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I. Introduction

The gravity field of the earth has acquired fundamental significance in
geodesy. All geodetic measurements, except those of distance, directly de-
pend on this field. For example, the measurements of horizontal angles and
zenith angles are made with respect to the direction of the plumb line; and
heights are referenced to the geoid. In precise geodesy, the small differences
between the actual gravity and normal gravity, as defined by an equipotential
ellipsoid, must be taken rigorously into account.

The most common, directly observable, gravimetric quantity is the
gravity anomaly. It can be related, in theory and with certain approximations,
to the remaining elements of the anomalous gravity field, such as potential har-
monic coefficients, or to thedeflections of the vertical (Vening Meinesz
formula) and to geoid undulations (Stokes' formula) (Heiskanen and Moritz
1967). Unfortunately, the evaluations of these types of integral equations
presupposes that the anomalies are known everywhere on the earth's surface.
Since, at present, this is not the case, one attempts to estimate (predict,
interpolate, or extrapolate) gravity anomalies at the unsurveyed points.

The methods for such determinations include collocation or least
squares prediction (Moritz 1972). This type of estimation of a "signal"
quantity of the earth's gravity field, such as gravity anomalies, requires
either a local or a global covariance function; the choice depends on the par-
ticular problem. The covariance function characterizes the statistical or
random nature of gravity anomalies. Therefore, it would be perfectly
determined if gravity anomalies were known over the entire surface of the
earth. In the absence of this knowledge, it is often replaced by an analytical
(smooth) function, which is judged to agree well with the behavior of known
gravity data. The fact that one can work only with an approximation to the
true covariance function does not invalidate the method of collocation. It
simply means that the resulting predictions are not optimal in the sense of
having the least error (Moritz 1976). The example above of a covariance
function is more precisely an autocovariance function for gravity anomalies;
a crosscovariance function describes the covariance between different
signal or random quantities.

The principal objective of this study is to determine the parameters of a
model for the global covariance function of gravity anomalies. The information
that is available for such a determination consists, in this case, of a finite
set of anomaly degree variances, as well as mean and point anomaly variances,
all estimated from satellite data and terrestrial gravimetry. Essentially, the
investigations herein expand some of the ideas and computations presented by
Moritz (1976, 1977).

-1-
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Throughout all derivations, the earth is assumed to be a sphere having
some mean radius R. This implies that the atmosphere, the earth's ellip-
ticity, and the terrain are ignored. For practical considerations, however,
one might make the distinction between the Bjerhammar sphere (which is a
sphere entirely enclosed within the earth, Krarup (1969)) and the mean earth
sphere with radius R, = 6371 km. The former would be desirable in order to
apply the formulas in practice, at or near the earth's surface, with no risk of
nonconvergence of the series in powers of —5— (r being the distance from the
earth's center to the computation point). To be sure, a series such as for the
potential is guaranteed to converge only exterior to the sphere that encloses
all terrestrial masses. The problem cf formal convergenc: abuve and close
to the earth's surface is not considered here; for a treain.ent of the difficulties
that arise and the approximations that can be made, one might refer to Sjoberg
(1977).

In formulating the many equations, it is attempted to maintain the
most convenient notation, while also adhering as much as possible to the con-
ventional and adopted symbols of the principal references.

Although no confusion is anticipated, the following distinctions are em-
phasized. Within this text, R denotes a fixed, but arbitrary radius (e.g.
R = Rs = Bjerhammar sphere radius); R, represents the (fixed) radius of the
mean earth, it is not arbitrary (R,= 6371 km); R. refers to the radius of a
variable sphere (R.> R); while r denotes the usual variable coordinate in the
system of spherical coordinates.

The next section reviews the theoretical background of covariance func-
tions and develops the interrelationships between the covariance functions of the
disturbing potential, the gravity anomaly, the mean gravity anomaly, and the
radial derivative of the gravity anomaly. The third section presents the model
for the covariance function and the computational procedures that are under-
taken to determine the corresponding parameters. Basically, they are found
by fitting the model to the given data along the ideas of a least squares adjust-
ment. The results of these procedures are discussed in the fourth section,
culminating in a comparison of the models of Tscherning and Rapp (1974) and
Moritz (1977).

II. Theoretical Aspects

The underlying assumption is that the anomalous potential (or the gravity
anomaly field) represents a two-dimensional, stationary stochastic process on
the sphere of the earth, The usual definition of a stochastic ( or random)
process (Paponlis 1965) is that it is a set of functions, each assigned to an
outcome of an experiment and depending on time. For a fixed instant in time,

D=




the function is a random variable. In applying these notions to the gravity field,
the (one-dimensional) time is replaced by the two-dimensional surface of a
sphere (earth). The process is considered to be stationary, if it has no point
of origin in time, or in the present case, on the sphere (homogeneity). One
further presupposes a condition of isotropy, implying complete rotational
symmetry of the sphere, or equivalently, independence of direction. The con-
cept of a stochastic process is probabilistic in nature which may, or may not,
conflict with one's perception of the gravity field. For some arguments and
discussions on the validity of the assumption above, one can consult, for
example, Moritz (1972) and Meissl (1971). Nevertheless, the application of a
stationary, isotropic, stochastic process to the gravity field represents an
approximation whose degree of accuracy on a global basis may be quite good;

while locally, the properties of stationarity and isotropy may have only
debatable justification.

An alternate point of view that the gravity field should be treated as a
deterministic phenomenon is advocated, for example, by Krarup (1969). It is
not the intent here to expound on these philosophical questions, and we adopt the
(perhaps more easily understood) ideas presented explicitly by Moritz (1972).

II.1 Definition of Covariance Function

In adopting the statistical approach, the average, or mean over the unit
sphere is defined by

M(-)= X [ () do (2.1)
4 JO

. where do denotes an element of area on the unit sphere 0. Let T(rp, 6, lo)
and T(ry, &, X ) be the values of the disturbing potential at points P and Q,
respectively. r, 8, X are the usual spherical coordinates (A= colatitude,
A= longitude). Then the covariance between these potentiais on the unit sphere
is given by (set r, = 1 = ry)

cov (Te, Ty) M [ (Te - M(T5) ) (Tq - M(Tg) ) ]

]

M (TpTy) = M (Ts) M (Ty) (2.2)

We assume that the signal field, i.e. the disturbing potential, averages
to zero over the sphere, which means that the spherical harmonic expansion of
T does not contain a zero-order (constant) term. More concretely, this is
implied by the assumption that the masses of the earth and reference ellipsoid
are equal (Heiskanen and Moritz 1967, p. 98). Thus

-3~
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M(Tp) = M(Tq) = 0 (2.3)
and

cov (Tp,Tq) =K (P,Q) = M (T, Tq) (2.4)

According to the property of homogeneity, the covariance depends only
on the relative positions of the points, assumed now to be on the sphere. With
the additional stipulation of isotropy, the dependence is only on the spherical
distancey between P and Q- Therefore, M (T, T,) is a function of one variable
Y and represents the average, over the sphere, of all possible products T; T,
for points separated by the distance ¥ :

M(T, Tq) A jzn jzn Jm T (1,66, ) T(1,6, %" sia 6, d&: A\ do (2. 5)
( g} = » Upy y Al 5id T o
k 8 =0 “X=0 “6=0

N

The first integral (o =
azimuth) denotes th: 2ver-
age over a circle centered
at P with radius ¥, while
the last two iutegrals rep-
resent the average of all
such circles over the
sphere. The azimuth o

is related to the coordinates
of P and Q as follows
(consider the polar triangle
NPQ):

Figure 2.1

by sin 6 sin (A - ) 2.6
s sin s cos By - cos 65 sin 6 cos ( A - Ap) bt

One could as well have written M (TsTy) in terms of an average with respect
to circles centered at points Q ( M (Te Tg) = M (T3 Ts) ):

1 an 2n am . g.9
M(Te Tq) = T | N JGQ Te Tq sin & d6, d\,da (2.7)
“a=0" =0 6y=0

where now a is defined analogously to (2.6), but with the indices P and Q
interchanged.

-
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Since the potential is harmonic in space, the following Laplace equations
are satisfied:

Apr =0 , AQTQ =0 (2.8)

where the Laplacian operator in spherical coordinates is

2 3
A, = 8 e o 1 3 cot 6 d
ar,> I Or; e 087 % e OB
1 3° (2.9)

T , k=P,Q

e
r.” sin® 6, "

It is evident that there does not exist another equation, independent of (2. 6),
which relates all three quantities o, point P, and point Q. That is, two of
these are independent. Suppose that this is the case for o and point Q. Upon
applying the operator &q to M (T, Tg) as given by (2.5) and extended by rein-
stating r, and ry (M (T, Tg) then depends in s5iie manner on ry, ry), it can be
taken inside the integrals, thereby giving

Ay (T, Tq) = ‘B':Tz' Jf‘ Ig: Tr Aq Ty 8in 6, d6p dXp do = 0 (2.10)
a Ap

Similarly, if one regards o and point P as being independent, then in using
(2.7), we have

B M(TeTo) = 225 [ [ [ 1, A0 T, sin 6,06, g doe = 0 (2.11)
o 6

It is hereby shown that the anomalous potential covariance function, K(P,Q), as
a function of P only is harmonic in P; and as a function of Q only, it is harmonic
in Q (in the same regions where T is harmonic).

A further property of a covariance function, which is important when
formulating the type of models that are of interest here, is the property of
positive definiteness. The fact that K (P,Q) (or any covariance function) is
positive definite is proved by Moritz (1976, p. 12). Briefly, given any linear
combination of quantities in the signal field, for example

=y BiTe (2.12)

T P P T DrTr———
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the average of its square should be positive:

0 < M(T) = § M(TTy) uin, (2.13)

1=1 =1

This is precisely the definition of positive definiteness for M (T,T).

II.2 Series Expansion of Covariance Functions

Let K (P, Q) be the covariance function of the anomalous potential T with
arguments P,Q representing, in general, two points on or exterior to the earth.
For the moment, let point P be fixed on the unit sphere and let Q vary on this
sphere. Without loss in generality, one may shift the earth's pole to P
(see Figure 2.1) and introduce a new spherical coordinate system ¢, o, where
¥ is the spherical distance from P to Q and « is the azimuth of Q at P (with
respect to the meridian through P). Then, K (P,Q) being a harmonic function
in Q can be expanded in this coordinate system as a series of spherical har-
monic functions:

KP,qQ =Y z (K,, COS M@ + £, ,8in ma) P,, (cos ¥) (2. 14)
n=0m=0

P,, denotes the associated Legendre function and k,, , 1,, are harmonic coeffi-
cients, Invoking the property of isotropy (no dependence on # ), it is immed-
iately recognized that one may write

®

K (P,Q) =z k, Py (cos ¥) (2.15)

n=0

where ko =k,, and P, =P, is the Legendre polynomial. The k, viewed as
Fourier coefficients are obtained in theory from

2n+1
k= "3 ‘[0 K(P,Q) P, (cos ¥) sin ¥ dp (2.16)

(P and Q are on the unit sphere). Substituting the definition of K (P, Q), (2.5)
into (2.16), we can readily show (cf. Heiskanen and Moritz 1967, sec. 7-3) that
also a o
k=) (AL + B, (2.17)
n =0
i




where on this sphere

T =Y T, (2.18)
n:

and the surface harmonics are given by
n
T, = 7 (Apa €OS MA + B, sin m\) P,, (cos 6) (2.19)
0

N

Here, Ay, —B-,,. are fully normalized harmonic coefficients, 3,,, is a fully nor-
malized associated Legendre function, and 6, X again are geocentric spherical
coordinates (Heiskapen and Moritz 1967).

Now let P,Q vary in the space outside the earth, then K (P, Q) must
depend in some way on the coordinates r and ry. In fact, it is well known,
that the dependence of a harmonic function on r is of the form r~® +1) (that
is, when 1< r<=), Since K (P, Q) is harmonic in both P and Q, the spatial
extension of equation (2. 15) is

2

= n+1
K@Q =) k, ( ) P,(cos ) (2.20)
a =0

e

e IQ

where the unit sphere has now been replaced by a sphere of radius R; this
series converges on or outside this sphere: for r, , r,> R.

