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Abstract
- 

A theoretical investigation has been carried out on the effect

of a drift current on surface polaritons in n—type silicon. The

current direction is taken to be parallel to the direction of propa-

gation of the surface polaritons. From the dispersion curves, there

is evidence that an interaction takes place between the current and

the polaritons which gives rise to polariton instability or ampli—

fication for certain frequency ranges. These instabilities are
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I. INTR ODUCTION

Several theoretical investigations~~~
5
~ have been made of the

possibility of observing surface wave instabilities, e.g. amplifying

surface waves, in a semiconductor due to drifting current carriers.

The effect of a drift current on surface waves has also been observed

experimentally~
6’7~ • In these studies, both electrons and holes

were present In the semiconductor. In the present investigation,

however, we restrict our attention to only one type of current

carrier. We have theoretically Investigated surface polaritons In

n—type Si in the presence of drifting electrons. The primary

objective of this investigation was to determine whether or not

the surface polaritons exhibit instabilities due to the drifting

- - electrons when only electrons and not holes are present.

II. SURFACE POLARITON DISPERSION RELATION

We begin by using non-local Maxwell’s equations to obtain

equations relating the field and dielectric tensor components.

We next obtain an expression for the dielectric tensor, which is

spatially dispersive. Imposing the so—called dielectric approxi-

mation, partially transformed components of the dielectric tensor

are obtained. Using these results, the above—mentioned equations

are solved for the field components, boundary conditions are

applied, and the surface polariton dispersion relation is obtained.

• Consider a semiconductor which is infinite in the x- and

y—directions and semi—infinite in the z—direction. In seeking

solutions to Maxwell’s equations, we use the following form for

the ~th Cartesian component of the electric field L _~~~~~~~~~ _

_ _ _

U ’ti1~ (mv~rJrY ~~~



3 .

E~(~ ,t) — E~(z)e
t X~

C
~~~

)t) 
, (2.1)

where k
~ 

is the wave vector and w is the frequency. Similar

f orms obtain for the displacement field and magnetic field

IL In this paper we consider only surface polaritons with

p—polarization , i .e. ,  the electric vector lies in the sagittal

plane defined by the direction of propagation and the normal to

the surface. Consequently, E~ — 0, and if we eliminate the magnetic

field from Maxwell’s curl equations, the latter become

— -
~~~~ 

E,~(z) + ik
~ ~~ 

E
~
(z) — ~~ D

~
(z) (2.2a )

ik
~ ~~ 

E
~
(z) + k~ E~

(z) — ~~ D
~
(z) . 

-. 

(2..2b)

A functional relationship is needed between 5 and to

complete the set of equations. For the crystal (z � 0), we can

write

D~(z) — f  dz’ E
~~
(k
~w!

zz’)E
8
(z’) . (2.3)

Substituting Eq. (2. 3) into Eqs . (2 .2 ) ,  we obtain the following

pair of coupled integro—differential equations

2 2
— ~~~~~ E~

(2
~
) + ik,~ 

~~ 

E
~
(z)

~~ ~~ 
f dz’E~~

(kxwIzz
’)E

~
(z’)

+ ~~ 5 

dZ’Exz(kxWtZZ
’)Ez(Z

’) (2.4a)
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ik
~ ~~ 

E
~
(z) + k~ E~

(z) — 

~~ 
5’ ~~~~~~~~~~~~~~~~~~~~~~~

2
+ 

~~ 5 dz’E
~z
(kxwlzz

’)Ez(z
’) (2.4b)

which determine the field components E
~
(z) and E

~
(z).

In order to solve Eqs. (2.4) it is necessary to have expressions

for the components of the dielectric tensor . We proceed by assuming

that the motion of an average carr ier in the semiconductor is

governed by the transport equation~
8’,

4 — vP q 1 —[V + (V.V)V] — — + ~~ [E + ~ V x H] - vV , (2.5)

where V and v are the carrier velocity and colllèion frequency,
respectively , ~ and fi are the total electric and magnetic fields,
respectively , m and N are the effective mass and particle density,

respectively , and VP is the electron thermal pressure gradient .

In what follows, the thermal pressure gradient is neglected, i.e.,

VP — 0 (this is equivalent to neglecting the thermal motion of

the current carriers).

