7

" AD=A063 194 OHIO STATE UNIV COLUMBUS DEPT OF GEODETIC SCIENCE F/6 a/5
A COMPARISON OF BJERHAMMAR'S METHODS AND COLLOCATION IN PHYSICA==ETC(U)
JUL 78 L SJOEBERG F19628=76=C=0010
UNCLASSIFIED DGS=-273 AFGL=TR=78=0203 NL

| o |

L]

—

|
|



= .:

= =
= 71|||‘25 I éﬁl#"" |




R o T







unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dct.‘lnlorcd)J
READ I
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
[1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
AFGL-TR-78-0203 ¥
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Scientific. Interim /
A COMPARISON OF BJERHAMMAR'S METHODS Scientific Report No. 17
AND COLLOCATION IN PHYSICAL GEODESY 6. PERFORMING OG. REPORT NUMBER /
Dept. of Geod. Sci. No. 273
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
& )
* Lars Sjoberg F19628-76-C-0010
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK
Department of Geodetic Science EAS SUTENE i ST
The Ohio State University - 1958 Neil Avenue 62101F
Columbus, Ohio 43210 760003 AG
ONTROLLING FlC NAME AND ADDRESS 12. REPORT DATE
ir Force physics Laboratory July 1978
Hanscom AFB, Massachusetts 01731 13. NUMBER OF PAGES
Contract Monitor: Bela Szabo/LW 88
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 1S. SECURITY CLASS. (of this report)
Unclassified
hﬁ. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

A-Approved for public release; distribution unlimited

S

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side {{ necessary and idsntify by block number)

geodesy, gravity, potential theory

;/'
J
20. AlSTRACTZm on reverse side If necessary and identify by block number)

In 1963 A. Bjerhammar solved the geodetic boundary value problem by
applying Poisson's integral equation for a finite set of observed free-air gravity
anomalies. Due to the relation between the number of observations (m) and the
number of chosen unknowns (N) different solutions are obtained: non-singular
(m = N), least squares (m > N) and minimum norm solutions (m < N). In the
special case N;;Dlt is shown that the Bjerbammar solution with Poisson's —p oy

OD et 1473 Ltomwu 18 olso\.tn u’!ch"uied
o o‘»r\)&(u‘ e | v C, Y 7, \\( AR S A GPAIBIA ATIA AT PIE uapm---a

- - — F T o e o e o
r & N

B —— e

- g s § - — - e ———
Xy

TN, ARAFH UM

e — e e L T e o Thor e s i S TS = [T S pros

P2 OO, T P Y T




o Ad W - cmmt b he N

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

)

[ Ve
5 L"-ff’kernel and a solution by collocation with the corresponding kernel are identical.
Bjerhammar's method is generalized by using other kernel functions, and each
minimum norm solution is shown to correspond to one specific set of degree
variances in collocation.

N

The impulse approaches (reflexive prediction, Dirac method) of

Bjerhammar are presented. y The kernel function of the non-singular Dirac
method is obtained from thaf in collocation by substituting c, /(2n+1) (rg>/rr,) * 2
by /C,7 (Za+l) (rs /r,f * > Hence the Dirac kernel is not symmetric in contrast el
to the one in collocation. Moreover, it is shown that for a given radius ry of )
! the Bjerhammar sphere, the Dirac method gives a better conditioning of the 1
' equation system. It is demonstrated that the two solutions are identice! for

Poisson's kernel, if the depth of the Bjerhammar sphere in coll cation is half

of that in the application of the Dirac approach. The solutio.. by collocation is

therefore twice as sensitive to the choice of radius as is the latter method.

~7*In the theoretical case with a continuous coverage of observations at
the surface of the earth, it is shown that both the Dirac method and collocation
give a unique solution for any choice of positive degree variances of the kernel
!unct,i@s, whenever the solutions exist. However, the intermediate solutions
for Ag* and X at the Bjerhammar sphere do not exist in general. If collocation
is applied by solving the Wiener-Hopf integral equation, a convergent solution
is proved outside a sphere. However, inside the bounding sphere of the earth
the convergence is still not proved.

unclassified
SECURITY CLASSIFICATION OF Tv'" 1 AGE("hen Data l‘lﬂ;wuv

e




—

A F RSN TR

Foreword

This report was prepared by Dr. Lars Sjoberg, Research Associate,
Department of Geodetic Science, The Ohio State University, under Air Force
Contract No. F19628-76-C-0010, The Ohio State University Research Foundation
Project No. 4214 B1 (710335) which is under the direction of Professor Richard H.
Rapp. The contract covering this research is administered by the Air Force
Geophysics Laboratory, Hanscom Air Foree Base, Massachusetts, with
Mr. Bela Szabo, Contract Monitor.




Acknowledgements

Tam grateful to Dr. Richard H. Rapp for the opportunity to study
this topic and for his helpful suggestions and guidance during the course
of this research.




Table of Contents

2. Bjerhammar Solutions at the Internal Sphere ............ wis e
2.1 Generalization .oo.cvvaveenen. nsinsallstet ato Ahmim s

2.2 Minimum Norm Solutions ........

3.1 The Effect of Smoothing (NOiS€) ce.vieerereneeeeannennnn
4. On the Convergence of an Iterative Solution........cco00uuee.

5. Predictions According to Bjerhammar ........c.e0vvveneenes

6. Integral Formulas as Limiting Cases ........e0c00veceeecces

6.3 The Enectotsmoothlm (Nolse)tool.l.l.....l......ll..
6.4 The Limiting Case of a Least Squares Solution ..........

7. OntheChOIOQOfmdmﬂ LU R BRI IR RN B AR A N RO I SR R N )

R s 71 3.7 0 B 1§ g w1 AT 9 S V9 9 008 i

Abstmt ® 90 0 00 000 000 000NN 00NN E000000eRss0R0EN S

Fomword © 0 0000 0000 0000000000000 0 00 00Nt RseR BRSNS

3. Stalility of the SOItIONS ..« vvene e sansvasanoviosesssssssssse

6.1 The Uniqueness of the SOIUtiONS . .. vvevervevvocecocaosoness

6.2 The Existence of the Solutions ......ccceeeveeveencarncnes

AcknOWledgmenfB ® 000 00000000 000N L0 0PI 00 000N ERe IR0 e

1. Introduction.......... ARl d gt s oo Pl il e B e s BNy SOl SiGe !

2.3 Least Sqguares Solutions fOr U* ...cccocecssscscnsonssscsssssssse

2.4 TIPRIBE APPYORON oo o« 000606 sini0ie bisisasissniase oemesisssvesss

5.1 Minimum Norm SoOtion8 ..ccoecccvsccesosoccssocccssssscoasnse

Bk RO TR . v v i 20 645 % S SR e Aty & TN

ese s e

ii

fii

iv

11

12

15

21

22

30

33

35

40

40

44

54

58




8. Computations

9. COMluSims Olol..ncn-.o.'ull.oolol......o.l'..0.0.00000.....0' L)

10, Extensions and Recommendations . ...

D R R I R N T NS

References ........

.l....Q.ll..l...ill.lt.o.l.’.o.'..l.l.l'...!l.l.'..

Apmwixo‘ucoaolo.ooa.ncoo-oacc

©000000000000cs0c00s0s000e00esss00nan

64

72

73

75




1. Introduction

In 1963 A. Bjerhammar formulated the boundary value problem of
physical geodesy in the following way: "A finite number of gravity data (gravity
anomalies) is given for a non-spherical surface and it is required to find such
a solutionfthat the boundary values are satisfied in all given points". (Discrete
boundary value problem,)

For the solution of this problem Bjerhammar used a spherical reference %l
surface completely embedded in the earth with its center at the earth's center of
gravity and rotating with the same angular velocity as the real earth. The
observed gravity anomalies (Ag,) are reduced to the internal sphere (the
Bjerhammar sphere) by means of Poisson's integral equation for the harmonic
function rAg (see Figure 1):

Internal Sphere

Figure 1. The observation Ag at the surface of the earth is reduced to the fictitious
field Ag* on the internal sphere by means of Poisson's integral equation.

+ for the height anomalies (see section 5)




2 2
(1.1) r, Ag, = ‘;’“‘r:" “ r::f* ds
where
Ag, = real gravity - theoretical gravity
Ag* =  (fictitious) gravity anomaly at the Bjerhammar sphere
ry = geocentric distance to the point P,
rs = radius of the Bjerhammar sphere
r“z = r,z + rg - 2ryret
t = cos § , ¥ = geocentric angle between P, and P,
dS = surface element at the internal sphere
S = 4n rsa

Note. The gravity anomaly (Ag,) at the point P, is defined as the difference
between the real gravity at P, and the theoretical gravity at a point Ps’. which
is located along reference ellipsoid normal through P, with theoretical potential
i at P,' equal to the geopotential at P,. (See Heiskanen and Moritz, 1967, p. 83.)

Due to the irregular topography of the earth there is rigorously no
solution of (1.1). However, for the Bjerhammar's problem (discrete boundary
value problem) it is always possible to find a fictitious function Ag* that fits
(1.1) for the observations. Once Ag* is determined it may be applied in
Poisson's, Stokes' or Vening Meinesz' integral formula for the prediction of
gravity anomalies, geoidal undulations or vertical deflections, respectively.

It should be stated, that in order to be consistent with Stokes' formula, the
harmonics of degree 0 and 1 should be removed from (1.1),

The method of least squares collocation was introduced in the principal

‘ presentations by T. Krarup (1969) and H. Moritz (1970, 1972). In general this

method is defined as consisting of two parts: a least squares adjustment and a
Wiener prediction. In this study we will consider only the latter part of
collocation. If the relevant covariance functions are known, any physical
quantity (v) in an arbitrary position (P) on or outside the surface of the
earth may be estimated in an optimal way from a finite number of observations
(Ag) by the following formula:

B T i d 2 ’ I
n - — a9« e T, P R e




(1.2) vi=c, (C+ D) Ag
where

cy = cov(vy, &g)

C = cov (Ag, Ag)

D = error covariance matrix.

In particular we predict gravity anomalies by:
(1.3) Ag =c((C+D)'Ag
where the elements of ¢ and C are given by the spatial covariance function for

the gravity anomalies:

Co (re/ryry) ° P, (cos Pyy)
(o]

(1.4) C“=

il i~18

where ¢, are the so-called degree variances of the gravity anomalies defined
according to the definition in Heiskanen and Moritz (1967, p. 259):

(1. 5) Gy -41? ” Ag? do

where Ag, is the anomaly Laplace harmonic on the Bjerhammar sphere,
The purpose of this paper is to study the relations between some of

Bjerhammar's solutions and collocation. We start with solving Poisson's
integral equation (1.1) in different ways according to Bjerhammar.

2. Bjerhammar Solutions at the Internal Sphere

In the numerical application of (1.1) Bjerhammar used a finite set of
blocks on the internal sphere with a constant value of Ag* over each block. In this
way the following matrix equation is obtained from (1.1) for m observations and
N surface blocks:

(2.1 A Og* = &g
N N1 ml
-3~
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where
Ag = vector of observed gravity anomalies
Ag* = vector of unknowns
A = coefficient matrix with elements Aj,
2 2
b T ds
. - — [ &
(2.2)  Ap anr, o
As,
AS, = the surface of block k

Applying the mean value theorem of integral calcul.s formula (2.2) may
be rewritten:

2.2 A s AS
. a = —————
sy T S

where k refers to a certain mean value point P, inside AS,. In practice we
may approximate P, by the center of the block k. If the matrix A has full
rank there is always a solution of (2.1) for N> m. For N =m we obtain the
unique solution: Y

(2. 3) Ag* = A Ag

where A™' is the Cayley inverse of A,

For N > m the solution is not unique unless an additional condition is
satisfied (condition adjustment, Section 2.2), Finally, for N < m and full rank
of A the least squares solution minimizes the square sum of the residuals (see
Section 2, 3),

2.1 Generalization

By expanding the Poisson kernel into a series of Legendre's polynomials,
formula (1. 1) becomes:

(2.9 Ag, = é .r Ag*i (2n+1) (%)nm P, (cos ¥)d S
n=0

i
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We may also expand Ag* into a series of Laplace's harmonics (we assume that
the expansion is convergent):

Ag* =i g,

Due to the orthogonality of the spherical harmonics when integrated over a sphere:

,

J‘jAgn P, dS=0 for n#n

(2.4) may be rewritten in the following way:

1 ® re\*2
(2. 5) Ag, = 73 U u*z /(2n+1) c * (r_3> P, (cos ) dS

81 =0

X

Ag,
2.6 * = ——
e E z Ve ¥/(2n+1)

n=0

In contrast to the degree variances in collocation (c¢,), which are a priori defined
by formula (1.5), the parameters c * introduced in formulae (2.5) and (2. 6) of the
generalized Bjerhammar method, are more or less arbitrary. Formally the
conversion from (2.4) to (2.5) is valid for any c * such that (2.6) and the kernel
of (2.5) converge. However, from a practical point of view it will hardly be
advisable to solve (2.5) for a u* that is less smooth(with less attenuating higher
degree terms)than Ag*. Already the solution for Ag* is questionable in the
continuous case, See Section 5, Molodensky et al. (1962) and Pick (1965). In
the discrete case a solution is always possible. By changing c.* a variety of
solutions to Bjerhammar's problem are obtained. These solutions for u* are
completely in accordance with the solutions for Ag* in (2.1) - (2.2).

