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SPATIAL
GEODETIC TRIANGULATION

Georgi Zlatanov

Introd.ucticn

In recent years a ran d development of science and tech—
nology is ohnerv3ble. In the field of geodesy this develop—
r~~nt is characterized by:

— r1~e introduction :md rapid spre~id of electromagnetic
stadia

— The individuation of a new geodetic field — cosmic
geodesy

— The versatile implementation of electronic technology
to geodetic techniques

These ne’i elements in geodesic theory and practice have
enabled n~w methods for the reciprocal establishing of the
location of points on the surface of the Earth. These methods
are essentially different from classical methods.

In classical geodesy all dimensions were divided into
two h~~ic groups: horizontal dimensions and vertical dimen-
sions. Classical geodesy required a reference surface, upon
which were reduced ~ll measurement results.

The problem of measurement reduction was one of the basic
problems of classical geodesy. The accuracy ~.ith which reduc—
tion corrections could be determined constituted , in many
cases, a barrier determining the accuracy of the geodesic iiet.

Modern technology allowed that ba$rier to be overcome.
An important role in this was played by satellite geodesy,
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which in a short time achieved a high level of development.

~n essential share in this development w~ s contributed by
rolish geodesists.

~s is well known, cosmic triangulation can be thick—
ened ,t

~
1) with the aid of the so—called balloon triangulation.

As a result of this thickening the geocentric coordinates of
a large number of points on the Earth’s surface can be
gained. Consequently, it is entirely possible to obtain the
geocentric coordinates of points lying 200—300 km apart,
without the necessity of reduction (in the classical geodesic
sense) resu1t~ of direct measurement , and this without using
a reference surface. These new possibilities, essentially
differing from classical means, require the discovery of new
methods for establishing basic geodesic nets.

In this current work a method for the mathematical work— )
ing out of the geodetic net is considered , based on three—
dimensional geodesy. Adjustment and calculation of the net
is performed on a three—dimensional Certesion coordinate
system , and not on a reference surface. By this method the
difficulties resulting from the reduction problem are avoided.
There arises, however, the necessity of utilizing physical
reduction , and the especial need to consider the effect of
refraction.

Due to the character of the work, it is assumed , that
the angles of refraction are determined beforehand (e.g.,
with the aid of a refractometer), and thus, that the zenith
distances are free from the influence of refraction.

—2—



In three—dimensional geodesy it’s necess~iry to make an
aggregate adjustment for t~te effects of the measurement of
the vertical and horizontal angles. There thus arises the
possibility of making calculations in a three—dimensional ,
Cartesian coordinate system . To difficulties are presented ,
in this case, including the effects of leni~th measurements.

The idea of three—dimensional non—reduced geodesy arose
in the middle of the last century in the work of ~.Jillarseau
and T3runs. ~t that time , however , its development could not
be continued . (‘nly in the l~50’5 do we encounter the first
systematic investigations dedicated to three—dimensional
geodetic . The groundwork for a geometric approach to the
question of determining the figure of the Earth was laid by
r .  (;• ro~odiefiski. A series of basic mathematical equations
for three—dimensional geodesy can be found in the work of
‘~otin and Dufor.

~fter formulating the basic laws of cosmic geodesy, and
after working out the geometric methods for investigating the

~arth ’s figure, there began researches regarding problems
arising in conducting local spatial triangulation.

