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ABSTRACT

This paper shows that much new information about the dynamics of combat between

two homogeneous forces modelled by Lanchester—type equations of modern warfare (also

frequently referred to as “square—law” attrition equations) with temporal variations

in fire effectivenesses (as expressed by the Lanchester attrition—rate coefficients)

may be obtained by considering Liouville’s normal form for the X and Y force—level

equations. It is shown that the relative fire effectiveness of the two combatants

and the intensity of combat are two key parameters determining the course of such

Lanchester—type combat. New victory—prediction conditions that allow one to forecast

the battle’s outcome without explicitly solving the deterministic combat equations

and computing force—level trajectories are developed for fixed—force—ratio—breakpoint

battles by considering Liouville’s normal form. These general results are applied to

two special cases of combat modelled with general power attrition—rate coefficients.

A refinement of a previously ~uiown victory—prediction condition is given. Temporal

variations in relative fire effectiveness play a central role in these victory—predic-

tion results. Liouville’s normal form is also shown to yield an approximation to

the force—level trajectories in terms of elementary functions.
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1. Introduction.

Even though combat between two military forces is a complex random process (see

Note 1 of TAYLOR and BR0WN 1501
)I as a consequence of the pioneering 1914 work of

F. V. LANCHESTER 1261 (see Note 1) military operations analysts since about the end of

World War II have used simplified deterministic differential equation models to develop

• insights into the dynamics of combat (see Note 2). Today Lanchester—type models of

quite complex military systems have been developed in the United States (see, for example,

BONDER and HONIG191) and require a digital computer for their implementation. A simple

combat model, however, may yield an understanding of important relations that are

difficult to perceive in a more complex model, and such insights may provide guidance

for higher resolution computerized investigations (see, for example, BONDER and FARREL 181

and WE 1SS 155 ’). In this paper we will examine such an idealized Lanchester—type model

in order to obtain some insights (specifically , the tradeoff between quality and quantity

of weapon systems) into the dynamics of combat between two homogeneous forces with

temporal variations in weapon system effectivenesses.

In this paper we develop new victory—prediction conditions that sometimes allow

us to forecast the battle’s outcome without explicitly solving the combat equations

(see Note 3) and computing force—level trajectories (see Note 4). We obtain these

results for variable—coefficient Lanchester—type equations of modern warfare by consid-

ering Liouvil].e’s normal form of the X and I force—level equations (see p. 270 of

1NCE 1231 and KA CE 1241) and using techniques recently applied to Lanchester combat

theory by TAYLOR and PARRY 1511 . These results complement and extend those of Taylor

and Parry1511 , and they show that the key parameters affecting a battle ’s outcome, at

least for fixed—force—ratio—breakpoint battles with the initial force ratio held con—

• stant , are the relative effectiveness of the weapon systems and the intensity of combat.

Such results are not only important in their own right but also useful in the quanti—
[44—46]tative analysis of tactics (see, for example, TAYLOR

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ - • -  ~~~ - -• - — - - — -  - -



This paper is organized in the following fashion. First, we review F. W.

Lanchester’s classic mathematical model of combat between two homogeneous forces and

its extension to cases of time—varying fire effectivenesses. Next, we transform first

the independent variable (time, t) and then the dependent variable (force level) to

obtain Liouville’s normal form for the X and Y force—level equations. Then we

develop some new victory—prediction conditions from Liouville’s normal form and apply

these general results to two special cases of power attrition—rate coefficients.

Finally, we discuss the significance of our developments.

2. Lanchester’s Classic Formulation.

F. W. Lanchester~
261 hypothesized (see Note 5) in 1914 (s~~ Note 6) that combat

between two military forces “under modern conditions” could be modelled by (see Note 7)

dx/dt = —ay • with x(t 0) x0,
(1)

dy/dt = —bx with y(t=O) = y0,

where t = 0 denotes the time at which the battle begins, x(t) and y(t) denote

the numbers of X and Y at time t, and a and b are nonnegative constants that

are today called Lanchester attrition—rate coefficients and represent each side’s fire

effectiveness. Lanchester considered this simple model in order to provide insights

into the dynamics of combat under “modern conditions” and justify the principle of

concentration (see Note 8). We will accordingly refer to (1) as Lanchester’s equations

of modern warfare. Various sets of physical circumstances have been hypothesized to

yield them: for example, (A) both sides use aimed fire and target acquisition times

are constant (see WEISS1541 ) ,  or (B) both sides use area fire and a constant density

defense (see BRACKNEY 1111). Other forms of Lanchester—type equations have appeared in

the literature, but we will not consider these here (see DOLANSKY~
151 and TAYLOR143’ 481)•

From (1) Lanchester deduced his famous square law

b{xg-x2(t)} a{y~ -y 2(t)), 
(2)2



which has the important implication that a side can significantly reduce its casualties

by initially cossnitting more forces to battle. It follows from (2) that

X will be annihilated ~~~ < . (3)

Unfortunately, no simple relationship similar to (2) holds in general for variable

attrition—rate coefficients so we consider other means for developing (3). As is well

known, the X force—level, x(t), is given by

x(t) = x0
cosh(v~~~t)—y 0/~sinh(v

’~~ t). (4)

We may also deduce (3) by writing (4) as

x(t) = 41 (x0-y0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (5)

and observing that x(t) can become zero if and only if the coefficient of the increas-

ing exponential is negative. We observe from (5) that annihilation occurs in finite

tine.

As H. K. WEISS 153
~ has emphasized , engagements that continue until one side ic

wiped out are rare. Thus, we see that a model of battle termination is required.

