatterer present and then after
the scatterer was removed. The difference between measured values of intensity is
the power transmittance, which is normalized to the free space value ; similarly the
difference in phase values is the argument of the complex-valued transmittance.

4.2 RESULTS FOR PERPENDICULAR POLARIZATIO N

4.2 .1 SLA B 4 IN WIDTH; NORMA L INCIDENC E

T I~For the slab with thickness 0. 24 in.., measured values of I E /E I are shown in
Figures 3—6 and 3—7 for two, distinct probes. One was an open-end waveguide. The
other was a half—wave dipole. The measured data depend on the probe , but the
diffe rences between the results decrease with distance from the slab. For either probe ,
the discrepancies between measured and computed results are smalle r in Figure 3-7
than in Figure 3-6. This result is reasonable since N was larger for Figure 3-7 than
for 3—6 . In Figure 3-7 discrepancies are smaller for the dipole probe . Therefo re the
dipole seems to be preferable to the open-end waveguide.

Figure 3—8 shows I E T/E I
I
2 measured with a dipole probe for a slab with thickness

0.125 in.

4.2 .2 SLAB: lO IN. WIDE, NORMAL INCIDENCE

FIgure 3—10 shows I E T/E
I I shows measured values for a slab thickness 0. 25 in. The

dipole probe gives the variation of the computed curves, and ~iscrepancies are smaller
for the dipole than for the waveguide except in the center of the graphs for Y = 0. 75 A .

Figure 3—11 shows lE T/E
u 2  of the thinner slab, 0.125 in. thick, for a dipole probe.

r)iscrepancies are very small. The reason is that the small values of a gave accurate
computations. In contrast for Figure 3— 10 N was small , and a was too large for
accurate computations. This approximation Is furthe r discussed in Section 5.

4-1

- - — —----~~- - - - .  ~~~~~~-- - .. - -  -,“ -- --~~~~~~~~~~~ -- - --



___________ - ~~~~~~~~~~~~~~~~~~~~~~~ --- -~~~ --- -~~~~

4. 2.3 SLA B WITH DIELECTRIC STRIPS

T 1 2Measured values of I E /E I are shown in Figure 3—13 . The discrepancies increase
with increasing X. The discrepancies are small (less than 0. 4 dB) for x > 0, but as
much as 0. 8 dB for x < 0 .  This asymmetry results because the computations were
done with the strips at positions asymmetric about the slab center. In Figure 3-13
the strips near the fifteenth more nearly represent the experimental model than do
those near the first , which is on the side x < 0.

4. 2. 4 SLAB, 45 ° INCIDENC E

Figure 3—17 shows measured values of intensity IE T/EI I 2 on a transverse path , which
had a fixed x value in Figure 2-2b. The transition between the directly illuminated and
shadowed regions is apparent. The discrepancies are large in the shadowed region
because the cells were large; with a = 0. 143 in. This case corresponds to that in
Figure 3—10; only the incidence angle and probing paths differ.

4. 2.5 SLA B, GRAZING INCIDENCE

For grazing incidence , Figure 2-2c , Figure 4-2 shows lE T/El I 2 measured at three
values of the spacing between the probe (a half-wave dipole) and the slab. The spacings
were 0. 1, 0. 2 , and 0. 3 in. Figure 4—3 shows lE T/E lI 2 at spacing 0.4 in. Notice
that spacing is less than the y co-ordinate by half the slab thickness. For example ,
spacing 0. 4 in. corresponds to Y equal 0. 525 in. Because of tolerances in slab thick-
ness the value of y may be in error by as much as 0. 01 in.

4. 2. 6 HOLLOW WEDGE , 0. 23 IN. THICK , AXIA L INCIDENCE

Figure 3-23 (and 3-24) show J E T/Eu 2  for a hollow, 90~ wedge formed of two orthogonal
slabs. Wall thicknesses were 0. 226 ” and 0. 232” .

4.3 RESULTS FOR PARALLEL POLARIZATION

The probe influences measurements for parallel polarization when it is near a slab
because the field has a considerable evanescent constituent. That is , the guided wave
amplitude decreases rapidly with increasing distance from the slab. Since the probe
spans a finite width , it averages the field. Moreover , the response to the field depends
on probe orientation for an unbalanced probe. For example , Figure 4-4 shows
measured values of I ET 12  for two orientations of the dipole probe near a slab, thick-
ness 0. 125 in. The orientations are approximately symmetric, with the probe merely
inverted , yet the data differ considerably. Figure 4—5 shows results for a slab 0. 60 cm
thick. The average of the I E~ I 2 values for the two orientations is shown in Figure 4-6 .
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The data in Figure 4—6a should be compared with those in Figure 3-42. The value of
Y we expect is the sum of half the probe width (0. 313 in. ), half the slab thickness
(0. 063 in. ), and probe clearance from the slab (0. 040). The sum is 0. 416 in. In
Figure 3—4 2 the graphs 1. 02 and 1. 27 cm resemble the average of the measured data
in Figure 4-6.

