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I. Introduc tion

The gravity field of the earth has acquired fundamenta l significance in
geodesy. All geodetic measu rements , except those of distance, directly de-
pond on this field. For example , the measurements of horizontal angles and
zenith angles are made with respect to the direction of the plumb line; and
heights are referenced to the geold. In prec ise geodesy, the small d ifferences
between the actual gravity and normal gravity , as defined by an equ ipotential
ellipsoid , must be taken rigorously into account.

The most common, directly observa ble, gravimetric quantity is the
gravity anomaly . it can be related , In theory and with certain approximations ,
to the remaining elements of the anomalous gravity field , such as potential ha r-
monic coefficients, or to the deflections of the vertical (Vening Meinesz
formula) and to geoid undulations (Stokes ’ fo rmula) (Heiskanen and Moritz
1967) . Unfo rtunately, the evaluations of these types of integral equations
presupposes that the anomalies are known everywhere on the earth’s surface,
Since, at present , this is not the case, one attempts to estimate (predict ,
inte rpolate , or extrapolate) gravity anomalies at the unsu rveyed points .

The methods for such determinations include collocation or least
squares prediction (Moritz 1972) . This type of estimation of a “signal’1
quantity of the earth’s gravity field , such as gravity anomalies , requires
either a local or a global covariance fu nction; the choice depends on the par-
ticula r problem. The covariance function characterizes the statistical or
random nature of gravity anomalies . The refore , it would be perfec tly
dete rm ined if gravity anomalies were known over the entire surface of the
earth. In the absence of this knowledge, it is often replaced by an analytical
(smooth) function , which is judged to agree well with the behavior of known
gravity data. The fact tha t one can work only with an approximation to the
true cova riance function does not invalidate the method of collocation, It
simply means that the resulting predictions are not optimal in the sense of
having the least error (Moritz 1976) . The example above of a covariance
function Is more precisely an autocovariance function for gravity anomalies;
a crosscova r iance function describes the covariance between d ifferent
signal or random quantities.

The princ ipa l objective of this study is to determine the paramete rs of a
model for the global covariance function of gravity anomalies. The Information
tha t is available for such a determination consists, in this case , of a finite
set of anomaly degree variances , as well as mean and point anomaly variances,
all estimated from satellite data and terrestrial gravimetry . Essentially, the
investigations herein expand some of the ideas and computations presented by
Moritz (1976, 1977) .

—1 —
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Throughout all derivations , the earth is assumed to be a sphere ~iaving
some mean rad ius B. This implies that the atmosphere, the earth ’s ellip-
tic ity, and the terrain are ignored. For practical considerations , however ,
one might make the distinction between the Bjerhammar sphere (whic h is a
sphere entirely enclosed within the earth, Kra rup (1969) ) and the mean earth
sphere with radius B, = 6371 km. The former would be desirable in order to
apply the formulas in practice , at or near the earth’s surface , with no risk of
nonconvergence of the series in pa~’ers of -

~~~
- ~r being the distance from the

earth’s center to the computation point) . To be sure, a series such as for the
potential is guaranteed to converge only exterior to the sphere that encloses
all terrestrial masses. The problem of formal convergene above ~‘nd close
to the earth’s surface is not considered here; for a trev~~ ent of the difficulties
that arise and the approximations that can be made, one might refer to Sj~berg
(1977) .

In formulating the many equations, it is attempted to maintain the
most convenient notation , while also adhering as much as possible to the con-
ventional and adopted symbols of the principal references.

Although no confusion is antic ipated , the follow ing distinctions are em-
phasized . With in this text, R denotes a fixed , but arbitrary radius ~e. g.
B = B8 = Bj erhammar sphere radius); R, represents the (fixed) radius of the
mean earth, it is not arbitrary (R,~ 6371 km); R~ refers to the radius of a
variable sphere (Ru > R) ;  while r denotes the usual variable coordinate in the
system of spherical coordinates.

The next section reviews the theoretical background of covariance func-
tions and develops the interrelationships between the covariance functions of the
disturbing potential , the gravity anomaly, the mean gravity anomaly , and the
rad ial derivative of the gravity anomaly. The third section presents the model
for the covariance function and the computational procedures that are under-
taken to determine the corresponding parameters. Basically, they are found
by fitting the model to the given data along the ideas of a least squares adjust-
ment. The results of these procedu res are discussed in the fourth section,
culminating in a comparison of the models of Tschernlng and Rapp (1974) and
Mor itz (1977).

II. Theoretica l Aspects

The unde rly ing assumption is that the anomalous potential (or the gravity
anomaly field) represents a two-dimensional, stationary stochastic process on
the sphere of the earth. The usual definition of a stochastic ( or random)
process (Pap~~1is 1965) is that it is a set of functions , each assigned to an
outcome of an experiment and depending on time. For a fixed instant in time ,

-2— 
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the function is a random va riable. In applying these notions to the gravity field ,
the (one-dimensional) time is replaced by the two-dimensional surface of a
sphere (earth) . The process is considered to be stationary , if it has no poin t
of orig in in time, or in the present case, on the sphere (homogene ity) . One
furthe r presupposes a condition of isotropy, imply ing complete rotational
symmetry of the sphe re, or equivalently, independence of direction. The con-
cept of a stochastic process is probabilistic in natu re which may, or may not,
conflict with one’s perception of the gravity field. For some a rguments and
discussions on the validity of the assumption above , one ca~ consult, for
example, Moritz (1972) and Meissi (1971). Nevertheless , the application of a
stationary , isotropic , stochastic process to the gravity field represents an
approximation whose degree of accuracy on a global basis may be quite good ;
while locally, the properties of stationarity and isotropy may have only
debatable justifi cation.

An alternate point of view that the gravity field should be treated as a
determ inistic phenomenon is advoeated , for example , by K raru p (1969) . It is
not the intent here to expound on these philosophical questions , and we adopt the
(pe rhaps more easily understood ) ideas presented expl ic itly by Moritz (1972).

II. 1 Definition of Covariance Function

In adopting the stat ist ical approach , the average , or mean over the unit
sphere is defined by

M ( • ) =  _L r S ( . )  da (2. 1)
a

- where da denotes an element of area on the unit sphere a. Let T(r~, (
~, A~)

and T(r~, 8~, 
~ ) be the values of the disturbing potential at points P and Q,

respectively. r, 9 , X are the urual spherical coordinates (~~
= colatitude,

X= longitude). Then the covariance between these potentials on the unit sphere
is given by (set rp = 1 = rq)

COV (Tp , T~) = M [ ( Tp M(T p) ) (T~~~M(T~) ) J

= M (T PTQ) - M (T v) M (TQ) (2.2)

We assume that the signal field , i.e. the dis turbing potential, averages
to zero over the sphere , which means that the spherical harmonic expansion of
T does not contain a zero-order (constant) te rm. More conc retely, this is
implied by the assumption that the masses of the earth and refe~ence ellipsoid
are equal (Heiskanen and Moritz 1967 , p. 98). Thus

-3-
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M ( T ~) = M ( T q )  = 0 ~2. 3)
and

cov ( T ~,T0 )  u K ( P ,Q) = M ( T P TQ) (2.4)

According to the property of homogeneity, the cova riance depends only
on the relative positions of the points, assumed now to be on the sphere . With
the additional stipu lat ion of isotropy , the dependence is only on the spherical
distance~ between P and Q. Therefo re, M (T~ T~) is a function of one va riable
i/~ and represents the average , over the sphere , of all possible products T~ T~for points sepa rated by the distance l~~:

M(T , Tq)  = —

~~~~~ 
$ j s

2TT 

$ T( 1, Op, A f )  ~~~~~~~~ b . 1  9~ de~dx.~ da (2 .5)
8TT a=o ~,=o Op=O

N

azi mu th) denote~i th-  ~ver-
age over a circle centered

Q at P with  radius ~, while
P the last two integrals rep-

— 
— resent the ave rage of all

‘.5 such ircles ove r the

~~~~~~~~~~~~~~~~~~~~~~~~~~~ The first mtegral (a =

-- 

sphere. The azimuth a
is related to the coordinates
of P and Q as follows
(consider the polar triangle
NPQ) :

Fi gu re 2. 1

sin O0 si n ( ~~~ — A ~ ) (2.6)tan = sin 9p cos - cos Op sin 9~ cos ( ?~q - Ap )

One could as well have written M ( Tp T~) in terms of an average with respect
to circles centered at po ints Q ( M (Tp Tq) = M (Tq T~) ) :

M( TpTq )  = 
~~~~~~~~~ r

2

~ 5
211 

5 
T~ Tq sin 8~ d8~ dAQ da (2. 7)

8iv 
~~ = ~~~~~~ ~~~~~~

where now a is defined analogously to (2. 6), bat with the ind ices P and QInterchanged.

-4- 
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Since the potential is harmonic in space, the following Laplace equations
are satisfied:

= 0 , ~ Q TQ 0 (2. 8)

where the Laplacian ope ra tor in spherical coord inates is

A = 2 1 cot 9k ~~~~~~~~ + — -i-— + —a- ~~~~~ + -~~- 
~ +rk rk ur k rk ~~~~ 1’~ç ~~~~

1 (2.9)
+ rk sin 9k ~~~~ 

, k = P ,Q

It is evident that there does not exist another equation, independent of (2.6),
which relates all three quantities a , poin t P, and point Q. That is, two of
these are independent. Suppose that this is the case for a and point Q. Upon —

applying the operator 
~~ to M (T~ TQ) as given by (2 .5) and extended by rein-

stating r~ and rQ (M (TP TQ) then depends in ~~mc manner on r p, rq) , it can be
taken ins ide the integrals, thereby giving

~~~M(T P T Q )  = -

~~~~~

-

~~

- j I [ T~ ~~ T~ sin 9~ d6~ dX~ da = 0 (2. 10)

Similarly, if one regards a and point P as be ing independent , then in using
(2. 7), we have

~~p M(T,T9 ) S j ’ $ T9 A~ T~ sin ~~dOq dX~ da = 0 (2.11)

It is hereby shown that the anomalous potential covariance function , K ( P , Q), as
a func tion of P only is harmonic in P; and as a function of Q only, it is harmonic
in Q (in the same regions where T is harmonic) .

A further property of a covariance function , wh ich is important when
formulating the type of models that are of interest here, is the property of
positive definiteness. The fac t that K (P ,Q) (or any covarianc e function) is
positive defini te is proved by Moritz (1976, p. 12) . Briefly, given~~~ linear
combination of quantities in the signal field , for example

T = ) ~~1.L t T 1 (2 .12)

- - -~~-~~~~~~~~~~~~~~~~~~~
- 
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the average of its square should be positive:

0 < M ( T 2 ) = ‘5~ )‘ 
M ( T ~. T 3 )  j.L 1 i.L 1 (2. 13)

1=1 j ;:j

This is precisely the definition of positive definiteness for M (T jT~).

11.2 Series Expansion of Covariance Functions

Let K (P, Q) be the covariance function of the anorc~lou s potential T with
arguments P,Q representing, in general , two points on or exterior to the earth.
For the moment, let po int P be fixed on the unit sphere and let Q vary on this
sphere. Without loss in generality, one may shift the earth’s pole to P
(see Figu re 2. 1) and introduce a new spher ical coordinate system qi, a , where
~ is the spherical distance from P to Q and a is the azimu th of Q at P (with
reSpect to the meridian through P). Then, K (P,Q) being a harmonic function
in Q can be expanded in this coordinate system as a series of spherical har-
monic functions:

K(P ,Q) (k ~~ cos ma + £~1 siu ma ) P~1( cos~~) (2. 14)

P,, denotes the associated Legendre function and k, , ,  1,, are harmonic coeff i-
d ents , Invoking the property of isotropy (no dependence on a ) ,  it is immed-
iately recognized that one may write

K ( P ,Q) =~~~~k~ P,( cos~~ ) (2 .15)

where k,,~ k,,, and p,0 p, is the Legendre polynomial. The k, viewed as
Fourier coefficients are obta ined in theory from

2n +1 r11

k, 2 J0 
K ( P ,Q) P, (cos ~

) sin~~ d~ (2. 16)

(P and Q are on the unit sphere) . Substituting the definition of K (P, Q), (2.5)
Into (2.16) , we can readily show (cf. Heiskanen and Moritz 1967, sec. 7-3) that
also

k, = 
‘
~) ( A ,a, + ) (2. 17)

L - - ._~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--:
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where on this sphere

T T, (2. 18)

and the surface harmonics are given by

T, =~~~~ (A r, dos mA + B,, sin mA ) P,, (dos 0)  (2. 19)

Here, A , B,, are fully normalized harmonic coeffic ients , P,, is a fully nor.-
malized assoc iated Legendre function , and 8, A again are geocentric spherical
coord inates ( Ijeiskanen and Morltz 1967).

Now let P,Q vary in the space outs ide the ea rth, then K (P, Q) must
depend in some way on the coordinates r~. and rq. In fact , it is well known,
that the dependence of a harmonic function on r is of the form r ( ~ 

+ i)  (tha t
is, when 1 ~ r < ). Since K (P , Q) is harmonic in both P and Q, the spatial
extension of equation (2. 15) is

2 f l + i

K (P ,Q) V k~ (~ —) P,(cos ~)) (2 .20)
n = O

where the un it sphere has now been replaced by a sphere of radius R; this
series converges on or outside this sphere: for r p , rq ’ R.

