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STABILITY OF A COMPRESSED ROD
Karl Kreutzer

Introduction
The elasticity problem of a break (i) is dealt with here

from the viewpoint which considers that a break process is

inherently a problem of elasticity theory of finite deformations.

It is assumed that the tensions which appear are within

the validity field of the expanded Hook law for finite deforma-

tions. Included here is the limitation of fixed mass and surface

forces, that is independent from deformation.

The method used is an energetic one which takes into

account the finiteness of deformations along all three coordi-

nates , as developed by E .Trefft z L2~ and reported at the inter-

national Congress for Technical I~Iechanics in Stockholm (1930).
The following nomenclature is used:

,, .,~~~~~ coordinates of points

x ,, x ,, .y,, components of mass force per volume unit of the

non—deformed body along the three directions

~~~~~ components of surface force per area unit of the

non—deformed surface along the three directions

displacement components in the three directions

“!~‘~• ~~~ ~~~~ components of state changes from equilibrium
•1 (of disturbances)

I 
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E internal energy of the whole body.

An elastic state is a stable equilibrium state when with

each finite displacement, compatible with the geometric condi-

tions the increase in internal energy is larger than the work

available from external forces. Thus when

~E> H1~ X, öw” ce.” ~~~~ ‘~ ‘ dx~’ + fj  Z 1~ ô&~’ gl..

Developing both sides according to exponents of oN” and their

derivations gives:

£ + Ô’Er .. >cic ~‘X ,.4,f ”da ”d ~r~”dt ” + II . . (I).

On the right appear no exponents o~tôu” due to the limitation to

fixed external forces X, and .E, .

Should now under any conditions compatible kinematically

with ~~~“ the left term be larger than the right one, then

the linear terms must disappear. Thus is should be
&E=~ ffJ . X, ö., “d.i” tlx” dd”± 11 .~z,o..” iSo.

The content of this equation is described as the “principle of

virtual displacements” . It expresses that for each virtual

displacement from equilibrium the change of internal energy

equals the work of external forces.

Should the equilibrium state be stable, then the quadratic

members of the left side of (1) should outbalance the members

on the right side of (1); as a consequence of limiting ourselves

to constant external forces, the work of these forces is spent
by the linear nieiibers. The stability condition is thus reduced

to *‘t ;’i.

.2-
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The stability limit is reached when for at least one

system of displacements Ju ” the second variation of the internal

energy disappears, that is itE.~ u

These very general points will be, in what follows ,

applied to the stability problem of the elasticity theory;

particularly to the case of obtaining break loads of a compre-

ssed rod.

I. Elasticity theory of finite deformations

l.The distorted state

To define the particles of an el~istic body “substance

coordinates” are used. These are denoted in a non—deformed state

as rectangular normal coordinates and indicated by ~r’~’ In )
a distorted state they become curved coordinates correspon-

ding to each mass particle.

Any mass particle before &istortion has the coordinates
Zhh’,Z , eU.It includes a point P towards which , in fixed space

intersection lead three vertical vectors (!~ (t,~~, - and the

location vector ~~~~~~~~~~~~~~~~~~~~~~~ • A neighboring particle

with coordinateaa ”+d .c’” +dI’ g4 ’+dg” jncludes a point Q.

If o~ is a vector of P according to Q then ~~~~~~~ and

the linear element is - .

.i. ’_XX L. 4~” daW.

For the coefficients G.I ’.IP I of the linear element
under normal coordinates the following scheme applies:

~ 
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Through an elastic displacement D~~Z..”e, the

body is distorted. The point P~ ) take s a new position

and its neighboring point Q a new position
Q(r + 4t =~+d~ f ~~+ d ~) . ResideR ,

between the components ~~ of the location vector ~
after deformation and the components x”of the location vector ~
before deformation there is a relationship

== ~~‘~‘ + .i~~~. ‘r’ ~~~ + ~~~~~~~

The linear element after distortion is
)

and where
,, , ôu” ~~ U’)~~ t~~~~~u°”

F. ~. = ~~~ ~~~j,.-, ~ = is’ u -r •V 

~ 
-r a ~~‘ ax ‘i”

The linear element ds2 has thus been distorted into a

linear element do’. Comparing both changes

for the linear elements coefficients.. we get:

Ô% ’ 1MW
e~~~~~

+
i~~

1Pi+~~ v 

~~~~~~
The ~ ~~~~ are the”distortion magnitudes” describing the

tension and angular changes suffered by each volume element .

Due to substitution rules T”.V” there are only

six distinguishable distortion magnitudes. These form a tensors

it corresponds to each point of an elastic body and is its

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ - 
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s~nnmetrical distortion tensor.

The linear element do’ is expressed in normal rectengu..-

lar coordinates as:

do’ (1 —I— y,,) d c ”’ f (I + 7~
) dx”’ + (1 + r~

) dx”’
4-2 ~~, dx”’ dx” —f— 2 ~‘,, dx” dx” + 2 y,, dx” dx”,

where 
;.,, 2~ ”:::+ :::)+(~~:u)+(~~:::)

~ ,4 ,., ~, H’? ’ i’~ Ii
I$* 

~~ •
~ISI ‘

~ 
‘~ ‘

~ !“ ~7,, - ,~, — i- ~ 
~~1,1 I ~ ,.~~. 

~ 
,~, + O i” ô x” è ~~~

“ t) J
1~~

etc, through cyclic substitution.

These non—linear equations transform into linear equations )

of the classical elasticity theory wilen the products and squares
~ N”of ,~~~~~, may be neglected when compared to linear expressions.