The set of problems included here can be divided into
two groups:

1. The effects of retraction on the results of zenith
distance measurements

2. Methods of adjustment for spatial networks

Whereas the question of the effect of retraction finds
a diverse and occasionally contradictory variet~ of inter—
pretations, methods for adjustment of spatial networks can
be assigned to two groups:
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1. Separate adjustment of the vertical and horizontal
mea~urement results

2. Aggregate , i.e., three—dimensional adjustment of
vertical and horizontal measurement re~ults.

By separately 3d justing these first is determined the
horizontal coordinates of the network points, ~nd next the
third coordinate, together with the un~mown perpendicular
d.eviatior . The means of adjustment , belonging to this group,
do not differ essentially from the classical Leodetic methods
discussed in textbooks. They represent a single minor modi-
fication of the known methods. The essential difference in
relation to classical means, is shown by the meth ds for estab-
lishing aggregate adjustment of the horizontal and vertical
angle measurement results. In this adjustment perpendicular
deviations also play a role. It results that measurements
carried out on the surface of the Earth are directly connected
with the direction of the perpendicular line at the observa-
tion st3tions. There arises thus the necessity to reduce
them to a uniform system of coordinates.

In the current work two algorithms for spatial triangu-
lation adjustment are presented; in the first of these multi—
group adjustments by the conditional method is used with
unknowns, and in the second -— the parameter metho~ of adjust—
mont for correlated quantities.
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I

Whereas in cosmic geodesy the axe s of coordinates of a
topocentric system of coordinates is parallel to the
axis of a ;eocentric system , in the case under examination ——
topocentric systems of coordinates are used . Closely connected
with the positions of the theodolite at the time of observation.
Thus, for example , the topocentric coordinate system (~~ —~~

‘, 
~L)~

(driwin 1) can be defined as follows: axis Z is directed
towards the zenit’i (along the horizontal axis of the instru-
ment); oxis X lies in a horizontal ~lane and is directed
towards a zero indicator of t~ e horizontal circle; and axis
is turned 900 in relation to avis ~~~, in a clockwise direc—

ti on. uch a topocentric coordin~ite system is a left—handed
syster .

f z  R fl., - horizontal ang~,e

~

‘ between axis I and.
N direction N—N

: zenith distance of

The position of the arbitrary point I’ in the topocen—
tric coordinate system for station T~ can be defined by
polar coordinates (R ,~~~, D) and by the rectangular coord. i-
nates

The relations~ii between these 
coordinates is as follows:

— DMN COS J!~(N iInfl~~ (I 
~~4çM) 

— DMN si nfl~~~;

— DM,, COS~~M~p .
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I
From (

~ ‘) we can obtain the reciprocal relationship:
DMN — +

(U)

( U)

COSPM , 
Dv,, 

=

For the direction cosines ~~ in a local coordinate system
we have :

x~,
M)

‘l .wv = - - -  = cos RMh~~sin flMN ;
Owl.

4 AS )

hwN = = sinR .~~ sin fl MN; Ct ~)
S M )

CNN —~~~~— = COSPMN.

If we designate the versors of the topocentric system
of coordinates by ~~~~~~~ 

~~~~~~~ ~ 3)M~ 
then for the u nit direc—

tion vector ~~~ after using the general cracovian calculus
operators, we can write:

— au 
(M)

+b 
P4)

÷c ~
) — ~ Li. 4)

Vector can also be presented in a geocentric coor—
dinate system (x, Y, Z). If the versors of this system are
designated by 

~~~~~
, E2, E3, then can be written as follows:

(i.c’)
where: ‘

X N—X M

(ld.)
ZN- ZN

CMN~~ DMN

DN,, — +p~(XN-XM)’+(Y~~~Y~~~~~~ ,—ZN)~~

—6-
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From (l.k) and. (l.~~) it results :

~MN UMN TCM AMN ~E. (i i)

~.
‘e accept that the relation between eN

.
~
i
~

E is repre-
sented in the following form :

E — U U TeM , (t.~
”)

(3.3)

where is an orthogonal cracovian . It is design . .ted by
three topocentric orientation angles of the topocentric

coordinate system , namely :

~~N) — the astronomical azimat of axis XM (of a direc-
tion corresponding to the zero intlicator on the
horizontal circle of the theodolite at point N),

— astronomical width at point N ,

A U.) 
— astronomical length at point N ,

For elements U 1. the following relations result:

—c os
~~o s i,)

~~co sA—$In~~~,jnA .