If ~g(r , 9,A) denotes the gravity anomaly function , then r~~ (r ,9,A ) i s a
harmonic function (Heiskanen and Moritz 1967, p. 90) . The same analysis
may be applied to it as for T (r ,O,X)  to obtain the spatial covar lance function
for the gravity anomalies:

C (P,Q) = V c, P~ (dos $/) ) (2 .21)

~~~ 
r~r~

where the c, are the corresponding Fourier coefficients , commonly known as
anomaly degree variances.

The following sections elabora te on these covariance functions , as well as on
those for the geold undulation, the vertical gradient of gr... ity anomalies, and
the mean gravity anomaly; and several Interrelationships are also derived .

—7 —
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11. 3 The Anomalous potential Covarlance Function

From the discussion by Heiskanen and Moritz (1967 , pp. 107-108), the
anomalous potential can be obtained as

T(r ,6 ,A )  = -~
1
~ (~’J~

( C,, cos mA + S,, sin mA) P,,, (cos 9) (2.22)

Here, kM is the product of the gravitational constant and the mass of the earth;
R is the rad ius of the sphere to which the ~~~, and ~~ refer. The latter are
appropriately defined potential coeffic ients (accounting fer ~he removal of the
reference field) . Setting r = R y ields the anomalous potential on the sphere of
radius R:

T =~~~ T, (2. 23)

with

T, (9 ,A) =~~~~~~~~(C cos mA + S,,, sin mA) P,,(coS 9) (2. 24)

(T0 = T~ = 0 , requiring that the masses of the earth and reference ellipsoid are
equal , and that the center of the ellipsoid Is located at the earth ’s center of
mass). Also , by setting rp = rQ = R in equation (2. 20), the covariance function
for T on the sphere of radius R is

K (VI) ~~ k , P, (coS *) (2. 25)

where now (in v iew of equa t ions (2. 24) and (2.17) )

k, =~~~(.~L7 (C~~ + ) (2. 26)

On the sphere of radius R (�R), we obtain

k ,(B~~) — 

~ ~~~ (-~
_
~)(C~ + S,~~ ) (2. 27)

by setting r = R~ In (2 .22) .  Thi: shows that k, = (
~ 

)
~ 

+ 
~ k , ( R c ) ,  and hence 

-: ~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~ .

~~~~~~~~~~~~
- 

~~~~~~. . . 5 5 .



the spatial covariance function (2. 20) can be written equ ivalently as

K (P,Q) = k , ( B~) 
~~ 

3 + 1 (C0S ~
) (2.28)

f l = 0

11.4 The Gravity Anoma ly Cova riance Function

The gravity anomaly function Ag is given by (Heiskanen and Moritz 1967 ,
p. 89) :

1 ~~~~Ag(r , 9,A)  = ( n— i) (— ) T,, (8 , A)  (2 .29)

f l — a

T,, is evaluated on the sphere of radius R. Loosely stated, the series converges
outside this sphere . As a reminder , when applied to the real world , the
convergence depends on the selection of R and on the values of the ha rmcnic
coeffic ients C,,1, S,,, . Again, any ensu ing difficulties are ignored here (see
section 1). Substituting equation (2. 24), one gets

Ag ( r, 9 , A) ~~~~~ (n-i) (C ,,. cos mA + S,,, sin mA) P,,, (cos 9) (2. 30)

Suppose that r is fixed, say r = ;~ R, then

Ag (R ,9, A) = i~~~~~(n-1) ~~~~~~~~~~~~~~ mA+~~,,sin mA) P,,(cos 9) (2.3 1)

are gravity anomalies on the sphere of radius R .  That is, if Ag is expanded
in surface har monics Ag, on this sphere, then they would be given by

Ag,,(9, A ) (
~~ 1)( ~~ ) t ( ~~~~

co8 mA + ~,, sin mA) ~~.(cos 8) (2. 32)

so that

A g ( R ~,8,A)  ~~~ Ag,(9,A) (2.33)

The harmonic coefficients are thus
.5-9-

...~.- ~~~~~~~~~~~~ - - . ._
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(a,.b,.) = —j ~r (n_1) (~~) 
(C ,,,,,S,.) (2. 34)

where we have written

Ag,, (0 , A) =~~~~ 
(
~
,, cos mA+ B,,, sin mA) ~ ,,,(co8 9) (2 . 35)

Goii~ back to equation (2. 21), one may conside r the covariance function

2 n+3

C ( P , Q )  = ~~ c,(1~)(~~~~) P,(co8~~ (2 .36)

In which c,,(Rc) now refe rs to the sphere of radius R~. (That is to say,

c,,(&) = ~~~ S C ( P,Q) 
~rp=~~ 

P,(coS ~ stn~~d* (2. 37)

r~= R ~
cf. equation (2. 16).) In analogy to equatIon (2.17), the anomaly degree variances

are then given by
kM 2

C,,(R~) 
~~~~~~~~~~~~ ~~~ = -)(n_ 1)~~~~~) 

•
~~0

(C~ + ~~
) (2. 38)

Setting y = as an average value of gravity (on the sphe re of radius R),

3 +3 fi

c, ( R )  = y~~(n—1) 2 (
~

)
~ ,~ 0

(C~ + ~~
) (2.39)

Comparing (2. 27) and (2. 39), it is seen that

C ,,(R~) = (n~1)~~~7 k,(l~ ) (2. 40)

If R = Re is the radius of the Bjerha!nmar sphere (see section 1), and If R = R =

R e ,  then the c, as computed from (2.39):

c ,,( Re) C ,’ = y~~(n 1)~~~~~~ (C~~ + S,~ ) (2. 41)

are the degree variances which refe r to the Bjerbantmar sphere.
-10-
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Finally, it is noted that the anomaly variance on the sphe re of radius
R~ is defined by

C (P . P) = c, (Re) P, (coB 0) (2 . 42)
f l — a

or
C o

where C,, (R e )  refers to this sphere.

11.5 Undulation Covariance Function

Turning now to geoid undulations, Bruns ’ formula states that

N(R c , 8, X )  = 1 T (R ~~, 8, A)  (2. 43)

kMwhere Yc = Is normal gravity assumed constant on the sphere of radius Bc(spherical approximation) , and N (to a first app roximation) is the undulation;
when ~~ = B., it is the separation between the geold and the ellipsoid of the samepotential . (Of cou rse, it is also assumed that there is no mass outside the geoid.)By setting r = ~ in equation (2. 22) for the disturbing potential, one obtains theundulation as a function on the sphere of rad ius R c :

— fl

N( Rc ,9, X) = (C,, cos mA + S,, sin mA) P,,(cos 8) (2. 44)

In general, the spatial covarlance function for N can be written as

L(P ,Q) 
~~~~~~~~~~~~ 

P,(cos4 ) ,  L,= -~~~
_
~~k, (2.45)

since r~ N Is proportional to T (Cf. equ. (2. 20) for T). Above, the coefficients1, refer to a sphere of radius R. We will be interested primarily in the undu -lation variance , L0, on th,e sphere of radius R~. This is obtained by setting
= 0, i. e. P= Q, and rp = rQ R. in (2. 45) :

L, = £,, (Bc) (2 .46)
f l= 3 f l 3

where ~~(fl~) refers to the sphere of radius R~. Again, by analogy to equation

I 
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(2.17) and in v iew of (2. 44), these undulation degree variances can be expressed
as

2 ~

.t~( Bc) = R2 (
~ 3 ~~ ( ~~~ + ~, )  (2.4?)

and using (2. 39) with )‘c this reduces to

2

= 
~ —

~i c~(R~) (~ .48)(n i) Vc

so that on the sphere of radius B~ ,

_ _  
1= ?~ (~~-1)~~ 

—
~~~~ C,, (Bc) (2. 49)

11.6 Mean Anon~aly Covariance FunctIon

The value of the gravity anomaly function on the sphere of radius Bc
(equatIon (2.31) ),

Ag(9 ,X )  ~~~~~~~~~~~~~~~~~~~~~~~~~~ mA + S~~sin mA) P,,1(cos 9) (2 50)

Is generally different for each point on this sphere. Consequently, Its covar-
lance function (2. 36) yields covarlances between point gravity anomalies. In
practice when carry ing out gravity measurements over large areas, one must
often be content with only mean, or representative values of the anomalies. To
obta in the corresponding covar iance function , we first find a functional formu-
lation of mean gravity anomal ies. For instance, one can apply an averaging
operator to equation (2. 50) over a spherical cap of radius *o:

~ g(O ,A) = 5$ A( *)~~ g(9 ,A) do (2.51)

Here, for generality, a is th~ entire surface of the sphere (see the definition of
A(~ ) below) ; * Is the spherical distance from G A  to O ,A ;  do = sin 8d&IA ;
and (9 , ~ ) Is a pair of coordinates within the cap ~e. g. at Its center). The

kernel A(*) of this Integral operator can be defined over the sphere by

1 1 , for ~ ~ (2.52)
A( *) = 2ii 1-cos~~

0 , f o r * >~~

___________________ ~ , .&.tk~dt . 5 . . fl.5 - 
-
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That is , it is the reciprocal of the area of the spherical cap:

s i:’

° Sifl~ ) d~ da = 2rr ( 1-COs ~o) (2 .53)

80 that óg(9,A )  in (2. 51) is the average gravity anomaly over the spher ical cap

= 
2 n ( 1 coS 4~0) 

J’J’ ~~g(8,A) da (2.54)

The kernel of the smoothing operator is more generally viewed as a weight
function, of which the simple average defined by (2. 52) is a special case
(Pellinen 1966) . It is show n by Meissl (1971) that the eigenfunc tj ons of
isotropic operators, exemplified by the integral operator above , are the
spherical ha rmonics P,,,(cos9)cos mA and P,,,(cos 9) sinmit:

$5 A (4~
) cos mA P,,, (cos 9) do = ~8,, cos mA P,,1(cos R)

(2 .55)

~ A (~ ) sin mA P,,, (cos 9) do 8,, sin mA P,,1(cos ~ )
a

where cos ~ is a function of 0, ~, 9, A (the integration is with respect to 8,X) .
The 8,,’s are the corresponding eigenvalues of the operator (depending only on
the degree 11). It is further shown by Meissi (1971) that one can evaluate the
eigenvalues according to the so-called Fu nk-Hecke formula

. 1
2i~ J A (t) P~ (t) dt (2. 56)

in which t — cos ~ and 1),, is the nth_degree Legendre polynomial. Pu tting the
definition of A(*) into (2. 56), we obtain

1
8 P , , ( t ) dt (2 .57 )1—cos 4o ~c~~~~0

and Invok ing the recu rsion formula

P ,,~~~ ( t )  - 
~~~

_ P,,...1 (t) = (2n + I) P ,, ( t )  (2.58)

this simp lifies to
-13-
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= 
2n + 1 1 — c

1
t:~s ~~~ P,,... 1(C0S ~o) - P,,~ 1(Co s i/s) 1 (2. 59)

Now , putting (2.50) into (2. 51), and recalling (2.55), one can write

I~.g(8 ,A) = ~~~~~~~~~~~~~~~ (n— I ) (-~) $ 1 Y ( C,,, cos m A + S,,, sin mA) P,,.(coa~~(2 . 60)

wh ich is the average gravity anomaly over the cap ac on the sphere of radius
R~. If one specifies that 9,~ are always the coordinates of the center of a cap,
then Ag(~ ,X) as given by (2.60) is a well-defined, continuou r function ove r
the sphere and may be rega?ded as a smoothed gravity a-o.naly function with
the smoothing factors $,,. That is , the irregularities of ~g (4 A) have been
smoothed (averaged) out.

It is now readily seen (for instance, by applying the law of propagation
of covariances , see Moritz (1972) and p. 15) that the degree variances of the
mean anomaly cova riance function ~ (P , Q) are

= $,,2c ,, (2. 61)

and that as in (2. 36),

2 

~~~~~~~ 
~~~~~~~~~~~ ~~~~ +2  P,,(cOS *) (2.62)

We have set s 
~~~ 

and P Q  are the centers of the respective spherical Caps.
As written here, ~ ~ (P ,Q) is the mean anomaly covariance function referring
to the sphere of radius Bc. The mean anomaly variance on this sphere is found
by setting~~ = 0  and rp r~ = Bc

c0 ~~~~~~~~ (2 .63)

One can now restrict the domain of the function (2.62) such that the coor-
dinates of the two points P, Q refer to the centers of two disjoint spherical caps.
In practice , the spherical caps are often approximated by blocks of sizes such
as 1 x 10 or 50 x 50 , and the radius ~~ is chosen such that the area of the cap
equals the a rea of the block.