Although we are well aware that battle termination is a complex random process for

which it is by no means certain that force levels are the only significant variables

(see Note 9), we assume that combat ends when either of two given “breakpoint” force

ratios is reached. Introducing the force ratio u = x/y, we have that these “break-

point” force ratios, denoted as 4 when X wins and 4 when Y wins, satisfy

O 
~~ 4 < u0 

= u(t 0) < 4 ~ +~~. Corresponding to a fight until the annihilation of

one side or the other is the case in which 4 — 0 and 4
Let us now consider such a fixed—force—ratio—breakpoint battle. Introducing the

force ratio, u x/y, we see that it satisfies the Riccati equation

du/dt bu2 - a with u(t 0) u0 x0
/y0

. (6)

Let u~ /‘i7~ denote the positive root of the quadratic equation bu2 —a — 0 and

observe that du/dt < 0 0 u < u (see Figure 2 of Taylor and Parry 151 1 ). In

3
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particular, u0 
< u~ ~ du/dt(t) ~ du/dt(t 0) < 0, whence follows

THEOREM 1: Consider Lanchester’s equations of modern warfare with constant

attrition—rate coefficients (1). Then X will lose a fixed—force—ratio

breakpoint battle in finite time if and only if x0/y0 
< ~~~

We observe that (3) is a special case of Theorem 1 corresponding to 4 = 0 and

4 — 4~~. One result of this paper is to generalize [in a way different from that given

by Taylor and parry~
5
~~ (see Section 6)] Theorem 1 to cases of variable attrition—rate

coefficients.

3. Variable Attrition—Rate Coefficients.

The pioneering work of S. BONDER13 ’ ~ 8] on methodology for the evaluation of

military systems (especially mobile systems such as tanks, mechanized infantry combat

vehicles, etc.) has generated interest in variable—coefficient Lanchester—type equations

and has led to improved operations research techniques for the prediction of these

coefficients (see Note 10). Let us therefore consider

dx/dt = —a(t)y with x(t 0) =
(7)

dy/dt = —b(t)x with y(t 0) = y0,

where a(t) and b(t) denote time—dependent Lanchester attrition—rate coefficients.

These coefficients depend on such variables as force separation , tactical posture of

targets, rate of targer acquisition, firing doctrine , firing rate, etc. (see reference 8).

• We will also refer to (7) as the equations for a square—law attrition process, since

an “instantaneous” square law holds even when a(t)/b(t) is not constant (see Taylor

and Parry1511 ; also references 45 and 47).

A large class of tactical situations of interest can be modelled with the follow-

ing general power attrition—rate coefficients (see reference 8)

a(t) — k (t+C)V , and b(t) k,,,(t+C+A)
V , (8)

4
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where A,C � 0. We will call A the offset parameter, since it allows us to model

(with ~i,v � 0) battles between weapon systems with different effective ranges (see

Note 11). We will call C the starting parameter, since it allows us to model (again,

with p,v ~ 0) battles that begin within the maximum effective ranges of the two systems.

Restrictions that must be placed on ~z and v , which are not necessarily integers,

• are discussed below.

The above nomenclature is motivated and possible applications of our results are

indicated by considering S. Bonder’s13 ’ 51 model of the constant—speed attack on a

static defensive position

dx/dt = —a(r)y _u
0
(l_r/ R~)

)I
y, dy/dt —~(r)x = —~0

(l—r/R~)
”x, (9)

where r denotes the range between opposing forces, ii ,” � 0, and Rn denotes the

maximum effective range of the Y weapon system. Range is related to time by

r(t) R0—vt , where R0 denotes the opening range of battle and v > 0 denotes the

constant attack speed. Then the offset and starting parameters are given by

A — (R
B
_R
O)/v, and C = (R

n
_R
0
)/V• (10)

We observe that A ,C � 0 if and only if R
8 ~ 

H ~ R0. By considering (10) and

Figure 1, the reader should have no trouble in understanding our terminology for A

and C. In the model (9) ii , for example, is used to model the range dependence of

Y’s attrition—rate coefficient (see Figure 2).

From (7) we obtain the X force—level equation

= 0, (11)

with initial conditions

x(t 0) x0 and {[l/a(t)]dx/dt}
~~0 

=

where t
0 

— max(t~ ,t~ ) ,  and t~ denotes the right most finite singularity of the

X force—level equation (see Ince 1231 ). The coefficients a(t) and b(t~ are then

positive continuous functions Vt > t
0
. For the coefficient (8), we observe that

5
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to — ~C. Moreover, to insure the existence of all derivatives required in subsequent

analysis, we assume that the second derivatives of a(t) and b(t) exist Vt >t
0
.

We similarly have the Y force—level equation

~~~~~~~ 
{~~~Zn b(t)}~~~— a ( t ) b ( t ) y  = 0, (12)

with initial conditions

y(t—O) — y
0 and {[l/b(t)1dy/dt}

~,,o 
—x0

.

It is necessary to place further restrictions on a(t) and b(t) in order to

insure that, for example, the transformation introduced in the next section is well

defined. Thus, we assume that the following condition holds.

CO~~ITION (A): and are bounded for all finite t � t
0
.

This condition also guarantees (see Theorem 6.4.2 on p. 226 of H1LLE1221) that (7) has

a continuous solution for all finite t � 0 ~ t0 
(see Note 12). If Condition (A) is

to hold , then for the general power attrition—rate coefficients we must have ij,v > —1 .

4. Transformation of the Battle ’s Time Scale.

Let

-r = J /i(s)b(s) ds , - (13)

to
and denote r(t—O) as to. It follows that to ~ 0 fo r to ~ 0. Condition (A)

guarantees that r — r(t) is well defined (i.e. bounded for all finite t � t~~) by

the Cauchy—Schwarz inequality for integrals (see p. 123 of BELLMAN 121). The transfor-

mation is invertible, since dt/dt — Ia(t)b (t7 > 0 for t > t
0
. Thus, we may consider

• that t — t(t). We assume (and give below conditions that guarantee) that

• lim -r ( t )  — -+~~ so that the range of r(t) is [O ,-f~o) for tc [t0,-I-~).
t44W

Considering the constant coefficient result (4), we will call the quantity

/a(t)b(t) the “intensity of combat” (see also Taylor and Parry1511 ); since the larger

