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I. INTRODUCTION

The purpose of this paper is to prove that Jaynes's principle of maximum
entropy and Kullback's principle of minimum cross-entropy (minimum directed
divergence) provide correct, general methods of inductive inference when given
new information in the form of expected values. Unlike previous
justifications, ours does not rely on intuitive arguments or on the properties
of entropy and cross-entropy as information measures.

A. The Maximum Entropy Principle-and the Minimum-Cross-entropy Principle- 1

Suppose you know that a system has a finite set of possible states x;
with unknown probabilities q1(xi). Suppose you then learn the values of
certain expectations :E:i q'(xi)fk(xi), or bounds on these values, and
you need to choose a distribution q that is in some sense the best estimate of
qf given what you know. In such problems, the known expectations are referred
to as constraints, and distributions with expected values that equal the known
values or fall within the known bounds are said to satisfy the constraints.
Usually, although the constraints rule'out an infinite set of distributions,
there remains an infinite set of distributions that satisfy the constraints.
Which one should you choose?

The principle of maximum entropy is a prescription for solving such
problems. It states that, of all the distributions q that satisfy the
constraints, you should choose the one with the largest entropy
'Zi q(xi)log(q(xi)). Entropy maximization was first proposed as a
general inference procedure by Edwin Jaynes more than twenty years ago [1].

Since then, it has been applied successfully in a remarkable variety of

fields, including statistical mechanics and thermodynamics [1]-[8], statistics
Note: Manuscript submitted October 28, 1978.
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[9]1-[11, Chapter 6], reliability estimation [11, Chapter 10], [12], traffic
networks [13], queuing theory and computer system modeling [14], [15], system
simulation [16], production line decision making [17], [18], computer memory
reference patterns [19], system modularity [20], group behavior [21], stock
market analysis [22], and general probabilistic problem solving [11], [17],
[23]-[25). Among geophysicists and radio astronomers, there is much current
interest in maximum entropy spectral analysis [26]-[29].

The principle of minimum cross-entropy is a generalization that applias in

t

cases when a prior distribution that estimates q' is known in addition to the
newly learned expectations. The principle states that, of all the
distributions q that satisfy the constraints, you should choose the one with
the smallest cross-entropy }E?i q(xi)log(q(xi)/p(xi)), where p is the

prior estimate. Minimizing cross-entropy is equivalent to maximizing entropy

in cases where the prior is a uniform distribution. Unlike entropy

maximization, cross~entropy minimization generalizes correctly for

continuous probability densities. In this case, one minimizes the functional

.[dx q(x)1log(q(x)/p(x)) . (1)

Cross-entropy goes by other names, including expected weight of evidence (30,

p. 72], directed divergence [31, p. 6], and relative entropy [32]. We prefer
‘ the term cross-entropy, which is due to Good [9]. The principle of minimum

cross—-entropy was first bfoposed by Kullback, who called it a principle of

minimum directed divergence or minimum discrimination information

[32, p. 37). It has been advocated in various forms by others [9], [33],

[34), including Jaynes [3], [25], who showed that generalizing entropy

1 maximization to continuous densities leads to (1) with p(x) being called an
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"invariant measure" instead of a prior density. Since entropy maximization
does not deal with prior densities --- there being an implicit assumption of
uniform priors --- this just expresses the fact that a uniform prior in one
coordinate system may not be uniform in another. Cross-entropy minimization
has been applied primarily to statistics [9], [31], [35], but also to
statistical mechanics [8], chemistry [36], pattern recognition [37], [38], and
the computer storage of probability distributions [39].

As a historical note, we point out that entropy maximization and cross-
entropy minimization both have roots in Shannon's work [40], [41]. For
discrete, noiseless systems, maximizing the source entropy results in the best
source encoding, in the sense of enabling the highest information rate over a
fixed capacity channel [40]. For continuous systems, Shannon's definition of
source rate for a fixed fidelity criterion involved the minimization of a
functional like cross-entropy [41].

The mathematics of minimizing cross-entropy subject to constraints is
discussed in Appendix B.

B.'Justify%ggvthe Principles as General Methods of Inference

Despite its success, the maximum entropy principle remains controversial
[32], [42)-[46]. The controversy stems from what some perceive to be
weaknesses in the foundations of the principle, which is usually justified on
the basis of entropy's unique properties as a measure of the uncertainty
represented by a probability distribution. That entropy has such unique
properties is generally undisputed because one can prove, to within the choice
of logarithmic base, that entropy is the only function satisfying various
axioms that are accepted as requirements for an uncertainty}nea.ure (40],

[47). 1Intuitively, the maximum entropy principle follows quite naturally from
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such axiomatic characterizations. In proposing it, Jaynes described the
maximum entropy distribution as "the only unbiased assignment we can make; to
use any other would amount to arbitrary assumption of information which by
hypothesis we do not have....The maximum entropy distribution may be asserted
for the positive reason that it is uniquely determined as the one which is
maximally noncommittal with regard to missing information" [1, p. 623].
Elsewhere, he states that the maximum entropy distribution "agrees with what
is known, but expresses 'maximum uncertainty' with respect to all other
matters, and thus leaves a maximum possible freedom for our final decisions to
be influenced by the subsequent sample data" [25, p. 231]. Somewhat
whimsically, Benes justified his use of entropy maximization as "a reasonable
and systematic way of throwing up our hands" [13, p. 234]. Others argue
similarly [5)-[9], [11].

Although most of the justification for the maximum entropy principle rests
on engropy's properties as an information measure, other kinds of arguments
also support the principle. In response to a common objection that the
maximum entropy distribution has no frequency interpretation (e.g., [42]),
Jaynes showed that this distribution is equal to the frequency distribution
that can be realized in the greatest number of ways [25]. He also showed that
entropy maximization is consistent with various other principles of
probability tﬁeory [25).

Similar justifications can be advanced for the principle of cross-entropy
minimization. Like entropy, cro;a-entropy can be characterized axiomatically,
both in the discrete case [8], [48]-[51] and in the continuous case [34].
Cross-entropy has various properties that are desirable for an information

measure [33], [34], and it can be argued [48] that cross-entropy measures the




amount of information necessary to change a prior p into the posterior q. The
principle of cross-entropy minimization then follows intuitively much like
entropy maximization.

To some, entropy's properties as an information measure make it obvious
that entropy maximization is the correct way to account for constraint
information. To others, such an informal and intuitive justification yields
plausibility for the maximum entropy principle, but not proof --- why maximize
entropy; why not some other function?

Such questions are not answered unequivocally by previous justifications
because these justifications argue indirectly --- they are based on a formal
description of what is required of an information measure rather than on a
formal description of what is required of a method for taking new information
into account. Since the maximum entropy principle is asserted as a general
method of inductive inference, it seems reasonable to require that, if there
are different ways to take the same information into account, these different
ways should lead to consistent results. Our approach is to formalize this
requirement as a set of consistency axioms. The axioms are stated in terms of
an abstract information operator; they make no reference to information
measures or to properties of information measures.

We can then prove that the maximum entropy principle is correct in the
following sense: maximizing any other function but entropy will lead to
logical inconsistencies unless that function and entropy have identical maxima
(any monotonic function of entropy will work, for example). Stated
differently, we prove that, given new information in the form of constraints
on expected values, there is only one distribution satisfying these

constraints that can be chosen as the result of a procedure that satisfies the
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consistency axioms; this unique distribution can be obtained by maximizing
entropy. We establish this result both directly and as a special case of an
analogous result for the principle of minimum cross entropy: We prove, for
the continuous case, that minimizing any other functional but cross-entropy
will lead to logical inconsistencies unless that functional and cross-éntropy
have identical minima. Stated differently, we prove that, given a prior
density and new information in the form of constraints on expected values,
there is only one posterior density satisfying these constraints that can be
chosen in a manner that satisfies the axioms; this unique posterior can be
obtained by minimizing cross-entropy.
We require only four axioms. Informally, they may be phrased as follows:
1) Uniqueness. The result should be unique.
2) Invariance. It shouldn't matter in which coordinate system one
accounts for new information.

3) System independence. It shouldn't matter whether one accounts for

independent information about independent systems separately in terms
of different densities or together in terms of a joint density.