IL? Vertical Gradient Covariance Function

— The final covariance function to be considered is the one for the vertical
“grad ient” of the gravity anomaly, i.e. for

-~~~~ Ag(r , 9, A) (2. 64)

5. 1 _
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The covariance function for the gravity anomalies ( equation (2. 21) ) s repeated
here:

C ( P ,Q) 
~~ (-

~
;--
~
) P,,(cos ~) (2 .65)

Using (2.64) and the harmonic expansion of ~g(r , 8,A) ,  it is possible now
to develop, as before , the relationship between the covariance functions of the
vertical gradient and the gravity anomaly . However , for the sake of variety , we
employ the law of propagation of covariances (Moritz 1972, p. 97), which in
the present situation is formulated as

G (P. Q) = -
~~

— (-f— C (P . Q)) (2. 66)

where G(P ,Q) is the covariance function of the vertical gradient. Using equation
(2. 65) , the calculations of (2 . 66) lead to

a, 
2 n+2

G(P, Q) = -
~~

— [_~~~c~ ~-~_-?- ( - )  P,,(cos 4 ) ) ]

2 f l +3 (2 .67)

R~ ~~~~~~~~~~ 

P,, (cos 4 ) )

If instead, c ,, is chosen to refer to a sphere of radius B~, simila r manipulations
show tha t

a,
2 2 n +~

or 

G(P ,Q) = ~~c,,(Rc ~~~~~~~~~~~~ ( _ )  p,,(c~s ~ ) (2.68)

G(P ,Q) = ) g , ,  ( Bc) (~~~q ) P,,(cos 4)) (2. 69)

where

g,, (Bc) = k n + )~~ C,,(&) (2.70)

are the gradient degree variances referring to the sphere of radius Bc .

From equations (2.68) and (2.69), one can Immediately draw some con-
clusions as to the cha racteristics of the func t ion G(P ,Q) . Considering the
magnitude of c~ (see Table rn), g,, is practically ins ignificant for small degree
n, due to the divisor Bc2. This impl ies that G (P , Q) Is a very local function ,
depend ing mainly on the high-degree (short wavelength) variations in the gravity
field. Therefore , given anomaly degree variances , say , computed from po—
tentia l coeffic ients (equation (2.39) ) for n = 2 , . . . , 20 , the approximation

—15—
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G(P ,Q) k g,, ( )~~P~(cos 4)) (2.71)

computed through equation (2. 70) is completely meaningless. In othe r wor:ic ,
low-degree info rmation on the gravity field contributes l ittle to the covariarice
func tion of the anomaly gradient . The consequence of this in the adjustment
procedure (to be d iscussed later) is that one cannot solve for the (gl obal) gradknt
variance Go, which is defined (on the sphere of radius R~) by

G0 G(P,P) =
,,~ 2

g,, (2 .72)

when only c,,’s of low degree are provided.

To further illustrate the local nature of this covariance function , several
instances may be cited In the literature in which the authors have determined
the anomaly gradient over specific areas which exhibit totally incomparable
variation . We discuss here only the vertical gradient variance Go (or the hor-
izontal gradient va riance, G0~ , which is approximately ~G0 - see the append ix) .
At the turn of the century, R. E~tv~s observed horizontal gradients in the
area near the c ity of Arad In western Rumania (Sel~nyi , 1953,p. 126). If x ,y
denote two mutually perpendicular directions (north-south and east-west) in the
horizontal plane , then the root mean squa re ( RMS) values of the anomalous
gradients are

20.42 E -. Go ,., 417. 11 E2 in the x-direction
(2 .73)

31.07 E Gøu 965.26 E2 in the y-direction

where 1 E = 1 E~tv~is = 10 9s 2 
= .1 mgal/km. A normal gradient of 8.1 E

was subtracted from the observed gradients in the north-south direction. It
is based on the Bessel ellipsoid and Helmert ’s normal gravity formula
(Helme rt 1884). (The normal part in the y-direction is zero.) The surveyed
area near A rad extends about 20’ in longitude and 10’ in latitude.

Mueller (1964) presents a map of fa irly large extent, covering pa rts of
Ma ine, New Brunswick and Nova Scotia , and depicting vertical gradient con-
tours. By plac ing a rectangular grid over this map and extracting some 150
values , the square of the RMS value (afte r the refe rence field (3085.5 E)
corresponding to the international ellipsoid and gravity formula has been
subtracted) of the horizontal gradient is

~ 
(33. 3 E2) = 18. 7 E

3 
(2. 74)
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with a range of values from -16.5 E to 34 .5 E.

Finally, to elucidate the extremes that can occu r , we refe r to Hem
(1977) who has computed the anomalous vertical gravity gradients based on
the internationa l gravity formula and displayed on a contour map of an
area in the “Odenwald” (latitudinal extent: 55°. 04 to 55°. 13; longitud inal
extent: 34°.93 to 35°.02 (E)). By similarly placing a rectangular grid over
this map and reading off 153 values (the area around the large anomaly of
-1250 E was omitted) , the RMS value squared is found to be an enormous
12373 E2, which implies a horizontal gradient va r iance of about 6200 E2.
The range of values is -325 E to +350 E.

Caution must be exercised when comparing these various ap~ roxirna te
dete rminations of the local gradient va r iance. The anomalou s gra ’ ient
values mentioned above were not all derived using the same referen ce field ,
and the RMS values were not all computed over the same extent in area .
Nevertheless, it becomes apparent that a global value of G0 wil l not only be
difficult to determine, but may not have any practical s ignifi c anc e locally.

We also note that Schwarz (1976) assu mes in his computations that

30E 2 s ~ 200 E2,

while Moritz (1976 , 1977) adopts G0 H = 200 E2 as an example. Tscherning
(1976) finds Go H 3500 E2 using the model (3. 12) for the degree variances.
Jordan (1978) develops a covariance model for gravity anomalies based on the
model outlined in section 111.2 with the parameter values of Table I, but
modified to account for isostatic compensation. The va r iance of the vertical
gradient for this model was found to be 833.98 E 2 (see Table 4 of Jordan
(1978, p. 1819) ). it is also shown very nicely by Jordan (in his Table 4)
that the terrain and crust of the earth are overwhelmingly responsible (99 %)
for the variation in the vertical gradient ( i .e. ,  the re are no sources deep with in
the earth) . This again reveals the extremely local character of the vertical
gradient covariance function.

A geometric interpretation of the horizontal gradient variance is briefly
mentioned. When the cova r iance function is to be appl ied locally, it might be
described , according to Moritz (1976) , by three parameters . In the case
of the gravity anomaly function , C (4 ) ) ,  they are

—17—
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C0 ,  the anomaly variance (Co = C (0) )

the correlation length (C( ~ ) ~ Co)

x the curvature parameter (~ ?(~ 2/Co ,
where x is the curvatu re of the
covariance func tion at 4) = 0 ) .

It can be shown (Morltz 1976) , that with a planar approx imation, the
horizontal gradient varianc e G0 H~~ is related to the curva~’ re parameter
through

x = G~~~~~
2
/C0 (2. 75)

The theoretical considerations concerning the gradient covariance
function are concluded by a short derivation of the equation

G0 H ~ Go (planar approximation) (2. 76)

which is presented in the append ix and employs several relations already
derived by Moritz (1976) .
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III. Computational Procedures

Many more relationships among the covariances of quantities of the
anomalous gravity field , besides the ones used here , can be obtained throu gh
the law of propagation of cova r iances (Moritz 1972) . The corresponding
computations have been made by Tsche rning (1976) and Tschern ing and Rapp
(1974); thereby, demonstrating that it is necessary to find a model for only
one of the covariance functions , or more specifically, for one set of degree
variances .

111.1 Kaula ’s Rule

Through an analysis of a gravity field obtained fro m satellite observations
and gravity measu rements , Kaula (1963) postulated his well known “rule of
thum b” :

c Y ( C S )  = i~~; (3.1)

This states that the root mean squa re variation of a harmonic coefficient of the
earth’s gravity field is inversely proportional to the square of its degree.
Morrison (1971) also points out that in considering all availabl e gravity da ta , it
seems likely that the decay of the harmonic coefficients is not exponential , but
much more slowly , for ins tance, on the order of a negative power of ii.

Through the acquisition of more and better satellite data , Kaula ’s rule
became less appl icable to the higher-degree ha rmonics. A comprehens ive
comparison of various modifications and generalizations of this rule (as suggested
by different authors) is presented by Rapp(1972). Instead of the root mean
s~ iare variation, models of the degree var iance were in fact investigated. If
k ,, is the anomalous potential degree variar~e , then by the definition of

~~~~~~~~ 
and in view of equation (2.26), the relationship between these two

quantities is

a(C,~ ‘~~ n a) = 1 “) ( C ,~ + S~~) = ,,/ k n (3. 2)
2n+1 1..~ (2 n + 1) R2 y 2

m = o

where y =~~~~~ is an average value of gravity on the sphere of radius R. It is
assumed that with respect to the order m of the coefficients of fixed degree,
the root mean square value is invariant (isotropy) . k~ is further related to
the gravity anomaly degree variance, en, through equation (2.40). Kaula ’s

-: rule implies the following model for c~ :

~ 
_ M(n-1) 2 (2 n + 1~ 2~i 3 3( . )
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in which ,.z is a constant. The anomaly degree variance model that was finally
proposed by Rapp (1972) on the basis of satellite and terrestrial gravity data
is of the form

= c~(fl -1) 
3 4b (n — 2 ) ( n + $ + € j ~~ 

(

where a , $, e are suitable constants.

An additiona l consideration is appropriate here ; namely, in rega rd to
the desirability to find closed expressions for the infini te series of the cov-
ariance function. Morltz (1976) describes the properties of ~ova~iance
func tions that are implied by several such convenient m’~d :l s.

In summary, the types of models above and the model to be investigated
later are empirical in nature,based primarily on the observed variation in the
harmonic coefficients.

111.2 The Degree Variance Model of Heller and Jordan (1975)

A completely different approach, developed recently by Heller and Jordan
(1975) , Is an attempt to model the variation of the anomalous potential by intro-
ducing a “wh ite noise ” shell at a certain depth beneath the earth’s surface. The
derivation of the covarlance function begins with the Poisson integral for the
distu rb ing potential T (Heiskanen and Moritz , 1967, pp. 35, 238):

R(r 2 
- r TT(r , 8 ,A) 4~ 

do (3. 5)

T is given on the shell of radius R, and L is the distance from the point (r , e,X )
to the po int (8 ,A’ ) on the shell o, over which the integration is perfo rmed ;
do = sin O ’ d8 d X .  Very briefly, the covariance function (due to an uncorre—
lated or “white noise” distu rbing potential) is specified on the shell of radius
B. By applying the law of propagation of covariances to this function according
to (3. 5) and by stipulating slationarity and isotropy (see section 11.1), the coy-
ariance function for the disturbing potential in the exterior space is found to be

K P Q  D3 (2R. D~
3 (rp2 r ( R .D) 4 ) K,,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In this formula , K0 is the variance of the disturbing potential at the surface of
the earth (assu med to be a sphere) due to the shell at depth D; B. Is the mean
radius of the earth; and 4) is the spherical distance on the earth between the
two vectors rp and z~.
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There are two parameters in the model above , D and K0. To obtain a
better fit to actual gravity data , several uncorrelated shells are introduced at
va rious depths. The covariance function is then

U

K ( P ,Q) K~~(P ,Q) (3. 7)

in which I)~, Ko, ,  m = 1, . . . ,  M are the parameters (Ko ,, is the contribution
to the surface variance of the disturbing potential, due to the shell at depth
D’).

Aga in, through the law of propagation of covariances, one can deduce
the covariance functk*is of the grav ity anomaly , the anomalous vertical
gradient, etc . Jordan (1978) expands the covariance function for the disturbing
potential into a series of Legend re polynomials:

K ( P ,Q) ~~~~~~~~~~~~ P~( c o s 4 )  (3. 8)

where

= (2n + 1)
~~~~( R _ D .) d (R ~~~(R e D.) 4 ) (1 L )

f l +~ n >  1 (3. 9)

are the potential degree variances referring to the mean earth sphere .

The parameters were determined , in pa rt, by fitting the cova r iance
function model for the gravity disturbances to an empirical point anomaly
covarianc e function. The latter was derived from a 10 mean anomaly cova r-
iance function (Including corrections to the low-degree coeffic ients) of
Tscherning and Rapp (1974). ( The precise assumptions and the subsequent
procedures that were applied to dete rmine the parameters are not clearly
presented In the reference above . Certainly, an approximation Is Involved

— here; namely, the covariance model for gravity disturbances was used in
place of the model for gravity anomalies.)

The values , as given by Jordan, for the pa rameters of a 5-shell
model are listed in Table I:
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Table I: Parameters of Model (3.9)*

in C0~ (mgal)~~ D.(k m)

1 595. 4 16
2 812. 3 93
3 216. 1 391
4 166. 4 1900
5 29. 2 4780

total 1819. 3
* see equation (3. 10)

Here, C01 is the contribution to the variance of gravity anomalies on the sphere
of rad ius B. due to the shell at depth D1. The anomaly variances are related to

the potentia l variances by the law of propagation of covariances:

_ f ~~ 2~~ (~~ 2 ’~ (3. 10)
orp rp ’ or~ rq i  

~ = 0

III. 3 The Model of Moritz (1977)

We now retu rn to the models which are founded on the observed variation
in the ha rmonic coefficients . Without loss in gene rality, the entire develop-
ment of the various covariance functions in the remainder of this section is
based on a model for the point anomaly cova riance function , only because
gravity anomal ies are the quantities most readily observable . It is not nec-
essary to proceed in this manner. For example, if the potential is considered
to be the ca rdinal quantity of the gravity field , then one could design a model
for its covariance function and from it der ive the other covariances.

