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I. INTRODUCTION

The purpose of this paper is to prove that Jaynes ’s principle of maximum

entropy and Kuilback’s principle of minimum cross—entropy (minimum directed

divergence) provide correct , general methods of inductive inference when given

new information in the form of expected values. Unlike previous

ju8tificationa , ours does not rely on intuitive arguments or on the properties

of entropy and cross—entropy as information measures.

A. The Maximum Entropy Principle and the Minimum-Cross—entropy Principle.

Suppose you know that a system has a finite set of possible states x
~

with unknown probabili ties qt (x~). Suppose you then learn the values of

certain expectations 
~~~ 

qt (x~)f~(x.), or bounds on these values , and

you need to choose a distribution q that is in some sense the best estimate of

qt given what you know. In such problems , the known expectations are referred

to as constraints, and distributions with expected values that equal the known

values or fal l  wi thin the known bound s are said to satisf y the constraints.

Usua l ly ,  although the constraints rule out an infini te set of distributions ,

there remains an infinite set of distributions that satisfy the constraints.

Which one should you choose?

The princip le of maximum entropy is a presc ript ion for solving such

r problem.. It states that , of all the distributions q that satisfy the
I

cons traints, you should choose the one with the largest entropy

~~~~~~~~~~~ 

q(x1)log(q(x1)). Entropy maximization was first proposed as a

general inference procedure by Edwin Jaynes more than twenty year . ago (ii.

Since then , It ha. been applied successfull y in a remarkable variety of

field ,, including statistical mechanics and thermodynamics t1I— (81~ statistics
Not.: Msnnseript submitted October U, 1978.
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[91—Eli , Chapter 63 , reliability estimation El i , Chapter 101 , (121 , traffic

networks (131 , queuing theory and computer system modeling (141 , [151 , system

simulation (161 , production line decision making [ill , (]81 , computer memory

reference patterns (191 , system modularity (201 , group behavior (211 , stock

market analysis (221 , and general probabilistic problem solving [iii , (ill ,

E231—E251 . Among geophysicists and radio astronomers , there is much current

interest in maximum entropy spectral analysis [261—t29J .

The principle of minimum cross—entropy is a generalization that app li as in

1’ S
cases when a prior distribution that estimates q is known in addition to the

newly learned expectations . The principle states that , of all the

distributions q that satisfy the constraints , you should choose the one with

the smallest cross—entropy 
~~~ ‘ 

q(x1
)1og(q (x~ )/ p(x~)), where p is the

prior estimate. Minimizing cross—entropy is equivalent to maximizing entropy

in cases where the prior is a uniform distribution. Unlike entropy

maximization , cross—entropy minimization generalizes correctly for

continuous probability densities. In this case , one minimizes the functional

dx q(x)log(q(x)/p(x)) . ( 1)

Cross—entropy goes by other names, including expec ted weight of evidence (30,

p. 721 , directed divergence [31 , p. 61 , and relative entropy (321. We prefe r

the term cross—entropy , which is due to Good (93 . The princip le of minimum

cross—entropy was first ‘proposed by Kuliback , who called it a principle of

minimum directed divergence or minimum discrimination information

[32 , p. 371 . It ha. been advocated in various form, by others (91, [331 ,

(341 , including Jaynes (31 , [251 , who showed that generalizing entropy

maximization to continuous densities leads to (1) with p(x) being called an

2
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“invariant measure” instead of a prior density. Since entropy maximization

does not deal with prior densities ——— there being an implicit assumption of

uniform priors ——— this just expresses the fact that a uniform prior in one

coordinate system may not be uniform in another Cross—entropy minimization

has been applied primarily to statistics [91, [31] , (351 , but also to

statistical mechanics (81 , chemistry [36], pattern recognition (37], [381 , and

the computer storage of probability distributions (391.

As a historical note, we point out that entropy maximization and cross—

entropy minimization both have roots in Shannon ’s work (401 , (411. For

discrete , noiseless systems, maximizing the source entropy results in the best

source encoding, in the sense of enabling the highest information rate over a

fixed capacity channel [401 . For continuous systems, Shannon ’s definition of

source rate for a fixed fidelity criterion involved the minimization of a

functional like cross—entropy (411.

The mathematics of minimizing cross—entropy subject to constraints is

discussed in Appendix B.

B. Justifying the Principles as General Methods of Inference

Despite its success , the maximum entropy principle remains controversial

[32], (42]— (461 . The controversy stems from what some perceive to be

weaknesses in the foundations of thc ~rinciple, which is usually justified on

the basis of entropy ’s unique properties as a measure of the uncertainty

represented by a probability distribution . That entropy has such unique

properties is generally undisputed because one can prove, to within the choice

of logarithmic base, that entropy is the only function satisfying various

axioms that are accepted as requirements for an uncertainty measure (401 ,

[471 . Intuitively, the maximum entropy princ iple follows quite naturally f rom

3
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such axiomatic characterizations . In proposing it , Jaynes described the

maximum entropy distribution as “the only unbiased assignment we can make; to

use any other would amount to arbitrary assumption of information which by

hypothesis we do not have. . . .The maximum entropy distribution may be asserted
for the positive reason that it is uniquely determined as the one which is

maximally noncommittal with regard to missing information” (1 , p. 6231 .

Elsewhere, he states that the maximum entropy distribution “agrees with what

is known , but expresses ‘maximum uncertainty ’ with respect to all other

matters , and thus leaves a maximum possible freedom for our final decisions to

be influenced by the subsequent sample data” (25, p. 231]. Somewhat

whimsically, Benes justified his use of entropy maximization as “a reasonable

and systematic way of throwing up our hands” [13, p. 234]. Others argue

similarly [51—191 , [i i ) .

Although most of the justification for the maximum entropy principle rests

on entropy ’s properties as an information measure , other kinds of arguments

also support the principle. In response to a common objection that the

maximum entropy distribution has no frequency interpretation (e.g., 1421),

Jaynes showed that this distribution is equal to the frequency distribution

that can be realized in the greatest number of ways [251 . He also showed that

entropy maximization is consistent with various other princi p les of

probability theory [251 .

Similar justifications can be advanced for the principle of cross—entropy

minimization. Like entropy, cross—entropy can be characterized axiomatically,

both in the discrete case [81 , E48]— [511 and in the continuous case (341.

Cross—entropy has various properties that are des irab le for an information

measure [331 , (341, and it can be argued [48] that cross—entropy measures 
the4



amount of information necessary to change a prior p into the posterior q. The

principle of cross—entropy minimization then follows intuitively much like

entropy maximization.

To some, entropy ’s properties as an information measure make it obvious

that entropy maximization is the correct way to account for constraint

information. To others, such an informal and intuitive justification yields

plausibility for the maximum entropy princip le, but not proof ——— why maximize

entropy ; why not some other function?

Such questions are not answered unequivocally by previous justifications

because these justifications argue indirectly ——— they are based on a formal

description of what is required of an information measure rather than on a

formal description of what is required of a method for taking new information

into account. Since the maximum entropy principle is asserti~d as a general

method of inductive inference , it seems reasonable to require that , if there

are different ways to take the same information into account , these different

ways should lead to consistent results. Our approach is to formalize this

requirement as a set of consistency axioms . The axioms are stated in terms of

an abstract information operator ; they make no reference to information

measures or to properties of information measures.

We can then prove that the maximum entropy principle is correct in the

following sense: maximizing any other function but entropy will lead to

logical inconsistencies unless that function and entropy have identical maxima

(any monotonic function of entropy will work, for example). Stated

d i f f e rent ly, we prove that , given new information in the form of constraints

on expected values, the re is onl y one dis trib ut ion sa t isf ying these
t 

constraints that can be chosen as the result of a procedure that satisfies the

5
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consistency axioms ; th i s  uni que d i s t r i b u t i o n  can be obtained by maximizing

entropy . We establish this result both directly and as a special case of an

analogous result for the princi ple of minimum cross entropy : We prove , for

the continuous case, that minimizing any other functional but cross—entropy

will lead to logical inconsistencies unless that functional and cross—entropy

have identical minima. Stated differently, we prove that, given a prior

density and new information in the form of constraints on expected values ,

there is only one posterior density satisfying these constraints that can be

chosen in a manner that satisfies the axioms ; this unique posterior can be

obtained by minimizing cross-entropy .

We require only four axioms. Informally, they may be phrased as follows:

1) Un iqueness. The result should be unique.

2) Invariance. It shouldn ’t matter in which coordinate system one )

accounts for new information.

3) System independence. It shouldn ’t matter whether one accounts for

independent information about independent systems separately in terms

of different densities or together in terms of a joint density.

4) Subset independence: It shouldn’t matter whether one accounts for

information about an independent subset of system states in terms of

a separate conditional density or in terms of the full system

density.

All four of these axioms are based on a single fundamental principle: If a

problem can be solved in more than one way , the results should be consistent.

Our approach is analogous to work of Cox [521 , (531 , (ii , Chap. ii and

similar work of Janossy [541, (551 . They assumed that probability theory must

provide a consistent model of inductive inference, and they showed how this

6
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requirement 1ead~ to functional equations whose solutions include the standard

equations of probab i l i ty  theory .

C. Outline

The rema inder of the pape r is organiz ed as fo l l ows: In Sect ion II we

introduce some d e f i n i t i o n s  and notat ion.  In Section III  we motivate the

spec i f i c  axi oms we use and we give their forma l statements.  The conquences of

the axi oms f or the general case of cont inuous dens i t ies are exp lored in

Section IV in terms of a series of theorems that  culminates in our main result

jus t i f ying the princi ple of cross—entropy minimiza t ion .  The discrete case ,

including the princip le of maximum entropy , is discussed in Section V.

Section VI contains a discussion of the d i f fe rence  between axioms of inference

methods and ax ioms of information measures. We conclude with  a br ief  summary

in Sect ion VII
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II .  DEFINITIONS AND NOTATION

Because we need to formal ize  inference about p r o b a b i l i t y  dens i t i e s  that

must sat i s fy  an a rb i t r a ry  set of expected value cons t r a in t s , we need a conc i se

notat ion to describe such a rb i t r a ry  const ra in ts  and to refer to the dens i t i es

that sat isfy them. For these purposes it is convenient to speak in terms of

sets o f probab i l i ty densi t ies  and to use set theory no ta t ion . We also need a

concise notation for the inference procedure tha t  minimizes  some func t iona l  in

order to choose a poster ior dens i ty . This notat ion must permit us to s t a te

required propert ies  of the inference procedure r a the r  U’~ n required  proper t ies

of the functional. We therefore introduce an abstrac ’ information operator

that y ields a poster ior den si ty from a pr ior dens i ty  and new cons t ra in t

information . We are then able to state inference requirements in terms of

axioms for this information operator .

We use lower—case boldface Roman let ters  to denote system s ta tes , wh ich

may be mul t id imens iona l , and upper—case bo ldface  Roman le t te rs  to denote sets

of possible system s ta tes .  We use lower—case Roman le t ters  to denote

probab il i ty densit ies , and upper case scr ipt le t ters  to denote sets of

probab i l i t y densities . Thus , let denote a sing le state of some system that

has a set D o f poss ib le system s ta tes  and a probab i l i t y  den si ty qt ( x ) of

s ta tes .  Let £1 be the set of all probabi l i ty  densi t ies  q on su that

q(~~)>~O for 2c €~ and

dx q(~~) l  . . (2)

We assume that the existence of qt~~g is known but that qt i t se l f  is unknown .

The density qt is sometimes known as a “true” density; we use daggers t to

indicate such densities. When we refer to a set of ~alues q(~) for x€S ,

8
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‘‘here ~ cD is some subset of system states , we sometimes write q(~~€~ ).

We are concerned with problems in which one gains new information about

the system in the form of some combination of linear equality constraints

j
dx qt(x)a~(x) = 0 (3)

and inequality constraints

d~c qt (x) c~(x) )~ 0 (4)

for known sets of bounded functions ak and ck . The set of probabil i ty

densities that satisfy such linear constraints always comprises a closed ,

convex subset of ~~~. . (A den8ity set is convex if and only if, given

O~~A~ 1 and any q,rG 3 , it contains the weighted average Aq + (1—A)r.

Informally, J can be though t of a8 containing all possible “compromises”

between q and r .)  Furthermore , any closed , convex subset of  ~ can be defined

by a suitable combination of equality and inequality constraints , possibl y

infinite in number. We are therefore concerned with problems in which the new

information locates c1t to wi th in a spec if i ed closed , convex subset of a . For

convenience, we express constraints in these terms, using the notat ion

I (q
~€J 

) to mean that qt is a member of the closed , convex set J~ . 
~~~~~.