4) Subset independence: It shouldn't matter whether one accounts for

information about an independent subset of system states in terms of
a separate conditional density or in terms of the full system
density.

All four of these axioms are based on a single fundamental principle: If a
problem can be solved in more than one way, the results should be consistent.
Our approach is analogous to work of Cox [52], [53), [11, Chap. 1] and
similar work of Janossy [54], [55]. They assumed that probability theory must

provide a consistent model of inductive inference, and they showed how this




requirement lead: to functional equations whose solutions include the standard
equations of probability theory.
C. OQutline

The remainder of the paper is organized as follows: In Section II we
introduce some definitions and notation. In Section III we motivate the
specific axioms we use and we give their formal statements. The conquences of
the axioms for the general case of continuous densities are explored in
Section IV in terms of a series of theorems that culminates in our main result
justifying the principle of cross—entropy minimization. The discrete case,
including the principle of maximum entropy, is discussed in Section V.
Section VI contains a discussion of the difference between axioms of inference
methods and axioms of information measures. We conclude with a brief summary

in Section VII.
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ITI. DEFINITIONS AND NOTATION

Because we need to formalize inference about probability densities that
must satisfy an arbitrary set of expected value constraints, we need a concise
notation to describe such arbitrary constraints and to refer to the densities
that satisfy them. For these purposes it is convenient to speak in terms of
sets of probability densities and to use set theory notation. We also need a
concise notation for the inference procedure that minimizes some functional in
order to choose a posterior density. This notation must permit us to state
required properties of the inference procedure rather than required properties
of the functional. We therefore introduce an abstract information operator
that yields a posterior density from a prior density and new constraint
information. We are then able to state inference requirements in terms of
axioms for this information operator.

We use lower-case boldface Roman letters to denote system states, which
may be multidimensional, and upper-case boldface Roman letters to denote sets
of possible system states. We use lower-case Roman letters to denote
probability densities, and upper case script letters to denote sets of
probability densities. Thus, let x denote a single state of some system that
has a set D of possible system states and a probability density qf(z) of
states. Let R be the set of all probability densities q on D su:h that

q(x) 20 for x€ED and

dx q(x) =1 . - (2)
R

We assume that the existence of q*e.Q. is known but that qT

itself is unknown.
The density qT is sometimes known as a '"true'" density; we use daggers t to

indicate such densities. When we refer to a set of values q(x) for x€S,
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vhere S&D is some subset of system states, we sometimes write q(x€S).
We are concerned with problems in which one gains new information about

the system in the form of some combination of linear equality constraints

jdg q*()_t)ak(;_c) =0 (3)
D

~

and inequality constraints

ax q' (®e () ) 0 (4)
‘D

for known sets of bounded functions a, and c The set of probability

k"
densities that satisfy such linear constraints ;lways comprises a closed,
convex subset of L. (A density set J is convex if and only if, given
0<A<1 and any q,tEJ , it contains the weighted average Aq + (1-A)r.
Informally, J can be thought of as containing all possible '"compromises"
between q and r.) Furthermore, any closed, convex subset of R can be defined
by a suitable combination of equality and inequality constraints, possibly
infinite in number. We are therefore concerned with problems in which the new

t

information locates q' to within a specified closed, convex subset of . For

convenience, we express constraints in these terms, using the notation

} s ‘ lcn
I={(q EJ ) to mean that q' is a member of the closed, convex set 4 & .
(Note that R itself is convex.) We refer to I as a constraint and to J as a
constraint set. We use upper case Roman letters to denote constraints.

Let pER be some prior density that is an estimate of q* obtained, by any

means, prior to learning I. We require that priors be strictly positive:
p(x€D) > 0 . (5)

(This restriction is discussed below.) Given a prior p and new information I,

the posterior density qes that results from taking I into account is chosen

st



by minimizing the functional H(q,p) in the constraint set J . That is, the
posterior q satisfies
H(q,p) = min H(q',p) . (6)
q'ed
For convenience, we introduce an "information operator" ¢ that expresses (6)
using the notation
q= PQI o = (7)
The operator ¢ takes two arguments --- a prior and new information --- and
yields a posterior. For some other functional F(q,p), suppose q satisfies (6)
if and only if it satisfies
F(q,p) = min F(q',p) .
q'ed
Then we say that F and H are eguivalent.' If F and H are equivalent, the

operator * can be realized using either functional.

If H has the form

H(q,p) = \dx q(x)log(q(x)/p(x)),

then (7) expresses the principle of minimum cross-entropy. At this point,
however, we assume only that H is well-behaved. In Section III, we give
consistency axioms for the operator ¢ that restrict the form of H in ways we
investigate in Section IV. We say that a functional H satisfies one of these
axioms if the axiom is satisfied by the operator o that is realized using H.
The restriction (5) to strictly positive priors reflects our assumption
that p(g) = 0 would indicate the impossibility'of X, whereas we assume that

D is the set of possible states in the sense that prior information has not

10




ruled out any state x€ED. We do not impose a similar restriction on the
posterior q = pel since the new information I may render impossible states
currently thought to be possible. If this happens, then D must be redefined
before q is used as a prior in some further application of the operator °.

The restriction (5) is not necessary for our results, and it does not restrict
them in any significant way, but it does help in avoiding certain technical
problems that would otherwise result from division by p(x).

For some subset §C_:2 of system states and-;_:é_s_, let
q(x | x€8) = q(x) Jd;;' q(x') (8)
S

be the conditional density, given XES, corresponding to any q€EQ . We use

the equation
q(x | 2€8) = q*g : (9

as a shorthand notation for (8).

In cases where D is a discrete set of system states, densities are
replaced by discrete distributions and integrals by sums in the usual way. We
use lower-case boldface roman letters to denote discrete probability
distributions, which we consider to be vectors, for example
q = Qs Qgy ey Q. This results in some potential confusion --- for
example, the symbol r could refer to a system state or a discrete
distribution, and s; could refer to a probability density or a component of
a discrete distribution --- but the intended meaning is always made clear by

the context.

11
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III. THE AXIOMS

We precede the formal statement of each axiom with a justification. We
assume, throughout, a system with possible states D and probability density
JdER.

A. Uniqueness

If we solve the same problem twice in exactly the same way, we expect the
same answer to result in both cases. Stated differently, if Py = Py
holds, we want pIOI = p2°I to hold as well. Such consistency cannot be

expected unless the following axiom holds:

Axiom I (uniqueness): The posterior q = peI is unique for any prior pE[}

and new information I = (q'€{), where J c D.

Actually, Axiom I is implicit in our notation.
B. Invariance

Similarly, we expect the same answer to result from solving the same
problem in two different coordinate systems, in the sense that the posterior
in one system should be the coordinate transformation of the posterior in the

other system. We state this requirement formally as follows:

Axiom II (invariance): Let I be a coordinate transformation from X€D to

7€M with (T (y) = J7'a(x), vhere J ie the Jacobian J = 3(y)/3(x).
Let [Q be the set of densities [q corresponding to densities qED . Let
(T4 )S(ID) correspond todGR. Then, for any prior pE QL and new
information I = (q'€J)),

(fp)e(fD) = [(pem) (10)
holds, where [1 = ((Tgt) €Y.