I’ll = —4 O S~ 0Sifl 9~sin .

“ ii -~~ CON ~~Cosg’;
U sa SI fl~ oSIfl~~CosA—cs s~ oSj nA , (t .q’)

= sin~usinq’sinA+cos~ocos .~.
= — sifl~~oCo5ç,;

UI3 = cosç’cos A ,
cos~~sin .,

U33 = Sj fl ç~.

In these formulae the factor TI is disregarded..

Prom (1.7) and (1.8) it results:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
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= ~~~~ vu .5 , (t t O~(1 .3 ) ( ( .3)  (3. 3)

A MN = c M N u .5 (i .to a)
(1.3) ( f . 3 ~ (3.3)

The fr~ m of the developed formula (1.10) appears as follows:

— A..N’4~’~+ BuNz.~’~f’ + CMNU~~
1
~,

bUN ~~~~~~~~~~~~~~~~~~~~~~~~~~ ( i . t i A~
A~~ u~~’~~ ~~~~~~~~~~~~~~~~~~~~

The relationship (1.11) presents these conditional
equations between the results of observations R NIT , ~~~~ and
coordinates (x , Y , Z) UN , as well as the orientation ang les

~A I ~

‘ ~ ‘~~N 
Between these three equations there &~ése~ the
(~

.
~1u~,..bie1T~i 

a +bjjj~+c~ ~~~~~~~~ ug —g&n i~~.lj~t only
two of the~~Y t:~~ np]~e , the terms and CNN, ca~1 b~ ;

~~~rr~v~a.td i’~
tI~€

Before a~ pro~ ching adjustment , we must present rela-
tionship (1. .1) in linear form .

Let us use these notations:

RUN = R 4N+ V.MN ; 
~ MN flMti+Vft15~

04w = cos R jw sinP~~w , 
. (I.t2. a.)

= SIIL RMNSIOfl MN. JCMN cosflb,N;

~~0 = 40+d~~. ~M’ fPM±dç.5. ~~ +dA~ ; Ci.I)~~
)

X~ + dXN • Y 5 Y~ +dY~ • Z,5 — Z~ +dZ~ (K = M, N);J
o 0 0 0 0 0

0 XN XM 0 Y N—Y M 0 ZN—ZMAMN --i-— - , BMN — , CMN — ,
DMN D~q D~.jN

0(M) (U) 0 0 0usj ujj (~ M0. ~~v. AM).

In the above relationships the indicator “prim” desig-
nates measured values, and indicator “0” -- approximate values.

-8-
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T~ o lin ear form of equoti ons ~ .11) is as f olln ’~j s:

VNMN4 -
~~~~~~~~~

- . ~~~~~ (‘JUN 
~~~~~~~ (dX~I—dXN)+

9RMN \ (JX~ c~X,1 (‘X.5

— 
( i ~?~ ~ 

‘

~~ 

.B,IN 
+ U~ j (d} w d1N ) ’  (u?1 ~~~ + ,~ 

~BMN 

+ ,i ~~ j 
~~~~ *i~~

) 

(dZ ~ —dZ.~) +
(- } 

~ 9Y~, ~~~ iL~ iL.5

— (..i~fN
”
%; f’~~$N +C~,N ~~~~~~~~~~~~ (4~t~~~~

” ’ +‘~.fN ~~~~~~~~~~ 
_
~~~;)d~~ ”÷

(.i~IN ‘~‘Y~ + ii ::,,. (M ÷ c?.,,,, dA’’~ +- )V).SN = o . (I.(3a)

/ ~~~~~ ~~~~
~~~~~ ~

‘
~w.l. i” ~~~ v - +ISi a— — - -.- +s4, . I(dXw —dXA)+(Aq4 v (‘UN ( w &.,~~ X.5 /

- (42 ~ff + “~~~ +u~~ (dYM—dYN)— 
(
~o 

eA WN 
+t4~ +~~~

o ~~~~~~ ~ ‘~ ‘22 
~ ~~~~~~ (U

~ B~~ - + CAIN ~~u.)a4M _
(4,~~~~.