(Note that a itself is convex.) We refer to I as a constraint and to J as a

constraint set. We use upper case Roman letters to denote constraints.

Let pE a. be some prior density that is an estimate of qt obtained , by any

means , prior to learning I. We require that priors be strictly positive :

p(~~~p) > 0 . (5)

(This restriction is discussed below.) Given a prior p and new information I,

the posterior density q€3 that results from taking I into account is chosen

9
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~~~~-

by minimizing the functional H(q,p) in the constraint set ,J . That is , the

posterior q satisfies

H(q,p) mm H(q ’,p) . (6)

For convenience , we introduce an “information operator” o that expresses (6)

using the notation

q pol . -.
. 

(7)

The operator o takes two arguments ——— a prior and new information -—- and

yields a posterior. For some other functional F(q,p), suppose q satisfies (6)

if and only if it satisfies

F(q,p) — mm F(q’,p)
q ‘E. 1

Then we say that F and H are equivalent. If F and H are equivalent , the

operator • can be realized using either functional.

if H has the form

H(q,p) d~ q(~ )log(q(~ )/p(~ )),

then (7) expresses the principle of minimum cross—entropy. At this point ,

however, we assume only that H is well—behaved. In Section III, we give

consistency axioms for the operator • that restrict the form of H in ways we

investigate in Section IV. We say that a functional H satisfies one of these

axioms if the axiom is satisfied by the operator • that is realized using H.

The restriction (5) to strictly positive priors reflects our assumption

that p(~) — 0 would indicate the impossibility of ~~, whereas we assume that

~ is the set of possible states in the sense that prior information has not

10
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ruled out any state xED. We do not impose a similar restriction on the

posterior q • p.1 since the new information I may render impossible states

currently thought to be possible. If this happens, then D must be redefined

before q is used as a prior in some further application of the operator • .

The restriction (5) is not necessary for our results , and it does not restrict

them in any significant way, but it does help in avoiding certain technical

problems that would otherwise result from division by p(~c).

For some subset of system states and ~~~~ let

q(3I~ E~) — ~~~~~~~~~~~~~~ (8)

be the conditional density, given ~~~~~~~~~~~ corresponding to any qE~~~. We use

the equation

q(x ~ ES) q*S - (9)

as a shorthand notation for (8).

In cases where D is a discrete set of system’ states, densities are

replaced by discrete distributions and integrals by sums in the usual way . We

use lower—case boldface roman letters to denote discrete probability

dis tributions , which we consider to be vectors , for example

— q1, q2, ..., q~. This results in soms potential confusion — —— for

example, the symbol r could refer to a sy.tem state or a discrete

d istribut ion, and s. could refer to a probability density or a component of

a discrete distribution -—- but the intended meaning is always made clear by

the context .

11 
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III. TUE AXIOMS

We precede the formal statement of each axiom with a justification. We

assume, throughout, a system with possible states ~ and probability density

qt€ Q .

A. Uniqueness 
a

If we solve the same problem twice in exactly the same way, we expec t the

same answer to result in both cases. Stated differently, if p1 
• p2

holds , we want p1•I 
— p2

.I to hold as well. Such consistency cannot be

expected unless the following axiom holds:

Axiom I (uniqueness): The posterior q — p•I is unique for any prior pE~~

and new information I (qt~~1), where J c a.
Actually, Axiom I is implicit in our notation.

B. Invariance

Similarly, we expec t the same answer to result from solving the same

problem in two different coordinate systems, in the sense that the posterior

in one system should be the coordinate transformation of the posterior in the

other system. We state this requirement formally as follows:

Axiom II (inva riance): Let r be a coordinate transformation from ~~~~ to
• with (rq)(y) — J~~~ q(x) , where J is the Jacobian — ~ç~/~z).

Let 1~. be the set of densities corresponding to densities qED , . Let

(rJ )c,(ro) correspond tojc,. D.,. Then, for any prior pE.~~. and new

information I — (qt GJ ),

(fp).(fI) f(p.I) (10)

holds , where It — ((rq’ ) 6 ( ~j )) .

