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ABSTRACT

This thesis summarizes the theory of number theoretic
transforms (NTT's), and presents original examples to
illustrate the theory. Concepts have been studied and
compared in order to present them in a cohesive and unified
manner.

Software and hardware implementation of Fermat number
transforms are discussed and compared with the Fourier
Transform showing a substantial improvement in efficiency
and accuracy. The main drawback of Fermat Number Transforms
is a rigid relationship between the allowed sequence length
and word length. Methods and other NTT's, for overcoming
this problem are discussed. The theory has also been

extended to two dimensions.
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I. INTRODUCTION

With the rapid advances in large scale integration, a
growing number of complex digital signal processing appli-
cations are becoming economically feasible. In most cases
the bulk of processing workload appears to consist of
digital filter computation. Future progress in digital
signal processing, either towards high speed, real time
operation or increased sophistication, thus largely depends
on increased efficiency in digital filtering computation.
This can be achieved not only by implementing improved
filter circuits but also by using better ccmputational
algorithms as will be discussed in this thesis.

Schonhaje and Strussen [l] (also see text by Knuth
[2,p.269]) defined Fourier-like transforms over the ring
of integers, modulo the Fermat numbers [2] 22n + 1, €0
yield convolutions. They showed that such convolutions
can be used to perform fast integer multiplications. Rader
[3] and Agarwal and Burrus [4] also defined Fourier-like
transforms over residue classes of integers, modulo the
Fermat and Mersenne primes, to compute convolutions of the
real integer sequences.

For this presentation and exposition of Number Theoretic
Transforms (NTT), the works of many different authors were
consulted. Similar concepts have been studied and compared

in order to present them in a cohesive and unified manner.




In section II a mathematical framework for these new
transforms is presented. This framework is based on the
theory of congruences, modulo M, which belongs to the general
area of what is often called "number theory." Number theory
is very old, going back several thousand years; at least as
far back as Euclid, who proved some of the oriéinal results.
The names of many other famous mathematicians are also asso-
ciated with the theory, including Joseph Lagrange (1763-
1813), and Leonard Euler (1707-1783), and Carl Gauss (1777~
1855) who is responsible for many contributions to the area,

some of which were published in his book Disquisitiones

Arithmeticae, published in 1801, when he was 24 [5]. An

excellent history of the theory of numbers is found in the
work of Dickson [6].

In recent years, there has been increasing interest in
the practical applications of various parts of number theory,
including the theory of residue number systems. There has
been some work on the use of these number systems in general-
purpose computers [7]-[12], although this line of investiga-
tion has not yielded many practical results due to the
difficulty of determining the sign of numbers expressed in
residue number system notation. More promising results have
been obtained in applications where sign detection is not
required, such as number theoretic transfofms (31, [4]
and [13].

The possibility of performing the fast Fourier transform

(FFT) in finite algebraic systems [14], [15] and (1], is
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being increasingly discussed as a means of digital filtering
(31, [13] and [16] (see also referencas in Reference [13]).
The convolution property which such transforms share with
the conventional f.f.t. can be employed to construct a non-
recursive digital filter in which rounding error does not
occur.

The following type of transforms have been discussed in
the literature.

(a) Transforms in arithmetic mod p, p prime, in which

the order (number of points), d, for example, is
a factor of p-l.
(b) Transforms in arithmetic mod m, m arbitrary, in
which d dividies p-1 for each prime factor p of
m.
(c) Transforms in an arbitrary finite Galois field
GF(pn) of pn elements, where d divides pn-l.
Here class (a) is treated as a special case of both (b) and
(c), which are essentially different. This material is
presented in section III which discusses the Fourier trans-
form in a finite field in a broad way.

The best known number-theoretic transform is the Fermat-
number transform [1], (3], [4], [13], [16]. Due to the
simplicity of its arithmetic, such a transform is the fastest
method known so far for computing integer convolutions
under certain conditions. However, this transform suffers

from the disadvantage that the restriction imposed on the




register word length is often too excessive [13]. 1In

order to remedy this problem, Rader [3] has suggested using

a two-dimensional convolution scheme to convolve long one-
dimensional sequences, and Agarwal and Burrus [17], [18] have
presented such a two-dimensional convolution scheme. Other
authors [19], [20], [21], .[22], [23] have also considered
other number-theoretic transforms (NTT). Section IV dis-
cusses the various types of NTT.

These transforms provide more choices of word length
and transform length, at speeds which are not attainable by
the Fermat-number transforms under similar conditions.
Problems involved in the implementation 6f Fermat-number
transforms are discussed in section V.

Section VI deals with the comparison between the FFT and
the FNT. Software and hardware requireménts for both are
analyzed and compared. Agarwal [13] programmed Fermat
number transforms on the IBM 370/155 computer [l13] and showed
how to compute convolutions approximately three times as
fast as the FFT implementation for the same convolution.
However, their main drawback is a rigid relationship between
word length and obtainable transform length, as well as a
limited choice of possible word lengths. This last point
is especially significant for FNT's, and may result in a
waste of computing power when the permissible word lengths
do not correspond to the dynamic range required for the

convolution.




In principle, Number Theoretic Transforms (NTT) could
be implemented in the same was as Discrete Fourier Trans-
forms with multiplications by trigonometric functions
replaced by multiplications by powers of two, all operations
being performed modulo a Mersenne or Fermat Number. When
the transforms have a cémposite number of terms, as is the
case with Fermat Number Transforms (FNT) or some pseudo-
Mersenne Transforms [24], various éipeline computing tech-
niques can be used [25].

In practice, however, direct transposition of Fast
Fourier Transforms (FFT) architectures does not necessarily
lead to optimum implementations and the development of
special configurations for computing NTT seems worth exploring.
Along these lines, McClellan [26] has proposed a new coding
technique for simplifying the implemeﬁtation,of Fermat
Number Transforms.

McClellan implemented a FNT convolver for radar signal
processing and reached some interesting conclusions.
Leibowitz [27] presents a code translation which is mathe-
matically simpler, and this proposed arithmetic provides
simpler realizations of all operations required to compute
the FNT.

Nussbaumer [28] discusses the implementation of pseudo-
Mersenne and Fermat Number Transforms. He shows that some
pseudo-Mersenne Transforms can be computed efficiently by a

linear filtering approach. This approach is extended to




cover the case of Fermat and pseudo-Fermat Number Transforms
by using a special coding scheme for implementing arithmetic
operations in a Fermat Number system. A number of sugges-
tions have arisen for lengthening the sequences which can
be handled by the NTT. One suggestion is to perform the
calculation modulo several mutually prime modulo, and then
obtain the desired result by using the Chinese Remainder
theorem [13], [29]. Reed and Truong [30] have also shown
how one can extend the method to Galois fields over complex
integers modulo Mersenne primes to enable one to use the
FFT algorithm to compute convolutions of complex sequences,
and to lengthen the sequences which the method can handle.
However, because this method requires several multiplications,
it does not éeem very promising.

One of the most promising methods for lengthening the
sequence one can handle has been suggested by Rader [3]
and develoéed by Agarwal and Burruz [3l]. This consisted of
mapping the one-dimensional sequences into‘multidimensional
sequences and expressing the convolution as a multidimen-
sional convolution. 1In Appendix A an explanation of the
process of two dimensional convolution for convolving long
sequences is presented. By the use of an exampie it is
shown that this process improves the length of the sequences
handled by the NTT.

With knowledge of the advantages and disadvantages of
Fermat Number Transforms, it is possible to speculate on

just what type of problems are likely to benefit from this

14
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new approach. 1In general one looks for problems which have
the following characteristics:

1) Fairly short sequences (about fifty delayed products)

2) A high accuracy requirement

3) Implementations where multiplications are very much

more costly than additions.

Two specific situations come to mind. The first is the
estimation of magnitude spectra of (many simultaneous)
widel)ana signals. The theory of power spectra estimation
states that power density computations involves formulating
a correlation function with a finite numbér of delays
which are a fraction of the number of data points available.

The second situation is two dimensional finite impulse
response filtering. Here we may consider an arbitrary Lx L
impulse response to be applied to a large image. If 'L is
in the range of 52 points, the FFT is not p&rticularly attrac-
tive for convolution, although more so for two dimensional
convolution than for one dimensional convolution.

The Fermat Number Transform is quite effective, however.
For impulse responses of this size, the number of multipli-
cations is reduced by about two orders of magnitude over the
direct method, in exchange for a.number of additions which
are not too different (usually less) than required for the
direct method. Thus it can be expected that the Fermat
number transform will soon play a part in the computation

required for the filtering of pictures.

15




Recently, Derome [32] discusses a class of NTT's based
on three bit primes, having many of the computational
advantages of the FNT's. These NTT's can have much larger
transform lengths than those for FNT's so that the fast
convolution of, for example, a 1000 x 1000 point picture
with a 24 x 24 point spread function should be possible in
a minicomputer! This dévelopment was undertaken in connec-

tion with analysis of high resolution electron micrographs.

16
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II. MODULAR ARITHMETIC

Let a and b be integers. We say that "a divides b"
(denoted by "a|b") and "b is multiple of a" if there exists
an integer c¢ such that b = ac.

If a does not divide b, we denote the fact by "afb".

An important theorem concerning the division of integers
(the Division Algorithm), is:
Let a and b be integers, b not zero. Then there exist

two unique integers, g and r, such that
a = bg+r and 0 <rc<b (2.1)
The integers q and r, are called the "quotient" and the
"remainder" respectively.
If a, b and M, are integers, with M > 0, such that

M| (a - b) (2.2)

we say that "a is congruent to b, modulus M", and we denote

this fact, by writing
a = b (mod M) (2.3)

In other words, two integers a and b are congruent mod M,

if M divides their difference.




We will refer to M as the "modulus". Note that

1) 23 8 (mod 5) since 23 - 8=15= 5.3

and

2) 23

3 (mod 5) since 23 - 3 = 20 = 5-4

are both true statements.
We restrict our attention to what is called a complete

residue system, mod M, as the set of integers

ZM = {0’ l' 2’ oo oy M-l}o (2'4)

In other words, when an integer a is divided by another M

i.e.,
a = KM+ Db

where the remainder b, is some positive integer less than

M, there exists a congruence
a = b (mod M) {(2.5)
such that b is a unique integer among the numbers

0, l' 2' e e M-l .

SR
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Thus, one possible mechanization of residue reduction, '

is to divide by the modulus and keep only the remainder.

Examples:
1) 47 =2 (mod 9) since %4 =5 remainder = 2 |
|
I
2) 8l =0 (mod 27) since 37 =3 remainder = 0
Both 2 and 0 are contained only once within the set of : }

integers {0,1,...,8} and {0,1,2, ..., 26} respectively. ?
The last example shows that, in ¢gemneral instead of saying ﬂ

that a number a is divisible by the number M we can write |

0 (mod M)

]
m

For this means a - 0 = a = Mk, where k is some integer. f
For instance, instead of saying that a is an even
number, we can write |

a = 0 (mod 2)

In the same manner one sees that an odd number satisfies

a 1l (mod 2).

In working with residue reduction we will drop the

symbol = for congruence and will use the symbol =.

19
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But congruence is not the same as equality unless one
can show separately that the difference between a and b is
also less than M. The following basic arithmetic operations

are permissible with modular arithmetic:

a) Addition: 2+ 6 =8=1 (mod 7)

b) Negation: -2 ==2+7 =5 (mod 7)

c) Subtraction: 3-5=3+ (~5) =23+ (=5 + 7)
=5 (mod 7)

d) Multiplication: 3x6 = 18 = 4 (mod 7)

e) Multiplicative -
inverse: Multiplicative inverse of an integer

b in ZM exists if and only if b
and M are relative primes. 1In
that case bxb ' = 1 (mod M)

=1

2 =4 (mod 7); 2x4 =8 =1 (mod 7).

£) Division: a/b exists if and only if b has
an inverse. In that case

a/b = axb *; 4/2 = 4x4 =16 =2 (mod 7).

Note that because of the nature of modular arithmetic,
numbers do not have sizes or magnitude. One cannot say
that a particular number is larger than another or that
numbers are close.

Extracting the residue is a functional transformation
of a into b. It occurs often enough in what follows that

it deserves a special symbol, <.> .

20 .
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<a> = b (2.6)

The subscript M may be omitted if it is understood from
the context.

Computations involving residues are usually simple
because it is never necessary to work with quantities
larger than the modulus unless one finds it convenient.

Notice that
<x+y> 1is the same as <<x> + <y>>
<x-y> 1is the same as <<g> - <y>> (2.7)
<xy> is the same as <<x> <y>>

so that in any computation involving_only +, -, x one may, at

X ;
their option, replace the result of any step by its residue.

Example:
<15+13>7 = <<15>7 + <13>7>7 = <1+6>7 =0
<12-11>7 = <<12>7 - <11>7> = <5 = 457 =1
<9xl4>7 = <<_9>7 X <14>7> =<2 x 0>7 =0

Note that if it were necessary to divide for residue

reduction the operation would be quite costly.




Fortunately there are simpler techniques. In the
simplest case - the residue or a decimal number modulo 10

is its last decimal digit, since

= i it i
<@, =< J a; 10 >10 <y <a; 107 >> (2.8)

i i

and <a; 101>lo is zero except for i = 0 term.

Example:
3
il i
<1098>,, = < ] a; 107>,
i=0
* <1210 » 0%10° +_9x101+8x100>10
<1098> 0 = '8 (mod 10)

This can be generalized to any radix. If M is a power of
two, and a is represented on a binary machine, one has a

trivial method of extracting <a>y.

<a> = <} a; <255 = I &, 2i (2.9)

This operation is performed by "masking out" all but the

K least significant bits.

22
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Example:

<15> 3 <] a; <Zi>> = ) a; 2

0 1

+ 1x2t + 1x22

1]
A
-
=
=
Vv
]
=
»
N

7 mod 8

i.e., here K = 3, and only the 3 least significant bits
account for the value of the residue. The fourth bit (the

most significant bit in this case) is "masked out."

A. SOME IMPORTANT RESULTS IN MODULAR ARITHMETIC

Euler's function is defined as ¢(M), the number of
integers in the finite set {0,1,2, ... M-1} (which is called
the set of integers mod M, and denoted by ZM) that are
relatively prime to M.

For M a prime,
(M) = M -1 (2.10)
Example: let M = 7. The ring of integers mod 7 is
Z7 = {0,1,2,3,4,5,6}. Since M = 7, is a prime, the
integers in 27 that are relatively prime to M = 7, are all
elements of the set (except zero), i.e.

() = M -1

$(7) = 7 =1 = 6




If M is composite and its prime factored form is

denoted by

M = pl P, cee Py (2:11)

then the general expression for ¢ (M) is, [13]

SO = WY oy B Sy 1 - (2.12)
pl pz pQ
Example: Let M = 12 = 22;<3
Z = {0,1,2,3,4,5,6,7,8,9,10,11}

12

by simple. counting one’' finds 4 numbers that satisfy the
conditions of being relatively prime to M. Checking by

applying equation (2.12)

) = 120 d = 4.

W=

$(12) = 12(1 -3 (1 -

An important theorem known as Euler's theorem states

that for every o relative prime to M
™M 21 (mod M) (2.13)
For M prime, this reduces to Fermat's theorem

Ml = 1 (mod M) (2.14)

24




which holds for all nonzero elements of 2

are all relative prime to M, if M is prime by assumption.

Example: Let M

Here:

There are certain

M’ since they

7
- {0,1,2,3,4,5,6}
= 7T =1 = 6
which holds for all
M-1 non-zero elements
o = 1 (mod M) of Z, since they

are dll1 relative
primes to M.

= 1 (mod 7)

= 64 = 1 (mod 7)

= 729 = 1 (mod 7)

= 4096 = 1 (mod 7)

= 15625 = 1 (mod 7)

= 46656 = 1 (mod 7)

roots of unity that are of particular

25




interest. If N is the least positive integer such that

o = 1 (mod M) (2.15)

then a is said to be a root of unity of order M, or simply
of order N.

If the order of o is equal to ¢$(M), then a is called a
primitive root.

If M is prime and o is a primitive root the set of

integers
(o™ tmod Bl Kow 0,002 ae B2} (2.16)

is the total set of non-zero elements in Z Thus all

M*
nonzero integers in Zy can be generated by powers of a
primitive root. This characterizes the entire field.
Example:

Let M = 7
Z w (0,1,2,3,4,5,6}

7

Looking in a table of primitive roots, for example [13]

we get
3 and 5 are primitive roots of 7,

thus

26
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K

{3 (mOd 7)' K = 0,1,2,-..,5 = M_z}

(3%,31,32,33,34,35)

{1,3,2,6,4,5} mod 7

and those are all non-zero elements in 2 The same for

70

K

{5 (mod 7}, E® 0,1,2,.::,5)

1 3 4 .5

{50,5 ,52,5 = .

{1I51416’2’3} mOd 7.

Euler's theorem implies that if o is of order N, then N

must divide ¢ (M), denoted by

N| (M) e (2.17)

If M is a prime it can be shown [13], that roots of

order N exist if and only if

N| (M~1) (2.18)

and the roots are given by [13],

" M-1/N

6 (2.19)

o =

where a¢ denotes a primite root.




Example: Let M = 7 $(7) = M -1 - 8

Possible order of roots: N =1,2,3,6
primitive root (from table): 3

Order of roots:

729 = 1 mod 7 o =3 = 3" = 6 mod 7

a = 1 order o = 6 order 2

6/3 2 36/6 = 3 mod 7

2 mod 7 o

eJ
[

w
]

w
]

Q
]

2 order 3 a = 3 order (6 = ¢(7))

;

primitive root

More generally, if o is a root of order N then [13]
ofX is of order N/K, if K|N
(2.20)
aK is of order N, if N and K are-

relatively primes

Example: Let M = 11 ¢(M) = 10

Now o = 2 is a primitive root since 219 = 1 mod 11 and

N = 10 is the least positive number such that

aN = 2N=l° = 1 mod 11

28
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Then

of = 22 = 4 mod 1 is a root of order N=10/K=2 =5
This can be seen as follows:
N = Q@ ol 20348 67 8.9 10
N
4 L 4 5093 gt g -3 1

'i.e., the root a = 4 generates a cyclic subset of the field

5 distinct elements (order 5).

23 = 8 mod 11 since N = 10 and K = 3 are relatively

with N

For aK

primes o = 8 mod 11 will be a root of order N = 10, or a
primitive root.

Checking:

Notice that (2.20) implies that the number of roots of
order N, is given by ¢(M), and therefore the number of
primitive roots is ¢(¢(M)) (since for a primitive root
N =¢(M).

Example: Let M = 7 Z, = {0,1,2,3,4,5,6}

Number of primitive roots = ¢(¢(7)) = ¢(6) = 5(1-%(1-%) =2




as seen previously, 3 and 5 are primitive root mod 7.

Number of roots of order N = 3: ¢ (3)

]
w
|
b
]
N

.

"V 56/3

32 = 2 mod 7 o - » 5% 4 wolt 7

a = 2 order 3 a = 4 order 3

Soa=2mod 7 and o« = 4 mod 7 roots of order N = 3.

These relations will allow cne to calculate all of the

roots of all possible orders from one primitive root.
We can summarize these ideas more precisely in the

following:

The highest possible exponent to which a number can
belong mod M is ¢ (M)
(i.e. the highest order of a root is N = ¢ (M))
- If a number has order N = ¢ (M), we shall call it

a primitive root for the modulus M.
- Not every modul has primitive roots; for instance,
for the modulus M = 15, one finds that every x in

Zyy relatively prime to 15 satisfy the congruence

x! 2 1 (mod 15)

and yet ¢(15) = 8.

- To find the primitive roots of a modul if they exist,
one must usually proceed by trial and error, although
there are certain rules that may facilitate the search.

