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STABILITY OF A COMPRESSED ROD
Karl Kreutzer

Introduction
The elasticity problem of a break [1] is dealt with here

from the viewpoint which considers that a break process is
inherently a problem of elasticity theory of finite deformations.
It is assumed that the tensions which appear are within
the validity field of the expanded Hook law for finite deforma-
tions. Included here is the limitation of fixed mass and surface
forces, that is independent from deformation.
The method used is an energetic one which takes into
account the finiteness of deformations along all three coordi-
nates, as developed by E.Trefftz [2] and reported at the inter-

nationel Congress for Technical Mechanics in Stockholm (1930). '

The following nomenclature is used:

s gm coordinates of points

X,,X,, X, components of mass force per volume unit of the

non-deformed body along the three directions %

t
I
g}

components of surface force per area unit of the !

non-deformed surface along the three directions

", displacement components in the three directions

J""" h'ln’ Au»

components of state changes from equilibrium
(of disturbances)

e,




E internal energy of the whole body.

An elastic state is a stable equilibrium state when with
each finite displacement, compatible with the geometric condi-
tions the increase in internal energy is larger than the work
available from external forces. Thus when

AE>> ((f S Xy S0 ds de'® A 4 Z 2, 00" do.
Developing both sides according to exponents of ¢, and their

derivations gives:

JE=eC4+ 8 E+. > XX, du da" da® de™ + ([ X E,0u™d0 . . ().

On the right appear no exponents of ou due to the limitation to

fixed external forces X, and

"y ba

Should now under any conditions cdmpatible kinematically
with 3w the left term be larger than the right one, then
the linear terms must disappear. Thus is should be

OE=[f TXy 01" da dat™ du™ 4 X, 0umdo.

The content of this equation is deécribed as the "principle of
virtual displacements". It expresses that for each virtual
displacement from equilibrium the change of internal energy
equals the work of external forces.

Should the equilibrium state be stable, then the quadratic
members of the left side of (1) should outbalance the members

on the right side of (1); as a consequence of limiting ourselves

to constant external forces, the work of these forces is spent

by the linear members. The stability condition is thus reduced

to ME>w,




The stability limit is reached when for at least one
system of displacements du the second variation of the internal
energy disappears, that is é2F-.u »

These very general points will be, in what follows,
applied to the stability problem of the elasticity theory;
particularly to the case of obtaining break loads of a compre-
ssed rod.

I. Elasticity theory of finite deformations
l.The distorted state

To define the particles of an elgstic body "substance

coordinates" are used. These are denoted in a non-deformed state

as rectangular normal coordinates and indicated by «™ In J

a distorted state they become curved coordinates correspon-

ding to each mass particle.

Any mass particle before distortion has the coordinates
#" 2™ o It includes a point P towards which, in fixed space
intersection lead three vertical vectors €, 6, € . and the
location vector t=ﬁ§-”"¢.. A neighboring particle
with coordinates#"+d«"z" 4+ d<" 2 4+ da includes a point Q.
If 4y is a vector of P according to Q then dg=2Xds"€, and
the linear element is “

Wt =226, dadaw,
For the coefficients Gep==Q, - Cu of the linear element

under normal coordinates the following scheme applies: i

1
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Through an elastic displacement b=Su"@, the
body is distorted. The point Pg) takes a new position
P(x=g+v) and its neighboring point Q a new position
T +dv =g+dg +vo+dv). Besides,
between the components g of the location vector =«
after deformation and the components z"'éf the location vector &

before deformation there is a relationship
§N =2+ u?, A" =dz™ 4 du™,

The linear element after distortion is

do’ =3I 3T udz™d 2,
o p .

and where D1t 3y

S5 nua £} a“lﬂ : e“(p) du™
Pou= 23 g g= Gont it g gt £ 55m 33

<

The linear element ds™ has thus been distorted into a

linear element de¢’. Comparing both changes

veo=lop— Gop for the linear elements coefficients. we get:

7 du du™ Ju
o= togmt L om i gm-
The »s are the"distortion magnitudes" describing the

tension and angular changes suffered by each volume element.

Due to substitution rules Tre=pue there are only

six distinguishable distortion magnitudes. These form a tensor;

it corresponds to each point of an elastic body and is its
alje

Dbt




symmetrical distortion tensor.

The linear element de' is expressed in normal rectangu-

lar coordinates as:

da* == (14 7,) 4™ (14 72) d 2" + (1 + 7,) d2™?

F27,de” de™ -2y, de” dx™ + 27, dz¥ dz'",

50 w [ u\ o ,!m)’ (ol‘m)u | .
b 2 el A + (o _;.cn) +(e =" s 3z : '

du™ Q' dudn” '\A “'m‘\ W - d !‘m n® ’
Ve Ty PRIDRAP WP SR LT WP Q™ 2P

where

@ -

etc, through cyclic substitution.

These non-linear equations transform into linear equations
of the classical elasticity theory wihen the products and squares
of ::::: may be neglected when compared to linear expressions.
2. Tension state and the equilibrium condition

In order to describe the tension state of a mass particle
(', A%, ') we regard the square angle paralelopiped
which in the non-deformed condition is formed by the elements
parallel to he respective axis elementy ., ds ds™
from the latter, after deformation a general paralelopiped is

] ]
formed having edges h:..d'“‘.‘t:- ‘l“‘.-.‘:.dt"'-

The vectors e = b':t:" which give the direction and the
e
ir}rease ratio after deformation, are called "grid vectors".