Figure 4-7 shows deep minima near a slab 0.432 in. thick.
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5. DISCUSSION

5.1 PERPENDICULAR PO LARIZATION

5. 1. 1 SLA BS, NORMAL INCIDENCE~ INTERNAL FIELDS AND AN ACCURACY
CRITERION

The values of I E
T

I shown in Figures 3—4 and 3—5 oscillate as functions of X. The
values on the slab—midplane vary about the value for an infinitely broad sheet. The
exact, analytical value for the mid—plane is

E~ = t01 ( l— r10expkd’) ’(expikd’/2 ) (11)

where t01 and r10 are Fresnel interface transmittance and reflectances , and d’ is

d sJsc-sin2i , where d is thickness, and i is incidence angle. The moment method results
also depend on y, as expected.

In the following discussion , we use the term “discrepancy ” for the difference between
measured and computed values.

Figure 3-6 shows I ET/E
I 2 measured once with an open-end waveguide and once with

a half-wave dipole. The shapes of the curves for the dipole more closely resemble the
computed values than do those for the waveguide. Discrepancies are also smaller
except near the center of the curve for Y = 0. 75 A. The discrepancies are large for
either antenna.

The large discrepancies in Figure 3-6 result because the cell size, 0. 114 A , violates
the assumption that the field be constant in each cell. For a smaller cell size,
0. 042 A , Figure 3—7 shows smaller discrepancies. In this figure , discrepancies are
larger for Y = 0. 5 A than for Y = 1. O X ;  apparently, the probes disturb the field more
when they are nearer the slab. Note too that discrepancies are smaller for the dipole
probe. Therefore the dipole seems better for perpendicular polarizati on. Apparently
it has better spatial resolution than the open-end waveguide.

Figure 3-8 shows small discrepancies for a thinner slab. In this case calculations
were done with a equal 0. 715 In . Again, discrepancies are larger for the probe
nearer the slab.
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Now we consider a quantitative accuracy criterion for cell radii. We plot the maximum
discrepancy, in a graph of I ET/EI 12  for each y as a function of optical path length 00
corresponding to cell diameter; that is,

0 = 36O ° (2a~R7A) (12)
0

Consider the data measured with the dipble and shown in Figures 3-6 , 3—7 , and 3—8.
The values of 00 for the respective figures are 132 L, 49 0 and 66

0
. Figure 5—1 shows

maximum discrepancies plotted as functions of 0,~ for two distances between probe
and slab mid—plane.

Figure 5-1 suggests that smaller 00 correspond to smaller discrepancies. For the
data points corresponding to the two smaller values of 

~~ 
and for which discrepancy

magnitudes are relatively small , the data for Y = A/2 seem more accurate than those
for Y = A . Apparently the probe affects the measuremements more when it is closer
to the slab than it does at larger distances.

We conclude that maximum discrepancies of reasonable magnitude (approximately 10°c
in power) can be obtained with 0~ equal 66 0

. This value results with a = 0. 042 A for
x equal 2.6.

5.1.2 SLAB: 25.4 CM WIDTH, NORMA L INCIDENCE

For the thicker slab, Figure 3—10 shows that the dipole gives somewhat better agree-
ment with the shape of the computed curve than does the waveguide. Discrepancies
are large for either probe. For the thinner slab, discrepancies are small for the
dipole probe; see Figure 3—11. The maximum discrepancies are plotted in Figure 5-2
as functions of •~• By comparing Figures 5—1 and 5—2 , we see discrepancies are
smaller for the broader slab. If we choose 0. 6 dB as a criterion then for = 66 0

,
this discrepancy can be achieved at Y = A/2 for the broader slab; however, this value
requires Y be greater, approximately A.

5. 1.3 GUIDED WAVES: AN INDEPENDENT MODEL; EXAMPLES FOR NORMAL
INCIDENC E

The measured and computed graphs show oscillations. Examples are numerous. The
internal field magnitudes in Figures 3—4 and 3—5 vary about the value for a sheet of
infinite width. At normal incidence , Figure 3-11 shows small , but distinct oscillations ,
and FIgures 3—16 and 3—21 show wide variations. These oscillations occur for both
measured and computed values. Their explanation is interference of guided waves and
plane waves that propagate into and through the slabs and wedges. This interpretation
follows from the following model.