Example: The inverse Stokes function. We insert:

Jor = B21 foui

n r's

P TP RER T




into (2.5) and (2.6) (with lower limit n = 2 of the summation), Then we obtain
(for dS = rs d0):

g= ([ M (¥ ur do

where

n+l
M @) = g i(zm) @1 () Pa(eos ¥)

and

I‘BAGn 2 T, = T*

f o}
*
1]
[ >18

where we have introduced the notation (Heiskanen and Moritz, ibid., p. 97):
T, = re 4g,/(n-1)
T, being the Laplace harmonic of degree n of the (fictitious) disturbing potential

T* at the Bjerhammar sphere.

M may be written in a closed form (Sjoberg, 1975, p. 107):

M (ry,¥) = 81"’ [ﬂl 5 A s"z—ss + 2]
where
L2 = 1-28t+¢°
s = rg/r,
t = cos¥Y

Note. In Sjoberg (ibid.) the term n =0 is included in M.

Further examples of u* are given in Table 2.1,

- - e . g ————— ey
" . . S o




2.2 Minimum Norm Solutions

As previously stated, a matrix equation

(2.7) A u*x = , m<N
1

L}
z
z
-
a

does not have a unique solution unless an additional condition is imposed. We
may define this solution as the one satisfying the following condition:

(2. 8a) lux|[® = (uk*)aASk = minimum

3
s

i1z

X

or, with matrix notations

(2. 8b) "' Q' u* = minimum
where

as,

Q= _;_ ( ~-Asa"'ASN>

From least squares adjustment we obtain the following solution of (2. 7) with the
condition (2. 8) (see for instance, Bjerhammar, 1973, Ch. 12):

(2.9) ux= QA (AQA) ' Ag
with the minimum norm

(2.9a) @y’ Q' ux = Ag' (AQA)™! Ag

Subsequently, different solutions are obtained by changing the number of
blocks at the internal sphere. In the original paper by Bjerhammar (1964) most
studies were restricted to the non-singular case (N = m). Condition adjustment
(N > m) was treated in 1968 and 1969. It is obvious that these solutions from (2.9)
are generally more cumbersome to compute than (2.3). However, the computa-
tional effort is drastically reduced to that in the non-singular case, if we let N
approach infinity for well-behaving surface elements. This we show next.

N

T T

e e e
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We rewrite (2.9) in the following way:

(2.10) u* = QA' X
where

X = (AQA) ' Ag

N
(2.11) (AQA)y, = Sz (A (A)y A8y

k=1

The coefficients (A)y are given by the generalization of (2. 1) and (2. 2a) by
(2. 5):

2ok ® L n+a
(2.12) (A)gx = EZ /(on+1) ¢ (-r-;) P, (cos ¥) AS,

a=0

By letting N go to infinity in such a way that the largest diameter of all AS,
approaches zero it is shown in the Appendix, Proposition A.1, that (AQAT),,
becomes:

n+2

> P, (cos ¥4y

ll‘sa
ryry

(2.13) Cyy = lim (AQA)y, =§: c’;(

N = o a=0

Thus we obtain in the limit;
(2.13a) X = C™!Ag

where the elements of C are given by (2.13). Applying (2.7) for the prediction of
new anomalies from the original set Ag we obtain:

Ag;=c X

or

(2.14) Agi=c;C' Ag

Sty ot g




where

C;=llmA1QAr

N =@

The elements of ¢, are also given by (2.13). Furthermore it follows from (2.9a)
that the minimum norm in the limit is given by:

(2.15) lx [* = ag" c™* ag

We notice that (2. 14) and (2.13) are exactly the solutions obtained with the
collocation formulae (1.3) - (1.4) with ¢, substituted by c*. Hence, for each
type of degree variances (c;*) in collocation, there is an identical minimum norm
solution in the generalized Bjerhammar approach. Some of these relations are
given in Table 2.1. The derivations are given in Sjoberg (1975).

Table 2.1

The Relations Between the Degree Variances in Collocation
and Some Minimum Norms in the Generalized Bjerhammar Method

-’-

Yex/(2n+1) Norm Explanation of Symbol

1 Ag* gravity anomaly
(n-1)/re T disturbing potential
41 (n-1)/(2n+1) ©* density layer
4mn(n-1)/rs (2n+1) * double layer
(n-1)/(n+1) o gravity disturbance
Y (n-1)//n(n+l) 6+ deflection of the vertical
(n-1)//(2n+1)(n+1) ) {v) potential gradient

% -

r’ ' nl (n-1)/(n+v) ! the vth derivative of T

ArV

Y = normal gravity at the reference ellipsoid

t+ from Sjoberg, (1975).




Subsequently there is a duality between the choice of degree variances in
collocation and the minimum norm in the generalized Bjerhammar technique.
Such an approachwith a minimum norm was also emphasized by Krarup (1969).
Remark. c, of formula (1.4) was replaced by (2n+1) ¢, in Sjoberg (ibid.) and
by (20+1) 0y by Lauritzen (1973, p. 73) and Bjerhammar (1974and 1977a,b).
See also Krarup (ibid.).

Also in the generalized Bjerhammar technique the observation errors
can be taken into account [cf, formula (1.2)]. In this case we start with the model:

Au* = Ag - ¢

where

E{ee'} =D

Rearranging this equation as:

ux*
(A, 1] [e ]

we readily obtain the solution:

T
(2.9b) [“:] - [Q; ] [AQA" + DI Ag

which minimizes

£

(u")r Q'u* +« ¢ D¢
The predictions are given by

(2.16) vi= A;QA [AQA" + D]’ Ag

and for N-= this solution and (1.2) are identical. In this case the minimum
norm becomes:

(2.17) Ag' c'Ag + €D e

-10-
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2.3 Least Squares Solutions for u*

If we apply formula (2.7) with m > N, this matrix equation will not in
general be consistent. Adding a residual vector, we obtain the following model:

(2.18) Au*=Ag'( » M>N , E[€€T}=P02

aN N1 ml nl

This system may be solved with ordinary least squares adjustment by elements
with the solution:

(2.19) u*= (A'PA)' A" P Ag

which minimizes the square sum of the residuals (€' P €). The variance of unit
weight (0?) is estimated by:

(2. 20) s = Ag'P (Ag - Al*) /(m- N)

and the covariance matrix of u* after adjustment is estimated by:

(2.21) Qu=s"(APA

All these derivations follow from elementary least squares adjustment (see for

instance, Bjerhammar, 1973, Ch. 11).

The solution U* can now be used for the prediction of derived quantities
(vy) in an arbitrary position P,:

(2.22) 61=A1&*

where A, is the operator (vector) that relates v, to u*,

The prediction variance may be determined in the following way:

A
€ =Vi=Vy= V- A{(u+¢)

=1i=




: T
€f=vi+ A (wu'+ €, €)) AT- 2A,(u+ €) v,

Taking the expectation of both members we obtain the prediction variance:

mx3= ov? + Ax(Cuu"'Quuaa)AxT‘zAlCuv

where
0y, = E{v{]}
Cuw = E{w']}
Cuow = E{u'}

Furthermore we have assumed that E {€,v,' }= 0. The prediction variance may
be written:
(2. 23) m?=0°A,QuA, + m/

where

b g
ml=0%+ACuAi1-2A(Cy

The first term of (2.23), which is caused by the error of u*, is easily determined
in the adjustment. The second term (mf) is due to the error of A,. The
determination of m 2 requires that the covariance relations are known.

The least squares solutions are favorable first of all when a large number
of observations (m) are available. It should be noted that the solutions for m > N
do not include pure prediction. A filtering of the data is always present in this
type of prediction.

2.4 Impulse Approach

Bjerhammar (1974) introduced a method, where the unknowns (u*) are
located in discrete points at the internal sphere. This method, called the Dirac
method, gives the following model:

~12-




(2.24) u* (r) = Z uy 6(T-Ty
k=1
where
r = (ms,®,)A)= coordinates of a current point at the internal sphere
Ty = (m,PxAx) =coordinates of a selected carrier point Py at the

internal sphere

u% = unknown associated with P,
N = number of unknowns J
8() = Dirac's delta function, defined by
1 - = — :
(2. 24a) 4—nﬂu*(r) 6 (T -T)do = u* (Ty) ;

Inserting (2. 24) into (2.5) we arrive at

N

(2.25) Ag; = z u¢ K (ry, Ty
k=1
where
ety - rs\"*?
(2. 26) K (ry, rk) = Y v (2n+l) C ¥ (r—) P, (cos wjk)
s J
n=0

For m observations (Ag;) (2.25) gives an exact matrix equation which may be
solved by means of condition adjustment, least squares adjustment or direct
solution dependent on whether m < N, m > N, or m = N. A generalization of
the method is obtained if we also allow for carrier points located outside the
Bjerhammar sphere (reflexive prediction, Bjerhammar, 1974).

It is obvious that this method is a generalization of the commonly used
buried mass point method. In fact, the latter is obtained in the special case
(cf. Table 2.1).

Je ¥ = const. (n-1)/Y(2n+1)

-13-




, The non-singular Dirac method with carrier points located at the
intersections of the internal sphere with the radius vectors of the observations
is very similar to collocation. The auto-covariance function for Ag in colloca-
tion (with internal sphere radius rg):

el

(2.27) C (i, 1) =z c,,(rga/r,r,)"ap,.(cos ¥31)
n=3

corresponds to the following kernel function in the Dirac method:

(2.28) C (joi) = Z V(2n+1) c & (rq/r,)"a P, (cos dyy)

where r, is the selected internal sphere radius (not necessarily the same as ry).
Hence, C (j, i) of (2.27) and (2. 28) are identical for:

Cp= Cgt = 2n+1
and

(2. 29) ro = rs/r

Consider the case r; = r = radius of the mean earth sphere:
ro Sol ) e ho

and

Ys = r - hg

where h, and hs are the depths of the internal spheres from the mean earth
sphere. By inserting these expressions for r, and s into (2.29) we obtain:

ho= 2he - he/r
or (after omitting the last term)

(2.30) h°= 2h3

-14-




Thus we have shown that in the special case ¢, = ¢ & = 2n+1 and the radii of
the observation points are constant (r), the kernel function C (j» 1) of the Dirac
method and collocation are identical whenever the depth to the Bjerhammar
sphere in the previous method (h.) is twice that in the latter metiod (he). This
result holds also for the predictions of the two methods (see Sections 5 and 8).
See also Bjerhammar (1977, a,b).

From numerical point of view it is of importance that the kernel function
(2.28) is unsymmetric in contrast to (2.27).

3. Stability of the Solutions

It is of great importance for the prediction results that the matrix
equations are well conditioned. In this section we are going to compare the
stability of the following systems in different cases:

(3.1) A ux =
za @1
and
(3.2) CX = Ag
om m]

These equations were introduced in (2.7) and (2.13a). Formulae (3.1) (m = N)
and (3. 2) (N ==) may be regarded as the extreme cases of (2. 7). From the
derivations in Section 2, 2 we may also consider (3. 2) as an intermediate system
of equations in collocation.