12



C. System Independence

Suppose there are two systems, one with a set of sys tem states and

probability density of states q~ E~~1, and the other with a set 
~2 

of

system states and probability density of states 4EU2. We also describe

the two systems jointly using the joint probability density qt(x 1,~ 2),

where x1 ED 1, ~26D2, and q ED.12. If the two systems were

• independent , then the joint density would sa tisfy

qt(x 1,~ 2
) q~(~ 1)q~

(~2
). (11)

Now suppose that we have prior densities p1 and p2 for the two sys tems,

and suppose that we obtain separate new information I~ — (q1
1EJ1

) about

one system and 12 (4EJ 2 ) , where and ~~~~~ Such

new information can also be expressed completely in terms of the joint density
t S

qt. For example Ii can be expressed as Ii 
— (q ~~~ where

is the set of joint densities q ED 12 such that

where

q 1
(x

1
) • çd~~ q(~ 1,~ 2

)

4.
12 can be expressed similarly in terms of the joint density q

t instead of in

terms of 4. Now, since the two priors together define a joint prior

p 1p2, i t foll ows tha t there are two ways to take the new

informat ion 1
~ 

and 12 into account: We can obtain separate posteriors

q 1 
— p1

5 1i and q2 
• p2•I 2, or we can obtain a joint posterior

q p12°(I1A I2). Because p1 and p2 are independent, and because

I~ and 12 give no informat ion about any interaction between the two

sys tems , we expec t these two ways to be related by q12 — q 1q2, whether

__ _- 
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or not (it) 
in fact holdS~ 

We therefore 
have the ~~~~~~~~~ 

axiom :

UI (~~~~~~~~.!~!~! 
j~~!fl ~~~~

E& 
Let there be 

tWO systems~ 
one with a 

set

of system 
states and 

probabi ty ~ensj~Y 
of states q~~~~~i’ 

and

the other with 
a set 

~ 2 
of system 

states and prob
ab~~

itY densitY 
of

states q~ € ~~2
• Let p1

€ 
~~ 

and p2
6
~~ 2 

be prior 
densities

for the two 
system°~ 

Let t
~ 

(q~€l~
) and 

~2 
(4E~2)~ be

new infOrm8 t~
0fl about the two 

systemS~ 
where ~~~~~~ 

and 
~~~~

Then
(~~~~)O(11M2

) (~ 1
el1)(Pf

l2
) 

(12)

holdS.

Our final 
8xiom concerns 

situations in 
whiCh the set 0~~

-system states 
D

D t t
~~~~~~~~~~

decomP0~°5 
~atur8~~Y 

j~ tO ~ 
number of dis~°1~~ 

5ubsets S1, ~2’~~~
’ ~~

whose ~flj Ofl is D. As usual, we 
as5U~~ 

a kn~~~ 
prior ~€ a .  Supp0SO~ 

for each

5ubset Si, we 
obtain new 

1nfot~~
tt0fl about the 

coflditi~~~~ 
densitY

na~~1Y ~~ 
~ (q~*~1~~~j

)
~ 
where ~~~~ 

and 
~~ 

is the set 
of

conditional 
densities on ~~ 

(see (8) (9
~~~ 

One way of 
acC0Ufltt~~ 

for this

is to obtaifl, 
for each 

conditional densitY~ 
a condit~

0t
~~

~osterb0r 
q
~ 
(~*~~) l ~ 

from the cofldit101~~ 
prior ~~~~ ~~other way

is to obtai~ 
a ~osteri0r 

q psi for the 
whole syst~~~ 

where

I — j~~~l~~ 
..• M~• We expect 

that the 
conditional densitY 

q*~~ be

the same as 
the conditional 

densitY q1 
obtained the pr

evious way. 
That i~ ,

we expect
~ 

(13)

to hold.

14

_ _ _ _  - ••- • • - -~~~~~~~~~~~~~~ •--  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Moreover , suppose that we also learn the probability of being in each of

the n subsets. That is , we learn M (qt’€Ifl), where lfl is the set of

densities q that satisfy

dx q(~~) =

J~4

for each subset S.. The known numbers m . are the probabilities that the

system is in a state within 
~~~~

. The m~ :atisfy Z1m~ 
= 1. Taking M

• into account should not affect the conditional densities that result from

taking I into account . We therefore expect a more general version of (13) to

hold , namely, •

(p.(IAM))*
~~ 

= (p*S.)oI..

We restate this formally as our final axiom: 
-

Axiom IV (subset independence): Let 
~~~~~
, 

~2’~~••’ 
1n be disjoint

subsets whose union is 2’ and let p E~~. be any known prior . For each

subset S., le t Ii — (qt*~1 €J1
) be new information about the

conditional density q**S1, where and S1 is the set of
densities on S.. Let M — (qtElfl) be new information giving the

probability of being in each of the n subsets , where 111 is the set of
densities q that satisfy

d~ q(x) m~ ( 14)

for each subset S., where the in. are known values. Then—i 1

(p.(IAM))*S. — (p*9.)oI (15)

holds , where I — I At A.. .At1 2 n

15
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IV . CONSEQUENC ES OF THE AXIOM S

A. SuuunarZ

Since we require the axioms to hold for both equality and inequality

constra ints  ( 2 ) — ( 3 ) , the y must ho ld for equa l i ty  constra ints  alone . We first

investigate the axioms ’ consequences assuming only equality constraints.

Later , we show that the resulting restricted form for H also satisfies the

axioms in the case of inequa l i ty  const ra ints .

We es tabl ish  our main resul t  in four steps. The first shows that the

subset independence axiom and a special case of the invariance axiom together

restrict H(q,p) to functionals that are equivalent to the form )
F(q,p) — ~dx f(q(x),p(x)) (16) )

for some function f of two variables. This form, which we call the “sum

form”, is really the simplest that H could have and is the most convenient

mathematically for the purpose of minimization . In the axiomatic

characterizations in (34], 145], and (5C], the sum form was assumed rather

than derived .

Although a special case of invariance is invoked in deriving (16), the sum

form in general does not satisfy the invariance axiom. Our next step is to

show that general invariance restricts the possible forms of the function f so

that H is in turn restricted to functionals that are equivalent to the form

F(q,p) — d~ q(~ )h (q(~)/p(,c)), (17)

where h is some function of a single variable. Our third step is to apply the

system independence axiom. The result restricts the p’ csible forms of the

- - 

~~~~~~~~~



function h and shows that , if H is a functional that satisfies all four

axioms , then H is equivalent to the functional

F(q,p) = d~ q(~~)log(q (~~)/p ( 3) ) ,  ( 18)

i.e, H is equivalent to cross—entropy . Since it could st i ll  be imagined that

no functional satisfies the axioms , our final step is to show that cross—

entropy does. We do this in the general case of equality and inequal i ty

cons t r a in t s .

B. Deriving the Sum Form

We derive the sum form in several steps. First , we show that , when the

assumptions of the subset independence axiom hold , the posterior values within

any subspace are independent of the values in the other subspaces. Next , we

move formally to the discrete case and show that invariance implies that H is

equivalent to a symmetric funct ion . We then appl y the subset independence

axiom and prove that H is equivalent to functions of the form

F(Z,p) = ~~
‘
.f(q.,p.), where p = p1, p2,..., p , and

= ~~ q are discrete prior and posterior distributions

respective ly, and we return to the continuous case yielding (16).

We begin with the following lenina :

Lemea !~ 
Let the assumptions of Axiom IV hold , and let q — p.(IAM) be

the posterior for the whole system (q E.~~ ). Then q(~~GS.) is

functionally independent of q(x~~S ) ,  of the prior p(2 c l S . ) ,  and of n.

Proof: Let

q. — (p*~~.)ot. ( 19)

be the conditional posterior density in the ith subspace (q 1€ Si ) . Since

17
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p*S. depends on p only in terms of p(xE~~.) (see (8)—(9)), so does

Furtherore , since q1 is the solution 
(19) to a problem in which x€S .

only, q. cannot depend on q(x~~S.). Now, (15) states that

(q(~ )/m1
) — q

1
(x) or

q (x ) — m1q~
(x)

for x€ S., where we have used (8) and (14). Since the in. are fixed

numb:rs, it follows that q(~~ES~) is independent of q(x~~S1) and

This proves Lemma I.

Our next step is to transform to the discrete case in the forma l manner

given in the following lemma:

Lemma II. Let 
~ i’ ~2’” ’ -~n 

be disjoint subsets whose union is p.

For a prior p and a posterior q — p.1, let

p. dx p (x)

and

q
~ fdx q(x) .

Suppose that p (x€~~.) is constant , i.e., that p. takes on constant values

in each subset. Furthermore, let the new information I be provided by a

set of constraints (3)—(4) in which the known functions ak and Ck are

also constant in each subset. Then the posterior q — p.1 must also be

constant in each subset, and H is equivalent to a symmetric function of

the n pairs of variables (q~ ,p~). We refer to this situation as the

discre te case .

Proof: Since the known functions and are constant in each subset,

the constraints have the form

a 0 (20)

18
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or 
L qt.c . >,O, (21)

3 j  kj

where a~~ — ak
(xES.), c

kJ 
— ck(xES J

)
~ 

and

a 
j dx  q~

’(x).

—J
Now , let r be a measure—preserving transformation that scrambles the x within
each subset ,

~~~~
. This leaves the prior unchanged and it leaves the

constraints (20)—(21) unchanged . It follows from invariance (10) that r must
also leave q unchanged , which will only be the case if q is constant in each

subset 
~~~~~~

. With q and p each taking on only n possible values, the

functional H becomes a function H(q,p) of 2n variables q q1, q2,..., ci~

and p — p1, p2,..., p~. To show that H is equivalent to a symmetric

function, let ir be any permutation. By invariance, the minima of H and ¶H

must coincide, where -•

‘~ H(q,p) 
—

Therefore the minima of H and F coincide , where F is the mean of the ~TH for

all permutations ¶r , and H is equivalent to the symmetric function F. This

completes the proof of Lemma II.

The subset independence property (Lemma I) and the symmetry of H in the

discrete case (Lemma II) together enable us to prove that H is equivalent to

functions that have the discrete sum form.

• Theorem I: In the discrete case, let R(q,p) satisfy uniqueness ,

invariance, and subset independence . Then H is equivalent to a function

of the foris

F(q,p) — ZJ f(q3,p~ ) (22 )

for some function f of two variables.

