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I. INTRODUCTION

Several theoretical 1nvestigations(1-5)

have been made of the

possibility of observing surface wave instabilities, e.g. amplifying

surface waves, in a semiconductor due to drifting current carriers.

The effect of a drift current on surface waves has also been observed

(6,7)

experimentally '’ “, 1In these studies, both electrons and holes

were present in the semiconductor. In the present investigation,

however, we restrict our attention to only one type of current
carrier. We have theoretically investigated surface polaritons
n-type Si in the presence of drifting electrons. The primary

objective of this investigation was to determine whether or not

in

the surface polaritons exhibit instabilities due to the drifting

electrons when only electrens and not holes are present.
I1. SURFACE POLARITON DISPERSION RELATION
We begin by using non-local Maxwell's equations to obtain

equations relating the field and dielectric tensor components.

We next obtain an expression for the dielectric temsor, which is

spatially dispersive. Imposing the so-called dielectric approxi-

mation, partially transformed components of the dielectric temnsor

are obtained. Using these results, the above-mentioned equations

are solved for the field components, boundary conditions are

applied, and the surface polariton dispersion relation is obtained.

Consider a semiconductor which is infinite in the x- and
y-directions and semi-infinite in the z-direction. In seeking

solutions to Maxwell's equations, we use the following form for

th

the «o Cartesian component of the electric field ﬁ,
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E,(X,t) = Ea(z)e“k'xx""t) : (2.1)

where kx is the wave vector and @ is the frequency. Similar

forms obtain for the displacement field D and magnetic field

ﬁ. In this paper we consider only surface polaritons with
p-polarization, i.e., the electric vector lies in the sagittal
plane defined by the direction of propagation and the normal to

the surface. Consequently, Ey = 0, and if we eliminate the magnetic

field from Maxwell's curl equations, the latter become

A functional relationship is needed between D and E to
complete the set of equations. For the crystal (z 2 0), we can

write

@

¢ ’ ’

D,(z) = T f dz Gaa(kxwlzz )Ee(z ) : (2.3)
B o

Substituting Eq. (2.3) into Eqs. (2.2), we obtain the following

pair of coupled integro-differential equations

2

2 [

d d ' I} '

% - E (z) + ik = E_(z) = i:-, ’ dz’'e, (k w|zz')E (z")
o

2 @
+ 52-, f dz'e, (k w|zz')E,(z') (2.4a)
o

B




2 -3 I}

d 2 W ' ’ '

ik, 4z Eg(2) + kg E,(2) = 5 f dz'€_ (k,w|zz')E (2")
o

2 [--]
Ww ’ ’ ’
+ ? f dz Gzz(kxw‘zz )EZ(Z ) (2.4b)
(o]

which determine the field components Ex(z) and Ez(z).
In order to solve Egqs. (2.4) it is necessary to have expressions

for the components of the dielectric tensor. We proceed by assuming

that the motion of an average carrier in the semiconductor is

(8
governed by the transport equation ),

-

24 Vx H -V , (2.5)

[é + (V-;)V] - - =

aN (E +

Blo
Ol=

where V and v are the carrier velocity and collision frequency,
respectively, E and H are the total electric and magnetic fields,
respectively, m and N are the effective mass and particle density,
respectively, and vP is the electron thermal pressure gradient.
In what follows, the thermal pressure gradient is neglected, i.e.,
vP = 0 (this is equivalent to neglecting the thermal motion of
the current carriers).

We linearize Eq. (2.5) by writing V= Vo + 3, E = ﬁo + 3,
H=- ﬁo + 3, viere V , ﬁb, and io are uniform and time-independent
quantities while V, B, and e are position and time-dependent
deviations from the uniform and static quantities, These linear-
ized expressions are substituted into Eq. (1.1) and terms of like

order on both sides are equated. We consider the situation where

~
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Ho = 0., Nothing is obtained from the zero-order equation, but
for the first-order equation we have

- -‘.-o-'-g-o -2.-. -o--o
vV + (Vo v)v =% 4 (V6 x h) vv (2.6)

where the dot indicates gime-differentiation.
Assuming an exponential variation exp[i(i-;-wt)] for the
first-order quantities V, 3, and H, we can use the Maxwell equation