We linearize Eq. (2.5) by writing V — + — +

— + 1 , ‘
~ iere Vc~ 

and are uniform and time-independent

quantities while , ~ , and are position and time-dependent

deviations from the uniform and static quantities. These linear-

ized expressions are substituted into Eq. (1.1) and terms of like

order on both sides are equ*t.d. We consider the situation where
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H0 
— 0. Nothing is obtained from the zero—order equation, but

for the first—order equation we have S

-0 -0 - in q . .
v + (V0 v)v — e + — ( V  x h) — ~,v , (2.6)

where the dot indicates time—differentiation.

Assuming an exponential variation exp[i(~ •r-u,t)] for the
in in in

first-order quantities v, e, and h, we can use the Maxwell equation
in in h ,  in

V x e — — h to eliminate h from Eq. (2.10) and thus obtain the

result

m r w + i v - (~~~~~
.V

0
) ] — i q [ ÷ ~~~~~~~~~~~~

0 
x (~~x ) ]  . (2.7)

Solving this equation for gives the result

(2.8)

where 
-

f w~ OiyVoy+kzVoz) kxVoy 1
~x

Voz

- . 

( 
k
~
V0~ 

w - (k V + k V )  k
~
V0~ 

(2.9)

w~
(kxVox+kyVoy)

and a — mw (w-~~’V0 + iv).

The particle current is given by ~~ — — + ~ , where

— ~~~~ ~ — N0 + nV~,, N — N0.i-n, N0 is the mean particle

density, and n is the deviation of the particle density from its

mean value.

The equation of continuity can be written as

— 0 , (2.10)

which, using the definition of E above, becomes

-- - - . ~~~~ - - _ _  _ _ _ _ _



+ V0 vn + N0(v . ) — 0 . (2.11) ‘1

The quanti ty  n is a funct ion of position and time which we express

in the form n(~ ,t) — n(Lw)exp[i(k -wt)J. Substituting into

Eq. (2.11) we find that

in ink y
n — N 0 _ . (2.12)

w—k .V 0

Substituting this result into the equation for ~ above gives the

result r V0 E. )1
g(k,w) — N01v + _ J . (2.13)

L

The electric current density can now be obtained from the

relation
- in in

j — q g  . (2.14)

In component form, this relation can be expressed as

i~ (Lw) ~~
Eaa~

(
~
,w)eB (Lw) 

. (2.15)

Using Eq. (2.8), we find that the nonlocal conductivity tensor

is given by

a~~(Lu) — N0q ~~~~~~~~ + 

~~
— ; ;

0 

E k~M~~(~ ,w)] . (2.16)

Th. effective nonlocal dielectric tensor is related to the nonlocal

conductivity tensor by

Em@ (Lw) 
— + ±1.1 cY

~r8
(k ,w) (2.17)

where is the background dielectric constant. Note that the

dielectric tensor is spatially dispersive due to the presence of terms

containing ths wave vector ~~~.
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Before proceeding to obtain the surface polariton dispersion

relation , a simplification will be made. Maradudin and Mil1s~
9
~

have applied the so—called dielectric approximation to the type

of dielectric tensor considered here . The simplification consists

of assuming that this tensor depends on z and z ’ only thr ough

their difference, as is the case for an infinitely extended

medium. Surface corrections to the dielectric tensor are thus

neglected. This is consistent with the assumption that the polariton

decay length considered here is numerically large compared to the

distance over which the dielectric constant varies near the

surface.

For each of the dielectric tensor components obtained from

Eq. (2.17) , we need to evaluate the partially transformed dielectric

tensor given by 
-

dk ik (z-z ’)
E
~~
(k
~wfzz

’) — f -
~~~~~~~~~ E~~ (k,w)e 

z , (2.18)

where we have taken k — V — V — 0. The results arey oy oz

Exx(kxwIZZ
’) — (E — ~~~)6(z—z

’) + 
~~ 

~~6 z )  (2.19a)

E
~~
(k
~
w
~
zz’) — — ie 4 

36)~~~~~ — E
~~
(k
~wl

zz’) (2.l9b)

E
~~
(k
~wIzz

’) — ( E— ~~5)6 (z—z
’) , (2.l9c )

where 6(z-z’) is the Dirac delta function, and where we have

used the definitions

— ---

~

-

~ 

_ _ ~~~~~: _ •  ~-

.