Often one of the small number 2, 3, 5 or 6 may turn

out to be a primitive root.
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- Extensive tables of primitive roots for primes
have been computed. The first of these, the "Canon
Arithmeticus" (1839) by K.G.J. Jacobi, included
primitive roots for all primes below 1,000. More
recent tables by Kraitchick, Cunningham, and others
give primitive roots for all primes up to 25,000
and even beyond.
One interesting point, not mentioned so far, is the
existence of multiplicative inverse.
Multiplicative inverse of an integer b in zM exists if
and only if b and M are relatively primes.
In that case, b ! is one integer such that

bxb < = 1 (mod M) (2.23)

Example: Let M = 7
5! w2 5x5'ealma?r 5t = 3

Since 5x3 =15 =1 mod 7, i.e., if M is a prime for
every non-zero integer o, in ZM' there exists an inverse
(13]

o (2.21a)

this can be seen by another example.
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s Wealtt B =1 =1 mod 7 1x1 " =1 mod 7
27l = 2772 2 25 2 32 = 4 mod 7 2x27 1 =2x4 =38 =
37l 23" 3% 2i3 5 m0da7 3x37l=3x5=15=
47l =24"% 2’1024 = 2m0d7 4x4l=4x2=238-=
51 2572 2 5% 312523 m0d7 5x5l=5%x3=154«
6 a6"2u6=7776=6mod 7 6.x.6-1=6x6=36=
Note that for a non-prime M, o has an inverse given by
[l?]:
g (2.22)

if o and M are relatively primes.

2

Example: N=12 = 2"x3
$(12) = 121-3 1-3 = 12 B = 4

zM’lZ {0,1,2,3,4,5,6,7,8,9'10,11}

So there are ¢(12) = 4 elements in zlz, (1,5,7,11) that are

relatively prime to M = 12,

32

1l mod 7

1 mod 7

1l mod 7

1l mod 7

1 mod 7



Those a's have inverses given by:

-1, 39(12)=) | sé=1 _ .3

o wd S 1471 = 13 = 1 moa 12

1x17) = 1x1 = 1 mod 12 = .1 mod 12

a, =5 50 = stll2=l g4l 253 05 mog 12
5%x5 1 =5x5=1mod 12

s T Y PR Gt & 9% e 7 s 22
7x71 = 7x7 = 1 mod 12

ay = 11 1170 wqpfQ8IT1 L g8 o 137 e 20 w08 22

11x117! = 11%x11 = 1 moa 12

This suggests that in this case b™! = b. Therefore, we
verify that by considering M a composité'rather than a
prime, one observes several differences.

If we define Zy as the ring of integers modulo M,
then if in a ring of integers multiplicative inverses exist
for all non-zero integers, this ring is called a field.

A field with a finite number of elements is also
called a Galois field. It is clear then, that Zy is a
field if and only if M is a prime.

ZM is not a field for a non prime M, since not all
elements will have multiplicative inverses. Also, there is

no primitive root that will generate the entire ring, (only

subsets with ¢ (M) elements, at most.)
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Example: M=28 = 23

pM) = 8(1 -3 = 4

10 1 2 3 4 % % %
ol (R S R R B e

™11 4 0 0 0 o subset with 4 elements
31 3 1 3 1 3 1 3 rootoforderN=2
a1 4 0 0 0 0 0 0 subsetwith 3 elements
sN |1 5 1 5 1 5 1 5 rootoforder N=2
6 |1 6 4 0 0 0 0 0 subsetwith 4 elements
M|l 1 7 1 7 1 7 1 7 rootof order 2

In these conditions, the previous example shows, that
there are multiplicative inverses, only for those elements
in Zg relative primes to M = 8.

We can investigate, a little more, the arithmetic
modulo M, when M is not a primé. Let M have the following

unique prime power factorization (2.11)

when the arithmetic is done mod M, it is in effect done
: r
modulo each prime power Py i simultaneously [13].

A set of arithmetic operations can be done either
r
modulo each Pi 4 separately and the final result mod M

obtainéd using the Chinese remainder theorem [13], or
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alternatively all the operations may be done mod M, but

r.
they must be valid operations mod for each P; -

In these conditions, an integer o is said to be of

order N in 2,, if and only if it is of order N in each

M

pit
Here we present some basic results.

b mod M

o
]

is true if and only if

b g
a = bmod p; * § = 1.9,..:0 (2.23)

r.
If we know the residues of an integer a modulo each Py -

We can uniquely reconstruct the integer a mod M using the
Chinese Remainder Theorem.

To establish this theorem, let

a = ai mod Piri (2.24)
4 . M/(Piri) : (2.25)

and
4 " (d; mod piri)-l mod piri (2.26)
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then

P
-1
a (3} d; d; © a;) mod M (2.27)
i=]1
Example:
Let a = 123 and M= 24 = 23:(3
Calculation of a;,s:
a = 123 = a mod 23 a, = 3 mod 8

a = 123 = a2 mod 3 a2 = 0 mod 3
Calculation of di,s:
i | 3
d, = M/p, = 24/2° = 3 mod 8
=2
d2 = M/p2 = 24/3 = 8 = 2 mod 3
-1
Calculation of di'sz
-1 A 1.-1 -1 $(8)-1 3
04,77 2 (@, modp; )7 = (3mod 8) " =3 =3 = 3 mod 8
-1 -1 -1 M02 3-2
a,” & (a, moa P, ) " = (2mod 3)7 = 2"%% = 2°7% = 2 moa 3
then
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s = (Ta & a;) mod M

a= (3x3x3) + (2x2x0) =27 = 3 mod 24
Check:

a = 123 = 3 mod 24.
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III. TRANSFORMS IN FINITE FIELDS

The basic operations of signal filtering is convolution.
In the discrete time signal processing situation, convolution

takes the form

©o

y(n) = x(n) * h(n) = )} x(m) h(n-m) £3.1)

n==o

n o= Q0 N, 2, i

Where h(n) is the response to a unit impulse, for a causal

filter, then

n
o

h (n) for n<2o0
and, when the duration of the impulse response is finite,

the infinite sum (3.1) reduces to a finite sum

N-1
y(n) = J x(m) h(n-m) (3.2)
m=0
where N is the length of the finite impulse response
(FIR) filter.
The processing workload required to evaluate (3.2)
can be reduced significantly if direct computation is

replaced by transforms methods. This is so provided the




application in question allows sequences to be processed
in blocks.
The Discrete-Fourier Transform (DFT) is one of the most

versatile transforms, and is defined by

=j (=) nK
Z x(n) e (3:3}
n=0

li>

DFT X (K)

K= 0y L; sse N=1

and its inverse transform by

N (3.4)

where N is the length of the sequence which transforms one
wants to calculate.

In order to use the DFT in the high-speed implementation
of convolution, one makes use of its cyclic convolution

property, which states that

DFT[h(n) * x(n)] = DFT[h(n)] * DFT[x(n)] (3.5)

and this implies that convolution can be implemented using
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y(n) = IDFT{DFT[h(n)] DFT[x(n)]} (3.6)

The convolution implemented by (3.6) is called cyclic convo-
lution since it evaluates (3.2) as if h(n) and x(n) were
periodically extended outside the range [0,N-1], or equiva-
lently, the indices were evaluated modulo N. Notice that
normal finite convolution can be calculated by cyclic
convolution if zeros are apended to x(n) and h(n) to prevent
folding or aliasing [34].

The DFT is a transform of finite sequences, of real or
complex numbers. One might ask if there are transforms in
other number fields. That is, given a sequence of numbers
modulo M, is there a transform that has the cyclic convolu-
tion property? Ohe will see that the answer to this question
is yes.

If one has a sequence of numbers of length N, then a

transform of the form given by the pair

N-1
X(K) = [ x(n) o™ (3.7)
' n=0
N-1
x(n) = £ I xR oK (3.7a)
K=0

is .said to have a DFT structure [34].
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If one looks for the properties that a general trans-
form (3.1) having the DFT structure must have to exhibit
the cyclic convolution property, one finds [4], [35], that
it depends on the existence of an a that is a root of unity

of order N, i.e.,

o = 1 (3.8)

and that N-'1 = % exists, i.e., the inverse of N exists.

It has been shown [35] that @nZ%he complex number field the
conventional DFT with a = e-J N is the only transform, with
that property. However, by working in a finite field or
ring of integers with arithmétic carried out an integer
M, a large class of transforms exist [14] that have the
cyclic convolution property. By special choices of the
length N, the modulo M, and the value o, it is possible to
have transforms with many interesting properties. These
are called number theoretic transforms.

The possibiliti@sof interest are, [14]:

1) the ring of integers ZM’ with respect to modulo M

2) the field of integers GF(p), with respect to prime

modulus p :

3) the Galois field GF(pk) of pk elements.

Let Z, represent the ring of integers {0,1 ... M-1} (2.4)

with arithmetic carried out mod M. Let M have the following

unique prime power factorization:




transform, having the cyclic convolution property in Z

r r
1 2 2 2.3l
M = p1 p2 i pm ( )

where the pi's are distinct primes.
As pointed out previously (section II), when one carries

arithmetic mod M, one is in effect doing it modulo each
t;

P; * simultaneously. Therefore, the length N number theoretic

Ml
must also have that property in

zfi for 1. =00 2, Gen La
i

.
This requires that a (mod P; l), an integer of order N

must exist in Zri , i.e., N is the least positive integer

Pji
such that
N Ty
o = 1 (mod P; ) g A e e SRR (3.9)
Example: Let M = 24 = 233:3
then
Z2 5 = Zg = {0,1,2,3,4,5,6,7}
2
and
pA = {0,1,2}
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For (3.9) to be satisfied, since

i) for Z3
i N BUEE,
Ll 0 S R
i R T T
order 2

and

ii) for Z

(3.10)

1l order N

e B e

o = 2 order N

- e ek | ! (3.11)

i.e., a = 1 order N ='i

Then, a = 1 (mod 24) is a root
length of the number theoretic
ring Z,,. is N = 1 (not a very
Furthermore, since the inverse
existence of the inverse of N,
exist in Zy, , or N should be
Pl
In this example,

(i) for Z3

of order N = 1, thus the
transform possible in the
interesting result!).
transform requires the

oy N-l, this number should

relatively prime to M (2.21).
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one wants N -~ = 1 - 7

By (2.21la)

W h e 1 3 17% a1l a1 med 3

(ii) for Z8
: ; = -1

also required is N = = 2
By (2.22)

N1 = 17! (moa 8) = 10M-1
but

= Ly o

¢$(M=8) = 8(1 - 5) = 4
then

e owagte (mod 8) = gV . 17 - 1 (mod 8)

Thus we have verified the existence of a number theoretic
transform of length N = 1, in the ring of integers 224.
In general, the existence of an of order N, each zﬁf
can be investigated recalling Euler's theorem (2.13).
That is, by observing (3.4) and Euler's theorem, one has

the condition




X:

Nl¢(p; 1) PR (3.12)
o |
ig., N should divide ¢(Pi 3
Example: Let M= 11x31 = 341
Then
zll w {0,Y,2, cioer 10}
and
z31 I o [P (O (RN o)
i) 'for zll
$(11) = 11 -1 = 10 , implies possible values of

order N for the roots in

Zy, (1,2,5,10)

ii) for 231
$(31) = 31 -1 = 30, implies possible values of
order N for the roots in

Z 1 (,2,3,5,6,10,30)

3
That is, for (3.12) to be satisfied, in the conditions given
by i) and ii), the possible values for the length of the

NTT in Z are (1,2,5,10).

341
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Notice that by (3.9), whatever the root in consideration,

it has to be the same order in le as that in 2

For Zl
¥ 1013234567829 10
Pl i 13y 1143 1
Mli1 2485109738 1
Fl1 3905 41395 & 1
N
fli1as59 314883 2
N
Fli s 34918389 1
&li16 37958412 2
1175231066948 1
N
1898412032357 1
N
|194351943s8 1
108110 110110110110 1

3°

y’ one constructs the following table.

root of order 1

10

5 (3.12a)

10
10 )

10

root of order 5

For 231, a similar table is constructed, from which only

a part is shown (notice that only N =

interest).

N 5 3
¥ 1 1
2N 1 1
3 26 2%
4N T R 1 1
sN 25
30N 30 30
_

root

root

root

root

root

Ls 2, 5, 10 are of

of

of

of

of

of

order

order

order

order

order

30
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Thus the root a = 4 is of order 5 in both 2 and 2

11 : )

and so the length of the NTT in the ring 2 4 can be equal

2
to 5. Furthermore, since the multiplicative inverse of an

integer b in 2, exists if and only if b and M are relatively

M
prime, and for the inverse transform one requires N-l, N
should be relatively prime to M (or pi's).

In the last example:

N = 5 is relative prime to N = 243 so 5 ' mod 341

exists and is given by

st )=l #3811 2 31
but
$(341) = 341(1 - {5 (1 - 39 300
SO
571 mod 341 = 539971 1od 341 = 5299 moa 341

To find this number notice that

8 5

200 = 256 + 32 + 8 + 2 + 1 = 2° 4+ 2 0

+ 23 + 21 4+ 2

SO

299 256, .32 .8

532,58.52

*5




But

Then

So

Check:

299

52 = 25 mod 341
4
5% = 284 mod 341
58 = 180 mod 341
51 = 5 mod 341
532 . 25 mod 341
564 = 284 moa 341
5128 . 180 mod 341
5256 . 5 mod. 341
mod 341 = (5 - 25 . 180 - 25 -
= 273 mod 341
(5%273) mod 341 = 1 mod 341.
5°1 mod 341 = 273 mod 341.
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That is, it is verified that a number theoretic transform
of length N = 5 exists in 2341. Now, the condition N

relative prime to M (or pi's) means

Nl(pi - 3¥ & I ™ YR vine B (3.13)

Njged {p;-1, p,~1, ..., p,-1} .

O(M) is defined as the greatest common divisor (gcd)

of the (pi = 1)

0 (M) gecd {pl-l, Py=l, ..y pl—l} (3.14)

-

Therefore
N|O (M) (3.15)
This last equation gives the necessary condition for the

existence of a transform of length N in the ring Zy with

arithmetic carried out an integer M.

Example: Let M= 11x31 = 341

o(M) = ged{1l1-1,31-1} = gcd{10,30} = 10
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Notive that N = 5 satisfies the condition (3.15) since

N = 5|(0M) = 10.)

It remains to be investigated further whether or not a

given a of order N = 10 exists in both 2 and 2

11 31°
Now, consider the converse of condition (3.15). If
s
N|O(M) or N|¢(pi 1), then there exists integers a; (mod
or oder N in Z ., [13] .
p;t

Using theselai‘s one can construct transform (mod P;
which have the DFT structure (3.7) and are invertible.

Combining these transforms by the Chinese remainder
theorem (2.27), one can obtain a transform (mod M) havin
the cyclic convolution property in ZM‘
can combine the ai's by tbe Chinese remainder theorem to

obtain an a (mod M) of order N in zM and construct the

final transform using this a. The results will be ident

Example: Let M =5x17 = 85
$(5) = 5-1 = 4 possible values of N:
$(17) = 17-1 = 16 possible values of N:

If one looks for an a of order 4 in 285’

tables for z5 and 217 as those in (3.12 a,b), one finds
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Alternatively one

ical.

1,2,4

1,2,4,8,16

by constructing




Using

Q
]

1 2 mod 5 (order 4, in Zs)

4 mod 17 (order 4, in Z..)

o 17

the Chinese remainder theorem (2.27):

(i) d,'s calculation

k

d1 = (5x17)/5 = 1l7mod 5 = 2
d2 = (Sxl17)/1] = 5 mod 17
=1

Calculation of di 's.

Then (by (2.27)

Check:

8 2mds5)™t = 222 pod 5 =27 =

@ (5moda 17)"l = s*2 . 172 _ 515,
s ® ((2x2x3) 4 (§xS5x7)) mod 85
« = (12 + 140) mod 85

a = 152 mod 85 = 67 mod 85

67 = mod 85

-

- g —

mod 5

3 mod 5  (by 2.21a)

/

7 mod 17 (by 2.21a)




Notice that a = 64 mod 5 is of order 4 in ZS’ and also

o 64 mod 17 is of order 4 in 2Z. ..

To establish the existence oi7a NTT in Z85, with length
N = 4, one has to find the inverse of N = 4-1, l1.€.,
=g
By (2.22)
a7t = 037 g g5 = ss-D-F) =
So
P R SR E e
Since
63 = 32 + 16 + 8 + 4 + 2 + 1
463 2 432 3 416 48 44 42 . 4l
But

4' = 4 mod 85
2

42 = 16 mod 85
4 = 1 mod 85

52

= 64




4 = 1 mod 85
416 = 1 mod 85
432 = 1 mod 85
SO
g o 4% & 1.340°%-164 = 64 mod B85
Check:
4x64 = 1 mod 85.

The fact that condition (3.15) holds as well as its
converse [13] means that (3.15) is the necessary and
sufficient condition for the existence of an invertible

transform of length N which has the cyclic convolution

.property, mod M.

This also establishes that the maximum transform length
iR ZM 1s

Nmax = 0(M) {3.16)
Notice that for a given modulus one knows exactly what are
the possible transform lengths in ZM'
For any NTT to be computationally efficient, there are

three main requirements [17]:
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(i) N, the transform length, should be highly composite
(preferably a power of 2) for an FFT-type algorithm
to exist, and should be large enough for practical
sequence lengths.

(ii) The multiplication by powers of ¢ (3.7) must be a
a simple operation. This is possible if the powers

of a have a binary representation with few bits.

(iii) To simplify the arithmetic modulo M, M should have
a binary representation with very few bits and
be large enough to prevent overflow.
Although the class of all possible numbef‘theoretic trans-
forms seems very large at first consideration, closer
examination shows that very few seem to sétisfy the afore-
mentioned criteria: The parameters thatymust be chosen are
M, N and a.
Briefly, one verifies that if M is eveﬁ, it has a factor
of 2 and, therefore, O(M) and Nmax are 1, which implies
M should be odd. If M is prime then O(M) = M-1 which is as
large as one could hope for in a field of M integers.
In section IV, the various types of NTT are discussed,
but one can say that conditions ((3.8),(3.16)) do not give
a systematic way of determining the "best" choices. As a
result one must use intuition, insight and a bit of searching.
Usually M is selected and the resulting possible N and a

are then examined.
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IV. NUMBER THEORETIC TRANSFORMS

One computational need in the digital processing of
signals is the evaluation of the circular convolution
summation of two sequences of length N. That is, the

evaluation of

N-1

y(n) = ] x(n-m) h(m) (4.1)
m=0
o= Oy L, eae N=E

The so-called fast convolution procedurevbbtains this
sum by taking the inverse transform of the product of the
transforms of the two sequences. If the transform used is
the discrete Fourier transform, then error-free results
are obtained only if infinite precision arithmetic is
assumed. This is true, even if both sequences are composed
of finite precision numbers because the Foﬁrier transform
involves the irrational number exp[-j(27/N)].

One way to avoid the round-off errors induced by the
transform is to make use of the fast transforms over the
finite field [14]. |

By working in a finite field or ring of integers with
arithmetic carried out modulo éﬁ integer M, a large class
of transforms exist that have the cyclic convolution property

(3.5). By special choices of the length N, the mod M, and
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the value of a, it is possible to have transforms that need
only word shifts and additions but no multiplications, that
have an FFT type fast algorithm, that do not require
storage of complex values of a, and that have no roundoff
errors. These transforms are the Number Theoretic Trans-
forms (NTT) and they look very promising in the evaluation
of finite convolutions. Their main disadvantage seems to
be a relation of the sequence length N to the required word
length that can require long word lengths for long sequences.
This section begins by discussing Mersenne and Fermat
number transforms, that proceeds historically all subse-
quent work in this field. 1In part B, otﬁef number theoretic
transforms that provide more choices of.Q§rd lengths and
transform lengths than Mersenne and Fermatvnumber transforms

are discussed.

A. MERSENNE AND FERMAT NUMBER TRANSFORMS

Rader [3] suggests performing the calculations of a
transform with the DFT structure (3.7), in the ring of
integers modulo a Mersenne number. Such numbers are defined

by [3]
p = 29-13 (4.2)
where q is prime, but p is not necessarily prime.