19



Theorem I is proved in Appendix A. The proof rests primarily on the subset

independence property (Lemma I).

We return to the continuous case by taking the l imit  of a s u f f i c i e n t l y

large number of sufficiently small subapaces S.. The discrete sum form

(22) then becomes

F(q,p) 14~ 
f( q (

~ ),p(x )) (23)

C. Consequence of General Invariance in the Continuous Case

Al though invariance was invoked for the special case of discrete

permutations in deriving (22), the continuous sum form (23) does not satisfy

the i nvar i ance axiom for arbitrary continuous transformations and arbitrary

funct ions  f .  The invariance axiom restr ic ts  the possible forms of f as

fo l lows :

Theorem II: Let the functional H(q,p) satisfy uniqueness , invar iance , and

subset independence. Then H is equivalent to a functional of the form

F(q,p) — dx q (~ )h (q(~ )/p (x)) (24)

for some funct ion h of one variable.

Before proving Theorem II, we note that it illustrates the difficulty of

dealing wi th an axiomatic characterizat on of the • operator in comparison to
an axiomatic characterization of H. If we knew that H itself must be

transformation i nvariant , the deduction of (24) from (23) would be direct.

But we know only that the minima of H must be transformation invariant. We

suspect that the invariance axiom implies the existence of equivalent

functionals that are themselves transformation invariant — — —  this is suggested

by the proof that H can be ass umed symmetric in the d isc rete case — — — but vs

20
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have not been able to prove it. The following proof of Theorem II therefore

reasons in terms of invariance at the minima of H.

Proof of Theorem II: From previous results we know that H may be assumed

to have the form (23 ) .  Consider the case in which the new information

I con8ists of a single equa l i ty  constraint

dx qt(x)a(x) 0. (25)

Then , us ing standard techni ques from the calculus of var ia t ions , it follows

that  the posterior q — p ot sa t i s f i e s

+ o(a(x) + g(q(x),p(x)) 0, (26)

where 21 and c~ are Lagrangian multipliers corresponding to the normalization

constraint (2) and to (25) respectively, and where the function g is defined

as

g(a,b) = i._f( a ,b ) .  ( 27)

Now, let I be a coordinate transformation from ~ to z in the notation of

Axiom II. Let q ’ — r~ for any qE~~~. Then the transformed prior p’(y) and
constraint function a ’( y) are

p ’(
1

) J~ ~~ (28)
0 and

a ’(y) — a(x), (29)

-

• 
. where U is the Jacobian of the transformation. The transformed constraints

ri are

[dx q~(x)a(x) — JdxJqt~ (y)a~c�r) — qt ’ (y )a ’(y )  a

-- —U- ~~~~~~~~~~~~~~~ 
— 

—



and

q~~ç~ ) = Jc1x J~t~(Y) = ~ dy qt’(y) = 1 .

The poster ior q ’ = p ’o (t I ) ,  which is obtained by minimizing

H(q ’,p’) = (dy f(q ’(y),p ’( y))

satisfies

+ n(’a ’(y )  + g(q ’(y ) , p ’(y ) )  = 0, (30)

where ~~~
‘ and sC are Lagrangian mult pliers. Tnvariance ( 10) requires  that

the two posteriors be related by q’(y) J~~q(x), so (30 ) becomes

+ ~ ‘a(x) + g(q(x )J~~ ,p(x)J ~~ ) = 0, (31)

where we have also used (2 8) and (29). Combining (26) and (31) yields

g(q(x)J~~,p(x)J~~) g(q(x),p(x)) + ( ol — sC ’ ) a(x) + ~~~~
— 

~~~~
‘ . (32)

Now , let S 1, ..,  S be disjoint subsets whose union i s D and let the prior

~ 
be constan t wi th in each If fo l lows from Lemma II tha t q i s also

constant  wi thin  each which in turn results in the righ t side of (32)

being constant within each S.. (The primed Lagrangian multi p liers may

depend on the transformat ion r, but they are cons tan t s .)  On the l e f t  side ,

however , the Jacobian ti may take on arb i t r ar y values s ince I is an arbitrary

t r a n s f o r m a t i o n. It follows that g can on ly depend on the rat io of i ts

arguments , i.e., g(a , b) = g( a/b ) .  Eq. ( 27 ) t hen becomes

g( a/ b )  = •) f(a,b),

which has the general solution
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f(a,b) = a h(a/b) + v (b ) , (33)

where h is some function of the ratio a/b and v is any function of b.

Substitution of (33) into (24) yields

F(q,p) = jdx q(x) h(q(x)/p(x)) + Jdx v(p(x))

Since the second term is a function only of the fixed prior , it cannot affect

minimizat ion of F and may be dropped . This completes the proof of Theorem

II.

We note that , since g(a,b) = g (a/b ) holds , it follows from (32 ) that

(SC — o(’)a(x) + — 
~~~

‘ = 0

Since a(x) can be chosen as an arbitrary function , this 8hows that and

O (— SC’, i . e . ,  the Lagrangian multi pliers have values that are independent of

the coord inate system.

D. Consequence of System Independence

Our results up to this point have not depended on Axiom III (system

independence). We now show that system independence restricts the function Ii

in (24) to a single equivalent form. -

Theorem III. Let the functional H(q,p) satisfy uniqueness , invariance ,

subset independence , and system independence.  Then H is equivalent to the

f u n c t i o n a l  r
F(q,p) jd~ q(x)log(q(~ )/ p (x ) )  , ( 34)

0

i.e., to cross—entropy .