~~~~~~~~ ——— - - -~~~
_ _ _ _ _ _
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8 1. — m 2w 2 ( w _ k xvox ) ( w _ k x\Tox + iv) 2 (2.20 a)

8 2 — m p~~~~~l~x\Tox + 1v) (2.20b )

83 — 
~~~~~~~~~~~~~~~~~~ + iv) (2.20c)

E w 2V
— 

sp o x  (2.2Od)
w (W

~
kxVox + iV)

(w-k V )
_ _ _  

X O X85 — 2 (w_k
~
V0~

+iv) 
• e

and — 4rrN0q2/mE

The integrations in Eqs . (2 . 4) can now be carried out , with

the result that we are left with the coupled differential

equations:

—d 2E (z) dE (z) 2 8 B 2 d2E (z)
+ ik~ ~~~~ 

— 

~~ 
( E~~-~~~) E~~

(z) + ~~ ~~ d:2 
+

2 d E ( z)
+ I 

~~ 8,~ 
(2 21a)

dE (z) 2 2 dE (z) 2
1k dz + kxEz(z) — I 

~~ 
+ ~~~~~ (Em~85

)Ez(z) . (2.2lb)

It is assumed that for the crystal (z ~ 0),

E
~
(z) — Ce~~

Z, Ez(Z) — De~~~ , (2.22)

where C and D are constants. Substituting these expressions into

the coupled differential equations gives us two equations relating

C and D. Setting the determinant of the coefficients of C and D

equal to zero gives us an expression for the decay constant ~:

_  _
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~2 
(c— ~~)[k~~

_
~L (E m _ B S)] 

. (2.23)
E -

~~~~(kx - E m s~~) —  8 5-2k 8 4

From Eq. (2 21b) we obtain the following relation between C and

~~ 84)
D — C  2 . (2.24)

Another field component needed is D
~
(z); from Eq. (2.3) and using

Eqs. (2.19) we obtain

dE (z)
D~

(z) — lB 4 ~~ 
+ (E — 8 5)E (Z) . (2.25)

Consider next the electric fields in the vacuum (z < 0)

where D~(z) — E (z). Assuming that

- -  - - -~~ ~~~~~~~~~~ ~~~~~~~~~~

Ex (Z) — Ae ~ , E
~

(z) — B e , (2 . 26)

and proceeding as for the case of the crystal , one obtains the

following results for the decay constant

or~ — k~ — (2 .27)

and the relation between A and B

ik
~~~~~~~~~ A . (2.28)

0

The boundar y conditions at z — 0 can now be applied .

Continuity of E~
(z) gives the result C — A , while the continuity

of D~
(z) produces
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1k 
(E —$5)(k —~~ E4)

— —i A — — i8 4~c + 
. (2.29)

0 k~~— ~~~~~~ (E — $5)

from which we obtain the surface polariton dispersion relation

+ 
2 w 2 

= 0 . (2.30)
k — --~ (E — 8 5)

I I I .  RESULTS AND DISCUSSION

Theoretical dispersion curves have been obtained for surface

polaritons in the presence of d r i f t ing  current carriers . The

effect of retardation is included , but the effect of damping due

to scattering of the carriers is neglected. The latter assumpt ion

is reasonable in high mobility material.

Calculations were made using values of parameters appropriate

for n—type Si. The value of the background dielectric constant

E was taken to be 11.7. The density—of—states effective mass

— (m~m~
2)~

”3 used in the calculations was obta ined from the

values~
1
~
0
~ m~ — 0.l9m~ and m~ — 0.98 in

0
. The electron mobility

was taken to be~~~~ 1.6 x lO~ Cm
2/V sec.

In our calculations, the thermal pressure gradient was

neglected (see Eq. (1.1). This is valid if the following In-

equality holds~
3’:

V
—

~~ v!~ < 1 , (3.1)
ox

where v — e/m
5
~L~ is the damping constant and VF

m (
~
z/m

~
)(3rT 2NO)

1”3

is the Fermi velocity. The practical upper limit for the election

drift velocity V~~ is 
.~l0

8 cm/sec, which corresponds to an electric
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field of -l0~ vol ts/cm , obtained from the equaticn Vox~~Eox~e
where the value of 

~
‘e 

is as given above. For n—type Si, it has

been shown that the mobility of the electrons doesn ’t vary with

electr ic f ield up to l0~ vol ts/cmU2). Three values of drift

veloc ity were considered : V0~
= 0.000lc, 0.OOlc , and 0.Olc .