A suitable measure of the stability of a matrix system is the condition
number defined as:

(3.3) n= Am-x/)\mtn

where A refers to the eigen values of the coefficient matrix of the system (A and
C). The condition number has the following bounds:

1]sxys®»

where the lower bound is the ideal situation and ® is a completely unstable
(singular) system. Our main problem is therefore to determine the eigen values
Astn and Agax.




g o s

We start with a two-dimensional example. We assume that Ag is
observed at m regularly distributed points on a circle of radius r. The
unknowns (u*) are located on a circle of radius ms. Applying the impulse
approach [formula (2.25) with m = N] the system of equations becomes:

N
(3.4) YK(B,-O.‘) U = Ag; i 1=1. 3, cuip N
k=1

where K (6, - 68,) is the two-dimensional kernel function corresponding to u* and

6r=p 21/N
The Fourier series of K is:
(3.5) K6 =) b,e"d
where

m

{ = i -"ne
{3.6) b, o JK(G)e d6

-

Furthermore, the eigen values (Ay) of (3.4) are given by:

N
(3.7) \;K(ej-ek) xtP=n, 2, 4,500, 8 ..un
k=1
where X,( Y is the jth element of the £th eigen vector. Let us try:
(3.8) x,“)= cos x = (e'"+ e ¥y/2
where
x=jL2m/N

Using the relation

= H = * * L )
02 - _ {N SEREN T P Sy
0

(3.9) e

I l\/)z

otherwise

J=1

~-16~




we can easily arrive at;

¥ @ N2 i t=q

ZX,“)XJ ={ :

otherwise

Thus (3. 8) satisfies the necessary property of eigen vectors being orthogonal to
each other. We have also shown that (3. 8) should be normed by v2/N in order to
be the eigen vectors of (3.7). Finally, X £) must satisfy (3.7) for some eigen
values Ay, Inserting (3.8) and (3.5) into (3.7) we obtain from the left member:

© a1 N an am 2
2 b ™y zet(z Ry Ne:u - 3" e
el

n=-x k=1 P00

Here we have used (3.9). Thus we obtain:

®©
A£=}J2 %+w

P ==

where b, is given by (3.6). If K is Poisson's kernel, then (Seeley, 1966, p. 14):

b, = st = (ra/p)!

and

Ag=N z s'“"”

P=-o
The sum is given in a closed form in the Appendix, Corollary A.2, We obtain:
A NEE e Sy LR LN
The condition number is finally given by:
X = (1+s")/(sB+ s""B)

7=




where

g = (_gl) = integer part of N/2

An analogous derivation of the condition number of (3. 2) gives:

xg=(1+ S?.N)/(528+ Szu—as)

so that for large N
N2

)(.a/)(.l x S_

It is obvious that the system (3.1) is more stable than (3.2) for a given depth to
the Bjerhammar circle.

Next we proceed to the planar cases of (3.1) and (3.2). We are going to
use an approximate similarity transformation of the coefficient matrix to diagonal
form.

The operator C is said to be unitarily equivalent to S, if:
B=gecuy™

where S;;= Xy, 8,,, 6 is the Kronecker's symbol and U and U™* are unitary
transformations, inverse to one another. For a matrix it is a similarity
transformation to diagonal form. According to Moritz (1966) and Schwarz (1971)
such a unitary equivalence exists between c(X,y) and its Fourier transform:

(3.10) S (u,v) = U-c(x,y) = J‘I c (X,Y) e"‘(x"”')dxdy

- =®

This formula may therefore be used for an approximate determination of the
eigen values of (3.1) - (3.2), If mo and no are the numbers of blocks in the
x- and y- directions, we obtain (cf. Schwarz, ibid.):

(3.11) Au=as(2”“ 2”m)

2nqo+1 3 2mo+1




where
0 <n < ng 0 Sm < mo
and
a=|cll
The covariance functions will be used in the planar approximation. Furthermore,
equal area blocks are assumed with no = mg.
We are now going to determine the condition number for the Poisson

kernel. This kernel corresponds to ¢, = 2n+1 and the minimum norm of Ag*
(see Table 2.1). The planar equivalence to the operator A of (2.1) is:

(3.12) A= jja(x,y) dxdy
- ®-®
where
p =3h 2 i

(3.12) a(x,y)—-z—;/(x +y° +h%)

h = 2z + b/2

b = 2 (R - rg)

R = mean earth radius

r = radius of the computation point

rg = radius of the Bjerhammar sphere

z = r-R

Formula (3.12") has the following Fourier transform:

@® @

S (u,v) = II a(x,y)exP {-iux+vy)} dxdy

-® — o0
(3.13)
=2nhj L Jo(wr)ydr=2nexP {-hw}
S (t2+h2)378
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where

r='+y? w="u?+v?
and
Jo (w r) = zero order Bessel function.
Hence
Apa= 27 2 ex P {-Znhm/(2n°+1)}
and
(3.14) x.=exP[2n/§hno/(2no+1)}==e..P{nfz_h}

The planar approximation to the Poisson covariance function is
(Moritz, 1976, p. 41):

B/Z?

(3.15) C(x,y) =C(r) = (_I—W-
e

where Z =2z + z,+b and B= 2 R®
The Fourier transform of the covariance function is:
(3.16) S(w=2mBexP{-Zw]

Thus we obtain:

Xe = ex P {2172 Zno/(2no+ 1)}

Assuming that 2, = z, # 2 we have Z = 2h and

(3.17) xe=exP {4/2nhno/(2no+1)} ~ ex P {2/21h}
so that
(3.18) Ne~ xf

-20-~




From formula (3. 18) it is obvious that the condition number (x,) of the "original"
equation (3. 1) is squared by letting the number of blocks on the internal sphere
approach infinity (N—=) (and then solving the system (3.2)). A considerable loss
of stability is achieved. Again we emphasize that the equation system (3.1) is
generally unsymmetric in contrast to (3.2), which fact has to be considered in
the numerical solution of the system. It is not recommended to form normal
equations in (3.1) in order to obtain a symmetric system, because this procedure
will increase the condition number to that of system (3.2). (3.1) should be
solved directly, for instance, by Gauss elimination or in an iterative way by
successive approximations.

3.1 The Effect of Smoothing (Noise)

We assume that the matrices A and C of formulae (3.1-2) are substituted

by:
A=A+D
and
C=C+BD
where the elements of D are given by:
kO imi ., k>0

d“ = { )
0 otherwise

and B = 2 R {see formula (3.15)].
Then A and C correspond to the kernel functions:
a(xy) = axy +k 8(xy
and
c(x,y) = ¢ (x,y) + Bk 6 (x,y)
with the spectra
Sa(u,V) = Sa(u,v) + k

§c (u,v) — Sc(u’V) + Bk

-21-

e .




o e RN AR A A R e

and the eigen values

7\?.) = )L(:z + ak

—C) c
)\i. = X(..)+ aBk

Here 0 is the delta function and S, A and a are the same as in the previous section.
In this case we obtain for the Poisson kernel {cf. (3.14) and (3.17)}:

Kk +2n

Y Tt 2nexplnhA] < exP (/2mh]

and

k+2m
Xe™ Tk +2nexpl-2/2h] < exp {2/2nh]

We notice that the smoothing stabilizes both systems of equations (cf.
Section 6. 3).

4. On the Convergence of an Iterative Solution

In this section we are going to investigate a condition for convergence of
an iterative solution of the matrix equation (3.2):

(4.1) CX=4g

Using the ordinary method of successive approximation, we obtain:

(4.2) xY= ag + = X", kel 8 ..

and

ax®= x®- xE) o ()& 5t

(1-Cy? (X(‘)- X(O))

-22-
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Hence

lax®|| < f1-c [ [Ix®-x©|
A sufficient condition for the convergence of (4.2), i.e.

(k)ll i

lim ||AX
k — @
is therefore
li-cll<1

or

max? ,61J_clJl<1
-
1 J

Now

[1-cyl, if i=j
|c“|, if i#j

lbu'cul =

so that the condition may be written:

a
k (4. 3a) ylcul<2: f eqx>1
=1
and
o
(4. 3b) 2cu>z ley |, if eys1
=1

For finite c{; we may always divide each row of the equation system
with a sufficiently large number to ensure that the diagonal elements of C are equal
to or less than unity. Hence we can limit our study to the condition (4.3b).

First, we study this condition for Poisson's integral equation for the
circle (Sealey, 1966, p. 14):




(4.4) ag,= [ ag,iagrae,

where

1-8° S 1-8°
= L SRR e I
1+8°-2scos¥,; 2m ls—e"b”la

e 1
a(j,l) = 5oy

s = rp/ry (< 1)
by=6,-6,

Suppose that we apply (4.4) in a discrete approach with equal spac ing between the
N unknowns (Ag*,). We obtain:

(4.5) A Ag* =
N N1 a2l

where
6,-6
(4.6)  Ax=a(,k A0 = (1-s?)/N]s-e T
A6 = 2n/N
O¢= 2nk/N; k=1,2, ..., N
In the non-singular Dirac approach (N = m) we arrive at the following condition from

(4.3b) and (4.6) (for 6,=0):

2 b K 1-s°
m (1-8)’ mk=1 |s-e‘ek|a
or
1% O 2(1+8)
4-7 S = = -
(4.7) (mys) = = ) S T <0

k=1

The Poisson kernel has the following Fourier series:
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A i s i i R T T e i e e
LS oo A 5 LT

v -

i g o S S T sy —




" 1-8° X l?s"’lehe“
m IS—e‘ek j* m
n=-
Furthermore
? e“‘ank/. = {m if n=mxj , j=0,*1, %2, ...
- 0 otherwise
k=1

so that (4.7) becomes

»_ 2(1+s) _ 148"  2(1+s)
m(l-s) 1-s" m(l-s)

@
S(mys) =142 &
1

J

Subsequently, for large values of m the critical relation between m and s with

S (mo, S) =0

is given by

1+s

.8 = 9 =L

(4. 8a) m, A
or

-2
4,8b =
( ) 4 m+ 2

The corresponding relation for collocation is obtained by substituting s by s° in

the previous formulae. The results are shown in Table 4.1.

For comparison we also derive the relation between m and s in the case

of condition adjustment (N > m), Then we arrive at the following condition from

(4.3b):
S(m, N, 8) = max ) (AQA")y -2(AQA")y < 0
1 -l
J=1

where

N
(AQAT)” =N z A A i

k=1
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Table 4.1

The Relation Between the Number of Observations (m o) and
the Ratio h/a Compared to the Dirac Method and Collocation*

Dirac Method Collocation
mo s h_l+s s h
a Tms a
10 0.667 0.796 0.816 0.708
100 0.961 0.650 0.961 0.643
1000 0.996 0.638 0.998 N, 637
10000 0.9996 0.637 0.9998 0.637
@ 1 2/m 1 2/m
.t *h=r-rs and a =27 r/mo
1-s°
Ay = 2
N(1-2scos¥y +5°)
: 2mi  2nk
I ¢‘m= 9,-9k= ;'— ?= 2T'T(lp-k)/N
p = N/m (integer)

The sum S (m, N, s) is given in the Appendix, Proposition A.8, For large N !
we have, approximately:

S(m,8)~ 2-m + L I, <0

1-s% 1-8°

or

R e o e . a we —  —

—— — T v —————— "
At PN T NPy e o Jhde




For large m we finally arrive at;

2

1+8
< = 2
m mo —-:1—5
and
2 > ,/ m-2

m+2

These are the limiting relations between s and m when using collocation [cf.
(4. 8 a-b)]a

What is the relation between s and m that satisfies the condition (4.3b)
for the generalized integral equation:

am

(4.4) g,= [a(kurdo,
(o]

where

(4.9) a (J:k) =z fc? sInl ein(a,- 6,,)

Following the previous derivations, we obtain in the non-singular case of the Dirac
method [cf. (4.7)]:

S(m,s)=2fé:*; g . r%E/E—’ﬁs""<0

=== o

Thus the sufficient relation between s and m for the convergence according to
(4. 3b) is very much dependent on c*.