~~~~ ~
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it is, the more quickly the battle is moving towards termination. Then T
~~

t0 ~
related to the average intensity of combat by

t-t 0 - ((l/t) J /~~~ b(s)ds)t - /a(t)b(t) t. (14)

Applying the transformation (13) to (11) and (12), we obtain

~~~~~ ~~~~~~~ ~~~~ — 0, (15)

with initial conditions

x(-t— r0
) — x

0 
and {[b(t)/a(t)]L~

2dx/dT}t..t —

and

-~~+ { - ~ ~~-Ln ~~~ 
— 0, (16)

with initial conditions

y(t.’t0) = y0 and {[a(t)/b(t)]1~2dy/dt} , —x0.

Taylor and Brown~
501 have shown that the X force—level equation (11) may be

transformed into a linear second order differential equation with constant coeff i—

cients if and only if

1 -~-Ln [~
1~~ — CONSTANT, (17)

Ia(t)b(t) dt b(t)

with the desired transformation being given by t — K 
J
4(8)b(s)ds~ where 

J
...ds

denotes an indefinite integral and K an arbitrary constant. Hence, equation (11)

may be transformed into such a constant coefficient equation if and only if (15) is a

constant coefficient equation. We observe that (15) has a solution in terms of ele-

mentary transcendental functions in the quasi—autonomous case in w’~ich the ratio of

attrition—rate coefficients is constant (see Note 13), i.e.

b(t)/a(t) — CONSTANT. (18)

9
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Excep t when (17) holds, the solution to (11) is complex, and the qualitative behavior

of force—level trajectories has been difficult to establish. In particular, one is

interested in answering such questions as

(Ql) Who will “win”? Be annihilated?

(Q2) How do force levels decrease over time and how many survivors will the
winner have?

(Q3) How do changes in the initial force levels and/or weapon system parameters
affect the outcome? Is concentration of forces a good tactic?

(Q4) How long will the battle last?

We will now show how to answer question (Ql) without explicitly solving the Lanchester—

type equations (7).

Equation (15) is highly significant because it clearly shows that the course

of combat depends on just the two weapon system parameters: (1) R(t) — a(t)/b(t),

the relative effectiveness (Y to X) of the two weapon systems, and (2) 1(t) —

,ta(t)b(t), the intensity of combat (through equation (13), which relates 1(t) to

-r). Both these parameters may vary over time, and equation (15) tells us that the

nature of such temporal variations in relative effectiveness has a significant effect

upon the course of combat. Moreover, this relationship may be more explicitly seen

• by transforming (15) to Liouville’s normal form.

5. Reduction to Liouville’s Normal Form.

Let us assume that TO > 0 (i.e. 0 > t0) so that a(t)/b(t) is twice differ-

entiable and satisfies 0 < a(t)/b(t) < +~ for 0 ~ t < 1-co. Let a0 denote a(t.O),

etc., and recall that t — t(r). The substitution

ra(t) /
x(r) X(t)[~(t)/bJ 

(19)

• transforms (15) into the so—called normal form (see RAINVILLE1361) with the first

derivative of the dependent variable removed

• d2X
— 0 , (20)

10



with initial conditions

— x0, and dX/dt (-r—t 0) — —y 0fa0/b0 - x0c0,

where

F(t) — P” (t -)/P( r ) ,  P( r ) [R(t)J 1’
~
4
, (21)

R(t )  — a( t)/b ( t ) , c(t )  — ~ ~ —tn R, (22)
4/ a(t )b ( t )  ~

denotes c(t 0), and P ’ ( r )  denotes dP/dr. Equation (20) is Liouville’s

celebrated normal form (see p. 23 of LIOUVILLE~
281). Similarly,

rb(t) ,b01
”4

Y ( r )  a(t ) / a 0 
(23)

yields
d2Y

= 0 , (Z 4)

with initial conditions

Y (r r
0
) — y0, and d Y/ d - r ( i t 0)  — -x0/b0/a0 + y 0c0,

where

G(-t ) — Q”(-t)/Q(t), and Q(t) [R(t)jh/’4 
— l/P (t ) .  (25)

We observe that

F( -r ) + G ( r )  2(~~~Ln P) 2 . (26)

It is sometimes convenient to express F and G in terms of the old time

variable t .  Then

F(-r) — 4b2’(t) ~~~{—~~-Lnb(t) —~~~~-Q .n R(t)+ ~~ tn~~~} , (27)

and

G(-r ) — 8 ( t ~b (t )  
(~~ .tn R(t)}2_P(T). (28)

Observing that (21) may also be written as

d2 dF(-r) — ~—,~-tnP(r)+{~ -—Q nP(t)}2 , (29)
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we see that dtn P/dt — constant (or, equivalently, c(t) — constant) implies that

F(r) is constant, although the converse may not be true.

Writing (20) as d2X/dt2 — X  — F(t)X, we may use variation of parameters (see

pp. 122—123 of 1nce 1231) to obtain the solution to (20) as

— x0 cosh (t— T 0) — [y 0/a0/b0 + x 0c0)sin h ( t — r 0) +  f F(O)sinh(t—5)X(o)dO . (30)

-t
o

In terms of the original time variable t and dependent variable x , we have

Ia(t)/a 11’4 t ________ 
t _____

— 

[b t)/b
J 

{x 0 cosh (J v’a(s)b(s)  ds) — [y0 /~~~+ x 0c0 J s inh(J  /a ( s )b ( s)  ds ) }

+ 1~)1 J ~
•
~~~( )b( ) ~4_ [~{~)1 )sinh( J /a(c~)b ( a )  do) x (s)ds .  (31)