12




C. System Independence

Suppose there are two systems, one with a set 21 of system states and
probability density of states qqenl, and the other with a set 22 of
system states and probability density of states qgeuz. We also describe
the two systems jointly using the joint probability density q*(.x'l,gz),
where 51691, 52692, and q€ D.‘z. If the two systems were

independent, then the joint density would satisfy
1 1 t
q (351,;52) = ql(gl)qz(‘x'z). (11)

Now suppose that we have prior densities P and Py for the two systems,

and suppose that we obtain separate new information Il = (qte"l) about

one system and I, = (q;EJz), where JIQD.I and ‘,zg Dz. Such

new information can also be expressed completely in terms of the joint density
+ te g’

q'. For example I, can be expressed as I, = (q 631), where

J'IC_: D’lz is the set of joint densities qeulz such that qleJl'

where

9z’ © 5"1‘2 axyxy) |
()

12 can be expressed similarly in terms of the joint density q* instead of in
terms of q;. Nov}z, since the two priors together define a joint prior
Py, = PyPys it follows that there are two ways to take the new
information Il and 12 into account: We can obtain separate posteriors
q; = pl°411 and q, = p2012, or we can obtain a joint posterior
q = p12°(IIA 12). Because ) and p, are independent, and because

I, and I, give no information about any interaction between the two

systems, we expect these two ways to be related by 91, " 9,49 whether

13
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We therefore have the following axiom:?
set

11) in fact holds-
one with 2

or ot (
Axiom IIT (system 1ndegendence) Let there be two gystems,
g and probablhty density of states 9 énl,
asity of

of system state
ptobability de

2
ith a set Dy
gities

the other wit
Eu be prior den

gtates qzeu Let € D. and Py
for the two gystems - Let 1, © El ) and I, © (qzes ), be
new information about the two systems: where J C:-D and-s2
Then
(plpz)O(Ilhlz) = (ploll)(pZOIz) (12)

holds.

f-system states D

p. Subset Indegendence
8 situations in which the set ©

1 axiom concern
ets Sy» §2,..., S

Our fina
into a aumber of disjoint subs
Suppose» gor each

prior p€EQ.

out the conditional density dt*gi,

oses naturally

decomp
e assume 2 known

whose union is D. As usual,

we obtain nev

x5, €4,), where

1nformat10n ab

:‘._S and S is the sot of -

gubset S.,
~1
ccounting for this

namely 1 = (q
conditional densities o0 2 (see (8)-(9)) oOne way of 2
jnformation is to obtain, for each cond1txonal density, 2 conditional
postetiot q3 = (p*§i)°1i grom the conditional prior p*s; - Another way
is to obtain 2 posterior q= pel for the whole system, where
B Ill\lzl\ I\In. We expect that the conditional density q*S; be
the same a8 the conditional density 93 obtained the previous way. That is,
we expect
(pe1)*g; = (p*8;)*Y; (13)
to hold.
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Moreover, suppose that we also learn the probability of being in each of
the n subsets. That is, we learn M = (q*em), where m is the set of

densities q that satisfy

jd§ q(_{t) = m,
S

¢

for each subset '§i' The known numbers m, are the probabilities that the
system is in a state within ‘§i' The m, satisfy Zimi =1, Taking M

into account should not affect the conditional densities that result from
taking I into account. We therefore expect a more. general version of (13) to

hold, namely,

(pe(TAMI*S; = (p¥§.)et,.

;
We restate this formally as our final axiom:

Axiom IV (subset independence): Let $y §2,..., S, be disjoint
subsets whose union is D, and let pER be any known prior. For each
subset '§i’ let Ii = (q+*§i€.'i) be new information about the
conditi.onal density q**‘§l., where Jigsi and Si is the set of
densities on S;. Let M= (q+€m) be new information giving the

probability of being in each of the n subsets, where M is the set of

densities q that satisfy

jd_)_( q(x) = m, (14)
&

for each subset $;» where the m, are known values. Then
(po(1 AH))*_S_i = (p*gi)oli (15)
holds, where I = Il/\le... /\In.

15
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IV. CONSEQUENCES OF THE AXIOMS

A. Summary

Since we require the axioms to hold for both equality and inequality
constraints (2)-(3), they must hold for equality constraints alone. We first
investigate the axioms' consequences assuming only equality constraints.
Later, we show that the resulting restricted form for H also satisfies the
axioms in the case of inequality constraints.

We establish our main result in four steps. The first shows that the
subset independence axiom and a special case of the invariance axiom together

restrict H(q,p) to functionals that are equivalent to the form

F(q,p) = jdgfh@%p@” (16)
D

-~

for some function f of two variables. This form, which we call the "sum

form'", is really the simplest that H could have and is the most convenient
mathematically for the purpose of minimization. In the axiomatic
characterizations in [3&], [45], and [5C], the sum éorm was assumed rather
than derived.

Although a special case of invariance is invoked in deriving (16), the sum
form in general does not satisfy the invariance axiom. Our next step is to
show that general invariance restricts the possible forms of the function f so

that H is in turn restricted to functionals that are equivalent to the form

F(q,p) = .Sdg q(x)h(q(x)/p(x)), (17)
D

~

where h is some function of a single variable. Our third step is to apply the

system independence axiom. The result restricts the possible forms of the

16
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function h and shows that, if H is a functional that satisfies all four

axioms, then H is equivalent to the functional

F(q,p) = .Sdz q(x)10g(q(x)/p(x)), (18)
D

-

i.e, H is equivalent to cross-entropy. Since it could still be imagined that
no functional satisfies the axioms, our final step is to show that cross—A
entropy does. We do this in the general case of equality and inequality
constraints.
B. Deriving the Sum Form

We derive the sum form in several steps. First, we show that, when the
assumptions of the subset independence axiom hold, the posterior values within
any subspace are independent of the values in the other subspaces. Next, we
move formally to the discrete case and show thatvinvariance implies that H is
equivalent to a symmetric function. We then apply the subset independence
axiom and prove that H is equivalent to functions of the form

F(s,g) = Z:jf(qj’pj)’ where P = Pys Pyrecey Py and

9 = Gy 9Ggse.ey q are discrete prior and posterior distributions

respectively, and we return to the continuous case yielding (16).

We begin with the following lemma:

Lemma I: Let the assumptions of Axiom IV hold, and let q = pe(IAM) be

the posterior for the whole system (qER ). Then q(x €§i) is

functionally independent of q()_tégi), of the prior p(}‘ﬁi), and of n.

Proof: Let
9 - (pfﬁi)vli (19)

be the conditional posterior density in the ith subspace (q.€ 5.). since
i i
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p*$; depends on p only in terms of p(‘§€§i) (see (8)-(9)), so does q;-
Furtherore, since 9 is the solution (19) to a problem in which 3€__Si
only, q; cannot depend on q(x ¢§i). Now, (15) states that

(qQ})/mi) = qi(g) or

q(x) = m.q,(x)

for 5€§i, where we have used (8) and (14). Since the m, are fixed
numbers, it follows that q(g:€§{) is independent of q(3_t¢§i) and
p(}¢§_i). This proves Lemma I.

Our next step is to transform to the discrete case in the formal manner

given in the following lemma:

Lemma II. Let S., S,y..., S be disjoint subsets whose union is D.
e ) ~n = ~
For a prior p and a posterior q = peI, let

)
e dx q(x) .

S
Suppose that p(5€§j) is constant, i.e., that p takes on constant values

in each subset. Furthermore, let the new information I be provided by a
set of constraints (3)-(4) in which the known functions a, and c, are
also constant in each subset. Then the posterior q = peI must also be
constant in each subset, and H is equivalent to a symmetric function of
the n pairs of variables (qj,pj). We refer to this situation as the

discrete case.

Proof: Since the known functions a, and ¢, are constant in each subset,

the constraints have the form

Ve  u
Zj a8 ; 0 (20)

18




or
¥
Zj 3¢5 2o, (21)

vhere ‘kj = ak(ze_sj), ckj = ck(gg €_§j), and

'qg = Ldlt q.r(gf).

5
Now, let l" be a measure-preserving transformation that scrambles the x within

each subset 55 This leaves the prior unchanged and it leaves the
constraints (20)-(21) unchanged. It follows from invariance (10) that [ must
also leave q unchanged, which will only be the case if q is constant in each
subset §i' With q and p each taking on only n possible values, the
functional H becomes a function H(s,g) of 2n variables 9= 9y Apreees 9
and P = Pys Pyrceey P To show that H is equivalent 'to a symmetric
function, let It be any permutation. By invarianc‘e',_'the minima of H and WWH

must coincide, where

’“‘H(q,P) = H(q'(l)’ e w ,q’(n),P,',(l) goee ,P'(n)) .

Therefore the minima of H and F coincide, where F is the mean of the WH for
all permutations 1r, and H is equivalent to the symmetric function F. This
completes the proof of Lemma II.

The subset independence property (Lemma I) and the symmetry of H in the
discrete case (Lemma II) together enable us to prove that H is equivalent to

functions that have the discrete sum form.

Theorem I: In the discrete case, let H(q,p) satisfy uniqueness,
invariance, and subset independence. Then H is equivalent to a function

of the form

F(q,p) = Z'j (a;,p;) (22)

for some function f of two variables.
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Theorem I is proved in Appendix A. The proof rests primarily on the subset
independence property (Lemma I).

