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ON THE SECURI TY OF THE MERKLE-HELL MAN

CRYPTO GRAPH IC SCHEME

by

Adi Shamir

and

Richard E. Zippe l

Abstract: In this paper we show that a simplified version of the

Merkle-Heflman public-key cryptographic system is breakable. Whil e

their full-fledged system seems to be resistant to the cryptanalytic

attack we propose, this result suggests some ways in which the security

of thei r system can be further enhanced.
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1. The Merkie-Hei lman Knapsack Systems.

In this section we briefly outline the Merkle-Hellman cryptographic

system. A fuller description can be found in [1].

A knapsack system is a vector of n natural numbers (a1,...,a~). It

represents a collection of knapsack problems (or instances) of the

following type: given an integer S, find a 0-1 valued vector

such that S = ~ 1x~a1 (if one exists). Knapsack problems are known to be

NP-complete ([2]) and thus they serve as an attractive source for crypto-

graphic functions.

One way of using knapsack systems in public-key cryptography (see [3]

for definitions) Is to let each network member publish his knapsack system

(a11...,a~) in a publicly available network directory . Anyone wishing to

send an n-bit message X ~~~~~~~~ to a network member uses the latter~sn
known knapsack system in order to calculate the sum S = .

~~~~~ 

x1a1, and to

send It over the (insecure) coniiiunication channel . An eavesdropper who

gets hold of S and who tries to recover X from S Is faced with the apparently

Impossible task of solving the corresponding knapsack problem.

In order to enable the intended receiver of S to solve this knapsack

problem, some hidden structure must be embedded in the knapsack system

(a1,...,a~). This structure should be hard to find (i.e., the knapsack

system should look like an n-tuple of random numbers to the uninformed

observer), but It should enable those who know it to decode encrypted

messages quickly by a shortcut method .

The knapsack systems Merkie and Heilman use are based on superincriasing

sequences. A vector (aji...i a,) of natural niaiibers Is a su~*r1ncreasIng 

——— . -—- - - —-- _ _ _ _ _ _ _ _ _ _ _ _ _ _
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i— l
sequence If for each 1 < I < n, a~ > i.

E
1 a~. A simple example of a super-

increasing sequence is (1,2,4,8,. • • , 2
fl ) In which each number equals the

sum of its predecessors pl us one. Considered as a knapsack system, there

is an easy algoritimi for solving all the instances of a superincreasing

sequence by successive subtractions — see [1] for details.

The numbers a~ cannot be published in the public directory, since

their obvious structure enables any eavesdropper to decode encrypted

messages S. To hide this structure, Merkie and Hei lman suggest using a

modulus m and a multiplier w, such that m > 
~~ 

a~ and gcd (w,m) = 1

(this insures the existence of a multiplicative Inverse w~ of w modu l o m).

Instead of publi shing a~, the network member publishes the numbers a1,

where for each 1 < I < m

a1 
= a~•w (mod m)

The network member, who knows the unpublished numbers m and w he used ,

can quickly transform any instance S .
~~~~~ 

x1a1 of the apparently difficult

knapsack system (a1 ,...,a~) to an Instance S’w~ 
= 

~~ 
x1a~ (mod in) of the

easily solvable knapsack system (aji....a,)~ and thus decode S Into X. To

use this efficient method, a cryptanalyst must determine m and w from the

published numbers (a1,...,a~); the difficulty of this problem is studied

in the next section.

In their paper, Merkle and Heilman reconmiend the following specific

parameters for their knapsack systems:

(I) n 100 (knapsack systems with one hundred elements).

(ii) Each a~ Is randomly chosen from a uniform distribution over the

Interval [(211 -fl.2100 + 1 ,2
1_ 1 .2100] (it Isa 99+1 bit

natural number).

_____  _ _ _ _ _ _ _  - _ _
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(iii) The modulus m is chosen uniformly from the interva l (2201 + 1 2 202_

(thus making all the a1 pseudo-random 202-bit natural 
numbers).

(iv) The mu ltiplier w is chosen uniformly from the interval [2,m-2] and

then divided by its gcd with m.

2. The Cryptana l~ytlc Attack.

The starting point for our cryptanalytic attack was the following

challenge in Merkle and Hellma n ’s paper:

“Attempts to break the system can start with simplified problems
(e.g., assuming m is known). If even the most favored of certifi-
ca tional attack s i s unsuccessfu l , then there is a margin of safety
aga inst clevere r, wealthier , or luck ier opponents. Or, if the
favored attack is successful , it helps to establish where the
security really must reside. For example , if knowledge of m allows
solution , then an opponent ’s uncertainty about m must be large.”

In this section we show that the knowledge of m makes any standard-

parameter Merkle-Hellman knapsack system highly vulnerable to cryptanalysis.