Proof: Consider a system with states 
~~~~~~~~~~~~~ unknown density q~E ~~~~~ ,

prior dens i ty  p 1~~ ~~ 
, and new information I~ in the form of a single

23
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equality constraint

q 1(x 1
)a(x

1
) 0 . (35)

From Theorem II , we may assume tha t  H has the form (2 4 ) .  It follows that the

posterior q 1 
= p 1
.!

1 satisfies

+ + u(r
1

(x
1
)) = 0 

‘ 
(36)

where and are Lagrangian multip liers corresponding to the

constraints (2) and (35 ), where r 1
(~ 1

) = q 1
(~ 1)/p 1

(x
1
), and where

u(r) = h(r) + r jh(r) . (37)

Nov con sider anothe r system with states x 2 E D 2, unknown densi ty  ~~~~~~~

pr i or den s i ty  p 2 6 D 2 , and new informat ion  12 in the f orm of a sin gle

equality constraint

= 0 . (38)

The posterior q2 
= p2

oI
2 satisfies

+ (32
b (x

2
) + u(r2

(x
2

))  = 0 , (39)

where 
~ 2 and are Lagrang ian multi pliers corresponding to the

constraints (2) and (38), and where r2
(~c2
) — q (x )fp (x ).

The two systems can also be described in terms of a joint probability

density q~2E. ~~ , a joint prior p12 
— p1p2, and new information 112

in the form of the three constraints
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~ dx 1dx 2 q 12(~~1,~~2) = 1 , (40)

q 12
(~ 1,32)5(31

) = 0 , (41)

and

~dx 1dx2 q12
(x 1,x2)b(x2) = 0 . (42)

— u

The posterior q 12 = p 12 o112 sa t i s f ies

~ l2 
+ ~ 12

a(x
1
) + 1312b (x 2

) + u(r12(~ 1,x2
)) = 0 , (43)

where the mul t ip l i e r s  
~12’ ~~~ 

and 1~l2 correspond to (4 0 )— ( 42 ) ,

respectivel y, and where r12 
= q12

(x 1,~ 2)/p 12(~ 1,x2
). -

Now, system independence (12) requires that q12 
= q1q2 hold , from

which it follows that r12 
= r1r2 holds. Combining (36), (39) and (43)

therefore yields

u(r 1r 2
) — u(r1

) — u (r 2) = (~,— o ,~)a + (
~,—~ )6 ~

Consider the case when and 22 
are both the real line. Then,

d i f f e r e n t i a t i n g  this  equation with  respect to x1 results in

u ’(r1r2)rr 2 
— u ’(r 1)r = ( a ’, —

and differentiating this result  with respect to x2 yields

u”(r1r2)r1r2 + u ’(r1r2
) 0 . (44)

By suitable choices for the priors and the constraints , r 1r2 can be made

to take on any arbitrary positive value s. It follows from (44) that the

function U satisfies the differential equation

.

~

-- - .---- - -- -.,. -

~
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2du d u
— + 5—  — 0,

a ds ds 2

which has the general solution

u(s) — A log (s)  + B, (45)

for arbitrary constants A and B.

Prom (45) and (37), we obtain the following differential

equation for the function h:

h(r) + rLh(r) A log(r) + B . (46)

Let us define h1
(r) — r h(r). Then h1 satisfies

dh
—~~~~ — A l og( r ) + B . 

I

dr

The general solution for h1 is h1
(r) a A (r log(r) — r) + Br + C, so that

the general solution of (46) is

h(r) — Alog(r) + C/r + B — A . (47)

Subs titution of (47) into (24) yields

F(q,p) — Afd~ q(~ )log(q(x)/ p (x)) + (C + B - A) , (48 )

since the prior p satisfies the normalization constraint (2). Since the

cons tants A, B, and C cannot affect the minimization of (48), provided A) 0,

this completes the proof of Theorem III.

E. Cross—Entropy Satisfies the Axioms 
.

So far , we have shown tha t, if H(q,p) satisfies the axioms, then H is
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equivalent to cross—entropy (24). This still leaves open the poss ibility that

no functional H satisfies the axioms for arbitrary constraints. By showing

that cross—entropy satisfies the axioms for arbitrary constraints , we complete

the proof of our main result:

Theorem IV: The cross—entropy

H(q,p) — j dx  q(~ )log(q(~ )/p(x)) (49)

satisfies uniqueness , invariance, system independence , and subset

independence. Every other functional that satisfies the axioms is

equivalent to cross—entropy.

Proof: We need only show that cross—entropy satisfies the axioms.

Uniguenes8. Let J be any closed , convex subset J~ ~ , and let densities

have the same cross entropy H(q,p) — H(r,p) for some prior peQ . We

define g(u ) — u log(u), wi th g(0) — 0, so that H can be written as

H~4,p) dx p(
~ )g(q (&/p(~t))

Now, since g”(u) — 1/u>0, g is strictly convex. It follows that

c~g(u) + ( 1— sC ) g (v )  > g(~u + (1—sOy)

for 0< of. < 1 and u v. We can therefore write

H(q,p) — H(r,p)

_ (dx ~ p(~
)g(2..~LA + (1 -~~~~)P(~~ )E(th~2

1. ‘p(&J p(~)

~jd~ 
p(~)g(w~(J) 

+ (1 —‘Or(s)) (50)
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The inequality is strict unless q — r. (We write  q — r when q(~c) — r(~ ) for

all j  except at most a set of measure zeros since in this case q and r define

the same probability distribution and we should not distinguish between

them.) Eq. (50) shows that, if q r and H(q,p) — R(r,p) both hold , there

exists a density s SCq + (1— ~)r that satisfies s&,.~ 
(since 3 is convex) and

has smaller cross entropy H(s ,p) < H ( q , p ) .  Therefore, there cannot be two

distinc t densities q,r~~J having the minimum cross—entropy in J . This

proves that cross—entropy satisfies Axiom I.

Invariance . Let I be a coordinate transformation from ~ to y in the
notation of Axiom II. Let q ’ — Iq for any q€ ~~~

. Then

H(q,p) dx q(~ )1og(q(~)/ p(
~)) — 

fd2c Jq
’(y)log(q ’(y)/p’(y))

( 
• I

— 
Jd7 

q ’(~ )log(q ’(y)/ p ’(y))

shows that cross—entropy is transformation invariant. The miniu in 17
therefore corresponds to the minimum in J , which proves that cross—entropy

satisfies Axiom II. -

~~stem Independence. We use the notation in Axi om III. Consider

densities q1,p 1
E~~1 and q2,p2

f.b.
2. Let the density qE~U12

satisfy q ~ q1q2,

q(~ 1,~ 2
) — q2 ‘

Pt

and

Jd;2 
q(x 1,x2

) — q1 ,

i.e., q and q 1q2 are different densities with the same marginal

densities . We compute the cross—entropy difference between q and q 1q2 for

28
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the same prior p
~
p2 as fo ll ows:

H(q,p 1p2
) — H(q

1q2,p1p2
) =

f~~~l~~~2 q 1,~ 2
)~~ogfq (~ 1,~ 2)\- log q~~~1)\- 1ozj~~

(z
2)\L V~ (f• ) 

~~~~~~ ~1 .~~~~~ J ~ p3t

— 
ççdx i d~~2 

q(jt1,~ 2
) io~~

( 

~~~~~~~

— H( q .q 1q 2
)

Now, cross—entropy has the property that H(q,p)~. 0 with H(q p) — 0 only if

q = p (for example , see [31 , p. 141). It follows that

H(q,p
1 p2

) > H(q
1q2,p1p2

) (5 1 )

holds , since q ~ q1q2 by assumption . Eq. (51) states that , of all the

densities q€~~12 with given marginal densities q1 
and q2, the one wi th

least cross—entropy is q1q2. Since Ii and 12 restrict only the

marginal densities of q in q (p
1p2

)•(11 A 12
) ——— see Axiom III and

the text preced ing it ——— the density q with the least cross—entropy in the

constraint set is of the produc t form q
1q2. But the cross—entropy of a

density of this form is given by

H(q
1q2,p 1 p2

) — 
fçdx ld~ 2 ~~~~~~~~~~~~~~~~~~~~~~~~~

— 
Jd~ i ~~~~~~~~~~~~~~~ + 

fd!2 
q2
(~ 2)1oE

(
~2~~2

)
\
*

)p1
(
~ 1

) p2(~2)
4” .~‘l

— H(q 1,p 1
) + H(q 2,p2) , (52)
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and so assume s i t s  minimum when the two terms on the r i ght  assume the ir

individual minima ——— the first subject to I~ and the second to I2~ 
Thus,

we have q = (p
1p2

)o(1
1 AI2) q 1q2 

= (p 1o1 1
)(p

2o12
) ,  and we

have proven that cross—entropy satisfies Ax i om III.

Subset Ind~p~~dence. We use the notation in Axiom IV. We also define

q — po (I1~M), q~ 
q*S1, and p~ = p*S.. (Eq . (15) then become s

q. = p1’11.) The cross—entropy of q with respect to p may be written

H(q,p) = dx q(~ )log(q(~)/p(~
) )

~~~j 
f
~ix mjq.(x)log(~f~i(&)

s1p1
(~)~

- 

~~~ 
S~~~~~ 

q i
( x ) log(~ i (&) + 

~~ i m~io~~~i) 

I

— 2 H(q1,p1
) + 

~~~ 
m~ lo~

(
~ i~

) 
(53)

where the s. are the prior probabilities of being in each subset

s. dx p(x)
1

—4

The second sum on the right of (53) is a constant and has no effec t on

minimization . Minimizing the left side of (53) subject to (tAM) is

equivalent to minimizing each term of ~~~H( q 1,p~ ) indivi dua l ly subjec t

to I.. This proves that cross—entropy satisfies subset independence and

completes the proof of Theorem IV. For a discussion of the mathematics of

minimizing cross—entropy (49) subject to constraints , see Appendix B.
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V. ThE DISCRETE CASE

A. Principle of Minimum Cross—Entropy for Discrete Systems

Theorem IV states that, if one wishes to select a posterior q — psI in a

manner that satisfies Axioms I—IV , the unique result can be obtained by

minimizing the cross—entropy (24). Al though the equivalent result for the

discrete case can be obtained in the usual informal way by replacing integrals

wi th sums and densities with distributions , it can also be obtained formally

as follows.

Suppose a system has a finite set of n states with probabilities

Let — 
~~~~~~ 

be a prior estimate of qt and let new

information be provided in the form

~~ q~a~1 
= 0 (54 )

or 

~~
. ~~~~ ~. 0 , (55)

for known sets of numbers a. . and c .. Then it is clear that there exist
ki Ici

problems with continuous states and densities for which the foregoing finite

problem is the discrete cage as defined in Lenm~a II. It follows from Lenisa II

and Theorem IV that the cross entropy functional becomes a function of 2n

variables and that the posterior q • ~~~~~~~~~~~~ can be obtained by

minimizing the function

H(q,p) — 
~~los(~~ /p 1) , 

(56)

subject to the constraints (54)—(55).

Hi ~~~~~~
• 
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B. The_Maximum Entropy Princjp~~

U s in g  t r a n s f o r m a t i o n  group arguments , Jaynes 125 1 has shown that  a u n i f o r m

pr i o r  p. n 1 is appropr ia te  when we know onl y that each of the n system

sta tes  is poss ib le  (as  d i s t i n c t  from “comp lete ignorance” when we don ’t even

know this much). It fol low s that , gi ven on ly a f i n i t e  set of poss ible st a tes

and new information in the form of discrete constraints (54)—(55), the

posterior is obtained by minimizing the function

H(q) Zq~1og(q.) 
— log(n).

This is equivalent to maximizing the entropy — Z1q.log (q.). We

conclude that the pr inc i p le of maximum entropy is a ~pec ia l  case of our

general results for cross—entropy minimization .

It is also possible to obtain the maximum entropy principle formally and

directly. We show how in the following, although we omit some of the formal

details. The first step is to rewrite the axioms so that they refer to the

discrete case in which no prior is available. In this case , given new

information I in the form of constraints (54)—(55), the unary operator o

selects a posterior distribution q — (oi) from all distributions that satisfy

the constraints. The operator is realized by minimizing some function 11(q).

The axioms become (see Section III):

I ( un iq~eness): The posterior q — (.1) i s  un ique.

II (permutation invariance): ‘( U)  — 1(.i) for any permutation r.

(57)

III (system independence): •(I
l F~

I2
) — (‘I1

)(01
2
).

IV (subset independence): (0(IAM))*S
~ 

(.I~).
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Theorem I goes through in a straightforward way with the prior deleted . This

shows that , if H(q) satisfies uniqueness, permutation invariance, and subset

independence , it is equivalent to a function of the form

11(q) = ~~~~~~~~~~~~~~ (58)

We now assume the form (58) and app ly system independe nce i n a ma nner

analogous to the proof of Theorem III. Consider a system with n states ,

unknown distribution qt , and new information I~ in the form of a single

equality constraint

0 . (59)

The posterior q — 
~~~