In the ring p = 29-1, o = 2 is a root of the q*P? order

since
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od = 29 = (9 -294+1) = 1mod 29-1  (4.3)

Under these conditions, a Mersenne transform of an

integer sequence {an} having q terms is defined by [3]

a = (7 a 2™) moa p (4.4)

Because g has an inverse modulo p [3], the inverse Mersenne

transform will be

q-1 _
i il -mK
TR ) A 2 ) mod p (4.5)
K=0
m = 0,1 ... gq=1

where all exponents and indices being taken modulo g and
all operations being performed modulo p in both (4.4) and
(4.5).
It can be demonstrated [3] that the Mersenne transform
satisfies the convolution theorem; that is to say, if
{XK} is the Mersenne transform of {xn}, then with zk = AK'XK mod p,

the Inverse Mersenne transform {Zm) of {ZK} is given by

g-1
B w U e ) Wed P (4.6)
n=0
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I1f {an} and {xn} are properly bounded [3], 2. is equal

to the output of the ordinary cyclic convolution with

(4.7)

Under these conditions, digital filtering of real integer
sequences can be performed by dividing the sequences into
blocks, padding the blocks with zeros [34] to prevent folding,
and aliasing and computing the cyclic convolutions by means
of Mersenne transforms.

The number of transform terms can be extended to 2q,

since a = -2 mod p is a root of order 29:
029 w2229 & (=22 & (+29 4 29 < 132 o (-1)? = 1 moa 291
(4.8)
Example: Let g = 7
Tnen
p o= 21 = 2'-3 - 123
and
o = =2 mod 127 = (=2 + 127) = 125 mod 127.

Notice that 2q = 14, so
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2 14 14 14

-« ot = (-2) = 125 moa 127
Now,
14 = 23 +422:28 = g4+ 442
Thus
12514 = 1258 . 1254 . 1252
but
2
125° = 4 mod 127
4
125% = 16 mod 127
125% = 2 mod 127
and
12514 = 2 : 16 - 4 mod 127
= 128 mod 127
1251 = 1 mod 127.

Notice also that the inverse of 2q = 14, mod 127 is

ol = 147! mod 127 = 1412772 & 14125 p0q 127  (by 2.21a).
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By performing some simple calculations,

1

147 = 118 mod 127. Check: 14x14™! = 14x118 = 1 mod 127.

Thus, a Mersenne transform exists which has the cyclic
convolution property for sequences of length N = 29, with
o = -2 replacing exp[-21j/N] as the Nth primitive root of
unity in (3.3), and with all calculations in. (3.7) done in
arithmetic modulo p.

Rader advocated such a transform since using o = 2
or « = -2 as a root of unity would necessitate only shift
and add operations in computing the transform (3.7).

Because Mersenne transforms are evaluated>without
multiplications, computation of a time-invariant circular
convolution (4.1) having N = g points reducé§ to one multi-
plication per output sample, as opposed to g multiplications
with direct calculation. To compute a FFT of a sequence
of length N = g requires of the order of (N/2) logz(N/2)
complex multiplications [17].

The main limitations of Mersenne transform approach are
related to the fact that the number of transforms terms
q (or 2gq) is not highly composite, since q is a prime. This
means that calculations of the transforms cannot be simpli-
fied by an FFT-type algorithm.

If one considers p = 2X + 1 and K odd, 3 divides (2X + 1)
and the largest possible transform is 2, thus one considers

only K even.
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t K

Let K=8 2, s odd, t an integer. Then since p = 2" + 1,
one has
292° ,
T = n , n an integer. (4.9)
22 + 1
And the length of possible transforms will be governed by
t
the length possible for 22 +1 (see, 3.15). Therefore
integers of the form
2t
p = 2 + 1 {4.11)

o+
]

Oy L 25 3 acs

are of interest. These numbérs are called Fermat numbers and
are defined by F.=p in (4.11). For t=0 to t=4 the Fermat numbers
are prime. For t > 4 there are no known Fermat number prime.
Number theoretic transforms with a Fermat number as
the modulus, are called Fermat number transforms (FNT).
By (3.15), for the FNT of length N to exist N must
divide 0 (Ft = p).

Notice that (by 3.16), for Ft prime

b t

Rms O(Ft) « 2 , b = 2 (4.12)
and one can have FNT, for any length
N = 2", m<b (4.13)
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Example:

order 1

order

order

order

order

order

order

order

order

order

order

order

order

order

order

8

16

16

16

16

16

16

16

16

8

2
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Let p = g - 2 +1 = 2 1 = 17
If one constructs the following table:
N P & 3 4 9 & P 8. 9 3 Lk 12 13 14 15 16
lN ) SO S [ TS [ S A S ) [ R I S R R
2N 2 -4 .8 1618 13 9 1 2 4 6 16 15 13 9 1
3N 3 9 10 13 5 15 11 16 14 g 7 4 12 2 6 1
4N 4 16 13 1 4 16 13 I 4 16 13 1 4 16 13 1
5N S 8 5 13 14 2 10 16 13 9 1L 4 3 15 7 kK
6N é¢ 2 12 4 '7 @& 14 16 131 15 S5 13 10 9 3 1
7N 7 15 3 4 11 9 12 16 10 2 14 13 6 8 5 1
g\ $ 12 5 M 9% 4 85 1 &8 12 58 % 4115 12
9N g 3 15 16 8 4 2 1L 9 3 45 ¥ 8 4 2 -1
10N 10 15 14 4 & 9 5 16 7 2 34l 8 g2 3
11N 3 T 5 4 20 8 3 16 6 15 & 3 7 9 M4 i
12N aa 8 21 33 3 2 0 W O 9 - 6 & M 15 0 i
13N i B 4% 13 1 4 I 13 16 ¢ 1 13 16 & 1L
14N M » 7T I3 B .6 16 3 g 10 - -4 5 & @k i
15" B4 B21BY 1D 4P 2122
16N % )} 1% 1 136 1 36 1 16 2 46 L 3 436 ik
(4.13a)




one sees that (3,5,6,7,10,11,12,14) are primitive roots

that will generate the entire field Z

is of order 8 and a2 = 22

17° The root a = 2

= 4 is of order 8/2

4 (by 2.20).

Also note that 11 = /2, in the sense that 112 2 mod 17.

That is, for the ring Zl7, one has the possibility of
choosing a FNT of lengths (1,2,4,8,16) thus satisfying
(4.12) and (4.13).

For digital filtering applications the composites
Fs (b = 32) and F6 (b = 64) seem to be praqucal [4].
Lucas [6] has proven that every prime factor of a composite

F is of the form

tl

K 2 + 1 (4.14)

Therefore, 2t+2 divides 0 (Ft)' for t > 4.
25
Example: Consider F5 = 2 + 1 = 4 294 967 297
= 641 x6 700 417
O(FS) = g.c.d.{(641-1),(6700 517-1)}
by
O(FS) = g.c.d.{640, 6 700 416}
640 = 2’ . 5
6 700 416 = 2/ - 3 - 17449

63




Then

} = 37 = 128 = 3% pure ¢ = 8,

Therefore, for the choice of Fermat numbers with t > 4,

the maximum possible transform length is given by (see, 3.16)

~
i
[\
]
N
N
]

4b (4.15)

where

t>d, b = 2%,

Agarwal [4] proved that
T i T (4.16)

is a root of order 4b, in ZF e B 20
t

Notice that

i [2b/4(2b/2 & l)]2 2b/2(2b/2 i 1)2

2 . gb/2,b _ 5.5b/2 g, ,b/2 b/2

Q
I

A2~ 2

(-2) 2P

jo3
|

Thus
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o = 2 mod 27 + 1.

Since o = 2 mod Ft, the notation a = v2 for (4.16)

will be adopted in this thesis following a general procedure.

Also, note that any odd power of v2 will also be of

t+2

order 2 (by 2.20), i.&.

a® o« . 2 saa (4.17)

’ +
is a root of order 2t 2.

th
2(t+2-m)

And raising a = V2 (4.16) to
power one obtains an integer o' of order 2m,
m < t+2, i.e.

2(t+2—m)
o = 0" (4.18)

o' being a root of order 2™, m < t+2.
2° 4
Example: Let p = F2 =2 +1 = 2+1 = 17
i.e.
b = 2% =« 22 & 4

Then

a 2b/4(2b/2_1) & 24/4(24/2_1) o 2(22_1)

a =, 2(3) = 6 mod 17
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is a root of order 4b = 4°4 = 16. Observing (4.13a) one
sees that this result is correct.
Notice also in (4.13a) that 6 = V2 in the sense that

62 = 2 mod 17. So

a = VY2 = 6 mod 17.

If one raises this a to 2(t+2-m), m =

and oo = 2 is a root of order Zm = 23 = 8 (4.18)

Observing (4.13a) one verifies that this is also a
correct result.

If one raises o = 6 to an odd power say d = 5,
a” = 6" =7 mod 17 is a root of the same order as o = 6,
namely of order 4b = 16, verifying (4.17). Observing (4.13a)
one verifies that this is correct.

Notice that o = 2 mod (2b+l) is of order N = 2b, since

but
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280 o e o 1) = 1 mod 27+ 1 (4.19)

Thus for FNT's with a prime or composite modulus one sees

that «a

2 (or a power of 2) is a possible root of order

N=2b=2.2% = 2%,

This means that sequences up to a length N = 2b, in

this case, can make use of FNT.

This is a very desirable situation, since N = 2t+l

is highly composite allowing an FFT type algorithm and all

multiplication by powers of o are simple word shifts.

If o« = /2 is used the.: sequences of length N = 4b = 2t+2

are possible (4.16). Recallingthat Fermat numbers up to

F4 are prime O(F(t)) = 2b (by 3.14), and in these cases one

can have an FNT for any length N = 2m, e <t Tkt

Notice that, for these Fermaﬁ numbers, a = 3, 1is a
root of order N = 2b (see 4.13a), allowing the largest
possible length, in the correspondnet ring ZF .

t

The following table shows some parameters for several

possible implementations for FNT's:

v pegt MmN SRR e gh:zr

2 4 24 v 8 16 1€ 3,5,8,7,
10,11,12,14

3 8 2 41 16 32 256=2" 3

4 16 216 4 1 32 64 65536=2> 3

5 32 222 41 64 128 128 vz

6 64 2% 41 128 256 256 z
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That is, o = VY2 and the resulting N = 4b give the maximum
length possible for F5 and F6. However, for prime Ft,
further increases in N are possible up to N = 2b if more

stages of the FFT algorithm are allowed to have multiplica-

tions rather than simple word shifts.

Notice also that besides a = 3 being of order N = 2b
there are Zb_l - 1 other integers of order 2b, since:
) = (2P+1 -1 = 2P,

and the number of primitive roots in Zp is given by (see
t
section II)

pon) = 22 -5 = 2P,

For F2 = 17, one sees that the number of primitive

roots is
2 = 8 1 (5,9,6,7,10,11,12,14) .

The cyclic nature of modular arithmetic means that, with-
out a priori knowledge, integers cannot be associated with
magnitude. Fér example, the days of the week represent a
modulo 7 system, so that the statement "Friday is after
Wednesday" has no meaning unless the week for the Friday

and Wednesday in question is specified.
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This means that any number theoretic transform unlike
the DFT has no physical significance like "frequency."

It is merely a transform space, the halfway stage in convolu-
tion.

During various stages of the computation of an NTT,
each accumulation of signal "overflows" many times.

But still the end result of the convolution will be
exact if the input signals are properly bounded [17]. That
is, a dynamic range constraint is imposed by the modular
arithmetic. One must be able to bound a priori the result
of convolution in order to dete;mine the true answer from
the answer modulo Ft.

The worst case bound is determined by the following

procedure. If

Cn i an® bn

where (:) means circular convolution of length N, and

ba
lag| =< 2
n —
(4.21)
b
B g 2%
then
b, +by
jo] = m2" (4.22)
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Example:
The circular convolution of two sequences requiring 8
bits plus sign, will require at most, 22 bits plus sign to

represent the output sequence. Since

Bow 6w By o gt
6 . ,16
b, = by ow @ e} 2038 o
oy
n p—

t

Arithmetic modulo F, can be implemented_using b =2

t
bit representation of integers with some provision for
representing 2b.
Section V deals with the implementation of Fermat Number
Transforms, where arithmetic is carried modulo Ft = 2b + 1,
Notice that the maximum length of sequences whiéh can
be cycled convolved using the FNT with a = 2 is N = 2b
(N = 4b for o = vV2), and therefore the length of sequences
which can be convoled is proportional to the word length
in bits (b).
Thus for long sequences the word length requirement
may be excessive.
Rader [3] suggested using a two dimensional convolution

scheme to convolve long one dimensional sequences and

Agarwal and Burrus [17, [18] presented such a two dimensional
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convolution scheme. Using this scheme, cyclic convolution
of length N = LP is implemented as a two dimensional cyclic
convolution of length 2LXP.

This two dimensional cyclic convolution can be imple-
mented using a two-dimensional FNT. Then the word leéngth
required is proportional to the square root of the length
of the sequences to be convolved [13], which would give
for a maximum sequence length 8b2 rather than 4b (for a = V2),
ie., for a computer's word length b = 64, the maximum length

for the transform will be

. ST 8b = 32 768.

Appendix A illustrates with an example such a scheme and
also several other points: treatment of negative values in
data, the structure of the transform and the inverse matrix,
negative powers of o, frequent "overflow" during computa-
tions, meaninglessness of the transform values and exactness
of the final answer. This example will not demonstrate the
efficient implementation of the FNT using the binary

arithmetic.

B. OTHER NUMBER THEORETIC TRANSFORMS

Mersenne and Fermat number transforms are very promising
for digital filter computation because they can be calcu-
lated without multiplications. Their main drawback is a

rigid relationship between transform length and wordlength,




caused by the fact that all operations are performed in a
finite ring with arithmetic carried out an integer M.
Another difficulty arises because it is not possible to
achieve simultaneously optimum efficiency in reducing the
number of operations and in implementing arithmetic opera-
tions. This is so because Fermat number transforms are
amenable to a fast transform algorithm, and Mersenne trans-
forms are not, whereas arithmetic operations can be imple-
mented more efficiently modulo a Mersenne number than
modulo a Fermat number [3], [13].

In what follows, other number theoretic transforms will
be described briefly. Such transforms providg more choices
of word length and transform length, thus eniarging the
possibiliﬁy of the use of NTT in digital filtering.

1. Transforms Over the Galois Field GF(p2)

Reed and Truong [20] generalized the ideas of
number theoretic transforms to transforms over the Galois

Field GF(p% where p is a prime Mersenne number, i.e.

poa_ 2 =% , P =2, 3, Ty 13; 19, 3Ly 61 uas

(4.23)

Notice that this is a particular case of the definition (4.2),

in the sense that here one is interested only in p, a prime.
Also, the Galois field GF(pz) is a particular case of the
more general GF(pn), where one is interested in the case

n= 2.




Let GF (p%) denote the Galois Field (finite field) of
p2 elements, where p = 29 - 1, p and q primes. Let d be
a divisor of p2 - 1 (possibly d = p2 - 1l). Also let the
element r ¢ GF(pz), generate the cyclic subgroup of d

elements,

G = (P,E sie E e 1) (4.24)

Then a transform over this subgroup Gd can be defined by

the following pair [20]

d=1
a Kn
A, = ) a ¥ ; for 0 <K <d-l (4.25a)
n=0
and
d=1
& = @ ] ™ ferox m<d-l  (4.25b)
K=0

where d divides p2 - 1, an and Ak are elements of GF(pZ)

and r is a generator of the element subgroup Gd'
It can be shown that the cyclic convolution property
holds for this transform ([20].

Now, if

x
]
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-1 mod p (4.26)



is not solvable, then the nonsolvability of (4.26) is

equivalent to the statement:

(-1) is a quadratic nonresidue mod p

(see Appendix B, eq. B-2).

By Euler's criterion (Appendix B, theor. B.3), this is

further equivalent to:

D - D2 L [(F-1)-11/2
- -1y 1272172 (4.27)
- (1 @D <3
where
(%) is the Legendre symbol definga by - [see Appendix

B, eq. (B.8)]

+1 if a is a quadratic residue mod p

-1 if a is a quadratic nonresidue mod p

Thus (-1) is a quadratic nonresidue mod p and (4.26) is

not solvable in GF(p); the polynomial

p(x) = x2 + 1 (4.28)
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is then irreducible in GF(p). A root say, 1, of
2

piz) = 2" +1 = (4.29)

exists and can be found in the extension field GF(pz) [20] ..

The Galois field GF(pz) is composed of the set

GF(p?) = {a + iblasb € GF(p)} (4.30)
where i is a root of (4.29), satisfying
| . (4.31)

(p=-1l) mod p.

where -1

If x2 + 1 = 0 is not solvable in GF(p), ; € GF(pz)
plays a similar role over the finite field GF(p) that
/-1 = i plays over the field of rational numbers.

For example, suppose (a + Eb) and (c + id) are elements

of GF(p?), then by (4.31)
(1) a+iv) 2 (c+ia) = (aze)+idsa (4.32)
(i11) (a + ib)(c+ $d) = ac + 1%bd + ibc + iad

(4.33)

= (ac - bd) + i(bc + ad)
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These are the analogues of what one might expect if (a + ib)
and (c + id) were complex numbers. In applications to
radar and communication systems one generally wants to
take convolutions of complex numbers.

If (-1) is a quadratic nonresidue mod p, then convolu-
tion (4.20) of the complex integers can be performed with

transforms of type (4.25) on a Galois Field GF(pz) where

a, and bn are restricted to GF(pZ). In other words, if

an, bn € GF(pz), for n =0,1,2, ... d-1 the transforms are
a~-1
G Kn
Ay = ] a r
n=0
/
. d-1
K
R ¢, for K=0,1, ... d-1.
n=0

where r is a generator of ad-element subgroup Gd.

Then taking the inverse transform of

CK = AK . BK v o Eor K= 0.1, vor @ol (4.34)
one obtains
d-1
= L | =Kn
e, = (&) ) Cg t (4.35)
K=0

where c ¢ GF(pz) and d divides p2 S
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If p is a Mersenne prime, the order t of the subgroup

with generator o, factor as follows [20]:

¢ o (%% -1 = 2% 2.09 41 -1
o g g Ly (4.36)
£ 2q+1(22q—q—l = 1)

by 2q+1(2q—l a8

Since t has the factor d = 2q+l' the usual FFT algorithm
can be used to calculate transforms of as many 4 = 2q+1

points. 1If
d = 25 5 lL<K<g+1 (4.37)

and o is a primitive element of GF(pz), then the generator

of Gd is
r = g (4.38)

In (4.25) if one wants to take the transform over GF(pZ),

of-2q+l point sequences of complex integers, a_ € GF(pz)

n

then one needs to find a primitive element in G g+l of
2

GF(pZ). To achieve this, the following theorems are useful.

For proofs, see [20].

i g

ek




Theorem 1:

If p is a Mersenne prime and d = 2K, where
1l <K <qg+l, then r = a + ib is a primitive
element in G4 of GF(pz), if and only if

rd/2 = =1 mod p . (4.39)

Theorem 2:
For Mersenne primes p > 3, the first
quadratic nonresidue modulo p in the

sequence 1, 2, 3, ..., p-1, is 3.

To find a primitive element in G q+1 of Gp(pZ)’ one can use
2
the following procedure.

Assume an element r = a + ib is of order 2q+l in GF(pz).

