
AD..A0b5 111 NAvAL POSTGRAOUATE SCHOOL MONTEREY CALIF F,. Il/i
DCSCRIPTION AND IMPLEMENTATION OF NUMBER THEORETIC TR*NSFORIIS,(U)
DCC 7$ A C RODRISI*S DC SOUSA

UNCLASSIFIED ML

I rn~n __I __ ___PM _

i ,~ L~ ~~2 8 ~ 2.5
I U

_ _

2.2

i~ 2.0
I J L

_______________ 1.8

11111’ .25 IIIII~•~
MR~F~o(;oI~v I~I 01U IR)N I I CIIAU!

NAH~)NAI HUUI A IJ fl rAt AIr ~ H, A

1LVEL~
c11~~

NAVAL POSTGRADUAT E SCHOOL
Montere y, California

THESIS
DESCRIPTION AND IMPLEMENTATION OF

NUMBER THEORETIC TRANSFORM S

by

Antonio Catarino Rodrigues de Sousa

December 1978

Thesis Advisor: S. R. Parker

Approved for public release; distribution unlimited.

79 01 0 9 032

tJNCLASS IFI~ fl
SE C U R I T Y CL . ASS IFI CAT IOM OV THI S P A G E (Wli i b.. ZnI. ’.d)

DCDI~D? 1WIlIA~~kITATSflII DA I
~~~ 

RtAO INSTRUCTIONS
“~~~~ J” ~~~~~~~~~~~~~~~~ • ‘~~~“ BEFORE COMPLETIN Q FORM

L IEPORT NUMSER 2. GOV T ACCESSION NO 3. RECIPIENT S CATA LOG NUM•ER

4. TITLE ( , d  $~~~iiI.I - ‘ 1  Er NIP .. . — ~ r~.ea $si.r unp.,
II ~ Description and Implementation of Lv” ,4 Master ’s_~hesis~~(if) ~ Number Theoretic Transform s~ U ecemoer 1~ 78 i

___________________________ 
S PERFORMIwU ORG REPORT NUNEER

S. CONTRACT 0* GRANT NUMSER( i)

~~ ~~~~onio Catarino~Rodrigues de Sous~~~

U PERFORMING ORGA NIZATION NAM E AND ADDRESS ~ 1) 10. PROGRAM ELEMENT . PROJ ECT . TASK
/ AREA S WORK UNIT NUUIERS

Naval Postgraduate School L- ~
Monterey, California 93940

I I .  CONTROLLING OFFICE N A M E  AND ADDRCS$ J~ 
ia. -~es,,,. . ~~~~~~~~~

Naval Postgradua te School (jj~ 
Dec~~~~~~ -~~~78 (

Monterey , California 93940 Ti. NU~~SII

6

R0F PAGES

74 MONITORING AGENCY NAME S AODRISS(It d 11•vwi ftss C.nlr.SSSng OSSSc.) II. SECURITY CLASS. (.1 tha i ‘~~i’?)

Unclassified

II.. 
g~c~~asSl~ ICATIoN/DOWsa *AoINo

1$. DIITRISUTIO N STATEMEN T (.~ thai R.p.ft) )
Approved for public release; distribution unlimited .

17. DISTRISUTION STATEMENT (.1 A. .bi a~~ss .U.,.d hi DI.ch 20 II dHlir iI his R.p.. ~)

IS. SUPPLEMENTARY NOTES

IS. K EY WORDS (Ceufflul.. si V.,. ,.. ~,* St ~~s••~~~y sid Id.aSIS~ by bhi.h iisb *~)

Number Theoretic Transform
Fourier Transform
Fermat Number Transform

10. ‘A TRA CT (CisIMI. . ~~~,...... .Ids II ......s p d S~~~lS~ ’ 5p INsE .b.,)

This thesis summarizes the theory of number theoretic
transforms (NTT’s), and presents original examples to
illustrate the theory. Concepts have been studied and
compared in order to present them in a cohesive and unified
manner.

Software and hardware implementation of Fermat number
transforms are discussed and compared with the Fourier .~~~~~~~~

~~~. DO ,.“,, 1473 EDI1ION O~ MOV SS I$ OUOLETE /
irn 0IO 2 OU SIO~~ a ~~~~~~~~~~~~~~~~~~~ ~

UNCLASSIFIED
~~~~~~~~~~ CLASSI~~ICA ~~IOM ~~, YNIS ~ eGIfW~.. P... ~~~~~~~~ -

\\
(20. ABSTRACT Continued)

‘Transform showing a substantial improvement in efficiency
and accuracy. The main drawback of Fermat Number Transforms
is a rigid relationship between the allowed sequence length
and word length. Methods and other NTT’s, for overcoming
this problem are discussed. The theory has also been
extended to two dimensions.

~~~~~~~~

I .

7~ 01 09
liD ~ori~ 1473 UNCLASSIFIED
s/ri 1~nefl14-HO1 2

$ECVEI ?W C~ AIS~ ICA?I E .‘
~~WIS~~4 S V I1PII IiIS5ILUIS *

- - -.“ “-~~~-

fl

Approved for public release; distribution unlimited .

Description and Implementation of
Number Theoretic Transforms

by

Antonio Catarino Rodrigues de Sousa
Lieutenant, Portuguese Navy

B.S.E.E., Naval Postgraduate School, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1978

Author ~)U~~ ~~ ~ —

~ i\ I
Approved by: ~~~ ~~~~~~

. i’- .~
Thesis Advisor

Second Reader

Chairman, Department of Electrical Engineering

Dean of ~cience ana Engineering

-: — —

-

3
—— — -

ABSTRACT

This thesis summarizes the theory of number theoretic

transforms (NTT ’s) , and presents original examples to

illustrate the theory . Concepts have been studied and

compared in order to present them in a cohesive ani unified

manner.

Software and hardware implementation of Fermat number

transforms are discussed and compared with the Fourier

Transform showing a substantial improvement in efficiency

and accuracy. The main drawback of Fermat Number Transforms

is a rigid relationship between the allowed sequence length

and word length. Methods and other NTT’s, for overcoming

this problem are discussea. The theory has also been

extended to two dimensions .

- - - —

4

-

~~~ 

--_ _ _ _ _



TABLE OF CONTENTS

I. INTRODUCTION  9

II. MODULAR ARITHMETIC 17

III. TRANSFORMS IN FINITE FIELDS 38

IV. NUMBER THEORETIC TRANSFORMS 55

A. MERSENNE AND FERMAT NUMBER TRANSFORMS 56

B. OTHER NUMBER THEORETIC TRANSFORMS 71

1. Transforms over the Galois Field GF(p2) -- 72

2. Transforms over the Finite Field GF(p) --- 87

3. Complex Mersenne Transforms and
Complex Pseudo Mersenne Transforms 90

4. Pseudo Fermat Number Transforms
and Complex Pseudo Fermat Transforms 101

V. IMPLEMENTATION OF FERMAT NUMBER TRANSFORMS 110

A. BINARY ARITHMETIC FOR THE FERMAT NUMBER
TRANSFORMS 110

B. SOFTWARE AND HARDWARE REALIZATIONS OF
THE FNT 143

VI. FERNAT NUMBER TRANSFORM VERSUS THE FFT 158

VII. CONCLUSIONS 167

APPENDIX A: TWO DIMENSIONAL CONVOLUTION FOR
CONVOLVING LONG SEQUENCES 175

APPENDIX B: BASIC PROPERTIES OF QUADRATIC RESIDUES - - -  191
LIST OF REFERENCES 202

INITIAL DISTRIBUTION LIST 206

5_ 
- - —.~~~----~~- - - . -‘ . - -



LIST OF TABLES

I. Maximum Odd Length and Corresponding Power-of-2
Roots for Real Trans forms Modulo p = 2q_ 1 with
q Odd and p Composite 97

II.  Lengths and Roots for Real and Complex Transforms
in the Ring (2 q_ 1)/ ~~~i 99

I I I .  Lengths and Roots for Pseudo FNT ’s in the Ring 

104

IV. Complex Roots and Lengths for Complex Pseudo

FNT ’s in the Ring (2 q~ 1)/ ~ dj  with q Odd 108

6 

- _ _ _ _ _ _ _ _



LIST OF DRAWINGS

1. Flow Diagram of a Radix—2, 16 Point, Constant
Geometry FFT Algorithm Using the Decimation
in Frequency Structure 148

2. Block Diagram of the 64-Point FNT Hardware
System Illustrating the Data Flow Between
the Ma jor Subsystems 150

3. Register Transfer Diagram of the CE of the
FNT Algorithm . Path on the Left Implements
A+B and the Path on the Right (A-B) ~~~ 151

4. Timing Diagram for the Internal Clocking
Operation of the FNT Butterfly. Register
Transfers at Each Clock Pulse are also Shown -- 152

5. Implementation of Addition Modulo the Fermat
Number (2~~ +l) Using Two 16-Bit Adders andthe New Coding Scheme 154

6. Improvement of the Fernta t Number by the
Introduction of CLA Logic to Produce the End
Around Carry Required in Fig. 5 155

I,

_ _ _ _ _  - — 
7 

- - -



ACKNOWLEDGEMENT

The author expresses his sincere appreciation to

Professc r S. R. Parker for his guidance in this study.

He also wishes to thank his wife Isabel, whose moral

suppcrt is present in every page of this thesis.

8 

~~ - -~~~~ --- ~~~~~~~
~ -



I. INTRODUCTION

With the rapid advances in large scale integration, a

growing number of complex digital signal processing appli-

cations are becoming economically feasible. In most cases

the bulk of processing workload appears to consist of

digital filter computation . Future progress in digital

signal processing , either towards high speed, real time

operation or increased sophistication , thus largely depends

on increased efficiency in digital filtering computation.

This can be achieved not only by implementing improved

filter circuits but also by using better ccmputational

algorithms as will be discussed in this thesis.

Schonhaje and Strussen [1] (also see text by Knuth

[2 ,p.269]) defined Fourier-like transforms over the ring

of integers , modulo the Fermat numbers [21 2 + 1, to

yield convolutions. They showed that such convolutions

can be used to perform fast integer multiplications . Rader

[3] and Agarwal and Burrus (41 also defined Fourier-like

trans forms over residue classes of integers , modulo the

Fermat and Mersenne primes , to compute convolutions of the

real integer sequences.

For this presentation and exposition of Number Theoretic

Transforms (NTT), the works of many different authors were

consulted. Similar concepts have been studied and compared

in order to present them in a cohesive and unified manner.

9

- - -~~~~ -~  ________________



In section II a mathematical framework for these new

transforms is presented. This framework is based on the

theory of congruences , modulo 14, which belongs to the general

area of what is often called “number theory.” Number theory

is very old, going back several thousand years ; at least as

far back as Euclid, who proved some of the original results.

The names of many other famous mathematicians are also asso-

ciated with the theory , including Joseph Lagrange (1763-

1813), and Leonard Euler (1707-1783), and Carl Gauss (1777-

1855) who is responsible for many contributions to the area ,

some of which were published in his book Disguisitiones

Arithmeticae, published in 1801, when he was 24 (5]. An

excellent history of the theory of numbers is found in the

work of Dickson [6].

In recent years , there has been increasing interest in

the practical applications of various parts of number theory,

including the theory of residue number systems. There has

been some work on the use of these number systems in general-

purpose computers [7]—(12], although this line of investiga-

tion has not yielded many practical results due to the

difficulty of determining the sign of numbers expressed in

residue number system notation. More promising results have

been obtained in applications where sign detection is not

required, such as number theoretic transforms (3], [4]

• and (13].

The possibility of performing the fast Fourier transform

(FFT) in finite algebraic systems (14], (15] and (1], is

10



being increasingly discussed as a means of digital f i ltering

[3], [13] and (16] (see also references in Reference [13]).

The convolution property which such transforms share with

the conventional f.f.t. can be employed to construct a non-

recursive digital filter in which rounding error does not

occur.

The following type of transforms have been discussed in

the literature .

(a) Transforms in arithmetic mod p, p prime, in which

the order (number of points), d, for  example , ...s

a factor of p-i.

(b) Transforms in arithmetic mod m , m arbitrary, in

which d dividies p-l for each prime factor p of

m.

(C) Transforms in an arbitrary f :~nite Galois field

GF(p~) of p” elements , where d divides ~~~~~

Here class (a) is treated as a special case of both (b) and

(c), which are essentially different. This material is

presented in section III which discusses the Fourier trans-

form in a finite field in a broad way.

• The best known number-theoretic transform is the Ferinat-

number transform [1], [3], [4], [13], [16]. Due to the

simplicity of its arithmetic , such a transform is the fas test

method known so far for computing integer convolutions

under certain conditions. However , this transform suffers

from the disadvantage that the restriction imposed n the

11 
- - - - _



register word length is often too excessive (13]. In

order to remedy this problem, Rader [3] has suggested using

a two-dimensional convolution scheme to convolve long one-

dimensional sequences , and Agarwal and Burrus [17], [18] have

presented such a two—dimensional convolution scheme. Other

authors (19], [20], (21], .(22], (23] have also considered

other number—theoretic transforms (NTT). Section IV dis-

cusses the various types of NTT.

These transforms provide more choices of word length

and transform length, at speeds which are not attainable by

the Fermat— nuinber transforms under similar conditions.

Problems involved in the implementation of Fermat-nuxnber

transforms are discussed in section V.

Section VI deals with the comparison between the FFT and

the FNT. Software and hardware requirements for both are

analyzed and compared. Agarwal (13] programmed Fermat

number transforms or~ the IBM 370/155 computer (13] and showed

how to compute convolutions approximately three times as

fast as the FFT implementation for the same convolution .

However, their main drawback is a rigid relationship between

word length and obtainable transform length, as well as a

limited choice of possible word lengths. This last point

is especially significant for FNT’ s, and may result in a

waste of computing power when the permissible word lengths

do not correspond to the dynamic range required for the

convolution.

12



In principle , Number Theoretic Transforms (NTT) could

be implemented in the same was as Discrete Fourier Trans-

forms with multiplications by trigonometric functions

replaced by multiplica tions by powers of two , all operations

being performed modulo a Mersenne or Fermat Number. When

the transforms have a composite number of terms, as is the

case with Fermat Number Transforms (FNT) or some pseudo—

Mersenne Transforms [24 ], various pipeline computing tech-

niques can be used [25].

• In practice, however , direct transposition of Fast

• Fourier Transforms (FFT) architectures does not necessarily

lead to optimum implementations and the development of

special configurations for computing NTT seems worth exploring .

Along these lines , McCl~ l1an [26] has propos~~~a new coding

technique for simplifying the implementation of Fermat

Number Transforms.

McClellan implemented a FNT convoiver for radar signal

processing and reached some interesting conclusions.

Leibowitz (27] presents a code translation which is mathe-

matically simpler , and this proposed arithmetic provides

simpler realizations of all operations required to compute

the FNT.

Nussbaumer [28] discusses the implementation of pseudo-

Mersenne and Fermat Number Transforms. He shows that some

pseudo-Mersenne Transforms can be computed eff ic ient ly  by a

linear filtering approach. This approach is extended to

13



cover the case of Fermat and pseudo-Fermat Number Transforms

by using a special coding scheme for implementing arithmetic

operations in a Fermat Number system. A number of sugges-

tions have arisen for lengthening the sequences which can

be handled by the NTT. One suggestion is to perform the

calculation modulo several mutually prime modulo, and then

obtain the desired result by using the Chinese Remainder

theorem [13], [29]. Reed and Truong [30] have also shown

how one can extend the method to Galois fields over complex

integers modulo Nersenne primes to enab le one to use the

FFT algorithm to compute convolutions of complex sequences ,

and to lengthen the sequences which the method can handle.

However , because this method requires several multiplications,

it does not seem very promising . 
I

One of the most promising methods for lengthening the

sequence one can handle has been suggested by Rader [3]

and developed by Agarwal and Burruz [31]. - This consisted of

mapping the one-dimensional sequences into multidimensional

sequences and expressing the convolution as a multidimen-

sional convolution. In Appendix A an explanation of the

process of two dimensional convolution for convolving long

sequences is presented. By the use of an examp’
~e it is

shown that this process improves the length of the sequences

handled by the NTT.

With knowledge of the advantages and disadvantages of

Ferinat Number Transforms , it is possible to speculate on

just what type of problems are likely to ’ benefit from this

14



new approach. In general one looks for problems which have

the following characteristics:

1) Fairly short sequences (about fifty delayed products)

2) A high accuracy requirement

3) Implementations where multiplications are very much

more costly than additions.

Two specific situations come to mind. The first is the

estimation of magnitude spectra of (many simultaneous)

widel,ana signals. The theory of power spectra estimation

states that power density computations involves formulating

a correlation function with a finite number of delays

which are a fraction of the number of data points available.

The second situation is two dimensional finite impulse

response filtering. Here we may consider an arbitrary LxL

impulse response to be applied to a large image. If L is

in the range of 52 points, the FFT is not particularly attrac-

tive for convolution, although more so for two dimensional

convolution than for one dimensional convolution .

The Fermat Number Transform is quite effective, however.

For impulse responses of this size, the number of multipli-

cations is reduced by about two orders of magnitude over the

- 
direct method, in exchange for a number of additions which

are not too different (usually less) than required for the

direct method. Thus it can be expected that the Fermat

number transform will soon play a part in the computation

required for the filtering of pictures.

15



C

Recently, Derome [32] discusses a class of NTT’s based

on three bit primes, having many of the computational

advantages of the FNT’s. These NTT’s can have much larger

transform lengths than those for FNT’s so that the fast

convolution of, for example, a l000xl000 point picture

with a 24 x 24 point spread function should be possible in

a minicomputer! This development was undertaken in connec-

tion with analysis of high resolution electron micrographs.

‘0

16



II. MODULAR ARITHMETIC

Let a and b be integers. We say that “a divides b”

(denoted by “a~b”) and “b is multiple of a” if there exists

an integer c such that b = ac.

If a does not divide b, we denote the fact by “a4’b”.

An important theorem concerning the division of integers

(the Division Algorithm), is:

Let a and b be integers, b not zero. Then there exist

two unique integers, q and r, such that

a = b q + r  and 0 < r < b  (2.1)

The integers q and r, are called the “quotient” and the

“remainder ” respectively.

If a, b and M, are integers, with N > 0, such that

MI (a — b) (2.2)

we say that “a is congruent to b, modulus M” , and we denote

this fact, by writing

a b (mod M) (2.3)

In other words, two integers a and b are congruent mod M,

if M divides their difference.

17



We will refer to M as the “modulus” . Note that

1) 23 E 8 (mod 5) since 23  — 8 = 15 = 5.3

and

2) 23 3 (mod 5) since 23 — 3 = 20 = 5.4

are both true statements.

We restrict our attention to what is called a complete

residue system, mod M, as the set of integers

ZM 
= {0, 1, 2, ..., M—l}. (2.4)

In other words , when an integer a is divided by another M

i.e.,

a = K M + b

where the remainder b, is some positive integer less than

M, there exists a congruence

- a E b (mod M) (2.5)

such that b is a unique integer among the numbers

0, 1, 2, ... M—1

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~



Thus, one possible mechanization of residue reduction,

is to divide by the modulus and keep only the remainder .

Examples:

1) 47 2 (mod 9) since = 5 remainder = 2

2) 81 0 (mod 27) since 
~-~j  

= 3 remainder = 0

Both 2 and 0 are contained only once within the set of

integers {Q ,l,...,8} and {0,1,2, . . . ,  26} respectively.

The last example shows that, in çeneral instead of saying

that a number a is divisible by the number M we can write

a 0 (mod M)

For this means a - 0 = a = Mk, where k is some integer.

For instance, instead of saying that a is an even

number , we can write

a 0 (mod 2)

In the same manner one sees that an odd number satisfies

a l (mod 2).

In working with residue reduction we will drop the

symbol for congruence and will use the symbol — .

19

- .



But congruence is not the same as equality unless one

can show separately that the difference between a and b is

also less than M. The following basic arithmetic operations

are permissible wi th modular arithmetic:

a) Addition: 2 + 6 = 8 = l ( m o d 7)

b) Negation: -2 = -2 + 7 = 5 (mod 7)

c) Subtraction : 3 — 5 = 3 + (—5) = 3 + (—5 + 7)

= 5  (mod 7) 
•

d) Multiplication: 3 x 6  = 18 = 4 (mod 7)

e) Multiplicative
inverse: Multiplic~ative inverse of an integer

b in ZM exists if and only if b

and M are relative primes. In

that case bxb 1 1 (mod M)

2 1 4 (mod 7); 2x4 = 8 = 1 (mod 7).

f) Division: a/b exists if and only if b has

an inverse. In that case

a/b = axb~~; 4/2 = 4x4 = 16 = 2 (mod 7).

Note that because of the nature of modular arithmetic,

numbers do not have sizes or magnitude. One cannot say

that a particular number is larger than another or that

numbers are close.

Extracting the residue is a functional transformation

of a into b. It occurs often enough in what follows that

it deserves a special symbol, <.>

20 - 
-



= b (2.6)

The subscript N may be omitted if it is understood from

the context.

Computations involving residues are usually simple

because it is never necessary to work with quantities

larger than the modulus unless one finds it convenient.

Notice that

<x+y> is the same as <<x> + <y>>

<x—y> is the same as <<x> — <y>> (2.7)

<xy> is the same as <<x> <y>>

so that in any computation involving only 4- , - , x one may, at

th~ir option, replace the result of any step by its residue .

Example:

<15+13>7 
= <<15>7 + <13>7>7 = <1+6>7 = 0

<l2~ll>7 = <<12> 7 
— <11>7> = <5 — 4>7 = 1

<9 x 14>7 = <<9>7 x <14>7> = <2 x 0>7 = 0

Note that if it were necessary to divide for residue

reduction the operation would be quite costly.

L~~~~~~~~~TT _ I~1~~~~’ 
• .  _ _ _ _ _ _ _



Fortunately there are simpler techniques. In the

simplest case — the residue or a decimal number modulo 10

is its last decimal digit, since

<a> 10 = < ~ a~ lO~>10 = <
~~

‘ <a1 10
1>> (2.8)

and <a. 10~ >~~ is zero except for i = 0 term.

Example :

3
<1098>10 = < ~ a~ 10

1>
10

i=0

= <l x lO3 + O x l O 2 
+ 9x10 1 + Bx l O °>10

<1098>
iø = 8 (mod 10)

This can be generalized to any radix. If M is a power of

two, and a is represented on a binary machine , one has a

trivial method of extracting <a>M. 
-

K—i

<a> K = < ~ a1 <2~~>> = ~ a
~ 

2~ (2.9)
2 i=0

This operation is performed by “masking out” all but the

K least significant bits.



Example:

2 2
<15> = < a. <2k>> = a. 2’3 2. 2.

i=0 i 0

= <1111> = ix2 ° + lx2 1 + lx2 2 = 7 mod 8
2

i.e., here K = 3, and only the 3 least significant bits

account for the value of the residue. The fourth bit (the

most significant bit in this case) is “masked out.”

A. SOME IMPORTANT RESULTS IN MODULAR ARITHMETIC

Euler ’s function is defined as ~p (M), the number of

integers in the f in ite set 1 0,1,2, ... M—1} (which is called

the set of integers mod M, and denoted by ZM) that are

relatively prime to M.

For N a prime,

= M — 1 (2.10)

Example: let M = 7. The ring of integers mod 7 is

z 7 = {0 ,1,2,3,4,5,6}. Since M = 7, is a prime , the

integers in Z7 that are relatively prime to 
M = 7, are all

• elements of the set (except zero), i.e.

4~~i) = M —  1

= 7 — 1  = 6



If M is composite and its prime factored form is

denoted by

r1 r2M = p1 p2 ... p~ (2.11)

then the general expression for ~~M) is , [13]

q (M) = M(l — ~i~) (1 — .i ~) ... (1 — _L) (2.12)p1 p2 p~

Example: Let N = 12 = 22 x3

= {0 ,l,2,3,4,5,6, 7,8,9,iO ,ll}

by simple. counting one ’ finds 4 numbers that satisfy the

conditions of being relatively prime to N. Checking by

applying equation (2.12)

4(l2) = 12(1 — 

~) (1 
— .

~
.) = l2(~~)(~~) 4•

An important theorem known as Euler ’s theorem states

that for every ~ relative prime to M

~4 (M) = 1 (mo d M) (2.13)

For M prime, this reduces to Fermat ’s theorem

= 1 (mod M) (2.14)

24



which holds for all nonzero elements of since they

are all relative prime to N, if N is prime by assumption.

Example: Let N = 7

z 7 = C0 ,l,2,3,4,5, 6}

= 7 — 1  = 6

which holds for all
M—l non-zero elements

= = 1 (mod M) of Z,~, since they
are ~11. relative
primes to M.

Here:

16 = 1 (mod 7)

26 = 64 = 1 (mod 7)

36 = 729 = 1 (mod 7)

46 = 4096 = 1 (mod 7)

56 = 15625 = 1 (mod 7)

66 = 4665 6 = 1 (mod 7)

There are certain roots of unity that are of particular

25



interest. If N is the least positive integer such that

aN = 1 (mod M) (2.15)

then a is said to be a root of unity of order M, or simply

of order N.

If the order of a is equal to $(M), then a is called a

primitive root.

If M is prime and a is a primitive root the set of

integers

(mod N), K = 0, 1,2, ... M—21 (2.16)

is the total set of non—zero elements in ZM. Thus all

nonzero integers in ZM can be generated by powers of a

primitive root. This characterizes the entire field .

Example:

Let M = 7

= (0 ,1,2,3,4,5,6)

Looking in a table of primitive roots, for example [13]

we get

3 and 5 are primitive roots of 7,

thus

4
26



{3K (mod 7), K = 0,1,2,...,5 = M—2}

= (30,3 1 3
2 33 34 35;

= (1,3 ,2,6,4,51 mod 7

and those are all non-zero elements in Z
7. The same for

{5K (mod 7), K = 0 , l , 2 , . . ., 5

= (50 51 52 53 54 55)

= {l ,5,4,6,2,3) mod 7.

Euler ’s theorem implies that if a is of order N, then N

must divide ~(M), denoted by

N14 (M) (2.17)

If N is a prime it can be shown [13], that roots of

order N exist if and only if

N I  CM—i ) (2.18)

and the roots are given by (13],

-• a = a~
M
~~

/’N (2.19)

where a~ denotes a primite root.

27 
. •



Example: Let M = 7 4(7) = M - 1 6

Possible order of roots: N = 1,2,3,6

primitive root (from table): 3

Order of roots :

a = 36AD~ 1: a = 

: = 6 :rde: 2

a = 36/3 
= 32 = 2 mod 7 a~~= 3 6”6 = 3 m o d 7

a = 2 order 3 a = 3 order (6 = 4(7))• /
primitive root

More generally, if a is a root of order N then (13]

is of order N/K, if K I N

(2.20)

is of order N, if N and K are

relatively primes

Example: Let M = 11 •(M) = 10

Now a 2 is a primitive root since 2~~ = 1 mod 11 and

N — 10 is the least positive number such that

= 2~~
b0 

= 1 mod 11

28



Then

= 22 = 4 mod 1 is a root of order N=lO, = 5

This can be seen as follows:

N 0 1 2 3 4 5 6 7 8 9 1 0

1 4 5 9 3 1 4 5 9 3  1

i.e., the root a = 4 generates a cyclic subset of the field

with N = 5 distinct elements (order 5).

K 3For ci = 2 = 8 mod 11 since N = 10 and K = 3 are relatively

primes a = 8 mod 12. will be a root of order N = 10, or a

primitive root.

Checking:

N =  0 1 2 3 4 5 6 7 8 9 1 0

1 8 9 6 4 1 0 3 2 5 7  1

Notice that (2.20) implies that the number of roots of

order N , is given by 4 (M) , and therefore the number of

primitive roots is •(~~M)) (since for a primitive root

N =

Example: Let M = 7 Z7 = (0 ,1,2 ,3 ,4 , 5 ,6)

Number of primitive roots — •(~~(7)) = •(6) = 6(1-.~)(1—4) — 2

29



as seen previously , 3 and 5 are primitive root mod 7.

Number of roots of order N = 3: c~(3) = 3 — 1 = 2.

c t = 36”3 = 3
2 = 2 m od 7 a 5 6’13 = 5 2 = 4 m o d 7

a = 2 order 3 ci = 4 order 3

So a = 2 mod 7 and a =  4 mod 7 roots of order N =  3.

These relations will allow one to calculate all of the

roots of all possible orders from one primitive root.

We can summarize these ideas more precisely in the

• following:

- The highest possible exponent to which a number can

belong mod N is ~~M)

(i .e.  the highest order of a root is N = ~~M))

- If a number has order N = ~(M), we shall call it

a primitive root for the modulus M.

— Not every modul has primitive roots; for instance,

for the modulus M = 15, one finds that every x in

ZN, relatively prime to 15 satisfy the congruence

x4 1 (mod 15)

and yet $(15) = 8.

- To find the primitive roots of a modul if they exist,

one must usually proceed by trial and error , although

there are certain rules that may facilitate the search.

Often one of the small number 2, 3, 5 or 6 may turn

out to be a primitive root.

3’0

_______ ______ ____________ ________ 

j



- Extensive tables of primitive roots for primes

have been computed. The first of these, the “Canon

Arithmeticus ” (1839) by K.G.J. Jacobi, included

primitive roots for all primes below 1,000. More

recent tables by Kraitchick, Cunningham, and others

give primitive roots for all primes up to 25,000

and even beyond.

One interesting point, not mentioned so far , is the

existence of multiplicative inverse.

Multiplicative inverse of an integer b in ZN exists if

and only if b and M are relatively primes.

In that case , b~~ is one integer such that

b x b .1 = 1 (mod M) (2.21)

Example: Let M = 7

= ? 5 x 5 1 1 nod 7 5 1 
= 3

Since 5 x 3 = 15 = 1 mod 7, i.e., if Mis a prime for

every non—zero integer a, in ZN? there exists an inverse

‘I 
(13]

~
M_2 

(2.21a)

this can be seen by another example.

31 4



Example: N = 7

1~~~~~ 1
7 2 15 = l mo d 7 lx l~~~ = 1 mo d 7

2 1 
= 27 2  = 2~ = 32 = 4 mod 7 2x2~~ = 2x4 = 8 = 1 mod 7

3~ l = 3 7—2 
= 35 = 243 = 5 mod 7 3x 3~~ = 3x5 = 15 = 1 mod 7

4 1 
= 47—2 = 45 = 1024 = 2 mod 7 4x4~~ = 4x2 = 8 = 1 mod 7

5 1 
= 57—2 = 55 = 3125 = 3 mod 7 5x5~~ = 5x3 = 15 = 1 mod 7

6 1 
= 67 2  

= 6~ = 7776 = 6 mod 7 6x6~~ = 6x6 = 36 = 1 mod 7

Note that for a non—prime N, a has an inverse given by

[13] :

4

~

(M)—l (2.22)

if a and M are relatively primes.

Example: N = 12 — 2
2 x3

•( l2)  = 12(1 — 
~ ) (1 — 4) — 12(4) (~~) — 4

ZN12 = {0,l,2,3,4,5,6,7,8,9,]0,j.1}

So there are 4(12) — 4 elements in Z12, (1,5,7,11) that are

relatively prime to M — 12.

_ _ _ _ _ _ _ _ _ _ _ _ _ _  

32 
___



Those a’s have inverses given by:

a1 = 1 i-l = l l2)
~~ = i~~

1 
= l~ = 1 mod 12

lxl~~ = lxi = 1 mod 12 = 1 mod 12

a2 = 5 5 l 
= 5~ (l2)_l 

= 54 1  
= 53 = 5 mod 12

5 x 5 1 = 5x5 = 1 mod 12

7 7 1 
= 7~~(l2)—l = 74—1 = 73 = 7 mod 12

7x7 1 = 7 x 7  = 1 mod 12

a4 = 11 11 1 
= 1l l2)

~~ = ii~~
1 

= ll ~ = 11 mod 12

lix 11 1 = lix ii = 1 mod 12

This suggests that in this case b~~ = b. Therefore, we

verify that by considering M a composite rather than a

prime, one observes several differences.

If we define ZM as the ring of integers modulo M,

then if in a ring of integers multiplicative inverses exist

for all non—zero integers, this ring is called a field.

A field with a finite number of elements is also

called a Galois field. It is clear then, that ZN is a

• field if and only if M is a prime.

• ZM is not a field for a non prime M, since not all

elements will have multiplicative inverses. Also, there is

no primitive root that will generate the entire ring , (only

subsets with $(M) elements, at most.)

33

--

~

-_ _---- - ---



Example: M = 8 = 2~

= 8(1— 4) = 4

N O  1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

1 2 4 0 0 0 0 0 subeet with 4 eløt~nta

1 3 1 3 1 3 1 3 rootof order N = 2

4N ~ 4 0 0 0 0 0 0 subset with 3 el~~ents

5N 1 5 1 5 1 5 1 5 root of orderN=2

1 6 4 0 0 0 0 0 subset with4elø~ nts

7N 1 7 1 7 1 7 1 7 root of order 2

In these conditions, the previous example shows, that

there are multiplicative inverses, only for those elements

in Z8 relative primes to M = 8.

We can investigate, a li ttle more , the arithmetic

modulo M, when M is not a prin~~. Let M have the following

unique prime power factorization (2.11)

r1 r2M = p1 
.p2 ...p

~

when the arithmetic is done mod 14, it is in effect done

modulo each prime power Pj simultaneously [13].

A set of arithmetic operations can be done either

modulo each 
~i 

~ separately and the final result mod M

obtained using the Chinese remainder theorem [13], or

