AD=A0B63 251

UNCLASSIFIED

FOREIGN TECHNOLOGY DIV WRIGHT=PATTERSON AFB OMI1O
SPATIAL GEODETIC TRIANGULATION.(U)
JUN 78 6 ZLATANOV

FTD=ID(RS) T=0643=-78




B o e R e s

FTD-ID(RS)T-0643-78

©

FOREIGN TECHNOLOGY DIVISION

AD-AOGC 35/

SPATIAL GEODETIC TRIANGULATION

by

Georgi Zlatanov

Approved for public release;
distribution unlimited.




FTD -ID(RS)T-0643-78

EDITED TRANSLATION
FTD-ID(RS)T-0643-78 21 June 1978

MICROFICHE NR: +¥])- 79-C- 0005

SPATIAL GEODETIC TRIANGULATION

By: Georgi Zlatanov
English pages: 21

Source: Geodezja 1 Kartografia, Warsaw, Volume 26,
Number 2, 1977, pp. 103-115

Country of origin: Poland
Translated by: Linguistic Systems, Inc.
F33657-76-D-0389
M. B. Biskupski [ ACCESSION for |
Requester: SMAAC/SDDL ‘ NTIS White Section
Approved for public release; { DOC Sutf Section [
distribution unlimited. | | umaNnoUNCED 0

JUSTIFICATION |
s
l

| | PO RS P SRR
| DISTRGUTION/AVALABLITY CO0€S
L Bt~ AVAIL a0d” o SPEEIL]

A

— ——— ——— ————.. B ———

THIS TRANSLATION IS A RENDITION OF THE ORIGI.
NAL POREIGN TEXT WITHOUT ANY ANALYTICAL OR

EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY: ;
ADVOCATEDOR IMPLIED ARE THOSE OF THE SOURCE |
AND DO NOT NECESSARILY REFLECT TNE POSITION TRANSLATION DIVISION .
OR OPINION OF THE FOREIGN TECHNOLOGY DI- FOREIGN TECHNOLOGY DIVISION

VISION, WP-AFB, OMIO.

! FTD -1D(RS)T-0643-78 Date 21 Jun 19 78




U RSO

SPATIAL
GEODETIC TRIANGULATION

Georgi Zlatanov

Introduction

In recent years a rapid development of science and tech-
nology is observable. In the field of geodesy this develop-
ment is characterized by:

- The introduction and rapid spread of electromagnetic
stadia

- The individuation of a new geodetic field - cosmic
geodesy

- The versatile implementation of electronic technology
to geodetic techniques

These new elements in geodesic theory and practice have
enabled new methods for the reciprocal establishing of the
location of points on the surface of the Earth. These methods
are essentially different from classical methods.

In classical geodesy all dimensions were divided into
two basic groups: horizontal dimensions and vertical dimen-

sions. Classical geodesy required a reference surface, upon
which were reduced all measurement results.

The problem of measurement reduction was one of the basic
problems of classical geodesy. The accuracy with which reduc-
tion corrections could be determined constituted, in many
cases, a barrier determining the accuracy of the geodesic uet.

Modern technology allowed that barrier to be overcome.
An important role in this was played by satellite geodesy,
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which in a short time achieved a high level of development.
An essential share in this development was contributed by
Polish geodesists.

As is well known, cosmic triangulation can be thick-
ened,(l) with the aid of the so-called balloon triangulation.

As a result of this thickening the geocentric coordinates of
a large number of points on the Earth's surface can be
gained. Consequently, it is entirely possible to obtain the
geocentric coordinates of points lying 20C-200 km apart,
without the necessity of reduction (in the classical geodesic
sense) results of direct measurement, and this without using
a reference surface. These new possibilities, essentially
differing from classical means, require the discovery of new
methods for establishing basic geodesic nets.

In this current work a method for the mathematical work-
ing out of the geodetic net is considered, based on three-
dimensional geodesy. Adjustment and calculation of the net
is performed on a three-dimensional Cartesian coordinate
system, and not on a reference surface. DBy this method the
difficulties resulting from the reduction problem are avoided.
There arises, however, the necessity of utilizing physical
reduction, and the especial need to consider the effect of
refraction.