2. Tenrion state and the equilibrium condition

In order to describe the tension state of a mass particle

(“• .f”,$”,) we regard the square angle paralelopiped

which in the non—deformed condition is formed by the elements

parallel to tie respective axis elementj ~~~~~~~~~~~~~

from the latter, after  deformation a g~neral paralelopiped is
• ~v ,, arformed having edges a~”””

.
~.’. ~~‘

Th: vectors -u,, which give the direction and the

ii~rease ratio after deformation, are called “grid vectors”.
When the force fh,’ d ”,d,” acts in the direction

of growing “ boundary surface of the parallelopiped

H $ 1



j il

then i” is called the tension vector for surfaces

~
(1) 

= constant. The same corresponds to the remaining surfaces.

is the tension vector for the surface element x”~~constant

and signifies a force per unit of the non—deformed surface.

Each of the three tension vectors may be decomposed according

to the grid vectors 
(8),

by which nine tension components are created, which completely

describe the tensi on state.

The equilibrium against torsion in any chosen direction

demands the disappearance of the momentums’ sum of all the forces

acting upon the paralelopiped considered at its center, thus:
lii — 2’(e,. X I”) dx” dx” dx” 0.

After introducing the reciprocal vectors c, e,,e,

of grid vectors e’,.’,r’ according to formulas C~3euI =~~L)(_C:
[
~~~ j 

~~~~~~~~~~~~~~~~ ~;;and keeping In mind (3)
-— k”) + c” (I:” — k”) -f. c”' (L” — k”) = o.

This vectorial equation is valid only when

Following this Cauchy reciprocity law is valid for ~~~~~~

The number of tension magnitudes is reduced from nine to six.

For the equilibrium against a displacement in...any direction

it is necessary to consider the action of forcfi t”i,~”~~”

the paralelopipeds’ surface element x (1)=consta~t on to ~~~~~~~
surface element ~“-~-dx” = constant; the acting force

is then IsH iatIsi N+t~~~~~
\,
iSx4ød*I d.r1l~.

-6-



The force excess amounts for tiis surface pair 
~~~~~ 

dx” d.t” ilz”.

Through cyclical substitution follow the force excesses for the

remaining surface pairs . A resulting d~I of the tension

forces is obtained which is

~‘o I”’I1~I — dx” ~~~~~~~~ j ,4
~~
I

.

Beside s a mass force acts upon the paralelopiped

~~ = ‘4~I J
.Ifl 

~~ 
~~~~~ ,~~~~~III - ~ ~ (~~. ~~ ~ ~~~~~~~~ us’”,

where ‘i,~ is the mass force per volume unit of the non—

—d eformed body and i” its component in the direction of the

th grid vector. The equilibrium against displacement

reouires
I

i~ M ~~~,

from ~iere after abbreviating through the product ‘l.’~”uI.r”.i..-”•

• ~~~~• I I  •~• 
•~~ •

— ., .
‘ 

- — I i~,
I - , •

Figure 1

/
~~~~ ,.‘ &

/ /
/

~ ~~~ 7 /~. , ,

~~~~~~ I,
r~a. / ,,
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Usinr’ fo rmula (3) and d i f ferent iat ing  it follows :

-~~~~

• 
_~~ ~ ~~~

. ± __
~: x ~•.• 0 

~~ - ~ i~ ’•. ~ ~
-. 0.

~~us it is
‘• li i~

.
~- 

~
‘ -~

-“ •
~ ‘ ~ Is ft

1” ‘-Iwhere I h f  are Christoffer ’ s symbols of second class.

At the some time :
‘ 

~~ r. + ~~
‘
~~
‘.~

‘L’~’ {‘~1- ~
Should the base vector be everywhere called c~ , anJind ex ex-

change has to be effected. If we decompose this vectorial

equation into its components we get

~~~~~~~~ ~~~~~~ +p (k
~=(J ~1L

This equation delivers for each of the three directions

h=l,?,3 a partial differential equation. The middle member

considers the bending of the coordinate curves, however the

diferentiation in (4) follows the substance coordinates which

are curved in the deformed state.

3. Internal energy

The approach up to now gives each point a distortion and

tension state. To represent the interconnection of both we have

to consider the internal energy. Its existence follows for all

reversible static phenomena from thermodynamic considerations.

-

• 
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~1

The followinr meaninrs are used:

‘-  t. 1 c,c,I -= l ’II~~ volume of each grid uni t
dV tIX”d.

~
• ”dx’3 voiume of an infinitesimal paralelopiped

c ,~~~~, Ydu,~’~~ ~~~~~~~~~~~~ - flcfr?

internal energy of each grid unit

d’E -- - edV internal energy of volume dV

In order to represent the internal energy e as a function

of the distortion magnitudes 
, we have to find the in—

variants of the distorted state. An absolute invariant for all

values of paramat er A is

I
i~i.~~ 1 j y , ,— 2 C r i p J .
I “~ I’ I

By devel oping the determinants by exnonents ofA a 3d

degre e function in re sults. Since this is an invariant

for ai iA the coefficients of the cubic form must also be

invariants. Thus three invariants are formed:

- 

-~ ~ G~~J ~~ ) F ;~~i’ 3,, G,, -- 

~~~ ~; V’ 1 (~~

~~ ;~~I~~~
(’; 

-~ ~~~~ I - (~~ I~~ ~~~13) -t-~~;~~VJ . (; . , (;.., ~~~~~~~~~~~~~~~~ ((;~ ~ - o~, ; i;.

~~~~~~~~ 
, J’~~ 22 ’~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~
-
~~~(7 I I T : ?  — ; ‘~1

;~~ ;‘
~~~~

;‘ - -
~~~ ~~~~~~~~~ ~ - ;‘ ,,)+~ “.~~~

;‘23 ;’,, 
~~~~~~~~~~~~~

~~~~~~ 
;,

. ,;~
.