When the force " da"da acts in the direction

of growing =" boundary surface of the parallelopiped
-5-
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!
, then o is called the tension vector for surfaces

L1

,l'b

= constant. The same corresponds to the remaining surfaces.
is the tension vector for the surface element « =constant

and signifies a force per unit of the non-deformed surface.

Each of the three tension vectors may be decomposed according

to the grid vectors

'wa:,_._.\_":upc” B T AN e, Taka e o g e gl < ... N (3)-
e ’..un

by which nine tension componentsjare created, which completely
describe the tension state.

The equilibrium against torsion in any chosen direction
demands the disappearance of the momentums' sum of all the forces
acting upon the paralelopiped considered at its center, thus:

M= 2"((‘,. X1 da” dx® dx™ -=o0.
After introducing the reciprocal vectors e,,e,,¢,

of grid vectors ¢, ¢,¢ accordineg to formulas [37

e _»f!Z( €,

lf,f,xi;j—aﬂd, 'l'o."‘=l n=v

o ufv

c"'(l.-” - k") + ¢ (,..u ey k") o (k" 2 ).1") =0.

and keeping in mind (3)

This vectorial equation is valid only when
7 krre=jnrr,

Following this Cauchy reciprocity law is valid for &+« .
The number of tension magnitudes is reduced from nine to six.
For the equilibrium against a displacement in.any direction

it is necessary to consider the action of foch I dai® da on

(1)

]
the paralelopipeds' surface element x‘~’=constant on to the

'

surface element " +de" = constant; the acting force

is then " ds™da™ +{-§E\n~'u~aﬁ.

.

1
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o
The force excess amounts for his surface pair ;:",mﬂ”dﬂ”dzm.

Through cyclical substitution follow the force excesses for the
remaining surface pairs. A resulting d%n of the tension

forces is obtained which is

o
dRi = -:.' g:;".‘ da' da™ dar™.

Besides a mass force acts upon the paralelopiped

l’ Sl = i‘d"'“l ,’J.l'.') "".l:u = .:' lvn" ‘... (I.l.lll ',“.1;'1 ll.r“‘,
where ¥ is the mass force per volume unit of the non-
-deformed body and " its component in the direction of the

th grid vector. The equilibrium ageinst displacement

reouires

dR L dR o,

from here after abbreviating through the product d.«"d.s g,

Vo
"- ‘\J.n"

" -\- l.uu ¢, 1w,




Using formula (3) and differentiating it follows:

\' \'UI \\ \\ |\(‘"
! P ,h».-__ o+ # o
ot G - 7 A Nt ,” 0
fthus it is ’
G N r'l
AW p h‘ Cy
fre | ¢
where L uf are Christoffer's symbols of second class.
At the same time:
\' \ “‘ v A ] L]
— — (‘ _‘.(n) F -: -\- —\ "‘ "‘ .\-'l’(" c"-“,%,_
. " v >

Should the base vector be everywhere called & o anlindex ex-
change has to be effected. If we decompose this vectorial

equation into its components we get

\v(‘,l"

\'\'. - E
— st = ": }+pun U er s, % . .

This equation delivers for each of the three directions
h=1,2,3 a partial differential equation. The middle member
considers the bending of the coordinate curves, however the
diferentiation in (4) follows the substance coordinates which
are curved in the deformed state.
3. Internal energy

The approach up to now gives each point a distortion and
tension state. To represent the interconnection of both we have
to congider the internal energy. Its existence follows for all

reversible static phenomena from thermodynamic considerations.

-8=




The following meanings are used:

r=z[e,¢,¢)=)[Iuri volume of each grid unit

dV =edx de d o>

volume of an infinitesimal paraleloqiped
e lnbr rca /?ﬂ(v POr VSor»? € s, 't — hon /ﬂ:rmvi/(
e internal energy of each grid unit i 4
LPE--edV

internal energy of volume 4V

In order to represent the internal energy e as a function

of the distortion magnitudes vs o we have to find the in-

variants of the distorted state. An absolute invariant for all

values of paramater /4 is

1 2
I—G:l:] ‘7”‘“1 Grp l.

By developing the determinants by exponents of/j a 3d

degree function in /{ results. Since this is an invariant
for all,/z the coefficients of the cubic form must also be

invariants. Thus three invariants are formed:

1
e e b4 v o Y v B
I’ | (r, ") i ‘(—'.'.' r':r' (’r:ll) "l“‘}'a?"'uzl ('n > "11.)“l"/".|..((’|| "-.-: I’u',,
-2 0} 3 . ! - ' 1 ' '
} “/1.'( g (77.1 '('r.'":n)'T'-:;':»l”’nv(’lA (".'!l (‘n";“'-!;':n((":a('vl: ; G:n "':“.":'

I,== (s ¢ ; . J ?
2 i ')lf/ﬂ? Vas~ Vaa )“L ('n()',m P Va')+ ("':.1(711 Va2 — ;'u')
LI p e N Y .
b2 Gy (V2 Vs P12 1=2 Gy G yp 71a Vw:u;'u’+~’(":n(;'-n}'u
/ Yy n ’
Yol Gyl

]
;'5“ 7.".'" ’
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FOT&Z:I( I,is linear, Ip is quadratic and I3 cubical.
further, I? follows from Il through a substitution of G with 7).
For rectangular normal coordinates it is:

!

ar 1 . I _ ay
i 7271 Yag 0 Vans

3 AN a1 s A B P e e 5

What is to be now attached for e ? From numerous possibilities
ve take the simplest which corresponds to the classical theory.