We return to the continuous case by taking the limit of a sufficiently
large number of sufficiently small subspaces §i' The discrete sum form

(22) then becomes

F(q,p) = ~J§5 £(q(x),p(x)) (23)
D

~

C. Consequence of General Invariance in the Continuous Case

Although invariance was invoked for the special case of discrete
permutations in deriving (22), the continuous sum form (23) does not satisfy
the invariance axiom for arbitrary continuous transformations and arbitrary
functions f. The invariance axiom restricts the possible forms of f as

follows:

Theorem II: Let the functional H(q,p) satisfy uniqueness, invariance, and

subset independence. Then H is equivalent to a functional of the form

F(q,p) = Jé; q(x)h(q(x)/p(x)) (24)
D

~

for some function h of one variable.

Before proving Theorem II, we note that it illustrates the difficulty of
dealing with an axiomatic characterizat:-on of the ¢ operator in comparison to
an axiomatic characterization of H. If we knew that H itself must be
transformation invariant, the deduction of (24) from (23) would be direct.

But we know only that the minima of H must be transformation invariant. We
suspect that the invariance axiom implies the existence of equivalent
functionals that are themselves transformation invariant --- this is suggested

by the proof that H can be assumed symmetric in the discrete case --- but we

20
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have not been able to prove it. The following proof of Theorem II therefore
reasons in terms of invariance at the minima of H.

Proof of Theorem II: From previous results we know that H may be assumed

to have the form (23). Consider the case in which the new information

I consists of a single equality constraint

Jd}. q' (x)alx) = o. (25)
D

A

Then, using standard techniques from the calculus of variations, it follows

that the posterior q = pel satisfies
A+ Ra(x) + glq(x),p(x) = o, (26)

where A and & are Lagrangian multipliers corresponding to the normalization
constraint (2) and to (25) respectively, and where the function g is defined

as
gla,b) = 2 f(a,b). (27)
da
Now, let | be a coordinate transformation from 3 to y in the notation of
Axiom IT. Let q' = [q for any q€ Q. Then the transformed prior p'(y) and

constraint function a'(y) are

-~

p'(p) = J7! pw (28)
and
a'(z) = a(x), (29)

where J is the Jacobian of the transformation. The transformed constraints

1 are
Jdg qf(‘&:)a(g) - dzgqf'(z)a'(!) -y qf'(!)a'(!) =0
? D D'
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and

dx q*(_)_() = d_:_cgqf'(y) = dy qt'(y) = 1.
4 b b’
The posterior q' = p'0o(lI), which is obtained by minimiziug
H(q',p') = \dy £(q'(y),p'(y)) ,
E'
satisfies
A+ a'(y) +glq'(y),p'(y)) = 0, (30)

where A' and o' are Lagrangian multipliers. JTnvariance (10) requires that

the two posteriors be related by q'(y) =Lj-lq(§), so £30) Decones
A+ a0+ ga@d T ed™ = o, (31)
where we have also used (28) and (29). Combining (26) and (31) yields
gL p ™) = ga@ () ¢ (o - &DalR) + A~ AL (32)

Now, let S ety §n be disjoint subsets whose union is D and let the prior

17
p be constant within each §j. If follows from Lemma II that q is also
constant within each §j’ which in turn results in the right side of (32)

being constant within each §j. (The primed Lagrangian multipliers may

depend on the transformation r, but they are constants.) On the lefr side,
however, the Jacobian g may take on arbitrary values since r is an arbitrary
transformation. It follows that g can only depend on the ratio of its
arguments, i.e., g(a,b) = g(a/b). Eq. (27) then becomes

gla/b) = 2 fla,b),
%a

which has the general solution
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f(a,b) = a h(a/b) + v(b), (33)
where h is some function of the ratio a/b and v is any function of b.

Substitution of (33) into (24) yields

F(q,p) = jQE q(x) h(q(x)/p(x)) + j;g v(p(x))
® P

Since the second term is a function only of the fixed prior, it cannot affect
minimization of F and may be dropped. This completes the proof of Theorem

II.

We note that, since g(a,b) = g(a/b) holds, it follows from (32) that

(W - oty + K - K -

Since a(x) can be chosen as an arbitrary function, this shows that A=A and
®K=«', i.e., the Lagrangian multipliers have values that are independent of
the coordinate system.

D. Consequence of System Independence

Our results up to this point have not debended on Axiom III (system
independence). We now show that system independence restricts the function h

in (24) to a single equivalent form.

Theorem III. Let the functional H(q,p).satiafy uniqueness, invariance,

subset independence, and system independence. Then H is equivalent to the

functional
F(q,p) = Jgg q(x)1og(q(x)/p(x)) (34)
D

A
i.e., to cross-entropy.

»’

Proof: Consider a system with states 31621, unknown density qtle D1 >

prior density ple Ql’ and new information I, in the form of a single
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equality constraint

.szl q,(xpalx)) = 0 . (35)
Dy
From Theorem II, we may assume that H has the form (24). It follows that the

posterior q, = pIOIl satisfies

kl + dla(x]) + u(rl(x])) = 0, (36)

where 11 and «1 are Lagrangian multipliers corresponding to the

constraints (2) and (35), where r](zl) = ql(xl)/pl(sl), and where

u(r) = h(r) +r 2 h(r) . (37)
dr
Now consider another system with states x2692, unknown density qge Dz’
prior density p2€ Dz’ and new information 12 in the form of a single

equality constraint

jd;z q2(52)b(32) = 0 ., (38)
2%
The posterior q, = p2012 satisfies

A, + Q63 + ulele)) = 0, ; (39)

where Az and {32 are Lagrangian multipliers corresponding to the
constraints (2) and (38), and where rz(gz) = q,(x,)/p,y(x,) .
The two systems can also be described in terms of a joint probability

density q“l’ze Du , a joint prior Py = PyPy and new information 112

in the form of the three constraints
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) =
“‘dl(}dzz qlz(?}l’l‘zl 1 ’ (40)

n
dx,dx, q,,(x;.x))alx;) = 0, (41)
-

and
dx,dx, q12(§1,§2)b(§2) = 0. (42)

(33

The posterior 9, = p12°I12 satisfies

A

12 * dlza(gl) + plzb(§2) + u(rlz(zl’fz)) = 0, (43)

where the multipliers klZ’ dlz’ and ‘312 correspond to (40)-(42),
respectively, and where r , = q12(51’32)/p12(51’52)'

Now, system independence (12) requires that 9,5 = 9,9, hold, from
which it follows that T, =TT, holds. Combining (36), (39) and (43)

therefore yields
ulr;r,) - u(r)) - ulr,) = («,-%,. )3 + (p.-ﬁ‘)b O R P W

Consider the case when R and 92 are both the real line. Then,

differentiating this equation w{th respect to X results in
' ’ i ' T o '
u (r1r2)r1r2 u (rl)rl (, dn)a 5
and differentiating this result with respect to X, yields
" ' =
u (rlrz)rlrz +u (rlrz) 0- (44)

By suitable choices for the priors and the constraints, r,r, can be made

to take on any arbitrary positive value s. It follows from (44) that the

function u satisfies the differential equation
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2

du s EL%% = 0,
ds ds

which has the general solution
u(s) = A log(s) + B, (45)

for arbitrary constants A and B.
From (45) and (37), we obtain the following differential

equation for the function h:

h(r) + rj—h(r) = A log(r) + B. (46)
r

Let us define hl(r) = r h(r). Then h, satisfies

dhl
— = A log(r) + B .
dr

The general solution for h, is hl(r) = A(r log(r) - r) + Br + C, so that

the general solution of (46) is
h(r) = Alog(r) + C/r +# B-A . (47)
Substitution of (47) into (24) yields

F(q,p) = Ajdg q(x)10g(q(x)/p(x)) + (C + B - A) , (48)
D

-

since the prior p satisfies the normalization constraint (2). Since the
constants A, B, and C cannot affect the minimization of (48), provided A) 0,
this completes the proof of Theorem III.