The value of the Volterra integral equation (30), however, is not so much for

direct computation as it is for suggesting an approximation, the so—called Liouville—

Green approximation (see OLVER ’321 ) ,  to the solution of the X force—level equation

(11). If the appropriate fractional power of the relative effectiveness is “slowly

varying,” then by (21) we would expect that I F ( T ) I  << 1 so that we could drop the

integral term in (30) to obtain

— x0cosh 
(1_t

o) — [y01a0/b 0 + x 0c0 ]sinh(t— 10) ,  (32)

where X(t) denotes the Liouville—Green approximation . A theoretical error analysis

appears in Olver132’ (see also OLVER133~), although we will not pursue this matter

further here. We observe that F(-r) ~ 0 V r ~ -r0 implies that while X ( r )  � 0 we

have X(-t) � I(t) and similarly when F(i) ~ 0. As we shall see below, such cases

in which V(t )  is always � 0 or ~ 0 are readily encountered in applications. In

terms of the original variables t and x, we have

ra(t)/a11 t 
______  /~ t 

______

i(t) — I!(t)/b J 
{x0cosh ia(s)b(s) ds) — (y

0 /~~~+xoco]sinh(J 
/
~(s)b(s) da)), (33)

_ _  _ _ _  ~~~~~~~ •



which we may also write in terms of the average combat intensity, /a(~5b(t) —

(lit) (s)b(s)ds, as

° r~
(
~)/~1~ _______ /T _______

~~(t)  — 
~~~~~~~~~~~~~~~~~ 

t) — [y0/~~~+x 0c0Jsinh(/a(t)b(t) t ) } .  (34)

6. Some New Victory—Prediction Conditions.

In this section we show that much valuable information about the course of

combat (for example, force—annihilation prediction) may be obtained directly from

Liouville’s normal form (20) without making any kind of approximation. Let us assume

that the model (7) holds for all time and consider a fixed—force—ratio—breakpoint

battle (see Section 2). In order to insure that the battle terminates in finite time,

we must make certain technical assumptions about the mathematical nature of the attri-

tion—rate coefficients in (7). For the reader’s convenience, we list in Table I the

principal such conditions that we use in subsequent developments. We observe that all

these conditions hold for constant attrition—rate coefficients. Let us also observe

that Conditions (B) and (ND) imply Condition (C).

We record here for future reference Taylor and Parry ’s [51 ] 
generalization of

Theorem 1 to cases of variable attrition—rate coefficients (see Note 14).

ThEOREM 2: Assume that Conditions (B) and (ND) hold . Then x
0
/y0 

< /a
0/b0

implies that the X force will lose a fixed—force—ratio—breakpoint battle

in finite time.

PROOF: Introducing the force ratio, u — x/y, we have

du/dt — b(t)u2—a(t) with u(t 0) — u0 
= x0

/y0. (35)

Let u+(t) — / a ( t )I b ( t)  — denote the positive root of the quadratic equation

b (t ) u2 — a(t )  0, and observe that du/dt c 0 for any u < u+(t) (see Figure 2 of

Taylor and Parry’511). Condition (ND) means that u
+(t) is nondecreasing. It is

readily shown that du/dt (t”O) c 0 and u+(t) nondecreasing imply that 4u/dt(t) < 0

for all t � 0 (see pp. 526—527 of Taylor and Parry 1511). Consequently, from (35) we

13 
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TABLE I. Assumptions about Attrition—Rate Coefficients.

CONDITION (A): a(s)ds and b(s)ds are bounded

for all finite t ~ t0.

CONDITION (B) : lim Jb( s)d s  -

CONDITION (C): /a(s)b(s) ds — -I-—.

CONDITION (ND): R(t) is nondecreasing on

14
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see that x
0
/y0 

< /a
0/b0 and Condition (ND) yield that du/dt(t) < 0 V t ~ 0. It

then remains to be shown that X ’s breakpoint force ratio is reached in finite time

(s ~~ Note 15). Let us observe that R( t )  nondecreasing and 0 < a(t),b(t) < 1- Vt (0,4-cs)

~ 
a
~ 

‘C 4~~ and b0 
) 0. From Condition (ND) and the fact that du/dt(t) ‘C OY t ~ 0,

we have

~~(t) — b(t){’i
2—R(t)) ~ 

b(t1
~(b 2 ) —

Hence

— u0 + Jt(dU)d t £ u0 +~~— 
~~(t 0) J

b(s)d
0 0

so that h a  J b(s)ds — 4cs implies that u(t) goes to 4 � 0 in finite time .
t-.4cs

0 Q.E.D.

We observe that Theorem 2 says that the X force will be annihilated in finite

time (i.e. u(t_tX) — 0 for ~~ finite when 4 0).
We will now deduce some new results that many times allow us to predict such a

battle’s outcome from the initial conditions. Let U — —(l/X)dX/dt so that (20)

becomes the Riccati equation

— U2 —i— F (r ) with U(t=r
0) 

_-
~/~~+~ 0. (36)

We observe that

U(-r) — ~ R
h/ 2 + c (r ) . (37)

• If F ( r )  ~ 0 V t � t~~, then dU/d r ~ U
2 —l , and U(r.’t