Thusé'e is represented by the simplest quadratic invariant

of the distorted state: V|t fa
"’;/I‘u " "-’

e==

121,

The forward factor is as a volume ratio of the paralelopiped
between the non-deformed and deformed states - an invariant.
The constants & and‘/g are the two independent elasticity
constants of the classical theory

G om -1 (i

=T m-2 Py

G means here the thrust modulus and m PoXisson's number of the
cross-sectional contraction of the material.

The internal energy for each grid unit is thus
u:,/;‘u._;:{g- 17- ﬁl,}. e A R A

From the condition that e has to be positive it follows Jjust as

in the classical elasticity theory “Z=mIe.

Al

For this span (5) is applicable, since (e?) «is m-positive,

definite, quadratic homogeneous form in e e

=7 -
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For rectangular normal coordinates it is

a
ee= 9 G Fiset el =BG Vas F 20 Paat Paa as — Fas' — Vo' — ¥as")- i

The infinitely small deformations may easily be arranged into ]
(5), when the linear expressions are introduced for the distortion ;
nagnitudes. ' 1
4, Tension-expansion equations and Hooke's law extended to
finite deformations

The equilibrium conditions (4) are not sufficient alone
to determine all tension and distortion magnitudes. For this we
also need the relationships between the acting forces and the

deformations caused by them.

-

Aﬁ-ﬁak”jh’”. @) 13
ax'? /:/,.Z' az™

Figure 2
As in the classical theory a possibility is available when
observing the internal energy, to deduceltension—expansion equa-
tions, if we part from the internal energy of each grid unit.
We will take a real displacement1£7 and add to it an addi-

tional displacement CSU and the ):;// will change by (S/;)//.
The increase in internal energy is equal to the work exerted
by the tension forces upon a volume element.

o o

o - R Ak ks
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Point A suffers an additional displacement D

and point B 4 ;ﬁﬁ”:”i . With this additional displacement

. . . § (‘:‘:l‘
an internal energy change is obtained I "l . d 0

Through cyclical substitutions internal energy changes are

obtained for the remaining two directions. Their sum comprises

per grid unit: : :
Mee) -::v{"" ddn v s, y ddp

- Q2 e e Bt

- O

AP

. . v -
now Yy &, o V‘{‘ O™ I (i Pies i b’c’ t)l'r_' ~'|\;"u-
LR
! . g Ay T
and because Fip=rey by it ig  Mieroe deltenae

The following representations are obtained for the internal energy

change:

l‘h‘r‘l' i jh (R TR ::' gt ,):.' | k) B ,',"'4\;""' B B i 1

On the other hand based on formula (5)

3 N (o “ Mo > N (e oMo e
Ne } (\“"l’,\., l.( "I’,)." ',‘ “ )A-,“ ’,‘ l«l)' ;!‘,,4»‘“ ,,\:v” 4 ,( )‘/-H . ; |‘h.:
i e TN R g s L e 074 i Yl VT

Comparing both expressions we get the six equations

ot '_':\(4':}‘ e (‘v\((’ﬂ.
Lo BT
jor . 20 (80) B . (ORI TR R,
(L5 PP 070
I8 (e e
o3 _.\ (v p)“ o "‘f’”
O Vs 07'a

These are the tension-expansion equations of the finite defor-

=13
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where

R B

: vAH
mations theory. They express that the tension magnitudes /

may be gotten through a partial differentiastion of specific
internal energy /?é’) according to the distortion magnitudes

ﬁy . They are valid in form (7?) even when not starting
from normal coordinates.

According to (5) the internal energy (eé'/ is a homogeneous
Vo
quadratic form of the distortion megnitudes J////’ o The /é o

are according to (7) linear homogeneous functions of the distor-

tion magnitudes and are:

2 ¢ ¥ v / L gy ~fy. 2(}' }')].
7 R I I,.' .. ',“2) /‘((' ,rna'Jl { S5 23 /23
bt == ' : (l‘r‘lt | [ll 1 ( a2 Nan ; 22 (3\'
k® == 1! (-)‘ | [ I, (Gyy Goy ey, (Fy) PG st Gia¥os— Ga?n (i133)]
v

ete, through cyclical substitutions.

These equations are Hook's law extended to finite deformations.

For rectengular normal coordinates it is

/] s < ey

g

k=G (7':'2 3 =

<
IS

3 1
I..n_,___._(;).”’ » - i . g % " s . (J),

/ ® P
k":uvu+m;3L k= G |

P=y, +rutrn ist

Equations (9) convert into the classical tension-expansion

equations when infinitely small deformations are allowed.

oA |
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Then with

T O RE A
da® "W gt g W

D=2 vy w) =206,
/ “ .
Mt =92G (".r e m— .))v W' == 0 (-1 0y,

“ »
e < 28

r..:-.-)lv( FAp T 1 Y Ty
1 = v, = / 1wy,
v '. 4 } » '( 20 ,I)

!

6 )

k* 2::‘":,;-’" al; M = G (e +10,).