A model such as (3.3) should be a fu nction only of the degree of the coef—
ftc lent (see the remark following equation (3.2) ). From the report by Rapp
(1977), it is noted that the degree va riances (computed from GEM 7 potential
coeff ic ients) start typically as (see also Table III)

c~~= 7 .5 r ngal2 c3 = 33.8mga l2 c4 = 19.6mgal 2
(3. 11)

c5 = 21.3 mgal~ C8 = 18.9 mgal2 c, = 19.5 mgal2

(Co = c1 = 0). Evidently , it is difficult to incorpo ra te the degree variance c~Into the model withou t unreasonably deforming it. Th is coeffic ient is therefore
frequently omitted and the (modified) covariance function is modeled as an In-
finite sum beginning with n = 3. In fac t, this scheme can be extended by accep-
ting the firs t k empirically determined degree variances and modeling only

V 
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those with degree greater than k. The resulting covariance function is then ofkth order and (if k is not too small) is intended to reflect the local cha racte r-
istics of the gravity field.

The model upon which Tscherning and Rapp (1974) have elaborated is

V 

= ( n - + B) ~ ~ (3. 12)

where a~ is a positive number and B is a nonnegative integer (the notation here is
such that it is cons istent with subsequent formulas). This model enjoys the
property that a closed expression (using a recursion formula with respect to
B) can be derived for the covarj ance function. The values of aa and B are
dete rm ined in a least squa re adjustment of “observed” degree variances
which are obtained through equation (2.41). The potential coeffic ients for
(2. 41) are deduced f rom satellite data and/or grav imetry (see also Rapp 1977).

The model above is asymptotic to ~ ( for large ii, c~ behaves like
Moritz (1976) calls the corres ponding C (P ,Q) a logarithmic covariance function.
Indeed , when (3. 12) is substituted into equation (2. 36), we get (S

C(P ,Q) 
~ 3 ( n - 2 ) (n + B) s~~

2 P~( cos~~) ,
~~~~L 5’+~ P~(cos~~) (3. 13)

The second sum can be evaluated from the generating function of Legendre
polynomials :

/1- 2st + s~ ~~~ P~ ( t)s~ , ~~ 1 (3.14)

(in which t = cos 4 ) ) .  It is easily verified that th rough an integration

V 1 P,~(t) ~f l +2  = ~ 
[ const. (3. 15)L~~n L/ j j~~ ÷ 5 + i t ‘

The constant of integration is equal to 2 , because for t = 1, the sum is
_~~~2~~~~~ (1-8) . It is thus evident , that the covariance functio n is logarithmic in
nature. Moritz (1976) shows tha t for a planar approximation , the curva tu re
parameter corresponding to (3. 15) Is very large (the lengthy derivation of this
fact is not repeated here). This implies that also the horizontal gradient va r-
lance tends to be large for the model (3. 12) (GoM~ 3500 E 2 with the parameters
a3 = 425.28 mgal2 , B 24).
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A second model for the anoma ly degree variances, as described byMoritz (1976) is given as

n > 3  (3. 16)
where A is a1~o a nonnegative integer (although the possibility of A = -2 can beconsidered) . The covariance function represented by this model behaves l ikea reciprocal distance function. That is , e,, in (3. 16) is asymptotic to 1, andthe generating func tion of the Legendre polynomials show s that

2
t ~~+~~~ _ — 

7~~ ~ 
— 

- 2st + ~~ (o . 1

The latte r resembles a rec iprocal distance. In a planar approximation, thecurva tu re parameter of the covariance function (3. 17) (and consequently thehorizontal grad ient variance) is relatively small (Moritz 1976). Althou gh thelow gradient variance may be a desirable fea tu re (see Section U. 7), the modelabove is unacceptable in view of the actual appa ren t decrease in the degreevariances. Equation (3. 16) implies that c,, t nds to a nonzero constantas n —

In his (1976) and (1977) reports , Moritz proposes and carries out thecomputation for a model of the anomaly degree variances whic h is constructedfrom a linear combination of the two models (3. 12) and (3.16) above. Themotivation behind this scheme rests on the possibility of manufacturing acurva tu re pa rameter corresponding to a low gradient va r iance, while at thesame tune retaining the favorable characteristics of the model (3. 12), suchas a realistic attenuation of the degree variances.

Therefore , let

C(P ,Q) = a~~~ n - i  
S1

n
~~~ Pn ( cos 4 ) )  +

(3.18)r~ z + a+ ‘ s~ P~ (cos 4 ) )
- 2) (n + B)

where a , a~ are positive numbers, A , B are nonnegative integers, and

V 

S = 83 = (3 . 19)r,r~ rp rq
V 

R1 and R~ are radii of the type R (see section 1). Each of the covariance compo-nents In (3. 18) is a positive definite , isotropic, homogeneous covarlance func-tion of the gravity anomalies. it Is immedia tely evident that the sum of these-24—
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two components has these same properties, and consequently, C (P , Q) as
defined in (3. 18) is indeed a covariance function of the gravity anomalies.

Taken individually, each component should converge for any two points
p and Q on or exterior to the earth ’s surface. All theoretical developments
of section U have been based on a spherical approximation, and therefore, it
can be argued that it is necessary for R1and Ba to be less than Re ( =  6371 km).
When applying the subsequent formulas in practice , however , one may encounter
d iff iculties if the points of evaluation are located within this ~nean earth sphere
(but still above the earth ’s su rface) . Hence, it may be advantageous to have
B1 , Ba < R 8 ,  where Re is the rad iu s of the Bjerhammar sphe re (which is
entirely enclosed with in the earth).

The degree variance model wh ich corresponds to the covariance function
(3. 18) is now determined. It is not merely the linear combination of the
models (3.12) and (3. 16) . Suppose that we write

and sa = 
~~~2 

B~. (3. 20)
rp rQ Bc rp r Q BC

Then equation (3. 18) can he formulated as

2 + 2  2 n+2

~~~~~~~~~~~~~~~~~~~~~~ +a a 2~~
’

B ~~~~~~~~~ 
](-&--) P~(cOs 4) ) (3 .21)

or we may put this in the form

C (P ,Q) = E c n ( ’
~~~~~)~~

2 
P~~( C O s 4 ) )  (3. 22)

~~~ 
\r p rq

In this way, the degree variances have been extracted from the covaria nce
function of equation (3.18) ; they are

= a i~~~~~~~ (~~~~~~
2 

+ °
~ (n - 2) ( n + B ) (Rc~) ’  n~~ 3 (3.23)

Exactly the same result is obtained by substituting (3. 18) into (2. 37). To some
V extent, B1 and Ba have lost their distinction as radii and are now regarded

primarily as parameters of the model , subject to certain constraints
(B1 , Ba < Bc).
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From (3. 21), which Is equ ivalent to (3. 18) , it is evident that C (P , Q)
does not depend on Bc. However, from equation (3. 22) and with the assump-
tion of no knowledge of the model for C~ , one concludes that Bc is the radius
of the sphere to which the degree variances refer.

It is readily seen that for a 1 0, the covarlance fu nction (3. 21) degen—
erates into the covariance function as modeled (using equation (3. 12) ) by
Tschernlng and Rapp (1974). It should be nc~ed that it is incorrect to substitute

= 0 in the two-component model (3. 23) in order to obtain the degree variance
model (3. 12) - instead, the degree variances should always be derived from
the covariance function that defines them. That is, c,, in (~ 23) refers to a
sphere of radius R~ (even if a1 = 0). However, with the model (3.12), c~refers to a sphere of radius B.

The particular forms of the models (3. 12) and (3. 16) have been con-
structed in such a maimer tha t the infinite sums can be reduced algebraically
to closed express ions. Thereby , it becomes a routine matte r to incorporate
observation equations into the least squares adjustment for the point anomaly
variance C0, the mean anomaly varianc e ~ ,, the gradient variance G0, and
the undulation variance L0. The equation for L0 was later deleted since the
“observation” had been derived through equation (2.49) from the observed
degree variances. Hence, L3, thus computed, adds no new information to
the model .

111.4 Closed Expressions For The Covariance Functions

Extensive computational formulas for the closed express ions of the gravity
anomaly covariance func tion and the corresponding variance have been developed
by Moritz (1977) for the model (3. 23). Some of these formulas are reiterated
here and others are derived, particulartly with respect to the gravity gradient.
Several results are also borrowed from Tschern ing and Rapp (1974).

V To derive closed expressions of inf inite series involving Legendre poly-
V nomlals , we first define some elementary functions (series) for which closed

expressions are known to exist. Let

F ( s ,4 ) )  P~( t )  
ii- 2 st + s~ 

(3. 24)

where t = cos 4) ; I~ I < 1, ~t I � 1.

F1 (s ,4 ) )  
,~~0 n ~ 

s ~~~~ P~ ( t )  $ for i >  0 (3. 25)
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F_ 1 (s ,4 ) )  1 ~~a i  
P, ( t )  , fo r i 0 (3. 26)

W h e n t = 1  ( 4 )  = 0),  then P~( l ) = l , for ali n, and

F1 (s,0) 
~~0n + i  

S ’~~ = S
i 

~~~
J
~~C~~~

1 1
dC  = 

~~~~~~~~~~~~~~~~~~~~~ d C =

(3. 27)

= ~~~~~~ (1  - 5)  

~~ ~ 
s’~~

1 , i >  0

similarly,

F_ 1 (s,0) = n
’ 

~ 

n +1 
= 81+t 

~~ d~~ = ~~~~~ dC

~~ i+1 n 1+ 1 ° 0 , 0

(3.28)

= 5’~~’~~~~( 1 5 )  i � 0

The functions F 1, i > 0  and F , ,  i �O w h e n 4 )  ~ 0 have been treated in
Tscherning and Rapp (1974). The corresponding cloeed expressions are found
essentially by integrating

$ 
- - d s  = J’~~~ s~~ ’~ P~ ( t )  ds  = s~~’ F1 , i > 0  (3. 29)

and

$ 

~~~~~~ 
= s~~’ ’  P~ ( t) ds  = s 1 1  F-1 $ ~ 0 (3. 30)

w h er e L =  / 1 - 2st + s2 . Further l e t t i n g M = 1- L - s t a n d N = l + L - s ~one can show that

F(s ,4) ) — -
~~~

(3.31)

F-a ( 8 ,4) )  s[~ M(3ts + 1) + 52 (P2( t )~~ ~ + 4(1 — t2
) )
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F_ 1 ( s,4 ) )  = S ( M + t 8 -~fl })

F1.~.1 (8 ,4)) = -~ij..( L + (2i — 1) tF j ( s ,~~) — 1(i — 1) F 1_ 1(s ,4)) 1, i > 1 V

with (3. 3l~
28 (cont. )

F1 (S ,4 ) )  = e9 *( 1+ 1 — s + L

Fa ( S ,4 ) )  = ( L — 1 + t F 1 (5 ,4 ) ) )

The derivations of the fo rmulas for the gradient covaria nce are given
expl icitly below; those for the gravity anomaly and undulation covariances
follow along similar l ines, but are not as complex. The details of these are
given by Moritz (1977). Unfo rtunately, closed expressions for the mean V

ancmaly covariance func tion can not be found due to the presence of products
of Legendre polynomials in the smoothing factor $D

2 of the degree variances.

111.4. 1 The Gradient Cova r iance Function

It is assu med throughout all derivations that the anomaly degree variances
refer to the mean earth sphere. Then Bc = R. in equa tion (2. 68) , which Is
repea ted he re:

2 2 D+ $
G(P ,Q) = c, (n + 2 ~ 

( 

B, \ P5 (cos 4) ) (3. 32)
R. r p r gi

Omitting the second-degree term and inserting the model (3.23) for c,
(With 

~ =i~i; , ~7a = ) yields

G(P,Q) 
- 

~~~ 
~~~~ 

~~~(n -2 ) (n  + B)~~~~~~~] 
(n 

7~ 

(_-~~~)~~
3
P~~cos t h )
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= 

11=3  

~~~~~~~~ P, (co s4 ) )  +

+ Ra 11~~, (U + B) ~~~~ P1(cO s ~)

G ( P ,Q)  = a~ G1 (P ,Q) + aa G3 ( P ,Q) (3. 33)

This equation and subsequent formulas based on it are slightly erroneous as
presented in Moritz (1977 , p. 16, equ. 3—24 , 3-25). The diffe rence is in the V

coeffic ients of the sums ; Moritz gives them as ~ 1 /R~
2, I = 1, 2. Al though

most (except the final) numerical results of the least squares adjustment are
obtained with the formulas exactly as given by Moritz , the correct results
would ha rdly dif fer from these.