5—2
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For notational simplicity let us start with external fields and consider a slab. Suppose
the total field in the region shadowed by a slab consists of a plane wave and a slab -
guided wave. The field is

T -vd i k s  ik s cos aE = Ae e g + T~ e o , (1.3)

where s is path length along the slab or + y2 )1/2 k0 is 2 ~ / X~ , with A0 the free
space wavelength, A is the guided wave amplitude and T~ the complex-valued plane
wave transmittance of a sheet with properties of the slab. The symbol d represents
normal distance from the slab, kg is the propagation constant of the slab , and v is the
decay factor . The angle a is the angle between the plane of the slab and the incident
wave normal. The solution of the boundary value problem for slab guided waves gives
u and V.

From symmetry we assume the guided wave to have even variation about the midplane.
To determine kg and v we must solve

(ua/2) tan(ua/2) = (va/2 ) (14)

where a is slab thickness , and

2 2 “u = K k  — k  , (15)
0 g

with the condition

2 2 2u ~~~~ = k  ( K — ].) (16)
0

To determine u and v , graph the left side of Equation 14 as a function of ua/2 and find
the intersection with the circle of Equation 15, when written as (ua/2) 2 - (va/2 )2

k~a2 (,c— 1)/4. For example, Figure 5—3 shows a graph for 2a = 0. 125 in.; X~ =

1.259 in., and sc 2 .6. We find ua/2 is 0. 118 71 50 kg IS

k =1. 73 un . (17)
g

and v = 0. 72 un .  (18)
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1
As a chec k on our model , we shall examine spacings of fringes as in Figu re 3-16. The
condition for minima spacings is that the two terms on the right side of Eqatuion 13
differ by 2 in distance s. Thus

o s = 2 ’ : T / (kg~~ k0 cosa )  (19)

To derive spacings Inside the slab we must utiliz e the internal refracted and reflected
waves. For the orientation in Figure 3-1, assume the field is

T i(k X + k~y) i(k x - k Y~ i k x
E = Tde Rde ~“ — Ae ~‘ (20)

where Td and~~~ are transmittance and reflectance for the internal waves (assumed
plane), k~ 

= ~~~~ sin r , Ic~ = .7k cos r , where r is the angle of refraction . Consider
the midplane, so y is zero. Recall Snell’s law , that ..~~~ sin r = sin i, with i the
incidence angle, and i + C~ = 7r/2. Thus, Equation 20 gives

T ik x cos~~ i k x
E = (Td

+R
d)e ° + Ae g (21)

Equation 21 has the form of Equation 13 so fringe spacings inside and outside are
equal. This result is physically intuitive.

The model assumed for Equation 13 was one plane wave and one guided; but this model
is too simple. For example, consider normal incidence on a slab, Figure 2-2a.
The oscillations of ET inside the slab can be explained by interference of guided waves
and plane waves , but from symmetry we must assume two guided waves that travel in
opposite directions. We also assum e the internal field contains plane waves , which for
normal incidence are 

-

ik s/~ y -ik0.Jsc y
E = T e  ° + R e  (22)

p d d

For simplicity let y = 0 so

E = T d
+ R

d = S (23)
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Thus the internal field is

T ik x -ik x
E S -‘ Ae g 

+ Be g 
, (24)

and intensity is

IE
T

I =C +2 AB cos[2kg
x+ (a_~~ +2IASIcos~kg

x~~(a_U)]

+ 2 IBS I cos [kgX + (25)

~2 2 2where C = IAI + B + I S I  , and a ,j3  and o contain phase of A , B and S.

From Equation 25 we obtain fringe spacings. -

= 1~/kg 
- 

(26)

and

~~S= 2 i r / k  . (27)g

For the data in Figures 3-4 and 3-5, we have kg = 1. 96 ‘r /inch. Therefore ~ S from
Equation 27 is 1. 02 in. This value agrees closely with the 1. 00 in. spacings computed
by the moment method; see Figures 3-4 and 3-5. This spacing was determined by
averaging the spacings in t1~ graph. Note that Equation 27 results from the terms with
S as a factor. Physically, this spacing corresponds to interference of plane and guided
waves. The smaller spacing, Equation 26 , arises from interference of oppositely
directed waves. This smaller period is apparently absent. The reasons are that A
and B are smaller than S, and that we have two terms with period 2w/ k g in Equation 2T.