Example;: Vc¥ = Inl +1

S (m,s) =i [§|m sm-+§ ghle _ % (z n] Bm_z sm) -

& (s d%"'l) gi-:m-_ _%;-:lnl)




m- 2 - = %= = <0
(1-s)® 1-s
b
]
or
m< mgo = 2+ ﬂ:)—
(1-8)
and

0-2 O #
o ree 1o (2245)

For my—~®, sy~ 1 and h/a— 2/n., Again we obtain 2m as a sufficient
ratio between the height of the observations and the spacing of the observations
for convergence in the continuous case (cf. Table 4.1).

We now investigate Poisson's integral equation in the planar approximation
(see formula (3.12)). We assume that a square of side B is divided into N surface
elements of side b = B/N', where N'=/N. Then we obtain the following coefficients:

b° h
AJ!’: =

2M[(X - Xy (y 1~ yy) 2+ B2 12

= c/2n((j, - k) + (Jy -k, )2 +c?)¥/




In the non-singular case (N'= m') the condition (4.3b)becomes (for j.=j,= m'/2):

e FA SO o 1 1
S(m,c)—i-\ . : - = = <0
T = = [(m/2-Kkx)%*(m/2-ky)?+c®]? ne?
kx=1 ky=1

The critical relation between m and ¢ is shown in Table 4. 2.

Table 4,2

The Ratio ¢=h/b Satisfying S(m,c)=0 as Given
for Different m. b= block size, h= height.

m Dirac Method Collocation
50 0.57 0.285
100 0.54 0.270
500 0.52 0.260
1000 0.52 0.260
5000 0.51 Q.255
10000 0.50 0.250

The result of the computations is that the ratio h/b should be less than
0.5 for an uncritical convergence of the non-singular Dirac solution with Poisson's
kernel (see also Koch, 1968). If the method of collocation is used, the ratio should
be less than 0.25. In this study we have based the results on the condition (4. 3b)
for a solution by successive approximations. However, Schwarz (1971) emphasized
that more generous ratios (h/b) may be allowed by using other numerical methods.
The figures given in this section should therefore, first of all, be used to compare
the stability of different methods (Dirac method, condition adjustment, collocation)
with each other.

In conclusion, the Dirac method with (m= N) gives a more stable solution
than collocation for a given radius rs. In the case of condition adjustment (N> m)
the stability of the Dirac method is roughly the same as for collocation. This study
was restricted to the Poisson kernel functions, and the conditioning changes with
the choice of degree variances (c, and c *). In general, however, the above
tendency can be expected for an arbitrary type of kernel function.
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5. Predictions According to Bjerhammar

Using the collocation formula (1.2) any geophysical quantity v can be
predicted from a vector Ag of gravity anomalies by:

(5. 1a) vi=cy X
where
(5. 1b) X =(C+D) 'Ag

In the generalized Bjerhammar methods the unknowns X of collocation are replaced
by the unknowns u* at the internal sphere (see section 2), The prediction of v,
becomes accordingly:

(5. 2) l V= Fi ux*
or

N
(5.2’) Vy= y Fyg uy

where F is the relevant coefficient matrix (with elements Fyy) relating u* to v, .
Formula (5. 2) is the discrete form of the integral formula:

(5.2%) v‘=-;-fff1ku*ds

and the kernel function fy and the coefficient Fy are related by {cf. formulae (2. 2)
and (2.2a)} :

(5. 3) Fi = -é' IJ' fw dS = fj! ASk/S
AS,

where k corresponds to some mean value point inside ASy. In practice this point
is approximated by the center of AS,. The function fy can be derived from
formula (2. 5) for each specific quantity v,. For v, = Ag we have:

(5.4) f i =z /(2n+1)c ¥ (m/n)Ma Py (cos ¥ g)
a=0
-30-
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and Fy = Ay according to (2.12), Further examples are given below.

Prediction of Disturbing Potentials

In the spherical approximation the disturbing potential (T;) is related
to the gravity anomaly (Ag ) by (Heiskanen and Moritz, ibid., p. 89):

T 2T

S el

(5. 5) Ag e =

By replacing T, of (5.5) by:
§ f2n+1)c,, rs \nt1

(5. 6) fi = rs (—r—) P, (cos ¥ )
‘—' o 1

the right hand side of (5. 5) becomes (5.4) (we exclude terms of degree less than 2),
This result implies that f;; according to (5. 6) is the kernel function in (5.2 °") for
V= T1 .

Prediction of Height Anomalies

From Brun's theorem (Heiskanen and Moritz, ibid., p. 293) the kernel
function for the height anomaly (v(=C) becomes:

n+l

(-Il) P, (cos ¥ )

Iy

/(2n+l)c
o __V Yenter

5.7
(5.7) e

n—a

where ¥ is the theoretical gravity at the reference elllpSOId In the special case
ry=rs and c = 2n+1 (u*=4g*) (5.7) inserted into (5. 2") yie'ds Stokes' formula
(Heiskanen and Moritz, ibid., p. 94).

Prediction of Deflections of the Vertical

The two components of the deflections of the vertical (§,7) are related
to the height anomaly { according to (Heiskanen and Moritz, ibid., p. 312):

2l 22
§1 .1 ¢4 } Ny 3¢, }
nl} I'y 1 a c‘ r'y { _ﬂ
cosQ( O, 008‘01 Ay
=
o ool ":w "-




where ¢, and A are the geodetic latitude and longitude. By using the following
relations from Heiskanen and Moritz (ibid., p. 113) and Abramowitz and Stegun
(1964, p. 334):

a0 L JETRn
" cos « e sin & cos @
and
J
Py(cos ¥) SR N d Py(cosy) _
Y d cos ¥
n (n+l1

" (Zn+l)sin¥ {Pm(cosw) - Pp-y(co8 w>}

where & is the azimuth from the fixed (computation) point to the moving point, we
obtain the following kernel functions for £ and 7, :

COS O g 1
(5.8) fo = { A } —_ X
Sin O g vsin¥ g
- +1 C* rs n+2e
nsn ! n e & s
% z n-1 2n+1 <I‘a) {Pas1(cos ) = P,y (cos ¥
n==2

where cos o refers to £ and sin & to M. Formula (5.8) inserted into (5. 2”)
gives a generalization of Vening Meinesz' formula (Heiskanen and Moritz, ibid.,
p. 114),

Prediction of the Vertical Gradient of Gravity

The kernel function for v =3 Ag/3r is easily obtained from (5.4). The
result is:

ool L
~18

fL

Y(2n+l)c ¥ (n+ 2) (ra/r,)Ma Py (cos ¥ )

(o]

(5.9) foe= -

=

For certain sets of c* the above kernel functions may be given in closed forms
(cf. below and Sjoberg, 1975, section A.2),

Note, In the impulse methods (section 2.4) Fy = f .
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5.1 Minimmum Norm Solutions

The prediction of a quantity v according to any of the methods of
Bjerhammar described in section 2 is given by formulae (5. 2') and (5.3) for
any finite number of unknowns (N), For example, in the minimum norm
solutions (section 2. 2) the prediction formula becomes from (5. 2) and (2.9):

vi= F1QA (AQA) ' Ag
From this formula we obtain in the limit (N—=®)(cf. 2.14):
(5.10) vi=k,;C ' Ag
where the elements of the matrix C are given by formula (2.13):
Cy = 3: c¥ (re/ry rJ)“2 P, (cos U yy)
n=0
and
ki= lim F,QA'

N = ®

The following elements k  of ky are obtained in accordance with formulae (2. 13),
(5.4) and (5.6)-(5.9). The coefficients ¢, are given by the selected minimum
norm (see Table 2. 1).

@®

(5.4’) ku‘:}_‘ ek SMaPn(t) - for V1=Ag1
a= 0
% Ty - C: n+2
(5.6) kix = 7? e s Pa(ty ; for Tiy= 1l
n=2
1 c c ¥ n(n+l) :
(5.8) ko = oo ) 22 {Puna (8- Pt}
1k e
n=2

cos o £,
X Sn"'a { “‘} : fOr V(= { }

Sin Qg N4

<93~



(5.9) k==Y et n+2) 872y (t) 5 for vi= SoE
Py Brx
n=0
where
8=ra/roryg and t = cos ¥

The above predictions from formula (5. 10) are identical with the predictions using
collocation (without noise). Erroneous observations can be considered by adding
a noise covariance matrix to C of (5.10) before inversion {see section 2, formula
(2.16)}. The only type of observations considered in Bjerhammar's methods are
free-air gravity anomalies. However, as in collocation, heterogeneous data might
be included in the predictions.

Finally, we mention that for many norms the above kernel functions can
be written in closed forms. As an example we give the kernel functions for
|Ag*| = min. (c¥= 2n+1):

(5.4") k= sg(l-sa)/!L3 ; for vi= Ag,
(5.67) K= rys® {2/L+1-34-st(5+30 ¢/2)}; forv =T,
3 COSQm
44 —olSE 2 3 _ 3st(1+4)
(5.8) k"‘_Ty_ sm{b,k{sm alk}{ 23 2 + 5 70 +
£y
+3me/2); for v1={ }
Ny
” -8 2 2
(5.97) kix= —— {1-58"+ 3(1-8°/24%};for v,=3Ag,/3r,
2r 4
where
8= re/ryrx ¢ t =cos ¥
and

L=(1-28t+ s“)'é , O=1-8t+2

More examples with derivations are given in Sijerg (ibid. , Appendices A.2 and
A. 3).




5.2 Model Studies

In Sjoberg (1975, section 19) some minimum norm solutions {formula
(5.10)} for L, Ag and 6 (=/Eaj77’2) are computed for two simple earth models.
Some of these results are reported below. For details we refer to Sjoberg (ibid.).
The following norms are used:

Method Norm ¢ */(2n+1)
1 Ag* 1 _
2 T* (n-1)°/rg
3 Lagritzen‘) (n-1)/((2n+1)(n-2))
4 g+ 2) (n-1)°/(n (n+1))

1) empirical norm from Lauritzen (1973, section 10. 3)
I (@57 = €+ (g

5.2.1 Bjerhammar's Model

Bjerhammar's model consists of a homogeneous sphere with a spherical
and homogeneous mass disturbance M (Figure 2), where M = 8.37758 x 1015kg and
a = 6362 km. The radius of the main sphere is 6370 km.

M
1 n P

Q

Figure 2. Bjerhammar's Model. The disturbing sphere M is located with its
center inside the main sphere.
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The "observed" Ag values (due to the disturbance M) were selected at
the surface of the model. The first set of observations (15 observations) was
selected for w < 7'30", the additional set of 35 observations was selected for
8' s w s 25' (all 35 points were located at the surface of the main sphere), The
predictions of £, Ag and 6 were carried out at the surface of the model (between
the observation points) for different depths to the Bjerhammar sphere (Table 5. 1),
The RMS errors at the optimal depths are summarized in Table 5.2. Methods
1 and 4 give good agreements with the theoretical values, The methods 2 and 3
are not suitable for this local model. The importance of the choice of radius of
the Bjerhammar sphere is obvious from Table 5.1.

Table 5. 2

RMS Prediction Errors at the Optimal Depths
to the Bjerhammar Sphere

15 observations 50 observations
Method" Depth® C Ag gie Depth® Ag Birt
/km/ /m/ /mgal/ /km/ /m/ /mgal/
1 3 0.04 22.7 0.33 3 0.03 2. 27 0.33
2 8-12 0.37 27.5 6.20 - - -- -2
3 - 11.9 34.2 6.25 - - - -2
4 3 0.05 2.23 0.32 3 0.03 2.21 0.33

! Norm used

® Difference of the radii of main sphere and Bjerhammar sphere

% Not computed

No. of predicted points = 24, RMS (anomaly - mean value) = 182 mgal.
Reference: Sjoberg (1975, Table 19. 1)

5.2.2 Molodenskii's Model

The surface of Molodenskii's model is a cone., Twc spheres, whose centers
are located on the axis of the cone, are taken as the anomalous masses (see Figure 3).
The attractions of the spheres myz; and m; on the axis of the cone 4050 m above the
reference plane are 150 and 100 mgal, respectively (mz~ 1.458 x 10*® kg,
mi~ 6.334 x 10’ kg). As there is a disturbing mass (m,) above the reference plane,

37 =




——

it is clear that this model is much rougher than Bjerhammar's model. The
computations revealed that for all methods (norms) the depth to the Bjerhammar
sphere should be selected as close to the reference plane as possible (10 meters
was used in the computations),

All observation and prediction points were selected on the surface of the
cone. A summary of the RMS prediction errors is given in Tables 5.3 and 5. 4.
We notice that the predictions are essentially better for a more regular distribution
of the observations (Table 5.4). Again, methods 2 and 3 are less favorable than
1 and 4. We also notice that these RMS errors are of a magnitude larger than
those obtained for the smoother model of Bjerhammar.