-

~~~~~~~~~~~~~~~~~~~~~~~

• _ _

alternatively all the operations may be done mod M , but

they must be valid operations mod for each p,’.

In these conditions , an integer a is said to be of

order N in ZM if and only if it is of order N in each

z
pxii

Here we present some basic results.

a = b mod M

is true if and only if

‘a = b mod p
~~

1 i = l,2,...L (2.23)

r~
If we know the residues of an integer a modulo each p~

We can uniquely reconstruct the integer a mod N using the

Chinese Remainder Theorem.

To establish this theorem, let

a = a1 mod
r1 (2.24)

di
A M/ (P~

nj) ‘ (2.25)

and

di ~ Cd1 mod ~1
i) l mod

rj
(2.26)

35

then

p

a = (
~~~

d
~ 

d~~
1 a

~
) mod M (2.27)

Example:

Leta= 123 and M z 2 4 = 2 3 x3

Calculation of

a = 123 = a
1 mod 23 a1 = 3 mod 8

a = 123 = a2 mod 3 a2 = O mod 3

Calculation of d~~s:

r
d1 

= M/p1 
1 

= 24/2~ = 3 mod 8

r
d2 

= M/p2
2 24/3 = 8 = 2 mod 3

—1
Calculation of

* , d1~~ 
A (d1 mod 

1 — 1  
— (3 mod 8) 1 

= 3~ (8)-1 = 33 — 3 mod 8

d2~~ ~ (d2 mod 2~~~ = (2 mod 3)’l = 2M02 = 23 2  — 2 mod 3

then

__• _ _ _  

36



a = (~~~ d1 d.~~ a.) mod M

a = (3x3x3) + (2x2x0) = 27 = 3 mod 24

Check:

a = 123 = 3 mod 24.

37

___ - -  .— • • • -

- 

. —-- .- .

-

- .  - -.~~~~- - -. - - - - - - . -



III. TRANSFORMS IN FINITE FIELDS

The basic operations of signal filtering is convolution .

In the discrete time signal processing situation, convolution

takes the form

y(n) = x ( n )  * h(n) = ~ x(m) h(n-m) (3.1)
n=-~

n = 0 , 1, 2,

Where h(n) is the response to a unit impulse , for a causal

filter , then

h (n) = 0 for n < O

and, when the duration of the impulse response is finite ,

the infini te sum (3. 1) reduces to a fini te sum

N- 1

y(n) = ~ x(m) h(n—m) (3.2)
m=0

where N is the length of the finite impulse response

(FIR) filter.

The processing workload required to evaluate (3.2)

can be reduced significantly if direct computation is

replaced by transforms methods. This is so provided the

38
- r ’~~~~~~~~~~~ - . - . 



application in question allows sequences to be processed

in b locks . 
-

The Discrete-Fourier Transform (DFT) is one of the most

versatile transforms , and is defined by

N—l . 2~r-j (-~--)nK
DFT = X(K) = ~ x(n) e (3.3)

n=O

K = 0, 1, . . .  N—i

and its inverse transform by

N—i . 2~r
A j(-~—)nK (3 4)IDFT ~ x(n) = ~ X(K) e

K 0

m = 0 , 1, ... N—i

where N is the length of the sequence which transforms one

wants to calculate.

In order to use the DFT in the high-speed impiementation

of convolution , one makes use of its cyclic convolution

property, which states that

DFT(h(n) * x(n)] = DFT[h(n)] . DFT(x(n)] (3.5)

and this implies that convolution can be implemented using

.39



y(n) = IDFT{DFT(h (n)]~~DFT[x(n)]} (3.6)

The convolution impiemented by (3.6) is called cyclic convo-

• lution since it evaluates (3.2) as if h(n) and x(n) were

periodically extended outside the range [O ,N—l] , or equiva-

lently, the indices were evaluated modulo N. Notice that

normal finite convolution can be calculated by cyclic

convolution if zeros are apended to x (n) and h(n) to prevent

folding or aliasing [34].

The DFT is a transform of finite sequences , of real or

complex numbers. One might ask if there are transforms in

other number fields. That is, given a sequence of numbers

modulo N, is there a transform that has the cyclic convolu-

tion property? Ohe will see that the answer to this question

is yes.

If one has a sequence of numbers of length N , then a

transform of the form given by the pair

N-l

X(K) = ~ x(n) (3.7)

n= 0

N-i

x(n) ~ X (K) a ’~
< ( 3 . 7 a )

K 0

is said to have a DFT structure (34].

40



If one looks for the properties that a general trans-

form (3.1) having the DFT structure must have to exhibit

the cyclic convolution property , one finds [4 ], [35], that

it depends on the exis tence of an a that is a root of unity

of order N, i.e.,

N 
= (3.8)

and that N ’ = exists , i.e., the inverse of N exists .

It has been shown [35) that in2~he complex number field the

conventional DFT with ci = e is the only transform, with

that property . However, by working in a f in ite f ield or

ring of integers with arithmetic carried out an integer

M, a large class of transforms exist (14] that have the

cyclic convolution property . By special choices of the

length N , the modulo M, and the value a, it is possible to

have transforms with many interesting properties. These

are called number theoretic transforms.

The possib i1iti~sof interest are, [14]:

1) the ring of integers ZM , with respect to modulo M

• 2) the field of integers GF(p), with respect to prime

modulus p

3) the Galois field GF(pk) of ~~ elements.

Let ZM represent the ring of integers (0,1 ... M—l} (2.4)

with arithmetic carried out mod N. Let M have the following

unique prime power factorization :

41



— 
r1 r2 r2 (2.11)M — p1 p2 ... p2

where the p,’s are distinct primes.

As pointed out previously (section II), when one carries

arithmetic mod M, one is in effect doing it modulo each
~~~~~1 simultaneously. Therefore, the length N number theoretic

transform , having the cyclic convolution property in ZM,

must also have that property in

Z r. for i = 1, 2, ... 2..
Pu

This requires that a (mod
~~~~~~~~~ 

an integer of order N

must exist in Z
~~. , i.e., N is the least positive integer
Pj

such that -

= 1 (mod i = 1,2, ... 2 (3.9)

Example: Let N = 24 = 23 x3

then

Z = = (0 ,1,2,3,4,5,6,7)
2

and

z3 = (0,1,2)

42



For (3.9) to be satisfied, since

i) for Z 3

N 0 1 2 (3.10)

i. i

1 2 1 , i.e., a = 1 order N = 1
~~- ____

order 2 ci = 2 order N = 2

and

ii) for Z8

N 0 1 2 3 4 5 6 7
- 

1 1 1 1 1 1 1 . 1 1 (3.11)

2 1 2 4 0 0 0 0 0

i.e., a = 1 order N 1

• Then, a = 1 (mod 24) is a root of order N = 1, thus the

length of the number theoretic transform possible in the

ring Z24, is N = 1 (not a very interesting result!).

Furthermore, since the inverse transform requires the

existence of the inverse of N, i.e., N 1, this number should

exist in Z~~. , or N should be relatively prime to M (2.21).
Pu

In this example ,

(i) for

43



one wants N ’ = 1 1 
= ?

By (2.2la)

= l ’ = i3 2  
= 11 = lmod 3

(ii ) for

also required is N 1 
= 1~~ =

By (2.22)

N 1 
= 1 1 (mod 8) =

but

4~ M=8) = 8 ( 1 — 4 )  = 4

then

N 1 
= (mod 8) = = l~ = 1 (mod 8)

• Thus we have verified the existence of a number theoretic

transform of length N = 1, in the ring of integers Z24.

In general, the existence of an of order N, each Z~~j

can be investigated recalling Euler ’s theorem (2.13).

That is, by observing (3.4) and Euler’s theorem, one has

the condition

- 44



= 1, 2 , . . . ,  (3.12)

ip., N should divide q~ (~~~~~~1)

Example: Let N = lix 31 = 341

Then

= {0 ,l,2, ..., 1O}

and

Z31 = (0,1,2, ..., 30} -

i) ‘for Z11 S

~~ll) = 11 — 1 = 10 , implies possible values of

order N for the roots in

z11 (1,2,5,10)

ii) for Z31

•(3l) = 31 — 1 = 30 , implies possible values of

order N for the roots in

Z31 (1,2,3,5,6,10,30)

That is, for (3.12) to be satisfied, in the conditions given

by i) and ii), the possible values for the length of the

NTT in Z341 are (1,2,5,10).

45~



Notice that by (3.9), whatever the root in consideration ,

it has to be the same order in as that in Z31.

For Z11, one constructs the following table.

N 0 1 2 3 4 5 6 7 8 9 10

1t~ 1 1 1 1 1 1 1 1 1 1 1 root of order l

1 2 4 8 5 10 9 7 3 6 1 “ “ “ 10

3N 1 3 9 5 4 1 3 9 5 4 1  “ “ I ’  5 (3 l2a)

4N 1 4 5 9 3 1 4 5 9 3 1  “ “ “ 5

5N 1 5 3 4 9 1 5 3 4 9 1  “ “ ‘ I  5

1 6 3 7 9 1 0 5 8 4 2 1  “ “ “ 10

7N 1 7 5 2 3 1 0 4 6 9 8 1  “ “ “ 10 .4

1 8 9 6 4 10 3 2 5 7 1  “ “ “  10

9N 1 9 4 3 5 1 9 4 3 5 1  “ I ’ ” 5

1 10 1 10 1 10 1 10 1 10 1 root of order 5

For Z31, a similar table is constructed , from which only

a part is shown (notice that only N = 1, 2, 5, 10 are of

interest).

N 0 1 2 5 10

1 1 3. 1 1 root of order 1

1 2 4 1 1 root of order 5

1 3 9 26 25 root of order 30

4N 1 4 16 1 1 root of order 5

5N 1 5 25

~0N 1 30 1 30 root of order 2
_- — - . - _  •-•- - • , . . • • •



Thus the root a = 4 is of order 5 in both Z11 and

and so the length of the NTT in the ring Z 34 can be equal

to 5. Furthermore, since the multiplicative inverse of an

in ..eger b in ZN exists if and only if b and M are relatively

prime, and for the inverse transform one requires N 1, N

should be relatively pri!ne to M (or p1’s).

In the last example:

N = 5 is relative prime to N = 243 ~~ 5
1 mod 341

exists and is given by

5~~(M) 1 
= ~~ (341)-l mod 341

but

~ (341) = 341(1 — 
~~~~ 

(1 —

~~) = 300

so

5 1 mod 341 = 5300—1 mod 341 = 5299 mod 341

To find this number notice that

299 = 256 + 32 + 8 + 2 + 1 = 2 8
+ 2~~+ 2

3 + 2 1 + 2 0

so

5299 5256 532 58.52.5

47
• - - . --- . - - ---

-~~~~~

But

= 25 mod 341

= 284 mod 341

58 = 180 mod 341

516 = S m o d 34 1

532 = 25 mod 341

~64 = 284 mod 341

5128
= 180 mod 341

~256 = 5 mod 341

Then

5299 mod 341 = (5 . 25 . 180 . 25 5) mod 341

= 273 mod 341

Check:

(5x273) mod 341 = 1 mod 341.

So

mod 341 — 273 mod 341.

1~~
•.-

That is , it is verified that a number theoretic transform

of length N = 5 exists in Z341. Now, the condition N

relative prime to M (or pt ’s) means

N I (p u — 1) = 1, 2, ..., 2 (3.13)

i.e.

Nlgcd {p1-l , p2-1, . . ., p~—l)

0(M) is defined as the greatest common divisor (gcd)

of the

0(N) gcd {p1—l, p2—l , . . . , p2-i} (3.14)

Therefore -

NIO(M) (3.15)

This last equation gives the necessary condition for the

existence of a transform of length N in the ring ZN with

arithmetic carried out an integer M.

Example: Let M = l lx3l = 341

0(M) = gcd{ll—l,3l—i} = gcd{lO ,30} = 10

_ _ _ _

Notive that N = 5 satisfies the condition (3.15) since

N = sko M = l0.~

It remains to be investigated further whether or not a

given a of order N = 10 exists in both Z11 and Z 31.

Now, consider the converse of condition (3.15). If

NIO(M) or NI~~~(p~~~
i) , then there exists integers a

~
(mod p1

1)

or oder N in Z r [13).
r.

Using these a1’s one can Construct transform (mod p~ ~
)

which have the DFT structure (3.7) and are invertible.

Combining these transforms by the Chinese remainder

theorem (2.27), one can obtain a transform (mod M) having

the cyclic convolution property in ZM . Alternatively one

can combine the at ’s by the Chinese remainder theorem to

obtain an a (mod M) of order N in ZM and construct the

final transform using this a. The results will be identical.

Example: Let M = 5x17 = 85

~(5) = 5—1 = 4 possible values of N: 1,2,4

~(17) = 17—1 = 16 possible values of N: 1,2,4,8,16

If one looks for an c of order 4 in Z85, by constructing

tables for Z5 and Z17 as those in (3. 12 a,b), one finds

50

a1 = 2 mod 5 (order 4, in Z5)

= 4 mod 17 (order 4, in Z17)

Using the Chinese remainder theorem (2.27):

Ci) dk
’s calculation

= (5x17)/5 = l7 mod 5 = 2 mod 5

d2 = (5x17)/l7 = 5 mod 17

—1
(ii) Calculation of d. ‘S.

1

1

~ (2 mod 5) 1
= 25 2 mod 5 = 2~ = 3 mod 5 (by 2.21a)

(5 mod 17) 1
= 5M—2 = ~l7—2 = 515 = 7 mod 17 (by 2.2la)

Then (by (2.27)

a = ((2x2x3) + (4x5x7)) mod 85

a = (12 + 140) mod 85

ci = 152 mod 85 = 67 mod 85

Check :

67~ — mod 85

51

Notice that a = 64 mod 5 is of order 4 in Z5, and also

ci = 64 mod 17 is of order 4 in Z17.

To establish the existence of a NTT in Z85, with length

N = 4, one has to find the inverse of N 4 1, i.e.,

4 1
=

By (2.22)

4 1
= 4$(85) 1 and ‘~(85) = 85(l— ~~)(l— ~~~-) = 64

So

4 1
= 4641 =~ 463 mod 85.

Since

63 = 32 + 16 + 8 + 4 + 2 + 1

463 = 432 . 416 . 48 . 44 42 - 41

But

41 = 4 mod 85

42 = l6mod 85

44 = l mod 85

52

• -- -- - - _ - --- _ .

48 = 1 mod 85

416 = i mod 85

432 = lmo d 8 5

so

4~ 1 = 463 = l 1 1 ~ l~ l6~ 4 = 64 mod 85

Check :

4x64 = 1 mod 85.

The fact that condition (3.15) holds as well as its

converse [13] means that (3.15) is the necessary and

sufficient condition for the existence of an invertible

transform of length N which has the cyclic convolution

property , mod M.

This also establishes that the maximum transform length

in ZM is

N = 0(M) (3.16)

Notice that for a given modulus one knows exactly what are

the possible transform lengths in ZM.

For any NTT to be computationally efficient, there are

three main requirements [17) :

53

(i) N , the transform length , should be highly composi te

(preferably a power of 2) for an FFT-type algorithm

to exist , and should be large enough for practical

sequence lengths.

(ii) The multiplication by powers of a(3.7) must be a

a simple operation. This is possible if the powers

of a have a binary representation with few bits.

(iii) To simplify the arithmetic modulo M, N should have

a binary representation with very few bits and

be large enough to prevent overflow .

Although the class of all possible number theoretic trans-

forms seems very large at first consideration , closer

examination shows that very few seem to sati s fy the afore-

mentioned criteria. The parameters that must be chosen are

M, N and a.

Briefly, one verifies that if M is even , it has a factor

of 2 and , therefore , 0(M) and Nmax are 1, which implies

M should be odd . If M is prime then 0(M) = M-l which is as

large as one could hope for in a field of M integers.

In section IV , the various types of NTT are discussed ,

but one can say that conditions ((3.8),(3.l6)) do not give

a systematic way of determining the “best” choices. As a

result one must use intuition, insight and a bit of searching.

Usually M is selected and the resulting possible N and a

are then examined .

54

IV. NUMBER THEORETIC TRANSFORMS

One computational need in the digital processing of

signals is the evaluation of the circular con~io1ution

summation of two sequences of length N. That is, the

evaluation of

N-i

y(n) = ~ x(n-m) h (m) (4.1)

m= 0

n = 0, 1, ... N—i

The so-called fast convolution procedure obtains this

sum by taking the inverse transform of the product of the

transforms of the two sequences. If the transform used is

the discrete Fourier transform, then error—free results

are obtained only if in f in ite precision arithmetic is

assumed. This is true, even if both sequences are composed

of finite precision numbers because the Fourier transform

involves the irrational number exp[-j(2Tr/N)].

One way to avoid the round-off errors induced by the

transform is to make use of the fast transforms over the

finite field [14].

By working in a finite field or ring of integers with

arithmetic carried out modulo ~n integer M , a large class

of transforms exist that have the cyclic convolution property

(3.5). By special choices of the length N, the mod M, and

55

the value of a, it is possible to have transforms that need

only word shif ts and additions but no multiplications , that

have an FFT type fast algorithm, that do not require

storage of complex values of a, and that have no roundoff

errors. These transforms are the Number Theoretic Trans-

forms (NTT) and they look very promising in the evaluation

of finite convolutions. Their main disadvantage seems to

be a relation of the sequence length N to the required word

length that can require long word lengths for long sequences.