The mechanism for guided wave excitation may be the larger phase shift over the slab
and negligible phase shift away from the slab. The wave Is refracted into the slab near
the ends; that is, the wavefront is bent into the slab near its ends.

- -
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I
For the broader slab we have more spacings than in Figure 3—4 . Fiçure 3-9 shows
spacings from moment method calculation s to be 1. 0 in. for the 1/4 in. thickness
and 1. 14 in. for the 1/8 in. thickness. From Equation 27 we have 1. 02 in. as stated
above for 1/4 in. thi ckness (kg = 1. 96 ir /inch and 1. 18 in. for 1/8 in. thickness
(k,, = 1. 70 ir Inch). The agreement between the momen t method and Equation 27 is
good.

Now consider external fields in Figures 3—10 and 3-11. It is clear that the moment
method agrees with measurement for the thinner slab (Figure 3-11); for Figure 3-10
discrepancies are large because a was large.

Equation 27 also gives predictions that agree with measurement. For the 1/4 in .
thickness , Equation 27 gives AS as 1. 02 in . ;  the average spacing of 8 measured
fringes in Figure 3-10 is 1. 0 in. For the 1/8 in. thickness, Equation 27 gives AS
as 1. 18 in. ; the average spacing of 7 measured fringes in Figure 3-1]. is 1. 14 in.

It is significant that fringe spacings depend on slab thickness. We can imagine a simple -

model in which the slab edges scattered free space type rays. In this case, no thick-
ness dependence would exist. Moreover , the fringe spacing would be given by the
intensity arising from an expression such as

ik x -ik x i k y
E A e  ° 

~~~~ — T e  ° (2 s)

where for emphasis k0 is the free space propagation constant. From Equation 28 we
obtain periods

A S = l r /k (29)

and

A S = 2 i r / k  (30)
0

From Equation 30 the spacing is A or 1. 259 in. This value exceeds the 1. 14 in. value
for 1/4 in. thickness and the 1. 0 in. value for the 1/8 in. thickness.

We conclude edge diffracted rays are absent , but that guided waves exist and they might
be considered to arise from refraction at the edges. We would call these guided rays
in a geometric diffraction theory context. Guided waves also correspond to the rapid
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decrease of the amplitude of the oscillations with distance in Figures 3—10 and 3—11;
these slabs were relatively broad with widths 8 wavelengths. For the narrower slabs ,
the rapid oscillations of E T/E I I near the edges may suggest cylindrical waves from
the edges , but we have not examined this possibility.

We emphasize that the model leading to Equation 13 is independent of the moment
method yet it yields spacings that agree with those of the moment method. In addition,
both the moment method results and Equation 13 yield results that agree with measured
d ata. The evidence for guided waves is strong; we have identified a simple wave type ,
guided waves , in the numerical results from the moment method.

3 .1.4 SLA B WITH DIE LECTRIC STRIPS

The calculated values in Figure 3—14 show the strips increased transmittance averaged
over the slab by approximately 1/3 dB. In Figure 3-13, discrepancies between
measured and computed values are small for X > 0 , but larger for negative X. These
discrepancies arise because the experimental model differed from the computational .
The strips locations for X > 0 agree for both models. In Figure 3—12 the configuration
near the 15th strip is that of the experiment model; however , near the 1st the compu-
tational model dif fers from the experimental .

5.1.5 SLAB, 45 DEGREE INCIDENCE

The deep minima in Figure 3— 15 can be explained by interference between guided waves
and the internal plane waves. From Equation 19, with kg equal 1. 96 71 /inch and a
equal 450 we obtain ~~S = 2. 39 in. which agrees well with the 2. 4 in. spacing in
Figure 3—19. The shallower , more rapid oscillations apparently result from inter-
ference of the guided wave travelling in the positive X direction of Figure 3— 1 and
a smaller amplitude guided wave. The second term in Equation 25 represents such
waves, and Equation 26 gives fringe spacing 0. 51 in. This value agrees with the period -

of the rapid oscillations. Recall that cells are spaced by 0. 25 in. and in Figure 3-15
the period corresponds to two cells. The out of phase behavior of the small oscillation
produced by adding a cell also supports the interpretation of guided wave interference.
The added phase on reflection is 2 k,,. P or 2(1. 96 ir ) /4 = 0. 98 ir . The phase is almost
reversed by adding a cell.

Notice that the fringe pattern is established even for N = 10 which corresponds to slab
length only 2 wavelengths.

The external field at distance 0. 1 in. from the slab shows fr inges with spacings closely
approximating the 2. 4 in. value predicted by Equation 19.

5—7

~

-- - -- -~~~~~ ~~~~~~~~~~~ - _---
~~~~~~~ —-~~~~ - _ - - -  _ - - ~~~~~~~~- —- --.-_ _ - - - -~~~~~~ _-- .- - - -- - -~~~~--.~~ -~~~- -4