Due to the character of the work, it is assumed, that
the angles of refraction are determined beforehand (e.g.,
with the aid of a refractometer), and thus, that the zenith
distances are free from the influence of refraction.
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In three-dimensional geodesy it's necessary to make an
aggregate adjustment for the effects of the measurement of
the vertical and horizontal angles. There thus arises the
possibility of making calculations in a three~dimensional,
Cartesian coordinate system. No difficulties are presecnted,
in this case, including the effects of length measurements.

The idea of three-dimensional non-reduced geodesy arose
in the middle of the last century in the work of Willarseau

and Bruns. At that time, however, its development could not
be continued. Only inm the 1950's do we encounter the first
systematic investigations dedicated to three-dimensional
geodetic. The groundwork for a geometric approach to the
question of determining the figure of the Farth was laid by
M. S. MoYodienski. A series of basic mathematical equations
for three-dimensional geodesy can be found in the work of
"otin and Dufor.

After formulating the basic laws of cosmic geodesy, and
after working out the geometric methods for investigating the
Farth's figure, there tegan researches regarding problems
arising in conducting local spatial triangulation.

The set of problems included here can be divided into “ ?
two groups:

1. The effects of refraction on the results of zenith
distance measurements

2. Methods of adjustment for spatial networks

Whereas the question of the effect of refraction finds
a diverse and occasionally contradictory variety of inter-
pretations, methods for adjustment of spatial networks can
be assigned to two groups:




1. Separate adjustment of the vertical and horizontal
measurement results

2. Aggregate, i.e., three-dimensional adjustment of
vertical and horizontal measurement results.

By separately adjusting these first is determined the
horizontal coordinates.of the network points, and next the
third coordinate, together with the unlinown perpendicular
deviation. The means of adjustment, belonging to this group,
do not differ essentially from the classical geodetic methods
discussed in textbooks. They represent a single minor modi-
fication of the known methods. The essential difference in

relation to classical means, is shown by the methods for estab-

lishing aggregate adjustment of the horizontal and vertical
angle measurement results. In this adjustment perpendicular
deviations also play a role. It results that measurements
carried out on the surface of the Farth are directly connected
with the direction of the perpendicular line at the observa-
tion stations. There arises thus the necessity to reduce

them to a uniform system of coordinates.

In the current work two algorithms for spatial triangu-
lation adjustment are presented; in the first of these multi-
group adjustments by the conditional method is used with
unknowns, and in the second -- the parameter methoc of adjust-
ment for correlated quantities.
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Whereas in cosmic geodesy the axes of coordinates of a
topocentric system of coordinates is parallel to the
axis of a geocentric system, in the case under examination --
topocentric systems of coordinates are used. Closely connected
with the posibions of the theodolite at the time of obfervation.
Thus, for example, the topocentric coordinate system (’1 2 )K
(drawing 1) can be defined as follows: axis Z is directed
towards the zenith (2long the horizontal axis of the instru-
ment); axis X lies in a horizontal plane and is directed
towards a zero indicator of the horizontal circle; and axis
,¥ is turned 90° in relation to axis i, in a clockwise direc-
tion. Such a topocentric coordinate system is a left-handed

system.
I’ Ry - horizontal angle
5 - : between axis X“and
P i, WGy S il direction M-N
! }
: Byw ““i i PMN - zenith distance of
3 - : | e direction VM-N
‘/gﬂffjit:fﬁgj,/" L Dy - distance M-N
/

The position of the arbitrary point N in the topocen-
tric coordinate system for station M can be defined by
polar c%ordinates (R,(3J D) and by the rectangular coordi-
nates (¥ )M‘

The relationship between these coordinates is as follows:

ST e Ve

";’H) = D..eo.k... l‘l’lﬂnn;

L
‘. )”l‘" = Dup 8inRuy $infuy; ( )
lw” = Dyy cosfluy.
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From (1 1) we can obtain the reciprocal relationship:

/ (M) 3 A M3 4 7(M)2,
DMN=+".\'(~')+'V(N)+ZN 5

'N
g Run = = (| % ')_3
XN
M)
:;VM' zx

cosflyun = — = - e 3
M)?2 M)32
Dun M4 0 420

For the direction cosines MN in a local coordinate system
we have:

A .