This section begins by discussingMersenne and Fermat

number transforms , tha t proceeds historically all subse-

quent work in this field. In part B, other number theoretic

transforms that provide more choices of word lengths and

transform lengths than Mersenne and Fermat number transforms

are discussed .

A. MERSENNE AND FERNAT NUMBER TRANSFORMS

Rader (3] suggests performing the calculations of a

transform with the DFT structure (3.7), in the ring of

integers modulo a Mersenne number. Such numbers are defined

by [3]

p = 2q — (4 . 2)

where q is prime, but p is not necessarily prime.

In the ring p = 2q_1, ci = 2 is a root of the qth order

since

56

= 2q = (2q — 2q + 1) = 1 mod 2q_1 ~~~~

Under these conditions , a Mersenne transform of an

integer sequence {a~ } having q terms is defined by [3]

q- 1

Ak
= (

~

‘ a~ 2
nK) mod p (4.4)

n= 0

K = 0 ,1 ... q . ,
_-— —

Because q has an inverse modulo p [3], the inverse Mersenne

transform will be

q- 1

am = (q~~ ~
A~ 2

_mK
) mod p (4. 5)

K 0

m = 0 ,1 ... q-l

where all exponents and indices being taken modulo q and

all operations being performed modulo p in both (4.4) and

(4 . 5) .

• It can be demonstrated [3) that the Mersenne transform

satisfies the convolution theorem; that is to say , if

(X K} is the Nersenne transform of (x~ }~ then with Zk AK•XK mod p,

the Inverse Mersenne transform {Z m } of { ZK } is given by

q-l

— (
~ an xm~n) mod p (4.6)

n= 0

57
- - _ -• • I - - - ‘

If (a
n

) and {x~) are properly bounded [3]~ Zm is equal

to the output of the ordinary cyclic convolution with

q- 1
Z =

~
an Xm n (4 7)

n=0

Under these conditions , digital filtering of real integer

- •
— - •- - - sequences can be performed by dividing the sequences into

blocks , padding the blocks with zeros [34] to prevent folding,

and aliasing and computing the cyclic convolutions by means

of Mersenne transforms.

The number of transform terms can be extended to 2q,

since a = -2 mod p is a root of order 2q:

a -

2q
= _22q = (2q)2 = (2 q

+ 2q — 1)2 = (_l) 2 = 1 mod 2q—l

(4 . 8)

Example: Let q = 7

Tnen

p = 2
q_1 = 2~—l = 127

and

a = —2 mod 127 = (—2 + 127) = 125 mod 127.

Notice that 2q = 14, so

58

= a14
= (_2) 14

= 12514 mod 127

Now ,

14 = 2 3 + 2 2 + 2 1
= 8 + 4 + 2

Thus

12514
= 1258 . l25~ 1252

but

1252 = 4 mod 127

125~ = 16 mod 127

1258 = 2 mod 127

and

12514
= 2 16 . 4 mod 127

0
= 128 mod 127

12514
= 1 mod 127.

Notice also that the inverse of 2q = 14, mod 127 is

ci i
= 14 1 mod 127 = 14127 2

= 14 125 mod 127 (by 2.21a).

59

L~~~~~~~~~~~~~~~~~

By performing some simple calculations ,

l4~~ = 118 mod 127. Check : l4 x l4 ’1
= l4x 118 = 1 mod 127.

Thus , a Mersenne transform exists which has the cyclic

convolution property for sequences of length N = 2q, wi th

ci = -2 replacing exp[-2irj/N) as the Nth primitive root of

unity in (3.3), and with all calculations in (3.7) done in

arithmetic modulo p. -

Racier advocated such a transform since using a = 2

or a = -2 as a root of unity would necessitate only shift

and add operations in computing the transform (3.7).

Because Mersenne transforms are evaluated without

• multiplications , computation of a time-invariant circular

convolution (4.1) having N = q points reduces to one multi-

plication per output sample, as opposed to q multiplica tions

with direct calculation. To compute a FFT of a sequence

of length N = q requires of the order of (N/2) log2(N/2)

complex multiplications [17).

The main limitations of Mersenne transform approach are

related to the fact that the number of transforms terms

q (or 2q) is not highly composite, since q is a prime . This

means that calculations of the transforms cannot be simpli-

fied by an FFT-type algorithm.

If one considers p = 2K + 1 and K odd, 3 divides (2K + 1)

and the largest possible transform is 2 , thus one considers

only K even.

60

t . . KLet K = s 2 , s odd, t an integer. Then since p = 2 + 1,

one has

+ 1
= n , n an integer. (4.9)

2 2
+ 1

And the length of possible transforms wi ll be governed by

the length possible for 2 +1 (see , 3.15). Therefore

integers of the form

p = 2 + 1 (4.11)

t = 0, 1, 2, 3

)

are of interest. These numbers are called Fermat numbers and

are defined by Ft=p in (4.11). For t=0 to t=4 the Fermat numbers

are prime. For t > 4 there are no known Fermat number prime.

Number theoretic transforms with a Ferinat number as

the modulus, are called Ferznat number transforms (FNT).

By (3.15), for the FNT of length N to exist N must

divide 0 (Ft
= p).

Notice that (by 3.16), for Ft prime

N = 0 (Ft) = 2b b = (4.12)

and one can have FNT, for any length

N — 2m m < b (4.13)

61
_ _ • - - . ~~~~~~~~~ •~~~~~~~~ -,- ----_

22Example: Let p = F2 = 2 +1 = 2~~+ l = 17

If one constructs the following table:

N 0 1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16

or~er1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

order 8 ~~ 1 2 4 8 1 6 15 1 3 9 1 2 4 8 1 6 15 1 3 9 1

order l6 3N 1 3 9 1 0 13 5 15 11 16 14 8 7 4 1 2 2 6 1

order 4 4N 1 4 16 13 1 4 16 13 1 4 16 13 1 4 16 13 1

order l6 5N 1 5 8 6 1 3 14 2 10 16 12 9 1 1 4 3 1 5 7 1

order l6 ~~ 1 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1

order 16 71’s 1 7 15 3 4 11 9 12 16 10 2 14 13 6 8 5 1

order 8 8N 1 8 12 5 16 9 4 15 1 8 12 5 16 9 4 15 1

order 8 9N 1 9 3 1 5 1 6 8 4 2 1 9 3 1 5 1 6 8 4 2 1

order 16 1 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12 1

order 16 1 3.1 2 5 4 10 8 3 16 6 15 12 13 7 9 14 1

order 16 12N 1 12 8 11 13 3 2 7 16 5 9 6 4 14 15 10 1

order 4 13N 1 13 16 4 1 13 16 4 1 13 16 4 1 13 16 4 1

order 16 1 14 9 7 13 12 15 6 16 3 8 10 4 5 2 11 1

order 8 3.5!~1 1 15 4 9 16 2 13 8 1 15 4 9 16 2 13 8 1

order 2 16N 1 16 1 16 1 16 1 16 1 16 1 16 1 16 1 16 1

(4 . l3a)

62

— - - • -.• - - - - •_ .__ ---- - - - - -- -- • . • -
~~~~~~~

. •  

_ _  --



one sees that (3,5,6,7,10,11,12,14) are primitive roots

that will generate the entire field Z17. The root a = 2

is of order 8 and a2 = 22 = 4 is of order 8/2 = 4 (by 2.20).

Also note that 11 = /~~, in the sense that ii2 = 2 mod 17.

That is, for the ring Z17, one has the possibility of

choosing a FNT of lengths (1,2 ,4 ,8,16) thus satisfying

(4.12) and (4.13).

For digital f i ltering applications the composites

F5 (b = 32) and F6 (b = 64 ) seem to be practical [4].

Lucas [6] has proven that every prime factor of a composite

is of the form

K 2t+2 + 1 (4.14)

Therefore, 2t+2 divides 0 (Ft), for t > 4.

5
Example: Consider F5 = 22 + 1 = 4 294 967 297

= 6 4 1 x 6  700 417

0(F5) = g.c.d.{(641—l),(6700 517—1))

by

0(F5) = g.c.d.(640, 6 700 416)

640 = 2~ 
. 5

6 700 416 — 2~ . 3 17449 

_ _ _

~

• •-•

~~ 

-

,

—~~~~~~~ 

• .  

-. .. . - - - • -  ~~~~~~~~~~~~~~~~~~~~



Then

0 (F5) = 2~ = 128 = 25+2 where t = 5.

Therefore , for the choice of Fermat numbers with t > 4,

the maximum possible transform length is given by (see, 3.16)

N = 0 (F ) = 2t+2 = 22 . 2t = 4b (4.15)max t

where

t > 4, b =

Agarwal [4] proved that

= 2~D/4 2b/2 — 1) (4.16)

is a root of order 4b, in ZF , t > 2.
t

Notice that

a2 = [2~~
’4(2~~

’2 — 1) 1
2 

= 2b/2(2b/2 — 1)2

= 2b/2(2b — 2~ 2b”2 + 1) = 2b/2 (2 . 2b/2)

2 ba = ( — 2 )  2

Thus

64

- —- •- . - • •• - --- - --- ---- - • . ..

- -



2 ba = 2 mod 2 +1.

Since a2 = 2 mod F
t
, the notation a = /~ for (4.16)

will be adopted in this thesis following a general procedure.

Also , note that any odd power of /~ will also be of

order 2t+2 (by 2.20), i.e.

d 
= , d odd (4.17)

is a root of order 2t+2 And raising a /~ (4.16) to
(t+2_m) th m2 power one obtains an integer a of order 2

m < t+2, i.e.

I
2 (t+2—m)a = a ’ (4.18)

a’ being a root of order 2m , m < t+2.

22 4Example: L e t p = F 2 2 + 1 = 2 + 1 = 17

i .e.

• b = = 2 2 
= 4

Then

ci = 2b/4 (2 b/2 1) = 24~
’4 (24.~

2_i) = 2 ( 2 2 _ l)

a = 2 ( 3 )  = 6 mod l7

65



is a root of order 4b = 4.4 = 16. Observing (4.l3a) one

• sees that this result is correct.

Notice also in (4.13a) that 6 = /~ in the sense that

• 62 = 2 mod l7. So

a = /2 = 6 mod l7.

If one raises this a to 2(t+2-m) m = 3 < t+2 4

i.e.

2(2+2 3) 
= 2

a2 = 62 2 rnod l7

and a = 2 is a root of order 2m = 2~ = 8 (4.18)

Observing (4.l3a) one verifies that this is also a

correct result.

If one raises a = 6 to an odd power say d = 5,

a5 = 6~ = 7 mod 17 is a root of the same order as a = 6,

namely of order 4b = 16 , verifying (4.17). Observing (4.l3a)

one verifies that this is correct.

No~ice that a = 2 mod (2b+l) is of order N = 2b, since

= 22.2
t 

= 
2t+l

but

66



22b = (2b)2 = (_ ~ )2 = 1 mod (2b + 1) (4.19)

Thus for FNT’s with a prime or composite modulus one sees

that a = 2 (or a power of 2) is a possible root of order

N = 2b = 2 .2 k 
= 2t+l

This means that sequences up to a length N = 2b, in

this case, can make use of FNT.

This is a very desirable situation , since N

is highly composite allowing an FFT type algorithm and all

multiplication by powers of a are simple word shifts .

If a = /~ is used the.A sequences of length N = 4b = 2t+2

are possible (4.16). Recalling that Fermat numbers up to

F4 are prime O(F(t)) = (by 3.14), and in these cases one

can have an FNT for any length N = 2m , m < b.

Notice that, for these Fermat rmmbers , a = 3, is a

root of order N = 2b (see 4.13a), allowing the largest

possible length , in the correspondnet ring ZFt
The following table shows some parameters for several

possible implementations for FNT’s:

b N = 2 b  N=4b N a for
t b 2 t F

t = 2 + l  (a 2) (u / ~)

2 4 2~ + 1 8 16 16 3,5,6,7,
10,11,12,14

3 8 28 + 1 16 32 256=2b

4 16 216 + 1 32 64 65536 2b 3

5 32 232 + 1 64 128 128
6 64 264 

+ 1 128 256 256

67



Tha t is , a = /~ and the resulting N = 4b give the maximum

length possible for F5 and F6. However , for prime Ft.

further increases in N are possible up to N = 2b j~ more

stages of the FFT algorithm are allowed to have mult~iplica-

tions rather than simple word shifts .

Notice also that besides ci = 3 being of order N =

there are 2b-1 - 1 other integers of order 2b since :

~ (M) = (2b + 1) — 1 = 2b

and the number of primitive roots in ZF is given by (see
t

section II)

= ~~~~ — 
~~~~ 

= ~~~~

For F2
= 17, one sees that the number of primitive

roots is

24 1 = 8 (3,5,6,7,10,11,12,14)

The cyclic nature of modular ar ithmetic means that, with-

out a priori knowledge, integers cannot be associated with

magnitude. For example, the days of the week represent a

modulo 7 system, so that the statement “Friday is af ter

Wednesday ” has no meaning unless the week for the Friday

and Wednesday in question is specified.

68

This means that any number theoretic transform unlike

the DFT has no physical significance like “frequency .”

It is merely a transform space, the halfway stage in convolu-

tion.

During various stages of the computation of an NTT ,

each accumulation of signal “overflows ” many times.

But still the end result of the convolution will be

exact if the input signals are properly bounded [17]. That

is, a dynamic range constraint is imposed by the modular

arithmetic. One must be able to bound a priori the result

of convolution in order to determine the true answer from

the answer modulo Ft.

The worst case bound is determined by the following

procedure . If

C = an®bn

where means circular convolution of length N, and

b
a I < 2 a
n —

(4.21)
b

Ib n i <

then

b +b
I C < N 2 a b (4.22)

69

Example:

The circular convolution of two sequences requiring 8

bits plus sign, will require at most, 22 bits plus sign to

represent the output sequence. Since

N = 64 = 2 6 c i < 26 28+8

b = bb = 8 Icrj < 26 216

f c ~ I < 222

Ar ithmetic modulo Ft can be implemented using b =

bit representation of integers with some provision for

representing 2b~ •

Section V deals with the implementation of Fermat Number

Transforms , where arithmetic is carried modulo Ft = 2b + 1,

b =
-•

Notice that the maximum length of sequences which can

be cycled convolved using the FNT with a = 2 is N = 2b

(N = 4b for a = /~) , and therefore the length of sequences

which can be convoled is proportional to the word length

0 $ in bits (b).

Thus for long sequences the word length requirement

may be excessive.

Rader (3] suggested using a two dimensional convolut..on

scheme to convolve long one dimensional sequences and

Agarwal and Burrus (17 , (18] presented such a two dimensional

_ •

-
~~~~~ • ±~~~~±• . 2 ”

~~
• •  

- -



convolution scheme. Using this scheme, cyclic convolution

of length N = LP is implemented as a two dimensional cyclic

convolution of length 2LXP.

This two dimens ional cyclic convolution can be imple-

mented using a two-dimensional FNT. Then the word length

required is propor tional to the square root of the length

of the sequences to be convolved [13], which would give

for a maximum sequence length 8b2 ra ther than 4b (for ci =

ie., for a computer ’s word length b = 64, the maximum length

for the transform will be

N = 8b2 = 32 768.

4

Appendix A illus trates with an example such a scheme and

also several other points: treatment of negative values in

data, the structure of the transform and the inverse matrix ,

negative powers of a, frequent “overflow ” during computa-

tions , meaninglessness of the transform values and exactness

of the final answer. This example will not demonstrate the

eff icient imp lementation of the FNT using the binary

arithmetic.

B. OTHER NUMBER THEORETIC TRANSFORMS

Mersenne and Fermat number transforms are very promising

for digital filter computation because they can be calcu-

lated without multiplications . Their main drawback is a

rigid relationship between transform length and wordlength,

71



caused by the fact that all operations are performed in a

finite ring with arithmetic carried out an integer M.

Another difficulty arises because it is not possible to

achieve simultaneously optimum efficiency in reducing the

number of operations and in implementing arithmetic opera-

tions. This is so because Fermat number transforms are

amenable to a fast transform algorithm, and Mersenne trans-

forms are not, whereas arithmetic operations can be imple-

mented more efficiently modulo a Mersenne number than

modulo a Fermat number [3], (131.

In what follows , other number theoretic transforms will

be descr ibed briefly. Such transforms provide more choices

of word length and transform length, thus enlarging the

possibility of the use of NTT in digital filtering.

1. Transforms Over the Galois Field GF(p2)

Reed and Truong [2 0] generalized the ideas of

number theoretic transforms to transforms over the Galois

Field GF(p2) where p is a pr ime Mersenne number , i.e.

p = 2
q 

— , p = 2 , 3 , 7 , 13, 19, 31, 61

(4.23)

Notice that this is a particular case of the definition (4.2),

in the sense that here one is interested only in p, a prime.

Also, the Galois field GF (p 2) is a particular case of the

more general GF(Pn), where one is interested in the case

n = 2.

72
-- 

_:___

-

__

— - _ _



Let GF (p2) denote the Galois Field (finite field) of

p2 elements , where 
~ 

= 2q - 1, p ,and q primes. Let d be

2 . 2a divisor of p - 1 (possibly d = p — 1). Also let the

element r c GF (p2), generate the cyclic subgroup of d

elements,

Gd 
= (r ,r2 . . .  r~~

1 ,l) (4.24)

Then a transform over this subgroup Gd can be defined by

the following pair [20]

d- 1

AK 
= 

n~ O 

a rKfl , for 0 < K < d-l (4.25a)

and

d- 1

am 
= (d) 1 

~ A~ r~~
m, for 0 < m < d-1 (4.25b)

K 0

where d divides p2 - 1, am and A.K are elements of GF (p2)

and r is a generator of the element subgroup Gd.

It can be shown that the cyclic convolution property

holds for this transform [20].

Now , if

x2 
= -1 mod p (4.26)

_ _  _~~~~3
_ _ ~ 

I _



is not solvable, then the nonsolvability of (4.26) is

equivalent to the statement:

(-1) is a quadratic nonresidue mod p

(see Appendix B, eq. B-2).

By Euler ’s criterion (Appendix B, theor. B.3), this is

further equivalent to:

(.
~~~ ) = (—1) (p—l)/2 = (—1)

= (—1) (2
g_2)/2 (4.27)

/
(2q_1)= (—1) = —l

where

(~
) is the Legendre symbol defined by [see Appendix

B, eq. (B.8)]

+1 if a is a quadratic residue mod p
1a
‘p

-l if a is a quadratic nonresidue mod p

Thus (-1) is a quadratic nonresidue mod E and (4.26) is

not solvable in GF(p); the polynomial

p(x) = x2
+ 1 (4.28)

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

~~~~~

• _ •

~~~~~~ 

•
• 



is then irreducible in GF(p). A root say , i , of

p(x) = x2 
+ 1 0 (4.29)

exists and can be found in the extension field GF(p2) [20].

The Galois field GF(p2) is composed of the set

GF(p2) = (a + ~bIa,
b c GF(p)} (4.30)

where i is a root of (4. 29), satisfying

= —l (4.31)

where -l (p-i) mod p. 
-

If x2 + 1. = 0 is not solvable in GF(p), i c GF(p2)

plays a similar role over the finite field GF(p) that

= i plays over the field of rational numbers.

For example, suppose (a + ib) and (c + id) are elements

of GF(p2), then by (4.31)

Ci) (a + ib) ± (c + id) = (a ± c) + i(b ± ci) (4.32)

A ‘2 A A

(ii) (a + ib) (c+ id) = ac + i bd + ibc + iad

(4 .33)

= (ac - bd)+i(bc + ad)

75

-- — • • — • • • - , - . — •



These are the analogues of what one might expect if (a + ib)

and Cc + id) were complex numbers. In applications to

radar and communication systems one generally wants to

take convolutions of complex numbers.

