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THE APPLICATIONS OF FINITE-ELEMENT METHOD

IN NUMERICAL WEATHER FORECAST

Mathematics Department
Shantung University

and

Shen Chàng Sze and Chen Shih Chieh
Weather Bureau, Shantung Province

(received December 15, 1975)

The finite—element method has wide applications in structural mechanics
(fit,and elasticity mechanics. In the last two or three years, the

possibility of applying finite—element methods to numerical weather

forecast has been investigated from a theoretical point of view!~’
4
~

This article is a discussion of such applications based on a positive—

pressure vorticity equation. The grid division used consists of large

and small rectangles. Such grids have manifested effectiveness in is—

proving the forecast accuracy of the region under consideration, and they

are also economical in terms of computer storage. Although rectangular

grids are employed in some foreign nations, the finite—difference method

is always used in the computation. In the finite—difference method , cal-

culations are performed twice (or three times), namely, calculation. are

done first on the coarse grid and then on the fine division grids locally.

In so doing, artificial boundary conditions must be imposed on the

boundaries of the local fine grids. Such difficu~.ties can be overcome by

th. finite—element method. Judging from the calculations for the situations

1
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studied , the application of the finite—element method in numerical weather

forecast is a meaningful undertaking from both practical and theoretical

standpoints. It should be pointed out that the finite—element method
(5)

allows one to generalize the Arakava scheme , a scheme usually used

in overcoming the nonlinear instability, to the general grid division

and obtain a neat and rigorous proof of the conservation laws. Since the

energy conservation problem for an arbitrary grid is solved, it would be

eventually possible to carry out numerical forecast using monitor station

values directly.

C’)
In the course of our numerical calcul3tion, Jespersen’s work came

to our attention. He also discovered that the Arakawa scheme is an inevitable

result of the finite—element method . However, Jespersen considered only

the situation of equal distance grids. Hence, Jespersen’s work is a

special case of our development.

I. Finite—Element Equation *

For the sake of simplicity, consider the initial boundary value

problem of a positive pressure vorticity equation.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘I)

- - - - -  Ca) (a)

The notations employed here are the ones coisnonly used in numerical weather

forecast. G is the rectangular forecast region and~~~G is the boundary

of C.

This article was received on th.e 5th of December 1Q7~*ColRputational mathematics major grade 72 students of the MatT~Ift’icsDepartment, Shantung University, participated in numerical calculations.
Comrade Chang Ching Bus of the Shantung Province Weather Bureau participated
in some data reduction and graphing.



. . —  .
~~-—. . ~~~~~~~ —~~- 

.~~~~—
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘ye ~~~~~~~~~~~~~~~~ . .  ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1
In order to arrive at the finite—element equations of (1) and (2),

(1), (2)
they are transformed to their equivalent variation prob1ems~ That is,

among the proper smooth functions satisfying the boundary condition

U I ~ — 0, the general function F (M~
) given below is minimized to the

functionU(X,j), vhere U

~ (w) 11{ ~~~~~~~~~ 
u~-tu5(~ I+fj 4x .~y (4)

:r.

Fig. l

According to the finite—element method, region G is divided into

a number of rectangular elements. We assume Uto be continuous on C

and to be a bilinear function of each rectangle. The apices of the

rectangular element 0e are 1, j, m, and p, and the lengths of the two

sides are a and b (see Fig. 1). The coordinates of points i,j, m and

~ 
are (

~~ Y~
)
~ (X~ &~) .  (*~ ~~~~ 

and (X~ ~4) respectively. The

trans format ion
X - + a g

(5)

changes the unit rectangle to a unit square in the ( ~ , ?~ ) plane with
(0, 0) and (1, 1) being its diagonal apices. The bilinear interpolation

function on this element 0 
~ 
can then be shown to be

a(x, y) — (I — — t~ + ~I7)N 
(6)

+ (~ 
— jv )s~ + ~

,ts,. + (,~ 
—
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where U~ Uj , Lt~ and L4~ are the values of 14 ~~~~~~ at node points 1, .1~
m, and p, respectively. ~~ e’ let

~~~

‘ 
‘ .——&~~

+f , (7)

functions and can also be expressed in terms of bilinear interpolation

function similar to (6):

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
# 

~~~~~~~~ (8)

ç(~e,~j )  (i~~~~~t~~)ç~ 4~(!I~Q)c~ 
f

~~?~~~’ ~~~~~~
here subscipted quantities are values of the respective functions at points

indicated by the subscripts. One can then write down:

~fer ~aIbor

= ~~ (9)

•1•

+c~’-~-r)(~ ç ~4 t t ) 1 ~~-4J ’ ))
The set of algebraic equations satisfied by the values of Mat the nodes

can be obtained by substituting (6) and (9) into (4), evaluating the integral,

and then, according to variation principles, finding the minima of all ~~~.