- - -  - - — -~~~-— , -,-- -~ .-— --.—~~~~~~
- .--- --, - •~~ -----~~~~~ —- 

______  -. -
~~~~~~~~~

I

For the transverse path of Figure 2-2b , (Figure 3— 17), the abrupt decrease for Y
approximately 4 in. fits the notion of a guided wave.

5.1.6 FLA T SLA B, GRA ZING INCIDENCE

Figure 3—19 shows that the computed internal field intensity exceeds the incident field
intensity. The field magnitude I E T I reaches values almost twice that of 1E 11. Again
we see the out-of-phase behavior produéed by adding one cell. Figures 3—21 and 3—22
show that the field changes rapidly with perpendicular distance. By comparing Figures
3-20 and 3—21 with Figures 4— 2 and 4-3 we see excellent agreement between measured
results and those from the moment method. Notice in Figure 3—20 that the small rapid
oscillations have period 0.5 in. in the region of the slab, 0 in. � x ~ 10 in. ; however,
for x > 0 the period exceeds 0. 6 in. Thus we have a free space reflected wave for
x < 0 and interfering guided waves for X > 0.

5.1.7 HOLLOW WEDGE

The internal field , shown in Figure 3—22 , for thickness 0. 25 in. at axial incidence has -
oscillations like those of the slab, Figure 3-15. Again , we have interference between
guided and free space plane waves . In Figure 3-22, the amplitude oscillates between
0.1 and 1. 1, about the value 0. 6 for the internal plane waves. Therefore , the guided
wave amplitude is estimated at 0. 5. This estimate also applies for the slab at 450

incidence; see Figure 3—15.

Figures 3-23 and 3—24 show that distinct thicknesses for the two walls of the wedge
introduce small fluctuation s into the field on the transverse plane . These fluctuations
appear in the measured data.

The intensity lE T/E
u 2 on the symmetry plane , Figure 3—25 , is influenced by waves

that are scattered by the edges of the wedge. The edges at the far ends of the walls
project to x = 7. 1 in. in the co—ordin ate system of Figure 2—2d , and a third edge is at
the vertex. Assume three rays as in Figure 5—4. Let the fields of these three rays
be a sum of three plane waves

ik x i ( k x ÷ k y )  i ( k x - k y )
E = T e °~~-ae  x x 

~ (31)e p

where k~ 
is k0cosø, k is k sin~ , and a is amplitude. On the plane Y = 0,

ik x  i k x
E = T e  ° --- 2ae X 

(32)e p
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The intensity is

2 2
I E I  = lT~~l -~ a 4laT l cos [(ic_k~

) x + 1 -  a] (33)

where ~r is the phase of T and ~ that of a. From Equation 33 the period of t E l 2 is

• —1
(O X ) = (1 — cosø) (34)

which is plotted in Figure 5—5. For 0 = 90° , ( x)~ is X.  In Figure 3—25 the spacings
for 5 in. � x ~ 8 in. are approximately X. Furthermore , fringe spacings increase
with x, this trend is predicted by Equation 34, as shown in Figure 5—5. The variation
for x < 4  in. are small suggesting the edge diffracted waves vary with position.

The field structure behind a wedge is evidently complicated, for it includes guided
waves, edge—diffracted waves, and waves propagated through the walls. Figure 3-27
suggests that the field is approximately a plane wave because the equiphase surfaces
are relatively flat . However , Figure 3—26 shows substantial intensity variation
especially near the wedge walls.

Equation 19 predicts the fringe spacings for the hollow wedge with 0. 125 in. thick
walls. Table 5—1 summarizes the data. For the wedge, we have two values of incidence
angle for each O j  because we have two slabs forming the wedge ; of course , for ~ = 0°,
the two values of a are equal, 45°.

Table 5—1
Fringe Spacings From Equation 7 for k.~,, = 1. 73 7r /inch, 2a = 0. 125, k = 2. 6, A = 1. 259

a a I

- 
as

upper slab lower slab upper slab lower slab
(deg) (deg) (deg) (inch) (inch)

22 .5 22. 5 67.5 7.407 1. 7S4
45 0 90 14.29 1.156
67. 5 22. 5 67. 5 7. 407 1. 784

0 45 45 J 3.30 3. 30

Figures 3—28a and b have these spacings superimposed on the moment method calcu-
lations of I E T I 2  . We observe agreement is excellent. We also see the rapid
oscillations predicted by Equation 24 .
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To study the exponential decrease of guided waves we computed I E~ I. Figure 5-6
shows ES on two lines, which intersect the x axis at 4 in. and at 5 in. The co—
ordinate is parallel to the incident wavefront. In this case, ~~ = 45°. The graphs
show large values for y greater than 2 in. or 3 in.;  that is , near the upper wall of
the wedge. The figure also shows Ae~~’ , where A is the value from the moment
method calculation just outside the wall. The exponential decrease agrees fai rly well
with the moment method results. The approximately constant values of I ESI for Y less
than approximately 2 in. arise mainly because of the lower half of the wedge.