Equations (9) supply the connection between the tension components
and the distortion magnitudes. If the tension component's Agaz;/ {
values from (9) are put into the equilibrium conditions (4)
we obtain for the determination of the equilibrium the necessary
differential equations for the displacement components 49’@3‘17({1
quf” . For these differential equations (exactly as in the
classical elasticity theory) correspond limiting conditions
which ma refer to displacements or to surface forces.
5. Stability of equilibrium
Above we presented equations which serve to ascertain he
equilibrium. For the study of stability it is anticipated that

these equations be integrated so that we may know the tensions

and displacements of the equilibrium studied for stability.

To apply the theory we sha 1 satisfy ourselves with a relatively
simple particular case - a compressed rod- whose tension and

displacement states may simply be overlooked.
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To deal with the stability we have to compare the internal
energy of the body in equilibrium state with the internal energy
in a neighboring state. Thus, besides considering the equilibrium

; 2} ’) (21 () . ) i
displacements 4 we have to consider the neighboring
0‘) + ‘, “l|‘ “(" + b"‘,‘ “‘.\ + a ”(‘| }

and the expression for the

dlsplqcements
internal energy becomes
=[fflce)dxdz'" d £
> @/
in the periphery of the equilibrium state by exponents of and
eventually developed by their derivation.

According to the statements in the introduction the equi-
librium will be stable when for each allowable ( thus compatible
with the geometric conditions) system of "disturbances" Ju(vj
the so called second variation JZE (wvhich when developed
contains the quadratic members) is always positive.

If we describe the differentiations by the following

indices, for exampel u/” = “,-;, then the second variation will

acquire the following form 4)

A?II"!H{ 2 -~ [4“ i) 2 (0 a2 /f!z'h.w) fl.”l:)u"”{}u""

1
= (h 5 A% k
-{ g ‘:_I: l’/)(l-o—u ), + )ﬁ("'l" ) +4u( ,{I’) +I.‘A,'Jl()ll;’_.,"(’lt}_-m
2,.'1[ () el 4 K1 o w3 u™
P ) 89 1 h
b 'lo(l 4 u), L2 804wl & 2 pull 4 1y« ] S aadfP?

( () BN ity o 0
+h7); [4ia D)) (1 afP) 42 g ufh ot

Wi o A i

(10,
v ) LTI T S ST
+ = e A el 20 i [ af g ni

g Wy i

th) i

NVio. 0
+ o [2@2a—p) ul) w4 k¥ 0wy, 0w

iy

\?’ (h) l‘ a '
,l."‘r”'l /f(l - ll/, l(] A1y ) 4 (n ~/-’ “I‘l’ " lh,’ 3 ““'I b M;,"' /
A L) ik '
lhT “lu IR T 2 u}"'}u”" v)u"':)u"',"
w f
\? U; k) ) k),
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The indices go through values from one to three and two differently
numbered indices may never acquire the same value, Values above
three of the indices are to be reduced by modulus three.

Now the matter is to decide in special cases if such allow-
able disturbances l>¢$wmay be found for which the seconé
variations becomes negative or if it remains positive. Now then
the displacements and tensions of the equilibrium state are to be
regarded as given and we should now look for the "most cangerous"
disturbances, such CJZlvy which would possibly allow the second
variation to be negative.
6. Determination of the stability limit

To determine the stability limit of an elastic equilibrium
state we need to consider the seccend variatinn of the internal
energy. It may be obtained from expression (10) if we introduce
into it the values corresponding to this special case for dis-
placement and tension components. Since the quadratic form in

C£¢/L” under the integral and its derivations may always be written

as a difference of two positively defined forms, we should write:
& E= 0, — 0

Where Q, and Q, are integrals over positively definite quadratic
L)
forms in the derivations of J 4/( o

To find if the difference could become negative, we

write: ¥ B Qi —1), ‘_%.

The smaller becomes the higher the danger forsz to become




R SR—————

negative. The"most dangerous" displacement from equilibrium state
is such for which becomes a minimum.
SO ‘ 0,80,
If /( becomes a minimum then  4;.."° -"(}: R L

must disappear, thus it should be

$Q,:=400Q, .

for all allowable variations wduj ) .

Equation (11) has a solution/l-’

which may be larger,
equal or smaller than one. The case/Tz/ gives the stability
limit.

Since we are asking only for a stabiI ity limit, the pro-
blem may be simplified further. Equation (11. says: for the

(v (¥ 74
"most dangerous" displacement J’M J’” ) J from equilibrium

/
2
state is for all changes J(Jd ) :

8Q,=46Q,.

Now, instead of finding the value/l for all the given forces
and then ask for which forces /2.-:/ sy We may directly put /2':/.

.Then we will seek the forces and the corresponding

(y ¥
displacements Jﬂj'/, Jns ) J""( from equilibrium state; for

any (S14) it wi1l ve

R e T N (12
This equation is a.ctually Jacob's criterion for the access of

stability change. It allows the obtainment of the stability
limit for any equilibrium state.

It should be noted that the stability limiy may also be
determined from the isoperimetric problem: amoné; all the allow-
able displacemen‘t variations from the equilibrium

state the "most dangerous" are those for which the integral QY

«1%w




becomes a minimum for a neighboring condition Q,=1l. With ’l
as the Lagrange factor for the neighboring condition it
becomes identical to equation

6Q1=A6Q2
which agrees with (11).
The stability limit criterion expressed here in connection
with the variation calculation may also be converted into a
homogeneous system of differential equations and homogeneous
limiting conditions for the "most dangerous" variation. Such a
homogeneous problem has several solutions different from zero
when the parameters characterizing the equilibrium state (loads)

acquire definite critical values (break values).