1
~~~ 

satisfies

u (q.) + ~~a. + — 0 (60)
1- l i. 1

(i 1 , . . . ,n) , where the function u is defined as

d - (61)
u(x) — f (x )

dx

and where and are Lagrangian multipliers corresponding to (59) and

the usual normalization constraint . Now consider a second system , this one

wi th m states , an unknown distribution r~ . and new information 12 in the

form of the constraint

‘
~~ rtb — 0 . (62)k k

The posterior r (41
2) satisfies

u(rk
) + (32bk 

+ 
~2 

0 (63)
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(k l ,...,m), where 
~2 

and 
~2 

are Lagrangian multi pliers corresponding to

(62) and the normalization constraint . Since the two systems can be described

in terms of a joint distribution , and since a j :Lnt  posterior can be selected

in accordance with both I~ and I2~ 
the following equation also holds:

u(q
1r~
) + + 

~~2
bk 

+ 
~12 

— 0 (64)

(i — l,...,n, k — 1 ,...,m). In (64) we have already applied the system

independence axiom and written the joint posterior as the produc t of the

individual posteriors. Combining (60), (63), and (64), yields

u(q.r~) — u(q
1
) + u(r

k
) + — ~12

)a
1 

+ 
~~ 

—

This leads to

u(q.r~) — u(q.r ) — u(q~r~) — u(q~r~)

= G(rk,rv), 
(65)

for some function C. Since the right side of (65) does not depend on q., we

pick an arbitrary value for q1 on the le f t  side . This shows that C

satisfies -

G(x,y) s(x) — s(y) (66)

for some function s. (We note that C satisfies Sincov ’s functional equation

C(x ,y) C(x,z) + G( z,y), which has the general solution (66) 156 , p. 223].)

Some manipulation of (65) and (66) yields

u (xy ) — s(x )  — s(y )  — u(wz) — s(w) — s(z )  (67)

Both sides of (67) are independent of each other and must therefore be equal

to some constant , so tha t u sa ti s f i es u(xy) — g (x )  + g(y ) , for some function
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g. Using standard techniques of functional equations 156 , pp. 34,3021 , we

obtain the general solution for u(x), namely u(x) — A log(x) + B, where A and

B are constants. Combining this solution with (61) and integrating yields the

solution for f in (58), f(x) A x log(x) + Bx — A , which in turn yields

11(q) — A Z1q~1og(q1
) — nA + B . (68)

This function hms a unique minimum provided that A is positive .

Minimizing the function H in (68) is equivalent to maximizing the entropy

— ~~
‘
~q1 bog(q

1). This proves that, if one wishes to select a discrete

posterior distribution q — (‘I) in a manner that sat isf ies  the axioms (57) ,

the unique result can be obtained by maximizing entropy .

_ _ _ _ _ _ _ _ _ _ _  - . ; . . •  .



VI. INFERENCE AXIOMS VS. INFORMATION MEASURE AXIOMS

Our approach has been to axiomatize desired properties of inference

method s rather than to axiomatize desired properties of information measures.

Yet it mi ght seem that the axioms in Section III are no more than a

thinly—disguised characterization of cross—entropy . In this view, Axioms I

and II might correspond to axioms requiring that H have unique minima and be

transformation invariant , and Ax ioms III and IV might correspond to axioms

requiring that H be “additive ” [34 1 and satisfy something like the “branch ing

property” [57]. These correspondences are meaningful and not surprising

after all , inference methods should relate to information measures — —— but it

is important to realize that there Are significant differences as well.

Consider Axiom III (system independence) and the following axiom, which

can be used (34 ] in characterizing the directed divergences

Jdx q(x)log (q(x)/p(x)) (cross—entropy) and fd2c p(~ )lo g( p (
~ )/ q(x )) :

AdditivitX . H(q1q2,p1p2
) — H(q1,p 1

) + H(q2,p2
) (69)

for all q 1,p 16 ~~ 
and q2,p2E ~~~

In Section IV we shoved that , if H has the form

H(q,p) — dx q(x)h(q(x)/p(~ ) )  (70)
‘C

and is required to satisf y system independence , then it follows that H is

equivalent to cross—entropy (Theorem III). When we proved , as part of Theorem

IV , that cross—entropy itself satisfies system independence , we exp loi ted the

fact that cross—entropy satisfies additivity (69) ——— see (52). At first

glance , it migh t seem that any functiona l that satisfies additivity also

satisfies system independence. But Johnson 1341 proved that the information
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measure s H ( q , p )  of the form (70) that satisfy additivity (69) are those of the

form

H ( q , p )  = AJdx q (x ) l o g( q ( ~~) / p (x ) )  + BJd~ p(~~) l o g ( p ( x ) / q ( x ) )  , (71)

for some cons tant s  A ,B >,O , not both zero . That is , (70) and a d d i t i v i t y  (69)

of H y ie lds  the linear combination of both directed divergences , whereas (70)

and sys tem i ndepe ndence of the ope rator e yields only one of the directed

divergences , cross—entropy . The key to the d i f f e rence is the property

expressed by (51) ——— for a l l  d ens i t ies q6U1~ 
with given marginal densities

q1 and q2, H(q,p1p2
) has its minimum at q = q 1q2. This property

is necessary if H is to satisfy system independence; it is satisfied by the

first term in (71) but not by the second , even though the second term

satisfies additivity.
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VII. SUMMARY

We have proved that , in a wel l—def ined  sense , Jaynes ’ s pr inc ip le o f

maximum entropy and Kui lback ’ s pr inc iple of minimum cross—entropy (minimum

d i rected divergence) prov i de correct , general methods of inductive inference

when given new information in the form of expected values. In contrast to

previous justifications , our approach has been to axiomatize desired

properties of inference method8 rather than to axiomatize desired properties

of information measures. We defined four axioms , all of them based on the

princ iple that , if a problem can be so lved in more than one way, the results

should be consistent . We proved that , when given a prior continuous density

or discrete distribution and new information in the form of expected values ,

there is onl y one poster ior densit y tha t can be chosen in a manner that

satisfies the cons istency axioms . This unique posterior can be obtained by

minimizing cross—entropy subject to the constraints  of the new information .

In the d iscrete case when no pr ior is ava i l able , we proved h at there i8 still

only one posterior that can be chosen in a manner that satisfies the

consistency axioms , and that this unique posterior can be obtained by

maximizing entropy . This result for the princi ple of maximum entropy was

obtained both from the general result for minimum cross—entropy, in the

special case of uniform priors , and directl y as a consequence of prior—free

versions of the axioms.

When Jaynes first proposed the maximum entropy princ iple more than 20

years ago, he did not ignore such questions as “Why maximize entropy , why not

some other function?” . We have confirmed his conjecture [1 , p. 6231 that

“deductions made from any other information measure , if carried far enough ,

will eventually lead to contradictions .”
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APPENDIX A

Proo f o f Theorem I

The proof has three steps. First , we d iscuss some general propert ies of H

and we show that the par t i a l  derivatives of H have the form

1! = z ( q ,p )  + g(q.,p.)s(q,p)
b q ~ ~ ——

for some funct ions z ,g,  and s. This follows from invariance and subset

independence. We then investigate the behavior of g and s and show that (A.l)

results in H being functionally dependent on F(q,p) Z f(q~ ,p
3
), where

f is a solution of g )f ( q,p )/~q. Finally, we show that the functional

dependence is monotonic so that H and F are equivalent.

In realizing the operator o , the only relevant values of H(q,p) are at

point s q that satisfy the normalization constraint

Zq .  = 1 . 

- 

(A.2)
.jtI 

-

-Th is is just  the discrete form of ( 1) , which is required by qe ~ (see Section

II). We shall refer to the hyperplane consisting of points q that satisfy

(A.2) as the normalization subspace. In selecting posteriors by minimizing H,

we are further restricted to the ~~~itive region of points q that satisfy

q.~~ 0 for i = l ,...,n. This restriction is also required by q E..~~ . On the

normalization subspace (A.2), H(q,p) is a function of only n—I independent

variables q. (the prior p is assumed fixed). For convenience , however , we

consider H to be extended off the normalization subspace to a well—behaved

function of n independent variables that is symmetric under identical

permuations of q and p (see Lemma II). This enables us to express the
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gradient !H as

S

where , . . ,
~~~ 

is  a s tandard , orthonorma l bas is .  The operator • can be

realized by minimizing the extended H in the positive region provided that

(A.2) is always imposed as a constraint . In the continuous case, we have

assumed that the functional H(q,p) is well—behaved . We take this to mean , in

particular , that the function H(q,p) is continuously differentiable in the

interior of the positive region of the normalization subspace and that the

projection of ~ H into the normalization subspace is zero only at minima of H.