The key idea Is that the first two numbers aj and a~ in the unknown

super increa sing sequence are much smaller than the modul us m (for the

reconmiended parameters, aj, a~ and m are 100, 101 and 202 bIts long , respec-

tively). We assume that in the list of published numbers ~~~~~~~ the

cryptanalyst can identify the two numbers a1 and a2 which correspond to

aj and a~ (if these numbers are published in a shuffled order, the crypt-

analyst can repeat the following procedure for each one of the l0O~99

possible pairs of published numbers, and sti ll break the system in reason-

ab le time). Since m i s known, we can calcula te the quotient q:
a

q (mod m)a2 

- ~~~T : ~ ~~~~~~~~~~~~~~~~~~~~~~~
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But a1 = a~~w (mod m) and thus

a jw aj
q = 

~~

- -
. 

= —r (mod m)
2 ” a2

or

aj = a~~q (mod m).

Consider now the set of all the modular multiples of q for multipliers in

the range [1 ,2101]:

{I.q(mod m),2.q(mod m), ... , 2101 •q(mod m)}

Since a~ < 2101 , a~~q (mod m) (which is equal to aj) is in this set. All

these 2101 multiples are very evenly distributed in the interval [O,m-l],

and thus the smallest nu~iber among them is likely to be around m/2
101 

~

2202/2101 = 2101 . But aj is known to be smaller than or equal to 2
100

, and

thus aj itsel f is likely to be the smallest number in this set. Consequently

all we need in order to find (a candidate for) a~ is to find the minimum

value of j.q (mod m) when j ranges over the interva l [1,2101] and q,m

are known. Efficient methods for solving this number-theoretic problem

(using the continued fraction approximation of the ratio q/m) can be found

In [4] and [5].

Once a candidate value for aj is found, w can be calcu lated as

a1/aj (mod m) and then the whole sequence a~ 
can be generated from m , w

and the published numbers a1. If the candidate value for aj Is the correct

one, the calculated sequence a~ would turn out to be superi ncreasing , thus

verifying the candidate and giving a quick way of solving instances of the

published knapsack system.

It is easy to see that for other choices of the parameters, this
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cryptanalytic attack has a good probability of success only as long as

is not much larger than m. The network member can of course use

Merkle-Hellman knapsack systems In which this condition does not hold.

There are two reasons why such a simple solution might not be adequate:

(I) If m > i~l a~ and a~ is superincreasing , then a simpl e calculation

shows that m > 2~a~ and m > 2t
~

I •a~, and thus a~•a~ < m2/22’~~ .

To make a~•a~ much bigger than m i n a hundred element knapsack

system (which is the minimum secure value), m must have considerably

more than 200 bits . This slows down the computations and worsens

the ratio between the number of bits in encrypted and original

messages.

(ii) Our cryptanalytic method uses only the two smallest numbers in the

superincreasing sequence a .  If three or more elements are considered

simultaneously, the condition aj.a~ < m can be weakened considerably.

Although we do not know how to do it at present, it seems dangerous

to assume that such an extension is impossible.

3. Safer Variants of the Merkie-Heliman Knapsack Systems.

After defining their basic knapsack systems, Merkie and Hel iman note

that a safer knapsack system can be obtained by iterating the modular

multiplications technique a number of times. At each iteration a new

modul ’j s  (mj > .
~~~~~ 

a1) and a new mul tipl ier wj  (~cd(w~.m~) = 1) are

chosen, and all the knapsack el ements a1 are replaced by ajswj (mod iiij).

The decoding of encrypted messages is done by successively dividing them

by the W
j  
(mod mj) in the reverse order, thus unwind ing th~ Iterations
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all the way back to the original superincreasing sequence.

When two or more iterations are used in order to obscure the structure

of the superincreasing sequence, our cryptanalytic attack becomes in-

effective (even when all the Modulus m. and all but the last w~ are known).

The reason is that when we attempt to strip the last w~ from the knapsack

elements by dividing pairs of the published numbers modulo the last

we are left with large , random looking numbers (the results of the last

but one i teration) to which the minimization technique cannot be appl i ed.

In their paper , Merkle and Hellman express the belief that knapsack systems

obtained by two iterations are strictly more secure than their simple ,

single i teration knapsack systems. Our method is an explicit cryptanalytic

example which substantiates Merkle and Heilman ’s intuitive feeling.

Another way of eliminating the potential weakness represented by

extremely small knapsack elements has been suggested (independently) by

Graham and Shamir. The idea is to use structured numbers, whose low-order

parts are a superincreasing sequence and whose high-order parts are strings

of random bits:

a j =

a~~ = O . . . 0

(random) : . (superincreasing
sequence)

a~ 0

high-order part low-order part

_ _  
_ _ _ _  1~~~~~TT~~~~~~
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Due to the existence of the high-order “no i se ” , none of these numbers i s

likely to be small , but when some of them are added together, the sum

can still be decoded by disregarding its high-order part and analyzing its

l ow-order part in the usual way.

A particularly simpl e knapsack system is obtained when the low-order

part is decomposed further in the fol l owing way:

a j =  -— 0 1 0  0

0 . . . . O l O  O.. ...O

(random) • 

S : (ratidom )

— 1 0  0 o. . . . . o

The bl ock of zeros between the low-order random bits and the diagona l

matrix is log2n bits wide. Its purpose is to serve as a buffer zone, so

that even when all the n numbers a~ are added together, the sum of the

low order bits does not overflow into the region of the diagonal matrix.

To obscure thi s structure, we use k > 1 i terations of Merkle and Hellman ’s

modular multiplications technique. Encrypted messages are now very easy

to decode: once we unwi nd the i terations back to the a~ knapsack system,

the decoded message can be read off an Intermediate interva l of bits in the

(augmented) encoded message, without any further computations . This variant

of Merkle and Heliman ’s scheme seems to be safer, faster ant~ simpler to

implement than the original variant reconmended in [1].
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