0
) — U0 > 1 ~ lirn U(t) — 1-cs

T+t
Xa

for r~ finite. We observe from (22) and the definition of t0 that R(t(t)) and
a
are finite for all r � t~ > 0 so that by (37) the X force must be annihilated

in finite time, since by Conditions (A) and (C) -t(t) is a strictly increasing func-

tion V t £ ( t 0,-+cs) with range (0,1-cs). If we additionally assume that dR/dt £0,

then du/dt(t) ‘C 0 for all t £ (O ,t;J with u r n  u ( t )  — 0 so that the X force will
t9-t

~ a

15
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lose any fixed—force—ratio—breakpoint battle in finite t ime . The proof is by

contradiction: dR/dt £ 0 “ u+(t)  nonincreasing ~ I f  there exists t 1 such that

dx/dt(t1) ~ 0, then du/dt(t) � O V t  ~ t1 ~ impossible to have u -I- 0. Thus , we

have proved

ThEOREM 3: Assume that Conditions (A) and (C) hold. If F(-r) ~ oV -r � -r
xo ìç 0

then — (1—c~) < /z— implies that the X force will be annihilated in finite
~

time. Furthermore, if dR/dt £ OVt 
~ 

t~, then the X force will lose any

fixed—force—ratio—breakpoint battle in finite time.

If F ( r )  � 0 and dR/dt ~ O V t  � t~~
, then dlJ/dt £ U2 —l  and U,, < 1 ~ 3

finite such that U(r ) — 0 with U(r) > O V i c  [ r 01t~). Since dR/dt ~ 0 ~ €(t) ~ 0,

we see from (37) that Y must be annihilated in finite time, since t(t) is a one—

to-one mapping of (t0,+ )  onto [0,1-”). By observing that

— b(t)u2{2~~~) ~~+
l_ U 2+ (i~~~p)2},

we see that du/d t ( t )  > O V t  ~ 0 as long as u > 0. Hence u ( t )  is strictly increasing

for cc [O ,t~) and lim u( t )  = -I-” for t finite so that Y will lose any battle

wi th 4 > u0. Thus , we have proved

THEOREM 4 : Assume that Conditions (A) , (B) ,  and (ND) hold . If F( -r ) ~ OV - r �-r 0,

then — (l—c~)> / ~
— implies that the Y force will lose a fixed—force—ratio—yo V 
~

• breakpoint battle in finite time.

By considering Lioville’s normal form (24) for the Y force—level equation ,

one may similarly prove Theorems 5 and 6.

• ThEOREM 5: Assume that Conditions (A) and (C) hold. If G(t) £ 0 V r ~~ r0,

then — > /
~

—- (l-l-c~) implies that the Y force will be annihilated in finite

time . Furthermore , if dR/dt � O V t � - r
0 

(i.e. Condition (ND) holds), then Y

will lose any fixed—force—ratio—breakpoint battle in finite time.

16
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(t
• THEOREM 6: Assume that him a(s)ds = -4” and tha t Condition (A) holds. If

t ’4°° ’O

G(r) � 0 and dR/dt £ O V -r 
~ 

then _-

~<J~ 
(1-I-c

0
) implies that the X

force will hose a fixed—force—ratio—breakpoint battle in finite time.

Although F(t) and G ( r )  are hated by (29) , for all the att rition—rate

coefficients that we have so far considered , F(t) ~ 0 ~ G ( r )  £ 0. Also , in all these

cases F (r )  ~ 0 ~ dR/d t ~ 0. Since x0/y 0 < /a
0/b0 

( 1+c0) ~~ (x0/y0)(1—c0) <

~nd (x0/y0) (h—so) > v’a0/b0 x0/y0 
> v’~~7i~ (l+c~)~ we see that Theorem 6 is stronger

than Theorem 3 and Theorem 4 stronger than Theorem 5. Under these conditions, Theorems

4 and 6 provide no additional information on battle outcome over that contained in

Theorems 3 and 5.

7. Application to General Power Attrition—Rate Coefficients.

We now apply the above results to combat between two homogeneous forces modelled

by (7) with the general power attrition—rate coefficients (8). We distinguish between

two cases: (I) power attrition—rate coefficients with no offset (i.e. A O), and

(II) power attrition—rate coefficients with the same parity (i.e. ~a v )  and positive

offset. In order to invoke Theorems 3 through 6, we must have C > 0 for the general

power attrition—rate coefficients (8) (cf. (19)). In order that Condition (A) be

satisfied, we must have ~i ,v > —1 ; and then Conditions (B) and (C) hold (see Table I).

7.1. Power Attrition—Rate Coefficients with No Offset.

In this case we have

a(t) — ka(t+C)
1’ and b(t) ~,,(t+C)~ , (38)

so that

dR/dt ~ 0 ~ ii ~ v. (39)

Theorem 2 then yields

COROLLARY 2.1: For the power attrition—rate coefficients (38) with ii ~ V and

C > 0, —< ,/j-— implies that the Y force will win a fixed—force—ratio—yo 0

17



breakpoint battle in finite time. In particular, the X force will be

annihilated in finite time when 4 = o.
In preparation for invoking Theorems 3 through 6, we compute

(II—v ) (3u+v+4 )
F(t) — 4(~i+v+2)2-r

2 (40)

and

G — 
(v— ~i)(ji+3v-4-4)(-r) — 4(~j+V+2)Z~rZ 

(41)

since (13) with (38) yields

= t (t) = (t+c)~~~~
2
~~

2, (42)