Now

A

g 2q-l
la + ib)z = (a + ib) (a + ib) (4.40)

and, it can be proved [20] that

(a + ib)zq-l = (a+ Ezq_lb) mod p . (4.41)
Since
12%1 | §2%2 _ 1 (q2,ta%2)2
- iy . (4.42)
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Recall that g = 2, 3, 5, 7, 13, 17, 19, 31, 61, ... 1.€.,

prime. So that (4.40) becomes

~ q
(a + ib)2

(a + ib) (a - ib) mod p

a’ + b* mod p (4.43)

By Theorem 1, it follows that

b R e p (4.44)
since

a4 =29 . apa Eg;i = 29,
Let

X = a2 mod 2q -1

(4.45)

¥ 5 =b* moa 29~ 1
then (4.44) becomes

X+ 1 = Ymod p (4.46)

By definition in (4.46), X is a quadratic residue. For

Y, [see Appendix B, eq. B.1ll, and B.9]

19




5 o atls v gels R T
(p) ( P ) (p )(p) (p)
also (Appendix B, corollary B.5)
-} (29-1-1) /2 T,y
(__) = (-l) =("l) = -1
P
thus
Y = X + 1 1is a quadratic nonresidue.

Hence, one way to choose the numbers X and Y is to let X
and Y be two consecutive numbers from the set of integers
Lpdin: = 2q—2, such that the first number X is a square and
the second is a nonsquare. By Theorem 2y EOr pa> 3, X = 3
is a nonsquare and the preceding element X = 2 is a square.

Thus it is sufficient to let

a = X = 2 nod 2q

I
=

(4.47a)
b = -X=-1 =z =Y = =3mod 29 -1 (4.47b)
To find the solution of congruence (4.47a) one uses the

following procedure [20].

First, notice that [20]

g - ooy SR | (4.48)‘
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Then by Euler's criterion [Appendix B]

9y)-
> SRRttty 1 R TS

= 1 mod (29-1) (4.49)
2% =

Multiplying both sides of the congruence by 2, then

q_ q-1
p((27-2)/2)+1 _ ,2 = 2 mod (29-1)

Hence

29-2

(2 ) 2 mod (29-1) (4.50)

1

Then the solution for (4.47a) is

gq-2
& 2 22°  med (%1 (4.51)

Using the same procedure for (4.47b), b is given by [20]

- 1

q q -
foi e (_3)2 mod 2 (4.52)

In Gd of GF(pz) there always exists a primitive element,

r = a + ib [20]. By Theorem 1 (4.39)

T

(a + ib) = =1 mod p (4.953)

Raising both sides of (4.53) to the jth power, (4.53) becomes
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(la * 6143 = -13) wod » (4.54)

By Theorem 1, ((a + ib)d/z)J is a primitive element only
when j is an odd number. The elements are distinct and

include all primitive elements of Gd’

In other words, in the cyclic subgroup of Gg of GF(p2),

~

if (a + ib) is a primitive element then (a + ib)7J is also
a primitive element for j = 1,3,5, ..., d-1.

Assume ¢ is of order 2q+l in GF(pz). If 4 divides
2+

2q+l then r = az /d is of order 4 in GF(pz).
For the transform in (4.25), with 4 a factor of 29+l,
2q+l/d
one can take r = a as the primitive element and d

as the transform length.

Example: Find all primitive elements expressed as a sum

of powers of two in the subgroup Gd (553 GF(pz),

where q = 5, p = 29 -1 = 31 and a-= 23.
To do this, first find an element with order
2T = 5%l . 64 in GF(31%).
According to Theorem 1, if r = (a + ib) is a primitive

element in G 6 of GF(312), then
2

~ 25
(a + ib) = =1 mod 31

By (4.44), that becomes

a2 +b° = -1 mod 31
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By Theorem 2, 3 is a nonsquare and 2 is a square. By (4.51)

=2 3
‘ ‘ 22 2 8

1]
N
1]
N
mn

8 mod 31

v
1"

By (4.52)

B 2 =) 5 (=5 = =% = to¥ 2 20 mes 53

Thus 64 is the smallest pcsitive integer such that
8 +i20° = 1moamn

An element with order 2q+l/d = 64/8 = 8 is

8

(8« 1 200° = 2% (i) 8’ (i20) + (g) g®

(i20)*

+ (g) 8> (i20)3 + (2) 8¢ (i20)¢

3 Z

+ (g) 83 (i20)° + (2) 8% (i20)°8
’ 3 (3) 8 (120)7 + (i20)8

where (z) are the binomial coefficients. Expanding and

solving,
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(8 + i 20)8

(27 + i4) mod 31

~

and since, if (a + ib) is a primitive element in Gd then

(a + ib)J is also a primitive element for j - 1,3,5, ... d-1.
One has

A~

(27 + i)t mod 31

(27 + i4)> mod 31 (4 + i4) mod 31

$2r + 14)° mod 31

(4 + 127) mod 31

(27 + 14)7 mod 31 (27 + i27) mod 31

as the primitive elements in G, for GF(312).

8
In order to perform multiplications by powers of r in
hardware, it might be desirable to represent the g-bit words

a and b, where r = a + zb, as a minimal sum of powers of

two. Then, for example, rn+l mod p can be obtained by
multiplying " by r modulo p recursively using a minimal
number of bit rotations, g-bit word- complements, and
additions [3].

That is, the primitive elements in G, of GF(312) can

8
be written:
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16 + 10i - 10 - 191 + 9 + 18i - 7 - 5i + 19




-~

(27 + i4) = (2° - 2% - 2% 4+ i 2°
(27 + 14)° w04 31 = 4 + {4 = 2% &% 1 2°
(27 + i4)° mod 31 = 4 + 1 27 = 22 4+ 1(2° - 2% - 29

- - 5 -
(27 + i4)’ mod 31 27 + 127 = (2° -2%-2% &+ 1(2°-2%-2%

Notice that, r = 4 + i4 has the shortest number of terms of
power 2. This primitive element is such that multiplications

by powers of r in G, of GF(312) yield the least hardware.

8
Such an r is called the simplest primitive element.

In order to perform the convolution of two d-point
sequences of complex integers a, and bn with dynamic range
A and B, respectively, the components of the circular

convolution cp = Yp + 1 ap are required to remain in the

interval [20].

Specifically to satisfy (4.55) for all sequences a, = a s

and b = x_ + iy , such that Ianl, |B_| < A, an? |x [+

]
|yn| < B, it is necessary [20], that:

a < 1 (4.52)

If A

B, then by (4.52) the largest value of A is
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= NEL
A [Vr;d (4.53)

where [x] denotes the greatest integer less than x. This
scaling constraint sometimes forces one to choose an
excessive value p in order to avoid overflow. Such a large

p implies a computer word length that is often undesirably

long.
31 ' 8
Example: Let p = 2 - 1 and let d = 2
By (4.53)
St 2L . 3 3 gh0
= = =
4 x 2

EE a, and bn are constrained to the interval

10 10
2 i U-nIBnlxn

one is guaranteed to keep the components of cp in the
interval

-(2*-1/2 < x < @

= 1Y/2

According to [30] and [29], the Chinese Remainder
theorem can be employed to develop a ring which is the
direct sum of certain Galois fields GF(pZ). This ring is
utilized to extend the dynamic range of complex number

convolutions.




A disadvantage of this transform is that multipli-
cation by powers of the primitive element is not as simple
as that developed by powers of 2, in Mersenne transforms
and Fermat number transforms.

Recently, Reed and Liu [36] developed a high~radix
FFT algorithm for computing transforms over GF(pz), where
p is a Mersenne prime. This new algorithm requires substan-
tially fewer multiplications than the conventional FFT.

2. Transforms Over the Finite Field GF (p)

Colomb, Reed and Truong [19] introduces a Fourier-
like transform in GF(p), where p is a prime of the form
An = 3x2" + 1. This transform increases the variety of
methods and the digital word lengths that can be used for
computing the convolutions of integers beyond the previous
Fermat or Mersenne number transforms.

Let GF(p) be the finite field of residue classes
modulo p, and let the integer d divide p-1. Also let the
element Y'e GF (p) generate the cyclic subgroup of d elements,
Gd of GF(p).

Then a transform over this subgroup Gd can be

defined by the pair [19]:

a-1
Be o oF R TR Gz m ded (4.54a)
n=0
a-1
PR B W D (4.54b)
K=0
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L

where ar A, € GF(p) for n=20,1,2, ... d-1 and a)-

K
is the inverse of (d) mod p. Also it can be shown [19]
that the circular convolution of two finite sequences of
integers can be obtained as the inverse transform of fhe
product of the transforms defined by (4.54).

Notice that if Ph is a prime of the form 3x2® + 1

the order t of GF(pn) with generator a, is given by (2.14)
(4.55)

Since t has the factor 4 = 2n, the usual FFT
algorithm can be utilized to calculate the transform of as
many as d = 3 points. If 4 = 2K, l <K<nand a is the

generator of GF(pn), then the generator of'Gd is (by 2.20)

K n-K .
a3 2/2 = a3 . (4.56)

the basic operations used in the transform defined by (4.54)
are addition and multiplication mod 3x2" + 1.

Algorithms for searching a prime of the form 3x2% + 2
have been developed [19], and will not be discussed in this
thesis.

As a final remark about this trapsform one should say
that the same type of dynamic range constraint applies here
as in transforms over GF(pz), although in this case GF (p)

refers to. integer convolutions. A special number theoretic
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transform that can be computed using a high radix FFT is
defined [23] over GF(p), a finite field of integers modulo
primes p of the form (2“-1)2n + 1. Such primes are special

n

cases of numbers of the form 2m - 27 + 1 proposed by Pollard

[22].

L G L |

If p is a prime of the form p = (2
the order t of a primitive root in the finite field GF (p)

is given by

n n

£ = pi= st 2a = k)2 (4.57)
Since t has a factor 2n, one can choose 4 = 22, where
1l < 2 < n as the transform length. The arithmetic in

To12® 41 s similar to the arithmetic

GF (p) with p = (2
in GF(p) where p is a prime of the form 3-2"+1. Addition
mod p involves at most a triple binary additién [23].
Multiplication by a power of 2 mod p can be imple-
mented by using the combination of table lookups and mod p
addition [23]. However, multiplications mod p still needs
a full binary multiplication followed by a division 23] .
This seems a disadvantage when compared with Fermat number
transforms. The FI'T over GF(p) is similar to the FFT over
the complex number field, except that a root of unity y in

=327/d 2ng that integer arithmetic modulo

Gr' (p) replaces e
p is used.
It turns out [23], that the number of modulo p

multiplications required for the evaluation of an FFT over
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2n(2n-l) + 1, is greatly reduced when compared

GF(p), P
to the number of multiplications required to evaluate the
FFT over the complex number field.

It was found [23], that the number A_ = (2"-1)2"+1
is prime only for the cases m = 1,2,4,32. Hence only
transforms over GF(p) when p = (232-1)232+l have practical
application in digital filtering. The maximum transform
length in these conditions is equal to 4 294 967 296!

It can be shown that high radix FFT can also be

o

used to compute transforms over a finite ring modulo a
number of the form (2™-1)2"+1 with m even and m = 1 or
m=n, in a similar fashion for the GF(p) case. The condi-
tion for such a transform to exist was shown in References :
{22] and [20]. . |

3. Complex Mersenne Transforms and Complex Pseudo-
Mersenne Transforms

The main limitations of the Mersénne transform
approach are related to the fact that'the number of trans-
form terms g is a prime. This means that calculations of
the transforms cannot be simplified by an FFT-type algorithm
and that the number of transform terms is equal to the
word size. These limitations can be slightly alleviated by
using a root (-2) instead of 2 in (4.4) and (4.5), as said
previously (4.8). The maximum transform length then becomes
2g. It is also possible to increase the maximum convolution
size by resorting to multidimensional convolutions [3], [4],
[31]. Unfortunately, this result is achieved at the expense

of increased requirements for computation and storage.
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By defining Complex Mersenne Transforms, it is
possible to achieve higher computation efficiency while
increasing both maximum transform length and conveolution
length. Again, in a Merseene ring, with p = 29 - 1o i)
and (-2) are respectively roots of orders q and 2qg,
corresponding to transforms of lengths g and 2q, respectively.

Since ¢ is a prime, 2° and -29 are also roots of
q and 2gq, provided d is not a multiple of g (by 2.20).

Notice that (2j) is a root of order 4q, since

4

EHM o ot 3H%9 = ® 09 = 1 moa 28 - 1 (4.58)

Also (1+j) is a root of order 89, since
(1+9)%% = [+ 8¢

and

7 Bl 8 3 8 4 .4

B (g) B e 1 30 4 63 473

LA B0 R - B

3o 8 2 .6

. < PR
L % G - B L W R

1 +8j - 28 -56j+ 70 + 56j - 28°83 + 1

16 + 0j

9l
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Then

1+9)% = 2H9 = 29% = (1)? mod 29-1 = 1 mod 29-1 (4.59)
The same conclusions can be drawn with respect to (1-j),
ie., (1-j) is a root of order 89, in the ring p = Zq-l,
for g = 2,3;5,7,13,17,29,31;61,..-

Higher order complex roots do not have a simple
structure and therefore will generally not be of practical
interest.

Under these conditions, a Complex Mersenne Trans-

form having 4q terms can be defined by [24],

4g-1
y GARER SE TS L B Y (4.60)

J=m /=1 , K= 0,1, «co, dg=1

Notice that g has an inverse modulo p, and that the

; ; -2 ;
inverse of 4 is 2q , Since

4 = 22 1) B

mod 29-1 = 2972 (4.61)

for

22.2972 . 22.59.272 . 29 . 1 moa (29-1).
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Then 4q has an inverse R such that

(4gR) mod 29 - 1 = 1 moa 29 - 1

and the inverse transform of A, is

k
4g-1

& = R | 2 3™ o™ poa 2% -3 (4.62)
K=0
m=20,1, ..., 4g-1

where all exponents and indices are taken, modulo 4q,
in both (4.60) and (4.62).
Using a root (j+1) leads to a definition of a

Complex Mersenne Transform having 8q terms with

8?'1 a_ (1+5) K moa 29-1 (4.63)
n=0
K = 01, s+:¢r, 8g=1
and, with R such that (8gR) mod 29-1 = 1, an inverse
transform
8g-1
a, = R I A, (1+3) ™ moa 29-1 (4.64)
K=0
m = @, 1, wory 8q=1l,

with all exponents and indices taken modulo 8q.
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Computation of a complex convolution by means of
Complex Mersenne Transforms is carried out as with the
DFT, with real and complex parts being evaluated modulo p
separately. In order to avoid errors due to overflow, the
amplitudes of real and imaginary outputs must be bounded
to (p-1)/2. This means that usually the word length of
real and imaginary parts of input sequencds {an} and {xn}
is less than half that of output sequences. In other words,
all computations are carried out modulo p on g-bit words,
yielding g-bit word outputs, and the input sequences are
represented by words of length less that (g-1)/2 bits.
Notice that the calculation of these transforms can be
partly simplified by an FFT-type algorithm because the
number of terms is no longer a prime.

It has been shown [24] that, in the practical range
of interest for g (where g = 31), substituting Complex
Mersenne Transforms for conventional Mersenne Transforms
results approximately in an eightfold reduction in the
number of operations.

If the two sequences {yn} and {an} to be convolved
are real, the full benefit of using Complex Mersenne Trans-
forms can be retained by processing simultaneously two
successive blocks of sequence {yn} by means of the same
Complex Mersenne Transforms. This is done by computing the
complex convolution {zm}, of the sequence {an} with the
+ j.y }. The real

auxiliary complex sequence {xn =y

n n+8q
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part {um} and the imaginary part {Gm} of {Zm} yield
respectively the convolution of {yn} and the next block
{yf)’+8q} with {an}.

Up to now, the discussion of this section has been
restricted to Mersenne numbers, that is, to numbers
29

p = - 1 such that p is a prime. 1If p is not a prime,

its prime factorization is given by
R * Py * ... Py (4.65)

Recall that an m-point real transform having the circular
convolution property can be defined in the ring of integers
modulo p, provided m-point transforms can be defined
separately in the fields Pyr Ppsr «cer Py
This follows directly from the Chinese remainder
theorem (2.27), and leads to the conditions for the exis-
tence of an m-point transform in the ring p that m must
simultaneously divide pl—l, pz—l, o v g pi-l. When p is
a prime, the maximum length of the transform is M = p-1.
Transforms in a ring p, with p nonprime, are there
fore proportionally shorter than transforms defined modul
a prime number. If p and g are composites with g = 9,
and q, prime, 2q1-l divides p and the maximum transf
length is governed by that possible for 2q1-1.

This led Rader [3] to consider that the onl

of interest in a ring modulo 29-1 were Mersen:
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The situation changes noticeably if one considers
Comples Mersenne Transforms. Nussbaumer [24] shows that
given an m-point real transform of root 2 with p composite
and q, ,m odd integers, one can define 8m-point complex

transforms in the ring modulo p with

P §

8m-1 j =
Aom b G (4.662)
n=0 K = 0,1,...,8“\'1
8m-1
B = (8m) ™1 7§ e (143) 795 0w 0,1, c..p Bmel
=0

Notice that, the existence of an m-point real transform
in the ring modulo p implies that m has an inverse,

R modulo p. Also, the inverse of 8 modulo p, is
87! = 2973 gince 8x8l = 23.2973 2 23.59.273 = 2921 moa p
thus
(m)™! = 2973 . R mod p exists.
Table I shows the various possibilities for p

nonprime and odd q.

The case of q prime (q = 23,29,37,41,43,47) corres-

ponds to conventional Mersenne Transforms. When q is not a
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prime, the corresponding transforms are called pseudo-
Mersenne transforms. They have a very short length and
their roots are not powers of 2. Notice that, in order to
achieve maximum effectiveness in computing convolutions by
means of pseudo-Mersenne Transforms, it would be desirable
to have relatively long transforms with a number of terms
highly factorizable. This does not seem possible with
transforms modulo p = 29-1. one notes, however that when
P is not a prime, with the prime factorization of p defined
by (4.65), one can define transforms modulo p/pi i having
power of 2 roots and such that the number of terms is
large and highly factorizable.

These transforms can be defined by

8m-1 a

nkK 1
Ay = (] a, (143) ™) mod P/P; (4.67)

n=0

K - 0,1 oo 8m-1
i

Various possibilities of such transforms are listed in
Table II.

It can be seen that the maximum number of terms is
both large (40 to 392 terms) and highly factorizable, thereby
leading to efficient FFT type computation with a minimum
number of operations. It would seem, however, that these

advantages are offset by the fact that the various operations
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d,
are performed modulo (2q-l)/pi 1. The corresponding arith-

metic circuits are much more complex than arithmetic
circuits modulo 2%-1 [24].
This difficulty can be circumvented by noticing

that as

one can compute the convolution modulo p = 29-1 as with

conventional Mersenne Transforms and obtain the final
a.

result by performing a last operation modulo p/pi 1 on

the convolutions computed modulo p, i.e.,

di d

: i
zm mod p/pi = (zm mod p) mod p/pi

(4.68)

By proceeding in this fashion relatively long
convolutions can be computed efficiently by means of FFT-
type algorithms with all but the last operation performed
with implemented arithmetic circuits operating modulo (Zq-l)
[24].

Taking as an example the case of transforms defined
by q = 25, one can see from Table I that the maximum odd

25-1 is

length for real transforms computed modulo p = 2
15 terms and that the corresponding roots are nbt powers
of two. By operating modulo (225-1)/31, it is possible

to define real transforms having power-of-two roots with a

maximum odd length increased to 25 terms. The maximum




length is then expanded to 200 terms by using complex
roots. Such a transform can be computed very efficiently
by means of an FFT type algorithm with a three-stage radix
2 decomposition, followed by a two-stage radix 5 decomposi-
tion.

One limitation of conventional Mersenne Transforms
is the rigid relationship between word length and trans-
form length. In this respect, pseudo-Mersenne Transforms
provide a significant improvement because their maximum
number of terms Mmax is highly composite and any transform
length submultiple of Mmax can be selected.

It is even possible to have several transforms of
identical length and defined modulo integers Pys -+ Py
that are relatively prime. The convolution car then be
computed ;eparately modulo Pyr -+ Py and then the final
result obtained modulo (pl-pz---pi) by the Chinese remainder
theorem. This approach could, for instance, be used to
compute a 40-term convolution with an approximate word
length of 32 bits by means of transforms defined by
modulo (21°-1)/7 anda (225-1)/31.