E. Cross-Entropy Satisfies the Axioms

8o far, we have shown that, if H(q,p) satisfies the axioms, then H is
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equivalent to cross-entropy (24). This still leaves open the possibility that
no functional H satisfies the axioms for arbitrary constraints. By showing
that cross-entropy satisfies the axioms for arbitrary constraints, we complete

the proof of our main result:

Theorem IV: The cross-entropy

H(q,p) = J:g q(x)1og(q(x)/p(x)) (49)

o~

satisfies uniqueness, invariance, system independence, and subset
independence. Every other functional that satisfies the axioms is

equivalent to cross-entropy.

Proof: We need only show that cross-entropy satisfies the axioms.

Uniqueness. Let J be any closed, convex subset JQ R, and let densities
q,rea have the same cross entropy H(q,p) = H(r,p) for some prior pER. We
define g(u) = u log(u), with g(0) = 0, so that H can be written as

Hig,p) = szs p(x)glq(x)/p(x)) .
D

Now, since g"(u) = 1/u) 0, g is strictly convex. It follows that
dg(u) + (1-0)g(v) > g&u + (1-2)v) ,
for 0 X <1 and u ¥ v. We can therefore write

H(q,p) = H(r,p)

(
= |ax [«p(x)g(i’-‘l) (R | -()p(z)g(ﬁg)
Jb p(x) p(x)
: :
) dx P(x)g(dq(z) + (1 —d)r(x)) (50)
J p(x)

P
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The inequality is strict unless q = r. (We write q = r when q(x) = r(x) for
all x except at most a set of measure zero, since in this case q and r define
the same probability distribution and we should not distinguish between
them.) Eq. (50) shows that, if q ¥ r and H(q,p) = H(r,p) both hold, there
exists a density s = «q + (1-%)r that satisfies s€{J (since \' is convex) and
has smaller cross entropy H(s,p) £ H(q,p). Therefore, there cannot be two
distinct densities q,re" 7having the minimum cross-entropy in J . This
proves that cross-entropy satisfies Axiom I.

Invariance. Let r be a coordinate transformation from x to y in the

notation of Axiom II. Let q' = rq for any q€ D . Then

H(q,p) = jdg; q(x)1og(q(x)/p(x)) = gdzc gq'(z)log(-q'(z_)/p'(y))
2 > ik
= |dy q'(y)1og(q'(y)/p'(y))

bl
-~
shows that cross-entropy is transformation invariant. The minimum in I'J

therefore corresponds to the minimum in\' , which proves that cross-entropy
satisfies Axiom II.

System Independence. We use the notation in Axiom III. Consider

densities ql,plenl and q2,p26 lz. Let the density qEQn

satisfy q # 9,9,

p
%, 4(5)0%y) "9
”
%

and p
Jd}z a(x;s%,) = 4qy

0,
i.e., q and 9,9, are different densities with the same marginal

densities. We compute the cross-entropy difference between q and 9,4, for
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the same prior PP, as follows:

H(q,p,p,) - H(q,q,,p,P,)
1P2 1927P1P,

d{lq52 q(fl’fZ) logf q(x qx ))- log( l(x]) - IOG(qZ(!Z)
i d ) () Pa(0) P, (X9 (AN

. “d.’ildh 1(x)0xp) ‘Ox( a(x)2,)
0, (x))a,(x)

= H(q.qlqz)

Now, cross-entropy has the property that H(q,p)) 0 with H(q.p) = 0 only if

q = p (for example, see [31, p. 14]). It follows that
H(q9P]P2) > H(qlqz’plpz) (51) /

holds, since q # 9,9, by assumption. Eq. (51) states that, of all the
densities qED12 with given marginal densities q, and 999 the one with
least cross-entropy is q,4,- Since Il and 12 restrict only the

‘marginal densities of q in q = (plpz)'(IIA.Iz) --- gee Axiom III and

the text preceding it --- the density q with the least cross-entropy in the

constraint set is of the product form 9,4,- But the cross-entropy of a

density of this form is given by

.(x) 4. (X
H(q]q2~P,P2) = f‘dzldxz ql(zl)qz(zz)los( !‘)1& ;\)

XY P (%)
0, Ds
q,(x,) q,(x,)
= |dx, ql(5l)1°3 1'~17) + dx, q2(§2)log 2'*2
p,(x.) pz(xz)
P' 1'=1 ; 0 -
= H(ql,pl) + H(qz,pz) y (52)
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and so assumes its minimum when the two terms on the right assume their
individual minima --- the first subject to Il and the second to I,. Thus,
we have q = (plpz)o(IlAlz) =q,q, = (pl°11)(p2°12)’ and we
have proven that cross—-entropy satisfies Axiom ITI.

Subset Independence. We use the notation in Axiom IV. We also define

q = po(IAM), q; = q*S., and p, = p*§.. (Eq. (15) then becomes

q; = p;° Ii') The cross—entropy of q with respect to p may be written

H(q,p) Sdg_( q(x)1og(q(x)/p(x))

D

v

5. dx m.q.(x)1log miqi(l())
il Titie ‘——
sipi(f)

S-

- A

= E-i dx qi(:c')log(q'ﬁ_)_) + Si milog(_':i_)
s,
i

P; (x)

whA

Zi H(qi,pi) + Zi milog(;i_) :

1

where the s, are the prior probabilities of being in each subset

s, = \dx p(x) .

24
The second sum on the right of (53) is a constant and has no effect on

minimization. Minimizing the left side of (53) subject to (IAM) is
equivalent to minimizing each term of Siﬂ(qi’Pi) individually subject
to I.. This proves that cross-entropy satisfies subset independence and

completes the proof of Theorem IV. For a discussion of the mathematics of

minimizing cross-entropy (49) subject to constraints, see Appendix B.
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V. THE DISCRETE CASE

A. Principle of Minimum Cross-Entropy for Discrete Systems

Theorem IV states that, if one wishes to select a posterior q = pel in a
manner that satisfies Axioms I-IV, the unique result can be obtained by
minimizing the cross-entropy (24). Although the equivalent result for the
discrete case can be obtained in the usual informal way by replacing integrals
with sums and densities with distributions, it can also be obtained formally

as follows.

Suppose a system has a finite set of n states with probabilities
+

t
g [ qu-'aqT

i * Let p = PyseesPy be a prior estimate of q* and let new
> -~

information be provided in the form

Z; da, = 0 (54)
or

& Ge Pt (55)

1

for known sets of numbers a,. and c, ..
ki ki

problems with continuous states and densities for which the foregoing finite

Then it is clear that there exist

problem is the discrete case as defined in Lemma II. It follows from Lemma II
and Theorem IV that the cross entropy functional becomes a function of 2n
variables and that the posterior q = qpse+esq, can be obtained by

minimizing the function
H(q,p) = Zi q;log(q;/p;) (56)

subject to the constraints (54)-(55).
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B. The Maximum Entropy Principle

Using transformation group arguments, Jaynes [25] has shown that a uniform
prior P; =n  is appropriate when we know only that each of the n system
states is possible (as distinct from "complete ignorance'" when we don't even
know this much). It follows that, given only a finite set of possible states

and new information in the form of discrete constraints (54)-(55), the

posterior is obtained by minimizing the function

H(q) = :Erqilog(qi) - log(n).

i
This is equivalent to maximizing the entropy - }Eiqilqg(qi). We
conclude that the principle of maximum entropy is a épecial case of our
general results for cross-entropy minimization.

It is also possible to obtain the maximum entropy principle formally and
directly. We show how in the following, although we omit some of the formal
details. The first step is to rewrite the axioms so that they refer to the
discrete.case in which no prior is available. In this case, given new
information I in the form of constraints (54)-(55), the unary operator o
selects a posterior distribution q = (¢I) from all distributions that satisfy
the constraints. The operator is realized by minimizing some function “(3)°

The axioms become (see Section III):
I (uniqueness): The posterior q = (¢I) is unique.

I1 (permutation invariance): ¢(fI) = [(¢I) for any permutation [.

(57)
I1I (system independence): °(IlA‘12) = (‘Il)(-lz).