If (-1) is a quadratic nonresidue mod p, then convolu-

tion (4. 20) of the comp lex integers can be performed with

transforms of type (4. 25) on a Galois Field GF (p2) where

an and b~ are restricted to GF(p
2). In other words, if

~~~ b~ c GF (p2), for n = 0,1,2, . . .  d—l the transforms are

AK = ~~~a r ~~
’

BK
=

n=0

b rI<1
~ , for K = 0,1, . . . d-1.

where r is a generator of a d—element subgroup Gd.

Then taking the inverse transform of

CK
= A

K BK , for K = 0,1, ... d—l (4.34)

one obtains

d-l

cn = (d)~~ ~S’ CK r
Ith (4.35)

K 0

where c~ c GF(p2) and d divides p2 - 1.

76

• -•-—•-•••• • - •• • - • • • - _ _ _ _- ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

If p is a Mersenne prime , the order t of the subgroup

with generator a, factor as follows (20]:

t = (2q_1)2 — 1 = 2
2q — 2•2q + 1 — 1

= 22q _ 2 q+l~~~ 1 _ 1 (4.36)

= ~~~~~~~~~~~~ — 1)

= — 1)

Since t has the factor d = 2q+l the usual FFT algorithm

can be used to calculate transforms of as many ci = 2~~~f 1

points. If

d = 2K l < K < q + l (4.37)

and a is a primitive element of GF(p2), then the generator

of Gd is

2qr = ci (4.38)

In (4.25) if one wants to take the transform over GF(p2),

of 2q+l point sequences of complex integers , a~ c GF(p2)

then one needs to find a primitive element in G +1 of
2q

GF(p2). To achieve this, the following theorems are useful .

For proofs , see [20].

77
_____ •••••—•• -——-—- .——— —•— —••——— -.——• —— • ——————• —• •— — • —

Theorem 1:

If p is a Mersenne prime and d = 2K, where

1 < K < q+l , then r = a + ib is a primitive

element in Gd of GF (p
2), if and only if

rd/2 = —l mod p . (4.39)

Theorem 2:

For Mersenne primes p > 3, the first

quadratic nonresidue modulo p in the

sequence 1, 2, 3, . . ., p—l , is 3.

To find a primitive element in G +1 of GF(p
2), one can use

2q

the following procedure .

As sume an element r = a + ib is of order in GF(p2).

Now

(a + ib)2 = (a + ib) (a + Ib) (4.40)

and, it can be proved [20] that

A 2q_1(a + ib) (a + i b) mod p . (4.41)

Since

= ~ ~2~ _ 2
= ~ (i2) (2

q_2)/2

A 12g_~~ ‘2 A

= i (—1) ‘ ‘S ’ ’ — —i (4.42)

78
• . - - ~~~~~~~~~~~~~~~~~ .•--- - • - - --~~ - I

Recall that q = 2 , 3 , 5 , 7 , 13, 17, 19, 31, 61, . . . i.e.,

prime. So that (4.40) becomes

A 2q A A

(a+ib) (a+ib) (a-ib) mod p

~
2 + b 2 mod p (4.43)

By Theorem 1, it follows that

A 2q 2 2(a + ib) E a + b E -l mod p (4.44)

since

d = 2q+l and =

Let

- 2 qX a mod 2 —

(4.45)

Y E -b2 mod 2q - 1

then (4 .44) becomes

X + 1 Y mod p (4.46)

By definition in (4.46), X is a quadratic residue. For

Y, (see Appendix B, eq. B.ll, and B.9]

79

-g

I Y) — (b) — I —l i (b~~ —
—1

‘p p ‘p ’ p ’

also (Appendix B, corollary 3.5)

(
~~) = (—1) (2

q_1_1)/2
=

2
q

1
= —l

thus

Y = X + 1 is a quadratic nonresidue.

Hence, one way to choose the numbers X and Y is to let X

and Y be two consecutive numbers from the set of integers

1,2, . . . 2q_2 , such that the first number X is a square and

the second is a nonsquare. By Theorem 2, for p > 3, Y = 3

is a nonsquare and the preceding element X = 2 is a square .

Thus it is sufficient to let

a2 E X 2 mod 2q — (4.47a)

b2 E — x — 1 —Y —3 mod 2q — 1 (4.47b)

To find the solution of congruence (4.47a) one uses the

following procedure [20].

First, notice that [2 0]

2
= 1 (4.48)

80

Then by Eul er ’s criterion [Appendix B]

2 112 q_1~_1~ /22’’ / ‘‘ 1 mod (2q_1) (4.49)
- 1

Multiplying both sides of the congruence by 2, then

2 2 2)/
~
’2)
~~ = 2 mod (2q_1)

Hence

2(2) E 2 mod (2q_1) (4.50)

Then the solution for (4.47a) is

2q 2a ± 2 mod (2q_1) (4.51)

Using the same procedure for (4.47b) , b is given by [20]

b E ±
2
q_ 2

mod (4.52)

In Gd of GF(p
2) there always exists a primitive element ,

r = a + ib [20]. By Theorem 1 (4.39)

A /

(a + ib) “ E — l mod p (4.53)

Raising both sides of (4.53) to the jth power , (4.53) becomes

81

((a + ib)’~
’2
)~ E (_]~)J mod p (4.54)

By Theorem 1, ((a + ib)~~
”2)j is a primitive element only

when j is an odd number. The elements are distinct and

include all primitive elements of Gd.

In other words, in the cyclic subgroup of Gci of GF(p
2),

if (a + ib) is a primitive element then (a + ib)~ is also

a primitive element for j = 1,3,5, . . . , d-l.
q+l . 2Assume a is of order 2 in GF(p) . If ci divides

then r = ~
22
~
’/d is of order ci in GF(p2).

9+1For the transform in (4.25), with d a factor of 2

2q+l ‘done can take r = a / as the primitive element and d

as the transform length.

Example: Find all primitive elements expressed as a sum

of powers of two in the subgroup Gci of GF(p
2),

where q = 5, p = 2q - 1 = 31 and d = 2~~.

To do this, first find an element with order

2q+l = 25+1 = 64 in GF(312).

According to Theorem 1, if r = (a + ib) is a primitive

element in G 6 of GF(3l
2), then

2

A 2~(a + ib) -l mod 3i

By (4 .44), that becomes

a2 + b 2 -l mod 3l

82

By Theorem 2, 3 is a nonsquare and 2 is a square . By (4.51)

25 2 2~a E 2 E 2 E 28 8 mod 3l

By (4.52)

25 2 2~b - (3) (—3) (3) 8 (28)8 20 mod 31

Thus 64 is the smallest positive integer such that

(8 + i 20)64 1 mod 31

An element with order ~~~~~~ = 64/8 = 8 is

• (8 + 1 20)8 = 88 + (~
) 8~ (120) + (~

) 86 (120) 2

+ (~
) 8~ (i20)3 + (~

) 8~ (i20)4

+ (~
) 8~ (i20)5 + (

~
) 82 (i20)6

+ (~
) 8 (i20)7 + (i20)8

where (~
) are the binomial coefficients. Expanding and

solving,

83

(8 + i 20)8 16 + lOi — 10 — l9i + 9 + l8i — 7 — Si + 19

E (27 + i4) mod 31

and since, if (a + ib) is a primitive element in Gd then

(a + ib)~ is also a primitive element for j — 1,3,5, . . . d—l.

One has

(27 + i4)1 mod 31

A A

(27 + i4) mod 31 = (4 + i4) mod 31

A 5 A

(27 + i4) mod 31 = (4 + j27) mod 31

A 7 A

(27 + i4) mod 31 = (27 + i27) mod 31

as the primitive elements in G
8 for GF(3l

2).

In order to perform multiplications by powers of r in

hardware , it might be desirable to represent the q-bit words

a and b, where r = -a + ib, as a minimal sum of powers of

two. Then , for example, rn+l mod p can be obtained by

multiplying r by r modulo p recursively using a minimal

number of bit rotations , q-bit word- complements, and

additions [3].

That is , the primitive elements in G8 of GF(31
2) can

be written :

84

__ I - . • -~~~ -__

- • • - •~ ---- - -- - — -------

A A

(27 + i4) = (2~ — 2L — 2”) + i 2

(27 + i4)3 mod 31 = 4 + i4 = 22 + i 22

(27 + i4)5 mod 31 = 4 + i 27 = 22 + i(25 — 22 — 20)

A 7 A 5 2 0 A 5 2 0(27 + i4) mod 31 = 27 + i27 = (2 —2 —2) + i(2 —2 —2

Notice that, r = 4 + i4 has the shortest number of terms of

power 2. This primitive element is such that multiplications

by powers of r in G8 of GF(3l
2) yield the least hardware .

Such an r is called the simplest primitive element.

In order to perform the convolution of two d-point

sequences of complex integers a~ and b~ with dynamic range

A and B, respectively, the components of the circular

convolution c~ = + i are required to remain in the

interval [20].

— EJ . < y , 6 (4.55)

Specifically to satisfy (4.55) for all sequences a~ = c
m + i

and b~ = x~ + j
~
‘n’ such that Ia~ I , 1~ n 1 < A , and

< B, it is necessary [20], that:

dAB < (4.52)

If A = B, then by (4.52) the largest value of A is

85 4

A = [~I~~~] (4.53)

where [x] denotes the greatest integer less than x. This

scaling constraint sometimes forces one to choose an

excessive value p in order to avoid overflow. Such a large

p implies a computer word length that is of ten undesirably

long.

Example : Let p = 231 1 and let d = 28

By (4.53)

A = ~J2
31 — 2 1 = 210

4x2

If a and b are constrained to the intervaln n

_210 < a ,~~~ ,x ,y < 210 -

one is guaranteed to keep the components of c~ in the

interval

_ (231_l)/2 < x < (23i
— l)/2

According to [30] and [29], the Chinese Remainder

theorem can be employed to develop a ring which is the

direct sum of certain Galois fields GF(p2). This ring is

utilized to extend the dynamic range of complex number

convolutions .

86

A disadvantage of this transform is that multipli-

cation by powers of the primitive element is not as simple

as that developed by powers of 2, in Mersenne transforms

and Fermat number transforms.

Recently, Reed and Liu [36] developed a high-radix

FFT algorithm for computing transforms over GF(p2), where

p is a Mersenne prime. This new algorithm requires substan—

tialiy fewer multiplica tions than the conventional FFT.

2. Transforms Over the Finite Field GF(p)

Colomb , Reed and Truong [19] introduces a Fourier-

like transform in GF(p), where p is a prime of the form

An
= 3~~ 2

n
+ 1. This transform increases the variety of

methods and the digital word lengths that can be used for

computing the convolutions of integers beyond the previous

Fermat or Mersenne number transforms .

Let GF (p) be the f in ite field of residue classes

modulo p, and let the integer ci divide p-i. Also let the

element y ~ GF(p) generate the cyclic subgroup of d elements ,

Gd of GF(p).

Then a transform over this subgroup Gd can be

defined by the pair [19]:

d- 1

=
~

an
Kn 0 < K < d-l (4.54a)

n=0

d- 1

= (d) 1
~

A~ 1
-Kn (4.54b)

K 0

87

where ~~~ AK c GF (p) for n = 0,1,2, ... d-l and Cd) 1

is the inverse of Cd) mod p. Also it can be shown [19]

that the circular convolution of two finite sequences of

integers can be obtained as the inverse transform of the

product of the transforms defined by (4.54).

Notice that if
~n

is a prime of the form 3 x + 1

the order t of GF (Pn) with generator ci, is given by (2.14)

t. = pn
— 1 = 3 2 n (4.55)

Since t has the factor ~ = 2n, the usual FFT

algorithm can be utilized to calculate the transform of as

many as ci = 2~ points. If d = 2K, 1 < K < n and a is the

generator of GF (p~), then the generator of Gci is (by 2.20)
’

3.2n/2K 3 2 n—K
I = ci a (4.56)

the basic operations used in the transform defined by (4.54)

are addition and multiplication mod 3x2 ’ + 1.

Algorithms for searching a prime of the form 3~~ 2n + 1

have been developed [19] , and will not be discussed in this

thesis.

As a final remark about this transform one should say

that the same type of dynamic range constraint applies here

as in transforms over GF(p2), although in this case GF(p)

refers to. integer convolutions. A special number theoretic

88

—4

transform that can be computed using a high radix FFT is

defined [231 over GF(p), a f in ite field of integers moduio

primes p of the form (2n_1)2n + 1. Such primes are special

cases of numbers of the form 2m - + 1 proposed by Pollard

[22]

If p ..s a prime of the form p = (2 fl
- 1)2” + i.

the order t of a primitive root in the finite field GF(p)

is given by

t = p — 1 = (2n — 1)2 fl (4.57)

Since t has a factor 2~, one can choose ci = 2~~, where

1 < 9.. < n as the transform length. The arithmetic in

GF(p) with p = (2” - 1)2’’ + 1 is similar to the arithmetic

in GF(p) where p is a prime of the form 3~ 2n~1~ Addition

mod p invoives at most a triple binary addition [23].

Multiplication by a power of 2 mod p can be imple-

mented by using the combination of table lookups and mod p

addition [23]. However, mul tiplications mod p still needs

a full binary multiplication followed by a division [23].

This seems a disadvantage when compared with Fermat number

transforms. The FrT over GF (p) is similar to the FFT over

the complex number field , except that a root of unity ~r in

GF(p) replaces e j2
~ 1’d and that integer arithmetic modulo

p is used.

It turns out [2 3], that the number of modulo p

multiplications required for the evaluation of an FFT over

89

GF(p), p = 2
n1 (2 r

_ 1) + 1, is greatly reduced when compared

to the number of multiplications required to evaluate the

FFT over the complex number field .

It was found [23], that the number A~ = (2’’-l)2’’-4-1
is prime only for the cases m = 1,2,4,32. Hence only

transforms over GF(p) when p = C2
32_l)232+i have practical

application in digital filtering. The maximum transform

length in these conditions is equal to 4 294 967 296!

It can be shown that high radix FFT can also be

used to compute transforms over a finite ring modulo a

number of the form (2m..~l)2n+l with m even and m = 1 or

in = n, in a similar fashion for the GFCp) case. The condi-

tion for such a transform to exist was shown in References

[22] and [20] . -

3. Complex Mersenne Transforms and Complex Pseudo—
Nersenne Transforms

The main limi tations of the Mersenne transform

approach are related to the fact that the number of trans-

form terms ~ is a prime . This means that calculations of

the transforms cannot be simplified by an FFT-type algorithm

and that the number of transform terms is equal to the

word size. These limitations can be slightly alleviated by

using a root (—2) instead of 2 in (4.4) and (4.5), as said

previously (4.8). The maximum transform length then becomes

2q. It is also possible to increase the maximum convolution

size by resorting to multidimensional convolutions [3], [4],

(31). Unfortunately, this result is achieved at the expense

of increased requirements for computation and storage .

90

By defining Comp lex Mersenne Transforms , it is

possible to achieve higher computation efficiency while

increasing both maximum transform length and convolution

length. Again, in a Merseene ring , with p = 2
q

- 1, (2)

and (-2) are respectively roots of orders q and 2q,

corresponding to transforms of lengths q and 2q, respectively.

Since ~ is a prime , 2d and 2d are also roots of

q and 2q, provided ci is not a multiple of q (by 2.20).

Notice that (2j) is a root of order 4q, since

(2~)4q = (2~)~ (~ 4)q = (l)~ (1)q = 1 mod 2q — 1 (4.58)

Also (l-fj) is a root of order 89, since

(~~~~)8q = [(1

and

(1+j)8 = 1 + (~
) l~ ~ + (

~) i6 J
2

+ 1 i3 + (~
) l~ i4

+ (~
) ~~~ + ~~ i2 J

6
+ 1 j7 +

= 1 + 8~ — 28 — 56j + 70 + 56j — 2~~ 8j + 1

= 16 + Oj

91

_ _ _ _ _ _ _ _ _ _
-g

Then

(l+j) 8’~ = (24)q = (2q)4 = (1)~ mod 2q_1 = 1 mod 2q_1 (4.59)

The same conclusions can be drawn with respect to (l-j),

ie., (l-j) is a root of order 8q, in the ring p =

for q = 2,3,5,7,13,17,19,31,61,...

Higher order complex roots do not have a simple

structure and therefore will generally not be of practical

interest.

Under these conditions , a Complex Mersenne Trans-

form having 4q terms can be defined by [24],

4q-l
AK

= ~S’ an
~nK 2nK mod (2q_1) (4.60)

n= 0

j = /—1 , K = 0,1, . . . , 4q-l

Notice that q has an inverse modulo p , and that the

inverse of 4 is 2q—2 since

4 = 22 (4) 1 mod 2q 1 = 2q—2 (4.61)

for

22~ 2q 2 = 22 2q 2—2 = 2q = 1 mod (2q_ 1)•

92

Then 4q has an inverse R such that

C4qR) mod 2q - = 1 mod 2q - 1

and the inverse transform of Ak is

4 q- 1

am = R
~

AK i~~~~~ 2 ”~ mod 2q - 1 (4.62)

K 0

m = 0, 1, . . . , 4g—l

where all exponents and indices are taken , modulo 4q,

in both (4.60) and (4.62).

Using a root (j +1) leads to a definition of a

Complex Mersenne Transform having Gq terms with

8q— l a (1÷~)nK mod 2q_1 (4.63)
AK~~~~~~~

n= 0

K = 0,1, . .., 8q—1

and , with R such that C8qR) mod 2q_1 = 1 , an inverse

trans form

8q-l

am = R
~

AK (l+j)
’
~~ mod 2

q_1 (4.64)

K 0

m = 0, 1, . . . , 8q—1.

with all exponents and indices taken modulo 8q.

93

Computation of a complex convolution by means of

Complex Mersenne Transforms is carried out as with the

DFT, with real and complex parts being evaluated modulo p

separately. In order to avoid errors due to overflow , the

amplitudes of real and imaginary outputs must be bounded

to (p-l)/2. This means that usually the word length of

real and imaginary parts of input sequencds {an} and {xn}

is less than half that of output sequences . In other words ,

all computations are carried out moduio p on q-bit words ,

yielding q-bit word outputs , and the input sequences are

represented by words of length less that (g-1)/2 bits.

Notice that the calculation of these transforms can be

partly simplified by an FFT-type algorithm because the

number of term s is no longer a prime .

It has been shown [241 that, in the practical range

of interest for q (where q = 31), substituting Complex

Mersenne Transforms for conventional Mersenne Transforms

results approximately in an eightfold reduction in the

number of operations.

If the two sequences (y~ } and {a~
} to be convolved

are real , the full benefit of using Complex Mersenne Trans-

forms can be retained by processing s imultaneously two

successive b locks of sequence {y
~ } by means of the same

Complex Mersenne Transforms. This is done by computing the

complex convolution of the sequence (a~ } with the

auxiliary complex sequence {x n =

~n
+

~ ~
‘n+8q~~

The real

94

part {urn} and the imaginary part (Urn) of CZm
} yield

respectively the convolution of
~~~~ 

and the next block

~
‘n+8q~ 

with {a~ }.

Up to now, the discussion of this section has been

restricted to Mersenne numbers , that is, to numbers

p = 2q - 1 such that p is a prime. If p is not a prime ,

its prime factorization is given by

d1 d2 d
~p = p

1 
. p2 

. ... (4.65)

Recall that an m-point real transform having the circular

convolution property can be defined in the ring of integers

modulo p, provided rn—point transforms can be defined

separately in the fields p1, p2, . . .,  p
1
.

This follows directly from the Chinese remainder

theorem (2.27), and leads to the conditions for the exis-

tence of an rn—point transform in the ring p that m must

simultaneously divide p1— l , p2—l , . . .,  When p is

a prime , the maximum length of the transform is M = p-l.

Transforms in a ring p, with p nonprime , are there-

fore proportionally shorter than transforms defined n~o~u1o

a prime number. If p and q are composites with q =

q1and q1 prime , 2 -l divides p and the maximum trar.sform
q1length is governed by that possible for 2 -1.

This led Rader [3] to consider that tr~e only ‘

of interest in a ring modulo 2q_1 were Mersenne T~~*

95



r — .  - - --___

I A3—AOb S Ill NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF ns nn
DCSCRIPTZOtI AND IMPLEMENTATION OF NUMBER THEORETIC TRANSVO MS.(u)
DCC 78 A C ROORISUCS Dt SOUSA

uNCLASSIFICD ML

__In’ 
_ _ _ _ _ _

Q!SI
UI!IONEI flfl I!!

_ _

_ L!!3I~



_ _ _  ‘~ L~ ~ 2.2

L~ 2.0I. I L

111111.25 IIllI~ tiiii~
MIU~~)C( f l Y  f~LSO1 U ION I I ~I CI IAN I

NA IU) NAt I~(JR I Al l II I AN~ A l ’ I I 0. A



The situation changes noticeably if one considers

Compies Mersenne Transforms. Nussbaumer [24] shows that

given an rn-point real transform of root 2 with p composite

and q, ,m odd integers, one can define 8rn-point complex

transforms in the ring modulo p with

Sm—i j = 1 T
A.~ = ~ a~ (1~

.)wflK (4.66a)

n=O K = O ,i,...,8m—l

Sm-i
am = (8m)~~ ~ ~~ (1~~)—wnK, m = 0,1, ... , Sm—i

K 0

)
Notice that, the existence of an rn-point real transform

in the ring modulo p implies that m has an inverse,

R modulo p. Also, the inverse of 8 modulo P~ 
is

8 1 
= 2q—3 since 8x8 1 

= 2~ •2~~~ = 23 .2 ’L2 3 
= 2q = 1 mod p

thus

(8m)~~ 
= 2q—3 • R mod p exists.

Table I shows the various possibilities for p

nonprime and odd q.

The case of q prime (q — 23,29,37,41,43,47) corres—

ponds to conventional Mersenne Transforms. When q is not a

96



N

• 

N ~~ N ~~ N N N N

H

~ h ‘- in - ‘~~~ in rn — rn • ~~~N 
N Nm m N ~) m • m m c~ m ~ in ~~ • in m

~~ p1 • • • . • • • • N • • • N
N N N N N N N N N N N N N N N— — — — — — . — — — •

~~~~~ ~~ ~~
~~ N p1 in ~ m 1.0 ~~

~~~Q r4 C~ N N N O~1.4 ~ 4 • ~ N ~~ N p1 • m N
X U] 0 • ~ 4 N 0 0% p.4 p.4 p.4 p.~ 0 r•4 r 4  1.0
H Z .4~ 0’ • N 0 in N 0% . • in N in • N

C) N ( )  p1 1.0 • in N (‘j ) 
,
~f • m 1.0

~~ i—I m ~~ i—I N ~~ • N ~0 0% 1.0 0% • i—I N
~~~~~ ~ II :i~ A ~U) 0~ ~ • (‘4 N 0 • p1 • ,-.4 1.0 • N 0% • •

r-I .-I i-I p1 1.0 • m N • 0% • p.4 p.4
•~4 m • • . N , N • m N p1 m in N

• N N p1 • (~ • N • • m N
• N N ~~ ‘ (‘I N N N m N N ~ 4 ~~~‘ N N p1

• in ~ 4 ~I in N 0% m in N 0% m in N 0%
N N (‘4 N N m ~ e ~ ~

TI~ :— * - I
-

prime, the corresponding transforms are called pseudo-

Mersenne transforms. They have a very short length and

their roots are not powers of 2. Notice that, in order to

achieve maximum effectiveness in computing convolutions by

means of pseudo-Mersenne Transforms, it would be desirable

to have relatively long transforms with a number of terms

highly factorizable. This does not seem possible with

transforms modulo p — 2q_1• One notes, however that when

p is not a prime, with the prime factorization of p defined

by (4.65), one can define transforms modulo P/Pj~~ having

power of 2 roots and such that the number of terms is

large and highly factorizable.

These transforms can be defined by

8m-l d.
AK = C ~ a1~ (l+j)

nK) mod P/Pj
1 (4.67)

n 0

K — 0,1 ... 8m—l
—

Various possibilities of such transforms are listed in

Table II.

It can be seen that the maximum number of terms is

both large (40 to 392 terms) and highly factorizable, thereby

leading to efficient FFT type computation with a minimum

number of operations. It would seem, however, that these

advantages are offset by the fact that the various operations

I

_ _

98

_

1

N in 0 0 1.0 N (‘4X 4.4 r-4 p1 N N N (‘% C’l ~~~‘ ~~~p~~~~o

-~p1 p.4 — a a a a

~~~ 
.
~
-, •~!% r ~? ~~0’ ) 1 0 ~~ •r~ i-I p.4 ,-I p.4 ~~N 0 ~~ N N — — —— 1.14 m (‘1

I

H 
N in 0% . N

N N N (‘4 N N N (‘4 (‘4 (‘4

‘1
in N in N in N in N

N

N • N N N NI. ~! ~ ~! I ~E ~: ~~~~~

‘ 

~! ~!

_ 
_ 

—



are performed modulo (2q_1)/~~ . The corresponding arith-

metic circuits are much more complex than arithmetic

circuits modulo 2q_1 [24].

This difficulty can be circumvented by noticing

that as

d2 d.
p = p1 .p 2 ~~~~~~~~

one can compute the convolution modulo p = 2q_1 as with

conventional Mersenne Transforms and obtain the final
d

result by performing a last operation modulo p/pt on

the convolutions computed modulo p, i.e.,

d. d~mod P/Pj ~ = (Zm mod p) mod P/p1 (4.68)

By proceeding in this fashion relatively long

convolutions can be computed efficiently by means of FFT-

type algorithms with all but the last operation performed

with implemented arithmetic circuits operating modulo (2~~l)

[24].

Taking as an example the case of transforms defined

by q = 25, one can see from Table I that the maximum odd

length for real transforms computed modulo p — 225_l is

15 terms and that the corresponding roots are not powers

of two. By operating modulo (225_l)/3l, it is possjble

to define real transforms having power—of—two roots with a

maximum odd length increased to 25 terms. The maximum

100

_ _  - ‘ - •~~~~~~~~~ • - • ------- -



length is then expanded to 200 terms by using complex

roots. Such a transform can be computed very efficiently

by means of an FFT type algorithm with a three-stage radix

2 decomposition, followed by a two—stage radix 5 decomposi-

tion.

One limitation of conventional Mersenne Transforms

is the rigid relationship between word length and trans-

form length. In this respect, pseudo-Mersenne Transforms

provide a significant improvement because their maximum

number of terms Mmax is highly composite and any transform

length submultiple of Mmax can be selected.

It is even possible to have several transforms of

identical length and defined modulo integers p1, ... p~
that are relatively prime. The convolution car. then be

computed separately modulo p1, ... p1 and then the final
result obtained modulo (p1•p2...~~ ) by the Chinese remainder
theorem. This approach could, for instance, be used to

compute a 40-term convolution with an approximate word

length of 32 bits by means of transforms defined by

modulo (215_l)/7 and (225_l)/31.

4. Pseudo Fermat Number Transforms and Complex
Pseudo Fermat Number Transforms

This section considers a generalization of Fermat

Number Transforms, such that transforms having roots which

are powers of 2 are defined in field or ring which is a

factor of an integer , p — 2~~~1• With such pseudo Ferinat

Number transforms it is possible to have much more flexibility

101



in selecting desired word lengths than with conventional

Fermat Number Transforms. In some cases it is possible

to define complex pseudo FNT’s which are well adapted for

filtering complex signals and allow increased transform

and convolution lengths when compared to conventional

FNT’ 5.

Number theoretic transforms in a ring submultiple

of p — 2~~1 are called pseudo Fermat Number Transforms

(37 ] .

If one restricts to roots 2 , one can define an

M-term pseudo FNT and its inverse by

M-l d
= C ~ a1~ 2~~

K) mod p/pt ~ (4.69a)

n—0

M-l d.
am — CR Z J~~ 2 WmK

) mod p/pt 
1 (4.69b)

K 0

m = 0,1 •..  M—l

d
with M~R = l m o d p.p~~~.

It can be seen that these transforms have the same

structure as pseudo Mersenne transforms but are defined in

a ring submultiple of 2q~1 instead of a ring submultiple

of 2Q_] for pseudo Mersenne transforms.

The choice of the particular ring on which pseudo

FNT ’s are defined is very important. Usually, p will be

102

- —- ---- - ‘ -  •



divided by its smallest factors, with the remaining factors

large enough to allow defining long transforms with powers

• of two roots. Pseudo FNT’s can be defined to q even and q

odd (37]. Various possibilities for such transforms with q

even are listed in Table III.

It can be seen that there is much more flexibility

in word length and transform length selection than with

transforms defined modulo 2~~~1•

Here also as in the case of pseudo Mersenne trans-

forms, performing the various operations modulo 1

would seem rather awkward, as the corresponding arithmetic

circuits are much more complex than those operating

mod (2g~1)• Again the solution is to compute the convolu-

tion modulo p = 2~~1 as with conventional FNT’s and obtain

• the final result by performing a last operation modulo 
~~~~ 

1

on the convolution evaluated modulo p:

d. d.
Zm modulo

2.
=

~ m
modulo p) modulo 1.

(4.70)

Assuming the factorization of the number of transform terms

is given by

N = M1 • M2 • •~ Mj (4.71)

the pseudo FNT can be computed by a mixed-radix FFT-type

algorithm.

103

~~ 14.4 1.0 04 ‘0 ~~ N 1.0 N 0 ~~0 0 ~I p1 ~I N N m m ~~ ~~~‘ ~~s

N N N N CM N N N N N

p1
in N
U,

~I
1.0

0 N 0% 0 0
p.4 ~~ 1.0 0% m

p.4 0%
CM p.4 m
1.0 in ~~ p1 N N 4
1.0 m ‘~~‘ N N N N

N 0
0% N 0

U (‘% N p1 1.0 0 in in ~~‘ ~ % CM
U) 4 J Z ‘-4 CM p1 111 ~~ N N N 0%
U) 0% 0% N 0
44 ~4.4 0 ~ 4 m in

p.j
pI 0 1.0 ~~ ‘0 p1 p1 m UI ~~~I p.4 p.4

~~~p1

.-~ rn a N 0% a p1 (~m p1 N r-4 i—C (fl i—I CM
04’) NN 1.D(fl ~~N 1.0CM 0~~’ ~~rv~ NCM
~~ N ~~~‘ N ~~~‘ N in CM in N 1.0CM N N ~~ CM ~~ N 0% CM

• f_ I — — — — — — —
H U]
H ~~ N N
H ~i N 1(1 N in N

~~ 

~ ~Q c~ ~ ~~ -~ -.. ~~
(41 in CM p1 in

0 a a a a a a a a
(44 p.4 i-I p1 p1 p1 p1 p1 p1 p-I p-I

+ + + + + + + + + +
~ 0 N ~~‘ 1.0 ~~ ~~ 0 ~~ 1.0

44 CM CM N CM N m m ~~‘ ~~~‘ ~~~ti CM CM CM (‘4 (‘4 CM CM CM N CM
— _# ,_. — ¾~~ ~~~ — —

0%‘4-4

1.0q N C M
‘-4 0

4’) i-I ~~ ‘ 4’)
•1-4 N i-I ‘0

V p-I 4’) m N N
.1-I 4’) ~~ ‘ in

p-I 04 4’) p1 141 (fl in 1.0
1.0 CM (11 p-I
N In N i-I

4’) ~ I • . • ~~~ 4’)
0% (41 Ill N CM 0‘-I ~ A 0 C’) N ~~

4-4 N ~~ N • (41 N 0% CM • p-I
04 1.0 • N p1 . . . (‘4
• p-4 N 141 • UI N 0% in N

‘I V • (‘4 • in • ~4 N N • CM
~~ i-I N • N • N • . It) N

~~ 

~ p.4 ‘.0 0% N (‘1 p1 (‘4 CM • N

04 i-I it) 0% in ~.4 it) it) CM p1 It)

~~‘ 1.0 ~~ ~~~ 0 ~~‘ 1.0
N CM CM 4’) m ~~

104

r~~~ i:’:~~~~ 
-; 

_ _ _ _ _



If q is odd, it is possible to increase the maximum

transform length [37] by using complex pseudo FNT’s. The

existence of complex pseudo FNT’s can be demonstrated by

considering an M term pseudo FNT defined in the ring

= (2
q
~1)/~~~1 with a root of order M.