This method will be used below with the example of a compressed

rod.

II. Stebility of a Compressed Rod

7. Equilibrium state

To carry out the Trefftz method in order to find the stabi-
lity limit of a compressed rod the definitions should be fitted
to this particular problem. |

The coordinates are designated x,y,z. The coordinate system
is layed out so that the z-axis coincides with the rod axis and
the remaining axis fall within the cross-section of the rod.

The equilibrium displacements are indicated with capital
letters U,V,¥, Variations of U,V,W/ will be indicated by small
u,v,?\J and the variations of these latter will be indicated by

v Jv-,d er

The rod considered should be "fixed". This means that all

points of the lower and all points of the uppper cross-sections

-]8=

e

=l e




have suffered the same vertical displacement; thus W should be

predetermined for the cross-sections of the extremes. From all

the disturbances of the equilib ium state only those are acceptable

whose w=0 at the frontal surfaces of the rod, and thus also

%E=;o and §§==o.

- The rod is held by its lower end (2z=0) and compressed by a

portion AL by a force P=pef (f is the cross-section).

then the displacements are 1
U=ug2; V=ayy; Ws=ua,2,

and these may be neglected. {

The connection between the expansions 898053 and pressure

il )
p is obtained from the tension-expansion equations (9) which now
s

/ \
a Ir as BEX 2= Gy, . -
¥ . e m-—g)“"“,
! (l)
b s G L ki :
brv=G \: wn = 2} =0, 2 {
PR | o b
k: —('(7’:: " i _2)’-— » 4
!
Ry ——p i
Figure 3
it is
PO, -2
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Vxx™= 2 - “.\'J : oy =) I 4 Vi I,
Tuu— 2 “y -+ "-.';: , Uy = | 1 Yuu I,
v..=2a’ + a,?, an= ','] =1

The equilibrium conditions (4) are (as in any tension state)
self-fulfilling.
8. Second variation of the intermal energy

The homogeneous equilibrium loses above a "critical®magni-
tude of pressure p its stability.

To find the stability limit the second internal energy va-

riation has to be considered. It results in :

Tl = 12 a f(1 -+ ay)? wy® A= (T ay) vy = (1 ) 07

A=Al O Ay (Vba e v, o Fa) i A-ade e (1 a ) A a)we, wy

b

b iU+ ag)® () - 1.7 (U wy)” (02 A es?) A= (0 - ag) (e 4 wy?)
I

‘ i . ) i O G T amently | . % B8\ 7
i /;“):\l e ok L T b a,) (1 =2

v P ' . .
fazpisges | ;o it G K n.\;ll'n'\l;u'.: wiyns

f \\\ Wl ey dada dz
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The first integral is equal exactly to the form change work of the
classical elasticity theory. It shows the form modification work
involved in small displacements /2;; Lﬁ,é:; when these alone
are present. The second integral contains the acting pressure p.
And so the second variation of the internal energy of a compressed
rod is written as a difference of two integrals over positively

defined quadratic forms in derivations of ’Z(, P

thus: (SZ £ = @’ .—QL

k]

9.Jacobi's equations
After developments in 6, we reach the stability limit for an
elastic equilibrium state; if there is a "most dangerous" variation

u,v,w for which with every accepteble variation Cyzﬁ;CJa’) Cf}t/

it is cf(;)l:'(J?:;z-

and for the case of a compressed rod
Ql and Q2 have the above values.

The satisfaction of equation (12) for any variations of
u,v,w leads to a system of three partial differential equations.
It represents Jacobi's equations adapted to an equilibrium problem

in a form of a variation's problem (6).

To simplify the derivation the crosslines above 27, o iy .

again omitted. The partial derivatives of the integrants of Ql

along the break magnitudes %;,g;~*§% etc are in

formal accordance with the classical theory designated by the ten-

sions 63,/ ;:E7etc.
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Since Ql has the shape of Hooks form change work, the first

variation of Q, results as when T O=ngk vyt
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Equation (SQ’: ()@lmay be possible for all acceptable variations
only when the integrants in the space integrals are mutually equal.
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It follows:
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m~—~2dz; (1 az)t 027

These are Jacobi's equations.

Limiting conditions belong to the above and follow from the

surface integrals.

a) Integrals touched only byéq over the shell plane have

to dissappear. It follows from this that on the shell surface

following equations apply:

Gy COS (7)) =710 008 (0, 37) =0
Tyyos (0, &) | oyc08 (0, y) =0

Tx: €COS (M. .0) =7, €08 (i, 1) == 0

(cos n, z=0)

They indicate that a force-free shell plane corresponds to the

displacements u,v,w.

b) The integrals ofa\@ and A\Qq’ taken over the front

surfaces must be equal. Since according to 7, for all allowable

disturbances and their variations at both front surfaces are

w=0 and(SN;Ofor all points, also wx--O and w=0, it follows that for

the front surfacesqu = 67,{2 andz'sz GV! So for the upper
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front surface expression only