1- H
c
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For~~,~~ 
I1is linear, 12 ~s auadratic and 17 cubical.

fi rtker, I~ follows from I~ through a substitution of G witb 7)
For rectangular normal coordinates it is:

— I - I’ -~ :.~~~~~
;‘ -

‘2 ~~-• 
- I ;-• •

what is to be now attached for e ? From numerous possibilities

we take the simplest which corresponds to the classical theory .

Thusge is represented by the simplest quadratic inv ariant

of the distorted state: 1 I
~~~~ ~~~~ ~.j I~~ / if

~ 
-

The forward factor is as a volume ratio of the paralelopiped

be tween the non—deformed and deformed states — an invariant.

The constants~~’ and ft are the two independent elasticit y

constants of the classical theory
(; ,,, •— 1

~ 
-

G means here the thrust modulus and m Po~ isson ’ s number of the

cros~— —sectiona l contraction of the material .

The internal energy for each grid unit is thus

el_ i IC,, ,.’ I,’- / j I ,~ 

From the condition that e has to be positive it follows 1just as

in the classical elasticity theory rn~~~~.

For this span (5) is applicable, since ,(el)’is a pàsitive,

definite, quadratic homogeneous form in

-.10-
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j

For rectangular normal coordinates it is

11 = 
~ (;‘,, —I— ~,, + y,,)1 - — ~ (;‘,, y,, -I- 7?, r.~ —1— y,, 

~~ 
— y,,1 y,,• —

The infinitely small deformations may easily be arranged into

(5) ,  when the linear expressions are introduced for the distortion

magnitudes.

4. Tension—expansion equations and Hooke ’s law extended to

fini te deformations

The equilibrium conditions (4) are not sufficient alone

to determine all tension and distortion magnitudes. For this we

also need the relationships between the acting forces and the

deformations caused by them.

- ‘0A ~~~~~ ~~~~~~ ~~~~t I

Figure 2
• As in the classical theory a possibility is available when

observing ~he internal energy, to deduce tension—expansion equa—

tions , if we part from the internal energy of each grid unit.

We will take a real displacementi) and add to it an addi—

tional displacement and the will change by

The increase in internal energy is equal to the work exerted

by the tension forces upon a volume element.

-11- 
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, u I
Point A suffers  an additional disp lacement ‘

~~~~~~~~~~~~~ “

and point B • With this additional displacement

an internal energy change is obtained

Through cyclical substitutions internal energy changes are

obtained for the remaining two directions. Their sum comprises

per grid unit : 
‘I

4 q  .
~~) 

~~~~~~~~ 
‘ ‘ ‘

~~~~ 

~~~
‘ %‘ - .

• ~ ‘
- i’ 

~~
— I - 

•~ -

now •. 
I 

, ~~~~~~~~~~~~ I;-; ~ • 
~~~~~~~~~ -~ k-’,~~ ‘~1’: ~~~~~~~

I-  - . (
~

, _  , - I I--and because -
~~ 

• ,- I~ it is • 
-

The following representations are obtained for the internal energy

change : 
-

I1 I~~~ II  ~~~ I - .~~~ - ‘
~~~1Z I ~~~~~~~~~~~~~~~~~~~~~~~~ 

-

On the other hand based on formula ( 5)

-

~~ 

• 
•~I I  I ~ - ~~

., 

- 

~ I 

1
~,, 

I 
- 

~~ ‘ - , 
, ~( - : )  

~ -~ 
- -

• I 
- ,,, . • ‘  

F
Comparing both expressions we get the six equations

‘ •

~ 

(‘ •
~~)

• /

j~2? _.93 ‘
,~~ • - ( 7)
I 11

~~~
‘- ( i ’ )  ,‘II, ’u~

These are the tension—expansion equations of the f ini te  defor—

— 12-
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,~~~mations theory. They express that the tension magnitudes /?
may be gotten through a partial differentiation of specific
internal energy (ee~)  according to the distortion magnitudes

. They are valid in form ( 7)  even when not starting
from normal coordinates.

According to (5)  the internal energy (’~éj is a homogeneous
quadratic form of the distortion magnitudes . The f ~
are according to ( 7)  linear homogeneous functions of the distor-
tion magnitudes and are:

$ I. ” - - , [(1 1, (~~?~ 
(1 ,,~ ‘ ‘~~

I )  /3 (~ ‘2 2 - ,2 ~~~ ~~~~~ - 
~~~?3 r2~)J.

I - - 
- - (S,

L-~~~ 
1! I /• 1

~~ 
~~~~~~~~~~ ~~ ~ ‘ I2

(
~~I1) ~~~~~~~ ~~~~ :I /23 G,:I ;’ t , - (;,,~‘~)1

etc, through cyclical substituti~~~.

These equations are Hook’s law extended to finite deformations.
For rectangular normal coordinates it is

(1) -

~ ~~~~~ ~
). k o ~ (ry ,2, 

(9).

A-3’ — (
~

(- ‘ +— ~/ 3~ ilL 

-

where •11111r 7,,+7,,, + 7,. ist.

Equations (9)  convert into the classical tension—expansion
equations when infinitely small deformations are allowed.

- ; —13—

I 
- -- ~~~~~~~~ 
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Then with

~~ IL~~
I ~~ ,~~I2I

~ 
,~ 

lii, 
~ 

1~ 1I

- •1~ —~ I ,, ~
— s~~~~) ~

rr ~ 
(
~ ~~~~~~~~~~ ~ 

~~~~~ (~ (It ~~~~~S’~~~ -

/ -~ -
~~~~ (;(~

. 
~
-,I.