Although the scattered field ES is theoretically interesting, the total field E T is
directly observable and of interest for radomes. Therefore , we show I E~~~I 

2 for the
scattered field of FIgure 5-6 in Figure 5-7 and the phase or arg ET in Figure 5—8.
In Figures 5—7 and 5-8 the dashed lines show the values for an infinitely broad sheet.
Near the upper slab, the moment method results differ very much from those for the
flat sheet. Away from the upper slab and behind the slab illuminated at normal
incidence, the moment method results oscillate about the flat sheet results. The
oscillations imply the existence of a field distinct from that for a flat sheet. In such a
description, we would exclude the guided wave as a constituent combining with the
wave propagated through the lower slab because the exponential decay is strong.
Instead, we might expect scattering from the tip or the far ends of the wedge. Of
course the guided waves may be scattered by the edges or ends of the dielectric
structure.

We obtain a comprehensive view of the field near the slab, from the displays of E S

by a computer—driven, oscilloscope plotter. Photographs of I E I - and the phase of
ES are shown in Figures 3—29 and 3-30. These figure s show the highly excited guided

• waves for grazing or nearly grazing incidence, and the relatively large values of Os
for such incidence. The figures show the smaller value of 0s for Oj  = 45° . The less
visible fringes apparently occur because of interference between waves from the
vertex and slab ends with the plane wave through the slabs. The wave processes
producing the weaker fringes may be significant for boresight error with an aperture
antenna because many of these antennas measure fields through two balanced halves
of the antenna. Small asymmetries can unbalance the antenna.

5.1.8 HOLLOW WE DGE: BORESIGHT ERROR

Although few radomes have the shape of a wedge, it is useful to estimate the boresight
error of this idealized shape. The method is to determine the tilt of the wavefront ,
as described in Appendix A. To compute tilt, we fit a least squares line to phase delay
data like that in Figure 5—8. In particular , we choose a line parallel to the incident
wavefront for O~ = 0, 22. 5°, 45°, and 67. 5°; this line intersects the symmetry axis at
x = 4 in. The line represents the position of an antenna aperture. For each angle we
sample the phase at a set of points spaced by X ~/2 and fit a least squares line to these
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phase values. To estimate effects of aperture size we use nine points to represent a
fou r wide aperture and seven points to represent a three A 0 wide apertu re. Typical
results for = 22. 50 are tilt of 9. 2°/A 0 or 1.5° boresight error, for the 4A0 aperture .

Boresight error is summarized in Figure 5-9. The graphs have the shape of typical

J boresight error curves with a maximum at angles such that the projection of the
aperture begins to clear the tip of the radome. The boresight error is larger for the
larger aperture. This result is reasonable when we recall the abrupt change in phase
near the wall; see Figure 5—8. A smaller aperture misses much of the phase delay
increase. Figure 5-9 also shows boresight error when the phase is computed by flat
sheet theory. In Figure 5—8 , these values are the straight, horizontal line with zero
tilt so boresight error is zero for O~ = 45°.

The boresight error magnitudes for the phase delays computed by the moment method
are larger than those based on flat sheet theory. The error is more convergent for
the moment method, where convergent means that the normal to the tilted phase line
shifts toward the radome tip, away from the antenna normal. This sense of shift is
reasonable because the guided wave is slow, increasing the phase delay near the wall.
This effect is observed in axially— symmetric radomes, as we show in the next section.

5.1.9 AXIALLY-SYMMETRIC, THTh SHE LL

The moment method results computed for the wedge resemble those observed in axially
symmetric shells. For example, Figure 5—10 shows power transmittance I T 1

2

measured in the region bounded by an axially—symmetric shell with thickness 0. 029 A 0,
dielectric constant 3. 2, length 12. 8X 0, and base diameter 6. 7X 0. Gimbal angle was

F • 10°. I T  12 is shown for both horizontal and vertical polarization, and for the probe
scanned over paths at three distances from the tip. The data for vertical polarization
show 1T 1 2 exceeding 0 dB for y less than zero; this is the side nearer the radome
wall as sketched in Figure 5—11. The transmittance greater than 0 dB near the wall
suggests guided waves.

Boresight error of the axially-symmetric shell was measured with an aperture