, Ou ML p  Qdu
SSAN G 5 ll.l‘(l_l[—-—.\g(l +ut s dudedy

remains and for any chosen &u,

on

0z —
The same applies to the lower front surface

dv
3z =9

With the conditlon w = 0 we have for the limiting conditions

at the front surfaces

N gy X A
w:=0, a'é-’:ﬂ, SZ=U oder w=0, 1,,=:0, 1,’.:0.
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Finally we ha;éyggg"most dangerous displacement" u,v,w is

sufficient for the homogeneous differential equations

o ; we 0 § ey
4:{.'1!-.« r o ) ' "
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rith homogeneous limiting or boundary conditions:

|

' a) for the shell
Teg COS (N, ) 4 0, Cos (e, ) th,
By oS (e, ) ‘1-!_\ g COSI(Hr, ) ==k,

: Ty GO, Y+ Ty, CON (0,00} < ),

i

!

b) for the front surfaces
} oAk, LUME |8 vy
and the tensions according to the classical theory
Loy O A ) du A
ot "{\ e -_’)‘ Top ™ Ty d,r)'

e Equations (13) give a simple meaning which gives the connec-
tion of the extended theory with the elementary approximation
theory. When in the equilibrium the equations of the classical
eﬁsaéixihf;r
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are put as the volume forces we obtain equations (1%). This re-
veals that the integration of these equations is identical to the
task dealing with finding the equilibrium profile of the rod

when, at a proper p~value, the loads per each volume unit are

proportional to the magnitudes Zpz , Y5, , Was

When the volume load over the cross-section of the rod is

the
integrated we obtain loads per length unit of -h#e rod
[t P d|uj U oea . o r  dlv P P |w|
S'\"": Tl Aay)t d2 }h”‘ T (Lday® d2?? !/‘d'“ (1+a,) de*’
where ¥

12 ®Cc, are the average values. If these average values

2 <«
a " w? ” }

are replaced by the differential ratios A2 g

taken for the rod's centreline, and the small magnitude ¢ in the
denominator is neglected, the task arises to find the equilibrium

profile of the rod which is loaded vertically with forces

d*n

PG Pt « This is exactly the content of equation

oz

EIwWw= -Pwl' yhich follows from the ele-

mentary theofy.

IIT. Numerical Results

The Jacobi'sA equations together with the boundary conditions
of page 361 (23) tell us that there exists a neighboring equi-
librium state next to the initial conditions. The displacements
that transfer the initial conditions into |
the neighboring conditions are the similar factors[/*ax)Z ete.
solutions u,v,w. Since the Jacobi's equations and the boundary
conditions are homogeneous we have a ppoper value problem. The

proper value is the"critical" load p.

C=26-—




b T .

Rl i

In this section we solve the proper value problem for cir-
cular and rectangular cross-sections. In the first case - by

integrating by development in series; in the second by the Ritz

method.
10 Circular cross-section

Equation (13) Gl f OO o
\ a2 .r'} P

’;/ P woO oo
‘ il 20 1y /i O 2? ' . oy "" Cy =

Gl
L In } i 20z / ' Nt

is transformed for cylindrical coordinates. This means we seek

the equilibrium profile of a rod loaded per volume unit by forces:

o e

wvhere the very small magnitudes 6{* JC(Y/ ,Q ¢ are negligible when
compared to 1.

When the cylindrical coordinates are introduced ’772 2 and
the displacements are: radial 9 , tangential & ana WV
axial ”, the problem is to find the equilibrium profile for a rod

o o'r o'
loaded in the three dipections by volume forces ~ Py, Pyp ~Pys

When CraPv0,, 7, 9,T08,%:

are the cylindrical coordinates of the tension forces.

w2




The equilibrium conditions[ﬁ] are

da, i '_ AT it d LS 2 Ty -0y e 0
er - r g 0z r P
A-l"l"_*_ _1 (}ﬁ,) '+7(\ T 2’}‘1’/ L 0F 7
or r oo 0z r 49z
¢ ez 1 \) L i Rl 0, -r Tys O
5 e i 3 2 ) a—
or r 0 Oz P

and the tension-eapansion equations are

At N 1)

.,..,=26(_3,. st Erazy  w=o(iE3)

w26 (G712, =05 - F 130
g meihic Rt T

By eliminating tensions in the equilibrium conditions through

a tension expansion equation we have Jacobi's equations with

cylindrical coordinates

o B 1 4 0 i

d=gut 53T or s
P m- 06 2 0r o) Ao
x ”9'+ T0dr o ] "02" s

w106 2 0o 4 " »Fr

"—‘ -2 o7 T r'!"'}'«\z"
(_- m (V-)l ¥
'!""H- m-—20z| Iz

Their boundary conditions

W a0, 1,90, 1,,-0 for the cylindrical shell

and b)w -0, w=0, ¢, 0 for the front planes (s=0, z=L)
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To integrate (14) we chose

0 IPir)cos o cosrz, ‘
O w D eosy -, i A E g ol o g
)

W W) Cos g sin .