Ayy = -~ = COS Ryn * sinfun;
Dyy
»wh

byyn = ~——— = sinkuu' Sinﬂuu' )
Dyn : C\ 9 3
L(M)

Cun = ——— = COSByn.

MN

If we designate the versors of the topocentric system
of coordinates by (&,, €5, Eé)M’ then for the unit direc-
tion vector MN, after using the general cracovian calculus
operators, we can write:

- - (M ~(M —
Funy = Qune )+hu~¢§ )+C“~¢SM) = Gyn’ Tepm, ( ‘043

Vector ?;u can also be presented in a geocentric coor-
dinate system (X, Y, Z). If the versors of this system are
designated by ﬁi,'fé,-ﬁé, then'?nu can be written as follows:

Frun = Ay * E1+B~n Y E3+C~n ¢ E; = Auv " 1E, ("g)
where:

Xv—=X

b il

MN
B".' = —-Y”— Yf’. » (_ICL)
Dy .

Zy—

Cun = Zn=Zu

Dyun = + Y (Xu=Xa ¥+ Vu= Yol + (Zn— Zaa)*.




From (1.4) and (1.5) it results:

;MN=¢M~ 'feusAu” +tE. Cl-1)

We accept that the relation between eMaAiE is repre-
sented in the following form:

E = vy 1ey, C“Q)

3.3)

where UM is an orthogonal cracovian. It is designuted by
three topocentric orientation angles of the topocentric
coordinate system, namely:

QSM) - the astronomical azimat of axis Xg (of a direc-
tion corresponding to the zero indicator on the
horizontal circle of the theodolite at point M),

$H) . Jatroncutesl witth at point M,

A(M)

astronomical length at point M,

Tor elements UN the following relations result:

Hyy = —CosaoSingcos A—sinagsini,

2y = —Cosagsingsinl+sinaocos i,

U3y = COS®ECOSP;

Uy3 = Sino,sSin@cos A—cosaysin i, (l'q\
3 = SinaysingsinA+cosacosd,

Uy = —sinagcosy;

Hy3 = COSPCOS A,

Hyy = cosgpsini,

usy = sing,

In these formulae the factor M is disregarded.

| From (1.7) and (1.8) it results:
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Quy = Ayy® Tuy, L\.‘O\

1.3 (L) 3.3

Aun = @y Uy (‘.‘0 a)

(1.3) (L3 3.3
The form of the developed formula (1.10) appears as follows:

M
ayn = Apunu{) 4+ BNN"‘IT”+CMN“§:')'

M
buny = Auyu{d + BMN“::"“’CunHS:”, (l p “\

(M) (M) M
Csnv = Aunttys + Bunu$h” + Coyyu§20,

The relationship (1.11) presents these conditional
equations between the results of observations RMN’ pNH’ and
coordinates (X, Y, Z)HN as well as the orientation angles

oy,
(at @,4),. Detween these three equations there apises the
, PATLE. M Giaw+Oin+ Cn =, 1, Sl —Gii—inraiwiie- only
Fuat:ons p ol
two of the§$1 T ex ﬁple, the terms ‘NP and C can be mcorparaled 1n

“MNJ
'U\? BJJustWent‘

Before approaching adjustment, we must present rela-
tionship (1.11) in linear form.

Let us use these notations:

RMN - R;IN"' V.MN; ﬂMN = ﬂ;{”"' VﬂA'N; l

amn = cos Rynsinfan, (I"l d)
bun = sin Rynsinfun, ]
cmn = cosPun;
g = altgtdan, Gu = QUutdpy, Iu = Matdiy; } (l'llL)
Xc=Xg+dXe, Yx=YR+dYy, Zx=ZR+dZx (K=M,N);

x x yo_yo Zo_ 0
A:‘N —’LB—M y B:‘” o ., A“' ’ CglN - oL » )
Dyn D:IN ; D:”, (\.\2 (2
aff* = U} @hey, #iu, 20).