1V (subset independence): (0(11\!1))*‘8.i = (OIi).
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Theorem I goes through in a straightforward way with the prior deleted. This
shows that, if H(q) satisfies uniqueness, permutation invariance, and subset

independence, it is equivalent to a function of the form

H(q) = E'if(qi). (58)

We now assume the form (58) and apply system independence in a manner
analogous to the proof of Theorem III. Consider a system with n states,
1»

unknown distribution q', and new information Il in the form of a single

equality constraint
"
- 4 PN ) (59)
g

Al

The posterior q = (-Il) satisfies

u(qi) + O(lai + 5\1 = 0 : (60)

(i =1,...,n), where the function u is defined as

u(x) = R f(x) |, : (61)
dx

and where dl and )l are Lagrangian multipliers corresponding to (59) and

the usual normalization constraint. Now consider a second system, this one

with m states, an unknown distribution r*. and new information 12 in the

-~

form of the constraint
L)
t »
Zrkbk v . (62)
The posterior r = (-Iz) satisfies

u(r,) + szk + "\z = 0 (63)
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(k = 1,...,m), where Pz and ﬁz are Lagrangian multipliers corresponding to
(62) and the normalization constraint. Since the two systems can be described
in terms of a joint distribution, and since a j.int posterior can be selected

in accordance with both Il and 12, the following equation also holds:
wlgur,) + &, + b+ A, = 0 (64)

(i=1,...yn, k = 1,...,m). In (64) we have already applied the system
independence axiom and written the joint posterior as the product of the

individual posteriors. Combining (60), (63), and (64), yields
u(qirk) = u(qi) + u(rk) + (dl - ﬂ(lz)ai + (PZ - Flz)bk
This leads to
u(qirk) - u(qirv) = u(qurk) - u(qurv)
= G(rk,rv), (65)

for some function G. Since the right side of (65) does not depend on q; we
pick an arbitrary value for q; on the left side. This shows that G

satisfies

G(x,y) = s(x) - s(y) (66)

for some function s. (We note that G satisfies Sincov's functional equation
G(x,y) = G(x,z) + G(z,y), which has the general solution (66) [56, p. 223].)

Some manipulation of (65) and (66) yields
ulxy) - 8(x) - s(y) = u(wz) - s(w) - s(2) (67)

Both sides of (67) are independent of each other and must therefore be equal

to some constant, so that u satisfies u(xy) = g(x) + g(y), for some function
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g. Using standard techniques of functional equations [56, pp. 34,302, we
obtain the general solution for u(x), namely u(x) = A log(x) + B, where A and
B are constants. Combining this solution with (61) and integrating yields the

solution for f in (58), f(x) = 4 x log(x) + Bx - A, which in turn yields
HQ) = A 2 .qlog(q,) - nA + B . (68)

This function has a unique minimum provided that A is positive.

Minimizing the function H in (68) is equivalent to maximizing the entropy
- :E;qilog(qi). This proves that, if one wishes to select a discrete
posterior distribution q = (¢I) in a manner that satisfies the axioms (57),

the unique result can be obtained by maximizing entropy.
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VI. INFERENCE AXIOMS VS. INFORMATION MEASURE AXIOMS

Our approach has been to axiomatize desired properties of inference
methods rather than to axiomatize desired properties of information measures.
Yet it might seem that the axioms in Section III are no more than a
thinly-disguised characterization of cross-entropy. In this view, Axioms I
and II might correspond to axioms requiring that H have unique minima and be
transformation invariant, and Axioms III and IV might correspond to axioms
requiring that H be "additive" [34] and satisfy something like the "branching
property" [57]. These correspondences are meaningful and not surprising ---
after all, inference methods should relate to information measures --- but it
is important to realize that there dre significant differences as well.

Consider Axiom III (system independence) and the following axiom, which
can be used [34] in characterizing the directed divergences

fd_:_(_ q(x)10g(q(x)/p(x)) (cross-entropy) and fdg_( p(x)log(p(x)/q(x)):

Additivity. H(qlqz,plpz) = H(ql,pl) + H(qz,pz) (69)

for all ql,ple Ql and q2,p2€: Qz.

In Section IV we showed that, if H has the form

H(q,p) = jdg q(x)h(q(x)/p(x)) (70)
D

-~

and is required to satisfy system independence, then it follows that H is
equivalent to cross-entropy (Theorem III). When we proved, as part of Theorem
IV, that cross-entropy itself satisfies system independence, we exploited the
fact that cross-entropy satisfies additivity (69) --- see (52). At first
glance, it might seem that any functional that satisfies additivity also

satisfies system independence. But Johnson [ 34] proved that the information
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measures H(q,p) of the form (70) that satisfy additivity (69) are those of the

form

H(q,p) = Aldx q(x)1log(q(x¥)/p(x)) + B|dx p(x)log(p(x)/q(x)) , (71)
%} 3]

for some constants A,B) 0, not both zero. 'I‘I:at is, (70) and additivity (69)
of H yields the linear combination of both directed divergences, whereas (70)
and system independence of the operator ¢ yields only one of the directed
divergences, cross-entropy. The key to the difference is the property
expressed by (51) --- for all densities q€E Diz with given marginal densities
q, and q,, H(q,p1p2) has its minimum at q = q,q,. This property

is necessary if H is to satisfy system independence; it is satisfied by the
first term in (71) but not by the second, even though the second term

satisfies additivity.
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VII. SUMMARY

We have proved that, in a well-defined sense, Jaynes's principle of
maximum entropy and Kullback's principle of minimum cross-entropy (minimum
directed divergence) provide correct, general methods of inductive inference
when given new information in the form of expected values. In contrast to
previous justifications, our approach has been to axiomatize desired
properties of inference methods rather than to axiomatize desired properties
of information measures. We defined four axioms, all of them based on the
principle that, if a problem can be solved in more than one way, the results
should be consistent. We proved that, when given a prior continuous density
or discrete distribution and new information in the form of expected values,
there is only one posterior density that can be chosen in a manner that
satisfies the consistency axioms. This unique posterior can be obtained by
minimizing cross-entropy subject to the constraints of the new information.
In the discrete case when no prior is available, we proved hat there is still
only one posterior that can be chosen in a manner that satisfies the
consistency axioms, and that this unique posterior can be obtained by
maximizing entropy. This result for the principle of maximum entropy was
obtained both from the general result for minimum cross-entropy, in the
special case of uniform priors, and directly as a consequence of prior-free
versions of the axioms.

When Jaynes first proposed the maximum entropy principle more than 20
years ago, he did not ignore such questions as '"Why maximize entropy, why not
some other function?". We have confirmed his conjecture [l, p. 623] that
"deductions made from any other information measure, if carried far enough,

will eventually lead to contradictions."
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APPENDIX A

Proof of Theorem I

The proof has three steps. First, we discuss some general properties of H

and we show that the partial derivatives of H have the form

E_H = Z(S’.P) + g(qj,pj)s(g,g) (A.1)

“bqj

for some functions z,g, and s. This follows from invariance and subset
independence. We then investigate the behavior of g and s and show that (A.1)
results in H being functionally dependent on F(S’P) = 2% f(qj,pj), where
f is a solution of g =2 f(q,p)/dq. Finally, we show that the functional
dependence is monotonic so that H and F are equivalent.

In realizing the operator ¢ , the only relevant values of Hggag) are at

points q that satisfy the normalization constraint
- ;
Z L (A.2)
p qJ
Jt!