J 2  
+B~~~—~~~~+ cMN _ . ) (~~(U) ±

‘ 14 12  ~~I12Z (‘U32— (.4~~~ a “, + II%IV . . ),) +cM.v~~,(M,)d2 )+ WMN = 0. (1.13b)

~ ~~ 
+15~ 3 +43 

~ 
(dX,,- d.V~~~

— (~ 
i’4A,~ ~ B.IN 

~~~~~ 
cC~.N) 

(ii?~ 
~~~~~~ 4 543 +543 (dZ~,— dZA ) +(V I, 4 Y , cZ~ c’Z~ ,Z~ /

— (.i
’
~f N 

~~~~~~~ 
~ ~~~ ~~~~~~~~~~ “°— 

~~~ ~~~~~ + C~~N ~ .~,jdct(M) +

o ~U13 (j (ll jj (45 33
— 

(4MM bA(M + ‘C~IN ~~ 
dA(Ml÷ W~SN 0~ (1.1k)
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The p~ :rt~ 1 der ivr t~ yes o c cu ’r in r  in  a q u - - t i o n  (1. 13)

~r’c ex~ rc~s ed as t’n ll o~”s:

- , (U~~,j- - SII)R M~~iII1flMN , COS R~~~CO~fl~~pj ;( RAIN ( I 1 MN

~~~~~~~~~~~~~~~ --- - -~ = sIIIRM,VC0SPMN; . (I.14a)
t R A I N ~I~~VN

~~~MN
-
‘ 

SIflfl34~~.
( / 3 MN

~ 

.,
~~, ~ - l/~~ . 

~~~~ - I Y~~ 
. 4X~ ~CuN JZMN~

‘ “ n’ /T.) 
~ 

‘ 
~~~~

‘ ~~~ . 1  
~
‘
~5I .V ~ ~~ /t~1~ I X % I Y 1  ‘2’MN 54C,IN ‘JZ M N  

~~~~~~~~ ~ (1.14b)j - , I):;~ 
) . ‘-~MN 0MN

‘ ~~~~ 
— 

~~ , ., ‘~~5 I A  .1 
~~%IN 1 -’MN i(’n,N iX~ N+ -IYSf V

I / 
— - . 

/ 
~~ ~~~~~~~~~~~~~ 

‘Z,,~ 
= — 

03 N  

—

I Lli~ j 
~ 

(155 4
- “2 5 ,  .— ‘.-F/ ,~ , . = 0;(

~~o (~~~~l

(11.3  (llj~I ~ - — U ,,, = 0; (l.14c )
‘ ‘I , (~~I~

‘U5 3 51lzi (144 33
- = +1123 ,  .-  - = — U I,. 

~~~
‘ = 0;

I . ?i~~, (1135- - = — 1113 C0s1.° , - —54,cosA° , ~~~ —_- = — s43cos A~ -

( 5 4 3 o o ~55133 0 - -
• : — U 23$If l N0 , - .~~- • = — I d ’~5 Sl f l ,5~~ (I.14si)“1 (-9’ i)ip

(51 3 o Cll,~ (44 33= — U,,COS~~0, -— —— = ,4’~ st n~~0, - . -- — - co~p°.(‘p (9)