From equation (A-i) of this reference , we have

- 

~~~ 

2) 2 
= (4 - A) n + A (A - 3) - 

LA + 1) ( A -  2) 2 
+ (n - 1) n (3. 34)

Lfl - l ) (fl + 2I~ — — 
16 I P + i) (B - 2)

2 
(3 35)(n — 2) (n + B )  — ~~ - B +  ( B + 2 ) ( n — 2 )  + ( B + 2 ) ( n + B )

These can be readily de rived through the use of long division and partial
fractio ns. It w ill be convenient to Introduce the following abb rev iations :

Jo ~~~S’~~~P , ( t )  , J 1 =~~~n s~~~P,( t) , J2 ~~~ fl
2
sn +3 p ( t )  ,

(3. 36)

= 
n - 2 

5~ +3  P~ ( t)  = 
n ÷  k 

11+3 
P 11 ( t ) ,  k > 0

11=3 11 3

Then from (3.24) — ( 3 . 26)
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J o = s 2
~~ s11+1 Pf l ( t ) = s 2 ( F _ ( s + s 2 t + s 3 p2 ( t ) ) )

2
= s F-~

(3. 37~
‘¼ = 5

2 
- (

~
+ 

~~ 
+ k - i- 

( t )  ) ) , k >  0 J

To compute j 1 , j 3, we require , ~~F Let

where L = 11 - 2 s t+ s~

Now with = -~~- - ~~ , the first derivative is

= i — s t 3 3 8
L3 ( . )

and the second derivative s implifies to

F — 2 t L 2 — 3s(1 — t2 ) 3 3(~— — 

L 5 ( . ~~ )

Differentiating the sum wh ich defines F yields

= 
,~~0

( n + 1) S 11 P 11( t )

= P 11 ( t )  + 

n 3  

Sn P 11 ( t )  + 1 + 2s  t + 3s2 p~ ( t )

13(J l + J o ) + i + 2 5 t + 3S2 P a ( t )  (3.40)

Therefore ,

= S3 
- J0 - s3 (1 + 2st + 3~~~2 p~ t)) (3.41)

Similarly, by d ifferentiating aga in,

-~~~~~~ = ~~~~~2~~~n-1 
P 1 1 ( t )  +~~~~ns~~ ’ P 11 ( t) + 2 t  +6s P2 ( t)  =

~~~(J~~+ J i ) + 2 t + 6 s Pa ( t )  (3.42)
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so that , finally

= ~~4 ô~ F 
- - s4 (2t + 6s P 2 ( t )  ) (3.43) 

V

If the decomposed fractions (3.34) and (3. 35) are substituted into the
cova riance function (3.33), then with the notation of (3.36), we ar rive at the
closed expressions for the vertical gradient covariance components (fo r
A , B > O )

G1 (P , Q) = ~~~r (A - 3) (A J0 - J i )  - (A + 1) (A - 2,2 
~ + ~~2]R1 L 

(3 .44 )
G2 (P ,Q) = .j12.[J i + ( 5  - B) Jo + B + 2  1-2 ~ jB + 1)(B - 2) 2 

~~~] L V

where G1 is evaluated at s1 and G2 is evaluated at s2

The horizontal gradient va r iance on the sphere of radius R11 is derived in
Mor itz (1977), and with the correction mentioned above , it is given by

Go H a1 Gio H + a2 G20 H

where 2 2 2a~. 2a1 r ~ 2 31G1O H 2R12 [ [( 1 - ai)~ 
- 20~3]÷ (4 - A L(1 - - 2a~~ ~

01 1—A •c-~ ~~~~~ ~1 1+ A(A - - ~ 
+ (A + l ) ( A_ 2 )

~ LcT1 . V 4( 1- 0~~) + L~. n + A J J (3.45)

~ 
‘ — 1— A

G~~ = ~~~~ 
[ (1 _~~~~)

2 - - 2c~ + (5 - B) 
~ 02 

+ 
~ + ~- B+ 2 02 1 0  B + 2  2

~ L~~~~~
’ 0

~ ~~~~~~~~~ i+B V 1]
Without the factor ~ , these equations would represent the vertical gradient
variance. In the least squares adjustment (sec. 111.6), the l inearization of the
problem requ ires the derivatives with respect to o~ and 0~ ; they are
( recall ing that 

~~i 
= R12/R.2, 02 = H~~/R,2 )

d G1O H = 
1 r2 c713( 4 - a ,~d - + (4 - A) [e

1~~
3
~~~~~ - 30 2 _ 8a~ 3] +

+ A(A  - 3) 01 ( 5 ~~~~4 
+ (A + i) (A - 2) 2 

~~2 - A)~~~’~~ ~~ (1 - 
~~

) +

+ 
~~‘ n + 2

- 1 - o~ L.~ n + A  ~ JJ (3.46)
11 = 1—A
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dG2OH = ~~~~~~~ [0~~~~~ 

~~ 
- 30a

2 
- ~~~ + (5 - B)~~~~~

5 4  +

- ~~~~~ 0~~~~~i 0 ~) +  16 ~~ - B + l (B 2) 2
B + 2  B + 2  1- a s B + 2  (3 46~

( C ~ )fl! -

. [ ( 2
_

B) 02
1_

~~~~~~~~( i _ a a ) _ 

i~~~a3 +~~~~~~ + 0a11

~ V 1 ] j

Also, dGIOH = 0 , ~~~~~~~~~~~~ = 0.
d~ 3

111.4. 2 Gravity Anomaly Covariance Function

The covariance function for the gravity anomal ies is derived in an entirely
analogous manner. Only the final results are quoted here . From equation
(3. 18)

C(P,Q) ~~~~~~~~~~~~~~~~~~~~~ ,~ f l _ 2) (fl + B) 52 P,(cos 4 ))

(3.47)
= a1 C1(p ,Q) + (Y 3C3(P ,Q)

where s1 = s~ —~~- . Then Moritz (1977) gives (fo r A ,B >  0)rprq rprq

C1(P ,Q) = s1(F(s 1,4)) - S
1 
- s1

2 t - s~
3 P~( t ) )  +

- (A + 1)S~ (F~(S 1,4)) - - .~~~! - 
s~~P2( t)

(3. 48)
Ca(P,Q) = 

B+2  52 F~~ (Sa , 4 ) ) +~~~~~sa(Fp(s a , th)  ~~~ _ _ _ _ _

Here, F, FA , F8 are defined in equations (3.24), (3. 25) , and t = cos 4 ) .

The conditions 4) = 0 (t = 1) and rp = rQ = B, result in the point
anomaly variance on the sphe re of radius B,:

C , = a1C 10 +
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wi th C10 -
~

--
~~

-- + ( A+ l ) 0 1
2 _ A 

~n( 1 -rJ1 + (A +i )
~~~~~ A

(3 .49)
— ~~~ +(B ÷ 1)a2~~

B B+ l. ’~’ ~~~
f l+ 2

— - B + 2 ~ (1 - 02 )  - B + 2  L n +B
ti =j — B

The derivative s of this variance with respect to a~ and c~ are

dc~ = ~~~~~~~~~~ + (A4 . 1)(2-A) 011~~~f l (1 - O 1) - (A + 1) ~1 +

+ (A+ 1)~~’ 
~~~~~ n + i

L.~ n+A ~
(3. 50)

— 
4o~ + (B +1 )(2 ~~B ) 0a’~

•
~ ~n ( 1 0 )  + 

0~ + (B+1) o~
2 8

d~ 2 B + 2  ( B + 2 ) ( 1 -02)
a

_ _ _  V n+1- 

B + 2  L~ fl+B 02

And ~~-~ - = 0 , 
~~~~~~~~~~ = 0 .do2 do1

111.4.3 Undulation Covarianc e Func t ion

The covariance fu nctions for the undulation and disturbing potential d iffe r(in spherical approximation) only by the factor 
~~ where y is an ave ragevalue of gravity . Aga in , the potential covariance function is derived in Moritz(1977) . Substituting the model (3.23) into equation (2.40) yields (with R~= R~ )

k ,(B,) = e_ _ 
(

~~~~~

)

f l + 2~~ 

(n -1) ( n -2 ) (n÷B)  (
~~~~~~

)

n42 

(3.51)

The covaria nce function (2.28) is then

K(P , Q) a~~ - 1)(n+A) ~~ 
+1 P11(cos 

~
) + a~~~

4
~ 1)(n-2)(n+ ~~ s~~’P,(cos th)

= ~~1K 1(P ,Q) + a2 K2 ( P ,Q) (3. 52)
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For A , B > 0, Mo ritz (1977) derives

K1(P ,Q) = ~~ Pa(t )) — ~~~1 FA(s l,4)) ~~ ) )
“

)

Ka(P ,Q) = B + 2  F~~(s2 ,4 )) - ~~~~ (F~~ (S5,4)) - S~~P3 ( t ) )  + 
~ (3 . 53)  V 

V

2 s 
~~~~~ — 

s~ P~ ( t)+ (B + i ) (B + 2 ) (F ’8(8 a~
4)) — B — B+1 B+2

where t = cos 4) , and F 1 , F 2  , F~ , FB are defin& ~ equations (3.31) .
The undulation covariance function is s imply (see equ . (2. 45) and (2. 20)

1 i3 54~L(P,Q) = K ( P ,Q) •
kM kM T P I Q

where )‘p =
~~7 

and y~ = 
~~~~

. The undulation variance on the sphere of rad iu s V

H. is obtained by setting 4) = 0 and rp = r 
~ 

= H.

L0 = — ~-~(~~1K10 + a2 K20) (3. 55)

where from (3. 27) and (3. 28) , the variance components are

K 10 =

K~~ = + 
(3. 56)

___________ r’
- (B+i ) (B+2) ( Oa  

~~~~~~~~~~~~~~~~~~~~~

With 01 = R1
2
/R.

2 , 0a = R,~2/R.2 , these equations can be written more com-
pactly as

K 10 = ( ( a 1~~~ - G~
2 

)~~~(1 -ai ) - + 
~ :~~~

‘ 
~= j — A

(3. 57)

K30 = (B+ 1)(B+ 2) [( (B+  2)a~~ - (B+ 1)a ~~ - ~~i- ~~ (1- a~ )+(B+ 2)o~ -~~~~B]

The derivatives of this variance with respec t to a~, and O~ are

— 

y, da1 ‘ ~~ 
— y, do3
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where

~~~~~~= [( (2_ A) 0l
1-A _ 3 o f l ( 1 o].)

0 0 13
4o? +~~~~~~±~~~~~~n+1]

~~~~~~
= ~~~~l~~~+ 2 ) [ 3 B + 2 a a

2 _ 4 ( B ÷ 1 0 ~~_ ( 2_B)02i-6 )~~ ( i-o2) + (3. 58)

- 
(~± 2)023 - (B+ 1O34- ~~~

2_ B 

+ 4(B+ 2)a33 - ~T ~~±•~_ (Y3~~~~ 
~

It is noted tha t none of the covariances above is defined for A or B equal to
zero . By substituting A = 0 or B = 0 into the series expressions of the coy-
ariance functions , one can simila rly derive closed formulas for these spec ial
cases (sea Moritz 1977). However , they are of no importance in this study.
(On the other hand , the va r iances as they stand above are in fact valid also
for A = 0  or B = 0 ) .

111.4.4 Mean Ano maly C ovariance Function

As mentioned before , the mean anomaly covariance function (2 .62) does
not admit to such convenient summation. However , due to the smoothing
factor ~~,

2 < 0  (n 2 ), thIs serie s expansion is expected to converge at a rate
which will allow for truncation at a relatively low degree. Due primarily to
the divisor (1 - cos 4)~ ) 2 in A~

2 , this rate obviously depends inversely on the
si ze of the spherical cap. In fact , Tscherning and Rapp (1974) have shown
through ~a riou s tests that the mean anomaly covarianc e series may be ter-
minated with suffic ient accuracy at N = 4r r / Or ad .  = 720° / 9° , where 8 is
the side of a mean anomaly block. The refore , the approximation

V720/8

( ‘(P ,Q) 
~~

‘ 
A,2 n , s ~+2 P11(cos 4) ) (3. 59)

is adopted here. With R~= H, and model (3. 23) , this becomes

~~~
° /e

~~ (P ,Q) 
~~~~~ 

V
~~~,

2L
~~~~~~~~~~~

l) 
(

~~~iy  

+ 2~~ 

(n-2)(fl+ B) (~ ) I (~~~)~
2
Pn(cos 4 )) (3. 60)

The corresponding variance on the sphere of rad iu s Re is computed by setting
4) = 0 and rp = rQ B,
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(3.61)

III. 5 Second-Degree Terms

At this point, it Is appropriate to list the contributions of the degree
variance c3 which have been omitted in all the model covariances. If c-
refers to the mean earth sphere, then the second-degree tu tn of thc~ point
anomaly covariance function is

C3 (~~L) 4
P3(cos 4) ) (3.62~rp rq

For the other covariance functions , the second-degree terms are

K(P ,Q) : H,
2 C~ (r~~~)~ 

P3(Co s 4))

L(P ,Q) : ~a P3(cos 4 )) V~ = , Vq =

(3.63)

G(P ,Q) :  C3 P~(c o S4 ) )

C ( P ,Q) :  ~32 c3 P3(co s 4 ) )
~rp r~

111.6 The Least Squares Adjustment

V The proc edu re to be followed is now appa rent. For each of the obser—
V vations , namely the anomaly coefficients c, , n = 3 , 4 , . . .  and the assorted

variances, there exists a corresponding observation equation containing the
parameters of the model. The parameters (unknowns) are &1,  a3, A , B,
0~, 03, but there are many more observations ; an appl ication of a least
squares adjustment thereby suggests itself.

The obse rvation equations (3. 23) , (3. 61), (3.49), (3.55), and (3. 45) are
not linear with respect to most of the parameters, nor are the latter three
equations continuous in the integer variables A and B. The problem of non-
linearity is circumvented , in principle , by linearizing the observation
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equations and iterating the least squares solution until it is suffic iently closeto the nonlinear solution . The parameters A and B cannot be adjusted
analytically since it is imposs ible to diffe rentiate the variances with respectto these parameters; therefore , one must s imply assign various values to
A , B and investigate the resulting behavior of the solution. The parameters
of the adjustment are hence reduced to a1, a2 ,  01, 0~ .