7V xe=- % h to eliminate h from Eq. (2.10) and thus obtain the

result
ml wV+ 1vy - (i-ir’o)'\;] =iq [-é +'u17 -‘.’o x (kxe)l . (2.7)
Solving this equation for v gives the result
-v. - ﬁ '-e. ’ (2.8)
where
u’-(kyvoy'"kzvoz) kxvoy kxvoz
ii- 14 o
= = koVox 0=k Vgt Voz) koVoz (2.9)
kzvox kz‘voy w-(kxvox+kyv°y)

and a = mw(w-i-vo + 1iv).

The particle current is given by G =NV = ao + E, where
Go - Novo' E - Nov + nVo, N = N°+n, No is the mean particle
density, and n is the deviation of the particle density from its

mean value.

The equation of continuity can be written as

n+v.g = 0 , (2.10)

which, using the definition of g ahove, becomes

A




n + Vo s Un + No(v- v) = 0O . (2.11)

The quantity n is a function of position and time which we express
in the form n(;,t) - n(i,w)exp[i(i';-wt)]. Substituting into
Eq. (2.11) we find that

8 % cemm— (2.12)

Substituting this result into the equation for E above gives the

result

-

aian L V(&)
B(R,) = N IV & ~Fow— . (2.13)
w-k°v°

The electric current density can now be obtained from the

relation
J=ag . P (2.14)

In component form, this relation can be expressed as

Jo®,0) = 263 Oup (K w)eg (Kyw) . (2.15)

Using Eq. (2.8), we find that the nonlocal conductivity tensor

oaa(i,w) is given by

A
k - k — . ™
oaa(k,w) N,a [laa(k.w) + -y %kYIw(k,w)] . (2.16)
o

The effective nonlocal dielectric tensor is related to the nonlocal
conductivity tensor by

e 4mi o
eﬂﬂ(k'w) - 6.603 , Oaa(k,w) (2.17)

where €_ is the background dielectric constant, Note that the

dielectric tensor is spatially dispersive due to the presence of terms

containing the wave vector k.

. B T DO o o 7 3o
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Before proceeding to obtain the surface polariton dispersion
relation, a simplification will be made. Maradudin and Mills(g)
have applied the so-called dielectric approximation to the type
of dielectric tensor considered here. The simplification consists
of assuming that this tensor depends on z and z’ only through
their difference, as is the case for an infinitely extended
medium, Surface corrections to the dielectric tensor are thus
neglected. This is consistent with the assumption that the polariton
decay length considered here is numerically large compared to the
distance over which the dielectric constant varies near the
surface.

For each of the dielectric tensor components obtained from

Eq. (2.17), we need to evaluate the partially transformed dielectric

tensor given by

b > dkz - ikz(z-z')
Gae(kxwlzz ) = j- - Gda(k,w)e - (2.18)
-
where we have taken ky = voy - Voz = 0, The results are
' Pa ' P3 626 z-z'
Cxxlgnlzz’) = (€ -g2r0(z2") + 3 2.6{z=2)  (2.19a)
9z
' 36 (z-2z' '
Exz(kxw‘zz ) = -ig, ——ézj——l = sz(kxwlzz ) (2.19b)
€,,(kw|zz’) = (€_-Bg)o(z=2z") , (2.19¢)

\

where 6(z~-2z') is the Dirac delta function, and where we have

used the definitions

ahe




2
B, = mzwz(w-kxvox)(w-kxvox + 1v) (2.20a)
2
32 = E“mzwzwp(w-kxvox + iv) (2.20b)
By = €mWaVa -k Vo + 1) (2.20¢)
2
€ w Vv
B, = =P OX (2.20d)
4 2( -k _V__ +1iv)
W w8y Vox
€ w2 (w=k_V__)
By = —5— — (2.20e)
W (w-kaox+iv)