A comparison between a minimum norm solution and the Dire~ method
for Molodenskii's model is given in section 8.

Figure 3. Molodenskii's Model

——

24.6 : . ’
k
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Table 5.3

Molodenskii's Model. RMS Prediction Errors
at the Optimal Depths to the Bjerhammar Sphere

Method® Depth 4 Ag gn o
/km/ /m/ /mgal/
1 10 0.67 25.0 7.58 13.78
2 200-3500 0.23 33.3 5.48 6.25
3 10 13.5 45.5 14,24 28.25
4 10 0.63 25.0 7.58 13.76

! Norm used

(10 m is the minimum depth used in the computations.) No. of

observations = 20 (irregular distribution), no. of predictions = 19

{RMS (anomaly - mean) = 81.7 mgal}. From Sjoberg (1975,

Table 19. 2).

Table 5. 4

Molodenskii's Model. RMS Prediction Errors
at the Depth 10 m to the Bjerhammar Sphere

Method Z Ag £ o
/m/ /mgal/

1 0.09 15.4 2,45 2.70

3 5.2 18.9 3.11 5.80

4 0.06 15.4 2,45 2,70

! Norm used
No. of observations = 24 (regular distribution),

no. of predictions = 19 {RMS (anomaly - mean) = 81.7 mgal}.

From Sjoberg (1975, Table 19, 3),
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6. Integral Formulas as Limiting Cases

In this section we are going to study the solutions by collocation and the
Dirac method for a continuous field of observations at the surface of the earth.
Two problems are discussed: the uniqueness of the solutions and the existence
of the solutions.

6.1 The Uniqueness of the Solutions

The non-singular Dirac method was presented in (2.25) for a finite set
of observations (we exclude terms of degree less than 2):

N
(6.1) Agp=z u*, A (P,k) ; B=1, 2, «ciy

k=1
where

A (P,k) = ) Y(2n+l)c ¥ (ra/re) - P, (COS ¥ry)

i ~18

Using the solutions for u* of (6.1) the disturbing potential (T) may be estimated
by formulae (5.2) and (5. 6) (for Fy= fy):

A
Tr

rs ugZ S (P,k)

1

I l\./]z

k

where

S (P,k) = i i bty (2 )m P, (ocs )

n=2

n-1 re

and the height anomaly is given by { cf. (5.7)}:
A
(6.2) Co=Te /Y

Let N go to infinity with a well-behaving distribution of the carrier points. Then
we arrive at the following integral formulas from (6. 1) and (6. 2) in the continuous
case:
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(6.1 sg@ =L [[a@Qu@ado
and

’ 1
(6.2) 32(1’)=4—77 ,” S(P,Q)u*(Q) dao

In the special case ¢ * = 2n+ 1 (u*= Ag*) (6.1) and (6.2") become Poisson's and
the generalized Stokes' formula, respectively.

We now study the solution by collocation in the same way. From (1.2) we
get the following intermediate step (for D= 0):

(6. 3a) Agr=CX , P=1,2,...,N
or
N
(6. 3b) Agp=z c (P,k) Xy , P=1,2,.00,N
k=1
where
(6. 3c) c (P,k) = Z Cnp (rsz/rp rk)"‘\a P, (cos ¥ry)
k=2
and

X = vector of unknowns (X,)

The prediction of {» is given by:

A rp N .
(6.4) Cr= £ z Xx S (P,k)
k=1
where
3 (o 1‘52
S (P,k) = n—:1 ( ) P, (cos Ypy)

Cp Iy

I

Formuja (6. 3b) and (6.4) may be written:

will]=

]!
|




Age = 4% J‘Jc ¢c(P,Q) X (Qd&, P=1,2,...,N
and
rp .
C= oo [['s®ex@ao

where
N

X<Q)=\: X 6(Q-Qx)

k=1
6 = Dirac's delta function {see (2.24a)}

Q« = the foot point at the internal sphere of the normal : cough the
observation in P,

In the limit N—* (with the maximum distance among the observations approaching 0)
these equations become the following integral equations:

(6.3 sgm =L [[e@qx@do
and
(6.4) g(p) = “ $'(P,Q) X (Q) d 0q

Formulae (6.2') and (6.4') are estimates of { (P). Furthermore, the estimates
seem to differ for various choices of ¢ * and ¢, of the kernel functions. However,
next we are going to show that these differences are merely apparent whenever the
solutions exist.

First, we expand c (P, Q) of (6.3c) into spherical harmonics {cf. formula
(A.1) }:

¢ (P, Q)—Z z g You (P) Yau(@) (E2 Prz g

n==2 a=-n

By inserting this expansion into (6.3 ) we obtain:

Ag(P)-ZZ B -3) Yon (P)

n=2 a=~n




where
Bu= oo [[(£2) Ye @ X @ dax

In the same way (6.4') and Ag(P) may be developed into the following series:

Em=) Y ety (2 v
n=2 a=-n
and
n+2
Ag(P)=ZZ A e (%) Yo (P)
where

Ann=

L ] ag* @ v @doq

From the above expansions we obtain for ¢, > 0:

Bu= Ap,
and
b= T TN B i S
E: 4:‘137 ” S (re,¥pq) A8* (Q) d Og
where
s entg) = 3 2L (2 con

n=2a

S (re,¥m) is the generalized Stokes' function, Thus we have shown that
each collocation solution for { (for c¢,> 0) in the continuous case equals Stokes'
integral formula,
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The same result may be shown for Poisson's and Vening Meinesz'
integrals. Moreover, the same proof holds for the non-singular Dirac method
in the continuous case {formula (6.1) and (6.2)}. The uniqueness of all solutions
may be regarded as a consequence of Stokes' theorem (Heiskanen and Moritz,
1967, p. 17), which states that a function harmonic outside a closed surface S
is uniquely determined by its values on S,

However, the conversion from one set of ¢, (¢ *) to another is, of course,

not valid unless the unknowns (X and u*) exist and the kernel functions are boundead.
This question is discussed in the next section.

6.2 The Existence of the Solutions

In sections 3 - 4 we have studied the stability of the¢ coefficient matrix for
different methods, which is of importance for the practical application with a finite
set of observations. Now we ask under which circumstances there exists a solution
in the continuous case (infinite number of observations), As will be shown, the
existence of a solution to any of the integral equations is considerably dependent on
the smoothness of the observed field.

In Moritz (1975), a proof of the convergence of least squares interpolation
is presented for an element T of a certain Hilbert space (with a given kernel
function)., However, Tscherning (1977a) showed that the disturbing potential of
the earth (T) is not an element of the Hilbert space, associated with the empirical
covariance function. Subsequently, Moritz' proof is not applicable in this case.

In our study we start with Poisson's integral equation for the exterior of
a circle of radius rg. All observations are assumed to be located on a circle of
radius r. Then we have { cf. formula (4.4)}:

(6.5) Bg (6) = | k(8,,0,) Ag* (89 8,
-1
where
AR 1-8° _ 1.0 _m (8- 6y
0,0,y —= 128 = 1= Ok
(6. 6) Fr¥s)" 3 |S-e“93'9k)|2 21'7_2_ s'le

Now we assume that Ag may be expanded into a Fourier series and we try a
corresponding series for Ag*:

8

(6. 7a) g6, =Y a,e"®

Cd

[ RO —— - . G-




and

(6. 7b) Ag* (6,) = z by et48x

{=-x

Furthermore, we assume that both the unknowns (Ag*) and the observations (Ag)
are uniformly distributed with;:

where m is the number of observations (Dirac method), This implies that Ag*
may be written:

ag*(8) =) Ag* (6 6(6- 6
k=1

and

(6.8) Ag (6) =Zk 0;,6k) &g*B0) , j=1,2,...,m

k=1

)
Let us now regard (6.8) as a linear filter with each "tone' by e - of Ag as input
and a, e9 of Ag as output. Then we obtain from (6. 6) - (6. 8):

143T/s _ by
e —
2n

i M-

i Inl exneTT(J-K)/l eiza" k/-

= :_ i slnnemﬂ“/- 2 e*(z-n)aﬂk/-

n=-o k=1

LY RRVELIVE
B m ug,, (S)




where (see Appendix, Corollary A, 2):

ug, o(8) = i sltnﬂ . (s m--oz+ s._m”a) / (1- 8%

P= -~

le |

m

o= [Jr%l] = integer part of

Hence
(6.9) by = 2ma, /(muy,, (s))

Moreover we notice

lim ug,q. (8) = s'“ y I =

so that for large m we have, approximately:

(6.9‘) bﬂ 2 2TTa£ /(m Sl“)

We conclude that Ag* does not generally exist for a dense distribution of the observations,
and the convergence for Ag* as m— > js very much dependent on the behavior of ay

as L—-x»,

Let us assume that the solution for Ag* exists. The predictions of Ag (R, 6)

are then given by:

AE(R- 6) = 2 z k(e9ek)Ag*L(9k)
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and

Visn (sR,e) 7 z SR”“”' e“’e

J: -

This sum is given in a closed form in the Appendix, Proposition A. 2. Inserting (6.9)
we finally obtain:

= Vf,,u(s 99)
(6.10) ? aidg Rl

“z,m(s)

Furthermore it follows from Corollary A. 3 that:
Vien SR ’ e P

so that

o 121

lim AAg(R,G) = z ay (%) e

m— @

L6

— =

Thus Ag is convergent in thelimit for R> r. (The convergence for K=r was proved
by Hormander. See Bjerhammar, 1974,) Subsequently, we have shown that although
the predictions are uniformly convergent for R > r, the intermediate solution Ag* does
not generally exist in the continuous case (m~=). This result is of great practical
importance.

Let us now substitute (6. 5) by the following general integral equation

[cf. formula (2.5)]:

(6.11) Ag (6= [ k(8,6 ux @B, a8,
-TT

<77




where

k(8,00 = = 3 /of, st et (O 6

n=-x

To ensure that the kernel k is bounded, we suppose that the magnitude of c * satisfies:

(6.12) Vex "< 1/n for n>M

where M is an integer. The solution of (6.11) becomes:

u* (e) = ile

L

ble

q r\/js

@

where {cf. (6.9) and (6.9)} :
by = 2may/(mYcg* up,, (5))

or, approximately for large m:
(6.13) by~ 2may /(mVeg* sm)

From (6.12) and (6. 13) it is obvious that it is generally not possible to select a set
¢ * such that u* is convergent for arbitrary ay.

Next, we proceed to the global equivalence of the above derivations. We
assume that the gravity field of the earth can be expanded into a series of spherical
harmonics [Y..(P)] for each point (P) on the surface of the earth (cf. section 6.1):

e =5 S Aw (2 v

re

- s

n

where Y., (P) is defined in the Appendix, formula A.1, Furthermore, we expand
u* into a corresponding series:

(6.14) u*(Q) = i i Une Yoo (Q)

n=23 m=-n
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where u,, are unknown coefficients. By inserting these two series into (6. 19, we
arrive at the following identity for each spherical harmonic:

Chn
or
/ 2n+1
(6.15) Ung = A gy x

Here we have expanded P, (cos ¥rq) of the kernel function A (P, Q) according to the
Addition theorem (A.1):

P, (08 )= = ) Yau (P) Yiu (@)

n=-n

and we have also used the orthogonality property for the spherical harmonics.