Notice that if W and q are odd, the condition

N • W = 2g (4.72)

implies that M is even, and M/2 is odd. Under these

conditions, (_2)W is a root of order M/2 since

= (_2)~~~
’2 

= (_2) 2q/2 
= (2)q

= (~~~2~~+2~~+l) = 1 mod 2q~1 ~~~~~~~~~~

and (_2)~
4M 

is also a root of order M/2, provided d and q

have no common factors [37]. This suggests that (2j)W is

a root of order 2M, since

(2~ ) W2N 
= (2~)4q = (2q)4(~4)q = (_1)4(1)

q 
= 1 mod

(4.74)

and (l+j)W is a root of order 4M since

= (1~~)8g = (2 4 ) g 
= (2q)4 = (_1)q = 1 mod 2g~1

(4.75)

j

-
~~~~~~~~~~~~~~~ 

105

thus a 2M term pseudo FN.L can be defined as [37]

2M—l d. 3 = 1 T
= (

~
an

(2.)WnK) mod p/pt ~ K = 0,1 ... 2M—l

(4.76a)

As N has an inverse in the ring p/p1
2. and 2 is relatively

d.
prime with p, 2M has an inverse R in the ring P~P~

1 and

an inverse transform can be defined by [37]

214-1 d.
am = CR

~
A
K

(2j)~~~~~~~~) mod p.p~
1 (6.76b)

K 0

in = 0,1, ... 2M— l

with all exponents and indices taken modulo 214.

It can be demonstrated that the transform satis-

fies the convolution theorem (37], and that two complex

sequences of length 214 can be cyclically convolved via
d.

complex pseudo FNT’s modulo p/p1
~~

•

In such an approach, all arithmetic operations are

performed as in normal complex arithmetic with j2 — -1,

and real and imaginary parts treated separately modulo p.

The final convolution product is obtained by performing a

last operation modulo P/Pj ~~.

A 4M-points complex transform can be defined by

using a root Cl+j) instead of C2j) [37]

106

414-1 d.
AK

= (~ a~ (1~J)
WnK) mod p/p t

1

n=0

K = 0,1 ... 4M—l

Higher order complex roots have a complex structure and

therefore the maximum length of complex pseudo FNT’ s which

can be computed without multiplications is 4M in the general

case, and Sq when W = 1 (M =

It can be seen that using complex pseudo FNT’ s

allows for a given computation complexity, operation over

transforms and convolution lengths twice as long as with

real Fermat and pseudo FNT’s.

In particular, when W = 1, the maximum length of

an FNT is 4q for a root /~, while the maximum length of a

complex pseudo FNT is 8q for a (1+j) root.

Various possibilities, q odd , for complex pseudo

FNT’s are listed in Table IV. It can be seen that for g

prime, we have complex transforms of length Sq with root

(l+j). These transforms have a number of terms which are

not highly factorizable.

A more interesting case seems to correspond to

those nonprime values of q, for which it is possible to

define transforms with a number of terms which are both

large and highly factorizable and therefore lead to efficient

computation via an FFT type algorithm.

107

4-4

~~~~ 4i~~~~ ~
j 

~

01

. a p.4
— . l %  +.1_I a +

U) — — — + r-4 p1 —

‘0 p.4 (fl p1 p1 ~ 4 i—I + —
r4 Q~ 4.) I I p1 p1 p.4 I — -r~ ~~•

04 ~ 0 -r~ •r~ + + + ~r-~ CM — N 0%
0 0 — — r~ •r ~ r — N 0

a 0 4 4  N N N I N CO
p1 in in
+ p1 ~ 4 N en

0’ 1.0 ‘0N. CM 0 N ~~‘ it)
— 44 1.0 0 en N

0 4 4  en en p1 0 CO 0
0 N ~ I CO (‘4

Z Cl) 1.0 p.4 1.0 p1 1.0 p-I CO
1-4 0) 44 in N 0% 0% N 0

44 Cl) (4) 0 CO 0% in N in N N
0) 1) ~ in p1 en N CO It)
> ~ it) CO p.4 C’) en 0 N en

Cl) N 0 p 1 C’) ~~ ‘0E4 r4 ~ 4.) (‘4 N p1 N p1 0% ~ I in 1.0 ~~

a p1 a p.C a CM
Cl) )C a a N CM 0% p1 S . ~~ It) N

U) ~~ it) N it) en N . •
Z p1 4.) . . 0 • 1.0 • N • CO C’) ¼0 ( ’I CO C’) 0 en Nm

01 or) ‘.O~1 0 en p1 en en en CO N It) N N N ~~‘ N 0% N
(‘4 in (‘4 N CM N CM CM — ~~~ en — — en —

~j p . 4

0% 0%
Cx2 Cli ~ 4 i-I p1 p1 C~)

04 ~ I • p1 •
CM N • • enen en en en en N en en en en

E-~ p ‘•-
~ 

-.-
~ 

.•-‘ 
-.... •-.~ en ~~~~ 

•-... 
•_•— 

..—

8 p.4 p-I ~ 4 p.4 p1 p1 p.4 p1 p1 p.4
+ + + + + + + + + +

O ~ b % i n  p1 It) N 0% C’) in p.4 in 0%
CU ~ r-I N N N N C’) en ~ ~~‘44 r4 (N N CM N N CM N N N N
4.1 1-i — — — — — — — — — —

p.4 N
E~4 0 0%

0 CM
Z ~ N
~) 0 i_I N en N,.
~ •R N 0% CO N

4.1 •_ I N p1 ‘0 p1
CU ‘0 It) CO

Z b~ •~-4 CO ‘0 CO p-I en
< ...1 04 p1 0% CO i-I • in

• in p.4 ‘0 0 • ~~ p.4 04
U) 0 + • 0 ~ 4 p.4 N p.4 en
E~l 4.1 0’ • 0% ~~‘ N • CO p.4 en eno C] CM CM p1 p1 • en en c’~ en •o 0 ‘0 en ~~ ~ 4 N en CO • CO 0% en
~~ 44 11 N r )  in in CO 0 1.0 en p1

04 • • CM • en • CO •X 0 ) 0 4  • i-I en • 0% • N . • p1
U] E r.4 p.4 ~~ p1 p.4 0% ‘0 p1 r) p1 en
s.~ •rI V • • i-I • it) • p.4 CO •

14 p-I CM N • • CM . • en
04 04 en en en en en en en en en en

01 it) i-I it) N 0% en in •_I in 0%
i-I N (‘4 CM N en en ~~

108



In these respect, the 200-points and 392—points

transforms defined respectively modulo (225+1)/3.11 and

C24~+l)/3.43 are particularly attractive.

It is sometimes desirable to compute convolutions

with improved dynamic range. In this case the same convo-

lution can be computed modulo several relatively prime

integers p1, p2, ... p1 and the final result obtained

modulo (p1 p2
.. .p

1) via the Chinese remainder theorem.

For this application, the availability of complex pseudo

Mersenne transforms and pseudo FNT ’s having the same length

and defined modulo relatively prime integers is particularly

interesting. A 200-point convolution could for instance

be computed with a dynamic range of about 40 bits via complex

pseudo Mersenne transforms defined modulo (225_l)/3l and
• via complex pseudo Fermat transforms inodulo (225+1)13.11.

0

109

-~~~ 
. _- - - --

~~~~  
. - - - , ~- -. - - -- - -

V. IMPLEMENTATION OF FERMAT NUMBER TRANSFORMS

The best known number theoretic transform is the Fermat

Number Transform (FNT) FNT are potentially attractive

for digital filtering applications because they have the

convolution property (3.5) and can be computed without

multiplications.

In principle, such Number Theoretic Transforms (NTT ’s)

could be implemented in the same way as Discrete Fourier

Transforms but with multiplications by trigonometric func-

tions replaced by multiplications by powers of two, all

operations being performed modulo a Ferinat number.

In practice, however, direct transposition of Fast

Fourier Transform (FFT) architectures does not necessarily

lead to optimum implementations and the development of

special configurations to computing NTT’s seems worth

exploring. Along these lines, the special attributes of

the FNT, led several researchers to consider various coding

techniques for simplifying the implementation of the trans-

form and special purpose implementations of the FNT.

This section will discuss these concepts. In part A

various coding techniques are presented and in part B the

realization of the FNT is considered.

A. BINARY ARITHMETIC FOR THE FEBMAT NUMBER TRANSFORMS

In computing the FNT, arithmetic is done modulo Ft =

b — (4.11). In this arithmetic the only allowed integers

110

are {0 ,]. ~~•• and all integers whose absolute value do

not exceed

Ft—i — (2b~1)1 — 2b — 2b—l 5 12 2 C .)

can be represented unambiguously.

Negative numbers are represented by adding 2b+i to

them; this is similar to twos complement and ones comple-

ment representation of negative integers.

Notice that in a b-bit register, all integers from

0 to 2b~1 can be represented.

Example: Let Ft = 2
b÷1 = 2~+1 = 17 b = = 22 = 4

(i) allowed integers {0,l,2, ..., 16 = 2~}

(ii) absolute values of number that can be represented

unambiguously do not exceed

17 — 1 b—i 4—1

2 = 2 = 8 = 2 = 2 = 8

• (iii) negative numbers:

—5 (—5 + 17) = 12 mod 17

(iv) a b — 4 bit register allows as maximum
•

•

11112 — 8 + 4 + 2 + 1. l5io — 2b_ 1 — 2~~l 1510

1
-

~~
--________ ~~~~~~~~~~~~~~~~~ ~~

- - • - -

Thus , using a b-bit register , the problem remains to

represent the quantity 2b (in the example above, = 2~ = 16)

If data is uncorrelated, the probability that this number

will appear after an arithmetic operation is approximately

[17].

For digital filter applications, b would typically be

32 or 64; in these cases the occurrence of 2b is extremely

small.

In their software realization of the FNT, Agarwal and

Burrus (4] define a binary arithmetic modulo Ft =

b = 2~. The representation of such a modulus requires

Cb+l) bits, for the representation of the quantity 2b =

mod Ft. In order to simplify modular arithmetic, Agarwal

limits his realization to a b-bit arithmetic.

This involves some input quantization error where C-l)

occurs as an input sample, as well as the extremely small,

but realistic, probability of a complete data block in

error when a (-1) occurs as the result of an FNT computation.

The following discussion is based on the b-bit represen-

tation of integers. The various basic arithmetical opera-

tions can be implemented modulo F~ ~~~~~

(i) Negation
b-i

Let A = E ai 2 , a. = 0 or 1 (5.2)
i—0 1

Then by [4]

112

• - . — . - — — — . . — ———.

b-l b-i
—A =

~
ai —

—

2~~
— (2b_1) C5~3)

i—0 i=0

Example: Let A — 8 = (1000)2 = 8 mod 17 (2~ +1) .

Then

—A = (0111) — C2~ —l) = 7 — (15) = —8

Notice that (5 . 3) can be arranged in the following form:

—A =

b—i
- (2b_1)

i—0

• b-i
= ~ c — (2b 1) + (2k4.l) mod

iic O

b-l
— ~ ~~~ 2~~ + 2 (5 . 4)

1—0

Thus to negate a number , one has to complement each bit

and add 2 to it•

Example: Let Ft — 17

0111
A — 8 = 1000 —A = —8 { +].0} — 9 mod 17

1001

113

. . : -• ___ I

Example: Let Ft = 2~ + 1 = 17

0111
and A — 8 — 1000; -8 = +10 = 9 mod 17

1001

(ii) Addition

When one adds two b-bit integers, one obtains a

b-bit integer and possibly a carry bit. The carry bit

represents 2b
= -l mod Ft .

To implement addition in arithmetic modulo

one simply subtracts the carry bit. Thus the hardware

should be of the carry subtract type.

Example: Let F
t = 17

1111
l5 + lO = 2 5 = S m o d].7 = + 1010 8 mod l7

1000

(iii) Subtraction

Subtraction is implemented as an addition by first

negating the subtrahend and then adding terms. Addition

must be carried out according to (ii) .

Example: Let Ft — 17

13 — 1101
13 — 4 — 13 + (—4) — —4 (-~0i00 —. 1011

+10
1101

114

_ _ _ _ __ _ _ _ _ _ _

1 1101
13 + ~~~~~ =

~

~~~0l0
—l

1001 = 9 mod 17

(iv) General multiplication

When one multiplies two b—bit integers , one gets

a 2b-bit product. Let CL be the b-bit low order of it

and CH be the b-bit high order part of it , then

A x B  = CL + CH 2
b 

= CL + (
~
CH) mod Ft

Thus, all one has to do is subtract the higher order b-bit

register from the lower , order b-bit register. The subtrac-

tion needs to be done according to (iii).

Example : Let Ft = 22 
+ 1 = 17

15 x l0 150 = i4 mod l7

Now 

15010 = (
1001 0110), and by (i)

. .CL O11O
C — 1001—4 0110 (—C ) = 1000H ~ H

+10 
,
~~
..‘ 1110 — 14 mod 17

1000

-~~~~~~ 
- 

••

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

-. -.

Cv) Multiplication by a power of 2

If x is taken as 2 or a power of 2 (in 3.7),

the only multiplications involved in taking the Fermat

transform are those by some power of +2. These multipli-

cations are particularly simply to implement in arithmetic

modulo F
~
. Suppose one needs to multiply A by

0 < K < b, all one needs to do is shift to the left the

content of the register by K bits, and subtract the K

overflow bits (assuming double b—bit registers). If K is

outside the range 0 < K < b, one makes use of the fact

2b _ _ l mod Ft.

Computation of the inverse transform requires

multiplications by negative powers of 2 which can be

converted to positive powers by the following relationship

_2b 2—K — 2b-K mod Ft (5.5)

Example: Let Ft = 2 4 + l 17

Ci) l 5 x 2 2 — 60 — 9 mod 17 15 — 0000 1111

Shift left 2 positions 0g1•1 l~ O0

- CH — 0011 —‘ 1100 CL = 1100

+10 (
~ CH) 1110

~Cfl = lllO -

i 0 0 1 — 9 mod l7

116
- --- - ---, -- -~~~- - I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(ii) 13 x 2~~ = 13 x (—2~~~) = 13 x (—2) = —2 6 = 8 mod 17

13 = 0000 1101
C
~

CL

Shift right dircularly 3 positions 1010 0001
CH CL

CL
= 1010 0101 CH = 0001

+10 C_ CL) = 0111

~
CL = 0111 1000 = 8 mod 17

For the implementation of the Fast Fermat Transform , unlike

the FFT, one does not need to store the powers of x. For

serial arithmetic, one could have a register which stores

the shift amount .K, and as one goes along the Fast Fermat

Transform flow chart, one continually update the shif t

amount. This realization of b—bit arithmetic involves, as

previously said , some input quantization error when (1 = 2b)

occurs as one input sample , as well as the extremely small,

bu t realistic, probability of a complete data block in error

when a (-1) occurs as the result of a FNT computation.

It is, of course, desirable to compute the FNT

exactly . The difficulties in performing binary arithmetic

modulo Ft, become apparent when one coneiders, for example,

multiplication or addition in a ring of integers modulo Ft,

involving the binary representation of - 1= 2b
• For example ,

when b = 4, = 17 the product of 10000 (-1) with itself

is 0000l (+l) .

117

• - - • - - -

A technique for the exact computation of the FNT

and its implementation are described by McClellan [26].

McClellan’s approach involves the definition of a new binary

code representation for the integers modulo Ft.

Given a binary representation of (b+l) bits,

A = Cab, ab_l ... a~] (5.6)

this new code is described as follows. If

ab = 1 then A = 0

(5.7)

ab = 0 then A = %-l 2
b-l

+ 0b-2 2
b-2 + +

• where

1 if a~~= l
= (5.7a)

—l if a. = 0
J

Example: Let Ft = 2b~1 = 2~+l = 17, b = 4

10000 represents zero

00111 —23 + 2 2 + 2 1 + 1 = — 1 = i6 mod l7

01011 23 — 2 2 + 2 + l = 7 m o d l7

118

___ • . . . — • - •

- • - • •

and 10101 is an illegal combination , since the only allowed

number with the most significant bit (MSB) equal to 1 is

10000 (zero). Consider arithmetic operations using this

number representation.

Ci) Multiplication by a power of two.

If the number is zero (i.e., ab
= 1) one does nothing.

If the number is nonzero, the low order b bits are circularly

shifted to the left a number of places equal to the power

of 2, and a bit is replaced by its complement as it enters

the least significant bit position (LSB).

Example: Let Ft
= 2

b+i = 2~+1 = 17, b = 4

Using the proposed code

01100 = 23 + 2 2 _ 2 _ l = 9 mod l7

applying the above rule

9 x 2 =

4 lower order bits

oioot
18 = 1 mod 17 — 01000 = 2 3_2 2 _ 2_ l = 1 mod 17

119

• - - • -

Further ,

• 9 x 8 = ?

9 01100

OlOOT

18 = 010

00001

36 QOQOQ
x I

• 2 1,

0000~
•

72 = 4 mod 17 = 00001 = _23_22_2+1 = —13+17 = 4 mod 17.

In a hardware implementation the MSB is used as a control

bit. If it is one then the number is zero and the rotation

is inhibited. This is characteristic of all operations

using this new coding scheme.

(ii) Negative of a number

• This is done by complementing the low order b bits

except in the case where ab
= 1. Again the MSB is a control

bit that inhibits the operation if it is one.

• ____

Example: Let Ft 2b~1 = 2~+]. = 17; b = 4

Using the proposed code

A = 01101 = 2~ + 22 — 2 + 1 = 11 mod 17

• and by applying the above rule

—A = 00010 = _23_22+2_l = —11 mod 17

(iii) Addition

If either or both •of the operands for addition are

zero (i.e., a = 1 or c = 1), then there is no additionb b
to take place. That is, these special cases can be sensed

and the addition inhibited . Now consider the addition of

two numbers A and C where A ~ 0 and C ~ 0.

Let

A = ab ab_ 1 •~~~• a wi th ab = 0

(5.8)

and

C = C
b

Cb l ... c0 with cb 0

Interpret the b LSB ’s of A and C as the binary

representation of A and C, and form the same A and C using

unsigned binary addition to obtain I~.

121

- -~~~~~~~~~~~~~ -- - -- • -- • - - - -• - • - --

That is

A = ab_l 2
b—l

+ ab_2 2
b—2

+ . . . + a~

(5.9)
+

b-i b-2C = Cb_l 2 + Cb_2 2 + . . . + c0

A-I-C = D = d
b

2
b

+ db l 2
b-l

+ db_2 2
b-2

+ .. . + d~,

It is possible to deduce from D , the desired sum

D = (A+C) mod 2l
~4~I [26].

Notice that
•

A

A = 2A + 2 [26] (5.10)

Example: Let Ft = 2b~1 = 2~+l = 17

Using the proposed code -

A = 01010 = 23 _ 2 2 + 2 _ l = 5 m o d l7

by (5.9)

A p

A = - (1) 2~ + (0) 2L + (1) 2’ + 0 (2’s)

= 8 + 2 = 10

122

• - - ; i _ .~• __ 1._
~

and,

2A = 2 (10) = 20

+

2
A

2 A + 2 = 2 0 + 2 = 22 = 5 mod l7 = A.

To deduce from D the desired sum D., verify that

A A A b
D = A+C = 2A+2 + 2C+2 = 2A+2C+4 mod 2 +1

Example: Let Ft = 17

and

A = 01010 = 5 A = (1)2~ + (0)22 + (1)2 = 8+2 = 10 mod 17

C = 00011 = 8 C = (1)21 + (1)20 = 3 mod 17

So

A A

D = 2A + 2C + 4 = 2 (10) + 2(3) + 4 = 30 = 13 mod 17

and , checking

D = C + A = ~ + 5 — 13 mod 17.

123

If D can be expressed as

D = 2 5+ 2 m o d 2b + 1 (5.12)

with 5 a b-bit number, then the b-bits of 5 are the

b—LSB’s of D [26].

Example: Let Ft
= 17

and

D = 01010 = 2~~ — 22 + 2 1 _ l = - 1 0 — 5 = 5 m o d l7

Since D can be expressed as:

D = 2 D + 2 m o d l7

where

S = 1010 = (1)2~ + (0)22 + (1)2 + (0)1 = 8 + 2 = 10

• (check : D = 2 5 + 2 = 2(10) + 2 = 22 = 5 mod 17)

the 4 bits of 5 = 1010 are the 4 LSB’ s of D = 01010.

There are two cases depending on the value of db in (5 . 9) .

1 — If db = 1, then by (261

D = ~~ + D’ = D’ - 1 mod 2b÷1 (5.13)

124

Example: Let Ft = 17

and

A = 01010=5mod l7

C = QlOll=7m od l7

one has

A = (l)2~ + (0)22 + (1)2 1 + (0)1 = 8 + 2 = 10

C =~ (1)2~ + (0)22 + (1)21 + (1)]. 8 + 2 + 1 = 1].

D = (1) 2~ + (0) 2~ + (1)22 + (0)21 + 1 21 = 4 mod 17

Comparing with

D = db 2
b

+ db_l 2
b-1 + + a0

one verifies that

db
= 1

in these conditions
-

A 4D = 2 + D’ mod 17

where, by (5.13)

125

A

D ’ = D + l = 4 + 1 = 5.

Then

A

D = 1 6 + 5 = 21 = 4 = 5—1 = 4 mod l7,

checking (5.13). Thus ,

D = (2A + 2C + 4) mod 2b÷1 = (2D+4) mod

(5.14)

D = (2C’ + 2) mod 2b + 1

and -

= C’
.

(5. 14 a)

Example : Let F
t

= 17

A = 01010 = 5

C = 01011 = 7

D— A + C = — 12

one has

A — 10
A

C — 11
A A A

D— A + C — 21

_ _ _ _ _ _ _

l26~~~

so
A A

(1) D 2 (A + C) + 4 mod 2 + 1

D = 2(10+11) + 4 = 42 + 4 = 46 = 12 mod 17

A

(2) D = (2 D + 4) mod 17

D = 2 (21) + 4 — 46 = 12 mod 17

(3) In the previous example D’ = 5

so

D = 2(5) + 2 = 12 mod 17

The condition S = D’, in C5.14a), can be verified :

A = 01010 = 5

+

C = 01011 = 7

D = A + C ~~~~ 01

OlOl = — 8 + 4 — 2 + l = — 5 = l2 mod l7

Since

S — C 0) 2 ~ + (1)2 2
+ (0)2 1 + 1 = S mod 17 (by 5.12)

then

5 — D’ — 5 mod l7.

127

2 — If db = 0 in (5.9), then [26]

D = 2D ’ + 4 mod 2b~1 (5.15)

and

S = D’ + 1 (5.16)

Example: Let Ft = 17, b = 4

A = 00 111 = 16 mod 17

C = 01 011 = 7 mod ll

•
_

D = 00 010 = —8—4+2—1 = —11 = 6 mod 17

Since by (5.12)

S = (0)2~ + (0) 2 2 + (1)2 + (0) = 2

and by (5.16) -

D’ = 1

checking ,

D = 2 D’ + 4 mod 2b~1 by (5.15)

D = 2(1) + 4 — 6 mod 17.

128
_ _ -~ - - - - - • - . • -- -- • • .~~~~~~~~~ ,~~ --~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ ~~~~~~~~ - -~~~~~ - ---

Notice, that, this way of performing addition results in an

extra level of add, as in the case of l’s complement arithmetic.

In l’s complement arithmetic, the output carry is

added to the LSB.

In this new mod (21
~+l) arithmetic , one takes the output

carry, complements it and adds it to the LSB. That is,

this new arithmetic is only as complex as the l’ s complement

arithmetic.

There is a small amount of additional complexity due

to the control bit , but this acts only as an inhibit signal.

Example:

(1) 01111 = +8+4+2+1 = 15 mod 17

00011 = —8—4+2+1 = —9 = 8 mod 17

00010 = —8—4+2—1 = —11 = 6 mod 17

(2) 01111 = 15 mod 17

10000 = 0
01111 = 15 mod 17

MSB = 1 inhibits the addition

(3) 01011 = 8—4+2+1 = 7 mod 17

(+)00l00 — —8+4—2—1 = —7 mod 17

•

_

10000 — 0 mod 17

In this last example note that the second add automatically

produced the control bit indicator, for the special case

of zero.

How does one convert from a binary coded representation

of numbers to this new representation?

The code conversion between a binary representation

and this new code falls into two cases.

Let M be a number which is represented in both codes.

Let

mb mb_i
... m~ (5.16)

be the binary representation of M.