(U J au ,, o= ‘‘p 22, - 

~~~ 

=

o 4 5 5 3 3  (1133- - 
- = .4 15(5 , — , = + i4, • - . - - — is~’ , ; ( 1 . 1  •k)(1 (-). 5 /.

• 11 •

W~
’1N flMN. 4INI1?I — B

~4N I4t — C°M N U ,°& ,

W2,N b~,N—4g w,,?j — BLN,,f,_ CX,Nll~°3, (1.141)

-10-
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U t i l iz ing the aid of ~~~~ the numerical values of these
der ivat ives  earl be e~~:i1 y determined. b 1 the i. ’imerical d i f f e r -
entiat ion method . In t~ e case of the zeni th  i i st ir ice  not
bein~ freed from the e f f e c t  of r o f ’r : - ct i on  h e for i~harH , it j~
nec~ s~aar~’ to include in the ad~ uetment  the coe f f i c i en t of
refraction , as an unknown . To this  end in equat io (1.13)
it is necessary to use a substitution:

I DUN (1 15)VfiMN = VpMN+~~~~~~~~
kU,

Where : V~ - correction for measured value
— ref rac t ion  coe f f i c i en t  for  posit ion !-~
— mean radius of the Earth

As we already know , for  each direct ion 1~fl it is necessary
to emp loy equations , using two among the three relationships
(1.13) . Usin~ the conditional method for multi—group adjust-
ment with unknowns (8), this pair of equations will be treat~~
as a separate group .

Fr -rn each pair of conditional equations two are desig-
nated for equivalent corrections , relating to ~~Joz~ ~~~~o A.J P.fj .,.~~~~~

-

and independent fictitious measurements. These equations
then undergo a general operation , as a result of which all
unknown s (x , Y, ~~~~~~~ o(o)M are obtained , also the cor-
rections VR , ~ for eaCiT.. n easured direction.

We consider that including in the adjustment ~ô, 9~’ ~for each position , increase”; to a large degree the dimensions
of the system of normal equations, and therefore it would be
worthwhile to eliminate these unknowns beforehand .

—11—
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II

A j:roblem for geodetic nets in:;ts lied for use in hydrau-
lic construction in mountainous regions , or in the construc-
tion of long tunnels is assuring high accuracy in the corre—
lated poalt ion  of a network of points.

Using the classical methods of determining the e f fec t s
of the measurement of angles and lengt~:s it is essential to
know exact’y the deviations from the perpendicu~.-ar and the

~eoid interstices from the elipsoid .

Introduct ion to geodetic calculat ions of modern concepts
ilows the analytic presentations of the nets elements in

three—dimensional Cartesian space. Thanks to this , the neces-
sity of including corrections for  measured quanti t ies in order
to t ransfer  to a reference surface , is eliminated.

For the purpose of eliminating the e f fec t  of errors in
the initial data , nets of bi~ h precision , the rules are
regarded as independent , i.e., not connecte’d with given points.

The adjustment algorithm considered in Part I requires

the existence of at least three connected points , and. thus
- can not be used for adjustment of an independent net.

Another algorithm is presented below , which can be used
equally in the consolidation of spatial nets, and. in the
adjustment of independent nets. 

-

In order to adjust local spatial nets, a basic problem is
designating suiteble initial data, which would determine the

• orientation elements of the net without its distortion. There
are six orientation elements. They are the coordinates of the
basic point (~~-~~4E-)0 and the three Euler angles. To these
six orientation elements we must add the net scale.

-12-
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The above seven parameters can be replaced b~ seven other
independent quantities. There can be , for example , the rect—
angular coordinates of two points and one coordinate of the

third point . ‘-Jith the existence of three data points , two
supernumery element s then appear , which cause a net deforma—
t ion.

The desiqnation of onl y one geocentric coor m ate for the
net point in order to eliminate its deformation , presents
great difficulties. The conclusion results , that the means
of adjustment , well known in the literature , which uses geo-
centric coordinates (x, Y, z) cannot be used in relation to
unconnected spatial nets.

For adjusting local spatial nets the conditional method
can ‘be used , but great difficulty arises in this regard in
settinr—up conditional equations. In regard to this, in
this work we have concen~rated on the parameter method. The
unknowns (x, Y, Z) are converted in advance to the geodetic
coordinates (B, L. H).

djusting the net begins by setting up the equations
expressing certain quantities, independent of the orienta—
tion station. The first time —— as a function of geocentric
coordinate stations and observed net point, and the second
time —- as a function of horizontal and vertical angles,
measured at the same station. The functions , spoken of
ahould. be linearly independent and should simultaneously
define the position of the directions measured at a given
station.

In order to make the selection of suitable functions,
let u~ consider the directions from station N to observed.
points I, J , and K.

- 

~•±J - 

— 

— - 
— -

~ 
— 

— T ~~



Let us imag ine , that point N is the center of a sph ere
of elementary radius. loints  i , j ,  and k (Drawing 2) are
then points intersectin~

- directions NI , NJ , and. NK from the
surface of the sphere . The straight sections in I)rawing 2

are in reality arcs of large circles, corresponding to spa-

tial anr le s .  Bearing in mind that points N . ,  I , J , and K are
points found on the Earth’ s surface , the spherical triangle
(i , j ,  k) is very oblate ( the  degree of angle at point K is
nearly 1800) .  In this situation the spherical distances
(i , j ) ,  (i ,k ) ,  and (k ,j )  are almost linearly dependent , or

(2.1)
~i,J)~~ (i,k)+~k,J),

and thus they can not reliably determine the position of
directions NI, NJ , and NK.

H
Drawing 2

It also results that from three noted spherical distances
for adjustment, only two are used , for example, (i,k) and

• (k,j). These quantities complement the spherical altitude
leading from point B.

L



I t  also results that f”om the three noted spherical dis-
tances for adjustment , only two are used , for example , (~~~, iZ)

and (k,j). These quantities complement the spheric al altitude
leading from point P.

4
Let us designate

(S,N) .~ COS (1, k) ,

(s.,)—co.(k,j ). 
(2 2)

(h~1) = sin (I~’~).

These quantities (2.2) can be expressed by the elementary
vectors and rk, for directions NI , NJ , and MX.

Then we have

(SM) —

(s,,~) — (ri, ii).
ç•~~~ ) (2.3)

(h11) —

For quantities (2.3) the following dependencies are appropriate:

(3M) —
(Si,,) (i,), (2.k)

• :. (h~j ) —  — Q’?j).

Using quantities of type (a) and. (h) as adjustment quari—
tities does not create any essential difficulties. The im-
portant concarn here is the correct designation of the corre—
lation cracovian of these quantities, and considering this
cracovian during the adjustment itself . (6)

.4 0
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The number of quantities of type (a) and (h) for examin-
ing station N , in an example when the horizontal directions
are measured , and the zenith angles to points)r~~~ll equal
(2k — 