The same technique may be used to solve for the intermediate solution X Q)
in collocation., We insert the expansion for Ag (P) and:

(6. 16) X (Q) = z X Yoa (Q)

n, o

into (6.3” ), and we generalize the auto-covariance function by substituting the
empirical set c, of (1.5) by an arbitrary set of pusitive definite parameters ¢ *.
The result is:

n+3

z Z 2::*1 (i—")a You (P) Xyour )] (Ef) Yns (Q) Yors’(Q) d 0q =

’
nem nym

(6.17)

=l




In this case we can not simply apply the orthogonality property of the spherical
harmonics to identify the unknowns, because r, is a variable. However, if we
limit ourselves to the special case rq = r = constant (all observations on a
sphere) we obtain:

r 2n+1
or
_ 2n+l , A
(6.18) Xpn = Cx A (ra)
In summary, the solutions for u* and X are:
2n+1
(6.19) u* (Q) = z :‘i Ana Yar (Q)
Ny %
and
2n+1 e
(6.20) x@=) B, (2) v. @
— c n* r's

If we now consider that the choice of ¢ * is restricted by the condition of bounded
kernel (covariance) functions, the convergence of (6.19) and (6. 20) is essentially
dependent on the smoothness of A, for higher degrees.

Let us for the moment assume that (6.19) and (6 20) converge. By
inserting these solutions into the integrals (6.1) and (6.3" )s We obtain in both cases:

(6.21) TR z A (i—:)aY (P)

n=2 g=-n

This series is identical with the exterior gravity anomaly of the earth, Thus the
predictions converge to the true values, whenever the unknowns u* and X exist in
the continuous case (cf, section 6.1),

According to the Hilbert-Schmxdt theorem (Chambers, 1976, p. 50), the

series solution (6.21) for Ay (P) of the left member of the integral equation (6.3" )
is valid if and only if:
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1) ¢(P,Q =) cg (ra/r)*™3) b, (cos rq) < =

—
n=

[V}

and

2 IxIP= = [[ x*@dog <=

where r is the minimum radius to any point at the surface of the earth. Using
(6.20), the condition 2) may be written:

2) [IxIP = 7 [1—‘)‘21”1 = Q(M)]
n=2a B
where we have used the notation:
r a(n+a) 2(n+2)
O: o EE I\nf <:;?> = Cn (';:)

m==-1

0,° is the anomaly degree variance at the sphere of radius r (cf. formula (1.5)). From
1) and 2) we arrive at the following inequality for the magnitude of ¢ *:

rs 3(n+a)
(6.22) n'n 0, < ¢ <T> < nt

In the same way we obtain the following conditions from the integral equation (6. 1') with
the solution (6.19):

) APQ=) /@a)cs (re/r)"? P, (cos br) <
=0
and
a(noa)

e i

2)  lux||® =z (2n+1)

n= 0

and the corresponding magnitude bounds for ¢ * are given by:

3 a2 I's i )
< * — < =
(6.23) n° 0, Sy (r ) n
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The inequalities (6.22) and (6.23) should be regarded as necessary bounds for ¢ *
in a convergent solution of collocation and the Dirac method, respectively. We notice
that both (6.22) and (6. 23) are satisfied for:

(6.23) 0, < a2

However for the gravity field of the earth, we have according to Kaula's rul7 of thumb
for the variation of the potential coefficients, that @, is on the order of n™* %, Thus
we conclude that the solutions for u* and X are not convergent in the continuous case.
The same negative result is obtained if we replace the observations Ag of (6. 1') and
(6. 3‘) by the disturbing potential, In this case, we arrive at the same ir~qualities
(6.22) and (6.23). The degree variances of T (0, (T)) are of m* ,uitude ©v * according
to Kaula's rule, and it is clear that (6.23") is not satisfied.

In all the methods of Bjerhammar, the idea is to determine a fictitious field
u* (or 4&g*) on the internal sphere, and then to use u* (4g*) in the classical integral
equations for estimating geophysical quantities such as Ag, T, £, and {. In collocation,
we are not restricted to the determination of the corresponding intermediate solution
X as was suggested previously. For example, the prediction of Ags may be expressed
directly as a linear combination of the observations (discrete case):

(6.24) ae =) hes g

1=1

where hp; are the weights, which are given by the following disc rete Wiener-Hopf
equations:

m
(6.25) CP3=X hPic”( H k=1, 2, seey IMm

1=1

where ¢ is the covariance function of Ag. In the continuous case (6, 24) and (6. 25)

become:

(6.24) & @=L [[nrqag@ado
and

(6.25" ¢ (P,Q) = Zl? J[[re@)c@@dor
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If P is a point at the surface of the earth, (6.25) has the solution:

h(P,Q =6 (P-Q

where § is Dirac's delta function defined in (2.24a). If P is a point outside the
surface of the earth, we may assume that the covariance function ¢ is spatially
homogeneous and isotropic:

8

¢c(P,Q) = Cn (!‘B/I‘p I'Q)n+2 P, (cos ¥rq)

n

I

In order to solve for h we try the following expansion:

h(P,Q) = ) h, P, (cos ¥r)

i )8

2

where h, are unknown coefficients to be determined. Let us restrict ourselves to
the spherical approximation of the earth, i.e. rq = r¢’= r = constant. Then we
obtain from (6.25):

h, = (2n+1) (r/rs)""°
and the solution for h becomes a modified Poisson's kernel function:

h (P,Q) = Z (2n+1) (r/re)" ° P, (cos ¥r) =

n=2a
= f S ) - (—E-i- 3 (L)a cos ¥r
re (re°+ ra-er,cosabpq)"ﬁ Te Cp

and (6.24") becomes Poisson's integral (without the terms of degrees less than 2).
Thus we have found that by carrying out the collocation solution by solving the
Weiner-Hopf integral equation, the correct gravity anomaly is recovered on and
outside the surface of a spherical earth,
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In the same way we can solve for the disturbing potential in the exterior
of a sphere. Let us use the estimator:

(6.26a) T =L [[ heesg@ado
4m

where h (P, Q) is given by:

(6. 26b) k== [[hPQ)e@Qdoy
and
k(P,Q) = re {T} (re/rer) ° P, cos ¥rq)

T

n=2

@

c(P,@) =) c. (re/n°C"® B, (cos ¥ry)

n=23

By trying an expansion for h in (6.26b) (cf. the previous example), the coefficients
h, are easily identified and the solution for h becomes:

h(P,Q) = r S (re,¥rq)

where
3 2o+l 7 r ¥
S (rP,wm) = ——n-l (;—) Pn (COS wpq)
n=23

Thus the solution for T/Y from (6.26a) with rs=r is Stokes' formula (cf. section 6.1).

6.3 The Effect of Smoothing (Noise)

The solutions for u* and X in the methods of Bjerhammar and collocation
may be smootbud by adding a noise covariance function d (j,k) to the auto-covariance
function ¢ (j, k) [¢=e formula (1.2) and (2.16)]. Consider the example of the previous
section with a continuous field of observed 4g on a sphere of radius r. Let us replace
the covariance function of (6.3° ) by:
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(6.27)

where

¢(P,Q = ¢ (P,Q + d(P,Q)

d(P9Q)= dﬁ(wPQ) ’ d >0

6 (¥#y) = Dirac's delta function, defined in (2.24a). This noise covariance

function corresponds to pure white noise. By inserting (6.27) into (6.3 '), we obtain
in accordance with (6.17) and (6.18) (for rp=rq=r):

(6.28)

A nm (I'e/r)”a

Xpa =
d+ (rg/r)a(“a)c ./(2n+1)

For large degrees (n) the coefficients X,, can be approximated by:

e l E)n-}-a
X~ 3 Ao (2

Subsequently

X(Q = z Xan Yne (Q)

n, m

is convergent whenever the spherical harmonic expansion of Ag has the radius of
convergence T.

The prediction of new anomalies from the intermediate solution X is given

by (6.16) and (6.3 ). The result is:

Ag (P) = z X e (rec/rre)™t? é—;"—l Yna (P)

By inserting (6. 28) we arrive at the following predictor and prediction error:

(6.29)

2(n+2) re\nt3

(5) =@

cn(rﬂ/r) A
(2n+1)d +c ,,(re/r)ar"jsj ra

8g(p)= )




IR e o e oy ey

and
n+e

d Aw(F) Yo (P)

(6.30) &k (P) - Ag (P)=- ) T

ne 4+ (re/T)

)e o/(2n+1)

Subsequently, by selecting a sufficiently small d >0, the prediction error becomes
arbitrarily small., However, in practice the constant d has to exceed a certain
minimum value due to the requirement of X to be within the range of the computer,

In a similar way we may approximate the solution for the Dirac method.

The smoothing is first of all justified when the observations are errcaeous.
[Cf. formula (1.2) and (1.3).] These predictions are statisticall: iased, which we
conclude from the following application of (1.3), Let:

A&P = cp(C+ D) ! &g

be an estimator of the anomaly Ag,, which is included in the vector of observations
(Ag). Furthermore, Ag consists of a signal Ag and its error €:

Ag= Ag+ €
where Ag is the true anomaly and:

Biel=20 and Efec'l=D

E { } = the probabilistic expectation
Now it follows immediately that:

E {Age} = co (C+ D) E (AE}= cr(C+D)" Ag
Hence

E (Agsl # cp C* Ag = Ags

and we have proved that A?;p is biased.
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In the continuous case we may prove the bias in the following way. Let
the observed anomaly field (4g) consist of the signal Ag and the noise ¢ :

Ag = Ag+ €
where

Ag (P)= ) An (-I‘;B)MEY,,,(P)

@ =Y (2 ucp)

n, 0

E{€}=E {ea}=0

The estimator of Ag(P) when including the noise in the observations is in accordance

with (6. 29):
n(rs/l‘)a(n+a) rs n+3
Ag (P) = 2 = A+ € (—) Yoa (P)
ng (2n+1)d+c,,(rg/r)2(n ?) <rP)
and the bias beconics
E (Ag(P)) - Ag(P) = 2 d A (“)MQY (P)
A | S i d+(l‘a/l‘)2(n+a)c n/(2n+l) nm re nm

The bias is due to the fact that Ag itself is not a random stochastic process, only its

3 errors, €. (The expectation should not be interchanged with the global average.) A

1 way to diminish the bias is to subtract a low degree spherical harmonic reference
expansion from the observations prior to the prediction. Even though we cannot

3 correct for all the bias, the resulting residuals are, hopefully, more random than

the original observations. The general prediction formula (1.2) should therefore be

modified in the following way [cf. Sjoberg, 1975, formula (16.1) and Koch, 1977,
formula (18)]:

(6.31) Vi= ¥y + ¢y (C+D) ) (Ag- Af)
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where

\An - A“g = low degree spherical harmonic expansions for v, and Ag.

This is the v«gell-known collocation with the inclusion of systematic terms represented
by \“r, and Ag. We conclude that this formula should be used not only in local studies,
but also in global applications of collocation to reduce the bias in the model.

6.4 The Limiting Case of a Least Squares Solution

Finally, we are going to study the convergence of the least squares solution
of Poisson's equation for the circle. We assume that we are using the Dirac method
with m>N. The residuals may be written:

N
€J=Ag1-z k(e.]’ek)Agk* ’ j=19 2y ooy m

k=1

The minimum of the square sum of the residuals is obtained for the normal equations:

m N

Y k(6,60 Agy=) 9 k(8,00 k (8,0, gt

i=1 J=1 k=1

where
Q= V¥ cong N

Inserting i
) ne 1
Ag(G_,):E a,e'" ! , 6;=2nj/m=2nrj/N ;
n=-® '
|
and :
@© 6 ‘]
agt 8y = ) by e, 8,= 2mk/N 4

L=-o

where r is an integer (m is a whole multiple of N) into the normal equations it can ‘
be shown that: 1

by = azz e Nz y gt tug* Meml
P

-

P q

~H8-

PR NRETE )

N prea




where all summation intervals are [-=, +®], Specially, for m ¥ we arrive at:

S‘ ” 1+ Nph

-
P

10+ Nl
Nz S8 ¢ 4

P

(6.27) bf. a:?)

where the sums are given in a closed form in the Appendix, Corollary A.2, It
follows from (6.32) that Ag* will generally not exist when N approaches infinity,
because for large N we have approximately:

bz ~ az S—'zl/N

The prediction of an arbitrary point Ag (6, R) from Ag* and (6.32) gives:

T Slf’m

L B

A £
Ag (B, R) = }_ ay el evm(e, R)

il L‘w*N
] ys v

P

where

°]
Viu (61 R) =$ i

e

©

Specially for 6=6, = 27 j/N and R = r we obtain:

(5 +o

A 18
Ag (8, 1) = 2 ag e’ L S
7 ) s

P

and finally

lim A'é By 1) = ; ay e‘zeJ = Ag (6.1 , T)

N-.m

Hence, the least squares prediction converges to the true value when N approaches
infinity,
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7. On the Choice of Radius

In the studies of the Bjerhammar problem little attention has been paid
to the choice of radius of the Bjerhammar sphere (rg). However, in Sjoberg (1975)
the importance of this choice is demonstrated for different covariance functions.
In this section we are going to use the following one-dimensional prediction estimate
on a circle as a basis (cf. the previous section):

Vise 29
Wy e

(7.1) Ag (r,6) = S‘ ay

z;m

where

Vz,n:: Vz,,(5,9)= Slﬂ*-njle'.lje

J

-3

=)

Upya = Vi (SQO)

and m is the number of observations. The corresponding prediction errors are:

(7'23) 6(6) = Ag(roe) i Ag(r,e)—i 61, (6)
wherez
6
.2 = o
(7.2b) €,(6) az[“zn 1] e

We define the mean prediction error in the following way:

2
- 1
(7.3) c=2—1—_' I €©6)d6
0

First we prove the following proposition.