The l inearization is effected by expanditig the system of observationequations in a Taylor series about some expa~is ion point and tcuncating theseries at the first-orde r term s. The coeffic ient of the first—orde r terms isthe matrix of pa rt ial derivatives with respect to the parameters, and it isevaluated at the expansion point. The derivatives of the va r iances c0, G0 H~~L0 have already been obta ined above . They are

/ ~c~QC10 C20 
~~d~~1 a3dO.21 (3.64)

~(C p , G p H , LQ) I dG~pH dGa,H= GIOH G20~ a 1d~~

Recalling the model for c, (3 . 23), the derivatives with respect to theparameters are

= n + 2  
- 

n-i 0
~a1 n + A  1 ‘ 8a3 (n-2 )(n +B) 2

n = 3 ,4,... (3. 65)
— j~~ J( n+2) ,+~ - = 

(n—1 )(n+ 2) ,+~— 
~~ n+A ‘ 

~~~ (fl -2)(n+B)~~
Since the smoothing factor ~ ,

2 in the mean anomaly variance is independentof the parameters, equation (3.61) yields

—

~~~~~~~~~ 
V
~~

Q n~~~~~2
11 i = l ,. . . , 4 (3.66)

where the x 1, i = 1 , . .. , 4 represent the fou r unknowns a 1, a3, ~i, 0a ,respectively.

Let 1 be the q-vector of “linearized observations ”, let D denote the
q x 4 coefficient matrix of derivatives , and let ]

~, be the vector of valuesimplied by the (nonlinea r) model for a particular set of parameters X0 .  Thenthe linearized system of equations is
—37—
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= r0 + D(X 1 - X0) (3. 67)

The least squares solution then determ ines the parameters X,~ for which the
sum of squares of the d ifferences (i. e. residuals) between the actual obser--
vatlons rb and the values r0 that are implied by the model is a minimum.
The adjustment is actually carried out with a provision for weighting both the
observations and the pa rameters.

With refe rence to IJotila (1967), the adjusted parameters of the i-th
iteration are

X. i = X~ i i  + X~ , i > 0 (3.6 5kwith
X 1 = — (D~~_ 1 Pb D 1_1 + P~ )

1 
(D~~lPbrI_l + P~ H 1_ 1) (3. 69~

Pb ,  P , are the weight matrices for the observations and pa rameters ,
respectively. These matrices are diagonal since it is assumed that no
correlation exists among the anomaly degree variances; also there is nocorrelation between the variances because they are determined independen tly .D1_ 1 is the coefficient matrix evaluated at X~ ; r1_ 1 = -
where r0 

~ 
is the vector of “computed observa~t ions” tha t are oi ta ined fromthe parameters ~~ in the nonlinear model; and H ~~~ = X, 

~~

- X 0 ,  whereX,, (the original expansion point) . Also r0 1 is the vec~~r of adjusted
observations .

~~~ 
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1V. Numerical Results

iv. 1 The Variation of c, (Re) as Ec Changes

In the previous section, it was assumed that the anomaly degree var-
iances refe r to the mean earth sphe re (R ~ = R,). This assumption simplifies
many of the expressions for the variances which are generally computed as
referring to the geoid (— j  mean earth sphere) : then s = Rc2/R.

2 = 1. The
observed degree variances, however , are computed fro m eo’tation (2 .41) using
potential coeffic ients. Hence , they refer to the Bjerhamma r sphe re, since
the R in the disturbing potential (equation (2. 22)) is usually identified w ith
the Bjerhammar sphere radius B6. It is appropriate then to investigate the
variation of c11(R~), computed by equation (2.39), as B~changes. Comparing
(2. 39) and (2 .41), we have

C 11 (Rc ) = c:(-~~~)~~
2 

(4 .1)

where c~ does not depend on R~ . Therefore,

dc 11 ( Rc) = — ( n + 2 ) c11 ( Rc ) d(&2) 
(4.2)

or approximately

= - (n + 2) C 11 

A1~ (4 .3)

We take R~ = R, = 6371 km and a relatively large d iffe rence

= H,
2 - b 2 -

~ 1.8 x105 km 2 , (4.4)

where b = a( 1-f) and a , f are the parameters of a mean earth ellipsoid
(a = 6378. 140 km, 1/f = 298. 257 -. b = 6356. 755288 km) . Table H illustrates
the corresponding decrease in the degree variances . The values for c11 are
given by l~ pp (1977, p. 40) and actually refe r to the Bj erhamma r sphere,
but this Is immaterial for these computations which serve only as an example.
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Table I I :  Variation of c, (as given by (4.3)) with
change in R~ (all values in mgal2 )

i~i 
C , 4c, C, + C ,

3 33. 2 — .745 32.46
7 16.7 — .674 16.03

13 5.6 — .377 5.22
20 2.4 - .23 7 2.16
30 2. 8 — .402 2 .40
40 3.9 — .735 3.17
50 4.5 —1 .050 3.45

The change Ac , is directly proportional to A&2. To determine 4 R 2
for which 

~~~~~~ 
might be Cons ide red negligible, one requires that

< -
~
- (R.~ - b 2 ) (4.5)

where t is the tolerance on 4c,, and q is the maximum value of l8C r~ for
~~~2 B.2 - b2. Forn � 40 , q =  .745 and specify ing t =  .05, it is seen that if

4 2  < . 745 ( R,2 b2 ) 12100 km 2

then the c, values for su ch a 41~~
2 are not affected in the first decimal place

(since the correction 4c, is then < .05) . Because

= (R. 2 -b 2 ) = ( R , b) (R, +b) 8Rc ( Re +b ) ,

the values 4B~
2 < 12100 km2 correspond to AR~ < .95 km.

Therefore , if the observed degree variances refer to the Bjerhammar
sphere whose rad ius may deviate from B, by more than 10 km , then it is
necessary to Implement equation (4. 1) with R~ = H, to obtain degree variances
which refer to the mean earth sphere. From Table I~ and the subsequent
discussion, It Is evident that if R~ is close to the semimlno r axis of the mean
earth ellipsoid, then for low degree , the error in using R = b instead of R = H6
does not affect the first decimal of the values of C, . It is assumed then that a
sphere with radius b is close to a sphere embedded entirely within the earth.

-40-
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lv. 2 The Observed Data

IV. 2.1 Anomaly Degree Variances

One set of observed degree variances, c,’, has been computed by Rapp
(1977 p.40) . The potent ial coefficients upon which they are based were de-

Table III: Anomaly Degree Variances from Rapp(1977)

— _ _ _ _ _  _ _ _ _ _ _  __________ — — _ _ _ _ _  

(all values in mgal3)
n c~ c, * stand. dev. 

— 

n c~ c, * stand. dev.

3 33.2 32.47 .8 28 2.9 2.54 .8
4 14.9 14.51 .8 29 3.6 3. 13 .8
5 11. 1 10.76 .8 30 2.8 2. 43 .8
6 21.5 20. 74 .8 31 2.2 1.90 .8
7 16. 7 16.04 .8 32 3.3 2. 83 .8
8 7. 0 6. 69 .8 33 2.7 2.31 .8
9 14.7 13.99 .8 34 3.6 3.06 .8

10 8.7 8.24 .8 35 3.2 2. 71 .8
11 8.3 7. 83 .8 36 3.9 3.29 .8
12 3.1 2.91 .8 37 3.0 2. 52 .8
13 5 .6  5. 24 .8  38 3 .8  3. 18 .8
14 3 .6  3. 35 . 8  39 2 .8  2. 33 .8
15 5.2 4. 82 .8 40 3.9 3.23 .8
16 5.1 4.71 .8 41 3.5 2. 89 .8
17 4.4 4.04 .8 42 3.7 3.04 .8
18 3.7 3. 38 .8 43 4.1 3.35 .8
19 3.4 3.09 .8 44 4.1 3.34 .8
20 2.4 2.17 .8 45 3.4 2. 75 .8
21 3.0 2.71 .8 46 3.2 2.58 .8
22 3 .4  3 .05  .8  47 3 .8  3. 05 .8
23 2.7 2. 41 .8 48 3.8 3.04 .8
24 2.4 2. 14 .8 49 3.7 2 .94 .8
25 2.7 2.39 .8 50 4.5 3. 57 .8
26 2.6 2. 29 .8 51 4.4 3.47 .8
27 2 .2  1.93 .8  

— 
52 4.5 3. 53 .8 V

*mod ified accord ing to equ.(4. 1) with R, B., R = b = 6356.755288 km
duced from a global set of 5

0 mean anomalies (which were obtained from a set
of 1° anomalIes). If one multiplies equation (2.60) on both sides by

(cos 9 ) {
~~ ~

} (4. 6)
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and Integra tes ove r the sphere , then with the aid of the orthogonality pr  p~ r-
ties of Legendre functions, one can show (Helskanen and Mor itz 1967 , p. 31)
that the potential coeffic ients are given by (let H = Re in equation (2.  60) )

1+2
{
~~~