Now, let N be the set of integers fi ,...nj, let MCN be a set of m

integers from N, and let M—N be the set that remains after deleting M from N.

Let q comprise the subset of components q. with iI6M and let q
-M ..N M

comprise the rest. We shall refer to points 
~M 

as points in the

M—subspace. In the derivation that follows , we assume that n),6 and m) .4 both

hold . Suppose new information comprises a set of equality constraints (20 )

a
kJ 

= 0 - (A.3)

i”,1 ~
that satisfy a.,(J 

— 0 either for all jE.M or for all jEN-.M , and suppose the

set includes the constraint

~~~. q~. r. (A.4)
j~~M ~

If a particular constraint satisfies a.,~ 
— 0 for jEM , then it can be

written as a constraint

~~~j a~~ qt. — ~~~~a~~.(q t./ r) — 0

jEll ~
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on the conditional distribution (q~ /r )~ i.e., as a constraint on the

conditional distribution given jEM. Similarly, constraints that satisfy

— 0 for jEN—M can be written as constraints on the conditional

distribution q~_~/(1_r). Therefore, the system decomposes into two subsets

(M and N—M) with new information that satisfies the assumptions of Axiom IV

(subset independence). It follows from Lemma I that , when H(q,p) is minimized

over the constraint set , the resulting 
~M 

are independent of the of

the 
~N—M ’ 

and of n. 
-

Now , although the M—subspace is m—dimensional , the constraint (A.4)

require s that the solution be found on the rn—i dimensional hyperplane

defined by (A.4). Therefore, finding this solution depends , not on the

projection of VH into the M—subspace ,

(Vii ) = �1!~~. , -- M ~ . ‘
j~M 

q
3

but on its projection onto the (m — l )  dimensional hyperp lane defined by (A.4).

This projection is given by

= ( V i i )
11 

- (
~~

. (!H) M
)
~ ‘

where ~ is a unit vector normal to the hyperplane. Since

A
n — — 1 e.
-

will serve , 1M has components

B 
) H  

- 
1 ?H (A.5)

Mi T, • ~ � ‘q.
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for iEM. Now, since H is symmetric (Lemma I I) ,

— h( q~ ,311~ .,p.,p 11..) ~ h~

holds for some function h, where is any permutation of q1,...,q

with q. deleted and 
~~~~~~~ 

is the same permuation of 
~1’~

••’
~ n 

wi th

deleted . Hence, (A.5) becomes

811
. h . -.! ~~~h.

m

B(q 1,~11~1,p1,p11_1
)

for some function B.

To find the solution for 
~M’ 

one moves on the constraint hyperplane

opposite the direction of maximum change in H ——— i.e~ , opposite the direction

of ——— until no further movement is possible within the constraint set

(A.3). Since the solution cannot depend on 
~~~~ 

orp N...M, neither can the

direc tion of 
~~~~

. This direction is also independent of n, since the

subspace solution is independent of n (Lemma I). If is a unit

vector in the direction of with components U111, it follows that

U ~ ~~~~~~~ U(q~ ,g11_1,p1,p11_~) , (A.6)

for some function U, where q1 1 1  is any permutation of 5M with q.

deleted , etc. The function U is well defined everywhere on the constraint

hyperplane except at a point at which H is minimized subject only to (A.4).

Such a point is charac terized equ ivalently by ~~ — 0 and by h 1 — h~ for

all 1,3 Lx. By uniqueness , there cannot be more than one such point. For if
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there were more than one such point , H would would reach its minimum value at

more than one point or would have local minima in addition to an absolute

minimum . In either case, one could define convex constraint sets in which the

mi nimum of H would occur at more than one point , thereby violating

uniqueness.

The point at which (A.6) is ill—defined is also characterized by the

equality of the ratios (q 1/p.)’(q./p~
) for all i,jEM. To see this ,

we app ly the subset independence axiom. Minimizing H subject only to (A.4)

means that (15) applies without the additional information I. If we define b

b —

then ( 15) becomes ( q~ /r )  — (
~~/b) so that q•/p~ 

is a constant

independent of j for jEll. In the case of n m, the constraint hyperplane

becomes the entire positive region of the normalization subspace ——— (A.4)

becomes equivalent to (A.2) and r b I holds. This shows that there is

only one point at which all of the h. are equal , namely the point q — p.

Similarly, by taking m — 2 and M [i,j~J , one can show that the condition

h. — h. is equivalent to the condition (q 1/p1
) ( q

3
/p

3
).

From (A.6) we obtain

B~, 
- 

~~~ _ ~~i 
- 1

~Mj (A.7)
- B~~ U~~ 

- 

~~~

for i,j,k€M. But

BMi = BMJ - 
i = h. (A.8)

j  k 
~

follows from-(A.5). Since the right—hand side of (A.8) cannot depend on the
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definit ion of M, neither can the right—hand side of (A.7). It follows that

h. - h.

- h~ 
— 

~~~~~~~~~~~~~~~~~~ ~~ 
Wijk (A.8)

holds for some function W of six variables. Now, by this construction, W is

well defined when q.+q.+q~ < 1 and hk ~ 
h~ ; the latter condition is

equivalent to (qk/pk)~ (qj /pj). However,

h. - h. W..
1 ] _  iju 

~h — h .  W .
k j  kju

holds, and further manipulation yields

W. - W.iru jru 
— (A 9)V -V. 13kkru jru

Since (A.9) is independent of 
~~ 

p~~ and 
~~~~‘ 

we may takE

arbitrary values of these variables, and use (A.9) to extend the definition of

V. By the discussion following (A.8), the numerator and denominator on the

left of (A.9) are defined as long as (q~ /p~)t(q~ /p~ ) holds and then

the fraction is veil defined whenever

(~~ /P~ ) I~ (q~ /p~),

0 ~ q.< I — —

0~~~q~~(l _ q ~~
_ q

~

all hold . But we can make 1 — - 
~~ arbi trarily close to 1 so that vs

may extend the domain of Wijk to include all arguments such that qj, q3,
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and are between 0 and 1 and (q~/p~)~(q./p.) holds. Moreover,

(A.9) continues to hold on this extended domain.

Nov we may write g(q1,p1) g1 for Wiru with some particular,

fixed values of q ,  q~ , and obtain

h .  — h .  g ( q . , p .)  — g(q.,p.)
1 J — 

1 1  1~~ I
- g(q~~P~ 

- g q3,p3
)

for some function g of two variables. It follows that h
1 �~H/~~q. has

the form

h. z(q,p) + g(q1,p~)s(q,p) (A.1l)

for some functions z, s, and g. This implies that -

I

h.  — h~ — (g
1 

— 
~~)s - 

- 
( A .12 )

holds , so that the function s is given by

h.  — h .  -

= 
1

51 83

For a particular point q, the right—hand side may be ill—defined for cer tain

values of i and j. Since a is independent of i and 3, however , a is

wel l—def ined unless g1 g .  for all i,j. But, from the construction of g,

the condition g1 
— g. is equivalent to h

~ 
— h. and therefore to

(q
1/p1

)=(q
3
/p

3
). it follows that s is veil—defined everywhere in the

positive region of the normalization subspace except perhaps at the single

point where q — p holds. The function a is likewise well—defined except

perhaps at this point.
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Furthermore , a and g are continuous except perhaps at q = p: Since  H is

con t inuousl y d i f f e r e n t i able , the der i v a t i v e s  h .  are continuous and f i n i t e

everywhere in the positive region of the normalization subspace (except

possibly on the boundary ——— at points that satisfy q. — 0 for some i). It

follows that each of the functions (~~ H)M, .~M ’ 
U, W, s, and g is

continuous except perhaps at certain “obvious” points where it is ill—defined

because of a vanishing denominator in the construction .

Now, let t parameterize some curve q(t) in the positive region of the

normalization subspace. It follows from (A.11) that

~~
_. H(q(t),p) = 

~~~~~ ~~
. ~~~~!.

cit — — 
£‘1.