4. Pseudo Fermat Number Transforms and Complex
Pseudo Fermat Number Transforms

This section considers a generalization of Fermat
Number Transforms, such that transforms having roots which
are powers of 2 are defined in field or ring which is a
factor of an integer, p = 29+1. with such pseudo Fermat

Number transforms it is possible to have much more flexibility
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in selecting desired word lengths than with conventional
Fermat Number Transforms. In some cases it is possible
to define complex pseudo FNT's which are well adapted for
filtering complex signals and allow increased transform
and convolution lengths when compared to conventional
FNT's.

Number theoretic transforms in a ring submultiple
of p = 29+1 are called pseudo Fermat Number Transforms
[37].

If one restricts to roots 2 , one can define an

M-term pseudo FNT and its inverse by

M-1

4 d
Ag = (1 a, 2™ mod p/p; *
n=0
o =wmK i
ay (R ] Ap 2 ) mod p/py
K=0

m=20,1 ... M-1
d4
with MR = 1 mod P.-P; -
It can be seen that these transforms have the same
structure as pseudo Mersenne transforms but are defined in
a ring submultiple of 2941 instead of a ring submultiple
of 29-1 for pseudo Mersenne transforms.
The choice of the particular ring on which pseudo

FNT's are defined is very important. Usually, p will be
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divided by its smallest factors, with the remaining factors
large enough to allow defining long transforms with powers
of two roots. Pseudo FNT's can be defined to g even and g
odd [37]. Various possibilities for such transforms with gq
even are listed in Table III.

It can be seen that there is much more flexibility
in word length and transform length selection than with
transforms defined modulo 29+1.

Here also as in the case of pseudo Mersenne trans-

: . : q d;
forms, performing the various operations modulo 2 +l/pi ”

would seem rather awkward, as the corresponding arithmetic
circuits are much more complex than those operating
mod (2q+1). Again the solution is to compute the convolu-

tion modulo p = 29+1 as with conventional FNT's and obtain

. d.
the final result by performing a last operation modulo p/pi +

on the convolution evaluated modulo p:

d. 4.
g i
Zm modulo p/pi = (zm modulo p) modulo p/pi

(4.70)
Assuming the factorization of the number of transform terms

is given by
TR T TR Mj ~ (4.71)

the pseudo FNT can be computed by a mixed-radix FFT-type
algorithm.
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If q is odd, it is possible to increase the maximum
transform length [37] by using complex pseudo FNT's. The
existence of complex pseudo FNT's can be demonstrated by

considering an M term pseudo FNT defined in the ring

d. d.
p/pi 1= (2q+1)/pi 1 with a root 2" of order M.

Notice that if W and g are odd, the condition
M-+W = 29 (4.72)

implies that M is even, and M/2 is odd. Under these

W

conditions, (-2) is a root of order M/2 since

(=22 . (W2 o ()22 . ()9

(-29429%1) = 1 mod 29%+1 (4.73)

and (-2)Wd is also a root of order M/2, provided 4 and q
have no common factors [37]. This suggests that (2j)w is
a root of order 2M, since
eH"M = 2t - 2H43H9 = 11T = 1 moa 2941
(4.74)

and (l+j)w is a root of order 4M since

(1+J')W4M = (1+j)8q = (24)q = (2“)4 = (-1)9 = 1 mod 2941

(4.75)
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thus a 2M term pseudo FNi can be defined as [37]

gy . WnK o S Sl i
Ay = (1 a; (23)") mod p/p;
Sl K=20,1... 2M-1
(4.76a)
%
As M has an inverse in the ring p/pi and 2 is relatively
4.
prime with p, 2M has an inverse R in the ring p/pi 1 and
an inverse transform can be defined by [37]
2M-1 a
% .\ =WmK i
i, = (R ] Ay (23) ) mod p.p; (6.76b)
K=0

m=20,1, ... 2M-1

with all exponents and indices takeﬁ modulo 2M.

It can be demonstrated that the transform satis-
fies the convolution theorem [37], and that two complex
sequences of length 2M can be cyclically convolved via
complex pseudo FNT's modulo p/pi i.

In such an approach, all arithmetic operations are
performed as in normal complex arithmetic with j2 = -],
and real and imaginary parts treated separately modulo p.
The final convolution product is obtained by performing a
last operation modulo p/pidi.

A 4M-points complex transform can be defined by

using a root (l+j) instead of (2j) [37]




4M-1 a

_ .y WnK 1
ko= ) a  (143) ) mod p/p; (4.77)

n=0

K=20,1... 4M-1

Higher order complex roots have a complex structure and
therefore the maximum length of complex pseudo FNT's which
can be computed without multiplications is 4M in the general
case, and 8q when W =1 (M = %?).

It can be seen that using complex pseudo FNT's
allows for a given computation complexity, operation over
transforms and convolution lengths twice as long as with
real Fermat and pseudo FNT's.

In particular, when W = 1, the maximum length of
an FNT is 4q for a root V2, while the maximum length of a
complex pseudo FNT is 8q for a (l+j) root.

Various possibilities, g odd, for complex pseudo
FNT's are listed in Table IV. It can be seen that for g
prime, we have complex transforms of length 8q with root
(1+j). These transforms have a number of terms which are
not highly factorizable.

A more interesting case seems to correspond to
those nonprime values of q, for which it is possible to
define transforms with a number of terms which are both
large and highly factorizable and therefore lead to efficient

computation via an FFT type algorithm.
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In these respect, the 200-points and 392-points
transforms defined respectively modulo (225+1)/3.11 and
(24Q+1)/3.43 are particularly attractive.

It is sometimes desirable to compute convolutions
with improved dynamic range. In this case the same convo-
lution can be computed modulo several relatively prime
integers Pyr Pyr «ee Py and the final result obtained
modulo (p1°p2---pi) via the Chinese remainder theorem.

For this application, the availability of complex pseudo
Mersenne transforms and pseudo FNT's having the same length
and defined modulo relatively prime integers is particularly
interesting. A 200-point convolution could for instance

be computed with a dynamic range of about 40 bits via complex
pseudo Mersenne transforms defined modulo (225-1)/31 and

via complex pseudo Fermat transforms modulo (225+1)/3.11.
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V. IMPLEMENTATION OF FERMAT NUMBER TRANSFORMS

The best known number theorefic transform is the Fermat
Number Transform (FNT). FNT are potentially attractive
for digital filtering applications because they have the
convolution property (3.5) and can be computed without
multiplications.

In principle, such Number Theoretic Transforms (NTT's)
could be implemented in the same way as Discrete Fourier
Transforms but with multiplications by trigonometric func-
tions replaced by multiplications by powers of two, all
operations being performed modulo a Fermat number.

In practice, however, direct transposition of Fast
Fouvrier Transform (FFT) architectures does not necessarily
lead to optimum implementations and the development of
special configurations to computing NTT's seems worth
exploring. Along these lines, the special attributes of
the FNT, led several researchers to consider various coding
techniques for simplifying the implementation of the trans-
form and special purpose implementations of the FNT.

This section will discuss these concepts. In part A
various coding techniques are presented and in part B the

realization of the FNT is considered.

A. BINARY ARITHMETIC FOR THE FERMAT NUMBER TRANSFORMS

In computing the FNT, arithmetic is done modulo Ft = 2b,

b = 2% (4.11). In this arithmetic the only allowed integers
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are {0,1 ... 2b} and all integers whose absolute value do

not exceed

b b
% o RETEREwE - T
e Blle e et E it ¥3.4)

can be represented unambiguously.

b+1 to

Negative numbers are represented by adding 2
them; this is similar to twos complement and ones comple-
ment representation of negative integers.

Notice that in a b-bit register, all integers from

0 to Zb—l can be represented.

Example: Let F, = 2°+1 = 2%1 = 17 b=2%=222-4

(i) allowed integers {0,1,2, ..., 16 = 2%}
(ii) absolute values of number that can be represented
unambiguously do not exceed

F_-1
%—:%—l= 8 =.2 = 2 = 8

(iii) negative numbers:
-5 = (=5+17) = 12 mod 17
(iv) a b = 4 bit register allows as maximum

1111, = 8+4+2+1 = 15., = 21 = 2%1 = 15

2 10 10
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Thus, using a b-bit register, the problem remains to

represent the quantity 2b (in the example above, 2b = 24 = 16).

If data is uncorrelated, the probability that this number

will appear after an arithmetic operation is approximately

270 171,

For digital filter applications, b would typically be

b

32 or 64; in these cases the occurrence of 2~ is extremely

small.
In their software realization of the FNT, Agarwal and

b

Burrus [4] define a binary arithmetic modulo F, = 27+1,

t
b = 2t. The representation of such a modulus requires

(b+1) bits, for the representation of the éuantity Zb =1
mod Ft. In order to simplify modular arithmetic, Agarwal
limits his realization to a b-bit arithmeﬁic.

This involves some input quantization error where (-1)
occurs as an input sample, as well as the extremely small,
but realistic, probability of a complete data block in
errcr when a (-1) occurs as the result of an FNT computation.

The following discussion is based on the b-bit represen-
tation of integers. The various basic arithmetical opera-

[4].

tions can be implemented modulo Ft

(i) Negation
b-l i .
et A~ I &, & , & =m0 & 1 (5.2)
o i

Then by [4]
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b-1 ' b-1
-Aa = ] a2t = [ a72t- (2P (5.3)
i=0 i=0
Example: Let A =8 = (1000), = 8 mod 17 (= 2%+1).

Then
A ® (0311 » (3%1) = T - (18) = B

Notice that (5.3) can be arranged in the following form:

b-1
- =« § 33~ a@Pu
i=0

[

i

= J 3; 2" - @%1) + (2P41) moa F,

« LRy (5.4)

Thus to negate a number, one has to complement each bit

and add 2 to it.

Example: Let Ft = 17
0111
A = 8 = 1000 -A = -8 = { +10} = 9 mod 17
1001
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Example: Let Ft =2 +1 = 17
0111

and A =28 =1000; -8 = +10 = 9 mod 17
1001

(ii) Addition
When one adds two b-bit integers, one obtains a

b-bit integer and possibly a carry bit. The carry bit

represents 2b = -1 mod Ft'

To implement addition in arithmetic modulo 2b

+1,
one simply subtracts the carry bit. Thus the hardware

should be of the carry subtract type.

Example: Let F, = 17 ( \

15+10=25=8modl7=$+ 1010 )= 8 mod 17
1010

(iii) Subtraction
Subtraction is implemented as an addition by first
negating the subtrahend and then adding terms. Addition

must be carried out according to (ii).

Example: Let Ft = 17
13 = 1101
13 -4 = 13 + (-4) =Y-4 =(-0100 = 1011
+10
1101
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1101
101
010
-1
1001 = 9 mod 17

13 + (-4) = 9 =

(iv) General multiplication
When one multiplies two b-bit integers, one gets
a 2b-bit prq@uct. Let CL be the b-bit low order of it
and CH be the b-bit high order part of it, then

b :
AxB CL + CH 2 = CL + ( CH) mod Ft

Thus, all one has to do is subtract the higher order b-bit
register from the lower order b-bit register. The subtrac-

tion needs to be done according to (iii).

Example: Let F_=2%4+1=17

15x10 = 150 = 14 mod 17

Now
150, , = (l%gl 2%12,2, and by (i)
H L
¢, = 0110
Cy = 1001~ 0110 (=Cy) = 1000
+10 1110 = 14 mod 17
1000
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(v) Multiplication by a power of 2

If x is taken as 2 or a power of 2 (in 3.7),
the only multiplications involved in taking the Fermat
transform are those by some power of +2. These multipli-
cations are particularly simply to implement in arithmetic
modulo Ft' Suppose one needs to multiply A by ZK,
0 < K < b, all one needs to do is shift to the left the
content of the register by K bits, and subtract the K
overflow bits (assuming double b-bit registers). If K is
outside the range 0 < K < b, one makes use of the fact

b

2" = -1 mod F_.

t
Computation of the inverse transform requires
multiplicaticns by negative powers of 2 which can be

converted to positive powers by the following relationship

3 & P gE . s F, (5.5)
Example: Let Ft = 24 + 1 =17
(i) 15x22 = 60 = 9 mod 17 15 = 0000 1111
0011 1100

Shift left 2 positions < ¢
H L

Cy = 0011 — 1100 c, = 1100
+10 (-C,) = 1110

-c, = 1110 (EE?IO

-1

1001 = 9 mod 17
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(ii) 13x273 = 13x (-2%73) = 13x (-2) = -26 = 8 moa 17
13 = 0000 1101
CH CL

Shift right dircularly 3 positions 1010 0001

Cq CL,
CL = 1010 0101 CH = 0001
+10 (-CL) = 0111
-C. = 0111 1000 = 8 mod 17

For the implementation of the Fast Fermat Transform, unlike
the FFT, one does not need to store the powers of x. For
serial arithmetic, one could have a register which stores
the shift amount K, and as one goes aldng‘the Fast Fermat
Transform flow chart, one coﬁtinually update the shift
amount. This realization of b-bit arithﬁétic involves, as
previously said, some input quantization error when (-1 = 2b)
occurs as one input sample, as well as the extremely small,
but realistic, probability of a complete data block in error
when a (-1) occurs as the result of a FNT computation.

It is, of course, desirable to compute the FNT
exactly. The difficulties in performing binary arithmetic
modulo Ft’ become apparent when one considers, for example,
multiplication or addition in a ring of integers modulo Fes
involving the binary representation of -1-= 2b. For example,

b

when b = 4, 27+1 = 17 the product of 10000 (-1) with itself

is 00001 (+1).
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A technique for the exact computation of the FNT
and its implementation are described by McClellan [26].
McClellan's approach involves the definition of a new binary
code representation for the integers modulo Ft.
Given a binary representation of (b+l) bits,

lagr ap_q -+ a,] (5.6)

this new code is described as follows. If

a, = l then A = 0
(5.7)
it 4 b-1 b-2
a = 0 then A=o , 2 + 0, 5 2 * oase * 8
where
1 if aj =1
oj = (5.7a)
-1 if a. =0
J
b 4 =
Example: Let Fg =241 = 2'+41 = 17, b =4

10000 represents zero

3 2 1

00111 -2 + 2% + 2

01011 23 -22 424+ 1 =7 mod 17

+1=-1=16 mod 17
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and 10101 is an illegal coﬁbination, since the only allowed
number with the most significant bit (MSB) equal to 1 is
10000 (zero). Consider arithmetic operations using this
number representation.
(i) Multiplication by a power of two.

If the number is zero (i.e., a, = 1) one does nothing.
If the number is nonzero, the low order b bits are circularly
shifted to the left a number of places equal to the power
of 2, and a bit is replaced by its complement as it enters

the least significant bit position (LSB).

Example: Let F_ =21 =2%1=17, b=4
Using the proposed code
3 2 i
01100 = 3" + 2" »+ 2 -1 .= 9 mod 17

applying the above rule

9x2 = 7?2
4 lower order bits
9 01100
X
2
01001

18 = 1 mod 17 = 01000 = 23-22-2-1 = 1 mod 17
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Further,

9x 8 = ?
9 01100
X
2
01001
18 = 0100
X
2
00001
36 0000
x l
2
00000

7% = 4 wod 17 = 00001 = =27%2%<241 = <13417 = 4 mod 17.

In a hardware implementation the MSB is used as a control
bit. If it is one then the number is zero and the rotation
is inhibited. This is characteristic of all operations

using this new coding scheme.

(ii) Negative of a number
This is done by complementing the low order b bits
except in the case where a, = 1. Again the MSB is a control

bit that inhibits the operation if it is one.




Example: Let F_ = 2

Using the proposed code

3

A = 01101 = 22 + 22 =2 51 « 11 med 17

and by applying the above rule

-A = 00010 = -23-2242-1 = -11 mod 17

(iii) Addition

If either or both of the operands for addition are
zero (i.e., a, =1 or ey = 1), then there is no addition
to take place. That is, these special cases can be sensed
and the addition inhibited. Now consider the addition of
two numbers A and C where A # 0 and C # 0.

Let

]
o

b -1 "°° 3 with ap
(5.8)

and

cb cb_1 S co with cb =0

Interpret the b LSB's of A and C as the binary

representation of A and C, and form the same A and C using

unsigned binary addition to obtain D.




That is

- Mt b-1 b-2
A = a _, 2 +a _, 2 t oot oag
(5.9)

+

g -1 b-2

Rt 2 + Cpyo 2 * e,

e R b b-1 b-2
A+C =D = d 2" +d,_, 2 +d, 5 2 t ...+ dy
It is possible to deduce from D, the desired sum
b
D = (A+C) mod 27+ [26].
Notice that
A = 2A + 2 [26] (5.10)
b I 4
Example: Let Ft =2"4+1 = 27+1 17 -
Using the proposed code
F) 3 2 i

A = 01010 = 2" -2 + 2 =1 = 5 mod 17
by (5.9)

A =. (1) 2%+ (0) 22+ (1) 2t + 0 29

= 8 + 2 =10
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To deduce from D the desired sum D, verify that

D = A+C = 2A+2 + 2C+2 = 2A+2C+4 mod 2P+1 .
Example: Let Ft = 17
and
A=01010=5 A = (127 + (0022 + (1)2 = 842 =
C = 00011 = 8 c = (2l + (1)2° = 3 moa 17
So
D=210 + 20+ 4 = 2(10) + 2(3) + 4 = 30 = 13 mod 17

and, checking

D=C+A=8 +5 =13 mod 17.

10 mod 17




If D can be expressed as

b

D = 2D+ 2mod 2 + 1 (5.12)

with D a b-bit number, then the b-bits of D are the

b~LSB's of D [26].
Example: Let Ft = 17

and

D

01010 2" = 2" + 27 -1=10-5 =5 mod 17

Since D can be expressed as:

2D+ 2 mod 17

o
]

where

D =1010 = (1)23 + (0)2% + (1)2 + (0)1

8 + 2 =10

(check: D= 2D + 2 = 2(10) + 2 = 22 = 5 mod 17)

the 4 bits of D = 1010 are the 4 LSB's of D = 01010.

There are two cases depending on the value of db an {35.9).

l-1If4 =1, then by [26]

b

b

b,ip' = p' -1 mod 2°+1 (5.13)

D = 2
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Example: Let Ft

and

one

>

A = 01010

cC = 0l011

has

@23 + 022 + 2!

)23 + (0922 + (2!

h

17

(8}

mod 17
7 mod 17

+

(0)1

]
(o]
+
[\S]
1

+ (1)1

it
o7
+
N
+
[

1l

[« 3 (o)

one

W24 + 023 + (122

Comparing with

verifies that

in these conditions

= 2" 4+ B

o>

where, by (5.13)

+
+
]

(0) 2% 21

+ * s 0
an

mod 17

125

4 mod 17




]
o>
+
(-

D'

Then

checking (5.13). Thus,

D= (2A + 2C + 4) mod 2P

D= (2¢' + 2) mod 22 + 1

and
e = o
Example: Let Ft =
A = 01010 = 5
€ = Qloll =" 3
D = A+C = w12
one has
A = 10
€ = 1]
D= A+C = 21

+1 =

4 +1 = §,

4 = 5-1 = 4 mod 17,
(2D+4) mod 2°+1
(5.14)
(5.14a)
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SO

2(A +C) + 4 mod 2P

(1) D= + 1
D= 2(10+11) + 4 = 42 + 4 = 46 = 12 mod 17
(2) D= (2D + 4) mod 17

D=2(21) +4 =46 = 12 mod 17
(3) In the previous example D' = 5

so

D = 2(5) +2 = 12 mod 17

The condition D = D', in (5.l14a), can be verified:

A = 01010 = 5
+
C_ = 01011 = 7
D = a+C = C:Eifl
0

0101 = -8 + 4 - 2 + 1 81-5 = 12 mod 17
Since
D = 23+ (122 + (2 +1 = 5 mod 17 (by 5.12)
then

D' = 5 mod 17.