} = 
~~~~~~~~~~~~~~~~ 

X~~~~~~~~ 1 cos {co~ J~~ . il~

whe re ~~ is the smoothing factor for 5° anomalies. .Siuc e the mean an~~m ’ 1ie ’
are in the fo rm of discrete values , the integration is replac ed by a summat i on .
in which case, Ag is evaluated only at the center points of disjoint  bl~ i~
(see Rapp 1977). Substituting these coefficients thto (2 .4 f l  ~~ - . ~~cI~; the
degree variances e,’ as lis ted above in Table HI . Th’~ t ue~’ ar  modifi ed
using equation (4. 1) with &=R . = 6371 km and R = b V = 6 3 ~~~ . ; V 5 2 - ~ ’k m , sce p. “J
in order that they refe r to the mean ea rth sphere. ~~~ sele t~V~n of the ~t.ad ~t~~l
dev iation is discussed below .

A second set of anomaly degree varia nces can be derived from the poV~
tential coeff icients of the GEM 9 sa tellite So’ution (Lerch et al. 1977).
Apply ing the same procedu re as above ~‘ields the results listed in Table IV .

Table IV: Anomaly Degree Varianc e from GEM 9 Potential Coefficients

— 
(all_values in mgar) 

___________

n c t, ’ c, * stand. dev 
— 

n c~ c , * stand. dev.

3 33. 66 32.91 .8 12 3. 67 3 .44 .8
4 19.63 19.11 .8 13 6. 59 6.16 .8
5 20.87 20.22 .8 14 4. 04 3. 76 .8
6 19. 05 18.38 .8 15 3. 30 3.06 .8
7 19.45 18.68 .8 16 2 .34 2.16 .8
8 11. 73 11.21 .8 17 2. 05 1.88 .8
9 11.50 10.95 .8  18 3. 32 3 .03 .8

10 10.07 9.54 .8 19 2 .99 2.72 .8
11 6. 77 6. 39 .8 20 2. 30 2.08 .8

* modified accord ing to equation (4. 1) with R1 = H,,, R = b = 6356. 755288 km

It should be remarked that the modification of the anomaly degree
variances through equatIon (4. 1) 18 based on the presupposition that the
potential coefficients refer to a sphere of radius R — b. This assumption
may be questionable, particularly with respect to the coeffic ients for the
degree variances of Table Ifl. These coeffic ients were computed using

V equation (4. 7) w ith R,2/R~
2 

1 (see Rapp 1977).
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IV. 2.2 Point Anomaly Variance

The po in t anomaly variance has been estimated by Tache rn ing and Rapp
(1974) to be 1800 mgai . This value is based on over 2 . 25 million free-
air anomalies which were partitioncd accord ing to the ranges of elevation in
which they were determined. A we ighted average of the individual variances
of the anomaly subdivis ions then provided the tota l variance. The effect of
c2 on C0 is c~ itself (~ 7.5 rnga l2 , st~’c ‘- quation (3. 62)), if C2 refers to
a sphe re of rad ius a.. it is neglected in the inpu t value to the adjustment ,
since C~ does not act as a constra int in the strictest sense ~a minim um
standard deviation of 25 mgal2 was attached to C0). Therefo re , the exact Inpu t
value is not too critical.  The final adjusted value of C 0 is one tha t is pa rtly
implied by the other data and the model. The same is tru e of the undulation
variance after the second-degree contribetion has been removed.

IV. 2. 3 Undulation Variance

The value of L0 is obtained simply by summing the first few undulation
degree variances. The sum in equation (2.49) converges rapidly, and with the
observed anomaly degree variances (e.g. computed from GEM 9 potential
coefficie nts (Lerc h et al. 1977)),  it results in an app roxiniate, rounded value
of 900 m2. The effect of c~ on L0 is sizable , and in this case , it must be
subtracted to accommodate the model. This effect (equation (3. 63)) is
approximately

H2 
______C~~ = 
(kM) ~ 

c 2 = 314 m2 (4.8)

with R = b , kM = 398601 km3/sec 2, and c2 = 7 .56  mga i~ By the manner in
which the input value L0 is computed, one cannot expect it to add new infor-
mation to the adjustment. The observation for l~ was therefo re deleted in
the final analysis (Table IX); but it was included in the solutions of Tables
Vi and Viii. Its removal had no s ignificant influence on the numerical results .

IV. 2.4 Mea n Anomaly Variances 
-

The mean anomaly variances for 1° and 5
0 blocks a re also derived by

Rapp (1977). The covarlance function (and hence the variance , when ~ = 0 )
for the 1° mean anomalies is estimated there similarly as the point anomaly
variance was deduced by Tschern ing and Happ (1974) ; namely, by forming
weighted averages of given mean anomaly da ta ( Land /Ocean-value , p. 7 ,
Rapp 1977). 5° mean anomalies were then obta ined through a least squares
prediction using th is 1° covariance function. The square of the resulting root
mean square of 5

0 anomalies (set 1, p. 14, Rapp 1977) is adopted he re as the
-43- 
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observation .

Aga in , because the summation of the model begins with n = 3, it is
necessary to subtract the contribution of c2 ( see equation (3. 63)) :

For 1° blocks: lbr~, = !(10
) 2 / r, = 00. 564 -. S~ ca s4 = 7.43 mga i2

________  
( 4. 4

For 50 blocks: i~0 = /~~~~ 0
)
2/ r~ 2°. 821 -. $~

2 c~S4 = 7 .41 mga1~

where ca = 7 .5  mgal 2 is assu med to refe r to a sphere of rad iu s R = b, and
S = R~/H,2 (fo r ~~ , see equa tion (2. 58)).

Table V below displays the observational values of the variances d is-
cussed above (fo r the choice of the standa rd deviation , see below).

Table V; Variances

observation standard deviation

C0 = 1800 mgal2 200 mgal2

L0 900 - 314 586 m2 50 m2

~ o 1 10 = 8 6 2 . 5 — 7 . 43 = 855.1 mgal2 10 mga l 2

Co 150 259 .2—7 . 41 = 251. 8 mgal2 10 mgal2

As mentioned on page 16, one cannot expect the adjustment process to
determ ine a value for G0 ~ based only on low-degree information such as the
fi rst 20 degree va riances. Therefo re , any input value G0 must act as a
constraint (i. e. with a weight relatively la rge r tha n for the other va r iances).
By assigning a small weight to G0 H~~ the iterated least squares solu t ion usually
oscillated wildly and diverged . Even with the constraining standa rd dev iations
tha t were finally chosen , a slight divergence of the solution is detectable.

From the discussion in section II. 7 on the observed variability of the
horizontal gradient varianc e, it was decided to select two global values for
G0 ~: 200E2 and 3500E2 . Each value implies a d iffe rent set of model pa rameters.
The init ial computations were oriented towards dete rm ining a model from the
degree variance data of Table III, with a low gradient variance ~as opposed to
the model of Tsche rning and Rapp (1974) which yields a large gradient variance).
Therefore , only the value G0 ~ = 200 E 2 was applied to the data of Tables In
and V.

In view of equation (3. 63), the influence of c3 on G0 ,~ 
is negligible. With

c2 ~~7.5mgal a, r~ = r ~ — R ,,, 4 = 0 ,
-44—



P2 ( c o s t h )  < 3x  i0~~~ E 2 (4. 10)

1V.3 The Weights

The least squa res adjustment is to be rega rded , in this case , as a pro-
cedure which results in the best fit of the model to the given da ta. In this
sense, the standard deviation which is assigned to an observation is not taken
to represent a measure of accuracy, but rathe r , only as an indication of the
relative weight or significanc e that the observation should carry . With this
in mind , one can arbitrarily va ry the weights to procu re the best possible fit
of the model. The origina l standa rd deviations are l isted in Tables III , IV , and
V for the input da ta. A standard deviation of .8 (mgal ) 2 (also used by
Tsche rnin g and Rapp (1974)) was assigned to every observed degree variance
and retained throughout all computations . Some experiments were conducted
to determ ine whether a change in the weights at the uppe r or lower end of the
sequence of degree variances would improve the adjustment. Such vari2tion
in the weights usually did not enkance the fit of the degree variances , while
of ten being detrimental also to the model variances. The standard deviations
of the variances were initially selec~ ted arbitrarily. Later it became necessary
to tighten the control on these quantities in order to improve the fit to the
data (of. Table s VI , VIII, IX).

The weights of the parameters C~ , c~ were set practically to zero (10 
~~

),
since these unknowns should be established entirely by the observed da ta. This
is equally tru e for the parameters o~ and c~ , bu t these were restra ined by
a standard dev iation of 0.01 to prevent a possible underflow or overflow in the

• machine computations (e.g. the 10 anomaly variance contains the facto r
(O~ )~~~).

IV. 4 Data Set of Table III, Two-Component Model

A least squares adjustment was app lied to the obse rvations that are
collected in Tables III and V , and to G0 ~ = 200 (±50) E2

, for various and
sundry values of A and B. An investigation of the results revealed that the
value A 100 yields the most favorable solutions . Most multiples of 10
below, and some above A = 100 were also tested; in each instance, the solution
was deemed unacceptable as it gene rally produced larger residuals than in the
case w ith A 100. A few selected results are presented in Table VI. In this
table, RMS denoted the root mean square value, defined in princ i~ ie by the V

square root of the simple ave rage of squared quantities. In this context,
RMS (Co) is the RMS valu e of the residuals of both mean anomaly variances;
while RMS (c a) stands for the RMS value of residuals of the anomaly degree
variances. The adjusted variances , as they are listed in Table VI , do not

V V 1 5 _
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include the value of the second-degree term of their series expansions.

The following criteria were considered in the selection of the “best”
results: the adjusted values of C0 and L~ should be close to the observed
values; G0 should have a value approximately equal to 200 E2; the values
of RMS (c s) and ElMS (C 0)  should be minimal.  It is also desirable to obtain
values of o~ and a2 such tha t El1 < b and R2 <b .  For El = b, 

V

= -
~~i~ = .9955333  (4 .11)

Finally, the low—degree ct’s of the model should not be unreasonable distorted
fo r the sake of accommodating the higher-degree values.

With these standards of selection , solution (i) of Table VI is judged to be
most favorable for this data set. The results of (a) , (b) , and (c) show that
A 100 , while solu tions (d) , (e) , (f) , (g) , and (h) suggest that B should not
exceed 10. For the solution (1) (B = 5), the value of c3 as obtained from the
adjusted model is c ,, = 34 .0 mgal2; whe reas , for (h) (B = 10), c3 = 32. 8mgal2.
In view of the observed value of c~ in Table III , it can be argued tha t 5~- B~ 10.
It is noted that cr~, , a~ < & (see (4. 11)) in cases (a) — (i ) ; hence , the covarianc e
func tions defined by these models converge for any two points on the earth ,
provided tha t b is the radius of a sphere contained within the earth.

The solu tions of Table VI arc based on degree variances as mod ified by
equation (4. 1) to refer to the mean earth sphere . 11 the degree variances c,,’ of
Table Ill had been treated as already referring to this sphe re, then the results

- 
V of Table VI would not be altered substantially. This data set primarily

served in the general investigation of the two-component model (3.23). The
final model paramete rs(sec . IV. 6) are determined from the anomaly degree
variances implied by the GE M 9 potential coefficients.

The adjusted degree variances of model (3.23) , referring to the sphere of
radius El, ,  and for solution (i) in Table VI are given below in Table VU .

It is observed In Table VI that the adjustment process seems to be able
to determ ine a value for the horizontal gradient variance Go .~~, 

apparently
through the other variances. However , this is the case only when more weight
is placed on the Ct obse~\7edC? GOH than on the other variances (particularly C0).
The adjusted value of Co was Improved by Inc reasing its weigh t, the reby
necessitating even tighter control on Go ~ . With the observed value of Go u used
here, a la rge value of the parameter A was requ ired, in part, to push the
C? ~tdjusted~v Go ~ down to ‘~‘200 E 2. (Wi th the observed value of 3500 E 2, on the
other hand , a large value was assigned to A In order to dec rease C0 to — ‘iR GO
mgala; see also Table IX. ) The solution (j ) of Table VI corresponds to the
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parameters A, B as adopted by Moritz (1977) . With respec t to A, it reflects a
lim iting value of G0 H that is “Im pl ied” by the input (with an observed
G0 H = 200 E

2). That is, as A is increased , Go H dec reases . The last entrle~in Table VI are obta ined with the model parameters that were determined by
Morltz .

Table VII: Adjusted Anomaly Degree Variances (sin . (i) ,  Table VI)

_ _ _ _ _ _ _ _ _  __________  
(all values in mga l4 )

n c, res idual n _ J ~~~esidua1

3 32.83 .37 28 4.02 1.48
4 21.54 7.03 29 4.00 .87
5 16.88 6.12 30 3.99 1.56
6 14.06 — 6.68 31 3.99 2 .09
7 12.08 -3.96 32 3.99 1.15
8 10.59 3.90 33 3.99 1.68
9 9.42 —4.58  34 4. 00 .94

10 8.47 .23 35 4.02 1.30
11 7.70 -- .13 36 4 .03 .74
12 7.07 4.15 37 4.05 1.53
13 6.54 1.30 38 4.07 .89
14 6.09 2 .74 39 4.09 1.76
15 5.72 .90 40 4 .11 .88
16 5 4 0  .70 41 4.14 1.25
17 5.14 1.10 42 4.16 1.12
18 4.92 1.54 43 4.18 .84
19 4.73 1.64 44 4.21 .88
20 15 8  2 .40 45 4 .24 1.49
21 4.45 1.74 46 4.27 1.69
22 4 .34 1.29 47 4. 29 1.24

V 23 4.25 1.84 48 4.32 1.28
24 4.18 2.04 49 4.35 1.40
25 1 1 2  1.73 50 4 .37 .81
26 4.08 1.78 51 4.40 .93
27 

— 
4.04 2.11 4. 42 .89

Some additiona l remark s concerning this model and the determ ination
of its parameters are appropriate . With observation equations only for the
degree variances (and mean anomaly variances), it would be difficult in the
adjustment to sepa rate the correspond ing pa ramete rs of the two components
of the model. But observation equations are included for C0,  G0 ,  L0 , which
are essentially of a different cha racter , thereby allowing the parameters to be
separated , although not without any correlation. The correlation matrix for
the pa ramete rs a~ , , o~ , a~ of solution (I) in Table VI is
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V V V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~ - V 

I

‘
~~~~ 

/ 1.00 .55 -.96 -.74\
‘

~~~~ 
( .55 1.00 — .55 — .92

a 1 \~ 
-.96 - .55 1.00 .70 

/
o’~ \ .7 1  - .92 .70 1.00/

By inspecting the adjusted degree variances of Table “Il for the two-
component model , it is observed that their values Inc rease for 32~ n c 52,
when in fact , C , should app roach zero as n • ~~. The graph below clarifies the
situation by showing the behavior of c~ = c~ ,~+ C2 ,  up to some large n, where

C1~~ = ~ 
f l l  ~~~n + 2  , C~3~ = 

~~~~ (n - 2)(n + B) 
~~~~~~~~~~~~ (4. 12)

V This verifies that the u~ d~~ed C , 0 as n U,

— 32.8 mgal2

CI

E

c, = c1 + c3,

- V - - - - - ~~~~~~~~~~~~~-

C l ,
/ 

_ _ _ _  V_ _ _ _ _ _  —- V~

n=3 n=19

V Figure 4.1: Model Degree Variances as a Function of n
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Finally, it must be acknowledged and tests have shown that the compu tational
effo rt in dete rmining covariances with the model above (solution (I) , Table VI)
is approximately 31 times as great (due to the large value of A; see equ . (3. 31)
as in the case of the model given by Tschern ing and Rapp (1974) (equ . (3.12) ). V

IV. 5 Data Set of Table HI, Single Component Model

This latter model drew some critic ism since it yields a relatively la rgc
horizontal gradient variance ( ‘~- 3000 E2 ). For this model , there seems t~’
exist a basic incompatibility between a point anomaly var ir V 

~~~~ C0 -
~ 1800 mgal°

and a relatively low (<-60 0 E2 ) gradient var iance G0 ~ Thble VIII , which
lists some solutions of the model (3. 12) with the same observed data as
previously (Tables III and V) verifies th is conclusion . Note that in this mode l ,
c, does not depend on O3~ and therefore , the degree variances presumably
refe r to the Bjerhamma r sphe re (-‘ rad ius H2) and are not modified as before.
Aga in , none of the adjusted variances in Table VII includes the contribution of
c3 .  Also, whil e c, is now independent of a3 ,  the variances are not , and
thereby, the capability of adjusting this parameter is reta ined.

V A A

In all cases of Table VIII, a3 - a , where a is given by (4. 11); this
implies that the corresponding covariance function may not conve rge for every
two points on the earth . Additiona l tests (no t shown) disclose that in fixing
the value of a3 to &, the adjustment produces unrealistically low horizontal
gradient (— 30 E2 ) and point anomaly (— 1000 mgal2) va riances. It is fu rther
observed in the table that the relatively large valu e of RMS (~~ ) is consistent
with the fact that the point anomaly variances of the model s are qu ite low.