Let

~~~ %—i. 
-.. (5.17)

be the new representation.

Also , let N be the number represented by interpreting

(5.17) as a binary code. The conversion rules are as

follows:

1) If M = 0, then = 1, N — 0 , and m~ = 0 for

K = 0, 1, ... b—i.

This is a special case and is done separately .

2) I f M , ~~0 , then~~~~~~ 0 and

M — (2M + 2) mod 2b 
+ ~ • (5.18)

• 130

- - - - - - - ~~-~~~~~~~~~~~~~ - -~~~ ~~~~~~~~~ - - - - -



Conversion from the new code to binary is implemented

by forming 2M + 2 and comparing this sum to 2b~

If the sum is larger than 2b , then 2b~1 is subtracted

to give the proper binary representation of N.

Example: Let Ft = 17

M = 01011 new code = 23_22+2+l = 7 mod 17

N = 8 + 2 + 1  = 11

By the above rule

2 M + 2  — 2 (ll)+2 = 2 4  = 7 mod l7

and

7 = 00111 binary representation of M.

If the binary representation is given the sum

M + 2b — 1 (5.19)

is formed. If the result is odd, 2b+1 is subtracted ; and

finally this result is right shifted one place. The resulting

b bits are the b LSB’s

mb l  mb 2  ...

131
• - - - . -. -



Example: Let F
t 

= 17, b = 4.

Given the binary representation of M = 11111 = 14 mod 17

to obtain new code:

(i) form

M + 2 b_ l = 14 + 1 6 - 1  = 29

the result is odd then by the above rule.

Cii )

29 — 17 = 12

(iii)
12-r = 6 00110 binary representation

Civ) new code 4 LSB’ s of the binary obtained in

(iii) , i.e.,

new code 00110 = —8+4+2—1 = — 3  = 14 mod 17

Notice that the code described so far, due to McClellan [26],

is a special case of a more general class of code trans-

lations discussed by Leibowitz [27].

These translations involve the one-to-one representation

of a number A in the ring of integers modulo Ft , as the

binary number corresponding to

R A — 1 mod Ft ( 5 . 2 0 )

where R is any integer in the ring with an inverse [27].

132



Notice that the code representation of McClellan [26]

corresponds to the case of (27]

R = 2b—1 + 1 mod Ft (5.21)

Example: Let Ft = 2 b + 1 = 2 4 + 1, b = 4

then

R 24 1 +1 = 2~~+1 = 9 mod Ft

Using (5.20), for A = 5 mod 17 the code will be given by

RA—1 = 9 (5)—l = 44 = l0 mod l7

1010 = 01010 code

checking , using (5.7)

01010 = + 8— 4 + 2 — 1  = 10—5 = 5 mod 17.

Notice that the simplest code translation corresponds to

R = 1, for any value of b. Leibowitz [27] concentrates on

the resulting binary arithmetic for the code translation

corresponding to R = 1.

Recall that to represent all integers in the ring modulo

Ft requires (b+l) bits. The additional bit is required in

order to represent the number 2b 
— —l mod Ft.

133

-- - - -

~

- - - - - - -~~~~~~~~ -~~~~~~~~~~~~ -



In order to overcome the problem of performing binary

arithmetic with this additional bit, one allows the addi-

tional bit to be a 1 only when the number to be represented

is a zero.

One way to do this is achieved by subtracting 1 from

the normal binary representation of every integer in the

ring and corresponds to the above set of code translations

with R = 1.

Example: Let Ft 
= 2b +1 = 2~~+1 = 17, b = 4

Normal value Binary representation Diminished —1
value (R = 1)

0 00000 1

1 00001 2
2 00010 

- 
.

3 00011 4
4 00100 5
5 00101 6

6 00110 7
7 00111 8
8 01000 9(—8) (5.22)

9(—8) 01001 lO (—7)

lO (—7) 01010 11(—6)

l l ( — 6 )  01011 l 2 ( — 5 )
12 (-5)  01100 13 (—4 )
13 (—4) 01101 14 (—3)

14 (—3 )  01110 15 ( —2 )
15 (—2) 01111 16 (—1)

16 (—1) 10000 0

134



In the diminished —l number representation the b—least

significant bits (LSB’s) indicate the normal value of the

number. The numbers from 1 to 2b are represented in order

by the binary numbers from 0 to 2b _ 1

Using this representation , the arithmetic operations

necessary to perform convolution by FNT ’s, will be discussed

next.

1. Negation

It can be seen from (5.22) that each of the negative

numbers (>2b 1  = 8) is the b-LSB’s complement of its

positive counterpart.

Example: Let Ft = 17

Diminished —l value Binary representation

A = 6  00101

—A = —6 = 11 01010

Notice that if the MSB is 1, the negation is inhibited .

Thus, the negative of a nonzero number in the diminished

-l representation is the complement of its b-LSB ’s.

2. Addition

To perform addition of two numbers represented as

• (A—i) and (B—i)

(A-i) + (B-i) = (A-I-B-i) -l

135



and thus

(A+B—l) = [(A—i) + (B—l)] + 1 (5.23)

Since the (b+l) th bit of the addends is used only to

inhibit addition if an addend is zero, addition of nonzero

addends involves only the b-LSB ’s.

Equation (5.23) indicates that a 1 must be added

to the sum of two diminished (-1) numbers to provide a

correct result. When a carry is generated from the b—bit

sum, a residue reduction modulo F1 requires the subtraction

of a 1 since 2b = —i mod Ft and no corrective addition ic

necessary . Thus to add to numbers in diminished -1

representation :

1) If the NSB of either addend is 1, inhibit the

addition and the remaining addend is the sum.

2) If the MSB of both addends are 0, ignoring the MSB,

add the b-LSB ’s, complement the carry and add it to

the b-LSB ’s of the sum.

The (b+l)th bit or MSB of the resulting suni is the carry

out of the bt’~ bit.

Example: Let Ft = 17, b = 4

1. Diminished -1 value Binary representation

add 3 00010
+

2 00001

5 00100

136



2. add 7 00110
+

0 10000
7 00110

3. add 13 01100
+

9 ‘01000

_  

c_
22 = 5 mod 17 00100

4. add 11 01010
+

6 00101
0 111

- • - 1
17 = 0 mod 17 10000

3. Code Translation

Let B represent the binary representation of a given

number and D its diminished —l representation .

To perform code translation from binary to diminished

-l representation, one does a diminished -1 addition of B

and the binary representation of 2b - ~ [27].

Example: Let Ft = 17, b — 4.

Binary number B = 00101 5
• 

- 2I~_ l  — 01111

C_
Diminished -l value D = 00100

_  _ _ _  •-~~~~~~••-~~~~-•---____



i.e., the binary number B = 00101 = 5 is represented in

diminished -1 representation by

D = 00100 = (4) = (5—1) .

The translation from diminished —i representation

to binary representation, is performed by complementing the

MSB of D and adding it to the b-LSB ’s [27].

Example:

Diminished -1- D = ~~~~ lO 3

Binary B = 00011

Example: D = (~~~o 0 Diminished -i representation

B = 00000 Binary representation .

4. Subtraction

One can perform subtraction in the dimished —1

arithmetic by negating the subtrahend and adding it to

the minuend .

Example :
Diminished —l Binary representation

subtract 8 00111

6 01010

2 00G01

138



r- ,

~~~~~~~~ 

.

~~~~

. .  , •

5. Multiplication by Powers of 2

In performing a multiplication if the multiplier or

multiplicand are 0, as detected by the presence of a 1 in

the (b+l)th bit, the multiplication is inhibited and the

product is zero.

To perform multiplication of diminished -l numbers

by powers of 2, notice that:

(A—l)2 = (2A—l) — 1

and thus

(2A—l) = (A—l)2 + 1 • .. (5.24)

therefore, each multiplication by two involves a left shift,

ignoring the MSB, and a corrective addition of a 1. If the

bit shifted out from the bth position is a zero, it is com-

plemented and shifted into the LSB in order to accomplish

the addition of , a 1. If this bit is a 1, a subtraction of

1 is also required to accomplish a residue reduction (2b= -1).

With the corrective addition of +1, these cancel out and a

0 is shifted into the LSB.

Thus for each factor of 2, a left circular shift

of the LSB’s is required and the bit circulated into the

LSB is complemented.

139



Example : Let Ft = 17, b = 4

l 6x9 = 24 x9 = 2 x 2 x 2 x 2 x 9  = 8 mod 17

MSB

9
2 x 9  o~dd~b
4x9 0~000l
8 x 9  OOOll
16 x 9 001l1 8 mod 17

6. General Multiplication

The last operation required to carry out convolution

with the FNT is a general multiplication by any two

integers modulo Ft.

To perform a multiplication of the numbers A and

B represented as (A-l) and (B-i) in diminished -1 number

representation system, notice that

(A-i) (B-i) = A•B - (A+B) + 1 -

= (A~B-l) - CA+B-l) + 1

and the desired result is

(A .B—l ) — (A— i) (B—i ) + (A+B— i) — 1 (5.25)

thus , to carry out such an operation , ignore the MSB ’s ,

perform a binary multiplication of the diminished -l

- 140



representation of A and B , add this result to the b-LSB’s

of the diminished -l addition of A and B and then perform a

residue reduction by a diminished -1 subtraction of the

b-MSB’s from the b-LSB’s.

Notice that this particular general multiplication

scheme is not applicable with code translations other than

that corresponding to R = ± 1. As discussed previously,

if the MSB of either the multiplier or the multiplicand is

1, then the multiplication is inhibited and the result is

set to zero.

Example: Let Ft = 17, b = 4.

Multiply
13

x
11 .:

= 7 mod i7

binary multiply diminished--i add
01100 • 01100
01010 01010

011000 ~~~~
0110000 0

binary add 
0111iO~O ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _

__ 00110

01111110

residue 1000
reduction

00110 7 mod 17.

141



An alternate multiplication technique can also be considered.

Assuming that the numbers are determined to be nonzero and

a multiplication is required, a translation to normal binary

coding is performed. Following a binary multiplication , a

residue reduction by diminished -l subtraction of the b-

MS’s of the product from the b—LSB’s is carried out. The

result is the desired product.

Example: Let Ft = 17, b = 4

multip

143 = 7 mod l7 
-

)

translate 0 100 binary multiply OLl 101

0l10~

translate 
_ _ _

0101 0111

7 mod 17 00110

Since in most cases the translation from diminished —1 to

binary will be simpler and faster then a general binary

or diminished -l addition, the second technique is the most

preferable .

To conclude part A of this section, one can say that

Leibowitz [27] presents a binary arithmetic applicable to

142



the exact computation of the FNT, that this diminished -i

representation is mathematically simpler than that of

McClellan (26]. Also the ’ hardware presented in (26] to

compute the FNT , and discussed in part B of this section ,

can be applicable to this new technique with the exception

of the code translation.

B. SOFTWARE AND HARDWARE REALIZATIONS OF THE FNT

The Fermat Number Transform has been proposed as an

aid to the rigid and precise computation of convolution for

digital filtering applications. Since this transform does

not require multiplications, it is considerably faster

than the FFT [17].

In what follows, a discussion of a software implementa—

tion of the FNT, due to Agarwal and Burrus [4], as well as

the description of a special purpose hardware to compute the

FNT, realized by McClellan [2 6] ,  is presented.

In their assembly language realization of the FNT, on

the IBM 370/155 computer, Agarwal and Burrus define a

binary arithmetic modulo Ft = 2b~1, b =

Notice that the IBM 360/370 series uses a 32-bit word

length for fixed—point arithmetic, and therefore is well

suited for the implementation of convolution using the FNT

modulo F5 
= 2 32 

+ 1.

It has two’s complement representation of negative

integers , i.e.,

32(-x) is represented as 2 - x (5.26)

143



Since in arithmetic mod Ft one wants negative integers

to be represented as a complement of 232 + 1, i.e.

C—x ) is to be represented as (232+i—x) (5.27)

One adds 1 whenever a negative number is encountered in

data.

As noted before with b bits, the quantity 2b = -l mod Ft
has no representation. Thus in the 370/155, one cannot

represent 232 
= -1. If a (-1) is encountered in the data

it is rounded either to 0 or to —2. If data is uncorre—

lated , the probability that (—1) will appear after an

arithmetic operation during the various stages of the FNT

computation is roughly -

2 32 
~~
. io 10 • 

(5.28)

To add two 32-bit integers modulo F5, the logical add

instruction (ALR) is used which adds the two integers and

sets the condition code depending on carry or no carry.

Af ter the logical add instruction , a conditional branch is

taken depending on the condition code. If the condition

code indicates a carry bit in the logical add operation , one

is subtracted from the result, otherwise it is left unchanged.

This sequence of operations completes one addition moduio F5.

Similarly, subtraction modulo F5 is performed using a

logical subtraction (SLR) instruction followed by a conditional

144



branch instruction. To multiply a number by

2K mod F5 ,  0 < K < 3 2

the number is loaded in the odd reg ister of an even—odd

fair  of registers. The even register is filled with zeros

and this double register is shifted lef t by K positions

using a shift left double logical (SLDL) instruction.

Af ter the shif t operation , the even register is subtracted

from the odd register , modulo F5. This sequence of instruc-

tions completes multiplication by 2K mod F5.
To multiply a number by

2~~~mod F5 ,  0 < K < 3 2 ,

the number is loaded in the even register of an even-odd

pair of reg isters , the odd register is f i l led with zeros

and this double register is shifted right by K positions

using a shift right double logical (SRDL) instruction.

After the shift operation, the odd register is subtracted

from the even register, modulo F5. This sequence of

operations completes multiplication by mod F5. To

multiply two numbers mod F5 requires a somewhat larger

number of operations. First one determins the signs of

the two integers and multiply the signs . If any of the

numbers is detected as negative , its absolute value mod F5

145
- - - • ,  ~ . • •  -



is taken by taking its two’s complement and adding one to

it. Their absolute values are multiplied (MR) to obtain

a 64-bit double—register product, then the even register

(higher order 32 bits) is subtracted from the odd register

(lower order 32 bits) mod F5. Finally,  if the product of

signs was detected negative , one multiplies the result by

(-1) by taking its two ’s complement and adding one to it

[5.27].

Assembler subprograms were written [4 ] to compute Fast

Fermat Number Transforms and inverse Fermat number transforms

for an sequence length from 21 to 26, taking x as a power of

2. A decimation in frequency algorithm with normally

ordered input and bit reversed output was used for the

computation of the Fast Fermat Number Transform [41. A

decimation in time algorithm with bit reversed input and

normally ordered output was used for the computation of the

fast inverse FNT.

For both of these subprograms, the only multiplications

required were by a power of 2, which were implemented as

discussed above. Two more subprograms were writtefl to

compute fast FNT’s and inverse FNT ’s for length - 128

sequences, using a = /~ given by (4.16).
Multiplications required to multiply the two transforms

are general multiplications mod F5 and are performed as

discussed earlier.

To cyclically convolve sequences longer than 128, two-

dimensional convolution schemes were used.

146



One such scheme was 2 by 128 convolutions for length

256 sequences discussed in section 10 of [18]. Another

program was written to convolve long one-dimensional

sequences using two-dimensional FNT, as discussed in

Appendix B. In Section 6 , results of the comparison wi th

the FFT are presented.

The special attributes of the FNT led several researchers

to consider seriously special—purpose hardware impl ’~menta—

tions of the transform. The machine constructed by McClellan

[26] , is an implementation of a 64-point, 16—bit FNT

(modulo F4 = 216 + 1). This hardware system appiies , the

second coding scheme, described in part A of this section,

to the logic design of the butterfly of the FNT algorithm. .4

The fast FNT algorithm implemented is a radix—2 constant

geometry decimation in frequency (DIF) decomposition of

the FNT.

Fig. 1 shows a flow diagram of this algorithm for a

16-point transform [38]. Although the constant geometry

structure does not allow in place calculation of the trans-

form , it simplifies the memory addressing because the addressing

does not vary from stage to stage . The price one pays for

this simplification is a doubling of the memory size

required for the transform. However, 128 words per chip is

a convenient level of integration with ECL (einiter coupled

logic), thus making the constant geometry structure

attractive [26].

147



A A A 1 0

I /A\ /A\ I, ’\\
2 ///\\\\ //A\\ //A\\ /7,4

\\\\ f/ ~\\\ f~/ \\\\\\ IAA\\\ M/
5
6

\ A X A  ~~~~~~ \ A X X _ .—~~ \ X X X  ~~~~ \XXX _-~~o

~ XXAY -~---‘~ XA? ‘ XX A~~ 
)r -‘~AXXY ‘ ~

gW~~~ —~~YY~ ‘W~~• /XYX ~~
- -~~~~4 I Y ~~~~ 4 / X YY~~~~4 I X Y ’[~~~~9~ ’/ )V~

)
~~ ~~~~~~~~~~

‘/)V
~~~~~~~~~~~~~~~~~~~~~/AX~~~~~~~~~ ~~~~~~‘/XX~~~~~~~~~ 

~~-

lo(/ /V’~ ~~~~~~~~
//~~~~~ ~~~~~~~~~~~~~~~~~~~• / / /V~~~ ~~~~~~ I I / Y~~ ~&4 I I IY~~ ~~ I I /V~ ~~°

u
, //// \\~J/// \~ /// \\\~/// \~\\\/// \\V// \\V// \~~ \

V V V \ i~~

FIGURE 1. Flow Diagram of a Radix-2 , 16 Poin t, Constan t
Geometry FFT Algorithm Using the Decimation
in Frequency Structure

148

Fig. 2 is a block diagram of the complete system showing

the four major subsystems . The computational element (CE)

is a radix—2 DIF butterfly for the fast FNT algorithm; the

memory element contains 128 x 17—bit words for use as inter-

mediate storage during the computation of the transform;

the control element is a hardwired implementation of the

fast FNT algorithm [26]; and the input/output (I/O) section

provides the interface with the fast digital processor (FDP).

McClellan states that the goal in building this hardware was

to construct a CE that would operate at a clock rate of 40

MHz. In order to achieve this speed , ECL 10K circuits were

used. The basic gate in this logic family as a propagation

delay of 2 ns , and thus these circuits are well—suited for

vex~’ high-speed systems. Even with such high speed logic

- circuits , two levels of reclock and fast carry addition were

used in the CE to realize a working system that runs

reliably at 38 MHz [26].

Fig. 3 shows a functional diagram of the butterfly

which consists of an adder , a subtracter , a rotator , input

buffe r registers RA and RB, reclock registers R.~, Rx and

and an output register Rz. Register transfers are made

at each clock pulse, so tha t data are always flowing through

the CE as would be the case in a pipelined fast FNT.

As the timing diagram in Fig. 4 shows, the output of

the butterf ly is only written into memory f r om Rz at t4 and

t5. Duri ng the other clock epochs the contents of Rz may

be changing but th is does not af~ect the algorithm.

149

E - H
~~~~~ 
}- 

_ _ _ _ _

—- 
CD O~ I/o -1 

~~,J ~~~
•_
COAl9WlOP1 

I —~1 ,l ’reR,c,€.E ______

1~ F4’T R~ T~qTi&q,i • P~~1C0M~’yT 4T/D,,AL. I~~ 14.
uiE v~ .vr [ - 

[SThT I$

FIGURE 2. Block Diagram of the 64-Point FNT Hardware
System Illustrating the Data Flow Between
the Major Subsystems

150

_ _ _ _ _ _ _ _ _ _-- -

~

-

~

- - -- -- - - - - -



C1.N

CLDO( t~~ j

ci..s0—( IA J
• 

I

r ADDER I ________

C~o~i~ O—)U Rw - - 

~ . J4_-_O ~ I.OCX

[!oVrir,~e1 -

I _ _

I [ ~
~~~~~~~~~~~~~
Ei F ç

_ _ _ _ _

F
~~~~~ J~.—O ~~~~~

T~
,

FIGURE 3. Register Transfer Diagram of the CE of the
FNT Algorithm . Path on the Left Implements

A+B and the Path on the Right (A-B) 2K

151
• • - -~~~- - •



~~~~~~ 
~ I-

t~ + t + tj —+--- i~ ~

II— A0 -.fr--- 1140 —P~*~ 1uPTE q FLy .1

~~~~~~~~ W * ~~

MM-~8 ~q - e 9 X  (~li~I~~y z”y~.a~ ‘~~“I

0

FIGURE 4. Timing Diagram for the Internal Clocking
Operation of the FNT Butterfly. Register
Transfers at Each Clock Pulse are Also Shown

152

• -•----- •-— • - ~ • - .



Recall that in McClellan ’s code, the rule for addition of

two nonzero numbers ,

A = [a 16 a15 ... a01

and

B = [b 16 b15 . . .  b~] is as follows:

STEP1: Add the 16 LSB’s of A and B with the -

carry in equal to zero -
STEP2: Complement the carry out from step l and

add it to the sum of step 1.
I

If either A or B is zero (i.e., b16 or a16 = 0), then the

carry must be inhibited. Finally if both A and B are zero

the MSB of the sum is set to one. Fig. 5 shows a realization

of the addition process. The structure of Fig. 5 is ineff i-

cient in two respects. First of all, two 16-bit adders are

required , although the second one is simple because one

input is zero. Secondly the addition is very slow because

the carry must propagate through the 16-bit adders. The

use of carry look ahead ( CLA ) logic as in FIg. 6 will

improve both situations. For details of the implementation

using ECL building blocks see McClellan ’s paper (26].

Notice that the subtracter A—B , can be implemented

by complementing B and adding it to A.

153



4 • . • ‘1 1. ~~ - .

~~~~~~~~~~~~~~~~

1

~~~~~~~

f 4DP$

~

JIS__O cq~~y

alto • S

• .16

1_ i I f l RlUR1~—our L___~
___ _ _ _ J “*my iw

JI
16

1I~ ,
~~~

~ ?-SIT ~~~~~~~
r

FIGURE 5. Implementation of Addition Modulo the Fermat

Number (2 16+1) Using Two 16-Bit Adders and
the New Coding Scheme

154

• • — _— • • - • • , — . • • - — - • • .— — -—-—- ______________

• -.• - • ~~~~~~~ - - -• - --~~~ -~~~~~~~.. • - — — w —

f4~...4j [45-..A.J
8l~

)
CAR’f~ /PI:O

•

—

-

16

-

H

1~ ii~ # ASSULT

FIGURE 6. Improvement of the Fermat Number Adder by
the Introduction of CLA Logic to Produce
the End Around Carry Required in Fig. 5

155

The addition A+B completes the calculation of one output

of the computational element (see Fig. 3). The result is

held in the register R.~ and then is moved to R
~

to be written

back into memory. For the other output of the CE, the

quantity A—B is stored in the reclock register R
~

for

subsequent rotation by a power of

a = /~ given by (4.16), -

a = = 2b/4 (2b/
2.
1) = 216h

/4
(216h

/2_l) = 24(28_i) = 212_24

(5.28)

The rotation by is split into two stages.

In the f i rst stage, the quantity X = A-B is multiplied

by /~ = 212 — 2~ if K is odd. The /~ multiplier is merely

a subtracter (5.28).

A 2:1 multiplexer at the output of the subtracter

selects whether the input is to be multiplied by /~ or

by 1, and is controlled by the LSB of K [26]. The result

of this calculation is stored in the reclock register Ry•

The second stage of the rotation is a multiplication by a

power of 2, namely (K/2]. ([] denotes the greatest
integer function.) This multiplication is implemented as

a 16:1 multiplexer controlled by the upper four bits of

the binary representation of the power of 2. The shifting

network is followed by a 2:1 multiplexer which selects

which butterfly output (A+B or 2K.~~) is to be stored in

156

Rz and then written back into memory . This multiplexer

is controlled by t3 and its output is

(2 K . Y) F
3

+ W • t
3

where Y and W are the contents of R~ and Rw respectively.

McClellan states that the logic for the computational

element consists of 90 IC ’s, all of which are located on

one board (18 x 16 in.).

In Section VI , a comparison between the complexity of

various basic operations involved in computing Fermat

Number Transforms vis-a-vis the FFT, in sof tware as well as

hardware implementations, will be presented . - The sof tware

and hardware implementations discussed ‘there will be those

described in this section. The results will show only the

eff iciency of these implementations , not all the possibili-

ties of NTT in general.

157

VI. FERMAT NUMBER TRANSFORM VERSUS FFT

The FNT provides an efficient and error-free means of

computing cyclic convolutions. The purpose of this section

is to compare this method with the standard implementation

of convolution. Results obtained both by Agarwal and

McClellan, respectively in sof tware and hardware implemen-

tation of the FNT , are presented .

Computation of the FNT of length N requires on the order

of N log2 N additions , bit shif ts and subtractions but no

multiplications. The only multiplications required for

our FNT implementation of cyclic convolution are the N
I

multiplications required to multiply the transforms. This

is a very eff icient technique for computing convolution ,

but unfortunately, the maximum transform length for an FNT

is proportional to the word length of the machine used.

Agarwal and Burrus [17] showed that a very practical choice

of a Fermat number for this application is F5 = 232 +1 , and

that the FNT mod F5 can be implemented on a 32—bit machine ,

namely the IBM 360/370 series computers.

Suppose one wants to calculate the convolution of two

sequences x (n) and h(n) having b1 and b2 bit representations ,

respectively, and that the sequence length of both is N.

Then the output y(n), given by (3.2), would have at ’ the

most [17] a

b1 + b2 + log2N (6.1)

158

bit representation. To obtain the correct result b, the

number of bits of the output, should be [17]

b > b1 + b2 + log2N (6.2)

Notice that a better bound on the output can be achieved

[4].