2 2
and wy = 4nN°q /m€ _ .
The integrations in Egqs. (2.4) can now be carried out, with

the result that we are left with the coupled differential

equations:
-dzEx(z) dE, (z) wz By B3 o 2 a° E, (z)
_—;;2_—+ikx_Tz-—-:2(e°° )E(Z)+ —2——2——+
2 dE_(2)
+ 1 %5 By "%E“‘ (2.21a)
dE (z) 2 dE (z) 2

2
1kx —3____ + k E (z) = 1 ‘E By _—E__— + -5 (€ -8 )E (z) . (2.21b)
It is assumed that for the crystal (z 2 0),

E (z) = Ce °%, E,(z) = e SR (2.22)

where C and D are constants. Substituting these expressions into
the coupled differential equations gives us two equations relating
C and D, Setting the determinant of the coefficients of C and D

equal to zero gives us an expression for the decay constant a:

4
i q

————— os— Jo— SR— — A._.-“__S\



B [ : ]
2 2 _w
€ = ol K - (€ =-Bg)
az ( ® Bl> X 02 ® 5

- 3 5 g (2.23)
€ ——g(kz-e ‘”—)-e-zke
™ B]. X 002 5 x" 4

From Eq. (2.21b) we obtain the following relation between C and
D: 2

D=C - (2.24)

Another field component needed is Dz(z); from Eq. (2.3) and using
Egqs. (2.19) we obtain
dE_(z)

Dy(a) = 8y —g—+ (€ ~$IE (2} . (2.25)

Consider next the electric fields in the vacuum (z < 0)
where Da(z) = Ea(z). Assuming that

ARl Y Qoz B GOZ £ T
E(2) =Ae °, E(2) =Be ) (2.26)

and proceeding as for the case of the crystal, one obtains the

following results for the decay constant

2
2 2 w
c
and the relation between A and B
ik
B=-—X 3 . (2.28)
Y%

The boundary conditions at z = 0 can now be applied.
Continuity of Ex(z) gives the result C = A, while the continuity

of Dz(z) produces

e p——— i e mr———— g et e e




10.

2
- (€,~Bg) (k5 8,)
C
— a_x A = —ie4ac + iaC D) = ’ (2.29)
o 2 w
kX- ? (EQ'BS)

from which we obtain the surface polariton dispersion relation

w - Ps—k B

T+ P A g, (2.30)
o 2 W (e _B )
x -_2 o "5

III. RESULTS AND DISCUSSION

Theoretical dispersion curves have been obtained for surface
polaritons in the presence of drifting current carriers. The
effect of retardation is included, but the effect of damping due
to scattering of the carriers is neglected. The latter assumption
is reasonable in high mobility material.

Calculations were made using values of parameters appropriate
for n-type Si. The value of the background dielectric constant

€, was taken to be 11.7. The density-of-states effective mass

n* = (mz :2)1/3 used in the calculations was obtained from the
values(lo) mt - 0.19mo and m: = 0.98 m,. The electron mobility

(11)

He Was taken to be 1.6 x 103 cm2/V sec.

In our calculations, the thermal pressure gradient was

neglected (see Eq. (1.1). This is valid if the following in-

equality holds(3);
\'/
_“’._F_<1
’
v Vox

(3.1)

where y = e/m*pe is the damping constant and V -(h/m )(3n N )1/3

is the Fermi velocity. The practical upper limit for the election

drift Qelocity qu is ~108 cm/sec, which corresponds to an electric




11.

> 5 : i = i
field of ~10" volts/cm, obtained from the equatica Vox onpe -
where the value of He is as given above. For n-type Si, it has
been shown that the mobility of the electrons doesn't vary with

(12). Three values of drift

electric field up to 105 volts/cm
velocity were considered: vox= 0.0001c, 0.001lc, and 0.0lc.

For the parameter values given here for n-type Si, an
upper limit for the carrier concentration No can be calculated
from Eq. (3.1). ITaking Vox=-0.0001c and @ = wp = (4wNoe2/m*€Q)%,
we obtain the result No < 4 x 1018cm-3.

In making the calculations of the dispersion curves, real
values of w/wp were assumed, and complex values of the wave

vector kx = k. + ik, and the decay constant « = ., + i, were

1 2 1 2
calculated using a digital computer. The values of w/wp were
taken in steps of 0.01 or smaller for the range 0 < w/wr)< 1.0,
The values of kx were calculated using Muller's method(ls), a
process of successive approximations from initial guesses (which
need not be externally supplied).