with r~ = 
(2vc_~~/ (u +v+2))C (

~~ \*2~ 1’2 
> o. We observe that

F(t) � 0 and G(r) £ OV t > 0 ~ ~ v. (43)

Thus, as discussed above at the end of Section 6, Theorems 4 and 6 provide no additional

information on force annihilation over that contained in Theorems 3 and 5. Furthermore,

Theorem 3 is stronger than Theor em 2 , since shich is given by (22 ) evaluated at

t — 0, is � 0. Hence, we omit any corollary to Theorem 3. As a corollary to

Theorem 5 we have

COROLLARY 5.1: For the power attrition—rate coefficients (38) with p ~ v

and C > o, ~2> 
~ 

l+  ~~~~ ~~~~~+2~ ’2 implies that the X forcey0 a
will win a fixed—force—ratio—breakpoint battle in finite time. In particular ,

th~ Y fotce will be annihilated iii finite t ime when 4 —
• Let us also write the X—victory—prediction condition of Corollary 5.1 as

___  - f(C). (44)

Observing that him f(C) — 4-co for p > v , we see that the victory—prediction condi—
C-’O÷

tions of Corollaries 2.1 and 5.1 become stronger as C decreases and are meaningless

for C — 0.

18



• We now show that other considerations, however, readily yield force—annihilation

conditions when C — 0. [Unfortunately , without further analysis these results are

limited to force—annihilation prediction and do not apply directly to fixed—force—ratio—

breakpoint battles with 4 < -i-co and 4 > 0.] The solution to (7) with the power

attrition—rate coefficients (38) may be written for C = 0 as (see Note 16)

x( t) = (pP/ (2p)){C +C }A (T)+ (pP/(2V/
~
)){C CY

}B (T) , (45)

where A
8 

and B
8 

denote the generalized Airy functions of the first and second kinds

of order 8 (see SWANSON and HEADLEY 1411 ) ,  p (p+l)/(p+~+2) , B = (v—p)/(p +l),

C~ = x0 
r(l—p), C~ = 

~O
”
~a~~b 

r(p)(vc ç/(~÷v4.2))~~
2
~ , and T = (v~~ç/(p+l)) 2P tu+l.

Observing that 
[41] A (F~) ,  B (~) > 0V~~ � 0, him A (~

) = 0, and u rn B (
~

) = -i-c’,V V

we see from (45) that him x(t) = —co if and only if the coefficient of B
B

(T) is

negative (i.e. C~ < C,,~) .  Hence , we may conclude (cf . the development of (3) from (5))

PROPOSITION 1: For a f igh t—to—the—fin ish  modelled with the power a t t r i t i o n —

rate coeff icients  (38) and C = 0, the X force will be annihilated in f in i te

time if and only if 0 < J~ (
~~ a~~~~

1_2P 

r(i—p) -

For C > 0, (45) does not take nearly such a convenient form (see Taylor and Brown
[501

),

and the analogue of Proposition 1 for C > 0 would involve the gene:alized Airy func—

tions and their derivatives evaluated at a positive argument- Thus , the pred iction of

force annihilation by this approach for C > 0 would require tabulations of higher

transcendental functions. Such tabulations do not currently exist (see reference SO).

Thus, we see the usefulness of the “strong” annihilation conditions given by Corollaries

2.1 and 5.1, which contain only elementary functions : “exact” annihilation—prediction

conditions involve higher transcendental functions.

7.2. Power Attrition—Rate Coefficients with the Same Parity and Positive Offset.

In this case we have

a(t) = k
5

(t+C)~ and b( t) = k
b
(tfC+A)

~~
, (46)

with A ,C > 0. It follows that

19
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dR/d t ~ 0 ~ 
p � 0. (47)

Then Theorem 2 yields

COROLLARY 2 .2 :  For the offset  power a t t r i t ion—rate  coeff icients  (46) with
X

0 /ç
p ~ 0 and A,C > 0, — <  /~

— implies that the Y force will win a f ixed—y0
force—rat io—breakpoint battle in f in i te  t ime .

Let us now see what information is yielded by Theorems 3 through 6. It is more

convenient to express F and C in terms of the old time variable t (see (27) and

(28)). Then

F(-t) = pA{4(p+2)
(t-4-C) + (3p +4)A} 

, (48)
l6k

a
k
b (t+C)~ 

(t+C+A)M

and

G(-r) = pA{4(p+2) (t+C) + (p +4)A} 
- 

• 

(49)
l6k k

h
(t+C)

~~
2( t+C+A)

~~
2

We observe tha t

F(t) ~ 0 and G(r )  £ D V i  > 0 ~ 
p � 0, (50)

so that  Theorems 4 and 6 aga in provide no additional information over tha t  contained

in Theorems 3 and 5. Furthermore, we may omit consideration of Theorem 3, since it is

implied by Theorem 2. As a corollary to Theorem 5 we have

COROLLARY 5 .2 :  F~ r the o f f s e t  power a t t r i t ion—rate  coeff ic ients  (46) with

p ~ 0 and A,C > 0 , —~>J~ 
{l+ } implies that the X

• y0 b0 4,~~~~~ C(C+A)

force will win a f ixed—force—rat io—breakpoint  bat t le  in finite time .

Let us also write the X—victory—prediction condition of Corollary 5.2 as