If Ag(r,H,)) denotes the gravity anomaly function, then rdg(r,6,)) is a
harmonic function (Heiskanen and Moritz 1967, p. 90). The same analysis
may be applied to it as for T (r,8,)) to obtain the spatial covariance function
for the gravity anomalies:

i =i c, <r?iq Y™ P, cos ) (2.21)
n=0

where the c, are the corresponding Fourier coefficients, commonly known as
anomaly degree variances,

The following sections elaborate on these covariance functions, as well as on

those for the geoid undulation, the vertical gradient of gra. ity anomalies, and
the mean gravity anomaly; and several interrelationships are also derived.

.




11. 3 The Anomalous Potential Covariance Function

From the discussion by Heiskanen and Moritz (1967, pp. 107-108), the
anomalous potential can be obtained as

| T(r,0,)) = XM 2 (R)“? ( Cha COS M) + S,, Sin m\) P, (cos 8)  (2.22)

: y n =8 n=0

Here, kM is the product of the gravitational constant and the mass of the earth;

R is the radius of the sphere to which the C,, and §,, refer. The latier are 1
appropriately defined potential coefficients (accounting for the removal of the

reference field). Setting r = R yields the anomalous potential on the sphere of

radius R:
o
e = Z T, (2.23)
n a
with
T, (8,)) = Z‘ (c,,, cos mA + Sn_ sin m}) P,,(cos 8) (2.24)

n=0

(To =T, =0, requiring that the masses of the earth and reference ellipsoid are
equal, and that the center of the ellipsoid is located at the earth's center of |
mass). Also, by setting rp = rq = R in equation (2. 20), the covariance function ]
for T on the sphere of radius R is

K (%) =z k, Py (cos ¥) (2. 25)

where now (in view of equations (2.24) and (2.17))

SV (kMY = s
K .Zo Rc), Ca + 82 (2. 26)

On the sphere of radius R. (>R), we obtain

ko (Rc) = ..Z (—'%)' —,)(c 24+82) (2.27)
n =0

2
by setting r = Rc in (2.22). This shows that k, = (%)‘ "1k (Re), and hence 1
-
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the spatial covariance function (2.20) can be written equivalently as

2 2 a4l
KFPQ = E K, (Re) (%5 P, (cos ¥) (2.28)
n =9

II.4 The Gravity Anomaly Covariance Function

The gravity anomaly function 4g is given by (Heiskanen and Moritz 1967,
p. 89):

Ag(r,0,)) = %i (n-1) (?)"H T, (6,)) (2. 29)

n=3

T, is evaluated on the sphere of radius R. Loosely stated, the series converges
outside this sphere. As a reminder, when applied to the real world, the
convergence depends on the selection of R and on the values of the harmcenic
coefficients C,,, S,,. Again, any ensuing difficulties are ignored here (see
section I). Substituting equation (2. 24), one gets

- s+l _ " e
Ag(r,0,)) =%Y (n-1) (B; 2 (C,a cOs mA+ S, sin mA) P,,(cos 8) (2.30)
n=2 m =0

Suppose that r is fixed, say r = R.> R, then

. nsa®
Ag (Re,0,A) = %‘g— (n-1) (—g—c) 2(6,.. cos mA+ S,,8in mA) Py, (cos 8) (2.31)

amg =0

are gravity anomalies on the sphere of radius R.. That is, if Ag is expanded
in surface harmonics Ag, on this sphere, then they would be given by

n+2 - . -
Ag,(6,)) =L§§—(n-1)(%c> i (CraCO8 mA + S, sin mA) Ba(cos 8) (2,32

a=0

so that

Ag (R, 6,)) =z Ag.(6,1) (2.33)

n=

The harmonic coefficients are thus
-9~




(En i-Bul) ="R7 (n-1) (Rc)n ul) (2. 34)

where we have written

Ag, (8,)) = Z (A, cOS MA+ b,, 8in ml) Pua(cos 6) (2. 35)
a=0

Going back to equation (2. 21), one may consider the covariance function

s 2 .42
C(P,Q) =2 ¢ (Re) —R’—) P,(cos ¥) (2. 36)

n S Telq

in which ¢, (Rc) now refers to the sphere of radius R.. (That is to say,

ro=Re P,(cos ¥) sin y d¥ (2.37)
ro= Re

cf. equation (2.16).) In analogy to equation (2.17), the anomaly degree variances
are then given by

2n+1 7
calBe) =5 | @@

n 2 n»a,& 2
cuR) = ) @5 +BA) = (a0’ &) PG (2.38)
Setting ¥ = %— as an average value of gravity (on the sphere of radius R),
’ i =3 2
ea(B) = v* @-0? (B Y @2+ 8D (2.39)
a=0

Comparing (2.27) and (2. 39), it is seen that

ca(Re) = (n-1)°—é-c-: Ky (Re) (2.40)

If R = Ry is the radius of the Bjerhammar sphere (see sectionI), and if Rt =R =
Re , then the c, as computed from (2.39):

T +52) (2,41
0

e (R) = ¢, = ¥i(n-1)°

==

are the degree variances which refer to the Bjerhammar sphere.
-10-
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Finally, it is noted that the anomaly variance on the sphere of radius
Rc is defined by

w

C(®,P =Y c,(Re)Ps(cos 0) (2.42)
1= 2
or ©
Co = Z cn(RC)
n=2

where ¢, (R.) refers to this sphere.

IL.5 Undulation Covariance Function

Turning now to geoid undulations, Bruns' formula states that

N(Rc,0,)) = % T (Rc,6,\) (2. 43)
c

where ¥, = "!%w: is normal gravity assumed constant on the sphere of radius R.

(spherical approximation), and N (to a first approximation) is the undulation;

when R: = R,, it is the separation between the geoid and the ellipsoid of the same

potential. (Of course, it is also assumed that there is no mass outside the geoid,)

By setting r = Rc in equation (2. 22) for the disturbing potential, one obtains the

undulation as a function on the sphere of radius Rc:

-1 A

N(Rc,6,)) = Rz (ﬁ)u z (CuaCos mA + §,, sin m)) Pa(cos 6)  (2.44)
n=2

a=0
In general, the spatial covariance function for N can be written as

-~ 2

L(P,Q =nza b

-1 R‘
j P, (cos ¥), l‘n=’_'='(kM) k, (2. 45)

since r’ N is proportional to T (cf. equ. (2.20) for T). Above, the coefficients
1, refer to a sphere of radius R. We will be interested primarily in the undu-
lation variance, Lo, on the sphere of radius R.. This is obtained by setting
=0, i.e. P=Q, and r, =ry =R in (2.45);

-]

Lo =) 2 (ﬁij” =§ Ly (Re) (2. 46)
n=3

where 4, (R.) refers to the sphere of radius R.. Again, by analogy to equation
«11=




(2.17) and in view of (2.44), these undulation degree variances can be expressed
as

L,(R) = R® (—;—Z}q Z (C2 + §2) (2.47)

a=0

and using (2.39) with . = -1%45 , this reduces to

LR) = By L oory (%.48)
(n-l) Ye i

so that on the sphere of radius R. ,

- 2
¥ — 1
Lo Z‘Bﬁﬁ: ? ¢, (Re) (2.49)

II.8 Mean Anomaly Covariance Function

The value of the gravity anomaly function on the sphere of radius R
(equation (2.31) ),

& n+2 B
AgB,n) = LRM? z (n-1) (%) Z (Cas €08 mA + 5, sin m)) P, (cos 6) (2.50)
n=23 =0

is generally different for each point on this sphere. Consequently, its covar-
iance function (2. 36) yields covariances between point gravity anomalies. In
practice when carrying out gravity measurements over large areas, one must
often be content with only mean, or representative values of the anomalies. To
obtain the corresponding covariance function, we first find a functional formu-
lation of mean gravity anomalies. For instance, one can apply an averaging
operator to equation (2. 50) vver a spherical cap of radius Yy :

Ag®.%) = [[ Aw) ag@,)) o (2.51)

Here, for generality, ois thg entire surface of the sphere (see the definition of
A(Yp) below); § is the spherical distance from 6,) to 8,); do = sin 6d6d);
and (6,)) is a pair of coordinates within the cap (e.g. at its center). The
kernel A(Y) of this integral operator can be defined over the sphere by

1 1

—_— — for y < 2.
A@) = { 27 1-cos ¥ . 5 h (2.52)
0 , for ¥ >yo
-12-
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That is, it is the reciprocal of the area of the spherical cap:

2 ¥
I ‘{W sin Y dpda = 2n(1-cos ¥o) (2. 53)
a=0 %W=0

so that Z_g(g,i) in (2.51) is the average gravity anomaly over the spherical cap
ac :

o 1
8g(8.}) = 21 (1-cos Yq) .” ag(6,) do e
Oc

The kernel of the smoothing operator is more generally viewed as a we ight
function, of which the simple average defined by (2.52) is a special case
(Pellinen 1966). It is shown by Meissl (1971) that the eigenfunctions of
isotropic operators, exemplified by the integral operator above, are the
spherical harmonics P, (cos6)cos m) and P, (cos 6) sin m):

“. A (¥) cos m)\ P,, (cos 8) do = B, cos mA P,(cos )

o (2. 55)

‘” A () sin m)\ P,, (cos 8) do = B, sin m\ P,4(cos )

(o4
where cos ¢ is a function of 8, ), 6, X (the integration is with respect to 6,)\).
The B,'s are the corresponding eigenvalues of the operator (depending only on
the degree n). It is further shown by Meissl (1971) that one can evaluate the
eigenvalues according to the so-called Funk-Hecke formula

i

1
B, = 2n j RCRNURE (2. 56)

in which t = cos § and P, is the n*-degree Legendre polynomial. Putting the
definition of A(¥) into (2. 56), we obtain

1
B, = —3i_ f P, (t) dt (2.57)
s 1-cos Yo cos Yo

and invoking the recursion formula

L Pt - % Poy () = (20+41) P, (t) (2.58)

this simplifies to
13-




o ikl 1 L ,
B, = T T %[ Pn_1(c08 ¥o) - Pasr(cos ) ] (2.59)

Now, putting (2.50) into (2.51), and recalling (2.55), one can write

— - b n+2 2 -— - - R — -
Lg(6,)) = -'-‘-ﬁN-E—nZ(an—l) (%) B.Z (Cpa COS MA + S, Sin M) Py, (cosd)(2. 60)

a=0

which is the average gravity anomaly over the cap g, on the sphere of radius
R.. If one specifies that @, \ are always the coordinates of the center of a cap,
then Ag (B, )) as given by (2.60) is a well-defined, continuou< function over

the sphere and may be regarded as a smoothed gravity a~o.naly function with
the smoothing factors 8,. That is, the irregularities of Ag (8 \) have been
smoothed (averaged) out.

It is now readily seen (for instance, by applying the law of propagation
of covariances, see Moritz (1972) and p. 15) that the degree variances of the
mean anomaly covariance function C (P,Q) are

T, = B¢, (2.61)

and that as in (2. 36),
cC@P,Q = zﬁf c, 82 Py(cos §) (2.62)
2 n=3a
We have set s =§}.— and P, Q are the centers of the respective spherical caps,
As written here, ¥ C(P,Q) is the mean anomaly covariance function referring
to the sphere of radius Rc. The mean anomaly variance on this sphere is found
by setting =0 and r, = ry = R :

Co = X B¢, (2. 63)

One can now restrict the domain of the function (2.62) such that the coor-
dinates of the two points P, Q refer to the centers of two disjoint spherical caps.
In practice, the spherical caps are often approximated by blocks of sizes such
as 1°x 1° or 5° x 5°, and the radius ¥, is chosen such that the area of the cap
equals the area of the block.