In the above relationships the indicator "prim" desig-~
nates measured values, and indicator "O" -- approximate values.
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The linear form of equations

.11) is as follows:

’ ’
- o ‘A B
UTN_.MNA_gi,WMMww,ﬁWWWO ;Nw& ;m“u"—ﬂm+
“Ryy ORpN 2 “Xn 9
Ay dByn ICun un AR C“”)
=~ =" 0 = 1l ) (@Y= Y ~ (19, 2 @, MY 03, 2 (@2, - dZy) +
( 1 oy, tuz, 7 + iy, 3 dYy—dYy) - ( 1 7 21 Ay 3 o7
o, fu an u Oy, ou sy (M)
8 (Aﬁm - - byN - :: + Chrn ~1‘I )«I i (Agm __(.:.‘:;_,. By - o +CRin — d" +
\ éal™ dap™ éagM) ap P a"
y O ou ' g
. ("‘lMN ityy L 21 oy - ¢ LI DPTETIN Wi =0, (1.13a)
\ .(M) (M) ol( M)
by < ébuy g (u° iA,.,+ o Bun | iCyuy
< n — =0y - —— ~dXy
Run LT By 12 X 22 “ +Usz X, )(dX,, dXy) +
CAyn By~ ¢Cun cA cByx ¢
Y M. +ufy ——2 N @Y\~ dVy)~ de i o
( : oy, 3, Y 32 7 )(1 w—dYy)—(uf, - iz +ug, iz, +ul, 4‘- - (dzv-dl.)ﬁ-
oy, o o Clyy (M) o Clys i'u“ u
Aun FBuN -+ Cyy = -)!/ —~(Apy — Y AT R A M
( calt Zat™ ) faed MY M) N i +Cmn g, o i
o G o Cltyy o Ols 3
- (-‘hm o luv(,-;;’“)-# \,v_;( )d)( )+ Wiy = 0, (1.13b)
i('.;IN CAmn ‘B“q dCyy
Vo o= {6 —— +ul +ufy — -) (dXy—dX,
"ﬂun R ( 2 CAym o f‘Xu i 12.¢ i W+
[z Bux Ay, 2Byn dCun
— (=4 ul +us (dYy—dYy) = [u? £ e U3y o | (A2 = dZ ) +
( . S 3 ) ™ N LM ugs iz, u3s iZu (z,, N+
iu,_, Cltyy o Clyy M) _ gy o Gy éu
- A‘(m = By +CpN -~ - ')dﬂ AMN - +BMN -+ CMN - dg™M) +
( (w calM) folM) qy(“) M) g “)
~lat _f{l,; 0 ;’fnl L Cuy dAMY 4 Wi = 0. (1.13¢)
MN iy Y BN oyt Can Z(M MN 3¢
———

e
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The partial derivatives occuring in equation (1.13%)

are expressed as follows:

naly 5.k
CAdMmN ’ ‘ e . CAMN ’ ’
= = sin Raasin iy, —— = = €08 Rpncos fmn ;
cRyn Bun
by o by ., .
— = = cosRmpsinfiyn, = = sinRyncosPun: - (1.14a)
ORMN Prn
dCmn oy
<= —sinfiyn.
PmN
: 1yo2 . f 02 5 0 AXx° AZ%n - AXS,
CAun MYmnt N Zyy Bun Yy AXuy Cyn  NZyn- AXyy
P B e - ’ - == — ey, S, | Ar——— o =15
Xy [)‘,;"N Xy I)g,"N oXu DLN
P 0 .02 02 ” —~0 0
iAdun YN IX Yy By LXMN A A ZRn 0Cun  AZyn- AYyy (1.14b)
e . B e 2 = —————
3 3 . " = 3 ) - 3 ’ .
¥y Diin ¥y Dign ¥y Din
. ; ’ - A 02 02
Clyy AXun: AZYN g By AYn A2 ; Cyn AXpmn+ Y v A
. = ~ T : T e o £ mmm— . = e e
oy l)f;'v Oy )‘I:lh 02y D"MN
i Cliyy uy,
=3y, = = =y, P :
(%o cap ditg
iy Cltyy ity
b uly, et e = lls e =0 (1.14¢)
=M (% dotg
(lyy Clyy Cuyy
. = +uj,, o Wy e B0
« %y t‘uo C‘Eo
iy PRAE: Ay, - o Cuy, R
= = 195008 40, — - = —ulycos 0, = = U$4C08 A0 ;
p cyp op
Cly,y 1 Quyy a2k Cltyy
— = —uy8in A0, e = —Uudysini0, —= - u,y8in 20 (1.14d)
oy cp é‘fp
gy gy o (Uyy
L= —u9cosag, - = ufysina,, e = COS PO,
cp op c
ity iy, Cuy,
o= =l — = —uf, — =1y
‘A e R i
ity Sy, Ctty,
- = 4uf o R ——— Y 1.14¢
{; 1y (,’}' 21 (,"). 3y ( ,
Cityy Cllyy Cugy
Srissermine A8 R0 ""{"0" xo.
il ¢ dA
1 ’ 0 0 0
WuN = amn = ASnufy— By ud, — Clenul,
Wi = byn— ARy uds— Bunuls — Coynul
MN = byN—AyNufs— Bunuds— Cynul,, (1.14f)
3 ’ 0 0 0
WuMN = cMn—Amnuly— BRnugs— Chnuly.
-10~
| ——gpe I 0 ——
e it NN
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Utilizing the aid of EMC, the numerical values of these
derivatives can be easily determined by the iLumerical differ-
entiation method. In the case of the zenith distance not
being freed from the effect of refraction beforehand, it is
necessary to include in the adjustment the coefficient of
refraction,)ﬁﬁ‘as an unknown. To this end in equation (1.13)
it is necessary to use a substitution:

1 DMN

S ST (1.15)
Voun ™ Youn* 5 5" "
’
Where: V'Prm - correction for measured value /9,."4
Km - refraction coefficient for position M
R¢p - mean radius of the Earth

As we already know, for each direction MN it is necessary
to employ equations, using two among the three relationships
(1.13). Using the conditional method for multi-group adjust-
ment with unknowns (8), this pair of equations will be treated
as a separate group.

From each pair of conditional equations two are desig-
nated for equivalent corrections, relating to [Wowp unxwownT]
and independent fictitious measurements. These equations
then undergo a general operation, as a result of which all
unknowns (X, Y, Z, @, A, “O)M are obtained, also the cor-
rections VR, Vo for eact measured direction.

We consider that including in the adjusiment 9, P. A
for each position, increases to a large degree the dimensions
of the system of normal equations,and therefore it would be
worthwhile to eliminate these unknowns beforehand.
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A problem for geodetic nets installed for use in hydrau-
lic construction in mountainous regions, or in the construc-
tion of long tunnels is assuring high accuracy in the corre-
lated position of a network of points.

Using the classical methods of determining the effects
of the measurement of sngles and lengths it is essential to
know exactly the deviations from the perpendicular and the
geoid interstices from the elipsoid.

Introduction to geodetic calculations of modern concepts
2llows the analytic presentations of the nets elements in
three-dimensional Cartesian space. Thanks to this, the neces-
sity of including corrections for measured quantities in order
to transfer to a reference surface, is eliminated.

For the purpose of eliminating the effect of errors in
the initial data, nets of high precision, the rules are )
regarded as independent, i.e., not connected with given points.

The adjustment algorithm considered in Part I requires !
the existence of at least three connected points, and thus
" can not be used for adjustment of an independent net.

Another algorithm is presented below, which can be used
equally in the consolidation of spatial nets, and in the
adjustment of independent nets. :

In order to adjust local spatial nets, a basic problem is
designating suitable initial data, which would determine the
orientation elements of the net without its distortion. There .
are six orientation elements. They are the coordinates of the |

« basic point (ﬁl-",—’*)o and the three Euler angles. To these
i six orientation elements we must add the net scale.