~-,)-

I (—1 - -

.1 / . I I  
~
; iI

~
- I- ~~Ill — -

• Equations (9) supply the connection between the tension components
II?.a

and the distortion magnitudes. If the tension component ’s ,.f
values from (9)  are put into the equilibrium conditions (4)

we obtain for the determination of the equilibrium the necessary
- (‘~‘ -~,,(vdifferential equations for the displacement components ‘~

For these differential equations (exactly as in the

classical elasticity theory) correspond limiting conditions

which ma refer to displacements or to surface forces.

5. Stability of equilibrium

Above we presented equations which serve to ascertain he

equilibrium. For the study of stability it is anticipated that

these equations be integrated so that we may know the tensions

and displacements of the equilibrium studied for stability.

To apply the theory we sha 1 satisfy ourselves with a relatively

simple particular case — a compressed rod— whose tension and

displacement states may simply be overlooked.

- 

• 
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To deal with the stability we have to compare the internal

energy of tie body in equilibrium state with the internal energy

in a neighboring state. Thus, besides considering the equilibrium
‘) (zi (ii

displacements ‘~“~~ ~1, Ii we have to consider the neighboringj - -I— •~ glIb M’~~ -4— h ~ 4h% 

~ ~displacements - and the expression for the

internal energy becomes

~~ ó~1in the periphery of the equilibrium state by exponents of and

eventually developed by their derivation.

According to the statements in the introduction the equi—

librium will be stable when for each allowable ( thus compatible
with the geometric conditions) system of “disturbances” (~ j f

the so called second variation (which when developed

contains the quadratic members) is always positive.

If we describe the differentiations by the following

indices, for exainpel w~’~’= - ~~~, then the second variation will

acquire the following form 4)

~~ /-;= ucf~ 
-
~~

- 2’ ~ ~ •~;.~r+ ~~ ~~~ j ;
0

+ ~~ ~ -~s~~ 2) ~- k’ 
/I~ ~ 11 b) 

~

~ 
I ~~~~~~~ (1 Ill) ’ ( I

~~~~~~~

+1 ~2(Il fi) ~I 4- s4’~
) I; -I- A-”~ ~~~~

- 

~ (1 -f ujh ) ~~~~ ± ~ 4- ~~~ ,~~~~I + ~ jh4’~, + :•~ 
~~~~ -~ ~ ,~~fi 

~4~
)

~~ ~~~~~~ 4— iu~!”J ( 1  —
~

--

~~~ ‘ 
~~

—
~~~ ,

‘S f
~~”’ I(~,’ : .),~/‘‘ ~

— - fl) ( 
~~~~~~~~ 

•~~~h)  2 fist L~’ •~;:~ ~ ~~~~ i) ,, I~.I I

-I- .~.‘ ~~~(~~ i’i —jI I  u~~ ,df
I t I.”~ ~~s’ i) ,.~

” -
h,k,m

~~~~~~~~~~ 
~~ •

~~
‘-‘; —

~
— i i,, 

~~~~~ 
SI;,’ 

- 
“ /. I ,) 1f

;SI I ,~ ,, l I

I ( ~~ ~~~ - - 
~~~ U I  • 

-

- I 
~~~~~~ 

1 fl H ,,, SI b - f --  / 5  (I - ‘ IV j $~~,,; ~~ 
,, .1

-f~~,
’j :’ ~/( I +u~.”~ ,

,AI + “ ,~
“ •  ~~~~ -.- 2 ~~ 

~~~~ 

~~~~ 
v~ I5~~ I~ I , ~~~~ 

(I~ t!I I I

L. —
_________ 
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The indices go through values from one to three and two differently

numbered indices may never acquire the same value. Values above

three of the indices are to be reduced by modulus three.

Now the matter is to decide in special cases if such allow—

able disturbances C)n~ may be found for which the second

variations becomes negative or if it remains positive. No~r then

the displacements and tensions of the eauilibrium strte are to be

regarded as given and we should now look for the “most angerous”
¶ disturbances, such which would possibly allow the second

variation to be negative. a
6. Determination of the stability limit

To determine the stability limit of a~ elastic equilibrium

state we need to consider the second variation of the internal

energy. It may be obtained from expression (10) if we introduce

into it the values corresponding to this special case for dis-

placement and tension components. Since the quadratic form in
I 

- 
under the integral and its derivations may always be written

as a difference of two positively defined forms, we should write:
b - -  0 — - -

Where and are integrals over positively definite quadratic

forms in the derivations of J”q.i~ ’
To find if the difference could become negative, we

write: 4’P Q~~~~I) ..
‘
~~~~ •