II.7 Vertical Gradient Covariance Function

The final covariance function to be considered is the one for the vertical
'gradient" of the gravity anomaly, i.e. for

™ Ag(r,6,)) (2.64)

-14-
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The covariance function for the gravity anomalies (equation (2.21) ) is repeated
here;

2

Lo +2
C(P,Q =n2};“ <R j P, (cos V) (2. 65)

“n
2 .

Using (2. 64) and the harmonic expansion of Ag(r,8,)), it is possible now

to develop, as before, the relationship between the covariance functions of the
vertical gradient and the gravity anomaly. However, for the sake of variety, we
employ the law of propagation of covariances (Moritz 1972, p. 97), which in

the present situation is formulated as

Q3
o 2.
G(R.Q) =<=(5= c(P.@) (2.66)
where G(P, Q) is the covariance function of the vertical gradient. Us ing equation
(2. 65), the calculations of (2. 66) lead to

n

+2
LEX ) Pn(cosw)}

3 S R
P = — | -
G( 9Q) arp [nzacu rQ (\er

=nZacn n;2 : (-I'Pijo—j+a Fayous &)

If instead, ¢, is chosen to refer to a sphere of radius R¢, similar manipulations
show that

(2.67)

= 2n*3

A n+2)° Re
G(P,Q) = n};acnmc )—(EQ- (r, rq) P, (cos b) (2. 68)
or
g?, RCZ a+3
G(P.Q = ) £(R) (L) Pa(cos ) (2. 69)
where
2
g (Re) = ﬂ-;—cgz)— Ca(Re) (2.70)

are the gradient degree variances referring to the sphere of radius R..

From equations (2.68) and (2.69), one can immediately draw some con-
clusions as to the characteristics of the function G(P, Q). Considering the
magnitude of c,(see TableIl), g, is practically insignificant for small degree
n, due to the divisor R.°, This implies that G (P, Q) is a very local function,
depending mainly on the high-degree (short wavelength) variations in the gravity
field. Therefore, given anomaly degree variances, say, computed from po-
tential coefficients (equation (2.39) ) forn=2, . . ., 20, the approximation

-15-
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2. n43

20
G(PsQ) 2 Zg“ (rPR:;) Pn(COS w) (2.71)
n=2

computed through equation (2. 70) is completely meaningless. In other words,
low-degree information on the gravity field contributes little to the covariance
function of the anomaly gradient. The consequence of this in the adjustment
procedure (to be discussed later) is that one cannot solve for the (global) gradient
variance Gp, which is defined (on the sphere of radius R.) by

Go = G(P,P) = Zg, (2.72)
n=2
when only c's of low degree are provided.

To further illustrate the local nature of this covariance function, several
instances may be cited in the literature in which the authors have determined
the anomaly gradient over specific areas which exhibit totally incomparable
variation. We discuss here only the vertical gradient variance Gy (or the hor-
izontal gradient variance, Go,, which is approximately G, - see the appendix).
At the turn of the century, R. Eotvos observed horizontal gradients in the
area near the city of Arad in western Rumania (Selenyi, 1953,p. 126). If %,y
denote two mutually perpendicular directions (north-south and east-west) in the
horizontal plane, then the root mean square (RMS) values of the anomalous
gradients are

20.42 E ~ Gow ~ 417.11 E° in the x-direction

(2.73)

31.07 E ~ Gow ~ 965.26 E° in the y-direction

where 1 E = 1 Eotvos =10"%s"% = ,1 mgal/km. A normal gradient of 8.1 E 'i
was subtracted from the observed gradients in the north-south direction. It |
is based on the Bessel ellipsoid and Helmert's normal gravity formula

(Helmert 1884). (The normal part in the y-direction is zero.) The surveyed

area near Arad extends about 20' in longitude and 10' in latitude.

Mueller (1964) presents a map of fairly large extent, covering parts of
Maine, New Brunswick and Nova Scotia, and depicting vertical gradient con-
tours. By placing a rectangular grid over this map and extracting some 150
values, the square of the RMS value (after the reference field (3085.5 E)
corresponding to the international ellipsoid and gravity formula has been
subtracted) of the horizontal gradient is

£(33.3E°%) = 16.7E® (2. 74)

-16-




with a range of values from -16.5 E to 34.5 E.

Finally, to elucidate the extremes that can occur, we refer to Hein
(1977) who has computed the anomalous vertical gravity gradients based on
the international gravity formula and displayed on a contour map of an
area in the "Odenwald" (latitudinal extent: 55°.04 to 55°13; longitudinal
extent: 34°,93 to 35°.02 (E)). By similarly placing a rectangular grid over
this map and reading off 153 values (the area around the large anomaly of
-1250 E was omitted), the RMS value squared is found to be an enormous
12373 EZ, which implies a horizontal gradient variance of about 6200 E>
The range of values is -325 E to +350 E.

Caution must be exercised when comparing these various approximate
determinations of the local gradient variance. The anomalous gra.'ient
values mentioned above were not all derived using the same reference field,
and the RMS values were not all computed over the same extent ip area,
Nevertheless, it becomes apparent that a global value of G, wil! not only be
difficult to determine, but may not have any practical significance locally.

We also note that Schwarz (1976) assumes in his computations that
30 E° < Gon < 200 E°,

while Moritz (1976, 1977) adopts Go u = 200 E® as an example. Tscherning
(1976) finds Gowu = 3500 E® using the model (3.12) for the degree variances.
Jordan (1978) develops a covariance model for gravity anomalies based on the
model outlined in section III. 2 with the parameter values of Table I, but
modified to account for isostatic compensation. The variance of the vertical
gradient for this model was found to be 833.98 E® (see Table 4 of Jordan
(1978, p. 1819) ). It is also shown very nicely by Jordan (in his Table 4)

that the terrain and crust of the earth are overwhelmingly responsible (99%)
for the variation in the vertical gradient (i.e., there are no sources deep within
the earth). This again reveals the extremely local character of the vertical
gradient covariance function.

A geometric interpretation of the horizontal gradient variance is briefly
mentioned. When the covariance function is to be applied locally, it might be
described, according to Moritz (1976), by three parameters. In the case
of the gravity anomaly function, C (¥), they are

<17




Co, the anomaly variance (Co = C(0))

€ , the correlation length (C (£) =2Co)

X » the curvature parameter (y = xgE/Co s
where x is the curvature of the

covariance function at ¢ =0).

It can be shown (Moritz 1976), that with a planar approximation, the

horizontal gradient variance Go,, is related to the curvat re parameter
through

X = Gowé?/Co

The theoretical considerations concerning the gradient covariance
function are concluded by a short derivation of the equation

Gow = 2 Go (planmar approximation)

which is presented in the appendix and employs several relations already
derived by Moritz (1976).
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III. Computational Procedures

Many more relationships among the covariances of quantities of the
anomalous gravity field, besides the ones used here, can be obtained through
the law of propagation of covariances (Moritz 1972). The corresponding
computations have been made by Tscherning (1976) and Tscherning and Rapp
(1974); thereby, demonstrating that it is necessary to find a model for only
one of the covariance functions, or more specifically, for one set of degree
variances.

III.1 Kaula's Rule

Through an analysis of a gravity field obtained from satellite observations
and gravity measurements, Kaula (1963) postulated his well known "rule of
thumb' :

= = 107"
O (Con+Spa) =——= (3.1)

“

n

This states that the root mean square variation of a harmonic coefficient of the
earth's gravity field is inversely proportional to the square of its degree.
Morrison (1971) also points out that in considering all available gravity data, it
seems likely that the decay of the harmonic coefficients is not exponential, but
much more slowly, for instance, on the order of a negative power of n.

Through the acquisition of more and better satellite data, Kaula's rule
became less applicable to the higher-degree harmonics. A comprehensive
comparison of various modifications and generalizations of this rule (as suggested
by different authors) is presented by Rapp(1972). Instead of the root mean
square variation, models of the degree variance were in fact investigated. If
k, is the anomalous potential degree variance, then by the definition of
0(CrsSw) and in view of equation (2.26), the relationship between these two
quantities is

(3.2)

FOsBa) ® el N e =6, k
(C1a sS:a) V2n+1 Z(C“'+S°') m
m=0
where ¥y =3RIY7[ is an average value of gravity on the sphere of radius R. It is
assumed that with respect to the order m of the coefficients of fixed degree,
the root mean square value is invariant (isotropy). k, is further related to
the gravity anomaly degree variance, c,, through equation (2.40). Kaula's
rule implies the following model for c, :

_Bm-1°@n+1) 2
Cp = T * SV (3.3)
3
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in which y is a constant. The anomaly degree variance model that was finally
proposed by Rapp (1972) on the basis of satellite and terrestrial gravity data
is of the form

a(n-1)
(n-2) (n+B+en)

(3.4)

cﬂ
where &, B, € are suitable constants,

An additional consideration is appropriate here; namely, in regard to
the desirability to find closed expressions for the infinite series of the cov-
ariance function. Moritz (1976) describes the properties of covaciance
functions that are implied by several such convenient mnd..ls.

In summary, the types of models above and the model to be investigated
later are empirical in nature,based primarily on the observed variation in the
harmonic coefficients.

III. 2 The Degree Variance Model of Heller and Jordan (1975)

A completely different approach, developed recently by Heller and Jordan
(1975), Is an attempt to model the variation of the anomalous potential by intro-
ducing a "white noise" shell at a certain depth beneath the earth's surface. The
derivation of the covariance function begins with the Poisson integral for the
disturbing potential T (Heiskanen and Moritz, 1967, pp. 35, 238):

2 < .
T(r,8,)) = B'E‘I—H—R—ljj -}a do (3.9)
o

T is given on the shell of radius R, and £ is the distance from the point (r,6,))
to the point (8',1") on the shell 0, over which the integration is performed;

do =sin 6°d8"d\". Very briefly, the covariance function (due to an uncorre-
lated or "white noise' disturbing potential) is specified on the shell of radius
R. By applying the law of propagation of covariances to this function according
to (3. 5) and by stipulating stationarity and isotropy (see section II.1), the cov-
ariance function for the disturbing potential in the exterior space is found to be

- D° (2R, - D)° (r°r§ - (Re - D)*) Ko
K = B - (R - D)) ([l - DR SPTE- ey (Re - D)% cos 9)¥2 (3:9

In this formula, Ko is the variance of the disturbing potential at the surface of
the earth (assumed to be a sphere) due to the shell at depth D; R, is the mean
radius of the earth; and § is the spherical distance on the earth between the
two vectors r, and .
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There are two parameters in the model above, D and K,. To obtain a
better fit to actual gravity data, several uncorrelated shells are introduced at
various depths. The covariance function is then

M

K(P,Q =) K.(P,Q (3.7)

m=1

in which D,, Koy, m=1, ..., M are the parameters (Ko, is the contribution
to the surface variance of the disturbing potential, due to the shell at depth
D).

Again, through the law of propagation of covariances, one can deduce
the covariance functions of the gravity anomaly, the anomalous vertical
gradient, etc. Jordan (1978) expands the covariance function for the disturbing
potential into a series of Legendre polynomials:

n+l

= 2
K(P,Q = an (rpqu) P,(cos ¥) (3. 8)
n=a
where
M
" 3 D3 (2Re - D3)* Ko , Dy an
ky, = (2n+1).=1(Re_D.)d(Req_(Re_D-)l; (1 R )y ,n>1 (3.9

are the potential degree variances referring to the mean earth sphere.

The parameters were determined, in part, by fitting the covariance
function model for the gravity disturbances to an empirical point anomaly
covariance function. The latter was derived from a 1° mean anomaly covar-
iance function (including corrections to the low-degree coefficients) of
Tscherning and Rapp (1974). (The precise assumptions and the subsequent
procedures that were applied to determine the parameters are not clearly
presented in the reference above. Certainly, an approximation is involved
here; namely, the covariance model for gravity disturbances was used in
place of the model for gravity anomalies.)