.7 !
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The above seven parameters can be replaced by seven other
independent quantities. There can be, for example, the rect-
angular coordinates of two points and one coordinate of the
third point. With the existence of three data points, two
supernumery elements then appear, which cause a net deforma-
tion.

The designation of only one geocentric coordinate for the
net point in order to eliminate its deformation, presents
great difficulties. The conclusion results, that the means
of adjustment, well known in the literature, which uses geo-
centric coordinates (X, Y, Z) cannot be used in relation to
unconnected spatial nets.

For adjusting local spatial nets the conditional method
can be used, but great difficulty arises in this regard in
setting-up conditional equations. In regard to this, in
this work we have concentrated on the parameter method. The
unknowns (X, Y, Z) are converted in advance to the geodetic
coordinates (B, L, H).

Adjusting the net begins by setting up the equations
expressing certain quantities, independent of the orienta-
tion station. The first time -~ as a function of geocentric
coordinate stations and observed net point, and the second
time ~-- as a function of horizontal and vertical angles,
measured at the same station. The functions,K spoken of
should be linearly independent and should simultaneously
define the position of the directions measured at a given
station.

In order to make the selection of suitable functions,
let us consider the directions from station M to observed
points I, J, and K.
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Let us imagine, that point M is the center of a sphere
of elementary radius. Foints i, j, and k (Drawing 2) are
then pointé intersecting directions MI, MJ, and MK from the
surface of the sphere. The straight sections in Drawing 2
are in reality arcs of large circles, corresponding to spa-
tial angles. DBearing in mind that points M, I, J, and K are
points found on the Darth's surface, the spherical triangle
(i, j, k) is very oblate (the degree of angle at point K is
nearly 180°). 1In this situation the spherical distances
(i,3), (i,k), and (k,j) are almost linearly dependent, or

-

(2.1)
G, ))~ U, k)+(k,)),

and thus they can not reliably determine the position of
directions MI, MJ, and MK.

Drawing 2

It also results that from three noted spherical distances
for adjustment, only two are used, for example, (i,k) and
(k,J). These quantities complement the spherical altitude
Lgi leading from point R.

=14~
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It also results that from the three noted spherical dis-
tances for adjustment, only two are used, for example, (i,k)

and (k,j). These quantities complement the spherical altitude
Lgi leading from point R.

4

Let us designate

(su) = cos(i, k),
(%)) = cos(k,)),

b
(hly) = sin(¥)). ( )

These quantities (2.2) can be expressed by the elementary
vectors T, ?E, and ;k, for directions MI, MJ, and VK.

Then we have

(sw) = (71, ),
Gug) = (ri, 7)),

) S';'_E;_'?i)_ (2.3>
» I(rixrp)|

For quantities (2.2) the following dependencies are appropriate:

(su) = ("ll)b

(-’U) - ("Jl)) ( 2 . 4)
) = —@l.

Using quantities of type (s) and (h) as adjustment quan-
tities does not create any essential difficulties. The im-
portant concern here is the correct designation of the corre-
lation cracovian of these quantities, and considering this
cracovian during the adjustment itself. (6)




The number of quantities of type (s) and (h) for examin-
ing station M, in an example when the horizontal directions
are measured, and the zenith angles to points K will equal
(2k - 2), in which (k - 1) -- of type (s) and (k - 2) -- of
type (h). :

,-‘, 4‘
——

In setting-up the correction equations for quantities
of type (s) and (h) formulae are used which present elementary

>

vectors ri’-;j’ and ?k in a local, (1.4) and geocentric (1.5)
system,

Kceping the local system in mind, we have:

G = Fi(Bis Bui Ri, R, (2.5a)
.’ (h.‘))m = Fi Biy ByuBui Riy Ryy R,

’ , (2.5b)

and for the geocentric system:

G = FEXutu Yu, 20 X0, Y, 26 X0 Ve, Z0) =

= @4 (Bu, Lu, Hy: B, L,, H;; By, La, H); . (2.6a)
‘/'}J)no = Fl(Xu. Yu, Zus X, Y Zi X, Y, 2, X, Y4, 2) =
‘ = Wf(Bu, Lu, Hui Bu, L, H,; By, Ly, Hy; By, Lo, Hy. (2.6b)
?
L The geocentric coordinates (X, Y, Z)p and geodetic

(B, L, H)p for P = I, J, K, M, are connected with the well-
known formula:

Xp = (NP+”F,c°SB’c°lL',

Yp = (Np+ i
l ” (Np+ ”r)COSB'smL,. (2.7)
% Zp = (Np+ Hp) 3in B, — £*N,sin B,
|

where N_ = a(l - easinzap) -1/2 is at the radius of curvature

i of a transverse section, e -~ ig the eccentric of the mere-
dionel elipse.




Functions (2.%) and (2.6) are obtained as a result of
(2.3) and by considering (1.5) and (1.6). The final form
of the functional dependenc:.es,drS and i‘g, in which appear
thegeodetic coordinates (B, L, h), points (M, I, J, K) is
determined resulting from (2.3), (1.5), and (1.6), and con-
verting in (1.6) coordinates (X, Y, Z) to geodetic (B, L, H)
with the aid of relations (2.7).

In order to obtain the correction equation, these sub-
v stitutions are used:

B=F+Ve, R=R+Vai (2.8a)
X=XO4dX, Y=VYo+dy, Z=2°+dZ; (2.8D)
B=B%+dB, L=L°+dL, H=H+dH; '

(2.8¢)

and (2.5a) and (2.6) develop in the Taylor series, limited to
linear expressions.

Then we have

(Suhox = (sa) + V(sn)s s (2 . 93)
(hiphon = Gilyy + Vi), (2.9b)
where
Gu) = Fi(Bi, bi Ri, R, : (2.10a)
.‘ izy = Fa (Bl B}, Br: Ri, R}, RY). (2.10b)

V(si ) and V(hi ) are prospective comrections for quantities
} (sik) and (ji ) (functions of directly measured quantities,
} subject to adgustment), whose differential forms are as fol-
|

lows:
| " ¢ o . dow '
| Visu) = i‘—‘le.,+ 1%‘1V.,+ ;;“ Va,+ a%’-n,: - (2.11a)
1 !
A o mﬂ)
vy = -‘-";,"’lv.,+ ";’;‘" Vi + = au.,,) V.,+-€;‘,‘A ,+—;§3-'i’-v += Ve (2. nbl




From the other side:

(‘Il’uo = (A'u)o-'-J(‘-“)' (2 . 128)
k
Ui ase = (50 + A4, (2.12p)
Where:
(su)® = FI(XRe, Y8, Z0; X0, Y0, 20, X8, Y8, 2D) =
= ¢ (BY, L3, HY, BY, LD, HY; BE, L3, ZD): (2.13a)
Ki)® = F¥ (X%, Yia, Zhe X, Y2, 20 X0, YD, 2D X8, YR, 28) =
= OR(BY, L34, HY; BY, LP, HY; B, LY, HY; BY, LY, HY). (;BU)
a(s Si) ¢ (Iu) ((Ju) ((.\‘“) 5(5“) 0‘.'“)
M) = dx 1y v :
s - st o, dYy+ (7~ -dZy + PX, dax,+ aY. dY,+ iz, —dZ,+
« ('n‘ E(su) : a(su) C(Su) (s é(su)
+ e d Xy rwJ)»-«M il il i
e il el < o e e i Rl | P B
(su) (sa) ¢( u) (si) (sw) (sn)
G s B S bl il il
& T dLit -, dH + 73 dB+ 7 dL + ik dH,; (;,NA
M ('UI’,) d(/l,,) c'(h,;) 3(/"1) l"(/uj) « (hi )
Wiy <l dXut 50 d¥u oz d2ut =tk iy --5ll-dz,+
o Uity ety a(h ) P /* é / 49 l
I A
- ‘,;".’ dByy+ ‘?.‘,':“’ dLy+ - ”"’"’ dHy "("“’ D 4, + "-’-‘""’ dL+ a(-l'!i[dih
i (hy) oMm & (hly) a0ty o
y 7} ) é (hly)
+ eyt o Py S arty g SO0 g4 2O gty SC) g, (214 b

Partial derivatives appearing in formulae (2.11) and
(2.14) are obtained on the basis of formulae (2.6a) and (2.6b).