antenna, diameter 4. 46X~,; see Figure 5—12. The error was computed with a surface
integration method in which the integration extends over the first Fresnel zone of the
incident wavefront at the radome tip. This method has given accurate results for
half—wave radomes, but for the thin wall radome discrepancies are large. The
measured curves are more convergent than the calculated, where convergent means
that the radome tilts the tracking null toward the radome axis, away from the bore-
sight axis without radome. In terms of wavefronts, convergent implies greater
phase delay along the lower wall for the situation of Figure 5-11. This result agrees
qualitatively with the effect expected of a guided wave , which is a slow wave. This
increased phase delay is evident for a wedge as in Figure 5-8 for > 0.

5—11
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Figure 5-12 shows phase measured in the thin axially symmetric shell. It also shows
data computed with the surface integration method. The data are given on two lines.$ One the horizontal diameter; the other 0. 5 in. above. The discrepancies are large
for either polarization although the same surface integration method has given
accurate results when applied to a half-wave radome of the same size and shape.
For horizontal polari zation, the tilts of the measured and computed equiphase sur-
faces differ appreciably in Figure 5—13 . * The large difference in tilts seems to
explain the large discrepancies for the s-plane boresight error in Figure 5—12. The
measured phase delays are generally larger than the computer—especially near the
wall. This behavior suggests guided waves.

5.1.10 HALF WA VE , AXIALLY SYMMETRIC RADOME

The intensity variations in Figure 3-25 resemble variations that were ,observed in an
axially symmetric radome. This radome was a half-wave thick, highly streamlined,
and small, with base diameter 5. 2A 0 and length 10. 3A 0.

The measured intensity in the radome-bounded region is shown in Figure 5-14 for
axial incidence. The measurements were made with an open-end waveguide probe in
an interferometer setup which had a vertical propagation path. The radome was sup-
ported by three thin, wooden dowels in order to reduce scattering by supports.

The intensity variations for the smaller values of x have period between 0. 6X~ and
0. 8 A 0. This value compares reasonably with (Ox) e = 0. 6 A0 for 0 = 1300 .

The i~itensity near the tip exceeds the incident value and varies with a period approxi-
mately a wavelength. It seems plausible that the high intensity results because
guided waves are excited. The guided wave interpretation is supported by the spacings
of minima near the tip. The spacing for an assumed, slab-guided wave is

(ÔX) g = 2 7r/[kg (cosO) ~ -k) (35)

where e is the angle between the slab and the free space wave direction. We obtain
(ÔX) g = 1. 1 in. which compares well with the 1. 2 in. ~0. 1 in. spacings in Figure 5—13 .

5.1.11 HEMICYLINDER

FIgure 3—35 shows that the moment method values for I E
T

I 
2 vary about the results

by approximating the radome as locally flat.

*These graphs have been reversed from those in Figure 5-10 because the gimbal
angle for measurement is the negative of that for computation.
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By comparing FIgures 3—3 5 and 3-40, we see that the addition of anisotripic gratings
increases power t ransmittance by 0.6 dB on the average over the diameter .

The large variations near the wall suggest guided waves.

5.2 PARALLEL POLARIZATION

The moment method results agree well with measured data, but the measurements with
the dipole probe are averaged values (over the probe length). The accuracy of fields
measurements seems rather low, but the measured data verify the moment method
calculations. The lack of accuracy is in the position of the measurement when the
probe is near the wall. The computed field decreases rapidly with distance from the
wall; the probe averages this evanescent field. The computed field is defined mathe—
matically at a point.

Figure 4—7 shows deep minima exist near a slab for parallel polarization, just as they
do for perpendicular. However, the two polarizations require distinct thickness for
equal fringe spacings.
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Figure 5—3. Solution of Equations 14 and 16 for 2a = 0. 125 in. ,
A0 = 1. 259in. , an d k = 2 . 6
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Figure 5-4. Hollow wedge; direct rays and edge diffr acted rays
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Figure 5-5. Spacings from Equation 34
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45 8

x