The values, as given by Jordan, for the parameters of a 5-shell
model are listed in Table I:
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Table I: Parameters of Model (3.9)*

m| Co, (mgal®) | D, (km)
1 595. 4 16

2 812.3 93

3 216.1 391

4 166. 4 1900
5J_ 29,2 4780 |

total  1819.3
* see equation (3.10)
Here, Cy, is the contribution to the variance of gravity anomalies on the sphere

of radius R, due to the shell atdepth D,. The anomaly variances are related to
the potential variances by the law of propagation of covariances:

Cor= (55 - 3) (‘%ﬂ‘;Z;)Kw,Q)h:O i

III.3 The Model of Moritz (1977)

We now return to the models which are founded on the observed variation
in the harmonic coefficients. Without loss in generality, the entire develop-
ment of the various covariance functions in the remainder of this section is
based on a model for the point anomaly covariance function, only because
gravity anomalies are the quantities most readily observable. It is not nec-
essary to proceed in this manner. For example, if the potential is considered
to be the cardinal quantity of the gravity field, then one could design a model
for its covariance function and from it derive the other covariances.

A model such as (3. 3) should be a function only of the degree of the coef-
ficient (see the remark following equation (3.2) ). From the report by Rapp
(1977), it is noted that the degree variances (computed from GEM 7 potential
coefficients) start typically as (see also Table III)

cg = 7.5 mgal® c; = 33.8 mgal3 €y =19.6 mgala
(3.11)
cs = 21.3 mgal® ce = 18.9 mgal® ¢y =19.5 mgal®

(Co=c¢, =0). Evidently, it is difficult to incorporate the degree variance cg
into the model without unreasonably deforming it. This coefficient is therefore
frequently omitted and the (modified) covariance function is modeled as an in-
finite sum beginning with n = 3. In fact, this scheme can be extended by accep-
ting the first k empirically determined degree variances and modeling only

L ———— e — A A — 0 o -




those with degree greater than k. The resulting covariance function is then of
k™ order and (if k is not too small) is intended to reflect the local character-
istics of the gravity field.

The model upon which Tscherning and Rapp (1974) have elaborated is

Op (n - 1)
o=

(- (n_z)(n+B) ’ n=3 (3.12)

where a3 is a positive number and B is a nonnegative integer (the notation here is
such that it is consistent with subsequent formulas). This model enjoys the
property that a closed expression (using a recursion formula with respect to

B) can be derived for the covariance function. The values of zand B are
determined in a least square adjustment of "observed" degree variances

which are obtained through equation (2.41). The potential coefficients for

(2.41) are deduced from satellite data and/or gravimetry (see also Rapp 1977).

The model above is asymptotic to ,1,- (for large n, c, behaves like !-1; s
Moritz (1976) calls the corresponding C (P,Q) a logarithmic covariance function.

Indeed, when (3.12) is substituted into equation (2.36), we get (s =_r;ﬁm )

C(P,Q) = "2 P.(cos ¥) ~Z% s"*2? p,(cos ¥) (3.13)
A=3

Z (n - 2)(n+B)

The second sum can be evaluated from the generating function of Legendre
polynomials:

P, (tys" , s| <1 3.14
1-2st+s z © ls| { )

(in which t = cos $ ). It is easily verified that through an integration

n~ls

Y 1opt st = s%n[ SUs ] (3.15)
%, V1-2st+s® +1-st

The constant of integration is equal to 2, because for t = 1, the sum is

-s°fn (1-s). It is thus evident, that the covariance function is logarithmic in
nature. Moritz (1976) shows that for a plapar approximation, the curvature
parameter corresponding to (3.15) is very large (the lengthy derivation of this
fact is not repeated here). This implies that also the horizontal gradient var-
iance temds to be large for the model (3.12) (Gow™ 3500 E® with the parameters

o5 =425.28 mgal®, B = 24), =




A A = i1 RIS

A second model for the anomaly degree variances, as described by
Moritz (1976) is given as
_a=1
= n+aA

n> 3 (3.18)

where A is also a honnegative integer (although the possibility of A = -2 can be
considered). The covariance function represented by this model behaves like
a reciprocal distance function. That is, ¢, in (3.16) is asymptotic to 1, and
the generating function of the Legendre polynomials shows that

2 2

n+3 _ A
LR85 o e @1

n=0

The latter resembles a rec iprocal distance. In a planar approximation, the
curvature parameter of the covariance function (3.17) (and consequently the
horizontal gradient variance) is relatively small (Moritz 1976). Although the
low gradient variance may be a desirable feature (see section II. 7), the model
above is unacceptable in view of the actual apparent decrease in the degree
variances. Equation (3, 16) implies that c, tends to a nonzero constant
asn~—®,

In his (1976) and (1977) reports, Moritz proposes and carries out the
computation for a model of the anomaly degree variances which is constructed
from a linear combination of the two models (3. 12) and (3.16) above. The
motivation behind this scheme rests on the possibility of manufacturing a
curvature parameter corresponding to a low gradient variance, while at the
Same time retaining the favorable characteristics of the model (3.12), such
as a realistic attenuation of the degree variances.

Therefore, let

C(P,Q = &)= 5" p cos) +
e (3.18)
+ Ofaz (n-1) 83 " P,(cos )
‘2a(M - 2) (0 +B)

where o;, oz are positive numbers, A, B are nonnegative integers, and

2 2
5, « B o . B (3.19)
Tery e I'q

R, and Ry are radii of the type R (see section D). Each of the covariance compo-~
nents in (3.18) is a positive definite, isotropic, homogeneous covariance func-

tion of the gravity anomalies. It is immediately evident that the sum of these
-24-
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two components has these same properties, and consequently, C (P, Q) as
defined in (3.18) is indeed a covariance function of the gravity anomalies.

Taken individually, each component should converge for any two points
P and Q on or exterior to the earth's surface. All theoretical developments
of section II have been based on a spherical approximation, and therefore, it
can be argued that it is necessary for R,and R, to be less than R, (= 6371 km).
When applying the subsequent formulas in practice, however, one may encounter
difficulties if the points of evaluation are located within this mean earth sphere
(but still above the earth's surface). Hence, it may be advantageous to have
Ry, R3 < Re, where Ry is the radius of the Bjerhammar sphere (which is
entirely enclosed within the earth).

The degree variance model which corresponds to the covariance function
(3.18) is now determined. It is not merely the linear combination of the
models (3.12) and (3.16). Suppose that we write

rk2 Ilz 2 2
L and s, = R 3.20
51 Ip I'qQ 'ﬁ? . : Tp Iq %:; ( )

Then equation (3. 18) can be formulated as

or we may put this in the form
C(P,Q = Z rprq )“z P, (cos ¥) (3.22)

In this way, the degree variances have been extracted from the covariance
function of equation (3.18); they are

g al:;.}\ (%cf;ya %R m+B) (n - 2) (n+B) (&%HQ’ e e

Exactly the same result is obtained by substituting (3.18) into (2.37). To some
extent, R, and Ry have lost their distinction as radii and are now regarded
primarily as parameters of the model, subject to certain constraints

(Riy Rs < Rc).
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From (3.21), which is equivalent to (3. 18), it is evident that C (P, Q)
does not depend on Rc. However, from equation (3.22) and with the assump-
tion of no knowledge of the model for c,, one concludes that R. is the radius
of the sphere to which the degree variances refer.

It is readily seen that for a; = 0, the covariance function (3.21) degen-
erates into the covariance function as modeled (using equation (3.12) ) by
Tscherning and Rapp (1974). It should be noted that it is incorrect to substitute
o, = 0 in the two-component model (3. 23) in order to obtain the degree variance
model (3.12) - instead, the degree variances should always be derived from
the covariance function that defines them. That is, c, in (® 23) refers to a
sphere of radius Rc (even if &, = 0). However, with the model (3.12), c,
refers to a sphere of radius R.

The particular forms of the models (3.12) and (3. 16) have been con-
structed in such a manner that the infinite sums can be reduced algebraically
to closed expressions. Thereby, it becomes a routine matter to incorporate
observation equations into the least squares adjustment for the point anomaly
variance C,, the mean anomaly variance C,, the gradient variance Go, and
the undulation variance L,. The equation for L, was later deleted since the
""observation' had been derived through equation (2.49) from the observed
degree variances. Hence, L,, thus computed, adds no new information to
the model.

III.4 Closed Expressions For The Covariance Functions

Extensive computational formulas for the closed expressions of the gravity
anomaly covariance function and the corresponding variance have been developed
by Moritz (1977) for the model (3.23). Some of these formulas are reiterated
here and others are derived, particulartly with respect to the gravity gradient.
Several results are also borrowed from Tscherning and Rapp (1974).

To derive closed expressions of infinite series involving Legendre poly-
nomials, we first define some elementary functions (series) for which closed
expressions are known to exist. Let

Fow) =08 Pt = e .

where t=cosy; [s| <1, |t]| < 1.

Fy (8,¥%) =2 n:-i Tk P.(t) , fori>0 (3. 25)
0
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F_i(5,¥) =Z nfi s"'p,(t) , fori=0 (3. 26)
n=1i+1

Whent=1 (¢ = 0), then P (1) =1, for all n, and

< 1 n+ 1 il B 4 o] _oa-t e .
Fy (s,0) = - S = s SLC d{ = s ic d{ =
| nZon il a=0 Jon: 1-1
(3.27)
% =3
| = _gql-t _ k 1 n+1l s 5
. s in(1-s) 2 P*‘i s .10
! n=1l-
similarly,
@ 1 © 4 . -
F-l (s’o) = z g sn+1 - sl+$ z J‘ cn-l—l dt - sl* I 2 cn dc
n=!+1n +10 n—

(<]

=4

1+
= =58

n(1-8), i20

The functions F,, i >0 and F_,, i 20 when ¢ # 0 have been treated in
Tscherning and Rapp (1974). The corresponding closed expressions are found
essentially by integrating

J$as- ]

o+ i-1

1}

P, (t)ds i>0 (3.29)

]
]
o)

-
-

I8
1]

and

| iyt n=1-1 -1=1
J_L ds = J s P,(t)ds = s Foy, i20 (3.30)
n=0

where L = /1 - 2st + 82 . Further letting M=1-L -stand N=1 + L -st,
one can show that

F(s,9) = =
o (3.31)

Ea(8,¥) = s[# M(3ts + 1) +sa(p3(t)0n% + 1(1-1t%)]
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F-q1(8,¥%) =S(M+tsﬁm%) \

Fio (8,8) = Tm(L+ (21 = DEF(8,8) -2(i - DFoa(5,9))1> 1

with > (3.31
i 28 (cont.)
Fiie) = i) ¢ g}

]

1
Fa(8,8) = T (L-1+tF1(s,¥))

/

i The derivations of the formulas for the gradient covariance are given
explicitly below; those for the gravity anomaly and undulation covariances

w, follow along similar lines, but are not as complex. The details of these are
given by Moritz (1977). Unfortunately, closed expressions for the mean
anomaly covariance function can not be found due to the presence of products
of Legendre polynomials in the smoothing factor B8,° of the degree variances.

I1I.4.1 The Gradient Covariance Function r

It is assumed throughout all derivations that the anomaly degree variances
refer to the mean earth sphere. Then Rc = R, in equation (2. 68), which is

repeated here:
2 2 n+3
G(P,Q) = S c,AB8*2) (R \""p, (cos (3. 32)
o Re (rrnz/ ;

Omittix;g the second;degree term and inserting the model (3. 23) for c,
(with 0, = R sy O = ) yields
mr R

=%r n-1_n+2 n-1 B 4 n+23 Bana 2
GRQ =) (%3 a% P ™ J]LTL(r'm) Pa(cos ¢)
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o 2
= %ﬁ z - -nlJ+(f\+ 2 $:""% P, (cos §) +
1
=3

g _aaai (@-1) (n+2°

R. @ -2 (n+B) 8.2 P,y(cos V)

n=3

G(P’Q) = e Gl (poQ) +¥ aﬂ GB(PoQ) (3'33)

This equation and subsequent formulas based on it are slightly erroneous as
presented in Moritz (1977, p. 16, equ. 3-24, 3-25). The difference is in the
coefficients of the sums; Moritz gives them as @, /R.% i=1,2. Although
most (except the final) numerical results of the least squares adjustment are
obtained with the formulas exactly as given by Moritz, the correct results
would hardly differ from these.