O e

It is sufficient for boundary conditions at the front planes

wvhen we take

il 4

For functions;z&iéaaac/EZ&jthree common differential equations .

follow from (14)

e | | w2 -9 ¥
Pl p iy "? "l 1) w22 ‘,.-]I
i | im0 2(m -1 »?
34 | 0 ww O nir
W s el s
S(m 137 ' e )yr T20m 1y e
| AT I LT PO |0
Vi) o /) I ' ? 2 =) -
L = Al ol he*|
) Sm -4 p m I may R o
y N5 ek —~-z=()
m » m—-2¢ g3y :
1 2(m - 5
P v 492 |q (1) np2 R
r i m--2 r’]
_omw » my P uny ¢
w2 m—2r m-2y 0

Where the vertical lines signify derivatives accoeding to

and q equals p/G.
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Through the inotroduction of cylindrical coordinztes it was
éucceeded to reduce the partial system (14) to a system with three
common differential equations of second order.

Equations (17) supply the case of a break, that is a linear

bending of a solid cylinder and a hollow wall column for n=1.

The equation s are, when the

cross-contraction
value is 10/3%:
'.? IA"_+< ‘.Ip'+ 2 ’,2(, ” 2 r Y » Y 5 ’ 5” S
7V ¥ P—w @+ 5 r @ 45 ¥ =0,
s : o 9 5 B
PO Q (g 1) Q- Q- a P : r ',, rR=0, oo (13)
- - - - . i
P 7) Dy ar by
PR +r’(f/ 2)]{ n 9 r P 2 »? ;r(} -0) J

The boundary conditions for the shell are simplified by using

(15) in equations

Tr P 3P4 0)43vr, R=0,
"*— l.l L l!' '.:0’

ay), -
R vyP=0

bam

and in case of a hollow cylinder there are three analogous equa-

tions with 7} instead of Z%

A complete integration of (18) leads to six integration
sconstants. The correspond with six boundary conditions (three at
the inside and three at the outside boundaries). For the solid
cylinder there are three conditions for the outside boundary.

For the three missing conditions we have that for tensions

Ory Trddy Yra

or r=0 are finite. Functions P,Q,R /or Y=0 mut?

. =30~
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behave in a regular manner. This regularity requirement supplies
thtee more data for the determination of constants.

Equations (18) are integrated normally by developing
exponential series for the solid cylinder. The succesive calcu-
lations of coefficients delivers, designating the

coefficients cl’cé_”CB’ the series:
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Apaet from these solutions the system (18) also contains
logarhytmically singular solutions which fall out because of
the regularity requirement.

Multiplying the series by the trigonometric functions of
and z, accopding to (15), when q is found, we obtain the values for
the "most dangerous" displacements from equilibrium for the
cylindrical rod. We still have the three arbitrary integration

constants cl,c?,c3 which have to be determined from the boundary

conditions (19). They are:

Tral” +3(I+ ) 431y R:=0,
IL*' Q" rq Q'=0|
K-y P=0

and, say, that the shell becomes tension free.

If we introduce P,Q,R values for r=r, in (20) then the boun-
dary conditions form a system of three homogeneous linear cequations
for the co.nstants €, €, 8, The magnitude e %— and the
radius 7;L appear with same exponents so that for their product
kzga;! this system may bejgolved for values different fpom
zer§ only if the determinant)Xof the system disappears. Since the
determinant contains the unknown load magnitude g, it can be set
in such a waybthat the determinant becomes zero.

For the followihg calculations the series for P,Q,R we used
the values given in (20). An ample calculation of the determinant

-32-
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leads to the equation
40 S8 1099 =003 ¢
a !t - u:;’ ',l" l
)
UL S60dg BTy 330N ; (=)
T k 0

Further calculation is possible only numerically. Because of the
complex structure of (21) with respect to q, load values are used
to solve the series. 8ince q=p/G and the push module G is very
high, q must be small. With G=800,000 kg/cme we obtain for the
loads p, which are within Hook's law, p=800kg/cm® and p=1,600kg/cn®
the values qg=1/1,000 or q=1/500.

The results of equation (21) were compared with the elemen-
tary theory where the break lenght L;s given by

JEL

1,
& i I

The result is that there occurs only a small deviation from

Euler's formula. It is
{ A B
“",“. Il' { »¥

1 2
| == '.“x) . ,:’ "-', Irx ‘l “."L’:! >

& 8 00012,

Thus within the calculation accuracy Euler's break formula is
confirmed.
11. Rectangular cross-section

The rod has a lenghth L. The rectangle's dimensions are
2a and 2b(ia>b). The positidn and the tension relationships are
the same as before.

The stability limit is dominated by equation ‘S@,-’ or QLwhere
Q, and Q, have the meaning of page 360 (23). '

Ry

-l B hentiecn.




The Ritz method is used to solve the equation.

For displacements u,v,w we chose

.= { 2 2
w=Airy)eosvz, v="Ricycosvz, w—-Cry)sinyz, v-».“l" : )
) 2

they.reduce the Spatial problem to a plane problem. It satisfies the
boundary conditions for the fromt planes, where for z=0 and

z=L it has to be w=0, u,=0, 2% =0. The integration of Q; and Q,
over the rod lenghth L gives

+a +b

GLy | m—1 , ] T
S kA {m A+ Byev0p 20, B, 20 B,C 204, C
b

— —

|
.‘)'(1'!/ + lf,)’+-},- (Cp—v B + 5 (Cy —vAy  dady, - ()

ba4b

»

u,-_-"'z" \ \ L2 4 Bt dady
>

x

For A,B,C we chose

a

a : -
A= ; +a,x 4o, y-a,vat + Za, iy ay v,

B e et Bt pre £ 28, vy By, s R
C= y: + 7, + Yoy +rava’ -+ 2y, vy + yary

Introduced in (23) we have
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Integrals Ql and Q2 became the quadratic functions of the 18
dxffmymmk coefficients. The equations for the stability limit