Figure 5—6. Computed values of scattered field magnitude for 90° hollow wedge
thickness 0. 125 in. , A 0 = 1.259 in. , N = 161, Oj = 450 • The co-ordinate Is
on a line 450 to the Y axis; it is parallel to the incident wavefront for the upper graph

= 0 occurs at x = 4 I n ;  for the lower x = ~ in. From moment method: (-); with
exp(—vd): (—— ).
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Figure 5—7. Intensity of total field for conditions of Figure 5—6. The dashed
lines show the value for a flat sheet of i nfinite breadth .
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Figure 5—8. Phase for Figure 5-7
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Figure 5—9. Calculated wavefront tilt for 1 ~ in. thick wedge. From moment
method . 4X aperture, (+) 3X aperture (x) ; from flat sheet phase

delay: 4A aperture (0); 3A aperture ( .)
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FIgure 5—10. Power transmittance of thin—wall, quartz/polylmide, axially
symmetric shell for 10° gimbal angle, open-end waveguide probe, in a~ ~rtu re
plane. Vertical polarization (—) ; horizontal (--).
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Figure 5—12. Measured and computed horesight error
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0. 026A thick coating of dielectric constant 3. 0
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APPENDIX A

WAVEFRONT TILT AND BORESIGHT ERROR
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This appendix shows that radome boresight error is related to the tilt of the wavefront

in the radome-bounded region.

For reception . the received complex amplitude of a rectangular component is

ER 
= ff F T E’ dA , (A-I)

where F is the aperture distribution , E1 is the amplitude of an incident plane wave
amp litude , T is the complex-valued transmittance . The integration extends over the

region such that F has appreciable magnitude , and T depends on the angle of arrival
of the incident p lane wave as well as position inside the radome.

To simp lify the notation let us consider a symmetric situation . Assume an axially-
symmetric radome with its axis horizontal and the antenna normal rotated in the hori-
zontal plane as in Figure A-I . Establish a rectangular co-ordinate system . co-

ordinates x ,y ,  z , attached to the antenna , and let the antenna be in the x = 0 plane .
Let the incident wave normal be in the x-y p lane. To maintain symmetr y about z = 0.

consider the field polarized horizontally or vertically. The incident wave is exp ik~.y

where k~ is (2ir /X 0) sin(ö ~), with ô~ the off axis angle of the wave . Let the apertãr e

distr ibu~tion be uniform in its finite domain. Let T be exp iA~~, where A$ is phase

delay so the amplitude variation is ignored. Introduce a phase taper through exp i c~ y

to describe conical scanning. From Equation A-i we have

ER 
= f f ex p  i [ ~~~ + ( k + ~~) y] dA . (A-2)

Now approximate A$ with a polynomial so A~ is p(y, z) r(y, z) with p the polynomial
and r a remainder . If we collect k~ into the linear term of the polynomial we have

= A4’ + k
~

y

2 3 2 2
= a + (b’ + k )  y + cy + dy + ez y + fz (A—3)

if we expand to the third degree. Note that odd powers of z are absent because of the
assumed vertical symmetry. By combining Equations A-2 and A-3 we have

ER 
= exp i( 4’ + c~y + r) dA . (A-4)

A-i
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For conical scanning systems the boresight condition is

R 2 R 2 -j E (a) I = j E (—  ~)I . (A—zI )

Thus adjustment of k~ gives equal power in two lobes. A different condition holds for
monopulse type antennas . This adjustment reduces phase variation so we can expand
the exponential in 4’. Similarly cr is usually small so its exponential can be expanded.
The remainder term also can be expanded if it is small. After some algebra we
obtain from the condition

oIE J 2 
= JE

R 
(~~)j

2 — JE
R (— c~)j 2 

= 0 (A—6)

that k at horesight is

k = - b’ (e + 3d) R2 
. (A-7)yo 6

Boresight error is the angle 63 such that k~0 is (2 7r /A o) sin(â 13)0, or for small angles -
(2 -ir “A 0) (ó$)o . Thus boresight error

(ö f 3) = - [hi + (e + 3d) R 2]/(2~~/x O) . (A-8)

From Equation A-8 , for small higher order terms , in e and d , boresight error is
approximately

( o 1 3)0 = — b ’ /(2 3r / X )  . (A—9 )

Thus boresight error is approximately proportional to the linear phase tilt , where tilt
means the magnitude of the expansion coefficient b ’ in the polynomial fitted to ~ 4’.
In practice we fit a least square surface to ~~~~. Note that, although many approxi-
mations were made , none restrict t~4 from realistic values.

GE037

Figure A-i. Co-ordinate system
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