From equation (A-1) of this reference, we have

(n-1) +2)° _ (A+1) (A -2)7°

Py = (4-A)n+A(A-3) - Y +(n-1)n (3. 34)

v 2

Lﬂ-l)@"'Z)j ¥ < 16 B+1)(B-2) 3.35
(n - 2) (n+B) n+5-B+ (B+2)(n-2) r (B +2) (n+B) pren
These can be readily derived through the use of long division and partial
fractions. It will be convenient to introduce the following abbreviations:

@® g @
Jo =Y &P (ty, 1= usR(), Jp = R XU

a=3 =3 n=3

(3. 36)

n

n=3 n=

;- © 1
e =) == 83 py(t), L =zan+k s"* p,(t), k>0

Then from (3.24) - (3.26)
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o]
J°=sazs““p,(t) = 8° (F-(s+8°t+s°Py(t))) )
n=3
Is= 8Py
) (3.37)
2 3
g _ (8,8t s P(t)
b (s (Lo P vy RS TR )
2
To compute J, , Ja, we require E . a_g Let
os ds
pz% , Where L = /T -2st+s°
Nowwith 2L - 8=t yne firgt derivative is
] as L
' 3 "
a_:‘ PR L:t (3. 38)
and the second derivative simplifies to
3*F 2tL%- 3s(1 - t°) ‘
—_— = 3. 3¢
ds fs( B
Differentiating the sum which defines F yields
3F ¢
s ™ 2 (n+1) s* Py(t) =
n=0
= z ns" P,(t) + Z 8" Pa(t) +1+2st+3s°Py(t) =
n=23 n=3
= %:;(J1 +Jo) +1 +2st +3s° Py (t) (3.40)
Therefore,
Jgy = sagﬁ- Jo -8%(1 +2st+38°Pp,(t)) (3.41) L
s
Similarly, by differentiating again,
aZF "y - 2_nan=-l {?‘ n-1
- - Zns P,(t)+L‘ ns Py(t) +2t 4+ 68 P, (t) =
n=3 a=3
= %‘(J,+J1)+2t+68 Ps(t) (3.42)
<30~
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so that, finally

az
Jo o= 'S -3 - s'(2t+6s Pa(t)) (3.43)

If the decomposed fractions (3.34) and (3. 35) are substituted into the
covariance function (3.33), then with the notation of (3.36), we arrive at the
closed expressions for the vertical gradient covariance components (for
A, B>0)

G (P,Q) = Elz[(A -3 (AJo-N1)-(A+1) (A -2)2h+Ja]
11 ia o s Z)i 5 (3. 44)
%9 =E’[J1+(5'B)J°+B+zl'2+ B +2 52

where G, is evaluated at s, and G;is evaluated at s; .

The horizontal gradient variance on the sphere of radius R, is derived in
Moritz (1977), and with the correction mentioned above, it is given by

Gow = Q@) Giow + Q5 Ggowu

where

\
Gion = 2R1[[:(1 201:|+(4-A)L(—14—2 0’12—201‘3_]4
n+1
+ A(A = 3)1—-1-—+ (A+1)(A - 2){01 “W(l g,) +n L; n . Aj :l T(3.45)
4

2
__oa_z_ . -2023+(5—B)—°3— +
(1 -0g) -0

2

n+1
0 (1 - 03)————(B 2)2[031 2 or(1-0y) + z s ]]

n=1]

16
+2

Without the factor 2, these equations would represent the vertical gradient

variance. In the least squares adjustment (sec. III. 6), the linearization of the
problem requires the derivatives with respect to 0, and 0, ; they are
(recalling that 0, = R,°/R.°, 0z = R:7R.°)

dG;QH = [-201 (4 QL) —80‘3 +(4 A)[gk_ﬂ__gll 3018-8013]4-
do, 2R° L (-0
+ AA - 3)94-(115——041)’9 +(A+1)(A - 2?3 [(2 -A)g A (1 - 6) +
2=A
L _‘?_+_2- n*l
i 1-01+ n+A & ]] (3.46)
n=1=A
-31..




dG s ¥ re"s - 55 ~
CGon = B . e - g% (5 - 40
do, _EZR, 1-03)° 305" - 805° + (5 -~ B) +

(1-o03)
64 ., 16 & B+1 2
- 02 on(1 - 03) + —i_ - = (B-2°% .
B+2'°® ( 2) B+21-0; B+2(B ) (3.46)
(cont,)
<~B8 2
= & 1-8 % o O X n+2 1
LB tn -0 - T+ ) 2R ]]
B=1—8

Also, 9Gwou - 9Gguk -,

III.4.2 Gravity Anomaly Covariance Function

The covariance function for the gravity anomalies is derived in an entirely

analogous manner. Only the final results are quoted here. From equation
(3.18)

o]

ST n-1 3 n-1
C(P,Q = Ly msl“a P.(cos ¥) + a,sta“ *2p,(cos )
n=3 n=3
(3.47)
@, C,(P,Q) + @3C3(P,Q)
R;® Biy
where sl=-;1f; . R Then Moritz (1977) gives (for A,B > 0)
Ci(P, Q) = 81(F(s;,8) - 8, - 5,°t - 5.2 Py(t)) +
2
& B 85°t sdPatt)
(A+1)SI(FA(Sl’w) A -A+1 = A+2
(3. 48)
LR B+1 8y 8°t sIP.(t
= === )y - 33
Ca(P,Q =575 8 F_a(S3,¥) + 55 Sa(Fa(Sa,¢) > g’iﬁ__aB_i.(_z_l

Here, F, F,, Fg are defined in equations (3.24), (3.25), and t = cos ¥.

The conditions § =0 (t=1)and r, =ry = R, result in the point
anomaly variance on the sphere of radius R,:

Co = ;Ci0 + 03Cyx

-32-




S

ith C - 2-4 \g' o *2
wi = = =
10 1-0, + (A+1)0, n(1-ay) + (A+1)Li n+A
n=1-
J (3. 49)
_ o +(B+1)g°™" B+12 og"*?
b B B +2 n(l-032)- Brg ; D+B
n=1-
The derivatives of this variance with respect to 0, and 0, are
dC gt 5-4o0. 1-A oe_A \
—l°-=—l—;gi+A+12—Ao R(l-oy) - (A+D)—2— 4+
e ey A+ 1D(2-2)0' " (1-0y) - by
(2" n+2
+ (A+1) n+1l
( )L‘ R %
el ?(3.50)
-8 -
dCg _ _ 40 +(B+1)(2-B) o' ™® W —egy 3 07" + (B+1)g°~°,
dos B +2 (B+2)(1- az)
)
SEE n+2 -
B+2 n+B 2
n=1-8 )

And % _, dCp _

dos : S, 1.

III. 4.3 Undulation Covariance Function

The covariance functions for the undulation and disturbing potential differ
(in spherical approximation) only by the factor %°, where Y is an average
value of gravity. Again, the potential covariance function is derived in Moritz
(1977). Substituting the model (3.23) into equation (2.40) yields (with R.= R, )

” alR 2 R2>n+2 OI:RQQ 2, n+2
kn(R,) (n-1)@+A) (—R:z ¥ (a-D)(n-2)n+B) (%’) fpesh)

The covariance function (2.28) is then

® 2 — 2
n+ i n+
K (P, Q) “,tZT_L‘m- D St Pyleos ) +a:Z T h S % Palcos

1

o Ky (P,Q) + a;K,(P,Q) (3.52)
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For A, B > 0, Moritz (1977) derives

iy
K(P,Q) = —L(F-l(sh‘l’\‘ Sy Pz(t))‘—'L(FA(Sl,\b)‘SA Asi] i{r_éi‘)‘ \
2 I 2
Ka(P,Q = 'B—I:_Lz F.a(83,¥%) - gi‘;(h(s.,w) - 83°Pg(t)) + >(3.53)
Ry° Sat ;p,(t))

* BriyB+z) (Fe(sa:¥) - F B B+1 B+2 )

where t =cos ¥ , and F.,, F.,, F,, Fs are defined Ly equations (3. 31).
The undulation covariance function is simply (see equ. (2.45) and (2. 20) )
1
L(P, = K (P,
e (kMQ) % Yq (P,Q)
where % =Tz and % =3 . The undulation variance on the sphere of radius
Re is obtained by setting ¥ = 0 andr» =rq =R, :

(3. 54)

Lo = 712(°‘1K10 + 0zKg0) (3. 55)

where from (3.27) and (3.28), the variance components are

2 3 n+1
R Bk
Ko = A+1 %1 (‘7/”(1'"1)+01)+A+1(01 on(1-0y) zn )
n=1-A
. 2B, B’ .
Kz) e B+203 @ﬁ(l‘ca) + B+103 (P/’l(l‘o;)"‘o;) + >(3.56)
Raz e ‘i‘ o_n-r].
(B+1)(B+2) (% IM1-0a) +/, 3 yp )
a=1-

With o, = Rf/ | Ll g = R;z/Rf‘ , these equations can be written more com-
pactly as

+1

2
R0 v
Kio = 371 (™ - aPyma-01) - &2 +z A )
n=1-A
(3.57)

R2 n+1
Kao = (B+1)(B+2)[((B+2)°9 - (B+1)05° - 05" °)Yn (1- 05 ) +(B+ 2)05 Z%+B

The derivatives of this variance with respect to 0,, and 0; are

_ oy dKjo o
3oy, ?j" do, y ao, ;.% do,




where
2 - -
dKp _ _R. o™ -of n+2 o]

= 2, l=a _ 2 ” 5 ke 3
do, A+1[((2 Ay 30,%)on(1-0y) 1= 407 +"’f AD+A o]

dK B 2
% [(3(B+2)032-4(B+1)033-(2—B)o,"° Yon(1-0,) +

do,  (B+1)(B+2) P(3-58)
Sz 4_ _2-8 3
(B+2)0" - (B+1)05" - 03 + 4(B+2)g,° - | DF2 03“1]
1-0; &0t B
e

It is noted that none of the covariances above is defined for A or B equal to
zero. By substituting A =0 or B =0 into the series expressions of the cov-
ariance functions, one can similarly derive closed formulas for these special
cases (see Moritz 1977). However, they are of no importance in this study.
(On the other hand, the variances as they stand above are in fact valid also
for A=0 or B =0).

III.4.4 Mean Anomaly Covariance Function

As mentioned before, the mean anomaly covariance function (2.62) does
not admit to such convenient summation. However, due to the smoothing
factor B,” < O (n™?), this series expansion is expected to converge at a rate
which will allow for truncation at a relatively low degree. Due primarily to
the divisor (1 - cos ¥,)° in 8.2, this rate obviously depends inversely on the
size of the spherical cap. In fact, Tscherning and Rapp (1974) have shown
through various tests that the mean anomaly covariance series may be ter-
minated with sufficient accuracy at N =4rn/60rad. =720°/ 6°, where 6 is

the side of a mean anomaly block. Therefore, the approximation

a4

£~

C(P,Q =~

n

B2 ec,s"*? P (cos §) (3. 59)

3

is adopted here. With R.= R, and model (3.23), this becomes

720 /g
rea(n-1) /R a),, +a a-1 2. n+2 2 \n+2
C(P,Q ’*n;ﬂf'mm (Ef’ . Tn%zi)}ﬁ)ﬁ)(%) ('r%; P,(cos §) (3.60)

The corresponding variance on the sphere of radius R. is computed by setting
=0 andrp =1y =R, :
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70 /6
Co ~ ZRfc,.(R.) (3. 61)

n=3

III. 5 Second-Degree Terms

At this point, it is appropriate to list the contributions of the degree
variance cz which have been omitted in all the model aovariances. If c.
refers to the mean earth sphere, then the second-degree tr m of the point
anomaly covariance function is

2 4 x
Ca (-&-—rp I‘Q) P,(cos ¥) (3.62)

For the other covariance functions, the second-degree terms are

2.3
KP,Q: R ca (7o) Pyeos ¥) \
; R (R _ kM kM
L(P’Q)' -yPAyQ Ca (rp rQ) Pﬂ(cos ‘b) ’ p = —;;2 ’ ‘yQ o TQE >
(3. 63)
16 2 5
G(P,Q): Ry~
(P,Q) R ©2 (Tpl‘q) Pg(cos V)
C(P,Q): B°cq <_&_.r : 3 Pa(cos ¥) ]
P ¥

I11.6 The Least Squares Adjustment

The procedure to be followed is now apparent. For each of the obser-
vations, namely the anomaly coefficients c¢,, n=3, 4, ... and the assorted
variances, there exists a corresponding observation equation containing the
parameters of the model. The parameters (unknowns) are a,, Qa, A, B,
0,, 0a, butthere are many more observations; an application of a least
squares adjustment thereby suggests itself.