‘This is just the discrete form of (1), which is required by q€ R (see Section

II). We shall refer to the hyperplane consisting of points q that satisfy

~—

(A.2) as the normalization subspace. In selecting posteriors by minimizing H,

we are further restr%cted to the positive region of points q that satisfy
ql.) 0 for i = 1,...,n. This restriction is also required by qE Q. On the
normalization subspace (A.2), H(ﬂ’f) is a function of only n-1 independent
variables q; (the prior‘g is assumed fixed). For convenience, however, we
consider H to be extended off the normalization subspace to a well-behaved
function of n independent variables that is symmetric under identical

permuations of q and p (see Lemma II). This enables us to express the

~
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gradient VH as

=
"
o/
T
o
-

-4
o

where §]""’§n is a standard, orthonormal basis. The operator ¢ can be
realized by minimizing the extended H in the positive region provided that
(A.2) is always imposed as a constraint. In the continuous case, we have
assumed that the functional H(q,p) is well-behaved. We take this to mean, in
particular, that the function H(ﬂ’f) is continuously differentiable in the
interior of the positive region of the normalization subspace and that the
projection of VH into the normalization subspace is zero only at minima of H.
Now, let N be the set of integers {1,...n}, let MCN be a set of m
integers from N, and let M-N be the set that remains after deleting M from N.
Let Iy comprise the subset of components q; with iEM and let In-M
comprise the rest. We shall refer to points 9y 28 points in the
M-subspace. In the derivation that follows, we assume that n)»6 and m) 4 both
hold. Suppose new information comprises a set of equality cons.traim:s (20)
n
Zq'. a . =0 : (A.3)
1 J ok
that satisfy ‘kj = 0 either for all jEM or for all jEN-M, and suppose the
set includes the constraint
Z q‘. =r. (A.4)
jem
If a particular constraint satisfies akj = 0 for jEM, then it can be
written as a constraint

Z ak.q'. = anj(qg/r) =0

JEM JEM
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on the conditional distribution (ﬂulr)’ i.e., as a constraint on the
conditional distribution given j€M. Similarly, constraints that satisfy
akj = 0 for jEN-M can be written as constraints on the conditional
distribution gN_M/(l-r). Therefore, the system decomposes into two subsets
(M and N-M) with new information that satisfies the assumptions of Axiom IV
(subset independence). It follows from Lemma I that, when H(EKP) is minimized
over the constraint set, the resulting gy are independent of the IN-m’ of
the Pn-m’ and of n.

Now, although the M-subspace is m~dimensional, the constraint (A.4)
requires that the solution Ay be found on the m-1 dimensional hyperplane

defined by (A.4). Therefore, finding this solution depends, not on the

projection of YH into the M-subspace, j
(YH)M e %—H'gj [}
jem %93

but on its projection onto the (m-1) dimensional hyperplane defined by (A.4).
This projection is given by
= - A. 2
B (VH& @(YBM@,

~M -

where ﬁ is a unit vector normal to the hyperplane. Since

=14

¥ e
ﬁ%ﬁ

will serve, gM has components

M 2H (A.5)
Y "ty
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for i€M. Now, since H is symmetric (Lemma II),

o
= = Blaggy ;oPiopy ) T OBy

2q.

1

holds for some function h, where I5-i is any permutation of CPEREERL W
with 9 deleted and Py-i is the same permuation of PpoeeesPy with P;
deleted. Hence, (A.5) becomes
By, = b ] Zh.
i i — "j
B ojem

B(a;,qy_;+P;1Py-i)

for some function B.

To find the solution for gy® ©One moves on the constraint hyperplane
opposite the direction of maximum change in H --- i.e:, opposite the direction
of 2)4 --- until no further movement is possible within the constraint set
(A.3). Since the solution cannot depend on dy-u °F Py-m’ neither can the
direction of B. This direction is also independent of n, since the
subspace solution g, is independent of n (Lemma I). If U, is a unit

vector in the direction of By with components U,., it follows that

UMi = _B..’.‘..l. = U(qi’ﬂn-i"’i’}.’u-i) ’ (A.6)
Bul

for some function U, where 9y-i is any permutation of 9y with 9

deleted, etc. The function U is well defined everywhere on the constraint
hyperplane except at a point at which H is minimized subject only to (A.4).
Such a point is characterized equivalently by pu = 0 and by hi = hj for

all i,jEM. By uniqueness, there cannot be more than one such point. For if
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there were more than one such point, H would would reach its minimum value at
more than one point or would have local minima in addition to an absolute
minimum. In either case, one could define convex constraint sets in which the
minimum of H would occur at more than one point, thereby violating
uniqueness.

The point at which (A.6) is ill-defined is also characterized by the
equality of the ratios (qi/pi)'(qj/pj) for all i,jEM. To see this,
we apply the subset independence axiom. Minimizing H subject only to (A.4)

means that (15) applies without the additional information I. If we define b
as

b'Zp-,
JEM ;

then (15) becomes (qj/r) = (pj/b) so that qJ./pj is a constant
independent of j for jEM. In the case of n = m, the constraint hyperplane
becomes the entire positive region of the normalization subspace --- (A.4)
becomes equivalent to (A.2) and r = b = 1 holds. This shows that there is
only one point at which all of the hi are equal, namely the point q=p-
Similarly, by taking m = 2 and M = {i,j}, one can show that the condition
h, = hj is equivalent to the condition (qi/pi)'(qj/pj).

From (A.6) we obtain

Bei "By _ Ui T Uy (A.7)
% mm

for i,j,kEM. But

b Tty | Ry ek (A.8)
T Mj P

follows from (A.5). Since the right-hand side of (A.8) cannot depend on the
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definition of M, neither can the right-hand side of (A.7). It follows that

h, - h,
SHG RN e
CRERY W(qi,qj,qk.pi,pj.pk) ™ W (a.8)

holds for some function W of six variables. Now, by this construction, W is
well defined when qi+qj*qk< 1 and hk # hj; the latter condition is
equivalent to (qk/pk)#(qj/pj). However,

h, = h; W..
ik & 220 o W
hk - hj wkju

ijk

hblds, and further manipulation yields

wiru o w'ru
= W.. % (A.9)
wkru wjru s

Since (A.9) is independent of Qs Q1 Pps and Py ve may take
arbitrary values of these variables, and use (A.9) to extend the definition of
W. By the discussion following (A.8), the numerator and denominator on the
left of (A.9) are defined as long as (qr/pr)f(qu/pu) holds and then
the fraction is well defined whenever

(qk/Pk) # (qj/pj),

0£q;< 1-q, -q,

069 <l~q, "
and

0€q <1-q -q

all hold. But we can make 1 - Sl ™ arbitrarily close to 1 so that we

may extend the domain of wijk to include all arguments such that 9y qj,
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and q, are between 0 and 1 and (qk/pk)f(qj/pj) holds. Moreover,
(A.9) continues to hold on this extended domain.
Now we may write g(qi,pi) =g, for W, with some particular,

fixed values of 9.0 Qo and obtain

h. - h. soPs} = 9P
o W s e L (A.10)
- h, 8lq,,p) - s(qj,pj)
for some function g of two variables. It follows that h, = bll/)qi has
the form
B, « z(q,p) + g(qi,pi)s(q,p) (A.11)
for some functions z, s, and g. This implies that

holds, so that the function s is given by

hi - h,
&; 8j

For a particular point 9 the right—ﬁand side may be ill-defined for certain
values of i and j. Since s is independent of i and j, however, s is
well-defined unless g; = gj for all i,j. But, from the construction of g,
the condition g; = gj is equivalent to hi = hj and therefore to
(qi/pi)'(qj/pj). It follows that s is well-defined everywhere in the
positive region of the normalization subspace except perhaps at the.lingle
point where q = p holds. The function z is likewise well-defined except

-~ ~

perhaps at this point.
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Furthermore, s and g are continuous except perhaps at q = p: Since H is
continuously differentiable, the derivatives hi are continuous and finite
everywhere in the positive region of the normalization subspace (except
possibly on the boundary --- at points that satisfy q; = 0 for some i). It
follows that each of the functions (y H)M’~§M’ U, W, s, and g is
continuous except perhaps at certain "obvious" points where it is ill-defined
because of a vanishing denominator in the construction.

Now, let t parameterize some curve ﬂ(t) in the positive region of the
normalization subspace. It follows from (A.l11) that

n
4 Blgte)sp) xR Ak
e isd 3q.