This set of equations is conuonly known as the finite—element equation.

_ _ _ _ _  _ _ _  
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If point 0 is an inner node , the only relevant values of u in
finding the equations with respect to point 0 using the method

described above are those at the nine corners of the four

adjacent rectangles sharing point 0 as their common apex. If

the nodes are indexed as shown In Fig. 2, the finite—element

equation obtained with respect to point 0 Is:

( 10)

where the coefficients are listed below :

3., 34, 3.~ 1,

+ + +
3’l 3b, 3., 3b~ —

+ ~~ (T , + T1 + T, + T,) .
9

K i l l— —
3. 6b, 3., 6ba

÷ L (14 + T ) ,

6., 31, 6.~ 31,

+ -1- (T , + Tj ,  ( 1 1)

3., 61, 3.~ 61,

+ j’8
(T a + T,) ,

KI 41— .h~ — !L + —

6., 3b, 6. 31,

+ ~j (T1 + TJ ~

6., 61, 36

6., 61, 36

6., 61, 36

6., 61, 36

— •I~~ Il
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The right hand side term of Eq. (10) is

b L O ~~ — a... ( G 0~~~+ G ~~X + G 0~&) , (12)

w ere

~~~~~ ~~~~~ 
— (

~~~~
- 

~~~~~~~~~~~~ 
-

4~~= ,,(r,-~)— ~3(c-3,)-&(r ~~~~~~~ (13)

I = 
~~ ~~~~ 

..
~~~ 

(
~~l -~ )-5(

~ -~,) ~~ 
(
~ —~,)

If Eq. (10) is multiplied by 4/ [(a1 + a2) (b1 + b2)7 , it can easily

be seen that, when grids are equal distant (a1 a2 = b1 = b2 = h), the

above equation is similar to the Heltnholz equation with an average nine—

point difference scheme; furthermore, the right hand side term is exactly
(s)

the Arakawa conservation expression.

II~~~lluII
Fig. 3 Large grid distance is h and small grid distance is h/2. (h — 540 km)

We divide the forecast region G into grids of intervals h and h/2 (h is

540 kin) as shown in Fig. 3. The finite—element equation obtained with

the method described above is then solved to get the values of the function

(4=)~~ i?t at grid nodes. The conventional three—step method is then

used to extrapolate the forecast field at 24 and 48 hours with a time

interval,~of ½ hour. In calculating the term on the right hand side, the

values of at the nodes are arrived at by Spline extrapolation and

_ __ _  
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the values of at the nodes are then obtained.** The

results of our numerical computation indicated that the grids are stable

and that no spatial smoothing was necessary during the computation. The

resultant 48 hour forecast diagram was relatively close to the true

eituatios. Contrary to the finite difference method where additional

boundary conditions are imposed , the finite—element method gives rise to

the equations at the boundary nodes.

II. Generalization of the Arakawa Conservation and Energy Conservation

Definition: 
z SI rc~,r)We’ctsty— ~

Z Si’ Ne’ ~ a 
(14)

e’ ~~~~‘

where 0e~ 
is any element containing point 0 as an apex and the

summation is over all such elements. The factor Ne? has the following

convention: If D is a rectangle and point 0 assumes the “i” corner

of 0 e’’ then Ne’ — N1 — ( I ~ ‘Z ~~~ ); when point 0 assumes the
corner in element Q ~s , Ne’ N2 = C — ) when point