(=]
1
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2~ 1f4a =0 in (5.9), then [26]

b

D = 2D' + 4 mod 2P+1
and
D = D' +1
Example: Let Ft =17, b =4
A = 00 111 = 16 mod 17
C = 01011l = 7 mod 17
s
D = 00 010 = -8-4+42-1 = =11 =
Since by (5.12)
& 3 2
D = (0)2° + (0)2° + (1)2 + (0)
and by (5.16)
D' = 1

checking,

b

D = 2D' + 4 mod 27+1 by (5.15)

D = 2(1) +4 = 6 mod 17.

6 mod 17

(5.15)

(5.16)




Notice, that, this way of performing addition results in an
extra level of add, as in the case of 1's complement arithmetic.
In 1's complement arithmetic, the output carry is
added to the LSB.
In this new mod(2b+l) arithmetic, one takes the output
carry, complements it and adds it to the LSB. That is,
this new arithmetic is only as complex as the 1l's complement
arithmetic.
There is a small amount of additional complexity due

to the control bit, but this acts only as an inhibit signal.

Example:

(1) 01111 = +8+4+2+1 = 15 mod 17

00011 = -8-4+2+1 = -9 = 8 mod 17

0

00010 = -8-4+2-1 = ~11 = 6 mod 17
(2) 01111 = 15 mod 17

10000 = 0

01111 = 15 mod 17

MSB = 1 inhibits the addition

(3) 01011 = 8-4+2+1 = 7 mod 17

(+#) 00100 = -8+4-2-1 = -7 mod 17

Quu

1
10000

0 mod 17




In this last example note that the second add automatically
produced the control bit indicator, for the special case
of zero.

How does one convert from a binary coded representation
of numbers to this new representation?

The code conversion between a binary representation
and this new code falls into two cases.

Let M be a number which is represented in both codes.

m My _q cee My (5.16)

be the binary representation of M.

Let

o, By e By - (5.17)

be the new representation.

Also, let ﬁ be the number represented by interpreting
(5.17) as a binary code. The conversion rules are as
follows:

1) 1fM =0, thenm =1, M= 0, and my = 0 for
K=0,1, ... b-1l.
This is a special case and is done separately.

2) If M # 0, then ES = 0 and
M = (2M + 2) mod 2P + 1 . (5.18)
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Conversion from the new code to binary is implemented

by forming 2M + 2 and comparing this sum to 2b.
If the sum is larger than 2b, then 2b+1 is subtracted

to give the proper binary representation of M.

Example: Let Ft = 17

2

M 01011 new code = 2°-224241 = 7 mod 17

M = 8+2+1 = 11

By the above rule
2M+2 = 2(11) +2 = 24 = 7 mod 17
and
7 = 00111 binary représentation of M.

If the binary representation is given the sum

is formed. 1If the result is odd, 2b+l is subtracted; and

finally this result is right shifted one place. The resulting

b bits are the b LSB's

Ef-l ES-Z cee my
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Example:

Given the binary representation of M

Let Ft =17, b = 4.

11111 = 14 mod 17

to obtain new code:

(1)

(ii)

(iii)

(iv)

Notice that the code described so far, due to McClellan [26],

form
b
M+2-1 = 14 +16 -1 = 29
the result is odd then by the above rule.
29 - 17 = 12
12 i p
. i 6 00110 binary representation

new code 4 LSB's of the binary obtained in

(iii), i.e.,

new code 00110 = =8+4+2-1 = -3 = 14 mod 17

is a special case of a more general class of code trans-

lations discussed by Leibowitz [27].

These translations involve the one-to-one representation

of a number A in the ring of integers modulo Ft' as the

binary number corresponding to

RA~-1mod F (5.20)

where R is any integer in the ring with an inverse [27].




Notice that the code representation of McClellan [26]

corresponds to the case of [27]

R = 21+ 1moaF, (5.21)
Example: tet F =22 +1=2%41, bay
then

Re=2%141 = 2341 = 9 mod F,

Using (5.20), for A

5 mod 17 the code will be given by

RA=l = 9(5)=~1 = 44 = 10 mnd 17
lOlo = 01010 code
checking, using (5.7)
01010 = +8-4+2-1 = 10-5 = 5 mod 17.

Notice that the simplest code translation corresponds to
R =1, for any value of b. Leibowitz [27] concentrates on
the resulting binary arithmetic for the code translation
corresponding to R = 1.

Recall that to represent all integers in the ring modulo
Ft requires (b+l) bits. The additional bit is required in

order to represent the number 2b = -1 mod Ft'
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In order to overcome the problem qf performing binary
arithmetic with this additional bit, one allows the addi-
tional bit to be a 1 only when the number to be represented
is a zero.

One way to do this is achieved by subtracting 1 from
the normal binary representation of every integer in the

ring and corresponds to the above set of code translations

with R = 1.
Example: Let Ft = 2b4-l = 24-+1 = 17, b = 4
Normal value Binary representation Diminished -1
value (R = 1)
0 00000 it
1 00001 2
2 00010 3
3 00011 4
4 00100 5
5 00101 6
6 00110 7
7 00111 8
8 01000 9(-8) (5.22)
92(~8) 01001 10(=7)
10 (=7) 01010 11(-6)
11(-6) 01011 12 (-5)
12 (=5) 01100 13(-4)
13(~-4) 01101 14 (-3)
14 (-3) 01110 15(-2)
15(~2) 01111 16 (-1)
16 (~1) 10000 0
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In the diminished -1 number representation the b-least
significant bits (LSB's) indicate the normal value of the
number. The numbers from 1 to 2b are represented in order
by the binary numbers from 0 to Zb- 1

Using this representation, the arithmetic operations
necessary to perform convolution by FNT's, will be discussed
next.

1. Negation

It can be seen from (5.22) that each of the negative

numbers (>2b-l = 8) is the b-LSB's complement of its

positive counterpart.

Example: Let Ft = 17
Diminished -1 value Binary representation
A=6 | ‘ 00101
-A = -6 = 11 01010

Notice that if the MSB is 1, the negation is inhibited.
Thus, the negative of a nonzero number in the diminished
-1 representation is the complement of its b-LSB's.
2. Addition
To perform addition of two numbers represented as

(A-1) and (B-1)

(A-1) + (B-1) = (A+B-1l) -1
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and thus
(A+B-1) = [(A-1) + (B-1)] + 1 (5.23)

Since the (b+1)th bit of the addends is used only to
inhibit addition if an addend is zero, addition of nonzero
addends involves only the b-LSB's.
Equation (5.23) indicates that a 1 must be added
to the sum of two diminished (-1) numbers to provide a
correct result. When a carry is generated from the b-bit
sum, a residue reduction modulo F, requires the subtraction
of a 1 since 2b = -1 mod F, and no corrective addition it
necessary. Thus to add to numbers in diminished -1
representation:
1) If the MSB of either addend is 1, inhibit the
addition and the remaining addend i; the sum.
2) If the MSB of both addends are 0, ignoring the MSB,
add the b-LSB's, complement the carry and add it to

the b-LSB's of the sum.

The (b+l)th bit or MSB of the resulting sum is the carry

out of the b"" bit.
Example: Let Ft =17, b = 4
La Diminished -1 value Binary representation
add 3 00010
+
2 00001
ot 1
5 00100




add 7 00110
o

0 10000

7 00110

3. add 13 01100
+

9 01000

CEQiSO

0

22 = 5 mod 17 00200

4. add 4, 01010
=

6 00101

(S

R

17 = 0 mod 17 : 10000

3. Code Translation

Let B represent the binary representation of a given
number and D its diminished -1 representation.
To perform code translation from binary to diminished

-1 representation, one does a diminished -l_addition of B

and the binary representation of P [27].
Example: Let Ft =17, b = 4.
Binary number B = 00101 = 5

2.1 « 01112

Diminished ~1 value D = 00100
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i.e., the binary number B = 00101 = 5 is represented in

diminished -1 representation by

D = 00100 = (4) = (5-1).

The translation from diminished -1 representation

to binary representation, is performed by complementing the

MSB of D and adding it to the b-LSB's [27].

Example:

Diminished -1.

o

n

o
‘l—l
o
w

]
o
o
o
=
=

Binary B

Example: D = (j&gfo 0 Diminished -1 representation

B = 00000 Binary representation.

4. Subtraction

One can perform subtraction in the dimished -1
arithmetic by negating the subtrahend and adding it to

the minuend.

Example:
Diminished -1 Binary representation
subtract 8 00111
o, Ao 01010
woo
0
2 00001




5. Multiplication by Powers of 2

In performing a multiplication if the multiplier or
multiplicand are 0, as detected by the presence of a 1 in
the (b+1l)th bit, the multiplication is inhibited and the
product is zero.

To perform multiplication of diminished -1 numbers

by powers of 2, notice that:

(A-1) 2

(32=1)} -~ 1

and thus

(2A-1)

(A-1)2 + 1 (5.24)

therefore, each multiplication by two invélves a left shift,
ignoring the MSB, and a corrective additioh of a 1. If the
bit shifted out from the bth position is a zero, it is com- |
plemented and shifted into the LSB in order to accomplish
the addition of a 1. If this bit is a 1; a subtraction of
1l is also required to accomplish a residue reduction (2b= -1).
With the corrective addition of +1, these cancel out and a
0 is shifted into the LSB.

Thus for each factor of 2, a left circular shift
of the LSB's is required and the bit circulated into the

LSB is complemented.
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Example: Let F 17, b = 4

16x0 = 250 = 222%222%9 » § nod 17

¥
9 01000
2x9 d&6
4x9 #0001
8x9 oioon
16x9 00111 8 mod 17

6. General Multiplication

The last operation required to carry out convolution
with the FNT is a general multiplication by'ény two
integers modulo Ft'

To perform a multiplication of the numbers A and
B represented as (A-1) and (B-1l) in diminished -1 number

representation system, notice that

(A-1) (B-1) A+B - (A+B) + 1

(A-B-1) - (A+B-1l) + 1

and the desired result is

(A-B-1) = (A-1) (B-1l) + (A+B-1l) -1 (5.25)

thus, to carry out such an operation, ignore the MSB's,

perform a binary multiplication of the diminished -1
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representation of A and B, add this result to the b-LSB's
of the diminished -1 addition of A and B and then perform a
residue reduction by a diminished -1 subtraction of the
b-MSB's from the b-LSB's.

Notice that this particular general multiplication
scheme is not applicable with code translations other than
that corresponding to R = *1. As discussed previously,
if the MSB of either the multiplier or the multiplicand is
1, then the multiplication is inhibited and the result is

set to zero.
Example: Let F_ =17, b = 4.

Multiply
13
%
11
143 = 7 mod 17

binary multiply diminishéd--l.add
01100 a : 01100

01010 01010

011000 - (}Eiio
0

0110000

01111000 00110
binary add 00110 .——————'“‘“"'—_——_——————————

01111110

residue 1000

reduction C321}°

0
00110 7 mod 17.




An alternate multiplication technique can also be considered.
Assuming that the numbers are determined to be nonzero and

a multiplication is required, a translation to normal binary
coding is performed. Following a binary multiplication, a
residue reduction by diminished -1 subtraction of the b-
MS's of the product from the b-LSB's is carried out. The

result is the desired product.

Example: Let Ft =17, b = 4

multiply 13
X
11

143 = 7 mod 17

translate (:E&PO binary multiply 01101
1 01011

01101 01101

01101

translate CM].O 011010

1 10001111

01011 0111

Quz1o0

0

7 mod 17 00110

Since in most cases the translation from diminished -1 to
binary will be simpler and faster then a general binary
or diminished -1 addition, the second technique is the most
preferable.

To conclude part A of this section, one can say that

Leibowitz [27) presents a binary arithmetic applicable to
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the exact computation of the FNT, that this diminished -1
representation is mathematically simpler than that of
McClellan [26]. Also the hardware presented in [26] to
compute the FNT, and discussed in part B of this section,
can be applicable to this new technique with the exception

of the code translation.

B. SOFTWARE AND HARDWARE REALIZATIONS OF THE FNT

The Fermat Number Transform has been proposed as an
aid to the rigid and precise computation of convolution for
digital filtering applications. Since this transform does
not require multiplications, it is considerably faster
than the FFT [17].

In what follows, a discussion of a softwére implementa-
tionAof the FNT, due to Agarwal and Burrus [4], as well as
the description of a special purpose hardware to compute the
FNT, realized by McClellan [26], is presented.

In their assembly language realization of the FNT, on
the IBM 370/155 computer, Agarwal and Burrus define a

b

binary arithmetic modulo Ft = 2"+1, b = 2t.

Notice that the IBM 360/370 series uses a 32-bit word
length for fixed-point arithmetic, and therefore is well
suited for the implementation of convolution using the FNT

32

modulo F. = 2 + 1.

5
It has two's complement representation of negative
integers, i.e.,

(-x) is represented as 232 - X ‘(5.26)
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Since in arithmetic mod Ft one wants negative integers
2
to be represented as a complement of 2"2 + 1, 1.e.

(-x) is to be represented as (232+1—x) (5.27)

One adds 1 whenever a negative number is encountered in

data.

As noted before with b bits, the quantity 2b = -1 mod Ft
has no representation. Thus in the 370/155, one cannot
represent 232 = -1. If a (-1) is encountered in the data
it is rounded either to 0 or to -2. If data is uncorre-
lated, the probability that (-1) will appear after an
arithmetic operation during the various stéges of the FNT
computation is roughly 4

et BT o (5.28)

To add two 32-bit integers modulo F the logical add

5’
instruction (ALR) is used which adds the two integers and
sets the condition code depending on cérry Oor no carry.

After the logical add instruction, a conditional branch is
taken depending on the condition code. If the condition

code indicates a carry bit in the logical add operation, one
is subtracted from the result, otherwise it is left unchanged.
This sequence of operations completes one addition modulo F5.

Similarly, subtraction modulo Fs is performed using a

logical subtraction (SLR) instruction followed by a conditional




branch instruction. To multiply a number by

2% moa F_ , 0 < K < 32

5
the number is loaded in the odd register of an even-odd
fair of registers. The even register is filled with zeros
and this double register is shifted left by K positions
using a shift left double logical (SLDL) instruction.
After the shift operation, the even register is subtracted
from the odd register, modulo FS' This sequence of instruc-
tions completes multiplication by 2K mod FS.

To multiply a number by

mod F Q <K< 32,

5 7
the number is loaded in the even register of an even-odd
pair of registers, the odd register is filled with zeros
and this double register is shifted right ﬁy K positions
using a shift right double logical (SRDL) instruction.
After the shift operation, the odd register i; subtracted
from the even register, modulo FS' This sequence of
operations completes multiplication by 2-K'mod F.. To

5

multiply two numbers mod F. requires a somewhat larger

5
number of operations. First one determins the signs of
the two integers and multiply the signs. If any of the

numbers is detected as negative, its absolute value mod F5
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is taken by taking its two's complement and adding one to
it. Their absolute values are multiplied (MR) to obtain
a 64-bit double-register product, then the even register
(higher order 32 bits) is subtracted from the odd register

(lower order 32 bits) mod F Finally, if the product of

5
signs was detected negative, one multiplies the result by
(-1) by taking its two's complement and adding one to it
[(5.27].

Assembler subprograms were written [4] to compute Fast
Fermat Number Transforms and inverse Fermat number transforms

1 to 26, taking x as a power of

for an sequence length from 2
2. A decimation in frequency algorithm with normally
ordered input and bit reversed output was used for the
computation of the Fast Fermat Number Transform [4]. A
decimation in time algorithm with bit reversed input and
normally ordered output was used for the computation of the
fast inverse FNT.

For both of these subprograms, the only multiplications
required were by a power of 2, which were implemented as
discussed above. Two more subprograms were written to
compute fast FNT's and inverse FNT's for iength - 128
sequences, using o = V2 given by (4.16).

Multiplications required to multiply the two transforms
are general multiplications mod F5 and are performed as
discussed earlier.

To cyclically éonvolve sequences longer than 128, two-

dimensional convolution schemes were used.




One such scheme was 2 by 128 convolutions for length
256 sequences discussed in section 10 of [18]. Another
program was written to convolve long one-dimensional
sequences using two-dimensional FNT, as discussed in
Appendix B. In Section 6, results of the comparison with
the FFT are presented.

The special attributes of the FNT led several researchers
to consider seriously special-purpose hardware implementa-
tions of the transform. The machine constructed by McClellan
[26], is an implementation of a 64-point, 1l6-bit FNT
(modulo F4 = 216 + 1). This hardware system applies, the
second coding scheme, described in part A of this section,
to the logic design of the butterfly of the FNT algorithm.
The fast FNT algorithm implemeﬁted is a radix-2 constant
geometry decimation in frequency (DIF) decomposition of
the FNT.

Fig. 1 shows a flow diagram of this algorithm for a
l6-point transform [38]. Although the constant geometry

structure does not allow in place calculation of the trans-

form, it simplifies the memory addressing because the addressing

does not vary from stage to stage. The price one pays for
this simplification is a doubling of the memory size
required for the transform. However, 128 words per chip is
a convenient level of integration with ECL (emiter coupled
logic), thus making the constant geometry structure

attractive [26].
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FIGURE 1. Flow Diagram of a Radix-2, 16 Point, Constant
Geometry FFT Algorithm Using the Decimation
in Frequency Structure
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Fig. 2 is a block diagram of the complete system showing
the four major subsystems. The computational element (CE)
is a radix-2 DIF butterfly for the fast FNT algorithm; the
memory element contains 128 x 17-bit words for use as inter-
mediate storage during the computation of the transform;
the control element is a hardwired implementation of the
fast FNT algorithm [26]; and the input/output (I/0) section
provides the interface with the fast digital processor (FDP).
McClellan states that the goal in building this hardware was
to construct a CE that would operate at a clock rate of 40
MHz. In order to achieve this speed, ECL 10K circuits were
used. The basic gate in this logic family as a propagation
delay of 2 ns, and thus these circuits are well-suited for
very high-speed systems. Even with such high speed logic
?ci:cuits, two levels bf reclock and fast carry addition were
used in the CE to realize a workihg system that runs
reliably at 38 MHz [26].

Fig. 3 shows a functional diagram of the butterfly
which consists of an adder, a subtracter, a rotator, input
buffer registers R, and RB’ reclock registers Rw, Rx and

A

RY and an output register R Register transfers are made

7°
at each clock pulse, so that data are always flowing through
the CE as would be the case in a pipelined fast FNT.

As the timing diégram in Fig. 4 shows, the output of
the butterfly is only written into memory from R, at t4 and

tg- During the other clock epochs the contents of R, may

Z
be changing but this does not affect the algorithm.
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Recall that in McClellan's code, the rule for addition of

two nonzero numbers,

a

[al6 15 *°* aol

and

[b16 b1S ole bo] is as follows:

STEP1l: Add the 16 LSB's of A and B with the
carry in equal to zero
STEP2: Complement the carry out from step 1 and

add it to the sum of step 1.

If either A or B is zero (i.e., b16 or a = 0), then the

16
carry must be inhibited. Finally if both A and B are zero
the MSB of the sum is set to one. Fig. 5 shows a realization
of the addition process. The structure of Fig} 5 is ineffi-
cient in two respects. First of all, two 16-bit adders are
required, although the second one is simple because one

input is zero. Secondly the addition is very slow because
the carry must propagate through the 16-bit adders. The

use of carry look ahead (CLA) logic as in FIg. 6 will

improve both situations. For details of the implementation
using ECL building blocks see McClellan's paper [26].

Notice that the subtracter A-B, can be implemented

by complementing B and adding it to A.




FIGURE 5.
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The addition A+B completes the calculation of one output
of the computational element (see Fig. 3). The result is

held in the register Ry and then is moved to R, to be written

Z
back into memory. For the other output of the CE, the
quantity A-B is stored in the reclock register Rx for

subsequent rotation by a power of

a = V2 given by (4.16),

o= /5 = 2P/8 D720, o 1674 ,16/2 1, _ o4 58 5y o 51254

(5.28)
The rotation by V2K is split into two stages.
In the first stage, the quantity X = A-B is multiplied

by /% = 3°% o 34

if K is odd. The vY2 multiplier is merely
a subtracter (5.28).