9,=4Q,yields 182 linear equations for the coefficients according

to 243

. The 18 equations system is distributed into
Qujy, Qg

4 groupts which contain the coefficients ay; Fii i

9 T TR .

S.ay; Pyi Vei VYani Ves
B 5 v s Sy o
e Myy G,y 5 Oeyi Pyas /)y

e Doy Bist Bt Wyt Yoo
The individual groups are systems of homogeneous linear equa-
tions where coefficients have a non-zero solution only when the
determinant disappears. If we take out one group and equate its
deerminant to zero, this determines the break load, we will ob-
tain the coefficients of this group up to a common factor.
The coefficients of the other group become zerc because the

determinants of the other group for the break load value found do

not disappear. We are interested here in the determinant equation

e b7




which supplies the break load, thus the question arises: which of
the four groups should we take? Naturally such for which the lowest
break load results; which one it is - is not difficult to
recognize. If the rod breaks in the x direction then all the
cross-section points have about the same displacement in the

x direction; u cannot be thus an uneven function of x. Now the
only group which has no uneven function for u is the third group.

Putting the determinant of this group as equal to zero we should

obtain the break load value which causes a break in the x-direction.

The fourth group, which follows from the third group by substitu-
ting x and y, yields the break load for a y break. Thendeterminant
equation is the same as for the third group when a and b are
substituted. Groups 1 and 2, which with the substitution become

one, give a kind of squeeze boundary, but this value has no
physical meaning because these phenomena take place outside the
limits of the expanded Hook's law.

We wriate the third group of equations as follows

. & . . ] -
et 4 120 o 21200 A b2 - )Py + D9, 0

St fra, (4 q) i iy -k (1 '/\' Wt it Bl G
W da, 430 g B g+ 0 - B e 0] gy 0
Bl g 1D 2100, B0 gt e, 4 R M, 0

Gy F A8 wy - 2B 0 68 Y, | 16 17 200075, =0
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And to simplify we take = e

The determinant for this system, when multiplied, is
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Since the coefficients of the exponents of q change with its sign,
the equation mey only have positive roots.

For a numerical calculation we note that q as well as k are
very small. If we consider the limit case of very thin rods
(we let k tend to zero) then after multiplying by k8 we are left
with the last members in the linear and absolute members which
yield the equation for q

13%k2-15q=0

From this - the break tension

1, 13/196°,

Introducing
e (L 1o 27a I a
C=fmin® »=3 F="7" g Pa=p- P,
we obtain exactly Euler's formula for the tensioned rod:
i El
l..-"'.r.t

u-

-

e




This formula is thus confirmed for the limit case of very thin

rods. The lateral relationship n does not appear explicitly.

—— ot

Strictly speaking there is a need for a n-depending correction

but in practically important cases this correction does not

reach any noticeable effect.

E Summary
As an example of the stability theory for elastic equili-
brium developed by E.Trefftz the present work calculates the
x® break limit for circular and rectangular rods. The first 1
. part outlines the elasticity theory for finite deformations. 1
In particular, it is shown that the expression f r the elastic 1
potential (internal energy of a volume unit) may be takerd from

the elasticity theory of small deformations when, instead of

—————

linearized distortion magnitudes of the classical theory the

real distortion magnitudes for finite deformations are taken.

g (because of this the coefficients of the linear elements change)

From the obtained integraal for the overall inner elastic

energy this work develops an expression for the second variation
of internal energy, whose sign decides the stability. Then
following common methods for variations' calculation, the
stability limit is determined, that is the load limit above
which the second variation is capable to accept negative values.

| The third section contains results of numerical calculations

1 ; from which it follows that within the limits of calculation

accuracy (up to fractions of one percent) Euler's formula is

~38=-




tonfirmed, which formula is obtained according to elementary

beam-bending theory.

I wish to thank here Proffessor Dr. Trefftz for

b
)
-
n

encouragement in my work

References and notes
, e A e T T o o YT PRt DT (T e

3} e DES . Norheianses gber Y ekioy et babiia 122

4) This expression was first used by Trefftz in 19%0 and was

given to me privately.

-
O°F Vil Mundoed dor P livnik, Buad VI

e




| ~SSRESETEE

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION

A205
A210
B3k
cok3
€509
€510

C513
€535

C591
C619
D008
H300
P005
P055

DMATC

DMAAC

DIA/RDS-3C

USAMIIA

BALLISTIC RES LABS

AIR MOBILITY R&D
LAB/FIO

PICATINNY ARSENAL

AVIATION SYS COMD

FSTC
MIA REDSTONE
NISC

USAICE (USAREUR)
ERDA
CIA/CRS/ADD/SD

NAVORDSTA (50L)

NASA/KSI

AFIT/LD

FTD-ID(RS)T-1897-77

MICROFICHE ORGANIZATION
1 E053 AF/INAKA
2 EOl7 AF/ RDXTR-W
8 E404 AEDC
1 E408 AFWL
1 E410 ADTC
i1 E413 ESD
FTD
CCN
ETID
NIA/PHS
5 NICD
1
1
1
1
1
L
1
1

MICROFICHE

N

v =W