O is the “in” corner of 
~~ e

1 ’ NeS = N 3 — , and finally when point

018 the “p” corner of ~~ ~~ ~~ — N4 — P~ —~~~P1

** The value of at the nodes can be obtained by the following
equation if Spline extrapolation value is not used:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A similar equation can be derived for the boundary points.
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Eq. (14) is the dispersion formula of J( , 3’ ) .  The denominator

of Eq. (14) as S.. If point 0 is the inner node shown in Fig. 2, Eq. (14)

gives
~~~~ _j_ i’+X _j_ ,.* -p

(15)3(., + .,)(b, + 1,)’

where G 0~~ G 0
+

~~ nd G 0~~tre given in Eq. (13). When Se,, = 4/ t(a1 + a2)

(b1 + b2)) , Eq. (15) reduces to b fo] / S~ . Thus, expression (15) is
which is Eq. (12)

consistent with the right hand term of Eq. U0),1divided by S~ and, obviously ,

it is the generalization of Arakawa’s conservation. When a1 = a2 = b1 = b2 =

h, Eq. (15) becomes the usual Arakawa conservation expression:

— -
~~

- (it’ ÷ i,4 ’ + J”~)

where Jt’_J~
.Gr,Jr —~~~~Gr,Jr

.. —~;Gt’. Eq. (15)

is the generalized Arakawa conservation for nonuniform rectangular grids

and Eq. (14) is the generalized Arakawa conservation for an arbitrary

grid.

Eq. (14) also satisfied the following three conservation relations:

~~~ 
s~ = 0 (Conservation of mean vorticity) (16)

Z S~ = 0 (Conservation of mean kinetic energy) (17)

Z 5~.0 S~ — 0 (Conservation of mean square vorticity)(18)

where 0 assumes all nodes including nodes on the boundary and S~ is the

denominator of Eq. (14).

As a matter of fact, since Jocobian satisf ies the conservation of

*ean vorticity:

cc ~ ) dxdy 0~

1~_ . _ ~~~~~
---

~~~~~~ - .

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~ .~~ .... ~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~-
-‘ •—~~~~- - - •  ~~• . •_~~~~~•
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we have ,

~ IT j . 
~ , ~ 

) dxdy 0. (19)

Notice that 
~~~~ N1 

= 1
j =  1

hence, ff J( , 
~~ 

) dxdy — J ( , 
~ ) N1 dxdy. (20)

cit DC
1 = 1

From Eq. (14), we have

~~ 
= if 3 ( 

~~~~~~~, ~ 
) N ,  dxdy ,

o o e
and the above expression can be rewritten by changing the summation over

nodes 0 to a summation over all elements3e:

~~ S. = 11 ~~ 
(~~ ‘ r ) Ni dxdy,

‘C

and from (19) and (20), we have

S~, = 0 (Conservation of mean vorticity).

The proof of (17) and (18) are the same so only the proof of (17)

will be given below. From the integral form expression of the conservation

of mean kinetic energy, we have

ii
(q (2 1)

ff ~~~~~~ )d c~ y =o.

F 
..

-_
~~~~~~~~~~~~

• 
• :~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , -----•—- •,- —_~~ -.-.-—— •
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Further, from (14) we have

~~~~~~~~~~ ~1,~~~~~) t~e’~~ 1y

= ZZ Si ~0 Zi (~~c) t’~e
1d

~ / i
~ e’

where is the summation over all rectangles f 3 ,  having point 0
C,

as an apex. Again change the summation over nodes to a summation over

each element 0 e’ it can be seen that the equation above becomes:

~ If ~ei ~~~~~ (22)e

where 
~~~

(i = 1, 2, 3, 4) represents the value of at the four

corners 1, j, m , and p of the element Q e ~11 
~~e 

=

~~e 3 ~~~ 
and 

~~e 
= 

~~
,. From the bilinear interpolation equation (8),

it is evident that on the element 
~~ e’ 

we have:

~
j ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Substituting the above expression into (22) and using Eq. (21), we obtain

S0 ~~ J ( , ~ 
) dxdy = 0

and thus completed the proof of (17). Eq. (18) can be proven in a similar

manner.

In conclusion, the J~ defined in Eq. (14) satisfies relations (16)

through (18). Generalization of this kind cannot be achieved by the

difference method; furthermore, the proof of the three conservation
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relationships using the finite—element method is simpler and more rigorous

as compared to the proof of Arakawa even for the case of equal distance

grids where conservations can be proven by the difference method.
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