A 2:1 multiplexer at the output of the subtracter
selects whether the input is to be multiplied- by /2 or
by 1, and is controlled by the LSB of K [26]. The result
of this calculation is stored in the reclock register Ry.
The second stage of the rotation is a multiplication by a
power of 2, namely [K/2]. ([ ] denotes the greatest
integer function.) This multiplication is implemented as
a 16:1 multiplexer controlled by the upper four bits of
the binary representation of the power of 2. The shifting

network is followed by a 2:1 multiplexer which selects

which butterfly output (A+B or ZK-y) is to be stored in
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Rz and then written back into memory. This multiplexer
is controlled by ty and its output is

K

(2 =« ¥) F3 + W - t

3
where Y and W are the contents of RY and Rw respectively.

McClellan states that the logic for the computational
element consists of 90 IC's, all of which are logated on
one board (18 x 16 in.).

In Section VI, a comparison between the complexity of
various basic operations involved in computing Fermat
Number Transforms vis-a-vis the FFT, in software as well as
hardware implementations, will be presented. "The software
and hardware implementations discussed there will be those
described in this section. The resﬁlts will show only the
efficiency of these implementations, not all the possibili-

ties of NTT in general.
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VI. FERMAT NUMBER TRANSFORM VERSUS FFT

The FNT provides an efficient and error-free means of
computing cyclic convolutions. The purpose of this section
is to compare this method with the standard implementation
of convolution. Results obtained both by Agarwal and
McClellan, respectively in software and hardware implemen-
tation of the FNT, are presented.

Computation of the FNT of length N requires on the order
of N log2 N additions, bit shifts and subtractions but no
multiplications. The only multiplications required for
our FNT implementation of cyclic convolution ére the N
multiplications required to multiply the transforms. This
is a very efficient technique for computing convolution,
but unfortunately, the maximum transform length for an FNT
is proportional to the word length of the machine used.
Agarwal and Burrus [17] showed that a very practical choice
of a Fermat number for this application is Fs = 232-+1, and
that the FNT mod F5 can be implemented on a 32-bit machine,
namely the IBM 360/370 series computers.

Suppose one wants to calculate the convolution of two
sequences x(n) and h(n) having b1 and b2 bit representations,
respectively, and that the sequence length of both is N.
Then the output y(n), given by (3.2), would have at the

most [17] a
b1 + b2 + 1092N (6.1)
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bit representation. To obtain the correct result b, the
number of bits of the output, should be [17]

b > b1 + b2 + logzN (6.2)
Notice that a better bound on the output can.be achieved
[4].

Roughly speaking, one needs twice the number of bits to
carry out the convolution using the FNT as compared to the
fixed point FFT implementation of the convolution. But in
the DFT, every data point is treated as a complex number
[17]) and therefore requires two words, one for the real part
and one for the imaginary part. Thus in effeét the hard-
ware requirement for two transforms are abbuﬁ‘the same.
Although for real data it is possible to make use of the
symmetry properties of the DFT, they require extra computa-
tion and for the purpose of comparison it will be ignored,
although Agarwal and Burrus had taken this into account for
their IBM 370/155 implementation. In fact, they assumed,
in the FFT implementation, each data point is represented
by a b/2 bit real part and a b/2 bit imaginary part. One
b/2 bit complex addition is equivalent [17] to two b/2 bit
real additions, which are equivalent to a b-bit addition
modulo Ft' Thus the complexity of addition/subtraction is
the same in both the transforms. Similarly, it can be

shown [4] that a b/2 bit complex multiplication is equivalent




to a b-bit multiplication modulo F Computation of the

£
FNT requires multiplications by a power of 2, which
implemented as bit shifts and subtractions become much
simpler operations compared to complex multiplications
required in the FFT implementation.

To compute a length N fast FNT, N logzN additions/
subtractions, and (N/2) log,(N/2) "multiplications" by some
powers of 2 which are implemented as bit shifts and sub-
tractions. To compute the convolution using the FFT, most
of the time is taken in computing the complex multiplica-
tions required to compute the complex multiplications
required to compute the transforms. A comparison with the
FNT reveals that theée complex multiplicaﬁions are replaced
by bit shifts and subtractions which are much faster opera-
tions. This results in considerable computational savings
in the implementation of convolution.

The convolution required to multiply the two transforms
is about the same for both the implementations.

To convolve long sequences using the two-dimensional
FNT (Appendix B), the computational effort increases by,
at most, a factor of 2 [4]. Still, the FNT implementation
of convolution is much faster as compareé to the FFT
implementation.

Fermat number transforms have some additional advantages

over the FFT. First, the FFT implementation requires storing

all the powers of a (see 3.7 ) requiring a significant amount

of storage which may be an important factor for a small
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minicomputer or a special purpose hardware implementation.
Second, fixed-point FFT implementation introduces a signifi-
cant amount of round-off noise at the output, 6-8 bits
depending on the data [39]. This degrades the signal-
to-noise ratio during the filtering operations. The FNT
implementation is error free, the only source of error is
input A/D quantization.

Timings for various implementations of convolution and
their comparison with the FFT implementation are shown by

Agarwal and Burrus [4];

FFT FNT
N . msec msec
32 16 363
64 31 7.4
128 60 16.6 *
256 123 40.0 **
256 123 80.0 *** (6.3)
512 245 166,08 *xx
1024 530 340.0 ***
2048 1260 720,040 »=»*

» using o = V2
k* using 2 by 128 convolution

*** using the two-dimensional FNT

To compute these timings it is assumed that the transform
of the h sequence has been precalculated. Thus timings
are for computing x transforms, multiplications of the

transforms, and their inverse transforms [(4].
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For cyclic convolution lengths up to 256, the FNT
implementation of convolution have a factor of 3 to 5
speed advantage over the FFT implementation. It takes
roughly 13-14 usec to compute one butterfly in the compu-
tation of fast Fermat number transforms [4]. Timings for
the computation of fast Fermat number transforms, are fairly
well modeled by multiplying this time by the number of
butterflies required in the computation. An assembler
subprogram was written to compute one butterfly for the FFT
algorithm [4]. The timing for this was 68 psec, and this
explains the difference in the timings of the FFT and FNT.
Agarwal claims that since assembler subprograms were not
optimized for time, it should be possible to further reduce
their timings by 10 to 20 percent. Also, to compute one
butterfly of the fast FNT'S, three add/subtract logical
instructions are required and since the arithmetic is done
mod 2324-1, these three instructions are followed by three
branch instructions (to take into account the carry bit).
If the hardware was designed to do arithmetic mod 232+ 1,
these instructions could have been avoided resulting in a
significant reduction in the computation time [4]. One
objective of the construction of FNT convolver by McClellan
was to evaluate the total system cost of an FNT convolver
versus a pipeline FFT convolver, primarily in the speed
regime applicable to radar signal processing.

The signal bandwidths encountered in radar signal

processing (10-30 MHz) require a pipeline architecture for
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either the FNT or FFT [40]. Typically, the overlap-save
version of high-speed convolution is employed for real-time
processing of the radar returns and a 50 percent overlap of
the input data is common [26]. Furthermore, the length of
the convolution to be implemented is assumed to be large
(e.g., 512 or greater). Two cases will be considered:
a length 1024 convolution of real data and a length 1024
convolution of complex data.

Four measures of hardware complexity are ghe basis of
comparison [26]:

- the number of butterflies for output point,

-~ the number of reference spectrum multiplies for

output point, - /
- the total amount of interstage delay line memory in
the forward and inverse transforms,

- and the total amount of reference spectrum memory.
The FFT implementation will be considered first. For either
real or complex data, it is assumed that the FFT implemen-
tation employs an ll-stage radix 2 pipeline FFT in both the
forward and inverse transform. Notice that for real data,
it is possible to do a length N transform with cne length
N/2 transform and some. overhead to combine the real and
imaginary parts [38]. Howe.er the overhead amounts to an
additional butterfly so there is little, if anything to gain
by using this fact in a pipeline FFT [26].

For the case of a length 2ll = 2048 pipeline FFT convolver

the number of butterflies per output point is
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2 log,N = 22 (6.4)

assuming 50 percent convolution overlap. Likewise, two
reference spectrum multiplies must be done per output point
[26]. The amount of interstage delay line memory can be

calculated from the formula [26]

IDM = (r+l) (6.5)

N =2

where r is the radix of the transform.

Thus, for two radix-2 pipelines, the total is
IDM = J(2+1)-2 = 3N = 6144 = 6K

words of memory. Finally, the reference spectrum requires
2K words of memory [26]. A pipeline FNT structure is
identical to the pipeline FFT except in the butterfly where

rotation by elzﬂK/N

(in the FFT case) is replaced by multi-
plication by VZR.

Thus many of the results quoted above are applicable to
the FNT. Since the FNT naturally processes real input data,
the cases of real and complex convoluti&n require different
realizations. In both cases, however, a two-dimensional
implementation of the convolution is required [31].

The length 1024 convolution of real signals can be

- implemented with 64 x 64 transforms [26].

164

e el

—~—

S SEEREER



McClellan claims that for the FNT convolver processing

real data, the following results apply:

total number of butterflies = 9:{212 36 butterflies per
output point

total reference function multiplies = 212 4 multiplies per
output point

total interstage delay memeory = 6°+4 K

amount of reference function memory = 4K.

If the signal to be convolved is complex then one possible
implementation is to handle the real and imaginary parts of
data separately. The number of butterflies per output

point, the interstage'delay memory, and thé‘reference spec-
trum are all doubled. However, the numbe&ibf real multipliers
for the reference function multiply is quadrupled because

the multiplications are now complex [26]. These results

can be summarized, assuming 1024 convolutions, by

FFT Real or FNT Real - FNT Complex
Complex Data Data Data
Butterflies 22 36 72
Reference 2 2 16
Multipliers
Interstage 6K 6+ 4K 12.-8 K

e A complex words 8 real words b real words
Reference 2K 4K 8K
Spectrum

Memory complex words real words real words

a One complex word will contain approximately 27 bits
for typical high-precision radar applications.

b One real word contains 33 bits for FNT.
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Notice that the FNT always requires more memory and more
computational elements than the FFT. Hardware savings are
possible because most of the hardware cost of the FFT is
concentrated in the butterfly elements (up to 80 percent)
[26] and because the FNT butterfly requires from one-third
to one-sixth the hardware of an FFT butterfly. These
remarks apply to the FNT where the data to be convolved are
real, but where the data are complex, the situation becomes
much worse because all measures of hardware complexity are
increased by a factor of 2 or 4.

McClellan conclude that the FNT is a useful alternative
to the FFT if the signal to be filtered is real and the
computational elements are a major part of -the overall
system cost as in a pipeline a:chitecture.‘:Furthermore,
for short length convolution (e.g., length'65) and for

two-dimensional convolution the savings may be significant.
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VII. CONCLUSIONS

It has been shown that, by working in a finite field or
ring of integers modulo M, a large class of transforms
exist that have the cyclic convolution property, i.e., the
transform of cyclic convolution of two sequences is equal
to the product of their transforms. These transforms are
called Number Theoretic Transforms (NTT's) and they are a
computationally efficient approach to performing the dis-
crete convolution function. These NTT's are truly digital
transforms, taking into account the quantization in amplitude
and the finite precision of digital signals. They bear the
same relation to digital signals as the DFT does to discrete-
time or sample data signals and the Fourier or Laplace
transforms do to continuous time signals.

When working with digital machines, the data are avail-
able only with some finite precision, and therefore, without
loss of generality, the data can be considered to be inte-
gers with some upper bound. To compute convolution in this
digital domain, operations in the complex number field of
the continuous domain can be imitated in a finite field, or
more generally, in a finite ring of integers under additions
and multiplications modulo some integer M, with an integer

=3(2mM)/N 4, the Discrete Fourier

o of order N, replacing e
Transform (DFT).
In this ring, when two integer sequences x(n) and h(n)

are convolved, the output integer sequence y(n) is congruent
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to the conventional convolution of x(n) and h(n), modulo M.
In the ring of integers modulo M, conventional integers
can be, unambiguously, represented if their absolute value
is less than M/2. If the input integer sequence x(n) and
the filter sequence h(n) are so scaled that |y(n)| never
exceeds M/2, one would get the same results hy implementing
convolution in the ring of integers mod M as that obtained
with normal arithmetic.

By special choices of the length N, the mod M, and
the value a, it is possible to have transforms that need
only word shifts and additions but no multiplications,
that have an FFT type algorithm, that do not require storage
of complex values of a and that have no rouhd-off errors.

It has been shown that Mersenne transforms with
M=p= Zq-l, q a prime, and o« = -2, have the transform
length equal to N = 2q and therefore do not have an FFT
type fast computational algorithm.

The best known number theoretic transfbrm is the

Fermat Number Transform (FNT), where M = 22t4-1, t a positive
integer. For FNT's with a prime or composite modulus it

was verified that a = 2 or a power of 2 is possible, for
sequences up to N = 2t+l. This is a very desirable situa-

- tion since N is highly composite allowing an FFT type
algorithm and all multiplicétions by powers of a are simple
word shifts. If a = /2 is used then sequences of length

t+2

N =2 are possible, thus increasing the maximum sequence

length permissible.
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Assembler programs on the IBM 370/155 computer, written

by Agarwal, showed that for cyclic convolutions length

up to 256, the FNT implementations of convolution have a

factor of

3 to 5 speed advantage over the FFT implementa-

tions. The reasons for the speed up are:

1 - The Fermat number transform requires no multiplica-

tions and, therefore, the implementation of

convolution requires only N multiplications for

an N point convolution. The number of additions

and subtractions (together) for a convolution is

2N logzN and there are N log, N required "multipli-

cations" by a power of two.

v

2 - Only real operations are required. This buys about

two to one savings over the FFT requirements.

3 - The Fermat number transform is able to compute an

exact convolution thus allowing a program to avoid

the need for either floating point arithmetic or

overflow checks or other precautions.

The computation required to multiply the two transforms is

about the
sequences
increases

mentation

same for both implementations. To convolve long
using two dimensional FNT, the computational effort
by, at most, a factor of 2. Still the FNT imple-

of convolution is much faster as compared to the

FFT implementation.

Fermat number transforms have some additional advantages

over the FFT. First, the FFT implementation requires storing
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all powers of a requiring a significant amount of storage
which may be an important factor for a small minicomputer
or a special'purpose hardware implementation.

Second, fixed-point FFT: implementation introduces a
significant amount of round-off noise at the output 6-8
bits depending on the data [38]. This degrades the signal-
to-noise ratio during the filtering operations. The FNT
is error free, the only source of error is input A/D
quantization.

In the realm of radar signal processing the potential
for higher throughput is worth exploring. For this reason
McClellan designed and constructed a small prototype FNT-
convolver. An important element in the design of the FNT-
convolver was a new coding scheme for the data, although
simpler codes are possible. The experiénce derived from
designing and building this hardware serves as the basis for
estimates of the site of large pipeline FNT convolvers, for
use in radar matched filtering applications. The result of
the hardware comparison of the FNT versus a pipeline FFT,
indicates that the anticipated savings of the FNT can be
realized for small systems (e.g., length 64 convolution),
when the signal to be filtered is real. However, in larger
systems where one'must use two-dimensional convolution to
implement one dimensional convolution, the savings in
multiplier hardware are offset by increased transform size

and the corresponding increase in memory size and reference
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spectrum multiplier hardware. 1In this case, when the signal
to be filtered is real, the FNT still offers a potential
savings in the amount of hardware versus the FFT. When the
signal is complex valued the amount of FNT hardware approxi-
mately doubles and is much greater than the pipeline FFT.
In the implementation of two-dimensional convolution there
is no penalty due to increased memory size and the savings
in multiplier hardware will translate into savings for the
overall convolver system.

It was shown that the main drawbacks of FNT's is a
rigid relationship between word length and the obtainable
transform length and a limited choice of possible word lengths.
This last point is especially significant, since FNT's are

restricted to word sizes equal to q = 2t

, t an integer. As

g increases very rapidiy'withtq the choice of possible word
lengths is very limited, and most practical digital filtering
applications, when implemented with FNT; are constrained to
word lengths of 16, 32 or 64 bits. If the dynamic range
required for convolution does not correspond to q = 2t
choosing the next higher value of g may result in a signifi-
cant waste of computing power.

Various solutions to these problems involving either
two-dimensional techniques, the use of "the Chinese Remainder
Theroem", or other NTT's has been discussed.

Along these lines, it was shown that transforms‘over

the Galois Field GF(pz), can be found which do not introduce

round-off errors and which can be used to compute
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information-lossless convolutions of sequences of complex
numbers, by a FFT type algorithm. A disadvantage of this
transform is that multiplications by powers of the primitive
element (o) is not as simple as in Mersenne or FNT's.

It was verified that a Fourier-like transform in GF (p)

3Ix2™+ l, n a positive

where p is a prime of the form An
integer, is possible. This transform increases the variety
of methods and the digital word lengths that can be used

for computing the convolution of integers beyond the above
mentioned Fermat or Mersenne Number Transforms. Also, a
special NTT that can be computed using a high-radix fast
Fourier type algorithm, defined on arithmetic modulo primes
of the form (2n-1)2n-+l, was discussed.

Complex Mersenne transforms that can be computed without
multiplications were presented. These traﬂsforms are very
promising for computing convolutions because they can be
partly computed with the FFT type algorithmé and some of
the operations can be performed on words of reduced length.
Complex Mersenne transforms also have the advantage of
permitting operations on transform lengths and convolution
lengths up to four times longer than is possible with
conventional Mersenne transforms.

These results have been extended to cover the case of
transforms oerating in a ring modulo a pseﬁdo Mersenne
number or submultiple of such a number. It was verified that

some of these transforms have a highly composite transform
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length and therefore can be computed with an efficient
FFT-type algorithm. In the same way pseudo FNT's defined

in a ring which is a submultiple of a Fermat number and

can be considered as a generalization of FNT's. allow a much
wider choice of possible word lengths, and therefore are
well adapted for evaluating convolutions. As an extension
the case of complex transforms was considered.

Finally, complex pseudo FNT's were presented, that
allow a length double that of FNT's, and part of the calcu-
lations to be performed on words of reduced length. Some
of these transforms have a highly composite number of terms
and are therefore well suited for computing complex convo-
lutions with an efficient FFT-type algorithm.

Recently [32] a number of three bit primes have been
discovered which make possible very efficient fast number
transforms approaching that of the FNT, but permitting much
larger transform lengths suitable for coﬁvolving the large
arrays met in picture processing and electron microscopy in
particular. If a method of implementing arithmetic modulo
three bit primes comparable to that already developed for
implementing arithmetic modulo a Fermat number, could be
found, very efficient fast convolution would become possible
for a very large range of array sizes.

Rader and Brenner [41] have introduced an alternative
form for the FFT. This new form has the advantage that none
of the multipliers is complex, but in the usual complex

field, most are pure imaginary. It has the disadvantage
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that one must divide by very small numbers and therefore
aggravate any quantization noise problems. This new
algorithm may be applied to the complex NTT without this
disadvantage.

Winograd [(42] has shown how to perform a short-length
D.F.T. of length N = p or pr (where p is a prime) in a very
efficient way. Winograd's algorithm uses the fact that
aN = 1 and requires that all operations be performed in a
field. Hence, providing one chooses the modulus M to be a
prime number, one may perform the NTT by using Winograd's
algorithm.

A final remark is in order. Whether Qf not an engineering
method is useful becomes clear only when that method is
evaluated by the wide community of potential users, who
consider it in relation to their needs. Since so many
engineers and programmers are not familiar with number
theory it is an open question whether NTT's algorithms will

ultimately prove to be of great or small importance.