Figures 1 and 2 show the dispersion curves for the situation

where the drift velocity Vox = 0.,0001lc. Note that for k, > 0,

1
there is one branch, which for w $ 0.5 Wy follows the light line;
then, for higher frequencies it bends over and moves to the right

of the light line. For frequencies w € 0.95 wp, there are three
branches for kl < 0 in Fig. 2 which will be termed negative

branches in the discussion that follows. Two of the three negative
branches occur because of the presence of the drift velocity; for if
Vox = 0, there is only one negative branch, a mirror image of the
positive branch with k1 > O,




12.

At the lower frequencies, two of the negative branches
(branches a and b in Fig. 2) have large values for |ck1/wp|
which decrease as the frequency increases. The other negative
branch (branch c¢ in Fig. 2).originates at the origin and increases
in frequency as |k1| increases. Eventually, a point is reached
where branch c intersects branch a. To the right of this inter-
section point, there exists a continuation of branch a indicated
by the dash-dot lines in Figs. 1 and 2, which consists of two
degenerate modes whose wave vectors form a complex conjugate pair.
As the frequency increases above the value at the intersection
point, this degenerate mode moves to the right and finally termi-
nates at the vertical axis at @ = Wge In addition, the real part
of the decay constant o becomes zero at the termination point.

The remaining negative branch in Fig. 2 (branch b) also moves
in closer to the light line as the frequency increases, and then
terminates at a point where the frequency is slightly below wp.

At this end point, the decay constant o becomes pure imaginary,
i.e., we no longer meet the condition for surface polaritons. We
note also that branch b intersects branch a at a large value of
|ck1/wp|.

As we see from Figs. 1 and 2, there is a frequency range
where we have a degenerate negative branch whose wave vectors
form a complex conjugate pair. For all the other negative
branches, the wave vectors are real except in the immediate
vicinity of the point where branches a and b intersect. A plot

of the magnitude of the imaginary part of the reduced wave




/3.

vector lckz/wp], versus frequency is shown in Fig. 3 for the

degenerate pairs. The curves for Ickz/wp] start at k, = 0

2
for w = 0,96 wp’ rapidly increase with increasing frequency
to a maximum, then reverse and approach kz = 0 again as w
approaches wp. In addition, k2 is ncn-zZero over a very narrow

frequency range about w = 0,92 wp where branches a and b inter-

sect in Fig. 2.

‘Figure 4 shows the frequency dependence of the real part of
the reduced decay constant, cal/wp, versus frequency for Vox-0.0001 ¢,
The branches are labelled to correspond to Fig. 2. For that fre-
quency range where the wave vector is complex conjugate (see Fig. 2),
the decay constant is also complex conjugate.

Figure 5 shows the dispersion curves for an order of magnitude
higher drift velocity, i.e., vox = 0,001 c, in a region of negative
kl. For our purposes, the region of interest centers on the point
where branches a and c intersect. Again, we have complex conjugate
values of kx in the upper of the intersecting branches to the
right of the intersection point. There is, as was the case for
Vox = 0.0001 c considered previously, a positive branch, which
although not shown, is essentially the same as that shown in Fig. 1.
We also have complex values of k1 in the immediate vicinity of
the intersection point of branches a and b.

Figure 5 differs from Fig. 2 in two noticeable ways: in
Fig. 5, the intersection point of branches a and ¢ occurs at a
smaller value  of |ki| than in Fig. 2, and the uppermost negative
branch (branch b) moves to a smaller value of |k1| before termi-
nating. As before, the termination point occurs when the decay
constant no longer satisfies the requirement Rey > 0O, In addition,

the point of intersection of branches a and b occurs at a much

smaller value of |k1| than in Fig. 2.
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In Fig. 6, the frequency dependence of the imaginary part of

the surface polariton wave vector for Vox = 0,001 c is presented

It shows a behavior somewhat different from that shown in Fig. 3,
the case for Vox = 0,0001lc. The frequency range where complex
conjugate wave vectors occur is larger for the higher drift
velocity, while the maximum value of |ck2/wp[ is smaller.