~~~~~ (l+A/C)
_ 2~ - g( C ) .  (51)

We observe that u r n  g(C) — 1-c’, and we again see that  the v ic tory—predic t ion  conditions
C-,o+

of Corollaries 2.2 and 5.2 become stronger as C decreases and become meaningless for

C — O .

20
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8. Discussion.

In his classic 1914 paper [26] Lanchester assumed that the combatants’ f ire

effectivenesses (as expressed by the Lanchester attrition—rate coefficients) were

constant over time and deduced his famous square law (2), which allows one to tradeoff

• quality versus quantity of weapon systems by means of the cond ition for equality of

“fighting strengths”

x0/y 0 
= /~7i , (52)

where a and b denote constant attrition—rate coefficients (see Section 2). Thus,

we see that equality of Lanchester—type fighting strengths (see Note 17) depends on

two parameters: the initial force ratio and the relative effectiveness. When the

timing of military actions is considered , we add a third parameter , the intensity of

combat , to this list of significant combat parameters . In the paper at hand , we

extended these well—known constant—coefficient results to battles between two homogeneous

forces with temporal variations in the fire effectivenesses .

No such simple relationship like the square law (2), which yielded (52) , holds

in general for variable attrition—rate coefficients (see Note 18). By transforming

the independent variable to normalize the battle ’s time scale by the intensity of corn—

bat, we found that the course of combat depends on two weapon system parameters: (I)

relative fire effectiveness, R(t) = a( t) /b (t) ,  and ( I I )  in tensity of combat, 1( t) =

/a(t)b(t). Moreover, when the temporal variations in relative fire effectiveness

R(t) follow a regular pattern (e.g. R(t) nondecreasing), the battle ’s outcome can

many times be predicted from the battle ’s initial conditions. To obtain such results,

we considered Liouvihie ’s normal form for the , for example, X force—level equation

and found that it not only yields new battle—outcome—prediction conditions but also

suggests an approximation to the time history of the X force level x(t). As seen

from (21), Liouville’s normal form (20) introduces second order conditions (e.g. the

second derivative of relative fire effectiveness with respect to transformed time) into

Lanchester—type combat analysis.
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The new victory—prediction results (see Theorems 3 through 6) that we hav e

developed here are complementary to those of Taylor and pavry [ShJ (see Theorem 2). This

complementary nature is seen by observing that under the appropriate comparable condi-

tions we have

dR X
0from Taylor and Parry ’s Theorem 2 

~i 
� 0):  Y will win if — <

t y0

from our new resul ts, Theorem 5 (G(r) £ 0): X will win if 2>

where

C = ~ {-4—Ln r~W i l)  (53)
0 ,ç-

~
-— cit Lb ( t )J  t 0

For both special cases of general power attrition—rate coefficients considered in

Section 7 above we had dR/dt ~ 0 ~ F ( r )  ~ 0 ~ G(t)  £ 0 ~ � 0. Although these if—

and—only—if statements do not hold in general, they do hold for these particular coeff i—

cients. In both cases , we observe that for

(54)

we cannot say by this approach who will be the loser of the fixed—force—ratio—break-

point battle (see Figure 3). We observe that force annihilation is a special case of

these outcome—prediction conditions. From both (54) and Figure 3, we see that there

is a “gap” in these victory—prediction conditions (Le. Theorems 2 through 6). The

price of removing this “gap,” however, is the introduction of higher transcendental

functions (see Section 7 above and Taylor and Brown~
501). Furthermore, “exact” results

with no such gap in the victory—prediction conditions are apparently only possible

for a fight—to—the—finish in which one side or the other is to be annihilated .

We also refined a victory—prediction result of Taylor and Parry~
5
~~ (as applied

to the model (7) under study) by adding a restriction on the attrition—rate—coefficients ,

i.e. our Condition (B), to the assumptions of Theorem 2. Taylor and Parry did not

note that such a condition must be assumed in order to Lnsure that the battle will

22
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terminate. All our new results , i.e. Theorems 3 through 6 , contain some such restriction

on the attrition—rate coefficients.

The results of this paper may be used in parametric analyses (see B0NDER~
7
~ ) of

the dynamic combat interactions between two homogeneous forces with time—(or range—)

dependent weapon system capabilities . Such models are of particular interest in light

of the work of S. BONDER~
4’61 and ~~~~~~~~~~~~~~~~~~~ on the prediction of Lanches ter

attrition—rate coefficients from weapon system performance data and the work of

C. CLARX~~
’2

~ on the estimation of such (time—dependent) coefficients from Monte Carlo

simulation output. A further discussion of applications is to found in references S

and 43. As is always the case, however , the insights gained into combat dynamics from

such Lanchester—type models are no more valid than the models themselves.

9. Summary.

In this paper we have developed ins ights into the dynamics of Lanchester—type

comba t between two homogeneous forces with temporal var iations in weapon system

ef fec tivenesses by considering Liouvihle ’s normal form for the X and Y force—level

equations. Our principal results were some new outcome—prediction results that com-

plemented those of Taylor and Parry~
511 . We also saw that Taylor and Parry ’s victory-

prediction result (as applied to our model (7)), Theor em 2 , must be refined by making

an add itional assumption about the attrition—rate coefficients. Liouville ’s normal

form also suggests an approximation , the Liouville—Greert—Lanchester approximation , to

the force—level trajectories. Additionally , by transforming the battle ’s time scale,

we saw that the relative fire effectiveness of the two combatants and the intensity

of combat were two key parameters affecting the course of battle. Our new victory—

prediction conditions for fixed—force—ratio—breakpoint battles were applied to two

special cases of combat modelled with general power attrition—rate coefficients: (I)

power attrition—rate ‘~oefficients with no “offset” (modelling, for example , two weapon

systems with the same miximum effective range), and (II) offset power attrition—rate

coefficients with the same parity (modelling, for example , weapon systems with different
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maximum effective ranges but the same type of range dependence). We saw that there

was a “gap” in the range of initial force ratios for which we could predict the outcome

of such a fixed—force—ratio—breakpoint battle. The price that one has to pay to

remove this “gap” was discussed .

NOTES

1. F. W. Lanchester (1868—1946) was an English automotive and aeronautical engineer.

For a brief sketch of his many scientific and engineering contributions, see McCLOSKEY

[29] 
In acknowledgment of his contribution to operations research (again, see

reference 29) the Operations Research Society of American annually awards the Lanchester

Prize (see p. 113 of reference 34) “for the paper on operations research judged to be

the best of the calendar year.”