Roughly speaking , one needs twice the number of bits to

carry out the convolution using the FNT as compared to the

fixed point FFT implementation of the convolution . But in

the DFT, every data point is treated as a complex number

(17] and therefore requires two words , one for the real part

and one for the imaginary part. Thus in effect the hard-

ware requirement for two transforms are about the same.

Although for real data it is possible to make use of the

symmetry properties of the DFT, they require extra computa-
S

tion and for the purpose of comparison it will be ignored ,

although Agarwal and Burrus had taken this into account for

their IBM 370/155 implementation . In fact, they assumed,

in the FFT implementation , each data point is represented

by a b/2 bit real part and a b/2 bit imaginary part. One

b/2 bit complex addition is equivalent [17] to two b/2 bit

real additions, which are equivalent to a b-bit addition

modulo Ft. Thus the complexity of addition/subtraction is

the same in both the transforms. Similarly , it can be

shown [4] that a b/2 bit complex multiplication is equivalent

159

—S

to a b-bit multiplication moduio Ft. Computation of the

FNT requires multiplications by a power of 2 , which

implemented as bit shifts and subtractions become much

simpler operations compared to complex multiplications

required in the FFT implementation.

To compute a length N fast FNT , N log2N additions/

subtractions , and (N/2) log2(N/2) “multiplications ” by some

powers of 2 which are implemented as bit shif ts and sub-

tractions . To compute the convolution using the FFT, most

of the time is taken in computing the complex multiplica-

tions required to compute the complex multiplications

required to compute the transforms . A comp4rison with the

FNT reveals that these complex multiplications are replaced

by bit shifts and subtractions which are •m~ich faster opera-

tions . This results in considerable computational se~vings

in the implementation of convolution.

The convolution required to multiply the two transforms

is about the same for both the implementations .

To convolve long sequences using the two-dimensional

FNT (Appendix B), the computational ef fort’ increases by,

at most, a factor of 2 [4]. Still , the FNT implementation

of convolution is much faster as compared to the FFT

implementation.

Fermat number transforms have some additional advantages

over the FFT. First, the FFT implementation requires storing

all the powers of a (see 3.7) requiring a significant amount

of storage which may be an important factor for a small

160

S - -~~

minicomputer or a special purpose hardware implementation.

Second, fixed-point FFT implementation introduces a signif i-

cant amount of round—off noise at the output, 6-8 bits

depending on the data [39]. This degrades the signal-

to-noise ratio during the filtering operations. The FNT

implementation is error free, the only source of error is

input A/D quantization.

Timings for variou s implementations of convolution and

their comparison wi th the FFT implementation are shown by

Agarwal and Burrus [4 1 ;

FFT FNT
N - msec msec
32 16 3.3
64 31 7.4

128 60 16.6 *
-

256 123 40.0 **
256 123 80.0 *** (6.3)

512 245 166.0 ~~~
1024 530 340.0 ~~~
2048 1260 720.0 ~~~

* using a v ~

** using 2 by 128 convolution

~~~ using the two-dimensional FNT

To compute these timings it is assumed that the transform

of the h sequence has been precalculated. Thus timings

are for computing x transforms, multiplications of the

transforms , and their inverse transforms (4].

161



For cyclic convolution lengths up to 256, the FNT

implementation of convolution have a factor of 3 to 5

speed advantage over the FFT implementation . It takes

roughly 13-14 psec to compute one butterfly in the compu-

tation of fast Fermat number transforms [4]. Timings for

the computation of fast Fermat number transforms , are fair ly

well modeled by multiplying this time by the number of

butterflies required in the computation . An assembler

subprogram was written to compute one butterf ly for the FFT

algorithm [ 4 ] .  The timing for this was 68 isec , and this

explains the difference in the timings of the FFT and FNT.

Agarwal claims that since assembler subprograms were not

optimized for time , it should be possible to fur ther reduce

their timings by 10 to 20 percent. Also, to compute one

butterfly of the fast FNT’s, three add/subtract logical

instructions are required and since the ari thmetic is done

mod 232 + 1, these three instructions are followed by three

branch instructions (to take into ~tccount the carry bit).

32If the hardware was designed to do arithmetic mod 2 + 1,

these instructions could have been avoided resulting in a

significant reduction in the computation time (4]. One

objective of the construction of FNT convolver by McClellan

was to evaluate the total system cost of an FNT convolver

versus a pipeline FFT convoiver , primarily in the speed

• regime applicable to radar signal processing .

The signal bandwidths encountered in radar signal

processing (10—30 MHz) require a pipeline archi tecture for

162



- -

either the FNT or FFT [40]. Typically , the overlap—save

version of high-speed convolution is employed for real—time

processing of the radar returns and a 50 percent overlap of

the input data is common (26]. Furthermore , the length of

the convolution to be implemented is assumed to be large

(e.g., 512 or greater). Two cases will be considered :

a length 1024 convolution of real data and a length 1024

convolution of complex data.

Four measures of hardware complexity are the basis of

comparison [26]:

- the number of butterflies for output point.

- the number of ref erence spectrum multiplies for

output point,

- the total amount of interstage delay line memory in

the forward and inverse transforms ,

- and the total amount of reference spectrum memory .

The FFT implementation will be considered first. For either

real or complex data , it is assumed that the FFT implemen-

tation employs an 11-stage radix 2 pipeline FFT in both the

forward and inverse transform . Notice that for real data,

it is possible to do a length N transform with cne length

N/2 transform and some overhead to combine the real and

imaginary parts [381 . Howe..er the overhead amounts to an

additional butterf ly  so there is little , if anything to gain

by using this fact in a pipeline FFT [26].

For the case of a length 211 = 2048 pipeline FF!I’ convo lver

the number of butterflies per output point is

163



2 log2N = 22 (6.4)

assuming 50 percent convolution overlap. Likewise , two

reference spectrum multiplies must be done per output point

[26]. The amount of interstage delay line memory can be

calculated from the formula [26]

1DM = 
~~

- (r+l) (6.5)

where r is the radix of the transform.

Thus, for two radix-2 pipelines , the total is

1DM = ~~(2+l)-2 = 3N = 6144 = 6K

words of memory . Finally , the reference spectrum requires

2K words of memory (26]. A pipeline FNT ~structure is

identical to the pipeline FFT except in the butterf ly  where
i2irK/N •rotation by e (in the FFT case) is replaced by multi-

plication by ‘I?.

Thus many of the results quoted above are applicable to

the FNT. Since the FNT naturally processes real input data,

the cases of real and complex convolution require different

realizations. In both cases, however , a two-dimensional

implementation of the convolution is required [31].

The length 1024 convolution of real signals can be

• implemented with 64 x 64 transforms (26].

164



McClellan claims that for the FNT convolver processing

real data , the following results apply :

total number of butterflies = 9 x 212 36 butterflies per

output point

total reference function multiplies = 212 4 multiplies per

output point

total interstage delay memeory = 6~4 K

amount of reference function memory = 4K.

If the signal to be convolved is complex then one possible

implementation is to handle the real and imaginary parts of

data separately. The number of butterflies per output

point, the interstage delay memory , and the reference spec-

trum are all doubled . However , the number ~f real multipliers

for the reference function multiply is quadrupled because

the multiplications are now complex [26]. These results

can be summarized , assuming 1024 convolutions , by

FFT Real or FNT Real - FNT Complex
Complex Data Data Data

Butterflies 22 36 72

Reference 2 2 16
Multipliers

Interstage 6K 6~ 4K 12 8 K
Delay Memory complex words a real words b real words

Reference 2K 4K 8K
spectrum complex words real words real words

a One complex word will contain approximately 27 bits
for typical high-precision radar applications.

b One real word contains 33 bits for FNT.

165



Notice that the FNT always requires more memory and more

computational elements than the FFT. Hardware savings are

possible because most of the hardware cost of the FFT is

concentrated in the butterfly elements (up to 80 percent)

[26] and because the FNT butterfly requires from one-third

to one-sixth the hardware of an FFT butterfly. These

remarks apply to the FNT where the data to be convolved are

real , but where the data are complex, the situation becomes

much worse because all measures of hardware complexi ty are

increased by a factor of 2 or 4.

McClellan conclude that the FNT is a useful alternative

to the FFT if the signal to be filtered is real and the

computational elements are a major part of the overal l

system cost as in a pipeline architecture. ‘ Furthermore,

for short length convolution (e.g., length 6’~) and for

two-dimensional convolution the savings may be significant.

166



VII. CONCLUSIONS

It has been shown that, by working in a finite field or

ring of integers modulo M, a large class of transforms

exist that have the cyclic convolution property , i.e., the

transform of cyclic convolution of two sequences is equal

to the product of their transforms . These transforms are

called Number Theoretic Transforms (NTT ’s) and they are a

computationally efficient approach to performing the dis-

crete convolution function. These NTT’s are truly digital

transforms , taking into account the quantization in amplitude

and the f inite precision of digital signals. They bear the

same relation to digital signals as the DFT does to discrete—

time or sample data signals and the Fourier or Laplace

transforms do to continuous time signals.

When working with digital machines , the data are avail-

able only with some f inite precision , and therefore , without

loss of generality,  the data can be considered to be inte-

gers with some upper bound. To compute convolution in this

digital domain , operations in the complex number field of

the continuous domain can be imitated in a f inite field , or

more generally, in a finite ring of integers under additions

and multiplications modulo some integer M, with an integer

a of order N , replacing e (2ut )~’N in the Discrete Fourier

Transform (DFT).

In this ring, when two integer sequences x(n) and h(n)

are convolved, the output integer sequence y (n) is congruent

167



to the conventional convolution of x (n) and h (n), modulo M.

In the ring of integers modulo M , conventional integers

can be , unambiguously, represented if their absolute value

is less than M/2. If the input integer sequence x(n) and

the filter sequence h(n) are so scaled that jy(n) I never

exceeds M/2, one would get the same results by implementing

convolution in the ring of integers mod M as that obtained

with normal arithmetic.

By special choices of the length N , the mod M, and

the value a, it is possible to have transforms that need

only word shif ts and additions but no multiplications ,

that have an FFT type algorithm, that do not require storage

of complex values of a and that have no round—off errors.

It has been shown that Mersenne transforms with

M = = 2q_1, q a prime, and a = -2 , have the transform

length equal to N = 2q and therefore do not have an FFT

type fast computational algorithm.

The best known number theoretic transform is the

Fermat Number Transform (FNT) , where M = 2 + 1, t a positive

integer. For FNT’s with a prime or composite modulus it

was verified that a = 2 or a power of 2 is possible, for

sequences up to N = ~~~~~~ This is a very desirable situa—

- tion since N is highly composite allowing an FFT type

algorithm and all multiplications by powers of a are simple

word shifts. If a = ,/ ~~ is used then sequences of length

N = 2t+2 are possible, thus increasing the maximum sequence

length permissible.

168

• - - - • S



Assembler programs on the IBM 370/155 computer , written

by Agarwal , showed that for cyclic convolutions length

up to 256, the FNT implementations of convolution have a

factor of 3 to 5 speed advantage over the FFT implementa-

tions. The reasons for the speed up are:

1 — The Fermat number transform requires no multiplica-

tions and , therefore , the irnplementation of

convolution requires only N multiplications for

an N point convolution . The number of additions

and subtractions (together ) for a convolution is

2N log2N and there are N log2 N required “multipli-

cations ” by a power of two.

2 - Only real operations are required. This buys about

two to one savings over the FFT requirements.

3 - The ~‘ermat number transform is able to compute an

exact convolution thus allowing a, program to avoid

the need for either floating point arithmetic or

overflow checks or other precautions.

The computation required to multiply the two transforms is

about the same for both implementations. To convolve long

sequences using two dimensional FNT, the computational effort

increases by, at most , a factor of 2. Still the FNT imple-

mentation of convolution is much faster as compared to the

FFT implementation.

Ferinat number transforms have some additional advantages

over the FFT. First , the FFT implementation requires storing

_ 
- .  

- -- -- -- 

~~~~~~~~ •

‘

. ~

- - -

all powers of a requiring a significant amount of storage

which may be an important factor for a small minicomputer

or a special purpose hardware implementation.

Second, fixed-point FFT - implementation introduces a

significant amount of round—off noise at the output 6-8

bits depending on the data [38]. This degrades the signal-

to-noise ratio during the filtering operations. The FNT

is error free, the only source of error is input A/D

quanti zation.

In the realm of radar signal processing the potenti’al

for higher throughput is worth exploring. For this reason

McClellan designed and constructed a small prototype FNT-

convolver. An important element in the design of the FNT-

convolver was a new coding scheme for the data, although

simpler codes are possible. The experi~nce derived from

designing and building this hardware serves as the basis for

estimates of the site of large pipeline FNT convolvers, for

use in radar matched filtering applications. The result of

the hardware comparison of the FNT versus a pipeline FFT,

indicates that the anticipated savings of the FNT can be

realized for small systems (e.g., length 64 convolution),

when the signal to be filtered is real. However , in larger

systems where one must use two-dimensional convolution to

implement one dimensional convolution , the savings in

multiplier hardware are offset by increased transform size

and the corresponding increase in memory size and reference

170

_ _ _ _ _-

~

• - - - - -—- ~~~- ---- - - - - - -~~~~~ - - ~~~-~~~~~ --~~~~- - - - - - _ _ _ _ _ _ _

spectrum multiplier hardware. In this case, when the signal

to be filtered is real, the FNT still offers a potential

savings in the amount of hardware versus the FFT. When the

signal is complex valued the amount of FNT hardware approxi-

mately doubles and is much greater than the pipeline FFT.

In the implementation of two-dimensional convolution there

is no penalty due to increased memory size and the savings

in multiplier hardware will translate into savings for the

overall convolver system.

It was shown that the main drawbacks of FNT ’s is a

rigid relationship between word length and the obtainable

transform length and a limited choice of- possible word lengths.

This last point is especially signi fican t , since FNT’s are

restricted to word sizes equal to q = 2~~, t an integer. As

q increases very rapidly wi th t , the choice of possible word

lengths is very limited, and most practical digital filtering

applications , when implemented with FNT , are constrained to

word lengths of 16, 32 or 64 bits. If the dynamic range

required for convolution does not correspond to q =

choosing the next higher value of q may result in a signif i-

cant waste of computing power.

Various solutions to these problems involving either

two-dimensional techniques , the use of “the Chinese Remainder

Theroem ”, or other NTT’s has been discussed.

Along these lines , it was shown that transforms over

the Galois Field GF(p2), can be found which do not introduce

round-off errors and which can be used to compute

171

information-lossless convolutions of sequences of complex

numbers , by a FFT type algorithm. A disadvantage of this

transf orm is that multiplications by powers of the primitive

element (a) is not as simple as in Mersenne or FNT’s.

It was verified that a Fourier-like transform in GF(p)

where p is a prime of the form A
fl

= 3 x 2 ’1+ l , n a positive

integer, is possible. This transform increases the variety

of methods and the dig ital word lengths that can be used

for computing the convolution of integers beyond the above

men tioned Fermat or Mersenne Number Transforms. Also, a

special NTT that can be computed using a high-radix fast

Fourier type algorithm , defined on arithmetic modulo primes

of the form (2n_l)2n +l , was discussed.

Complex Mersenne transforms that can be computed without

multiplications were presented. These transforms are very

promising for computing convolutions because they can be -

partly computed with the FFT type algorithms and some of

the operations can be performed on words of reduced length.

Complex Mersenne transforms also have the advantage of

permitting operations on transform lengths and convolution

lengths up to four times longer than is possible with

conventional Mersenne transforms.

These results have been extended to cover the case of

transforms oerating in a ring modulo a pseudo Mersenne

number or submultiple of such a number. It was verified that

some of these transforms have a highly composite transform

172

length and therefore can be computed with an ef ficient

FFT-type algorithm. In the same way pseudo FNT’s defined

in a ring which is a submultiple of a Fermat number and

can be considered as a generalization of FNT ’s. allow a much

wider choice of possible word lengths, and therefore are

well adapted for evaluating convolutions. As an extension

the case of complex transforms was considered .

Finally , complex pseudo FNT’s were presented, that

allow a length double that of FNT’ s, and part of the calcu-

lations to be performed on words of reduced length. Some

of these transforms have a highly composite number of terms

and are therefore well suited for computing complex convo-

lutions with an efficient FFT—type algorithm .

Recently [32] a number of three bit primes have been

discovered which make possible very efficient fast number

transforms approaching that of the FNT, but permitting much

larger transform lengths suitable for convolv ing the large

arrays met in picture processing and electron microscopy in

particular. If a method of implementing arithmetic modulo

three bit primes comparable to that already developed for

implementing arithmetic modulo a Fermat number , could be

found , very efficient fast convolution would become possible

for a very large range of array sizes.

Rader and Brenner [41] have introduced an alternative

form for the FFT. This new form has the advantage that none

of the multipliers is complex, but in the usual complex

field , most are pure imaginary. It has the disadvantage

173

that one must divide by very small numbers and therefore

aggravate any quantization noise problems. This new

algorithm may be applied to the complex NTT without this

disadvantage.

Winograd [42] has shown how to perform a short-length

D.F.T. of length N = p or p
~

(where p is a prime) in a very

eff icient way. Winograd ’s algorithm uses the fact that

= 1 and requires that all operations be performed in a

field. Hence , providing one chooses the modulus M to be a

prime number , one may perform the NTT by using Winograd ’s

algorithm.

A final remark is in order. Whether or not an engineering

method is usefu l becomes clear only when that method is

evaluated by the wide community of potential users, who

consider it in relation to their needs. Since so many

engineers and programmers are not familiar with number

theory it is an open question whether NTT ’ s algorithms will

ultimately prove to be of great or small importance.

174

- S - - - - S - - -_ _ _ _

• APPENDIX A

TWO DIMENSIONAL CONVOLUTION FOR CONVOLVING LONG SEQUENCES

Arithmetic mod Ft (a Fermat number) c~n be implemented

using b = bit representation of integers. In Section IV ,

it has been shown that the maximum length of sequences which

can be cycled convolved using the FNT with a = 2 is N = 2b

and therefore the length of sequences which can be convolved

is proportional to the word length in bits. Thus for long

sequences the word length requirement may be excessive.

Rader [3] suggested using a two dimensional convolution

scheme to convolve long one—dimensional sequences and Agarwal

and Burrus [17,181 presented such a two dimensional convolu-

tion scheme. Using this scheme, cyclic convolution of

length N = LP is implemented as a two dimensional cyclic

convolution of length 2LxP .

This two—dimensional cyclic convolution can be implemented

using a two dimensional FNT . Using this two dimensional

scheme, the word length required is proportional to the

square root of the length of the sequences to be convolved

which would give for a maximum sequence length 8b2 rather

than 4b. I.e., for a computer word length b = 64

N for a = ,‘~ would be 327681

In the following pages an example illustrative of the two

dimensional convolution using arithmetic modulo a Fermat

number and FNT ’s is worked out.

175

Let x(n) and h(n), n = 0, 1, ... N—i , be two sequences
which need to be cyclically convolved . Let N = LP.

We construct two (2lxP) two-dimensional sequences

S h (i ,j) and x(K ,~~) from x(n) and h(n) respectively as

shown below .

h (i , j) = h (j L + i — L) (1)

i = 0 ,1, ..., 2L— 1

j = 0,1, . . ., p—l.

And

x (9 L + K) K = 0,1, ..., L—l

x(K ,L) = (2)

0 K = L ,L+l , ..., 2L— l

= 0,1, ..., p—l

Example :

Two dimensional convolution using FNT’s.

Let
0

x(n) = (2,—2 ,1,0) and h(n) = (1,2,0,0)

• Using Fermat number transforms modulo F
t

= 17,

x(n) = (2,15,1,0) and h(n) = (1,2,0,0)

176

Note that the second element is changed from —2 to 15.

Notice that N = 4 = LxP = 2 x 2 .

One constructs two (2Lxp) two dimensional sequences

h (i , j) and x(K,fl from x(n) and h(n), according to (1)

and (2).

It turns out

0 1 2 1

-. 0 2 15 0
h (i , j) = x (K , 9.) =

1 0
•

0 0

2 0 0 0

Now taking two dimensional transforms of h and x yields H

andX.

p-i 2L—l

H (m ,ñ) = ~ h (i , j) a 2~
m a~~ (3)

j=0 1=0

if = 0 , 1, . . . , 2L-l X2L
- is an element of order 2L

n = 0,1, . . . , p— l c&
r~,

- is an element of order p

and a similar expression for x (m ,n) .

Remembering that one is using Ft = 17 as the modulus

= a
4

= 13 and = a2 = 16

177

This can be found by noting that 3 and 6 primitive roots

of the ring in consideration will generate all the positive

integers in the ring (2.16).

Also, by (2.20), if a is a root of order N then

a~
< is of order N/K if KIN (K divides N),

is of ’ order N if N and K are relatively prime.

Thi.~s, with these considerations in mind one f inds

a2L
= a4

= 3
16/4

= 34 = 13 (mod 17)

a = 13 order 4

= a2 = 3l6~’2 = 3
8

= 16 (mod 17)

a = l 6 order’2

Now one can return to the calculation of the two dimensional

transforms. The first term will be

11(0,0) = h (0 ,0) 13 (0) (0) 16 (0) (0)
+ h(0,1) 13(0) (0) 16(1) (0)

+ h(l,0) 13 (1) (0) 16(0) (0) + h (l ,1) 13 (1) (0) (0)

+ h(2,0) 13(2) (0) 16(0) (0) + h(2,l) 13 (2) (0) 16 (1) (0)

+ h(3,0) ~~~~
(0) 16 (0) (0) + h(3,1) ~~~~

(0) 16 (1) (0)•

178

i.e.,

H (0 ,0) = h (0 ,0) + h (0 ,l) + 0 + 1 + = 6 (mod 17)

+ h (l ,0) + h (l ,l) + 0 + 2 +

+ h(2,0) + h(2,l) + 1 + 0 +

+ h(3,0) + h (3,,,l) 2 + 0 -

Now constructing a table that will help in the evaluation of

M(m,n).

N = 0 1 2 3 4 5 6 7 8 9

= 13 16 4~ 1 13 16 4 1 13

notice order 4.

N 0 1 2 3 4 5 6 7 8 9

= 1 16 1 16 1 16 1 16

notice order 2

Now proceding:
-.