. Ei a;8; *+ 2 Eiai

L}

holds, where ai = dqi/dt. But the normalization constraint (A.2) implies

that jziai = 0, so we have

d Hq(t),p) = s(q(t),p) LF(qlt),p) , (A.13)
gt iy R G e i

where n
F(q,p) = EE: f(qi,pi) (A.14)

A=
for some function f related to g by g(qi,pi) = f(qi,pi)/) q-
Suppose the curve ﬂ(t) lies in a level surface of H. Then dH/dt = 0 and
(A.13) shows that F will also be constant on any such curve, unless perhaps s
is zero. However, (A.l12) shows that, in the interior of the normalization
subgpace, s in not zero unless hi = hj for all i,j, which can be true only

at the point q = p. It therefore follows that F is constant on connected
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components of level surfaces of H and that F and H are functionally dependent

--- locally, F can be written as a function of H, with

dF 1 (A.15)

dH s(q,p)

Next, we show that the functional dependence is monotonic. If it were not
monotonic, then dF/dH = s_l(g,g) would change sign at a point E and,
therefore, in some neighborhood of q along a level surface of H. But we have
already shown that s is continuous and non-zero everywhere in the interior of
the normalization subspace except perhaps at a single point (the minimum of
H); it follows that s is of constant sign. Hence, the functional dependence

of F on H is monotonic. The function F in (A.l4) is therefore equivalent to

H, as stated in Theorem 1.
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APPENDIX B

Mathematics of Cross-Entropy Minimization

We derive the general solution for cross-entropy minimization given
arbitrary constraints, and we illustrate the result with the important cases
of exponential and Gaussian densities. In general, however, it is difficult
or impossible to obtain a closed-form, analytic solution expressed directly in
terms of the known expected values rather than in terms of the Lagrangian
multipliers. We therefore discuss numerical techniques for obtaining the
solution, namely the Newton-Raphson method. This method is the basis for a
computer program that solves for the minimum cross-entropy posterior given an
arbitrary prior and arbitrary expected-value constraints.

Given a positive prior density p and equality constraints

q(i) dx = 1, (B.1)

£, (x)q(x) dx = ’fk ) 4 U3 VEPRENET ) B (B.2)
the standard method for seeking an extremum of

H(q,p) = q(z) log g%f% dx ,

subject to the constraints, is to introduce Lagrangian multipliers AO and

Ak (k =1, ... , m) corresponding to the constraints, forming the expression

m
q(:t') log %%))» dx +)\o q(x) dx + ZAR fk(g)q(g) dx ,
” k=1
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and to equate the variation, with respect to q, of this quantity to zero:

m
(x) 2
logg-(%+l+)o+zxkfk(5)—0.
k=1

Solving for q leads to

m
a(®) = p(x) exp (- Ay -1 - D A £ ). (8.3)
k=1

It is necessary to choose 7\0 and the }\k so that the constraints are
satisfied. In the presence of the constraint (B.l) we may rewrite the

remaining constraints in the form
fk(‘:é)q(’)‘(') dx = 0 (B.4)

by redefining the fk: write fk(z) for what was previously written as

fk(x) - -f-k' Now, if we find values for the A, such that

k

m
£,0p(x) exp[ - > A f,Gx) ) dax =0 ,
k=1

(1= 3y ies 5 m) 5 (B.5)
we are assured of satisfying (B.4); and we can then satisfy (B.l) by setting
m
Ag=-1+1log | p(x) exp| - Z)‘kfk("v‘) dx .
k=1

The situation for inequality constraints is only slightly more
complicated. Suppose we replace all the equal signs in (B.2) by . (We lose

no generality thereby: we can change inequalities with 2 into inequalities
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with £ by changing the signs of the corresponding fk and ;L, and any
equality constraint is equivalent to a pair of inequality constraints.) The q
that minimizes H(q,p) subject to the resulting constraints will in general
satisfy equality for certain values of k in the modified (B.2), while strict
inequality will hold for the rest. We can still use the solution (B.3),
subjecting the Lagrange multipliers to the conditions.Ak‘O for k such that
equality holds in the constraint, and Ak=0 for k such that strict inequality
holds in the constraint.

It unfortunately is usually impossible to solve (B.5) for the Ak
explicitly, in closed form; however, it is possible in certain important
special cases. For example, consider the case in which the prior pﬁg) is a

multivariate exponential,

n
p(}') 'ﬂ (l/ak) exp(xk/ak) :
k=1

where x = (xl,...,x“) and the X each range over the positive real line,

and in which the constraints are
dz xkq(z) ol s (B.6)

k=1, ..., n. Solving (B.5) in order to express the minimum cross-entropy
.

posterior directly in terms of the known expected values ;; yields

a(x) = ’ i<1/2k> exp(x, /%)
k
Thus, the density remains multivariate exponential, with the prior mean values

a  being replaced by the newly learned values ;;.

k
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Now consider the case in which the X, range over the entire real line,

and in which the prior density is Gaussian,

p(z) = I—I'(Zﬂbk)_l/zexp[(xk - ;i)Z/Zbk]
k

Suppose that the constraints are (B.6) and
dx (x, - x)%q(x) = v

In this case the minimum cross-entropy posterior is

q(z) = T_I-(ervk)—l/zexp[_(xk -;k)zlzvk] .
k

Thus, the density remains multivariate Gaussian, with -the prior means and
variances being replaced by the newly learned values;

Here is an example of a simple problem for which ‘the solution of (B.5)
cannot be expressed in closed form. Consider a dis¢rete system with n states
X, and prior probabilities p(xj) iy (j =1, ... , n). The discrete

form of (B.1) is

Z =1, (B.7)

where 9 = q(xj). Suppose the only other constraint is that the mean m of

the indices j is prescribed: f(xj) = j, and

n
:E: jqj =m . (B.8)
J=1

Equation (B.3) becomes

4 “ pjexp(-Ab-l-jA) y
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which we write as

F
. ® ap.z
qJ pJ

by introducing the abbreviations
a = exp(-Ao-l) ’ z = exp(-A) .

From (B.7) and (B.8) we then obtain

n -]
a= Z psz
b
and
n
:E: (j-m)pjzJ =0 . (B.9)

j=1

The problem then reduces to finding a positive root of the polynomial in
(B.9). As in the continuous case, there are special forms for the prior that
lead to important particular solutions. But when n > 5, the roots of the
poiynomial (other than zero) cannot in general be written as explicit,
closed-form expressions in the coefficients for arbitrary priors. Numerical
methods of solution therefore become important. Our obtaining a polynomial
equation in the present example was an accidental consequence of the fact that
the values of the constraint function f formed a subset of an arithmetic
progression (j =1, 2, ... ). Thus, for more general types of problems,
numerical methods are even more important.

One such method is the Newton-Raphson method, which is for finding

solutions for systems of equations that, like (B.5), are of the form
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Fi(Al, ,/\m) =0, €3 %%, i 2w s (B.10)

The methecd starts with an initial guess at the solution,

A(l) = (Ail), ,A:}l)), and produces further approximate

solutions A(Z), 3(3), «+. 1in succession. If the initial guess A(l) is

close enough to a solution of (B.10), if the F, are continuously
differentiable, and if the Jacobian [aFi/JAjJ is nonsingular, then the
'a(r) will converge to the solution in the limit as r 02,

The method is based on the fact that, for small changes Qa(r) in the

arguments A(r), we have the approximate ‘equality

(), , {©) @, , = M3
F (A "+4A I RE QA 2 S A
k=1 k
up to a term of order o(éa(r)). We therefore take ‘ea(r) to be a solution

of the linear equation

= MY |
S i AP = g (A7) (B.11)
k=1 Ak

and set
/\(r+l) B A(r) +A/\(r) 3
~ ~ La e s

When Fi is given by the discrete form of the left-hand side of (B.5), we

have
n m e
(r) r
P = D fpiene (- D> A6 ) (8.12)
j=1 u=]
(r) n m
IF. (A7)
1 ~ (!‘)
—_—— = - fijfkjpjexp - ZA“ fuj ’ (B.13)
aAk j-l u=]
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where fij = fi(xj). With the abbreviation

m
e i (A T 40
g; =Py exp(-3 Ay fu5 )

u=l1

we express the right-hand sides of (B.12) and (B.13) in matrix notation as

(€ diag(g) g)i 3

£ diag(‘%)zft)ik :

where diag(g) is the diagonal matrix whose diagonal elements .are the gj, and
~

-Ft is the transpose of . The solution of (B.11) is then given by
~

~

We remark that the quantity in brackets is the Moore-Penrose generalized
inverse [58] of the matrix £ diag(g). The approach just\ described has been
made the basis for a computer program [59], written in APL, for solving
croés—entropy minimization problems with arbitrary positive discrete priors )
and equality constraints specified by matricesf. The approach is
particularly convenient for programming in APL since the generalized inverse
is a built-in APL primitive function [60]. To solve a minimum-cross-entropy
problem with 500 states and 10 constraints, the program typically requires 15
seconds of CPU time when running under the APL SF interpreter on a DEC-10

system with a KI central processor.
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