~~ The smaller,,~ becomes the higher the danger ~or4E to become

-16—



_ _ _ _ _ _ _ _

negative. The”most dangerous” disnlacement from equilibrium state

is such for which A becomes a minimum.
I — — I) ,~ ‘ (S  .~ ii ,If becomes a minimum then 

~~~~~~~ 
- - ‘ - -

must disappear, thus it should be

an ’

for all allowable variations

Equation (11) has a soiutionA~ which may be larger,

eqnal or smaller than one. The case,.?- -/ gives the stability

limi t.

Since we are asking only for a stabil ity limit, the pro-

blem may be simplified further. Equation (11) says: for the

~ (‘j 
~

- Cv ç’ (~“most dangerous” displacement 04-I U’Z-l ~~~‘ ~~ from equilibrium
r~state is for all changes OL”

ÔQa IÔQ ,.

Now, instead of finding the value/t for all the given forces

and then ask for which forces /?.mf , we may directly put

.Then we will seek the forces and the corresponding

displacements CJ4/
)
1 J 4I’

_
~ ~~~~~~~~ from equilibrium state; for

(~cc’ tL~.1\
any O 1 C ’ i~ )  it will be 
This equation is actually Jacob’s criterion for the access of

stability change. It allows the obtainment of the stability

limit for any equilibrium state.

It should be noted that the stability limi~- may also be

determined from the isoperimetric problem: among all the allow—

able displacement variations from the equilibrium
state the “most dangerous” are those for which the integral Q~

-17—
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becomes a minimum for a neighboring condition Q0=l. With
as the Lagrange factor for the neighboring condttion it
becomes identical to equation

l~~~~2which agrees with (11).
The stability limit criterion expressed here in connection

with the variation calculation may also be converted into a

homogeneous system of differential equations and homogeneous

limiting conditions for the “most dangerous” variation. Such a

homogeneous problem has several solutions different from zero

when the parameters characterizing the equilibrium state (loads)

acquire definite critical values (break values).

Thjs method will be used below with the example of a compressed

rod.

II. Stability of a Compressed Rod

7. Equilibrium state

To carry out the Trefftz method in order to find the stabi—

lity limit of a compressed rod the definitions should be fitted

to this particular problem. -

The coordinates are designated x ,y, z. The coordinate system

is layed out so that the z—axis coincides with the rod axis and

the remaining axis fall within the cross—section of the rod.

The equilibrium displacements are indicated with capital

letters U,V,1~ Variations of U,V,Wwill be indicated by small

and the variations of these latter will be indicated by

.

The rod considered should he “fixed”. This means that all

points of the lower and all points of the uppper cross—section s

-18- 
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have suffered the same vertical displacement ; thus W should be

predetermined for the cross—sections of the extremes. From all

the disturbances of the equilib ium state only those are acceptable

whose w=0 at the frontal surfaces of the rod, and thus also
- 

~~ _ o and
6z
- The rod is held by its lower end (z=0) and compressed by a

portion 411-. by a force P~p.f (f is the cross—section).

then the displacements are

t’ ’ t x ’~~ V =v z% si; %t’ r t A ~~~~,

and these may be neglected.

The connection between the expansions ax~
ay~

az and pressure

p is obtained from the tension—expansion equations (9) which now

ap~~r as - ~~~ 
-‘ - G (‘

~~ 
-+ us 

“ 
~ 

=

G (;‘#t .~ -1 () 
- ~~~~~~~~ ~~~

J~5-, -i: ~~~~~
- ;-

~~ I_— — --1—’— -’
Figure 3
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The equilibrium conditions (14) are (as in any tension state)

self—fulfilling.

8. Second variation of the internal energy

The homogeneous equilibrium loses above a “critical’magni—

tude of pressure p its stability.

To find the stability limit the second internal energy va-

riation has to be considered. It results in :

~~~II ~i 1 -
~~ ~i ,i “ f

’ ~~! t - H .,J ~~~~ 
~~~~ f ( i j ~ I!~ 

I

-~ - 4 t ~ ’ J 5 ~~ II ±‘i 5i ~~ ~~~~~~~~~~~~~~ “ •, II i- - u•, l t I I~~t S q SI ’~~~~ ~l 1~ I A ) ( 1~~~U , I i l . If~~

I ~ (~I -
~ ll r) 1 1 1 ,14 11 ’

j  -~ l -
~ ‘~.,i s ’ ~~ ±’.’)±( I ~l )~~tH x~~+ S5 , , )

— - !‘ I - l  
~~ 

4 — ’ . , - . 
• ~~ -I 

- 
- ,~ 

‘— : I .. • ‘~~~~1I  I ,u ~- - ,  H!! l l

I l l  + ‘~~ 
- - H

~~~~) s i .  ~~ / ~~. 
- 

-

introducing instead of disturbances u ,v ,w

I - 
~~~~~ :‘ - ~. - - L - r a ~~ irand with (;t., 

~~
. ; ~
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s ir  “!l dz

The f irst  integral is equal exactly to the form change work of the

classical elasticity theory. It shows the form modification work

involved in small displacements /2i, ~~ when these alone

are presen t. The second integral contains the acting pressure p.

And so the second variation of the internal energy of a compressed

rod is written as a difference of two integrals over positively

defined quadratic forms in derivations of ‘~~~~~,, 

~~~~~~~~~~~~~~~~~~

thus: 5 z —

9.Jacobi’s equations

After developments in 6, we reach the stability limit for an

elastic equilibrium Atate; if there is a “most dangerous” variation

u,v,w for which with every acceptable variation cS~z,, d’v-~ 6L1J
it j ~ d~ ?, :- (J’c:2.L~arid for the case of a compressed rod

and have the above values.

The satisfaction of equation (12) for any variations of

u,v,w leads to a system of three partial differential equations.

It represents Jacobi ’s equations adapted to an equilibrium problem

in a form of a variation ’s problem (6). 
—

To simplify the derivation the crosslines above ‘Zi, ~ are

again omitted. The partial derivatives of the integrants of
- (~14 ~~U ~~1)along the break magnitudes ~~~~~~~ ~~~~~ 