The observation equations (3.23), (3.61), (3.49), (3.55), and (3.45) are
not linear with respect to most of the parameters, nor are the latter three
equations continuous in the integer variables A and B. The problem of non-
linearity is circumvented, in principle, by linearizing the observation
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equations and iterating the least squares solution until it is sufficiently close
to the nonlinear solution. The parameters A and B cannot be adjusted
analytically since it is impossible to differentiate the variances with respect
to these parameters; therefore, one must simply assign various values to
A, B and investigate the resulting behavior of the solution. The parameters
of the adjustment are hence reduced to Qrs ey Oy e

The linearization is effected by expand ing the system of observation
equations in a Taylor series about some expansion point and tcruncating the
series at the first-order terms. The coefficient of the first-order terms is
the matrix of partial derivatives with respect to the parameters, and it is
evaluated at the expansion point. The derivatives of the variances Cy, Gou .,
Lo have already been obtained above, They are

dcC dCzq
Cio Cao (hd_o—llq dgdoz
(3. 64)
3(Cq, Goy, Lg) o dGyou dGgy
(@1 40vz, Oy, O3) Giow  Goow %4 o e doy
1 1 o, dK o, dK
WK 3Kn WEgoE JBgT

Recalling the model for ¢, (3.23), the derivatives with respect to the
parameters are

ac n-1 B+2 aC! n-1 n+2

. . U
n+A % ¥ da; (n-2)(n+B) °

n=3,4,... (3.65)

Bal
P& = o (———M—__ln_l n+2 0. a+l ic.l :-(—l‘—ln-l n+2 oan+1
doy L e A 1 ' 302 (n-2)(n+B)

Since the smoothing factor B,° in the mean anomaly variance is independent
of the parameters, equation (3.61) yields
'rao/e

36 ac 2

.51 - <S5

3x, 2 X, B, ! f2lyeieyd (3. 66)
n=13

where thex,, i=1, ,,,, 4 represent the four unknowns «,, oy, o, Oz,
respectively.

Let I, be the g-vector of "linearized observations", let D denote the
q x 4 coefficient matrix of derivatives, and let I3 be the vector of values

implied by the (nonlinear) model for a particular set of parameters X,. Then
the linearized system of equations is
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LX) = L + D(X - Xo) (3. 67)

The least squares solution then determines the parameters X, for which the
sum of squares of the differences (i.e. residuals) between the actual obser-
vations I, and the values I, thatare implied by the model is a minimum.
The adjustment is actually carried out with a provision for weighting both the
observations and the parameters.

With reference to Uotila (1967), the adjusted parameters of the i-th
iteration are

X1 = X1 + X, i>0 (3.685)
with
X1 = = (Di-1 Py Dy + Pyt (DI Py Ticy + Py Hyy) (3. 69)

Py, P, are the weight matrices for the observations and parameters,
respectively. These matrices are diagonal since it is assumed that no
correlation exists among the anomaly degree variances; also there is no
correlation between the variances because they are determined independently.
Dy., is the coefficient matrix evaluated at X, s Lo, = = B %
where I & is the vector of "computed obser’Ja’tions" that arelaﬁmined from
the parameters X, iy in the nonlinear model; and H,_; = X M Xo s Where
Xao = Xo (the original expansion point). Also 1"01 is the vector of adjusted
observations.
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IV. Numerical Results

IV.1 The Variation of ¢, (R¢) as Rc Changes

In the previous section, it was assumed that the anomaly degree var-
iances refer to the mean earth sphere (Rc = R.). This assumption simplifies
many of the expressions for the variances which are generally computed as
referring to the geoid (~ mean earth sphere); then s = R®/R,> =1. The
observed degree variances, however, are computed from equation (2.41) using
potential coefficients. Hence, they refer to the Bjerhammar sphere, since
the R in the disturbing potential (equation (2.22))is usually identified with
the Bjerhammar sphere radius Rg. It is appropriate then to investigate the
variation of ¢, (R;), computed by equation (2.39), as R.changes. Comparing
(2. 39) and (2.41), we have

Ca (Re) = cn'(%Z)Mg (4.1)
where ¢! does not depend on R.. Therefore,
dc,(Rc) = -(n+2) c,(Rc)isgca—)- (4.2)
or approximately
Ac, = -(n+2) Cn% (4.3)

We take R; = R, = 6371 km and a relatively large difference
AR’ = R, -b® ~ 1.8 x 10° km?, (4.4)

where b = a(1-f) and a, f are the parameters of a mean earth ellipsoid

(a =6378.140 km, 1/f=298,257 —~ b = 6356.755288 km). Table II illustrates
the corresponding decrease in the degree variances. The values for c, are
given by Rapp (1977, p. 40) and actually refer to the Bjerhammar sphere,
but this is immaterial for these computations which serve only as an example.
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Table II : Variation of ¢, (as given by (4. 3)) with
change in R:° (all values in mgal®)

n (o Ac, c,+ Ac,
3 33.2 - .745 32.46
7 16.7 - .674 16.03
13 5.6 - 377 5.22
20 2.4 - .237 2.16
30 2.8 - .402 2,40
40 3.9 - .735 3.17
50 4.5 -1.050 3.45

The change Ac, is directly proportional to AR.°. To determine AR.>
for which Ac, might be considered negligible, one requires that
An® < = (R - b?) (4.5)
where t is the tolerance on Ac,, and q is the maximum value of |Ac, | for
AR®=R,°-b° Forns 40, q=.745 and specifying t = .05, it is seen that if

05
AR’ < & (RS-b°) ~ 12100 km?

then the ¢, values for such a AR.? are not affected in the first decimal place
(since the correction Ac, is then < .05). Because

AR® = (R°-b°) = (Re-b) (Re+b) = AR (Re +Db),
the values ARc® < 12100 km® correspond to AR:. < .95 km.

Therefore, if the observed degree variances refer to the Bjerhammar
sphere whose radius may deviate from R, by more than 10 km, then it is
necessary to implement equation (4.1) with R.= R, to obtain degree variances
which refer to the mean earth sphere. From Table II and the subsequent
discussion, it is evident that if Ry is close to the semiminor axis of the mean
earth ellipsoid, then for low degree, the error in using R = b instead of R = Rg
does not affect the first decimal of the values of ¢, . It is assumed then that a
sphere with radius b is close to a sphere embedded entirely within the earth.
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IV.2 The Observed Data

IV.2.1 Anomaly Degree Variances

One set of observed degree variances, c,', has been computed by Rapp
(1977 p.40). The potential coefficients upon which they are based were de-

Table III: Anomaly Degree Variances from Rapp(1977)

(all values in mgal?)

n c! c, *|stand. dev. n c! c, * |stand. dev.

3| 88,2} 92.47] .8 28| 2.9| 2.54| .8
4| 14.9| 14.51| .8 29| 3.6| 3.13] .8
5| 11.1| 10.76 | .8 30 2.8| 2.43] .8
6| 21.5| 20.74| .8 31f 2.2] 1.00f .8
r 7| 16.7| 16.04| .8 821 .31 .88 .9
8| 7.0| 6.69| .8 33 2.7 .31 .
9| 14.7| 13.99| .8 34| 3.6| 3.06/ .8
10| 8.7| 8.24| .8 851 3.21 M .8
11| 8.3]| 7.83| .8 36 3.9 3.29| .8
2] 5.1] 291} .8 37] 8.0 2.8% .8
13| 5.6| 5.24| .8 38| 3.8| 3.18| .8
14| 3.6] 3.35| .8 3 28] 2.3 .8
16 ' 8.2 4.82] .8 40{ 3.9 3.23] .8
16 | 6:1] £T1| .8 41{ 3.5] 2.88 .8
E 17 | 4.4 4.04| .8 42| 3.7| 3.04| .8
18 |+ 8.7] 8.38] .8 43| 4.1| 3.35| .8
19| 3.4| 3.09| .8 44 4.1] 3.34] .8
20 |- 3.4F WA .8 45| 3.4 2.75| .8
' 211 0] 2.M1] .8 46| 3.2| 2.58| .8
3 22| 3.4] 3.05| .8 47] 3.8 3.08] .8
% iy ar] .8 48| 3.8) 3.04] .8
: N 2.4l 234 .8 1 S5.7] 2.94 .%
: 25| 2.7| 2.39/ .8 50| 4.5| 3.57| .8
ﬁ 201 2.6] 2,29 .8 51{ 4.4| 3.47 .8
271 2.2] 1,093 .8 821 4.8] 3.58 .8

*modified according to equ.(4.1) with Ry= R,, R=b = 6356.755288 km

duced from a global set of 5° mean anomalies (which were obtained from a set
of 1° anomalies). If one multiplies equation (2. 60) on both sides by

cos j__):t

_13-” (cos 5) {sin i

(4.6)

ai]=




and integrates over the sphere, then with the aid of the orthogonality proper-
ties of Legendre functions, one can show (Heiskanen and Moritz 1967, p. 31)
that the potential coefficients are given by (let R = Rs in equation (2.60) )

61, = &1“2 r = = COSJX‘ ’ .
{s.,} r «hvveu-l)t!,l%.“e{,J N P”(ME’{MMTL - et

where B, is the smoothing factor for 5° anomalies. Siucc the mean anomalies
are in the form of discrete values, the integration is replaced by a summation,
in which case, Ag is evaluated only at the center points of disjoint blocks

(see Rapp 1977). Substituting these coefficients into (2.41) then | ields the
degree variances c,' as listed above in Table III. These \ ..ues are modified
using equation (4. 1) with Rc=Re= 6371km and R=b=63,6. 755288 km, sce p. 39,
in order that they refer to the mean earth sphere. The selection of the standard
deviation is discussed below.

A second set of anomaly degree variances can be derived from the po-

tential coefficients of the GEM 9 satellite sotution (ierch et al. 1977).
Applying the same procedure as above yields the results listed in Table TV,

Table IV: Anomaly Degree Variance from GEM 9 Potential Coefficients

(all values in mgal®)

n ¢, [ stand. dev, n e} Gy * stand. dev.
3] 33.66 32.91 .8 12 3.67 3.44 .8
4 19.63 19.11 .8 13| 6.59 6.16 8
5 20.87 20,22 .8 14 4,04 3.76 .8
6 19.05 18.38 .8 15 3.30 3.06 .8
7 19.45 18.68 .8 16| 2,34 2.16 .8
8 11.73 11.21 .8 17 2,05 1.88 .8
9 11.50 10.95 .8 18 3.32 3.03 .8
10 10.07 9.54 .8 19 2.99 2.72 .o
11 6. 77 6.39 .8 20 2.30 2.08 8

* modified according to equation (4.1) with Re= R,, R = b = 6356. 755288 km

It should be remarked that the modification of the anomaly degree
variances through equation (4. 1) is based on the presupposition that the
potential coefficients refer to a sphere of radius R = b, This assumption
may be questionable, particularly with respect to the coefficients for the
degree variances of Table IIl. These coefficients were computed using
equation (4.7) with R,°/Rs- ~ 1 (see Rapp 1977).
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' IV.2.2 Point Anomaly Variance

The peint anomaly variance has been estimated by Tscherning and Rapp
(1974) to be ~ 1800 mgalz. This value is based on over 2,25 million free-
air anomalies which were partitioned according to the ranges of elevation in
which they were determined. A weighted average of the individual variances
of the anomaly subdivisions then provided the total variance. The effect of
cz on C, is ¢, itself (~ 7.5 mgal®, see equation (3.62)), if c; refers to
a sphere of radius R.. It is neglected in the input value to the adjustment,
since C, does not act as a constraint in the strictest sense (a minimum
standard deviation of 25 mgal® was attached to C,). Therefore, the exact imput
value is not too critical. The final adjusted value of C, is one that is partly
: implied by the other data and the model. The same is true of the undulation
variance after the second-degree contribution has been removed.