~~~
) ,  in which (L — 1) —— of type (s) and (k — 2) —— of

type (h).

In setting—up the correction equations for quantities
of type (a)  and (h) formulae are used which present elementary
vectors 

~~~
, 

~~~
, and in a local , (1.14.) and geocentric (1.5)

system.

Keeping the local system in mind , we have:

(,,i,)~.i, = ~~~~~~~~~~~~~ (2.5a)
(1i~j),.. — F~(t~,.fi,.49.; R,. R,. R,). (2.5b)

and for the geocentric system:

(i i.)... — F (Xw, YM. Zw ; X,. Y,,ZI;Xi,,Y~,ZI) =
— ~4(H.,,Lu,llU; R,,L,,H,; Di,, Li,, Hi,); • (2.6a)

Ff(X,, , YM, Z~ ;X, . Y,. 1,; X,. 1,, Z,;Xi,, Yi,. Z.)
(2.6b )

The geocentric coordinates (x , Y, Z)p and geodetic
(B , L, H)p for P = I, J , K , P1 , are connected with the well—
known formula :

X, —

— (N,+H,)~~i,fl,,jn L,. (2.7)
2’, (N, +

where N a(1 - e2sin 2B~~Y~~
’2 is at the radius of curvature

I • of a tr~nsverse section, e —— ia the eccentric of the mere—
diorial elipse .