Figure 4 . 1 above indicates that the component c3, is primarily respon-
sible for the initial sharp decline of the values of the modeled c,. This is
partly due to the attenuating factor a~’ 

+2 
~~~~ .93 in this figu re). Conse-

quently, the single component model (3.12), which lacks this factor , cannot
accommodate as well the observed higher—degre e ( > 10) coefficients , as these
rapidly decrease in value (see Table IrE) . These remarks are refl ected by a
correspondingly higher ElMS residual of the adjusted degree varia nces for
the single component than for the two-component model (compare Tables Vi
and Viii) . The logical remedy would be to include the attenuating factor

+2 in the single component model:

C (P ,Q) ~~~~ ~ - 2)(n + B) ~ 
~~ P,(CoS th) (4 . 13)

where c, = c~ 
n-i a~ 

+2  now refers to the mean ea rth sphere .
(n-2) (n+B)
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However , while the fit to the observed degree var iances could improve , the
resulting var iances G0 ,  C0 ,  L0 are then quite unnatural.

N. 6 Data Set of Table IV, Both Models V

The remaining analysis is based on the observed degree variances in
Table IV ( from GEM 9 potential coefficients) . However, the observed
variances of Table V are retained . With this data set , and with each of the
two horizontal gradient variances (200 E2 , 3500 E2), parameters were - b lam ed V
for the two models (3.12) and (3. 23). The identical proce& e is foliowed in
these determ inations as with the previous data set. T1v~refore , only the f inal
solutions of the fou r resulting models are presented in Table IX. Their
adjustment was based on a set of observation equations which containedV 
the corrected equation for the horizontal gradient variance G0 ~~, and from
which the equation for the undulation var iance L0 had been deleted (see
earl ier remarks, sections III. 4. 1 and IV. 2.3) . Neither of these alterations
has a very pronounced effect on the solution. The f inal weights for the variances
C0 and ~~ were chosen primarily for reasons of cons istency. The adjuste d
variances have been augmented by the value of the second-degree terms of
their series expans ions .

The first fou r solutions of Table IX are each designated by a number
and a letter. The number refers to the nu mber of components in the model,
and the lette r s ignifies whether the value of the hor izontal gradient variance
is high or low. For example, Model 2L corresponds to the two-component
model (3. 23) with an “observed” hor izontal gradient variance of G0 ,., = 200 E2.
Model TR in Table IX is the single component model obta ined by Tscherning
and Rapp (1974). It is included for comparison.

Table X below contains the adjusted degree variances of the models of
Table IX. For the single component models, they refe r to the respective

V spheres of rad ius BQ (= Re /~~~~), and for the two-component models , they
refer to the mean earth sphere . The values of c,’ in Table IV are also
repeated here.

—52 ---



‘I’

-~~ CD N CO CD

~~~~~~~ 

C- C C N

N ‘1’ CD tO CD

C) lO .~ N N N 0) p.4

~~~~~~ 
I e-~ C C C—

— C- CD N

— CD CD CD 0) N
C- N CO CO

~~~~~bL) p.
— tO N tO CO CD

~~~ ~~ CO CO CO
.0

- .-.. ~~ to N CD 0
— — 0) CD CD 0

Il-I C. Cdo .~~ oIO~~ CD to — N -
~~CD CD CD CD CD o o

C~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~
~~~~~~~~~ 0~~~ . . . 

~~~~~~~~~~~~~~ CO
~~

~-) 0) C-- CD CD C) 
~~n 11— x C~ CO • CD . . o o

42 -~~~~~~~~ o~~~ . CD • N
0 0 N 0) 0 -

~~ ~~~~~o o
CO 0 0

c~ ~~~~~~~ C ~~;- ~~~~~~~ ~CD CD N CD C- ~) — — ~
~ 

~~~~~~ - - -— V -~~~~-- --- V --~~~~~- —V- V - -~~~- 
.
~ ~ 

,
~~ 

.
~

‘-4 (0 0) p.4 CD CD (C) N ‘~~ ‘~~N Q~ . . . . . . . . .
N C) C N C) — 0 ~.. ~- Q) C)

CO .~~ p—’ CO N N ~~4 N CO ,~~ ~~ L4 Li U) U)

(I) Q~~~-.~-
•a

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

CD ‘1~ CD 0) tO N N .~~ C~ Cl

C) .-. ‘1 CO 0) CD C) C) -—
~ b 0) 0 0) 0) 0) C) C) ~.. -~~
M 0~ 0) 0) C) ~ ~~U) LI •

~~ Cl CD N CD ,-4 (0 N —
~~ (~ o CO C ~~ CD CD N N CO CO
— — 0) — C) C-- CO CD CD C)

~ c~ CO CD 0 CD i-I N N .0 CO CO —~ ,~~ •
—

~~~~ 
—

~~~~ ~~ ~~

Cl . ~Q ~~
- CO CO CO CO I

~ ~~~~~~~~~~0’ ‘~ C)

-4-I —

~~ § 0  4

~ .E ~ N CO N CO -~~ ~~ 
~~ .E .E

~ ~~~~~~~~~~~~~~~~ e C C
O N  ‘1~ CO CO N
— p.4
II II II II II II It

~~
C) — —

— C) *.0 ~~ ,~ ~0 N N ‘-4 - E~

—53 —

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
- -  V__ ~~~~_~ V V V V_

~~
V 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Table X

Obs. c,,’ Adjusted Degree Variances (mga l2 )

a GEM 9 Model 2L Model 2H Model 1L Model 1H Model TEl

3 33. 66 35.1 24. 9 29.8 27 .5 31.5
4 19. 63 23. 1 17.5 21.7 20.0 22.8
5 20.87 18.1 14. 6 18.7 17.3 19. 6
6 19.05 15. 1 13.0 17.1 15.8 17.7
7 19.45 12. 9 11.9 15.9 14.7
8 11.73 11.2 11.0 15.1 13.9 i5 . 5
9 11.50 9.9 10.3 14 .4 13.3 14.7

10 10. 07 8.9 9.8 13.8 12.8 14. 1
11 6. 77 8.0 9.3 13.3 12.3 13.5
12 3. 67 7.3 8.9 12.9 11.9 13.0
13 6. 59 6.7 8.6 12.5 11.5 12.5
14 4.04 6.2 8.3 12.1 11.2 12.1
15 3.30 5.7 8.0 11.8 10.9 11.7
16 2. 34 5.4 7.8 11.4 10. 6 11.4
17 2.05 5.1 7.6 11.1 10.3 11.1
18 3. 32 4.9 7.4 10.9 10.1 10.8
19 2. 99 4.7 7.2 10.6 9.8 10.5
20 2.30 4.5 7.1 10.4 9.6 10.2

* H~ 6371.km 637 1.km 6365.57km 6369.73kn~ 6369 .78km

* the rad ius to wh ich the degree variances refer

Morltz (1976) discusses the three “essential parameters ” which cha rac-
terize the covarlance function for gravity anomalies locally. Two of these ,
the variance and the curvature at 4) = 0 ( related also to the horizontal gradient
va r iance, see p. 18) have already been determined for all models above . The
third parameter, being the correlation length ~~, cannot be included conveniently
into the adjustment. The solution to the equation C( 

~~) 
= ~ C0 (see p. 18) is

found by f ifth -order polynomial inverse inte rpolation. The results are tabulated
below for the five models of Table TX.
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Table XI: Correlation Lengths ~

Model Correlation
_ _ _ _ _ _  

Length (km)

2L 46.087
2H 43.693
1L 86. 856

38.866
TR 

- 
42. 284

The covariance functions C (P ,Q), L(P ,Q) ,  G(P ,Q) for the first fou r
models are evaluated at selected values of 4) between 00 and 180° using
the closed expressions (3. 48) , (3. 53), (3. 54), (3. 44) and their auxiliary
formulas . Tables XII, XIII, XIV display the variou s res~Zta .

The mean anomaly covariances , on the other hand, are computed from
the approximate fo rmula (3.60). Tables XV and XVI list 10 and 5° mean
anomaly covariances , respectively, for several values of the argument 4 ) .

The graphs of the covariance functions (Figures 4.2 , 4.3 , 4 .4 , 4.5)
are designed to depict the contra sts of the functions implied by the models
near the origin (4) = 0) where they differ the most. Whence, the absc issa
is scaled logarithmically. Also, all functions represent covariances on the
mean earth sphere .

For appl ications in a limited , local area, it is often practical to determine
the anomalous quantities of the grav ity field with respect to a refe rence field
of h igher degree and order than implied by a rotationa l ellipsoid. The local
cova r iance function then does not include the low-degree (long-wavelength)
information of the field. In rega rd to the series expansions , the first few
terms up to degree j are deleted yielding a j th _ order covariance function , for
example

K j (P ,Q) ~~~~ 4 ))

(4. 14)
j 

2
= K ( P ,Q) -~~~~~k~~(-11—

) 
P~(cos 4))

where the k~~, n 2,. . . ,J  are computed from the model.
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For the first fou r models of Table IX, covarlances of this type were
examined with j = 20. As expected , the removal of the low-degree terms has
no significant influence on the gradient covariances . Also, the cont rasts in
the modeled higher-order anomaly covariances does not dim inish radically
as their variances all decrease by approximately 200 to 250 mgal2 . The
undulation covariances of this 20 th _order field , on the other hand , are prac -
tically ind istinguishable (to 10 m2 ) with respect to the four models ; the
variances decrease to —315 m2. Therefore , the choice of the models above
is not critical when higher-order undulation covariances are required.
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V. Conclusion

It should be stressed that none of the solutions given above is optimal ,
in the true sense of the word , for several reasons : 1) weights, other than
those assigned to the observations, could yield better results by reducing tlw
res iduals in some quantities (perhaps at the affordable expense of an Inc ~-eascd
res idual elsewhere); 2) more effort could be expended to identif y the exact V

integer values for A , B which give optimal solutions althou gh drastic changc s
in the solutions would be unlikely; 3) the observations may not represent f’~e
tru e gravity field (particularly G0 and possibly also the h igher-degree 2c~. ~.la lV
coeffic ients); 4) the iterations were not carried to conve - n~e anc~ conver-- 

V

gence was sometimes not atta inable. (Althou gh conver~~u.e seemed to be
indicated after approximately ten ite ra tions, the last ite rations often exhibited
small , but steady increases in the weighted sum of squared residuals.) Some
adjusted values also oscillated slightly with almost constant amplitude. This
indicates that the solution is somewhat unstable, perhaps with respect to o~
and o~ which are close to 1. In fact , these parameters create a large impact
on the solution with small changes in their values.

Many of the general characteristics of the two models have already been
mentioned (see sections N.  4, lv. 5). Only a few final remarks are noteworthy.

Table LX aga in emphasizes the dissimilarities of the s ingle component
and two-component models . If one accepts the observationa l data of Tables
N and V with Go 200 E2 as being fairly representative of the real world ,
then in Table IX, model 2L gives by far the best approximation to the global
cavariance functions . Table X alsc. shows the marked d ifferences in the
attenuation of the degree variances among the variou s models and in favor of
Model 2L. However , compared to the single component model , many more
(see p. 50) computations are required for any appl ications , and th is constitutes
its princ ipal shortcoming. U a great numbe r of cova r iances are requ ired , one
may elect to construct a suffic iently dense table of values , so tha t linear inte r-
pola tion quickl y prov ides the desired covariance. This is not always a feasible
or time-saving procedu re, espec ially if va rying he ights (rp , rg )  enter the
problem.

The single component models , even with the greater gradient variance ,
apparently are not able to adapt to the observed anomaly degree variances of
h igher degree (see Table X). Also , the 5° mean anomaly variance cannot be
accommodated as well as in the two-component model. Its relative simpl icity ,
though, Is appealing, and if one iS will ing to accept the objectional featu res,
then model 1H seems to offe r the most compatible solution .
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Certainly, If new observational data proves to be more characteristic ofthe actual attributes of the gravity field , then the single component model mayatta in better suitability. Even so, the two-component model w ith twice asmany parame~er~ will have the greater capabil ity of adjusting to any new,improved data.
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Appendix: Der ivation of equation (2 . 76): G0~ ~ G0

Let x, y, z be a local Cartesian coordinate system with the z-axis
coinc iding with the local vertical . Then 

~~~ ~~ 
are the horizonta l

_ _ _  ~x ~y
gradients and ~ z is the vertical gradient. If T is the disturbing potential,
then (rcxighly consistent with a planar approximation)

~ g = - 
-F

~ 
and .~A& = - 4. (

~~. 1)

Moritz (1976) shows that ~~K , 
_ _ _ _ _ _ _  

, 
_ _ _ _ _  

, ut.. ing the covariance
~Xp~ Xq ~yP~ Yq ~ Z p~~Zq

functions of ~T , ~T , and ~T , respectively , where K (P ,Q) is the covar-
~x ~ y

iance function of T, satisfy the following simple relationship

~
2K ~

2
K ~

2
K

~ Zp ~ Zq 
= aXp ~~~ 

+ 
~yp ~ 

(planar approximation) (A . 2)

Simila rly If FC Z ,  ~~~ F~7 are the covariance functions of ~ ~-CF ~
~ (~T\

E~x~~~z 1, ~y~~ z ) , then

~~ = F 2~ + ~~ 
V (A .3 )

Now, to the same approx imation , it can be shown that the following statements
are true (Moritz 1976)

_______  
1

aZ~~ Z0 
= - 1~”(5i  - K’~~ (A.4)

= - K” ( S )
~xp~~x~ (A.5)

= — 1 K ’(s)
~YP~~YQ s (A.6)

where s is linear distance and the primes denote differentiation with respect to
s. At s = 0 , the three left-ha nd exp ressions above are the gradient variances.
We have

V 

~
2

KK’(s) = — sK’(s) — (A .7)
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If it is assumed that the variances ~
2K and ~~K are finite

S 0 ~Jp ~Yq S 0then

K ’ ( O )  = 0 (A .S)
Now ,

K ” ( O )  = u r n  K’ (s) — K ’( O) 
= u r n  Jc’ (s) .~ ~ (A.9)S 

~~~~~~~ S

by the same assumption. Hence

~x~ax~ ~~ = 
~~~~~~~ 

( A . l 0 )

Then also ~~ . = ~~~~ J8 ~ and equation (A .3) states that thehorizontal gradient varianc e is one half of the vertical gradient variance(in a planar approximation).
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