IV.2.3 Undulation Variance

The value of 1, is obtained simply by summing the first few undulation
degree variances. The sum in equation (2.49) converges rapidly, and with the
observed anomaly degree variances (e.g. computed from GEM 9 potential
coefficients (Lerch et al. 1977)), it results in an approximate, rounded value
of 900 m®, The effect of c; on L, is sizable, and in this case, it must be
subtracted to accommodate the model. This effect (equation (3.63)) is
approximately

RZ
¥ T qmcCs = 314m® (4.8)

with R =b, kM = 398601 km®/sec®, and cz = 7.56 mgal. By the manner in
which the input value L, is computed, one cannot expect it to add new infor-
mation to the adjustment. The observation for I, was therefore deleted in
the final analysis (Table 1X); but it was included in the solutions of Tables

VI and VIII. Its removal had no significant influence on the numerical results.

IV.2.4 Mean Anomaly Variances

The mean anomaly variances for 1° and 5° blocks are also derived by
Rapp (1977). The covariance function (and hence the variance, when ¢ =0)
for the 1° mean anomalies is estimated there similarly as the point anomaly
variance was deduced by Tscherning and Rapp (1974); namely, by forming
weighted averages of given mean anomaly data (Land /Ocean-value, p.7,
Rapp 1977). 5° mean anomalies were then obtained through a least squares
prediction using this 1° covariance function. The square of the resulting root
mean square of 5° anomalies (set 1, p. 14, Rapp 1977) is adopted here as the
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observation.

Again, because the summation of the model begins with n = 3, it is
necessary to subtract the contribution of c; (see equation (3.63)):

For 1° blocks: ¥, = /1°)/n = 0°.564 - RZcys* = 7.43 mgal®
(4.9)
For 5° blocks: §, = /(5°)%/ n = 2°.821 - BR3cys® = 7.41 mgal®

where cg = 7.5 mgal® is assumed to refer to a sphere of radius R = b, and
s = R°/R.? (for B, , see equation (2.58)).

Table V below displays the observational values of the variances dis-
cussed above (for the choice of the standard deviation, see below).

Table V: Vvariances 1

observation standard deviation
Co = 1800 mgal® 200 mgal®
1o = 900-314 =886 m" 50 m°
Coljo = 862.5-7.43 = 855.1 mgal® 10 mgal®
Colse = 259.2-7.41 = 251,8 mgal’ 10 mgal®

As mentioned on page 16, one cannot expect the adjustment process to
determine a value for Go« based only on low-degree information such as the
first 20 degree variances. Therefore, any input value Gy must act as a
constraint (i.e. with a weight relatively larger than for the other variances).
By assigning a small weight to G, 4, the iterated least squares solution usually
oscillated wildly and diverged. Even with the constraining standard deviations
that were finally chosen, a slight divergence of the solution is detectable,

From the discussion in section II.7 on the observed variability of the
horizontal gradient variance, it was decided to select two global values for
Gow: 200E® and 3500E*. Each value implies a different set of model parameters.
The initial computations were oriented towards determining a model from the
degree variance data of Table III, with a low gradient variance (as opposed to
the model of Tscherning and Rapp (1974) which yields a large gradient variance).
Therefore, only the value Gy, = 200 E° was applied to the data of Tables III
and V.,

In view of equation (3.63), the influence of c; on Gg, is negligible. With
c; ~7.5mgal’, n=r,=R,, ¥ =0,
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16 3:2 5 S
cQ?(r,m) P,(cos¥) < 8x10~* E® (4. 10)

IV.3 The Weights

The least squares adjustment is to be regarded, in this case, as a pro-
cedure which results in the best fit of the model to the given data. In this
sense, the standard deviation which is assigned to an observation is not taken
to represent a measure of accuracy, but rather, only as an indication of the
relative weight or significance that the observation should carry. With this
in mind, one can arbitrarily vary the weights to procure the best possible fit
of the model. The original standard deviations are listed in Tables III, IV, and
V for the input data, A standard deviation of .8 (mgal)® (also used by
Tscherning and Rapp (1974)) was assigned to every observed degree variance
and retained throughout all computations. Some experiments were conducted
to determine whether a change in the weights at the upper or lower end of the
sequence of degree variances would improve the adjustment. Such variation
in the weights usually did not enhance the fit of the degree variances, while
often being detrimental also to the model variances. The standard deviations
of the variances were initially selected arbitrarily, Later it became necessary
to tighten the control on these quantities in order to improve the fit to the
data (cf. Tables VI, VIII, IX).

The weights of the parameters &,, oz were set practically to zero (10” %),
since these unknowns should be established entirely by the observed data. This
is equally true for the parameters o, and 0, but these were restrained by
a standard deviation of 0.01 to prevent a possible underflow or overflow in the
macgeine computations (e.g. the 1° anomaly variance contains the factor
(@) 7).

IV.4 Data Set of Table III, Two-Component Model

A least squares adjustment was applied to the observations that are
collected in Tables IIT and V, and to Gy, = 200 (+50) E5, for various and
sundry values of A and B. An investigation of the results revealed that the
value A ~ 100 yields the most favorable solutions. Most multiples of 10
below, and some above A = 100 were also tested; in each instance, the solution
was deemed unacceptable as it generally produced larger residuals than in the
case with A =100. A few selected results are presented in Table VI. In this
table, RMS denoted the root mean square value, defined in principle by the
square_root of the simple average of squared quantities. In this context,

RMS (Co) is the RMS value of the residuals of both mean anomaly variances;

while RMS (c,) stands for the RMS value of residuals of the anomaly degree

variances. The adjusted variances, as they are listed in Table VI, do not
~45-~
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; include the value of the second-degree term of their series expansions.

The following criteria were considered in the selection of the "best"
results: the adjusted values of C, and L, should be close to the observed
values; Go, should have a value approximately equal to 200 E% the values
of RMS (c,) and RMS (Co) should be minimal, It is also desirable to obtain
values of 0, and o suchthat R, < b and R; < b. For R =D,

2

0 gl
Finally, the low-degree c,'s of the model should not be unreasonable distorted
for the sake of accommodating the higher-degree values.

o .9955333 (4.11)

With these standards of selection, solution (i) of Table VI is judged to be i
most favorable for this data set. The results of (a), (b), and (c) show that !
A ~ 100, while solutions (d), (e), (f), (g8), and (h) suggest that B should not
exceed 10. For the solution (f) (B =5), the value of ¢, as obtained from the
adjusted model is ¢, = 34.0 mgal®; whereas, for (h) (B = 10), c, = 32,8mgal®.
In view of the observed value of ¢, in Table III, it can be argued that 5< B<10.
1t is noted that o, 0z < & (see (4.11)) in cases (a) - (i); hence, the covariance
functions defined by these models converge for any two points on the earth,
provided that b is the radius of a sphere contained within the earth.

The solutions of Table VI are based on degree variances as modified by
equation (4.1) to refer to the mean earth sphere. If the degree variances c,' of
Table III had been treated as already referring to this sphere, then the results
of Table VI would not be altered substantially. This data set primarily
served in the general investigation of the two-component model (3.23). The
final model parameters(sec. IV, 6) are determined from the anomaly degree
variances implied by the GEM 9 potential coefficients.

The adjusted degree variances of model (3.23), referring to the sphere of
radius R,, and for solution (i) in Table V1 are given below in Table VII.

It is observed in Table VI that the adjustment process seems to be able
to determine a value for the horizontal gradient variance Gow, apparently
through the other variances. However, this is the case only when more we ight
is placed on the ""observed" Go, than on the other variances (particularly Co).
The adjusted value of Co was improved by increasing its weight, thereby
necessitating even tighter control on Go,. With the observed value of Gou used
here, a large value of the parameter A was required, in part, to push the
"adjusted" Goy down to ~200 E® (With the observed value of 3500 E® on the
other hand, a large value was assigned to A in order to decrease C, to ~1800
mgal®; see also Table IX.) The solution (j) of Table VI corresponds to the
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parameters A, B as adopted by Moritz (1977). With respect to A, it reflects a
limiting value of Gy, that is "implied" by the input (with an observed

Gow = 200 Ez) That is, as A is increased, Gou decreases. The last entries
in Table VI are obtained with the model parameters that were determined by
Moritz,

Table VII: Adjusted Anomaly Degree Variances (sln. (i), Table VI)

all values in mgal®)

n Ch res idual n c, residual

3 32.83 «34 28 4.02 1.48

4 21.54 7.03 29 4.00 .87

5 16.88 6.12 30 3.99 1.56

6 14.06 -6.68 31 3.99 2.09
I 12,08 -3.96 32 3.99 1.15
8 10.59 3.90 33 3.99 1.68
9 9.42 -4.58 34 4.00 .94
10 8.47 .23 35 4.02 1.30
11 7.70 - +13 36 4.03 - fia
12 7.07 4.15 37 4.05 1.53
13 6.54 1.30 38 4.07 .89
14 6.09 2.74 39 4.09 1.76
15 5.72 .90 40 4,11 .88
16 5.40 .70 41 4.14 1.25
17 5.14 1.10 42 4.16 1.12
18 4.92 1.54 43 4.18 .84
19 4.73 1.64 44 4.21 .88
20 4.58 2.40 45 4.24 1.49
21 4.45 1.74 46 4.27 1.69
22 4.34 1.29 417 4.29 1.24
23 4.25 1.84 48 4.32 1.28
24 4.18 2.04 49 4.35 1.40
25 4.12 1.73 50 4. 37 .81
26 4.08 1.78 51 4.40 .93
27 4.04 2.11 52 4.42 .89

Some additional remarks concerning this model and the determination
of its parameters are appropriate. With observation equations only for the
degree variances (and mean anomaly variances), it would be difficult in the
adjustment to separate the corresponding parameters of the two components
of the model. But observation equations are included for Co, Gy, Lo, Which
are essentially of a different character, thereby allowing the parameters to be
separated, although not without any correlation. The correlation matrix for
the parameters «, , &3, 0, , 03 of solution (i) in Table VI is
-48-
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(!1 (!a 01 Oa

P R PL Y SRR R

g .58 1,00 -85 -.92
0y -.96 -,5 1.00 ,70
oz \-.74 -.92 .70 1.00

By inspecting the adjusted degree variances of Table VI for the two-
component model, it is observed that their values increase for 32<n< 52,
when in fact, ¢, should approach zero as n—+~. The graph below clarifies the
situation by showing the behavior of ¢, = ¢; ,+ ¢, up to some large n, where

n-1 n+2 n-1 n+2
Ny —— 4.
" (n - 2)(n + B) % e

This verifies that the snosleded ¢, ~ 0 as n —~ =,

— 32,8 mgal®

1

mgal®

Figure 4.1: Model Degree Variances as a Function of n
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Finally, it must be acknowledged and tests have shown that the computational
effort in determining covariances with the model above (solution (i), Table VT)
is approximately 3% times as great (due to the large value of A; see equ. (3.31) !
as in the case of the model given by Tscherning and Rapp (1974) (equ. (3.12) ).