H (l ,0) = h(2,0) 13(2) (1) l6~ °~
(0)

+ h(0,l) ~~~~
(1) 16 (1) (0)

+ h(3,0) ~~~~
(1) 16(0) (0) + h(l,l) 13(1) (1) 16(1) (0)

since h (0 ,0) = h(l,0) = h(2,l) = h(3,l) = 0 .

~~~

S ,~~~~~ S - -~~



H ( l ,0) = 1 13 (2)  16 ( 0)  
+ 1 13 ( 0 )  16 ( 0)  

+ = 16 + 1 = 0 mod 17

2 ~~~~~ 16 (0) 
+ 2 131 l6~ °~ + 8 + 2 6

For

(2)  (2)  16 (0 )  (0)  
+ h ( 0 ,l) 13 (0 )  (2 )  16 (l )  (0)H ( 2 , 0 )  = h(2,0) 13

(3) (2 )  l6~ °~ 
( 0 )  

+ h ( l ,l) 13 (2 )  (2 )  16 (1) (0 )
+ h(3,0) 13

= 1 ~~~~~ 16 (0)  
+ 1 l3~°~ 16 ( 0)  

= i + 1 + = 15 (mod 17)

+ 2 13 ( 6)  16 (0) 
+ 2 13 (2)  16 ( 0)  + 3 2  + 3 2

and,

(2 )  ~~ 16 (0)  ( 0) 
+ h ( 0 ,l) 13 ( 0 )  ~~ 16 (1) ( 0)H ( 3 ,0) = h ( 2 , O)  13

( 2 )  ~~ ~~~~ 
( 0 )  

+ h(l,l) 13 (1) ~~ 16(1) (0)+ h(3,0) 13

= 1 13 (6 )  16 (0) + 1 130 160 = 16 + 1 = 0 (mod 17)

+ 2 l3~ 160 + 2 13~ 160 + 26 + 8

For the second column,

180



11(0,1) = h(2,0) 13(2) (0) 16(0) (1) + h ( 0 ,l) 13 ( 0)  (0)  16 (1) (1)

+ h(3,0) ~~~~ 
(0) 16(0) (1) + h ( l ,1) ~~~~~ 

( 0 )  16 (1) (1)

= 1 + 1 6  = 0 (mod l7)

+ 2 + 32

11(1,1) = 1 13 (2 )  ( 1) 16 ( 0 )  ( 1) 
+ (1) 13 (0 )  (1) 16 (1) (1)

+ 2 ~~~~ 
(1) 16 ( 0 )  (1) 

+ ( 2 )  l3~~~ 
(1) 16 ( 1) (1)

= 16 + 16 = 14 (mod 17)

+ 8 + 4 1 6

11(2,1) = (1) 13 ( 2 )  ( 2 )  16 (0)  (1) 
+ 1 13 (0 )  (2 )  16 (1) (1)

+ 2 ~~~~ 
( 2 )  16 ( 0 )  (1) 

+ 2 13~
1) (2 )  16 (1) (1)

= 1 + 16 = 0 (mod 17)

+ 32 + 512

H(3,l) = 1 l3(2)(3) 16(0) (1) + 1 l3~~ ~~ 16
(1) ~.) 

= 16 + 16 =16
• (mod 17)

+ 2 ~~~~ ~~ l6~° ~~ + 2 13(1) ~~ 16(1) (1.) +26 + 128

181

-  ____________________



i.e.,

6 0

- 0 14
H(m,n) =

15 0

two dimensional 0 16

Fermat transform

The two dimensional transform of

2 1

2 15 0
X =

0 0

will be given by

p-l 2L-1
- X(m,n) = ~ x(i,j) a2~

m 
~~~

j=0 i=0

So

X(0,0) = x (0 ,0) l3 (0) (0)
l6 (0) (0)

+ x(0,l) l3 (0)(0) l6(1~~
0)

+ x (l , 0) 13 (1) (0)
16(0) (0)

= 2 + 1 + 1 5 = 1 (mod l7)

1 8’2

x(l,0) = x(0,0) 13 (0) (0) l6 (0) (0)
+ x(0,l) l3 (0) (1) i6 (1) (0)

+ x(l,0) ~~~~~~~
l6 (0

~~
0)

= 2 + 1 + 15(13) = 11 (mod 17

x(2,0) = x(0,0) 13(0)(2) l6~~
0(0)

+ x(0,l) l3 (0
~~

2) 16(~~~~
0)

+ x(l,0) 13 (1) (2) 16 (0) (0)

= 2 + 1 + (15) (16) = 6 (mod 17)

x (3 , 0) = 2 13(0) (3) 16 (0) (0)
+ (1) 13(0) (3) 16(1) (0)

•)

+ 15 ~~~~~~~~ l6 (0) (0)

= 2 + 1 + (15)4 = 12 (mod 17)

x (0 ,l) = 2 13 (0) (0) 16 (0) (1)
+ (1) 13 (0) (0) 16 (1) (1)

+ 15 13 (1) (0) 16 (0) (1)

= 2 + 1 6 + 15 16 (mod l7)

• x(l,1) = (2) 13 (0) (1) 16 (0) (1)
+ (1) 13 (0) (1) 16 (1) (1)

+ (15) 13(1) (1) l6~°~
(1)

= 2 + 16 + 8 = 9 (mod 17)

183

Tc (2,l) = (2) 13 (0) (2) 16 (0) (1)
+ (1) 13 (0) (2) 16 (1) (1)

(15) 13 (1) (2) 16~°~
(1)

= 2 + 16 + (15) (16) = 3 (mod 17)

x(3,l) = (2) 13(0) (~~ l6~°~
(1)

+ (1) 13 (0) ~3) 16 (1) (1)

+ (15) 13(1) (3) 16 (0) (1)

= 2 + 16 + (15) (4) = 10 (mod 17)

So
I

1 16
-

- 11 9
X(m,n) =

5 3

two dimensional 12 10

Fermat transform

Let y(i,j) be two-dimensional cyclic convolution of

x and h sequences , then it can be proved that two dimensional

transform of y is the product of H(m,n) and X(m,n) [17],

defined by

p-i 2L-1
y(i,j) = H(m,n)X(m,n)a2~

m1 a~~
n

n=O m=O

i = 0,1, ..., 2L—1
j = 0,1, ..., p—i

184

_______________ ~5

-~ S

Coming back to the example :

y (0 ,0) H (0 , 0) X (0 ,0) i3~~~
0
~

(0) 16~~
(0)

~°~+H(o,l)x(o,l)l3~~°~
(0)

l6~~~
0) (0)

+ H(l,0)x(l,0)l3 (O) 16 O O) +H(l,l)x(1,l)l3 O)(l)l6~~
0)
~~~

)

+ H(2,0)x(2,0)l3~~
0
~ 
(2)l6~~

(0) (0)÷~~(2 ,1)x(2,l)l3
_ (0) (l)l6~~

(0) (1)

+ H ( 3 ,0 ) X ( 3 ,0) l 3 0) (3 ) l6 ( O ) ÷ H ( 3,l)x(3 , i ) l3 0 0 ) l6 0)W

i.e.,

y ( 0 , 0 )  (6 )  ( 1) (1) (1) + (14) (4) (1) (1) + = 10 (mod 17)

+ (15) (5) (1) (1) + (16) (10) (1) (1)

y ( l ,0) = ( 6) (l) 13~~~~ 
( 0 ) i6~~

( 0 )  (0) 
+ (14) ( 9 ) l 3~~~

1) ( l) i6~~
( 0 )  ( 1)

+ (15) (5)13 (2 )  ( l ) l6~~
( 0 )  ( 0 )~ ( 16) (10) 13 (1) (3 ) l6~~~

0) ( 1)

= 6 + 126 13 1 
+ 75 13 2 

+ 160 l3~~ -

= 16 (mod 17)

Notice that in this last calculation use of the following

table has been made:

13 1 l3 x l3 1 
= 1 (mod 17) = 1 l3~~ = 4

185

— - S - - -—_ _  - ‘ - . - ~~~ . • - -  - - .  - S -~~~~~~
~~~~~~ - - - S -~~~~~~~ - - -- - - - . -~~ -


So

13 1
= 4 also 16 1

= 16
order 2

13 2
= 42 = 16 16 2

= 1

l3~~ = 4
3

= 13 l6~~ = 16

l3~~ = 44 = 1 l6~~ = 1

l3~~ = 45 = 4 order 4 l6~~ = 16

l3 6
= 46 = 16 16 6 = 1

l3~~ = 47 = 13 16~~ = 16

8 8 813 = 4 = 1 16 = 1

13~~ 4
9

= 4 l6~~ = 16

Continuing with the example:

y(2,0) (6) (1) 13~~
2) (0)l6~~

(0) (0)
+ (14) (9) 13 (2) (l)l6~~

(0) (1)

+ (15) (5) 13 (2) (2)l6~~
(0) (0)

+ (16) (l 0) l 3~~
2) (3) l6 (0) (1)

= 16 (mod 17)

;(3,0) = (6) (1) ~~~~~
(0) l6~~

(0) (0)
+ (14) (9) ~~~~~

(1)l6~~
(0) (1)

+ (15) (5) ~~~~~
(2)16~~

(0) (0)
+ (16) (l0)13~~~~ ~~~~~~~~ ~~

16 (mod 17)

186

- -

‘

- S _ _ _ _ _ _

and for the second column ,

y(0,l) = (6) (1) 13 (0) (0) l6~~
(l) (0)

+ (14) (9) 13 (0) (l) l6 (1) (1)

+ (15) (5) 13 (0) (2)16~~
(l) (0)

+ (16) (l0)13~~ °~ ~~~~~~~~
(1)

= 16 (mod 17)

y (l ,l) = (6) (1) 13 (1) (0) 16~~~U (0) + (14) (9) ~~~~~~ (l) 16
_ (1) (1)

+ (15) (5) l3~~
1) (2)l6~~

(1) (0)
+ (16) (10) 13 (1) (3) l6

_ (l) (1)

= 16 (mod 17)
/

y (2 ,l) = (6) (1) 13 (2) (0) l6~~
(l) (0)

+ (14) (9) l3~~
2) (4)l6~~

1) (1)

+ (15) (5)i3~~
2
~
(2)16~~

(1) (0)
+ (16) (l0)~l3

(2) (3)l6
_ (l) (1)

= lO (mod l7) -

y (3 ,l) = (6) (1) ~~~~~~
(0) 16~~

(l) (0)
+ (14) (9) ~~~~~~

(l)l6
_ (l) (1)

+ (15) (5)l3~~~~
(2)l6~~

(1) (0)
+ (16) (10)l3~~~

(3)16
_ (l) (1)

= 16 (mod 17)

Finally ,

187

- ~~~

10 16

- 1 16 16
y(i,j) =

16 10

16 16

and since

- ~~~~~~~~~

= = (2 N)~~~ = (8~~~) = 15 (mod 17)

we have

10 16 14 2

— 16 16 2 2
y(i,j) = 15 = (mod 17)

16 10 2 14

16 16 2 2

And, since it can be proved that the relationship between

two dimensional convolution and one dimensional convolution

is given by [18] :

y (i+L ,j) y(jL+i)

where

i = 0 ,1, ..., L—l

j = 0, 1, ..., p—i.

188

In this example :

y (i+L ,j) y(jL+i)

Q i = 0, j = 0 y (0+2,0) = y(2,0) y(0~ 2+0) = y(0)

i.e. y (2 ,0) = y(0) = 2

i = 1, j= 0 y(l+2,0) = y(3,0) y(0 2+l) = y(l)

i.e. y (3,0) = y(l) = 2

i = 0, j = 1 y(0-f2,1) = y(2,l) y(l•2+0) = y(2)

i.e. y (2,l) = Y(2) = 14

I

i = 1, j = 1 y(1+2,l) = y(3,l) y(1.2+1) = y(3)

i.e. y (3 , l) = y (3) = 2

Note that for the original sequences

x(n) = (0,1,15,2) and h(n) = (1,2,0, 0)

y(n) = x(n) * h(n) = 2,2,14 ,2.

Exactly the same result!!

In taking two dimensional transforms , p and 2L are

restricted to be a power of 2 and also p < 4b and 2L < 4b

(b = bit representation of integers in arithmetic modulo

F
t Fermat number) in the example:

189

Since F
t

2b + 1 = l 7 b = 4 t = 2 ,

also p = 2 , L = 2 .

Notice that N = PL < 8b2.

Thus the length of the sequences that can be convolved

using two dimensional convolution scheme is proportional

to the square of the number of bits used in the word length.

The order in which two dimensional transforms or inverse

transforms is taken is reversible. But there is some compu-

tational advantage in taking transform f i rst along the

direction 2 (length p) and then along the direction 1 (length

2L), because half the x sequences along direction 2 (p) are

zero and half the n sequences along direction 2 are cyclic

shifts by one position of the other half n sequences [181.•

Also while taking the inverse transform , computationally

it is advantageous to first take the inverse transform

along direction 1, then along direction 2 [18]. Because

we need only half the y sequences along direction 2,

therefore af ter taking inverse transforms along direction

1, we can throw away half the terms.

190

APPENDIX B

BASIC PROPERTIES OF QUADRATIC RESIDUES

Let

2 _
x = a (mod p) (B.l)

be a congruence, where p is any odd prime and a is any

integer. If a 0 (mod p), then the only solution to (B.l)

is x 0 (mod p). Therefore one assumes p ~l’ a. For some

values of a, (B.l) will have a solution, whereas for some

other values of a, (B.l) will have no solution.

Definition B.l: Let
2

be a prime, and let a be any

integer such that p % a. One says that a is a quadratic

residue modulo p provided that

2 _
x = a (mod p) (B.2)

has a solution. Otherwise , one says that a is a quadratic

nonresidue modulo p.

Suppose that p is given and cons ider the prob lem of

determining all quadratic residues modulo p. If a is a

quadratic residue modulo p , then p % a and a x 2 (mod p)

for some x. However , since any integer is congruent to one

of 0,1, . . . , p-l (mod p), one sees that a must be congruent

to one of

191

LASSIFIED

DUCRJPT IO4 AND IMPLEM(P4 TITIO N OF NUMBER THEORETIC TR*NSFOQMS.IU)

AQ ___________

I
END
0* YE

2_ 79
HElEn

I

1.0 ~~~
___ L 11 2.2

•
‘~

IIIII~IOU ‘ • 25 UIU~ m~
MICROCOPY RESOLUTION JEST CHAIO

NAIA) NAL HUI~IAU OF ST ANt)AI~L)S - Vfl~ A

i2, 22, ..., (p—i)2 (mod p) (B.3)

If p is not too large, then this procedure can actually be

used for computation.

Example: Let p = 13

Then a is a quadratic residue modulo 1.3 if and only if a

is congruent to one of

i2, 22, ..., 122 (mod 13) ;

that is a is a quadratic residue modu].o 13 if and only if

a 1,4,9,3,12,10,10,12,3,9,4,1 (mod 13).

Thus the quadratic residues of 13 are

1, 3, 4, 9, 10, 12.

Hence the quadratic nonresidues modulo 13 are

2, 5, 6, 7, 8, 11.

Notice that the initial list of quadratic residues

obtained is syimnetric, with each element of the list

appearing exactly twice. This is a general phenomenon.

Indeed, one has

p—x -‘x (mod p) (B. 4)

192

so that

(p—x) 2 (—x) 2 mod p (B.5)

and thus

(p—x) 2 E x2 (mod p) (B.6)

therefore, if a is a quadratic residue modulo p, then a

is congruent to one of

12, 22, • • •, (E~j~)
2 mod p (B.7)

I

No two integers of (B.7) are congruent modulo p. Hence,

among the integers

1, 2, ... , p—l

I
precisely (p-1)/2 are quadratic residues modulo p and

precisely (p-l)/2 are quadratic nonresidues modulo p. This

can be verified in the above example. One finds the

following notation very convenient:

Definition B.2:

Let p be an odd prime and a an integer such that p
~~
a.

The Legendre symbol is defined as follows:

193

+1 if a is a quadratic residue modulo p

(!) — (B.8)

— l if a is a quadratic nonresidue modulo p

The Legendre symbol (~) should not be confused with the

fraction a/p.

Example: Let p - 3

(
~~

) — —l , (~~~~
.) — 1 , 1

(j~) — —1

See above example, where it is listed the quadratic residues
I

modu].o 13, and quadratic nonr.sidues mod 13. Moreover,

since

18 5 (mod 13)

and 5 is a quadratic nonr.sidue modulo 13. So is 18, and

thus

(
~~

) —

Properties of L.g.ndr. symbol.

Let p be an odd prim, and 1st a and b be int.g.rs such

that p ~
a and p

~
‘ b. Then the following r..ulti hold

(201 i

194

a2(i) (—) = 1

(ii) (~
) = 1 (B.9)

(iii) If a E b mod p then (~) (~)

Proof:

(i) The congruence x2 a~ mod p has as a

solution x = a.

(ii) Set a = 1. in result (i).

2(iii) If a b(mod p), then the solutions x a(mod p)

are the same as the solutions of E b (mod p).

Therefore, the first congruence has solutions

if and only if the second does. Thus,

a b(~) — (i.)

The properties of the Legendre symbol given above are very

•lem.ntary . However a property of the symbol which is by

no means obvious is the following result :

Th.orea 8.3: (Euler’s Cri terion):

Let ~ be an odd prim. and 1St a be an integer such that

p4’ s. Then

195

(~
) a~~

’
~~~’~

2 (mod p) (B. l0)

Proof:

By Ferinat ’ s theorem (2.14~, one has

= ~~~~ 1 (mod p)

Thus , if

h — a~~~~~
”2

then

h2 !lmod p

and so

pI (h—l) (h+1i .

Therefore

P h—i ,

or

p 1k +1,

I~~6 

-



and hence

h — a~~
’
~~ ’

12 ±1 (mod p).

Now if p is odd , so (
~ ) — +1 if and only if ~~~~~~~ 1. (mod p).

Consequently, (~) — ± 1 if and only if

a~~~~~
’2 ± 1 (mod p)

respectively.

corollary B.4:

Let p be an odd prime , and let a and b be integers such

that p 4’ a, p 4’ b. Then

(~~~) — (~ ) (~
) (B.ll)

Proof :

By Euler ’s Criterion

(~~ ) (ab) (p— l)/2 
— a ’2b 1),’2 

~~ (~
) mod p.

It is an imeediate consequence of Corollary (B.4)

that

Ci) the product of two quadratic residue modulo p is

a quadratic residue modulo p.

(ii) the product of two quadratic nonresidue modulo p

is a quadratic residue modulo p,

197
_ _ _ _

I - S .  -
~~



and

(iii) the product of a quadratic residue and a

quadratic nonresidue is a quadratic nonresidue.

• Example: Let p — 13

By previous calculations

3 and 12 are quadratic residues mod 13

and

312 — 36 62 (mod 13) is a quadratic residue.

However

2 and 5 are quadra tic nonre sidues mod 13

and 
p

22 5  — 10 — 6 (mod 13) is a quadratic residue mod 13.

Fina lly

7 is a quadratic nonresidue mod 13

10 is a quadratic residue mod 13

198

irt



and

710 = 70 5 (mod 13) is a nonresidue.

Another consequence of Eulerts criterion is the following:

Corollary 8.5:

let p be an odd prime. Then

(—1) (p—1)/2

In other words,

I
+1 if p

~~~
l (mod 4)

(1) =p
—1 if p

~~~
3 (mod 4)

Proof:

By Euler’s cr iter ion,

(
~~~~) (—1) (p—l)/2 (mod p)

There fore , since (~~) — ± 1 and since p > 2, we have the

desired result.

Notice that

(5) — ~~ (5~_) (~~~~) — (— 1) (p—l)/2

199

• _______5__ _ .._
~——- —_ - - _ —_——__-_-— — -.___________________________ - — - —• - —5--.

S - - —~~~~~~~-

2 2since (s-) — 1 by (B.9), there fore , x -a2 (mod p) is

solvable if and only if p 1 (mod 4).

Example:

Let

x2~~l9 (mod 23)

Now

19 —4 (mod 23)

So
•)

19 —4 —1. 2 2(
~~~

) — (
~~~

) = (
~~~

) (
~~~

) — —l

Since 23 E 3 (mod 4) . Thus x2 19 (mod 23) is not solvable.

How does one go about computing (~) for p 4’ a?
Suppose that

a1 a
a — ±p 1

where p1, ..., Pt are distinct primes. Since p 4’ a, one
sees that p

~
Pj. Then by Corollary 4, one has

(!) — ~~~ ~l
at

p p p p

200

S -
~~

Example:

Letp 5 a = — 2 4

— (
~~) (~)3(~.) = 1 (—l)~~(—l) = 1

I

201

LIST OF REFERENCES

1. A. Schonhage and V. Strassen, “Schnelle MultipliKation
Grosser Zahien,” Computing (Arch. Elektron Rechmen),
7(1971), pp. 281—292.

2. D.E. Knuth, The Art of Computer Programming, Addison—
Wesley, Reading, Mass., 1969.

3. C.M. Rader, “Discrete Convolution Via Mersenne Transforms,”
IEEE Trans. Computers, C—2l (1972), pp. 1269—1273.

4. R.C. Agarwal and C.S. Burrus, “Fast Convolution using
Fermat Number Transforms with Applications to Digital
Filtering,” IEEE Trans. Acoustics, Speech, and Signal
Processing, ASSP—22 (1974), pp. 87—97 .

5. Gauss, Carl F., Disquisitiones Arithmeticae, Translated
by Arthur A. Clarke, Yale University Press, New Haven,
Connecticut, 1966.

6. Dickson, Leonard E., History of the Theo’~~ of ?*thers,Carnegie Institution of Washington, Washington, D.C.,
1919.

7. Szabo, Nicholas, and Tanaka, Richard, Residue Arithmetic
and its Applications to Computer Technology, McGraw-
Hill, New York, 1967.

8. Atkin, A.O.L., and Birch, B.J., “Computers in Number
Theory,” Proceedings of the Science Research Council
Atlas Symposium No. 2, Held at Oxford 18-23 August 1969,
Academic Press, New York, 1971.

9. Gardner, Harver L., “The Residue Number Systems,”
IRE Transactions on Electronic Computers, Vol. EC-8,
pp. 140—147, June 1959.

10. Fraenkel, Aviezri, “The Use of Index Calculus and
Mersenne Primes for the Design of High-speed Digital
Computers,” J. Acm. Vol. 8, No. 1, pp. 87—96, 1961.

• 11. Banerji, D.K. and Brozozowski, J.A., “On Translation
Algorithms in Residue Number Systems,” IEEE Trans. on
Computers, pp. 1281—1285, Dec. 1972.

12. _______________________, “Sign Detection in Residue
Number Systems,” IEEE Trans. on Computers, Vol. 1—10,
No. 4, pp. 313—320, April 1969.

202

13. Agarwal, R.C., and Burrus, C.S., “Number Theoretic
Transforms to Implement Fast Digital Conv~ lution ,”
Proceedings of the IEEE, Vol. 63, pp. 550—5o0 , April
1975.

14. Pollard, J.M., “The Fast Fourier Transform in a Finite
Field,” Math. Comput., 1971, 25, pp. 365—374.

15. Good, I.J., “The Relation between Two Fast Fourier
Transforms,” IEEE Trans ., 1971, C—20, pp. 310—317.

16. Melhuish , P., “Fermat Transform Implementation by a
Minicomputer,” Electron. Lett., 1975, 11, pp. 109-111.

17. Agarwal, R.C. and C.S. Burrus, “Fast Digital Convolutions
using Fermat Transforms,” in Southwest IEEE Conf. Rec.
pp. 538— 543, April 1973.

18.
__________________, “Fast One—Dimensional Digital
Convolution by Multi—dimensional Techniques ,” IEEE
Trans. Acoust ., Speech, and Signal Processing, Vol.
ASSP—22, pp. 1—10, Feb. 1974.

19. Golomb, S.W., I.S. Reed and T.K. Truong, “integer
Convolutions over the Finite Field GF (32 +1),” SIAM)
J. Appi. Math., 1977, 32 , pp. 356— 365.

20. Reed, Irving S, T.K. Truong, “The Use of Finite Fields
to Compute Convolutions ,” IEEE Trans. on Information
Theory, Vol. IT—21, No. 2, March 1975.

2]..
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

, “Convolutions over Residue Classes
of Quadratic Integers,” IEEE Trans. on Information Theory,
Vol. IT-22, No. 4, July I~76.

22. Pollard, J.N., “Implementation of Number Theoretic
Transforms,” Electronics letters, Vol. 12, No. 15,
1976.

23. Liu, K.Y., I.S. Reed, T.K. Truong, “Fast Number Theoretic
Transforms for Digital Filtering,” Electronics Letters,
Vol. 12, No. 24, Nov. 1976.

24. Nussbaumer , H.J. , “Dig ital Filtering Using Complex
Mersenne Transforms,” IBM J. Res. Develop., 20, 498

• (1976).

25. Pelep, A., and B. Liu, D~gital Signal Processing, John
• Wiley & Sons, 1976.

203

26. McClellan, J.H., “Hardware Realization of a Fermat
Number Transform , ” IEEE Trans. on Acoustics, Speech
and Signal Processing, Vol. ASSP—24, No. 3, June 1976.

27. Leibowitz, L.M., “A Simplified Binary Arithmetic for
the Fermat Number Transform,” IEEE Trans. on Acoustics,
Speech and Signal Processing, Vol. ASSP-24, No. 5,

• Oct. 1976.

28. Nussbauiner, H.J., “Linear Filtering Technique for
Computing Mersenne and Fermat Number Transforms , ”
IBM J. Res. Develop ., July 1977.

29. Brule, J.D., “Fast Convolution with Finite Field Fast
Transforms,” IEEE Trans. on Acoustics, Speech and
Signal Processing, April 1975.

30. Reed, J.S. and T.K. Truong, “Complex Integer Convolutions
over a Direct Sum of Galois Fields,” IEEE Trans. Inform.
Theory, Vol. IT-21, pp. 657—661, Nov. 1975.

31. Agarwal, R.C. and C.S. Burrus, “Fast One-dimensional
Digital Convolution by Multidimensional Techniques ,”
IEEE Trans. Acoust., Speech, Signal Processing, Vol.

• ASSP—22 , pp. 1—10 , Feb. 1974.

32. Derome, M.F.A., “Fast Convolution of Large One and
Two—dimensional Arrays Using Number Theoretic Transforms
(NTT) Based on Three Bit Primes,” Optik 49 (1978),
No. 4 , 465 — 475.

33. Burrus- C.S., “Block Realization of Digital Filters,”
IEEE Trans. Audio Electroacoust., Vol. AU2O , pp. 230-
235 , Oct. 1972.

34. Gold, B., and C.M. Rader, Digital Processing of Signals,
McGraw Hill, 1969, Chapter 7.

35. Nicholson, P.J., “Algebraic Theory of Finite Fourier
Transforms,” J. Comput. Syst. Sci., Vol. 5, pp. 524—
547, 1971.

36. Reed, I.S., and K.Y. Liu, “Fast Algorithm for Computing
Complex Number-Theoretic Transforms,” Electronics Letters,
Vol. 13, No. 10, May 1977.

37. Nussba-mer, H.J., “Digital Filtering using Pseudo Fermat
Number Transforms , ” IEEE Transactions on ASSP, Vol.
ASSP—25, No. 1, Feb. 1977.

204

38. Rabiner, L.R. and B. Gold, Theory and Application of
Digital Signal Processing, Englewood Cliffs, N.J.:
Prentice Hall, 1974.

39. Oppenheim, A.V. and C. Weinstein, “Effects of Finite
Register Length in Digital. Filtering and the Fast
Fourier Transform,” Proc. IEEE, Vol. 60, No. 8, Aug
1972, pp. 957—976.

40. Blankenship, P.E., and E.M. Hofstetter, “Digital Pulse
Compression via Fast Convolution , ” IEEE Trans. Acoust.
Speech, Signal Processing, Vol. ASSP-23, pp. 189-201,
April 1975. -

41. Rader, C.M. and N.M. Brenner, “A New Principle for
Fast Fourier Transformation,” IEEE Trans. Acoust.
Speech, Signal Processing, Vol. ASSP—24, pp. 264—266,
April 1976.

42. Winograd, S., “On Computing the Discrete Fourier
Transform,” Proc. Nat. Acad. Sci., U.S.A. 1976, 73,
pp. 1005— 100 6.

205
__________ — -.- . -- - . _5 . - -. — - - - - .~ --_ - - - -

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey , California 93940

3. Professor S. R. Parker, Code 62 1
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

4. Professor T. F. Tao, Code 62Tv 1
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

5. LT. Antonio Catarino Rodrigues de Sousa 1 •1Portuguese Navy
RUA DOS BACALHOEIROS, 99-5-ESQ
LISBOA-2, PORTUGAL

206