= S ~~~ ~.g. + z q

holds , where 
~~~

. = dq./dt. But the normalization constraint (A.2) imp lies

that ~~.4i = 0, so we have

~...H(q(t),p) = s(q(t),p) ~.—F(q(t),p) , (A.13)
d-t — dt

where ‘I
F ( q , p )  = f ( q . , p . )  (A. 14 )

for some function f related tog by g(q~ ,p~) ~ f( q .,p .)/ ~~q..

Suppose the curve q(t) lies in a level surface of H. Then dH/dt 0 and

(A.13) shows that F will also be constant on any such curve , unless perhaps s

is  zero. However , (A. 12) shows that , in the interior of the normalization

subspace , a in not zero unless h. — h. for all i ,j, which can be true only

at the point q ap . It therefore follows that F is constant on connected
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components of leve l surfaces of H and that F and H are functionall y dependen t

locally, F can be written as a function of H, wi th

= 
1 (A.15)

dii s( q , p )

Next, we show that the functional dependence is monotonic. If it were not

mono tonic , then dF/dH = s
1
(q,p) would change sign at a poin t q and ,

there fore , in some ne ighborhood of q along a leve l surface of H. Hut we have

alread y shown that a is continuous anci non—zero everywhere in the interior of

the normalization subspace except perhaps at a single point (the minimum of

H ) ;  it follows that a is of cons tan t sign. Hence , the func t ional  dependence

of F on H is monotonic. The function F in (A..14) is therefore equivalent to

H, as stated in Theorem I. 
- - - -
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APPENDIX B

Mathema t ics of Cross—Entr ~~~ Min imiza t ion

We der ive the general solut ion for cross—entropy minimization given

arb i trary constraints , and we i l l ustra te the result wi th the impor tan t cases

of exponential and Gaussian densities. In general , however , i t is d i f f i c u l t

or impossible to ob ta in  a closed—form , analytic solution expressed directl y in

terms of the known expec ted values rather than in terms of the Lagrangian

multi pliers. We there fore d iscuss numerical techniques for obtaining the

solut ion , name ly the Newton—Raphson method . This method is the basis for a

computer program that solves for the minimum cross—entropy posterior given an

arbitrary prior and arbitrary expected—value constraints.

Given a positive prior density p and equality constraints

q(x) dx I , (B.l)

Jfk(&~
(~ ) dx = , (k 1, . . .  , m) , (B.2)

the standard method for seeking an extremum of

H ( q , p )  

J
~(x) log dx

subjec t to the constraints , is to in troduce Lagrangian mu l t ipliers 
~~ 

and

(k 1, . . .  , m) corresponding to the constraints , forming the expression

log dx +A o~~~~
(x) dx + ~~~~~kJfk

(x )~ (x) dx

k 1
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and to equate the var ia t ion , with  respect to q ,  o f t h i s  q u a n t i t y  to zero :

m
log ~~~~~ + 1 + + A~~~~~

(
E) = 0

Solving for q leads to

q(x )  = p(~~ exp ( ~o - - 
±~~k

f
k(&) 

. ( B . 3 )

k 1

It is necessar y to choose and the .k
k 

so tha t the cons tra in ts are

satisfied. In the presence of the constraint (B.!) we may rewrite the

remaining constraints in the form

dx = 0 (B.4)

by redefining the f
k: wri te f

k
(x) for what was previously written as

— 

~k 
Now, if we find values for the ?

~k 
such that

exp 
(— ~~~ 

.
~ k f k~~ )) 

dx = 0

(i = 1 , . .. , m) , (B.5)

we are assured of satisfying (B.4); and we can then satisfy (B.1) by setting

= - 1 + 
loSj

’
P (x )  ex~~(_ ~~~IA k

f
k
(
~~)) 

dx

The s i t ua t i on  for inequa l i ty  cons t r a in t s  is only sli ghtl y more

complicated. Suppose we repJ.ace all the equal signs in (8.2) by .~< . (We lose

no generality thereby: we can change inequalities with ~ into inequalities
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w i th ~ by changing the signs of the corresponding ~k 
and 

~k’ 
and any

equality constraint is equivalent to a pair of inequality constraints.) The q

that minimizes H(q,p) subject to the resulting constraints will in general

satisfy equality for certain values of k in the modified (B.2), while strict

inequality will hold for the rest. We can still use the solution (8.3),

subjecting the Lagrange multipliers to the conditions )
~k~

0 for k such that

equality holds in the constraint , and .~~=0 for k such that strict inequality

holds in the constraint.

It unfortunately is usually impossible to solve (8.5) for the A k

exp l i c i t l y ,  in closed f orm ; however , it is possible in c e r t a i n  important

special cases. For example, consider the case in which the prior p(~) is a

multivariate exponential ,
/

p(~ ) - 
~~~~~~~~~~ 

exp(xk/ak
)

k 1

where x — (x 1,...,x )  and the x.K each range over the posi t ive real line ,

and in which the constraints are

j

’
dx x.~q(x) , (B.6)

k — 1 , ..., a. Solving (B.5) in order to express the minimum cross—entropy

posterior directly in terms of the known expected values X
~K 

y ields

q(x) — TJu/ ~
) exp (x,,(/~~).

Thus , the density remains multivariate exponential , with the prior mean values

a
k be ing replaced by the newly learned values
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Now consider the case in which the X
k 

range over the entire real line ,

and in which the prior density is Gaussian ,

FT (2 
k

) exp E(xk - xk ) / 2bk]

Suppose that the constraints are (B.6) and

Jdx (x.K 
- x~ ) 2q(x )  V

k

In this case the minimum cross—entropy posterior is

a TJ~ k) exp L(xk — ;)
2/2v~ 1

k

Thus, the density remains multivariate Gaussian, with - the prior means and

variances being replaced by the newly learned values.

Here is an example of a simple problem for which ~ he solution of (B.5)

cannot be expressed in closed form. Consider a discrete system with n states

x~. and prior probabilities p(x.) — p~ 
(j  = l~ ... n). The discrete

form of (B.1) is

q~ 
— I , (8.7)

j—l

where q .  = q (x.). Suppose the only other constraint is that the mean in of

the indices j is prescribed : f(x.) — j ,  and

Y jq
3 

m . (B.8)

ri
Equation (B.3) becomes

q
~ 

— p
3
exp (_s%_ i_9~)

1 -
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which we write as

— ap
3
z3

by introducing the abbreviations

a — exp (—~0
—1) , z — exp (—~) . -

From (B.7) and (B.8) we then obtain

a
(t

p.zJ’

~j~ 1

and

~~ (j— m)p.z2 — 0 . (B.9)

The problem then reduces to finding a positive root of the polynomial in

(B.9). As in the continuous case, there are special forms for the prior that

lead to important particular solutions. But when a ~~ ‘ 5, the roots of the

polynomial (other than zero) cannot in general be written as explicit ,

closed—form expressions in the coefficients for arbitrary priors. Numerical

methods of solution therefore become important. Our obtaining a polynomial

equation in the present example was an accidental consequence of the fact that

the values of the constraint function f formed a subset of an arithmetic

progression (j 1 , 2, .. .  ). Thue , for more general types of problems,

numerical methods are even more important.

One such method is the Nevton—Raphson method , which is for finding

solutions for systems of equations that , like (B.5), are of the form

-

. - 

~~~~~~~.



= 0 , (i — 1 , . . .  , m) . (3.10)

The method starts with an initial guess at the solution ,

~( 1) 
= (

1)
, ~~~~~~~~~ and produces further approximate

(2) ~‘~3), ... in 8uccession . If the initial guesssolutions ~ 15

close enough to a solution of (8.10) , if the F. are continuousl y
I

d i f f e r en t i ab l e , and if the Jacobian E~F./)A.J is nonsingülar, then the
(r)

,~~ will converge to the solution in the limit as r

The method is based on the fact that, for small changes in the

arguments A~
t)

, we have the approximate -equality

in 
?F1(A ~~~) (r)

+ -_ ______

1 . .,.. .~~
k 1  

~~~(r) ~ ‘k

up to a term of order o~~~~
’
~ ). We therefore take to be a solution

of the linear equation

______ — —F (A ~~~~~) (3.11)
__ k
k 1  ‘~k

and set

— ~r) +A~
(r)

When F. is given by the discrete form of the left—hand side of (8.5), we¶ 1

have

F.(At)) — 
‘

~~~~ f p exp (— 
~~~~~~~~~~~~~~~~~ 

~~~ (3.12)
~~~- i i i
j l  u•i 

u u~
)

a

I~~~~~ • _
‘
~~~~ f fkj pjCXP (_ ~~:~~~

T)

f) 
(3.13)

L~~~i j
j ai u 1

—
~~~~

-- -----— — ..—-—.—----



where f.. — f.(x.). With the abbreviation
1_I ‘ J

g = ~!1
’2
ex~~(_ 
! 
Z~~~

r)
f)

we express the right—hand sidea of (8.12) and (B.13) in matrix notation as

(~fdiag(g) g).— p_ I.

(.f d iag(g ) 2
f

t ) .~

where diag (g) is the diagonal matrix whose diagonal elements -are the g., and
3

f
t is the transpose of.j. The solution of (8.11) is then given by

= ~(~~diag(g)2f
t)

_l 
f diag (g)Jg . 

- -

We remark that the quantity in brackets is the Moore—Penrose generalized

inverse (58) of the matrix .f diag(g). The approach just described has been

made the basis for a computer program £593, wri t ten  in APL , for solving

cross—entropy minimization problems with arbitrary positive discrete priors p

and equality constraints specified by matricesc. The approach is

part icularly convenient for programming in APL since the generalized inverse

is a built—in APL primitive function £60). To solve a minimum—cross—entropy

problem with 500 states and 10 constraints, the program typically requires 15

seconds of CPU time when running under the APL SF interpreter on a DEC—10

system with a KI central processor .
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