-
~~~

-
~~ etc are in

formal accordance with the classical theory designated by the ten—

sions 
~~~~~~~~ 

?‘
~~,etc.

- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Since ha s the shape of Hooks form change work , the first

variation of results as when
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~~uation~~~~~ ~ Q may be possible for all acceptable variations

only when the integrants in the space integrals are mutually equal.
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These are Jacobi’s equations.

Limiting conditions belong to the above and follow from the

surface integrals.

a) Integrals touched only by~~~~ over the shell plane have

to dissappear. It follows from this that on the shell surface

following equations apply:

IJ~ I I  4 ,  ) SI - - -) ‘ , ~~4 I  5- (ji 1/) -

~~~‘ ~ - , ) ‘ ‘ ~~~ ‘‘ - !/) ~—‘ ( I- f l . . I~, 0)
Tx (~()5 , ( If  - F i, (~~ I’-1 (

~~ 4 - (/ ) - I I

They indicate that a force—free shell plane corresponds to the

disol acnrnents u ,v,w.

b) The integrals of~1~~ and (I’Q~~taken over the front

surfaces must be equal. Since according to 7, for all allowable
disturbances and their variations at both front surfaces are

w=0 andC~h)~ Ofor all points, also w~=O and w~0, it follows that for

the front surfaces~~~~~~~~U2 
and2-
j 

~~~~ So for Uie upper

_
_

__
~~~~~-~ 3- 

- .

~~~~~~ 

- 

~~~~~~~~~~~~~ ~



front surface expression only

cc .~~~~~~~ cc(I 
~~~~ 

sLt d !J __
~~~(1 +Lf x)’t~ Z

remains and for any chosen c5u ,

0a:
The same applies to the lower front surface

0a:
With the condition w = 0 we have for the l imit ing condit ions

at the front surfaces

- 
._% •. I,e-~=U , 

~~~~ 
=0 , ~~~=0 odes- 

- 

,v -=0, Tzx = rO , T~y~~~U

I

— p ~~~~ - — ~— - - --~~- :  ~~4~~- -~*-~ - —~~
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Finally we hav~~~~~~” most dangerous displacement” u ,v ,w is

sufficient for the homogeneous differential equations

I n  .~. ,,
~ 7) - ‘~

- sI ’ O H , ,~~
— 

~
., , r ~ .‘f q - I I - 1

- 
‘~ 

-

t 

‘ I ,  

~ _ ,  ~j , -—

with homogeneous limiting or boundary conditions~

a) for the shell
- - f t  — 1 _ (I , I~~ I ~, - .‘ - I 

-

-, I . 5~ ) - -

F 
~~‘ ‘ . (  r ~ ‘ I  I 

- 
l . . —  .5 II

b) for the front surfaces

If II - - U , i-
S
, -

and the tensions according to the classical theory

- 
_
I~ s. 

- 
l—~ 

- ‘
~ H ~ 9’I 

-
~~ 

~~ 
- 

~ - ‘ ‘~ 
- 

II ~~ ~r) -
Equation s (13) give a simple meaning which gives the connec-

tion of the extended theory with the elementary approximation

theory. When in the equilibrium the equations of the classical

~~I4JI~~C~~ ~~~
‘

~ 
theor~r ~~~ ~~~ ~~~~~ ~~~
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and

X 
5 1 i a :Y ”~~ ’ ~ ~

are put as the volume forces we obtain equations (13). This re—

veals that the integration of these equations is identical to the

task dealing with f in ding the equilibrium profile of the rod

when , at a proper p—value, the loads per each volume unit are

proportional to the magnitudes ~ic?1~,~ , ~~~~~ ~~~~~~~~~

When the volume load over the cross—section of the rod is

integrated we obtain loads per length unit of -M~ rod
I.) /P [lI4 ç - 

11 d’(,’I , P
$ \ - ~ ai” =_ _ .1 t ( 4 X ? ns (I.~

i ~~~~~~ v l b — ~~~
- 

( L . ,,~;:dg~~ ~ ZdI ’ _ —..— 1_ • ~~~ dz’’

where “~~ ~~~ are the average values. If these average values
)

are replaced by the differential ratios ~~~~
.

taken for the rod’s centreline, and the small magnitude ~~ in the

denominator is neglected, the task arises to f ind the equilibrium

profile of the rod which is loaded vertically with forces

- ,
~~~~

,. 
- 

. This ~ S exactly the content of equation
‘ dz ~ 

P 
-fl 

~~ ‘

~~ J pjJ V _ ~. Pw ~ which follows from the ele—
mentary theory.

III. Numerical Results

The Jacobi ’s equations together with the boundary conditions

of page 361 (23) tell us that there exists a neighboring equi—
I 

- - libriurn state next to the initial conditions. The displacements

that transfer the initial conditions into

the neighboring conditions are the similar factors(/#O~.)2 €tc.

solutions u,v,W. Since the Jacobi ’s equations and the boundary

conditions are homogeneous we have a proper value problem. The

proper value is the”criti.cal” load p.



In thi s section we solve the proper value problem for cir-

cular and rectangular cross—sections. In the fc.rst case — by

integrating by development in series; in the second by the Ritz

method. -

10 Circular cross—section

Equation (13) 
(s• ( J i, L ~ H- (~) 5f

~ ~~ 
/4

1 - I ‘~ ~ ~ I

~ ~‘!i~ ‘ I~~
.:- 

- 44 -J - I ,

(~ ( I u ’ - J - - ’1’ 
~~~ ~:~:-‘-‘

is transformed for cylindrical coordinates. This means we seek

the equilibrium profile of a rod loaded per volume unit by forces:

p 
~~~ 

~ , 
~~~~~~~~~ /

where the very small znagnitudes~~~~1~~ ~Qg are negligible when -

compared to 1.

When the cylindrical coordinates are introduced ‘~‘t~ 2 and

the displAcements are : radial~~ , tangential ~ and ~V
axial~~~, the problem is to find the equilibrium profile for a rod
loaded in the three directions by volume forces - !‘~~,.‘ 

- I’~~~~~~~~ ’ 
- -

when 
~~~~~~~~~~~~~~~~~~~

are the cylindrical coordinates of the tension forces. S
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The equilibrium conditions [5~ are

(~~~j , 1 ~) T,- ,’, _ I
~~, 

II ,j-
~~ 1 (I I) ,- ~

‘-

,- ,‘~s 1 (. ,-~ ~~~ - -
~ ~~~

‘~ + — , 
~+ + - 5-V

UI I i1 (‘5 ,-
I ~ p 1’) ~‘5 SI. - T ,.

r ~s / /  t’1 j~

and the tension—eapansion equations are

0r 2G (~~ 4 ,,,’ ) .