LL 
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Functions (2 .~~) and (2.6) are obtained as a result of
(2.3” and by considering (1.5” and ‘l.6~ . The final form
of the functional dependencies f~ and ~~~~ in which appear
thegeodetic coordinates (B, L, H), points (N, I, J , K) is
determined resulting from (2.3), (1.5), and. (1.6), and. con-

verting in (1.6) coordinates (X, Y, z) to geodetic (B, L, H)
with the aid of relations (2.7).

In order to obtain the correction equation, these sub-
stitutions are used :

1j .. p’ -~.Vp, R = R ’ -4- I’~; (2.8a)
X.. X° +dX. Y — Y ° +dY, j~~ Z°+dZ;

B — Igo + iui. I. — L° +dL, H H° +JH ; •

(2. 8c)

and (2.5a) and (2.6) develop in the Taylor series, limited to

linear expressions.

Then we have -
.

(s,i,)’ + V(S,i,), (2. 9a)
= (Ii~j)’+ V(h~j ). (2 . 9b)

where

(i,i,)’ = F~(fl,~ %~;R ,Ri,), (2.loa)
(/s~jY~. F~

’(fl;.p;,fl~;R;.R;.R~). (2.lob)

V(a jk) and V(4~ ) are prospective co~~~eeLions for quantities
and (j ~~~) ( functions of directly measured quantities,

subject to adjustment), whose differential forms are as fol—

lows :

(2.lla)

V(h~j )  ~~~~~ + v11+4~~v1i,+ !~J i!v,1 + 
1) 

~~~~~~~~~~~~~ (2. 1lb,~ 
•

—17-.

_  

H
A =‘~~-.



I

From the other side:

(3 .1,.. (s,. °+J~31j, (2. 12a)
(l ’~I) ...— ~h?,°+1i~~ ,~, (2.12b)

Where:

— F~!( X tj ,  Y%,,ZR~;X?, Y?, Z?;Xt, Yt. Zt) —
U~~(II~ . L~.,H%., B?. L7. H?; flt, 4,Z~); (2. I3o..~)(h~j )° F,~ (X~ . Yj, ZP.~ Xj , Y?, 2’?; x7, Yf. Zf; X~, Yf, Zt) —

iPf(B~.. LL, H~~; o~, L~. H?; 87, U , Hf; Br, L . H&°). (2. I~ ~
)

= dX ,i,,+ 
dSIJ 

~~~~ ~ -~-~->- dz,, + ~~~~~~~ dX,+ ~,(X , 8Y 1

-, ~-~--dXi,+ ‘~
‘
~~-gIYi,+ 

i L?.JZi, ~~
“?.d9~+ 

~~~~~~~ dL~~+ ~~~~~~~~ +cXi, ~-) i, cii, ~~~ cL 4i,,

-~ ~~
‘
~~-dB , + ‘~~‘~~ dL~+ ~~

“‘- d,I1÷ ‘-~~ -dBi,+ ~~~~ SLi,-i- ~j ~~- dH.;

I(IS ~’j~ 
~~~~~~ 4IXM+ JYi, s- ~~

‘
~~dZM+ - ‘~.dX4 + d} ~ +

~~ ~~~~~~~~~ 
~~~ •~-~~~1~ dY,-L ~~~~~~~~~ ~~~~~ dxi,+ ~~,!~-dY.+ .~~~4.dZi,

— dBM + dLi,, + ~~~ ‘~- d!IM + -~~~ LdB, + + P~~~~ dIf , +

+ a8,-~. - ‘~~dL,+ ~~~‘~~dg,+ d3i,+~~~~~~dLi,+ ~~~~~~~~~ (.2.141)

Partial derivatives appearing in formulae (2.11) and
(2.1k) are obtained on the basis of formulae (2.6a) and (2.6b).

Using the dependencies -