APPENDIX A

TWO DIMENSIONAL CONVOLUTION FOR CONVOLVING LONG SEQUENCES

Arithmetic mod Ft (a Fermat number) can be implemented
using b = 2% bit representation of integers. 1In Section 1V,
it has been shown that the maximum length of sequences which
can Ee cycled convolved using the FNT with a = 2 is N = 2b

and therefore the length of sequences which can be convolved
is proportional to the word length in bits. Thus for long
sequences the word length requirement may be excessive.

Rader [3] suggested using a two dimensional convolution
scheme to convolve long one-dimensional sequences and Agarwal
and Burrus [17,18] presented such a two dimensional convolu-
tion scheme. Using this schéme, cyclic convolution of
length N = LP is implemented as a two dimensional cyclic
convolution of length 21xP.

This two-dimensional cyclic convolution can be implemented
using a two dimensicnal FNT. Using this two dimensional
scheme, the word length required is proportional to the
square root of the length of the sequences to be convolved
which would give for a maximum sequence length 8b2 rather

than 4b. 1I.e., for a computer word length b = 64
N for a = /2 would be 32768!

In the following pages an example illustrative of the two
dimensional convolution using arithmetic modulo a Fermat
number and FNT's is worked out.
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Let x(n) and h(n), n =10, 1, ... N-1, be two sequences
which need to be cyclically convolved. Let N = LP.

We construct two (2IxP) two-dimensional sequences
ﬁ(i,j) and ;(K,R) from x(n) and h(n) respectively as

shown below.

h(i,j) = h(jL + i - L) (1)

2= 0,1, oo 211

j b 0,1, CECICNY p"’l-
And
X (2L+K) K= 0,1, ¢se; =1
x(K,%) = (2)
0 K= L,L+l, +e., 2L=1
2, = 0’1’ ’ p-l
Example:

Two dimensional convolution using FNT's.

Let

x(n) = (2,-2,1,0) and hin) = {(1,2,0,0)

Using Fermat number transforms modulo F, = 17,

t

xn)y = (2,15,1,0) and hiny) = {1,2,0.8)
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Note that the second element is changed from -2 to 15.
Notice that N = 4 = LxP = 2x2.

One constructs two (2L xp) two dimensional sequences
b ﬂ(i,j) and ;(K,Q) from x(n) and h(n), according to (1)
and (2).

It turns out

0 it 2 4
= 0 Z ~ 15 0
hii,)) = x(K,2) =

14 0 0 0

2 0 0 0

Now taking two dimensional transforms of h and x yields H

and X.

" p=1 2L~1
) . e im jn
H(m,a) = J ] h(i,Jay o (3)
j:o i=0

n = 0,1, ¢ 2L~1 Xor, ~ is an element of order 2L

n = 0,1, 00, p~1 ap - is an element of order p
L -

and a similar expression for x(m,n).
Remembering that one is using Ft = 17 as the modulus

b e (W R 13 and ap G YT 16

LT




This can be found by noting that 3 and 6 primitive roots
of the ring in consideration will generate all the positive
integers in the ring (2.16).

Also, by (2.20), if o is a root of order N then

of is of order N/K if K|N (K divides N)

aK is of order N if N and K are relatively prime.

Thus, with these considerations in mind one finds

2 lic/a s
D 3 = 3 = 13 (mod 17)
o = 13 order ¢4
ap = A 316/2 3% = 16 .(mod 17)

a = 16 order ' 2

Now one can return to the calculation of the two dimensional

transforms. The first term will be

ﬁ(0,0) 5(0’0) 13(0)(0) 16(0) (0) ﬂ(o,l) 13 (0) (0) 16(1)(0)

i

+

n(1,0) 131 (0 14000 (0) o g 4y 13(1)(0) 4¢(1)(0)

+

h(2,0) 132 (0) 150 (0) , 5 gy 13(2)(0) 14(1)(0)

n(3,0) 13(3)(0) 1600 (0) o pi3 9y 13(3)(0) 14(1)(0)

+
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i.e.,

ﬁ(0,0) 5(0,0) + E(O,l) +

= = 0+1+ = 6 (mod 17)
+ h(1,0) + h(1,1) + 0 +2 4
+ h(2,0) + h(2,1) + 1+0+
+ h(3,0) + h(3,1) 2+0 -

Now constructing a table that will help in the evaluation of

M(m,n) .
et S e i T GO SRR AR SO
KM a o R e B s T e - T
N i
notice order 4.

N
16 =1 16 1 16 1 16 1 16 1 16
e it
notice order 2

Now proceding:

~

H(1,0) = h(2,0) 133 (1) 15000 (0) 5,1y 1300 (1) ;4(2)(0)

~

since h(0,0) = h(1,0) = h(2,1) = h(3,1) = 0.
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B(1,0) = % 232 3gl® 3 3310 0l8) o 0 16 % 1 = pmea 17

2 13437 1619 4 2 131 16O e o

For
H(2,00 = h(2,00 1322 1600000 L 5 1) 13000 () 14 (1) (0)
+ h(3,0) 133 (2) 160000 | 3.9y 13(2)(2) 14(1)(0)
- 3 1308k ety o .00 ;6(0) S e e R a1
+ 2B set0F g ey e s
and,
B(3.00 = Bez,0) 13280 geN(en | Lt IBEIB) 4 t0)4e)

+ h(3,0) 1322 3) 1600 L by gy 133 141 (0)

0

1 13(6) 16000 4 1 130 140

16 + 1 = 0 (mod 17)

#0228 WY+ 419 + 26+ 8

For the second column,
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H(0,1)

H(1,1)

H(2,1)

H(3,1)

+

1 + 16 =

2 + 32

1 13(2) (1) 14(0) (1)

213030 @) 36O (R) oy 33(1) (1) 4 (1) (D)

16 + 16 . =

8 + 416

1y 13212 3001 ) 4 15000 (2) 1. (2) (D)

0 (mod 17)

+ £1} 13

14 (mod 17)

2 13302 1) | 5 13M@) 1))

diice B - -

32+ 512

0 (mod 17)

1 3321 (30 ;5100 (1) . 1 15000(3) 3400310}

5 13313} 140 B) 4 450008 o@D
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+26 + 128

= 16+ 16 =16

(mod 17




o

f.€.,

6 0
~ 0 14
H(m,n) =
15 0
two dimensional 0 16

Fermat transform

The two dimensional transform of

2 i
» 15 0
X =
0 0
0 0
will be given by
p-1 2L-1
X o Sl im jn
X(mn) = F I =x(i,3) oy o)
j=0 i=0
So
X(0,0) = %(0,0) 13(9 (0 15(01(0) , 25 1) 13(01(0) ;¢ (1)(0)

;(1,0) 13(1)(0) 16(0)(0)

+

2+1+15 = 1 (mod 17)
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x(1,0)

¢ x(1,0 130 @ 260070

= 241 +15{13) = 11 (wod 17

%(2,0) = x(0,0) 13(0(2) 1600000 | g 4y 13001 (2) ;4(1)(0)
+ x(1,0) 131 (2) ;4(0) (0)
= 2+ 1+ (15)(16) = 6 (mod 17)

%(3,0) = 2 13'9 B) ;15(00(0) (4 53(00(3) ;4(1)(0)

o qe pa U TEBE o W)

= 2+1+ (15)4 = 12 (mod 17)

]

20,1y = 2 1300 (0 15(0) (1) 1 (q) 13(0)(0) ; (1) (D)

v 15 3RV 00) L (0R1)

= 2416 +15 16 (mod 17)

x(1,1)

(2) 1300 (1) 16000 (1) . gy 13000 (1) 54(2) (1)

2+16+8 = 9 (mod 17)
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%(2,1) = (2) 139 (2) 15000 D) (1) 15000 (2) (1) (1)

{18y a3t 8L gt 4]

+

2 + 16 + (15) (l6) = 2 (mod 17)
x(3,1) = (2) 1393 16001 4 3y ;3(00(3) ;4(1) (1)

ey 12 iRV 3R 4 0y 60

-+

= 2+ 16 + (15)(4) = 10 (mod 17y
So
1 16
2 11 9
X(m,n) =
5 3
two dimensional 12 10

Fermat transform

~

Let y(i,j) be two-dimensional cyclic convolution of

x and h sequences, then it can be proved that two dimensional

transform of y is the product of H(m,n) and X(m,n) (17],

defined by
p-1 2L-1
atP RNy 1 o x -mi =jn
y(i,3) = 5pp I I H@mn)X(mmn)a,, oy
n=0 m=0

i - 0'1' “ ooy 2L_l
3 * Qe h, wess P=L
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Coming back to the example:

H(0,0)X(0,0)13~ (01 (0) 157 (0) (0) 15 6 1)x(0,1)13™ (@) (0) ;4= (0) (0)

]

y(0,0)
+ H(1,00X(1,0)137 (0 (W 36701 (0 459 1yx(1,1)137(9) (1) 167 (0) (1)
¥ H(2,00%(2,00137 (0 (2167010 155 1yx(2,1)137(0) (1) 147 (0) (1)

+

l1.e.,
(0,00 = (6) (1)(1) (1) + (14) () (1)(1) + = 10 (mod 17)
+(15)(5) (1) (1) + (16) (10) (1) (1)
y(1,0) = (6) (1)13™ (1) (0)36=(0)(0) , (54) (9)33= (1) (1);4=(0) (1)

(15) (5)13” (2 (1) 1670 (0)  (1¢) (10)13~ (1) (3)14(0) (1)

+

6 + 126 137 + 75 137% + 160 137°

16 (mod 17)

Notice that in this last calculation use of the following

table has been made:

137 a7  13x137' w1 (mod 17) = 11371 = 4
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So

17 =

137% « 4% = 216
S N
137« a® =

1W* w4 =g

e i
) & USSP P S
e R

G MG

also 16-1 = 16
order 2

16-2 = 1

16_3 = 16
1y

=5
order 4 16 =36
16-6 = i |
16-7 = 16
‘ /
W = 3
16-9 = 16

Continuing with the example:

it

y(2,0)

+

]

16 (mod 17)

y(3,0)

>

1l6 (mod 17)

(67 13y 237 RO am ey 1T g

(15) (5) 137 () (2)167(0)(0)  1¢) (10)137(2) 3y

-(0) (1)

-(0) (1)

(6) (1) 13~ (3)(0)16=(0)(0) L (14)(9) 137 (3) (1) 14=(0) (1)

(15).(5) 13-(3)(2)16-(0)(0) 5 (16)(10)13‘(3)(3)16-(0)(1)
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and for the second column,

(63 (1) 33" VATE0L e LRR(R)

= +
¥ Q5yes) 3BtV O) o gy (amy 137 ) 1303 (1R EL)
= 16 (mod 17)

ikah = (81 G adi g o Gy 2571 Ve AR
F(15)(5) 137D (2670 4 56 (10y13” (1) (3) 1~ (1) (D)
= 16 (mod 17)

y(2,1) = (6) (@) 13701 O) | (1y) () 137(2) ()= (1) )
¢ (15) (513 (2) (2) 1= (1) (0) 16y (10)13™ (2) (3) 1= (1) (1)
= 10 (mod 17)

$(3,1) = (6) (1) 13”3101~ (MI(0) | 14y (9) 1373 (D)4~ (1I D)
+ (15) (5013~ (3 (2) 6= (11 (O) 16y (10)13~ (3) (3) 1~ (1) (1)
= 16 (mod 17)

Finally,
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10 16 |
= 16 16
y(i,3) = ¢
16 10
16 16
and since
1 it T = = s =TI il
3L ~ 3N (2N) = {8 ) = 15 {(mod 17)
we have
10 16 14 2
~ 16 16 2 2
yii,3) = 1§ = (mod 17)
- 16 10 ; 2 14
16 16 2 2

And, since it can be proved that the reiationship between
two dimensional convolution and one dimensional convolution

is given by [18]:
y(i+L,j) = y(3L+i)

where

i= O'l’ ey L-l

= 0,1’ LR p-lo

.
|
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In this example:

~

y(i+L,3) y (JL+i)

@ i=0,3=0 y(0+2,0) = y(2,0) y(0-240) =
i.e. y(2,0) = y(0) = 2

@) 1=1, 1=0 y(1+2,0) = y(3,0) y(0-2+1) =
1.6. ¥(3,0) = y(1) = 2

G i=0,3=1 y(0+2,1) = y(2,1) y(1-240) =
i.e. y(2,1) = ¥(2) = 14

@ i=1,3=1 y(1+2,1) = y(3,1) y(1.2+41) =
i.e. y(3,1) =y(3) =2

Note that for the original sequences

x(n) = (0,1,15,2) and hin) = (1,2,0,
y(n) = x(n) * h(n) = 2,2,14,2.

Exactly the same result!!

In taking two dimensional transforms, p and 2L are

restricted to be a power of 2 and also p < 4b and 2L <

y (0)

y (1)

y(2)

y(3)

0)

4b

(b = 2" bit representation of integers in arithmetic modulo

Ft Fermat number) in the example:
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Since F, =2 +1=17 b =4 t =2,

also p=2, L= 2.

Notice that N = PL < 8b2.
Thus the length of the sequences that can be convolved
using two dimensional convolution scheme is proportional
to the square of the number of bits used in the word length.
The order in which two dimensional transforms or inverse
transforms is taken is reversible. But there is some compu-
tational advantage in taking transform first along the
direction 2 (length p) and then along the direction 1 (length

~

2L), because half the x sequences along direction 2 (p) are

zero and half the ; sequences along direction 2 are cyclic

shifts by one position of the other half ; sequences [18].
Also while taking the inverse transform, computationally

it is advantageous to first take the inverse transform

along direction 1, then along direction 2 [18]. Because

we need only half the ; sequences along direction 2,

therefore after taking inverse transforms along direction

l, we can throw away half the terms.
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APPENDIX B

BASIC PROPERTIES OF QUADRATIC RESIDUES

Let

x2 = a (mod p) ‘ (B.1)

be a congruence, where p is any odd prime and a is any

integer. 1If a 0 (mod p), then the only solution to (B.1l)
is x = 0 (mod p). Therefore one assumes p f/ a. For some
values of a, (B.l) will have a solution, whereas for some

other values of a, (B.l) will have no solution.

Definition B.l: Let p be a érime, and let a be any

integer such that p [ a. One says that a is a quadratic

residue modulo p provided that

x® z a (mod p) (B.2)

has a solution. Otherwise, one says that a is a quadratic

nonresidue modulo p.

Suppose that p is given and consider the problem of
determining all quadratic residues modulo p. If a is a
quadratic residue modulo p, then p [ a and a = xz(mod p)
for some x. However, since any integer is congruent to one
of 0,1, ..., p-1l(mod p), one sees that a must be congruent

to one of
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12, 22, ..., (p~1)2 (mod p) (B.3)

If p is not too large, then this procedure can actually be

used for computation.
Example: Let p =13

Then a is a quadratic residue modulo 13 if and only if a

is congruent to one of

2 2

, 228 ..., 12°

3 (mod 13) ;

that is a is a quadratic residue modulo 13 if and only if
a=1,4,9,3,12,10,10,12,3,9,4,1 (mod 13).

Thus the quadratic residues of 13 are
X, 3, 4, 9, 10, 12.
Hence the quadratic nonresidues modulo 13 are
2' 5' 6' 7' 8' llo
Notice that the initial list of quadratic residues
obtained is symmetric, with each element of the list
appearing exactly twice. This is a general phenomenon.

Indeed, one has

~x (mod p) (B.4)

;
»
[}
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so that

(-x)2 mod p (B.5)

(p-x)2

and thus

%2 (mod p) (B.6)

(p-x)

therefore, if a is a quadratic residue modulo p, then a

is congruent to one of
12, 2%, ..., B2 moap (B.7)

No two integers of (B.7) are congruent modulo p. Hence,

among the integers
l' 2' ce ey p-l

precisely (p-1l)/2 are quadratic residues modulo p and
precisely (p-1)/2 are quadratic nonresidues modulo p. This
can be verified in the above example. One finds the

following notation very convenient:

Definition B.2:

Let p be an odd prime and a an integer such that p l a.
The Legendre symbol is defined as follows:
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+1 if a is a quadratic residue modulo p
a
— = 8.8
(p) ( )

-1 if a is a quadratic nonresidue modulo p

The Legendre symbol (%) should not be confused with the

fraction a/p.

Example: Let p=3
& = <1, (fp = 1, (fp = 1,
(PP = -1

See above example, where it is listed the quadratic residues
modulo 13, and quadratic nonresidues mod 13. Moreover,

since
18 = 5 (mod 13)

and 5 is a quadratic nonresidue modulo 13. So is 18, and
thus

Properties of Legendre symbol.
Let p be an odd prime and let a and b be integers such

that p / a and p / b. Then the following results hold
[20]):

194 . i




(1) (E;) = 1
(B85 e D (B.9)
P
i a b
(iii) If a = b mod p then (s) = (3)
Proof:
(1) The congruence x2 & a2 mod p has as a

solution x = a.

(ii) Set a = 1 in result (i).

(iii) If a = b(mod p), then the solutions x2 = a(mod p)

2

are the same as the solutions of x b (mod p).
Therefore, the first congruence has solutions

if and only if the second does. Thus,

a b
(5) (5)

The properties of the Legendre symbol given above are very
elementary. However a property of the symbol which is by

no means obvious is the following result:

Theorem 8.3: (Euler's Criterion):
Let p be an odd prime and let a be an integer such that
P / a. Then
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Thus,

then

Proof:

if

and so

Therefore

| By Fermat's theorem (2.14), one

(a

h = a(P~1)/2

p| (h-1) (h+1).

P 'h-lp

Plh"'l'
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has

= 1 (mod p)
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and hence

(p-1)/2 =

h =a t1 (mod p).

Now if p is odd, so (§) = +1 if and only if aP1)/2 -y (mod p).

Consequently, (%) = +]1 if and only if

a®1)/2 - .1 (mod p)

respectively.

Corollary B.4:

Let p be an odd prime, and let a and b be integers such

that p f a, p / b. Then

Proof:

By

that

B, . & b
(E;) (p) (p) (B.11)

Euler's Criterion

It is an immediate consequence of Corollary (B.4)

(1)

(i1)

the product of two quadratic residue modulo p is
a quadratic residue modulo p.

the product of two quadratic nonresidue modulo p
is a quadratic residue modulo p,
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and
(iii) the product of a quadratic residue and a

quadratic nonresidue is a quadratic nonresidue.
Example: Let p =13

By previous calculations

3 and 12 are quadratic residues mod 13

and
3-12 = 36 = 62 (mod 13) is a quadratic residue.
However
2 and 5 are quadfatic nonresidues mod 13
and
2-5 = 10 = 62 (mod 13) is a quadratic residue mod 13.
Finally

7 is a quadratic nonresidue mod 13

10 is a quadratic residue mod 13
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and

710 = 70 5 (mod 13) is a nonresidue.

Another consequence of Euler's criterion is the following:

Corollary 8.5:

Iet p be an odd prime. Then

= B b

In other words,

+1 if P =1 (mod 4)
-1 -
(p)
-1 if P =3 (mod 4)
Proof:
By Euler's criterion,
(:pl) = (-1) P1)/2 (o4 p)

Therefore, since (i}) = +]1 and since p > 2, we have the
desired result.

Notice that

L) o (-lp-l)/2

2 2
-al, .ol Ay .
(-p—) (p) (p) B
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2
since (%;) = 1 by (B.9), therefore, xz - -a2 (mod p) is

solvable if and only if p = 1 (mod 4).

Example:
Let
xzs 19 (mod\23)
Now
19 = -4 (mod 23)
So
33 = (5%) =GP E o= -
Since 23 = 3 (mod 4). Thus x2 = 19 (mod 23) is not solvable.

How does one go about computing (%) for p f a?

Suppose that

a a
a = tpll sk ptt

where Pys +++s P, are distinct primes. Since p [/ a, one

sees that p # Py Then by Corollary 4, one has

PRI e Y | Pe %¢
(p) (p) (p) (p)
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Example:

Let p=5 a = -24
=28, . L 33,33 DA
(—5—) = (-g-) (g) ('5') 1°(-1)7(-1) 1
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