+ ,

~~

+ - +

~~~~~~

. )
By eliminating tensions in the equilibrium conditions through

a tension expansion equation we have Jacobi ’s equations with

cylindrical coordinates

(“i ~ ~ 1 ~

‘H - ~‘((-) ~

- 

(~ ‘f i ’ —f 
~~ ~~~~~~~ 

;,
~~~~

,, • v l ~~~~ 
- I l l ;

~~~ ~ - 2 t’~~ r
(; . 1 r + ,,~ ~~~~~~~~ ~~~~~~~

- 

~,, ~‘~
-)
~- ln ’— F 

~
,, - - , 

~~~ ~

Their boundary, conditions

“~ ‘,- -0 , ~~~~~~ ?,~ r .U  fox’ the cylindrical shell

and ,~.- .0, N~’~~U, r~ - fi for the front planes (: —O . tisL).
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To integrate (14) we chose

1 !‘t I )  5 ’ S’ I  iS 41 4 I u .  I -- - -

(I 
~~ 

- ‘ —  ‘‘ - ,  - - - - - - - - t i
ii’ I4’ 54 5 1 1  N 14 1’ 4’ ,

It is sufficient for boundary conditions at the front planes

when we take 
-

~
- 

. 
- It . .)

For functions~~~ /Q~ /~~~ )three common differential equations

follow from (14) -

I - — jI,’, .4- - 
,~ I’ I -- 
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-- ‘ Where the vertical lines signify derivatives according to

and q equals p/G. 29
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Through the inotroduction of cylindrical coordinr-tes it was

succeeded to reduce the partial system (14) to a system wi th three

common d i f ferent ia l  equations of second order.

Equations (17) supply the case of a break , that is a l inear

bending of a solid cylinder and a hollow wall column for n=l.

The equation a are, when the cross—contraction

value is 10/3 :

4-’ “‘±9 1” -
~

- : s~~(’~ I), ? J 
‘ ‘!‘ + 

“
~~

‘

~~ ~~~~ I~. 

Js~~(f ’ t - r ~/ I “ is , t ) s - ~u ii 
, P -r i” ,rll-rrrrll - - II~ J.

s-u le’±,./r .Li ’(q ~)ie II ~~
‘
~

-p  ~ ;‘,.4,r ~ -I p I
The boundary conditions for the shell are simplified by using

(15) in equations

75 ’ , p ’ + :I(I’-4-. 1,5) --+- :I y r ,5 1? - (I , 
- -

- 

~! ‘ s ~~ ~~~~ ‘ 
- (1)5). -

II’ vI’=i)

and in case of a hollow cylinder there are three analogous equa—

tions with ?~ instead of

A complete integration of (18) leads to six integration

‘constants. The correspond with six boundary conditions (three at
the inside and three at the outside boundaries). For the solid

cylinder there are three conditions for the outside boundary.

-~ 
- Pox ’ the three missing conditions we have that for tension s

tó~~r-o are finite. Functions P,Q,R ~4v’ ~~sO ,In~r4t

-~~~~~~~ 
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I
behave in a regular manner. This regularity requirement supplies

tM’ee more data for the determination of constants.

Equations (18) are integrated normally by developing

exoonential series for the solid cylinder. The succesive calcu—

lations of coefficients delivers, designating the

coefficients c1,c2,c3, the series:

I’(a- ) - .~ ~: j i i I 
I)~- ’ ~
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Apaet from these solutions the system (18) also contains

logarhytmically singular solutions which fall out because of

the regularity requirement.

Multiplying the series by the trigonometric functions of

and z, according to (15), when q is found, we obtain the values for

the “most dangerous” displacements from equilibrium for -the

cylindrical rod. We still have the three arbitrary integration

constants c1,c2,c3 which have to be determined from the boundary

conditions (19). They are:

7 ‘-
~ “-F 3(i~+ Q) +3” ~~~ 

ii --=0,

ie- - -i ’=o 
-

and, say, that the shell becomes tension free.

If we introduce P,Q,R values for r=ra in (20) then the boun-
dary conditions form a system of three homogeneous linear cequations

- 
- 

__
for the constants c,,c,,ç, The magnitude 2)— and the

radius r,,, appear with same exponents so that for their product

this system may be solved for values different from
Li 

-

zero only if the determinant of the system disappears. Since the

determinant contains the unknown load magnitude q, it can be set

in such a waybthat the determinant becomes zero.