Proposition 7.1: If a;=0 then

o]
0<fel< 1) anl

=—>

£ 0 -

f"'y Asm
—
3

where m is the number of observations.

Proof: Using
21
1
= [ s ao
(o}

it follows from (y.1):

Here we have used Corollary A,2 with £= jm:

1+s®
1-s8®

Winygn =

From this expression, the proposition readily follows.

Although s—1 gives the mean prediction error 0 and has also proved to
give the most stable solutions (section 3), the '"best' choice of radius rs must be
determined in some mean square sense. Let us therefore study the prediction of
the signal:




(7.4)

Agy () = bcos (£6) + c sin (£6)

at the circle of radius r. We define the relative variance in the following way :

(7.5)

where

2m 2n
R, = jsz(e)de/j g a6
[e] (o]

€(0) = AAgz(G) - Og, (8) (prediction error)

It is shown in the Appendix, Proposition A.4, that (7.5) may h: writter (for £~ 0):

(7.6)

where

(7.6")

From (7

Sy if/&aég—lp,p=1,2,3,...

R, {
128 i g wi=l0p
2(1+B) = 2(1+P)

G = 1 1-s® 1+sam—4n a l_sn 281"“
L 1+s® (1+s“‘3“)3 1+s®-3n
n= 4 - [L.J m
m -
B= (c¢/b)°

.6) and (7.6') we draw the following conclusions:

a)limRy=0, m—*

b)lim §g=1, s—1

c) if £< m/2 then lim Ry;=0, s=0

d) if £=m/2 then S;>1/2 and lim $;=1/2, s =0

e) if £>m/2 then S;>1/2

f) if £ =mp then S;<2 and lim §;= 2, s~ 0

g) if £=m(p + 1/2) then S;< 3/2 and lim §y=3/2, s~ 0
h) if £>m/2 and £# mp/2 then lim §; ==, s =0
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RELATIVE VARIANCE (%)

£.=2_5(=.m/.2).

.

h/a

Figure 4. The relative variance S, in the Dirac method for the circle, using
Poisson's kernel, is given for signals of various frequencies (1) as
a function of h/a, where h= distance from the Bjerhammar circle to
the circle of observations and a= spacing of the data (2 nr/m). m=50,
1 0.10
~
>~
S~
~ .
\\\(h/o)ophmum
S
= ~
-
SN~
100 — 005
75 Relative variance
50 | |
0.5 1.0 & 2.0

Figure 5. The optimum ratio h/a and the corresponding relative variance
(Ry) given as functions of 1/m, where 1 is the frequence of the
signal and m is the number of observations (1> 0.5 m).

L/m
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These statements are illustrated in Figures 4-5. |t is obvious that for
low-frequency observations (£ < m/2), the radius rg should be chosen as small as
possible in accordance with the numerical difficulties discussed in sections 3-4.
(See also section 8.) For higher frequencies (£ > m/2), the relative variance Ry
is at least 50% (see also Bjerhammar, 1977a), Accordingly, signals of frequency
higher than m/2 can not be predicted in a satisfactory way.

In a real prediction case we do not have the above ideal situation with a
uniform distribution of data of one single frequency, and the most favorable distance
rg is a function of the unknown coefficients (aj) and of the mean spacing of the dat .,
In most cases empirically derived covariance functions are associated with a specific
radius of the Bjerhammar sphere. Several tests in Sjoberg (1975) revealed that the
solutions by collocation are rather unsensitive to the choice of kernel functions, if
the optimal depth to the sphere¢ is chosen for each of them. How er, the choice of
radius (changing for each distribution of the observations) is wmportant for a good
result, In conclusion, a study of the relation between the optimum radius rs and the
spacing of the observations is recommended for each specific kernel function. For
instance, in the numerical example of the next section, the optimum depth to the
sphere in the Dirac method is approximately half the distance between ncighboring
observations.

8. Computations

The iterative method described in section 4 will be used to demonstrate the
rate of convergence of the solutions for Ag* and X in the Dirac method and collocation,
respectively [see formulae (3.1), (3.2) and (4.2)]. The stability of each method is
reflected by the number of necessary iterations for the solution of the vector Ag* or X.

First, the case with the degree variances equal to 2n+ 1 will be considered.
The observations consist of 87 free air gravity anomalies regularly distributed with a
spacing of approximately 0’5 (Table 8.1). The 50 prediction points and anomalies
are given in Table 8.2, The mean value (4g) of these 50 anomalies is -2, 8 mgal and
the RMS value of Ag - Ag is £13.4 mgal. In the computations we assume that the
mean sea level radius is 6370 km. The prediction results are given in Table 8.3 and
Figure 6. From the table we notice that the number of necessary iterations increases
with the depth to the Bjerhammar sphere and that this increase is more pronounced for
collocation than for the Dirac method. The solution by the Dirac method for one specific
depth is identical with the collocation solution for half that depth. This result implies
that the latter method is twice as sensitive to changes of the depth as the former.

For comparison we study also the predictions using collocation with the
empirical covariance function implied by subroutine COVA (Tscherning and Rapp, 1974).
The computations are performed for different lower bounds (N a1n) of the covariance
function. In each case the RMS prediction error 10.1 mgal was obtained, The number
of necessary iterations are given in Table 8.4,
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Prediction points.

NO

16009
16011
10499
16042
16012
10052
10047
10038
15372
273
15370
16047
190496
10081
625
16002
16050
15331
15334
16056
15384
9164
13576
15715
15723
15675
10019
15378
10203
11455
10222
5710
5546
10198
5531
5076
10078
16104
10098
5084
10014
12002
10007
213
15725
15736
15738
10249
12652
15748

Table 8, 2

stations in Manitoba, Canada.

LONGITUDE
DEG

50.59499
50.74666
50.79678
50.95000
50.88333
50.59193
50.22284
50.21497
50.49666
560.40833
50.75499
50.68333
50.80524
506.21280
50.30666
51.12833
50.29498
50.74500
50.42332
50. 18333
50. 12999
48.91199
49.0219¢
49 . 84846
49.74696
49.86766
49 .84630
49.92999
49.76701
49.62477
49.59979
49.43166
49.72333
49.62842
49.71666
49.71560
49.90007
49.68629
49.30528
49.81332
49 .62167
49.49670
49 .22151
49.14166
49 .70807
49.66466
49 . 24759
48.66917
48.56082
48.83151

LATITUDE
DEG

91.14833
90.96163
92.36719
91.75833
91.01666
92.61716
92.84720
92.37631
91.87166
91.50833
91.88333
91.41998
92. 14000
93.23965
93. 17999
90.86833
91.38998
90.75665
90.71666
90 .68832
90.23999
90.60001
91.96181
90. 40294
90.75410
92.09277
92.39220
91.38333
94.87744
94.02734
94.35619
96.27499
95.24666
95.49942
94.93666
94.80666
93. 14622
93.87337
93.51170
92.97501
92. 44067
92.69481
92.46306
92.70332
91.09705
91.81667
91.46384
93.27843
90.73390
90.96706
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ALTITUDE
METER
386. 181
379.476
425.5901
402.081
378.257
428.854
358. 445
357.835
357.225
370.027
391.973
382.219
396. 545
364. 845
361.493
380.390
373.683
390.449
391.058
404.774
417.576
457.809
425.501
442.265
435.559
382.524
366.674
388.925
359.969
373.990
323.088
357.225
338.328
318.211
359.664
345.643
372.770
379.171
338.023
355.092
385.572
403.555
405 . 384
388.620
435.559
419.405
445.617
337.718
447.751
445.922

50 free air gravity anomaly

-21.95

-23.51
-18.90
-29.92
2.11
-10.26
5.44
5.27
16.62
-1.36
10.92
14.12
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Table 8,3

Comparison Between the Predictions of 50 Free Air
Gravity Anpomalies From 87 Observed Anomalies
Using the Dirac Method and Collocation*

Dirac Method Collocation
rs depth No. of RMS error No. of RMS error
(km) (km) iterations [mgal] iterations [mgal]
6315 55 30 10.7 30 118
6320 50 25 10.6 an 11,7
6325 45 16 10.5 30 11.5
6330 40 10 10.4 30 11.3
6335 35 7 10.2 30 11.1
6340 30 5 10.2 30 10.9
6345 25 4 10.2 25 10.6
6350 20 4 10.4 ) 10. 4
6355 15 3 11.0 5 10.2
6360 10 2 12.0 4 10.4
6365 5 2 332 2 11.9
6370 0 1 13.5 1 13.5

* The iterations of Ag* and X are interrupted whenever the RMS residuals
are less than 0.25 mgal., the maximum-residuals are less than 0.5 mgal.
or the number of iterations exceed 30. Degree variances = 2n+1.

Table 8.4

Number of Necessary Iterations of the Vector C™* Ag
to Satisfy Either of the Conditions RMS Residual < 0.25 mgal
or |max. Residual |< 0,5 mgal *

N 3 5 3 13 20
No. of iterations 18 16 14 13 10

* Subroutine COVA is used for different minimum degrees
(N ltn)

S ——
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The empicical covariance function in collocation gives a slightly better
prediction result than the Dirac method for its optimum radius of rg. This gain
is obtained at the cost of at least twice as many iterations. For a denser spacing
of the data, the number of necessary iterations will increase and the difference
between the two methods becomes more pronounced. With this reasoning, the
non-iterative solution may fail, when using collocation (due to numerical
singularity), while a solution by the Dirac method may still be useful. For example,
the prediction result reported in Table 8.5 shows small differences between collocation
and the Dirac method (93 well distributed observations). However, when a few more
observation points were included (99 points) between the previous ones (with minimum
spacing 675 meters), the RMS prediction error of £ increased to 11!'4 for the
collocation type of solution, while the RMS error of the Dirac method was still
useful (1!'3). (From Sjoberg, 1975.)

RMS Prediction Errors for Molodenskii's Model

No. of Collocation Dirac Method
obs. g Ag gn 4 Ag £
/m/  /mgal/ /m/ /mgal/
93 0.01 1.4 0.59 0.12 1.8 0.90
99 11.4 . 1.3

* Depth to the Bjerhammar Sphere = 10m. No. of prediction points = 37.
c* = 2n+l. Reference: Sjoberg (1975, section 19.2.3).

9. Conclusions

The purpose of this report has been to compare some methods of
A. Bjerbhammar with collocation for the solution of the boundary value problem in
physical geodesy. In practice, the number of observations are finite ("discrete
boundary value problem'). In the present application collocation is most frequently
identified as Wiener-Hopf prediction of stochastic processes, in which case the
covariance functions are assumed to be known (homogeneous and isotropic). The
main problem is therefore to find the appropriate covariance functions. Rigorously
this has been proved to be an impossible task, because of the non-ergodicity of the
empirical covariance functions (Lauritzen, 1973).