[8] [9] [11]
2. See, for example, Bonder and Farrell , Bonder and Hon ig , Brackney

DE1TCHMAN~
’41, MORSE and KIMBALL~

30
~ , SCHAFFER

1391 , Taylor and parry[Shl , WALL1S 1521 ,

[54 ,55]and Weiss

[8] [43] [50]
3. As work by Bonder and Farrell , Taylor , and Taylor and Brown shows, the

infinite—series solution to variable—coefficient equations by itself provides little

information about battle outcome because of its complexity .

4. In his well—known survey paper on the Lanchester theory of combat, Dolansky [151

suggested the development of outcome predicting relations without solving in detail

and/or computing force—level trajectories as one of several problems for future research.

The work at hand is a step towards this problem ’s resolution (see also Taylor and

(51] [48]Parry and Taylor ).
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5. Scientific verification of Lanchester—type models (as with any combat model) is

still an unresolved question (see Bonder~
71). Although there have been numerous attempts

to compare the theoretical implications of such models (invariable quite simple, con-

stant—coefficient ones) with empirical (i.e. historical) evidence (see , for example ,

ENCEL 1161 , HELMBOLD 1
~
9’201 , Sc1iMI~~tAi~~

401
, WEISS 154’~~

1 , and WILLARD~
581) ,  the results

have , unfortunately, been inconclusive, with far  from universal agreement as to their

correct interpretation. The historical data base is apparently not rich enough in

detail to permit a definitive answer to the scientific validity of Lanchester—type

models (see HELMBOLD~
211 ) ,  since nations fight wars for other reasons than to collect

combat data.

6. H. K. WEISS 1561 has pointed out that Lanchester, an Englishman, was anticipated (in

qualitative but not quantitative terms) in 1905 by Bradley A. Fiske (then Commander

but later Rear Admiral, USN) , an American. For a sketch of the life and accomplish-

ments of Bradley Allen Fiske (1854—1942) , see pp. 298—299 of reference 31. J. ENGEL~
’71

subsequen tly showed tha t Fiske ’s verbal model is equivalen t to a system of d ifference

equa tions (in contras t to Lanchester ’s differential equations) and examined some of

the mathematical consequences of these Fiske—type equations of warfare.

7. The equations (1) are only valid for x,y ‘ 0. The first , for example , becomes

dx/dt — 0 for x — 0. Moreover, there is far from universal agreement as to which

variables are significant and can be used to predict the outcome of the combat process

For some other views, see HAYWARD 1181 and LIDDELL HART 12 71 .

8. The influential 19th—century German military philosopher , Carl von Clausewitz

(1780—1831), stated in his classic work On War (Vom Kriege) (see p. 276 of reference

13) , “The best Strategy is always to be very strong, first generally then at the dcci—

sive point. ....There is no more imperative and no simpler law for Strategy than to

keep the forces concentrated .”



9. As pointed out by Taylor and ParryISl], the entire subject of modelling battle

termination is a problem area in contemporary defense planning studies. There is far

from universal agreement on this topic (see TAYLOR~
471 for further references).

10. Before the mid—1960’s the use of Lanchester—type models in defense planning stud ies

was hampered by the inability to predict the attrition—rate coefficients (see Bonder141).

Thus , two significant accomplishments for the Lanchester theory of combat in the 1960’s

• were (I) the development of methodology for the prediction of Lanchester attrition—rate

coefficients from weapon system performance data by S. Bonder~
4’6~ and others (see

8ARFOOT~
’1, Bonder and Farrell~

81 , and KIMBLETON 125~), and (II) G. Clark’s
1121 develop-

ment of methodology for the (maximum likelihood) estimation of such coefficients from

Monte Carlo simulation output. Both these developments and others (see references

10, 37, and 38) have facilitated the application in defense planning studies of models

such as (7) and its generalization to combat between heterogeneous forces (see refer-

ence 8).

11. The modelling roles of A and C are discussed in Taylor and Brown’~
°1.

12. Taylor and Brown~
501 give an example of nonexistence of a solution to (7) for

the power attrition—rate coefficients (8) with A = 0 (see Section 4 of reference 50) -

[48] [49]13. The term quasi—autonomous was coined by Taylor (see also TAYLOR ) to denote a

system of differential equations transformable to an autonomous system (see, for

example , p. 163 of PETROVSKI13~
1) by a change of the tine scale. Special cases of

such Lanchester—type equations have been considered by, for example , Farrell t8’ and

TAYLOR 142~. More general (possibly nonlinear) quasi-autonomous Lanchester—type

[48,49] [50]equations have been studied by Taylor (see also Note 4 of Taylor and Brown ) .
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14. A similar theorem for a more general model with supporting fires was given by

Taylor and Parry 1511 , but they did not observe in reference 51 that certain additional

conditions must be assumed to insure that the battle will terminate. In other words,

an analogous result originally given by Taylor and ~arry~
511 for such a linear , vari-

able—coefficient model with supporting fires is not true in general without certain

restrictions on attrition—rate coefficients being added .

15. This point was overlooked by Taylor and p~~~y[51] (see Note 14 above).

16. The substitution s = K/kb/k a(ci)da where K = (,‘~~i~~/(p+l)) 2~~~ transforms

the X force—level equation (11) with power attrition—rate coefficients (38) and

C = 0 into d2x/dx2_sBx 0, which is readily recognized as the generalized Airy

equation (see Swanson and Headley 14~~).

17. The determination of equality of fighting strengths will be affected by the

battle termination modeh used in the operational definition of the concept of fighting

strength. For a discussion of related matters, see reference 18 in which P. Hayward

examines the factors that determine combat effectiveness.

18. As apparently first observed by B. 0. Koopman
t301

, a “square—law” relationship

holds for the quasi—autonomous case in which a(t)/b(t) = constant (see also refer-

ence 50).
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