IV.5 Data Set of Table III, Single Component Model

This latter model drew some criticism since it yields a relatively large
horizontal gradient variance ( > 3000 E®). For this model, there seems to
exist a basic incompatibility between a point anomaly variz-ce C, ~ 1800 mgal®
and a relatively low (<600 E°) gradient variance Gy, ‘v able VIII, which
lists some solutions of the model (3.12) with the same observed data as
previously (Tables III and V) verifies this conclusion. Note that in this model,
¢, does not depend on 0, and therefore, the degree variances presumably
refer to the Bjerhammar sphere (~ radius Rz) and are not modified as before.
Again, none of the adjusted variances in Table VII includes the contribution of
Ca . Also, while ¢, is now independent of o5, the variances are not, and
thereby, the capability of adjusting this parameter is retained.

In all cases of Table VIII, ¢, > :7, where (Ar is given by (4.11); this
implies that the corresponding covariance function may not converge for every
two points on the earth. Additional tests (not shown) disclose that in fixing
the value of 05 to &, the adjustment produces unrealistically low horizontal
gradient (~ 30 E®) and point anomaly (~ 1000 mgal®) variances. It is further
observed in the table that the relatively large value of RMS (C,) is consistent
with the fact that the point anomaly variances of the models are quite low.

Figure 4.1 above indicates that the component ¢, , is primarily respon-
sible for the initial sharp decline of the values of the modeled ¢,. This is
partly due to the attenuating factor o3 *2 (0, ~ .93 in this figure), Conse-
quently, the single component model (3,12), which lacks this factor, cannot
accommodate as well the observed higher-degree ( > 10) coefficients, as these
rapidly decrease in value (see Table III), These remarks are reflected by a
correspondingly higher RMS residual of the adjusted degree variances for
the single component than for the two-component model (compare Tables VI
and VIII). The logical remedy would be to include the attenuating factor

n+2

Oa in the single component model:
& ¢ B-1 .. 3\n+2 4,13
CRM= )y o Gy Paesd (9
where ¢, = og — 01 57 *2 jow refers to the mean earth sphere.
(n-2) (n+B)
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However, while the fit to the observed degree variances could improve, the
resulting variances G, , Co, Lo are then quite unnatural.

IV.6 Data Set of Table IV, Both Models

The remaining analysis is based on the observed degree variances in
Table IV (from GEM 9 potential coefficients)., However, the observed
variances of Table V are retained. With this data set, and with each of the
two horizontal gradient variances (200 E*, 3500 Ez), parameters were “Liained
for the two models (3.12) and (3. 23). The identical proced- ¢ is foliowed in
these determinations as with the previous data set. Th-refore, only the final
solutions of the four resulting models are presented in Table IX. Their
adjustment was based on a set of observation equations which contained
the corrected equation for the horizontal gradient variance Go 4 » and from
which the equation for the undulation variance L, had been deleted (see
earlier remarks, sections IIl. 4.1 and IV.2.3). Neither of these alterations
has a very pronounced effect on the solution. The final weights for tle variances
Co and C, were chosen primarily for reasons of consistency. The adjusted
variances have been augmented by the value of the second-degree terms of
their series expansions.

The first four solutions of Table IX are each designated by a number
and a letter. The number refers to the number of components in the model,
and the letter signifies whether the value of the horizontal gradient variance
is high or low. For example, Model 2L corresponds to the two-component
model (3. 23) with an "observed' horizontal gradient variance of Go u = 200 E°,
Model TR in Table IX is the single component model obtained by Tscherning
and Rapp (1974). It is included for comparison.

Table X below contains the adjusted degree variances of the models of
Table IX. For the single component models, they refer to the respective
spheres of radius R, (= R, /03 ), and for the two-component models, they
refer to the mean earth sphere. The values of c,' in Table IV are also
repeated here.
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Table X
Obs. c,' Adjusted Degree Variances (mgala)
n {GEM 9 |Model 21| Model 2H {Model 1L, { Model 1H { Model TR .
3] 33.66 | 35.1 24.9 29.8 27.5 31.5
4] 19.63 23.1 17.5 217 20.0 22.8
5] 20.87 18.1 14.6 18.7 17.3 19.6
6| 19.05 15.1 13.0 17.1 15.8 17.7
71 19.45 12.9 11.9 15.9 14,7 ¥W.b
81 11.73 11.2 11.0 15.1 13.9 15.5
91 11.50 9.9 10.3 14.4 13.3 14.7
10 | 10.07 8.9 9.8 13.8 12.8 14.1
11 6.77 8.0 9.3 13.3 12.3 13.5
12 3.67 7.3 8.9 12,9 11.9 13.0
13 6. 59 6.7 8.6 12.5 11.5 12.5
14 4.04 6.2 8.3 12.1 11.2 12.1
15 3.30 5.7 8.0 11.8 10.9 11.7
16 2,34 5.4 7.8 11.4 10.6 11.4
17 2.05 5.1 7.6 11.1 10.3 11.1 '
18 3.32 4.9 7.4 10.9 10.1 10.8 1
19 2.99 4.7 7.2 10.6 9.8 10.5 |
20 2.30 4.5 7.1 10.4 9.6 10.2 ?
*| Re |[6371.km| 6371.km [6365-57km 6369.73km| 6369.78km|

* the radius to which the degree variances refer

Moritz (1976) discusses the three "essential parameters' which charac-

| terize the covariance function for gravity anomalies locally, Two of these,

f | the variance and the curvature at ¥ =0 (related also to the horizontal gradient
variance, see p.18) have already been determined for all models above. The
third parameter, being the correlation length £, cannot be included conveniently
into the adjustment. The solution to the equation C(&) =% Co (see p.18) is
found by fifth-order polynomial inverse interpolation. The results are tabulated
below for the five models of Table IX.

-54-




Table XI: Correlation Lengths £

Model Correlation
Length (km)
2L 46.087
2H 43.693
1L 86. 856
1H 38.866
TR 42, 284

The covariance functions C (P,Q), L(P,Q), G(P,Q) for the first four
models are evaluated at selected values of ¥ between 0° and 180° using
the closed expressions (3.48), (3.53), (3.54), (3.44) and their auxiliary
formulas. Tables XII, XIII, XIV display the various results.

The mean anomaly covariances, on the other hand, are computed from
the approximate formula (3.60). Tables XV and XVI list 1° and 5° mean
anomaly covariances, respectively, for several values of the argument .

The graphs of the covariance functions (Figures 4.2, 4.3, 4.4, 4.5)
are designed to depict the contrasts of the functions implied by the models
near the origin (¥ = 0) where they differ the most. Whence, the abscissa
is scaled logarithmically. Also, all functions represent covariances on the
mean earth sphere,

For applications in a limited, local area, it is often practical to determine
the anomalous quantities of the gravity field with respect to a reference field
of higher degree and order than implied by a rotational ellipsoid. The local
covariance function then does not include the low-degree (long-wavelength)
information of the field. In regard to the series expansions, the first few
terms up to degree j are deleted yielding a j*-order covariance function, for
example
<2

K;P,Q = ik"( Q)“ﬂP,,(cosw)

(4.14)

= K(P,Q - ‘an(ﬁz Y™ Pyeos v
n=3

Ip Iy
where the k, , n=2,, . .,j are computed from the model.
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For the first four models of Table IX, covariances of this type were
examined with j = 20. As expected, the removal of the low-degree terms has
no significant influence on the gradient covariances. Also, the contrasts in
the modeled higher-order anomaly covariances does not diminish radically
as their variances all decrease by approximately 200 to 250 mgal®. The
undulation covariances of this 20®-order field, on the other hand, are prac-
tically indistinguishable (to 10 m®) with respect to the four models; the
variances decrease to ~315 m°. Therefore, the choice of the models above
is not critical when higher-order undulation covariances are required.
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V. Conclusion

It should be stressed that none of the solutions given above is optimal,
in the true sense of the word, for several reasons: 1) weights, other than
those assigned to the observations, could yield better results by reducing the
residuals in some quantities (perhaps at the affordable expense of an increased
residual elsewhere); 2) more effort could be expended to identify the exact
integer values for A, B which give optimal solutions although drastic changes
in the solutions would be unlikely; 3) the observations may not represent the
true gravity field (particularly Go and possibly also the higher-degree anc maly
coefficients); 4) the iterations were not carried to conver uce ancd conver-
gence was sometimes not attainable. (Although converqcuce seemed to be
indicated after approximately ten iterations, the last iterations often exhibited
small, but steady increases in the weighted sum of squared residuals.) Some
adjusted values also oscillated slightly with almost constant amplitude. This
indicates that the solution is somewhat unstable, perhaps with respect to o,
and oy which are close to 1. In fact, these parameters create a large impact
on the solution with small changes in their values.

Many of the general characteristics of the two models have already been
mentioned (see sections IV.4, IV.5). Only a few final remarks are noteworthy.

Table IX again emphasizes the dissimilarities of the single component
and two-component models. If one accepts the observational data of Tables
IV and V with Gou ~ 200 E® as being fairly representative of the real world,
then in Table IX, model 2L gives by far the best approximation to the global
cavariance functions. Table X alsc shows the marked differences in the
attenuation of the degree variances among the various models and in favor of
Model 2L.. However, compared to the single component model, many more
(see p. 50) computations are required for any applications, and this constitutes
its principal shortcoming. If a great number of covariances are required, one
may elect to construct a sufficiently dense table of values, so that linear inter-
polation quickly provides the desired covariance. This is not always a feasible
or time-saving procedure, especially if varying heights (rr,rq) enter the
problem.

The single component models, even with the greater gradient variance,
apparently are not able to adapt to the observed anomaly degree variances of
higher degree (see Table X). Also, the 5° mean anomaly variance cannot be
accommodated as well as in the two-component model. Its relative simplicity,
though, is appealing, and if one is willing to accept the objectional features,
then model 1H seems to offer the most compatible solution.
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proves to be more characteristic of
the actual attributes of the gravity field, then the single component model may
attain better suitability. Even so, the two-component model with twice as
many parameters will have the gr.

eater capability of adjusting to any new,
improved data,
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Appendix: Derivation of equation (2.76): Gou = = Go
Let x, y, z be a local Cartesian coordinate system with the z-axis
coinciding with the local vertical. Then 3Ag, 3Ag are the horizontal
dAg dx dy
gradients and dz  is the vertical gradient. If T is the disturbing potential,
then (roughly consistent with a planar approximation)

o dbg __FT
Ag o and kol — 5 (A. 1)

Moritz (1976) shows that K , 3°K , 9°K , ucing the covariance

OXp0Xq  dyrdyq dzpdzq
functions of 3T , 3T, and 3T , respectively, where K (P, Q) is the covar-
dx Ody dz

iance function of T, satisfy the following simple relationship

¥k ¥k S
d2p 3Zq  OXp OXq dye Y,

(planar approximation) (A.2)

Similarly if F,,, F,,, F,, are the covariance functions of i@l) ’
2(aTy 2 (3 32\ z
dx \dz /, oy \dz /, then

F;2 = Fox + Fay 3 (A.3)

Now, to the same approximation, it can be shown that the following statements
are true (Moritz 1976)

3K 3 i ¥ s

e (A.4)
K i "

= A (A.5)
%K B g

Betly g (A.6)

where s is linear distance and the primes denote differentiation with respect to
s. At s =0, the three left-hand expressions above are the gradient variances.
We have

2

K'(s) = -8K'(8) -8 (A.7)

d2p 024
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If it is assumed that the variances 3’k and 3°K are finite
X% |8 =0 ¥pdyq |8 =0
then
K'(0) = 0 (A.8)
Now,
d . K'(s) - K'(0) g L
K" ((0) = }l_x.xcl, ~ = sllxg pe K'(s) <« = (A.9)

by the same assumption. Hence

3K 3°K
0XpdXy fs=p = % 3Yq lg=o

(A. 10)

Thenalso F,, [,=0 = F,, s, and equation (A.3) states that the
horizontal gradient variance is one half of the vertical gradient variance
(in a planar approximation),
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