Bjerhammar's methods are based on Poisson's integral equation and
Stokes' formula. For a finite set of observations there is always a fictitious field
(Ag*) at an internal sphere that satisfies the integral equation. In Bjerhammar's
applications Ag has originally been considered as mean anomalies over blocks of
certain sizes at the internal sphere (the Bjerhammar sphere), Dependent on the
number of such blocks, different types of solutions of the problem are obtained.
If the number of blocks (N) are less than the number of observations (m), a unique
solution is given from adjustment by elements. For N > m a unique solution is
given by condition adjustment, which solution minimizes the norm of the unknowns
(Ag*). In the special case N — ® and well-behaving surface elements we have shown
that the minimum norm solution of Bjerhammar (|| Ag* ||= minimum) approaches the
solution by collocation with the degree variances equal to 2n+1. Furthermore, this
proof has been generalized to yield, that for each set ¢, in collocation, there is a
corresponding minimum norm |u* ||in the generalized Bjerhamn .r approach (section
2.2). Thus the problem of selecting the degree variances in collocation is identical
with the problem of selecting the minimum norm in the Bjerhammar method. It
should be stated that already Krarup (1969) regarded collocation as a generalized
appreximation for a specified minimum norm.

A different type of solution, called reflexive prediction, was introduced
by Bjerhammar (1974). In this method the external gravity field is assumed to be
generated at a priori selected fictitious carrier points, on or outside the Bjerhammar
sphere. Once the carrier points and the sphere are defined, Poisson's integral
equation can be applied rigorously, and the result is a set of linear equations. If all
carrier points are located at the internal sphere, the method is called the Dirac
approach. Due to the arbitrary location and number of carrier points, a wide variety
of solutions are possible. Of special interest are filtering (less number of carrier
points than observations) and the non-singular Dirac method (see below),

In this report we have, first of all, compared collocation and the non-
singular Dirac approach with carrier points located at the intersections of the internal
sphere with the radius vectors of the observations. The coefficient matrix of the
latter method is non-symmetric in contrast to the former. Moreover it was shown
in section 2 that for a constant geocentric radius of all observations in an area (and
¢, =2n+1) the two methods give identical prediction results for:

where hy and hg are the depths to the Bjerhammar sphere in the Dirac method and
collocation, respectively. This result has been verified to hold also for approximately
constant geocentric radius of the observations (section 8).




It was demonstrated in sections 3 and 4 that the numerical stability of
the solutions differs for the two methods (collocation and Dirac). For a given
radius of the Bjerhammar sphere the Dirac method is more stable. In the numerical
example of section 8 it was found that for Poisson's kernel (¢ * = 2n+1), the con-
ditionings of the two methods are equal provided that formula (9.1) is satisfied. For
this kernel function the solution by collocation is twice as sensitive to the choice of
Bjerhammar sphere as the solution by the impulse method, a fact that is important
for the solution of a large system with a dense distribution of the observations.

In the continuous case (with observations covering all the surface of the
earth) we have found (section 6) that all predictions with the generalized Dirac
method and collocation are unique for various sets of positive ¢ ¥ (c¢,), whenever
the solutions exist. This result may be regarded as a consequence of Stokes'
theorem. In general, however, the intermediate solutions u* and X do not exist
in the continuous case. The existence of the solutions requires that the degree
variances of the observations are at most of magnitude n's, a condition which is not
satisfied for the gravity field of the earth according to Kaula's rule. Approximate
solutions may be found, for example, by adding a positive constant to the kernel
function. In the same way it was found in section 6.3 that a solution may exist when
considering that the observations are erroneous. However, these solutions are
statistically biased. If collocation is carried out by solving the Wiener-Hopf integral
equation, a convergent solution is obtained outside a sphere (all observations on the
sphere). However, inside the bounding sphere of the real earth, the convergence is
still not proved.

1t should be noted that the deterministic approaches by Bjerhammar through
Poisson's and Stokes' formulae do not provide estimated prediction errors, as is the
case in the stochastic process approach (i.e. collocation according to Moritz), How-
ever, as the uncertainty of the covariance functions has a direct impact on the error
estimates, these estimates might be of limited value.

For large systems the free choice of carrier points in reflexive prediction
might be advantageous (filtering is possible). However, experiences by Bjerhammar
(1977b) indicate that numerical difficulties may occur in the filtering process, due to
ill-conditioning.

Finally, we like to mention that the original approaches of Bjerhammar
are designed to solve problems in physical geodesy, first of all the geodetic boundary
problem, for gravity anomalies as the only source of data. However, it is not difficult
to modify the methods in order to take other types of geophysical information into
account. Thus, both collocation and Bjerhammar's methods possess a flexibility for
the processing of heterogeneous data.

T




10. Extensions and Recommendations

This study has shown that reflexive prediction (the Dirac method) is less
sensitive to changes of the radius of the internal sphere than collocation for the
particular kernel and covariance functions with ¢ * = ¢, = 2n+l. The prediction
results and the stability of the two methods are the same, if collocation is applied
with half the depth to the Bjerhammar sphere used in reflexive prediction. We
recommend these comparisons to be carried out for other covariance functions,
Of special interest would be to compare an empirical covariance function with a
best fitting kernel function (cf. Sjoberg, 1975, section 18).

Special attention should be paid to the relation between the distribution of
the observations and the optimum radius of the Bjerhammar sphere for various
covariance (kernel) functions.

A procedure to estimate the prediction errors in reflexive prediction is
of interest for the user of the method. In order to reduce the bias of the predictions,
we recommend the use of formula (6.31) in all applications of collocation to the
geodetic boundary problem and related problems in physical geodesy. A correspond ing
formula should be used in reflexive prediction, if the kernel function is modified to
take noise into account.

Theoretically, it is of interest to reveal whether the Wiener-Hopf type of

predictions [formulae (6.24"), (6.25), (6.26 a-b)] converges when applied to a
continuous field of observations at the surface of the earth,
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Appendix

The Addition Theorem for Spherical Harmonics:

(A.1) P, (cos Yy) = 2—511']': \2_‘ Yoz (615X 1) Yoa (Bk,Ax)
where

cosmA m~>0
A.1) Yaa (65A) = Pyyg (cos 6)

sin|lm|A m<o0

(6,A) = spherical coordinates (colatitude
and longitude)

r )
(A.2) 4—1: J j Yia Yz do = 8 20 22

the unit sphere
Kronecker's delta

o Q
[}

Corvilary A.1:

T ‘ 1
(A.3) =l P, (cos¥ ) P, (cosyy) doy, = Tord P,(cos¥ y4) X Spn’

The corollary follows from (A.1' and (A. 2).

Proposition A.1:

If A is a matrix of dimensions (m x N), where

n+2

M= =Y V(2oe) /e (28) P (cos ¥y A0,

4n

b}




8

2 n+3
. T Ts
lim (AQA)“= Cq (—) Pa (Cosw“)
— ryry
N = n=0
raxAO—o
k k

Proof:

(AQAT)y = 4n

k

(A (A) e Aoy =

W

1

n+

2 = 2
/(2n+1) /¢, (':'B) Pa(cos ¥ V(2n+) Ve ¢ ( 5;? ) Py (cos ¥y) AT,
1 ’

-

i
4m
"

L~z
il s

(o] (o]

For N- = in such a way that max Ao, ~ 0 the summation over k becomes the
corresponding integral, so that:

a+2 a+3
1

lim (AQAT), = = Y Z /(2n+1)(2n+1) Ve, cf (-1-1:9,) (L‘.) X

N = ®

X J‘I P, (cos ¥ ) Py (cos¥y)d 0k

WW@‘! S




Corollary A.1 finally yields:

@

2 n+23

lim (AQAT)“=? (5 (;;J) P, (cosyyy)
N -+ e
Proposition A. 2
© N—-3lml+ 28 _ (N
o = =
(A.4) Y amrgirad, e feloanw 1 = ]
L1-sVeN® 1-sV e iNO J

j= oo

3O |r_n_[ 8 ifm >0
for OSs<1ada=[|&|= teger part of and :{
= Ba o TR R e P T e
Proof:
Let us substitute j of (A.4) by k - . Then we obtain in the left member:
@
? gh+Nk=NO i(asvk-Ne)B S+ Sa
k=-o
where

wn
-
I

- (se"°)|"'°ZN E (se 1O = (set@)[s [-om /[ 1-(se*?)" )

k=0

2}
»
I

- (se"w)" o= I.. | ;(Se—i‘ﬁ)w o (Se—!%N o= I.. l /[1- (se“’ﬁ” |

k=1

Corolla_::z A,2:

(A.5)

[~18

s|-+N.1 != (s 'n'-QN ) /(l-SN)

==}

-
I
1

The proof follows directly from the proposition for 8= 0,

o




Corollary A, 3.

(A.6) lim y PLALTIPICELR [ R T

N—=® y=-
The proof follows directly from (A.4) when considering that & ~ 0, N— =,

Proposition A. 3:

If
In| exn(ei - 6,)

N
Aqk AJk = ZNZ Aqkz
= 1 k=1

equals
2N-23n 2N-
S(m,N.s) = [(2—m)(1+s")+ 2m 1-s - wr il 1-s +
(1-5*%(1-s°""" (1-s¥(1-s>"1

2

N N
& 2Ns  _ 4Ns] / (l-s”)
1-s® 1-s

For 6, = 0 we have:




N @® N
(A7) B;= Nai A Ay = ? ? Smnlﬂle!lejy Pt o 2) 0y _
k=1 n=-o (=~ k=1

@ @ 6 @0

+ * 4
y g+, erei(" Nr)GJ & NT g ef? Jy L]
L - .
r=

n=:‘m -0 n=-—-00 r=-m
and
(A.8) z BJ= Nm? smltly ghIt+eri

-,:1 t=-0o P~

Inserting (A.5) into (A.7) for 6,= 0, we obtain:

N @ ® ©
N? Au ? sz gIHNTI . S‘ (szlnl QN qrw()m) b
j £ . N==® r==-® =8 g
@®  NKk+N-—-]
1 el B le +2§ Y g SN”)-} %
k=0 n=Nk
1 r S(aN 1)k (zN 1)k+aN-2 b i,
= -s'+2 + 2N S ] =
1 L ? 1- s2 ?_, &
k'—:o k=0

2(1-s%""%) . 2ns" ]

1 [ N
= e— | =] -8 +
1-s" (1-s9(1-s*""1) 1-s

In the same way we obtain from (A, 8):

2N - 3nm N

n
1] m 1-8 2ps
o Bi = e [_1 -g¥+2 - ]
& JZ‘I G (1-s")(1-s"" ) E 1-s®
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0 it

=|-m-ms"+ 2m ~
[ (l-sa')(l—saM

Proposition A .4 :

1f

Ag (6) = b cos (£6)+ c sin (£0) , £>0

A . ay 146 a-4 o 6y e~ %
Ag (6) = e s VE,.(O)e n ———ul'l 2,n (O)

ag = % (b- ic) a-g = #(b+ ic)

Vgre (8) = z g™t e“Je
3

Ugyn = Vgya (0)
an
| k- ag? a6 s,
| TP

21

2 1+28 1 if g=m
I v B 2148 © 51+p) X ! 3 P
[o]

if 2#%;}, p=l, B oxs




g owyg 8, AT 1-5" , t-
l ) ] n=2n,2 (e m—-2n 8
1+s®  (1+s ) 1+s

o r-[4]m

B = (c/b)®
Proof:
1 an
L= [ ag a0 = @+ e?)e
o}
=L [(dg-ap2d0=L [(f+e2 a6 =
Ia= 5= | (Ag- g = o | (@ ECF 26 e)d0= Ta+ Taa + L
where
- w . 148
€ g = a_?<2_1> ~106
Uy
and

2 2 ; r m
1 5 az_ [uf( )/u;_Zsl/uz] lf zzgp
I21 = _I €£ d 6 = {
. 0 otherwise

a3 (2) 2_2 { if £=£1_
a_y [uz /uz S /U£] i ) P

3
Taz = — | €- d9={
®n £ 0 otherwise
Iaa = 2% f € €5 d0=2aa-; [1+uP/u” - 25'4,)

uf®) (s) = yy(s°)

The proposition readily follows for:

Ry = (Iay+ Iaz + I2a)/I,

o




a, + a_y)°= p
(f, L) b*/4 ay a~z=(ba+ ca)/4