For the following calculations the series for P,Q,R we used

the values given in (20). An ample calculation of the determinant

-

~~~ —32—
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leads to the equation

-I i ’ :‘— ii ; l’’)$- ., . ~4E I
:~

~:‘ ;~ ;. .~s;’ ,I I~, - .;~ ~I . -  •:;~.-~, - ‘ - - -

I)s- i s  ~‘ - ‘ -

Further calculation is possible only numerically. Because of the

complex structure of (21) with respect to q, load values are used

to solve the series. Since q=p,1G and the push module G is very

high, q must be small. With G=800,000 kg/cm2 we obtain for the

loads p, which are within Hook’s law, p=800kg/cm2 and p=1,600kg/cm2

the values q=l/l,000 or q=l/500.

The results of equation (21) were compared with the elemen—
I I

tary theory where the break 1enght~~Th given by
I,,.

, 
i -,  

- ~~~~~ 
- -

‘

The result is that there occurs only a small deviation from

Euler’s formula. It is

‘~ 
~~~~~~~~ 

‘~~~~~~~
‘ 

~t ‘ I, i W i I .~) ,

[ i-: rp 
,,“ I-, ’ 

/ 74

Thus within the calculation accuracy Euler’s break formula is

con.firmed.

11. Rectangular cross—section

The rod has a lenghth L. The rectangle ’s dimensions are

2a and 2b(a�b). The position and the tension relationships are

the same as before.

The stability limit is dominated by equation &~~
3

~~~ é
~
Lwhere

and have the meaning of page 360 (23).
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(
The Ritz method is used to solve the equation.

For displacements u,v,w we chose

.IIi-y) cosvz . r= !tisy ) eoi~~pj. u~~~
-
~~~ ’s i~) s n v z , ~~~~~~

they reduce the spatial problem to a plane problem. It satisfies the

boundary conditions for the front planes, where for z=0 and

?-L it h~~; to be w=0, u~=O, 2~ =0. The integration of and

over the rod lenghth L gives

b ::: - - ~~~ 1- ~ .,± .~~~ :,~ l , 11,, ~‘‘ ij, , (j 21 ~~~ (~

Ii ,, -
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~ \ I F  -
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a Is -

For A ,B,C we chose -
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In troduced in (23) we have
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Integrals Q~, and became the quadratic functions of the 18

~~ i22~~~~~~~~~~ coefficients. The equations for the stability limit

~Q, .~Q,,yjelds 18 linear equations for the coefficients according

to 
~~~~~~~ 

Th~ 18 equations system is distributed into

4 group:: which c’ontain the coefficients I ~~ i~ : ;‘ ,~~

~
)
. “a ;  (i: .. ~

‘ u~ ~~~~~ ~~~

ii,; (s ,, (I,,~ j t,, ; , ,

4. fi,; fl,,: j ,,; “i , ,;  ;‘ ,.

The individual groups are systems of homogeneous linear equa-

t ions where coefficients have a non—zero solution only when the

determinant disappears. If we take out one group and equate its

deerminant to zero, this determines the break load, we will ob-

tain the coefficients of this group up to a common factor.

The coefficients of the other group become zero because the

determinants of the other group for the break load value found do ‘

not disappear. We are interested here in the determinant equation
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which supplies the breni-, load , thus th e quest ion arises: which of

the four groups should we take? Naturally such for which the lowest

break load results; which one it is — is not difficult to

recognize. If the rod breaks in the x direction then all the

cross—section points have about the same displacement in the

x direction ; u cannot be thus an uneven function of x. Now the

only r—roun which has no uneven function for u is the third group.

Putting the determinant of this group as equal to zero we should

obtain the break load value which causes a break in the x—dircction -

The fourth group, which follows from the third group by substitu-

ting x and y, yields the break load for a y break. Thendeterniinant

equation is the s3s~e as for the third group when a and b are
I

substituted. Groups 1 and 2 , which with the substitution become

one , iive a kind of squeeze boundary, but this value has no

ph ysic~ 1 rr~naning because these phenomena take place outside the

limits of the expanded Hook ’s law.

We write the third group of equations as follows
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And to rirnDiif~T we take ‘,‘ U - “
- I. ,, - I i

The determinant for this system , when m-fitiplied, is
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Since the coefficients of the exponents of q change with its S i ,

the equation may only have positive roots.

For a numerical calculation we note that q as well as 1: nrc

very snnll. If we consider the limit case of very thin rods

(we let k tend to zero) then after multiplying by k8 we are left

with the last members in the linear and absolute members which

yield the equation for c-i

l3k2—l5q=0

From this — the break tension

pk43/1~~
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we obtain exactly Euler’s formula for the tensioned rod :
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This formula is thus confirmed for the limit crise of very thin

rods. The lateral relationship n does not appear explicitly.

Strictly sneaking there is a need for  a n—depending correction

but ~n pra ct ically important cases t his correction does not

rc~ ch any noticeable ef fect.

Smr
~
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As an example of the stability theory for elristi-~ ecuili—

brium dcvcloped by E.Treff tz  the nrcsont wnx* calculates the

r~ brea ’ limit for  circular and rr~ctanguiar rods. The f i r s t

part outlines the elasticity theory for finite deformations.
— 

In narticular, it is shown that the expression f r the elastic

potential (internal energy of a volume unit) may be taken from

the elasticity theory of small deformations when , instead of

— linearized distortion magnitudes of the classical theory the

real distortion magnitudes for finite deThrmations are taken.

(because of this the coefficients of the linear elements change)

From the obtained integraal for the overall inner elastic

energy this work develops an expression for the second variation

of internal energy, whose sign decides the stability. Then

following common methods for variations ’ calculation , the

stability limit is determined, that is the load limit above

which the second variation is capable to accept negative values.

The third section contains results of numerical calculations

from ~-rhi ch it follows that within the limits of calculation

accuracy (up to fractions of one percent) Euler’s f ormula is
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4) Thi s ~xp~~:.55j~ fl was f i r s t  used by Trefftz  in l9~0 and was

given to me ar ivately .  
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