~~~~~ (si,,),,~, (2.  l5a)• 
~~~ — ~hj j ) ,i,. 

- (2. 15b)

4 or (2.9) and (2.12) we obtain

J .1 - V(s,i,) — .I(.c.i,)+(s&)° —(MY. (2.16..)
I’(h~j ) — ~J( b~j) +(h~j)°—(4Y. (2.1Gb)

• ~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
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x~.r~ssions (2.16a) and (2.16b) are really equations
for correcting quanti t ies  (s)  and ( h ) .  In order to solve
these e~ natior: ; , as al ready noted , it is necessary to use
t~ e ~-rincip ie of adju stm ’ nt for dependent quantities by the
indirect (:-- -irarnetric) method (6).

There is, however , another possible approach. Using
formulae  (2 .l la)  and (2 .l lb)  the quantities V(s j k) and
V(h~~ ) a :-pear in g in equations (2.16a) and (2.l6b) can be
replaced b~, corrections V (R) and V(~) to directly measured
quantities.

:id ju~-ting a spatial net in this case leads to another
standard problem of the method of smallest squares —— of
conditional adjustment with unknowns.

De pendin g on the means of presentation 
~~~~~ 

and (4~
)

in adjusting-, appear as cartesian unknown geocentric coor—
d.inates (x, Y , z), or geodetic coordinates (B, 1 , H) of net
points.

Installing a spatial net of high accuracy -- in order
to eliminate distortion of the net produced by errors in
initial data —— we accept as initial data the ~eodetic coor-
dinates (B , 1- , T i )  of two points and the a1titude,~of the
third point . -

Independent of what was presented above , a practical
solution of the problem encounters difficulties of a prac—
tical kind , connected with the designation of the coordinates
(B , 1 , H) of two initial point s, and doing so in such a
manner that they would correspond accurately., to the designated
length between these two points. This is a problem which

—19- 
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deserves especially close attention . Tlerc we shall limit
our selves only to a discussion of one of the substantive
cases —— from a practical point of view.

Let there be , for one of the net points , which we
shall call the beginning, geodetic coordinates (B , ~~, 1I)~~.
Let us assume that we possess the geodetic azimuth A~~~, the
zenith distance 

~~~~~~ 
and the incline distance D01 to

adjacent point 1. The question arises , how can the simple
geodetic prob leu be solved. in space —— designating the geo-
detic coordinates (x , Y , Z)1?

Here we shall utilize the formula:

cosL0(Y1 — )~ )—s inLu(X 1 — X.) 
_______tgA 0, 

c~~ D.(Z, — Zi,)— 501 B~(~Os L0(Xi, X,)+ slnLi,( Yi, — Yo)J

Bi,(cosLo(X, —X o)+ sinLo(Yi, — Y0))+sinBo(Zi, —2’)~COsfioi, -

IlL — (Xi,—-Xo)2+(Y.— Y.)2+(Zi,—Z9)’ (2.17)

In the above formulae we can regard as known quantities
(x , Y , Z) 0 , (B , L , H) 0 , A01, B�~ , D01, and as unknowns --
(x , Y , z ) .

In other words, we have three nonlinear equations with j
three unknowns . Solving them , for example by the Newton
method , there is obtained the required exactitude (X, Y, Z)r
Next with the aid of formula (2.7) the transformation
(x , Y , Z)

1
-.. (B , L , H) 1 i& performed. , thanks to which the

problem having as a goal the determination of coordinates
(B ,. L , H) for two points , in order to determine sufficiently
accurately the net scale , is solved from both the practical • -

and theoretical points of view .

I -20-
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By inc1udin~ also the ellipsoidal height (~1) of the
t• ird point , we obtain the parameters essential for the
entire net.

In the case of our havin~ other astronomic dimensions
for the net , or length dimensions , we can consider other

~ossibi1ities for accurate designation of these seven para-
meters . hese questions , however , will not be considered
here .
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