Figure 7 shows dispersion curves for the highest drift
velocity considered here, namely Vox = 0.0lc. The relative
behavioral changes discussed in the last two paragraphs continue
for Vox = 0.0lc, except for one obvious difference: branches a and b
now coincide over an appreciable frequency range, the wave vectors
in this range being complex conjugates of one another. As the
frequency increases, the branches separate, the lower one finally
intersecting branch ¢ in the same manner as shown in Figs. 2 and
5. The intersection point differs from those of Figs. 2 and 5
in that it occurs at a smaller value of |k,|. In addition,
branch b in Fig. 7 moves to a smaller value of |k,| before
terminating than is the case in Figs. 2 and 5. The
plot of |ck2/wp| vs. w is shown in Fig. 8 for V_, = 0.0lc.

Note from Figs. 3, 6, and 8 that the frequency range where complex
conjugate wave vectors occur is larger, the higher the drift |
velocity, while the maximum value of lckz/wpl is smaller,

We now consider in detail the degenerate modes whose wave
vectors form a complex conjugate pair. One of these modes
has the imaginary part of the wave vector negative, so that the

amplitude increases as the mode propagates. We therefore have
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an apparent instability. This instability may be caused by

the presence of the surface. Specifically, the important factor

leading to the instability may be the large electron density

gradient that occurs in the vicinity of the crystal surface.
So-called convection and nonconvection instabilities occur

in plasmas(ls’ls)

and are labeled according to whether or not the
signs of the group velocities (dw/dk ) of the interacting modes
are the same prior to switching on the interaction. If the group
velocities have the same sign, then the interaction can result

in a convective instability.which may be interpreted as an
amplifying wave. If, however, the group velocities have opposite
signs, the interaction can result in a nonconvective instability
where certain real wave vectors correspond to complex frequencies

or in an evanescent wave where certain real frequencies correspond

to complex wave vectors.

For the interaction associated with the intersection of
branches a and ¢, we shall regard the unperturbed modes to be
the surface polaritons and the electron drift current. The
latter is taken to have a positive drift velocity (group velocity),
whereas the former has a negative group velocity. Since the two
group velocities are of opposite sign, we expect that there may
be either an evanescent wave or a nonconvective instability.
Our calculations show that tht degenerate branch under discussion
occurs in a range of real frequencies with complex wave vectors.
Consequently, the growing wave of this degenerate branch is an

evanescent wave,
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We now turn to the second type of interaction which is
associated with the intersection of branches a and b, In this
case the two group velocities of the interacting modes have the
same sign. As already stated, this branch involves a range of real
frequencies with complex wave vectors., We have also verified that
if we choose the wave vector real, the frequencies for the de-
generate branch are complex; The growing wave in this second
type of degenerate branch is therefore an amplifying wave and

corresponds to a convective instability. It should also be

emphasized that the instabilities reported in this paper occur
in the presence of only one type_of current carrier and do not

require two types of current carriers such as electrons and holes.

In a recent paperfle) Tajima and Ushioda have presented
theoretical results on surface polaritons in polar semi-
conductors in the presence of a current. Under certain cir-
cumstances, they find instabilities associated with the coupling
of surface plasmons with surface optical phonons, but do not
report instabilities of the type discussed in the present
paper. Tajima and Ushioda used a different method of handling
spatial dispersion than the present authors and did not in-
vestigate negative values of the wave vector, so it is not
surprising that they did not observe the instabilities reported

here.
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FIGURE CAPTIONS
Dispersion curves for surface polaritons in n-type Si
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constant associated with surface polaritons in n-type Si
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ox/c = 0.0001).
( Voi(c = 0.001).

The frequency dependence of the imaginary part of the wave
vector associated with surface polaritons in n-type Si
(Vox/c = 0.001).

Dispersion curves for surface polaritons in n-type Si
(Vo,/c = 0.01).

The frequency dependence of the imaginary part of the wave
vector associated with surface polaritons in n-type Si

(V,/c = 0.01).
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