Using the dependencies

(-l‘u)... = (_‘-,.).“'.

(2.15a)
(U
P s (2.15b)
or (2.9) and (2.12) we obtain
 V(sw) -'-|(.m)+(lfl)°-(lu)'- (2' 16‘)
Vly) = AU+ (lp°= tlyy (2.16b)
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Fxpressions (2.16a) and (2.16b) are really equations
for correcting quantities (s) and (h). In order to solve
these equations, as already noted, it is necessary to use
the principle of adjustment for dependent gquantities by the
indirect (parametric) method (6).

There is, however, another possible approach. Using
formulae (2.11a) and (2.11b) the quantities V(sik) and
V(hij) appearing in equations (2.16a) and (2.16b) can be
replaced by corrections V(R) and V(P) to directly measured
quantities.

Adjusting a spatial net in this case leads to another
standard problem of the method of smallest squares -- of
conditional adjustment with unknowns.

Depending on the means of presentation (Sik) and (hgj)
in adjusting, appear as cartesian unknown geocentric coor-
dinates (X, Y, Z), or geodetic coordinates (B, L, H) of net
points.

Installing a spatial net of high accuracy -- in order
to eliminate distortion of the net produced by errors in
initial data -- we accept as initial data the geodetic coor-
dinates (B, 1, H) of two points and the altitﬁd%xbf the
third point. -

Independent of what was presented above, a practical
solution of the problem encounters difficulties of & prac-
tical kind, connected with the designation of the coordinates
(B, L, H) of two initial points, and doing so in such a
manner that they would correspond accurately to the designated

length between these two points. This is a problem which

S R S
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deserves especially close attention. Ierec we shall limit
ourselves only to a discussion of one of the substantive
cases -- from a practical point of view.

Let there be, for one of the net points, which we
shall call the beginning, geodetic coordinates (B, L, H)o
Let us assume that we possess the geodetic azimuth AOl’ the
zenith distance p01, and the incline distance Dy, to
adjacent point 1. The question arises, how can the simple
geodetic problem be solved in space -- designating the geo-
detic coordinates (X, Y, Zh?

Here we shall utilize the formula:

- cosLo():.— )fo)—sinLo(X._-_Xﬂ_‘_ BT
Ao = S Bo(Z, — Za)—sin Bolcos Lo(X, — Xo)+ sin Lo(Y, ~ Yol °
cos By [cos ]..(X, = Xo)+8in Lo(Y, — Yo))+sin Bo(Z; — Z,) 4

'/(Xl-xo)1+(yl—Y0)1+(zl—z°)’ i

D}y = (Xy—Xo)* + (Vs = Yol + (2, ~ Zo)? (2.17) -

cosfloy =

In the above formulae we can regard as known quantities
(X, Y, Z)o, (B, 1, H)o, AOl"Bg{’ Dy1+ and as unknowng -
(Xs B 20 :

In other words, we have three nonlinear equations with
three unknowns. ©Solving them, for example by the Newton
method, there is obtained the required exactitude (X, Y, Z)r
Next with the aid of formula (2.7) the transformation
& Z).-r (B, L, H)'is performed, thanks to which the
problem having as a goal the determination of coordinates
(B, 1L, H) for two points, in order to determine sufficiently
accurately the net scale, is solved from both the practical
and theoretical points of view.




By including also the ellipsoidal height (H) of the

tird point, we obtain the parameters essential for the

entire net.

In the case of our having other astronomic dimensions

for the net, or length dimensions, we can consider other

possibilities for accurate designation of these seven

para-

meters. These questions, however, will not be considered

here.
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