For the parameter values given here for n—type Si, an

upper limit for the carr ier concentrat ion N0 can be calculated

from Eq. (3.1). Taking V0,~—0.0001c and w 
= (4rrN0e

2/m*E ) ~~,

we obta in the result N0 ~ 4 x l0
18cm 3

.

In mak ing the calculations of the dispers ion curves , real

values of w/w~ were assumed , and complex values of the wave

vector k
~ 

k1 + ik2 and the decay constant ~ = + 
~~~ 

were

calculated using a digital computer . The values of w/w~ were

taken in steps of 0.01 or smaller for the range 0< w/w~~<l .O.

The values of k~ 
were calculated using Muller ’s method C~

3) , a

process of successive approximations fran initial guesses (which

need not be externally supplied).

Figures 1 and 2 show the dispersion curves for the s i tua t ion

where the dr if t  veloc ity V0,~ — 0.000lc . Note that for > 0,

there is one branch , which for w ~ 0.5 ~~~ follows the light line ;

then , for higher frequencies it bends over and moves to the right

of the light line. For frequencies w ~ 0.95 wi,, there are three

branches for k1 < 0 in Fig. 2 which will be termed negat ive

branches in the discussion that  follows . Two of the three negative

branches occur because of the presence of the drift velocity; for if

V0,~ — 0, there is only one negative branch , a mirror image of the

positive branch with k1 > 0. 
-
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At the lower frequencies , two of the negative branches

(branches a and b in Fig. 2) have large values for

which decrease as the frequency increases . The other negative

branch (branch c in Fig. 2) originates at the origin and increases

in frequency as 1k 11 increases . Eventually, a point is reached

where branch c intersects branch a. To the righ t of this inter-

section point, there ex ists a cont inuat ion of branch a indicated

by the dash—dot lines in Figs. 1 and 2, which consists of two

degenerate modes whose wave vectors form a complex conjugate pair.

As the frequency increases above the value at the intersection

point , this degenerate mode moves to the right and finally termi-

nates at the vertical axis at w — 
~~~ In addit ion , the real part

of the decay constant ~ becomes zero at the termination point.

The remaining negative branch in Fig. 2 (branch b) also moves

in closer to the light line as the frequenc y increases , and then

terminates at a point where the frequency is slightly below wi,.

At this end point, the decay constant ~ becomes pure imaginary,

i.e., we no longer meet the condition for surface polaritons. We

note also that branch b intersects branch a at a large value of

Ick 1/w~ I .
As we see from Figs. 1 and 2, there is a frequency range

where we have a degenerate negative branch whose wave vectors

form a complex conjugate pair . For all the other negative

branches, the wave vectors are real except in the immediate

vic in i ty  of the point where branches a and b intersect. A plot

of the magnitude of the imaginary part of the reduced wave



vector )ck 2/w~~) 1  versus frequency is shown in Fig. 3 for the /
degenerate pairs. The curves for Ick 2/w~ J start at k 2 — 0

for w 0.96 ~~~ rapidly increase with increasing frequency

to a maximum , then reverse and approach k2 — 0 again as w

approaches w i,. In addition , Ic2 is non—zero over a very narrow

frequency range about w — 0.92 w~ where branches a and b inter-

sect in Fig. 2.

Figure 4 shows the frequency dependence of the real part of

the reduced decay constant , c~1/w~~ versus frequency for V~~
=0.000l c.

The branches are labelled to correspond to Fig. 2. For that fre-

quency range where the wave vector is complex conjugate (see Fig . 2),

the decay constant is also complex conjugate. -

Figure 5 shows the dispersion curves for an order of magnitude

higher drift velocity, i.e., V0,~ — 0.001 c, in a region of negative

Ic1. For our purposes, the region of interest centers on the point

where branches a and c intersect. Again , we have complex conjugate

values of k
~ 

in the upper of the intersecting branches to the

right of the intersection point. There is, as was the case for

V0~ 
— 0.0001 c considered previously, a positive branch, which

although not shown , is essentially the same as that shown in Fig. 1.

We also have complex values of k1 in the immediate vicinity of

the intersection point of branches a and b.

Figure 5 differs from Fig. 2 in two noticeable ways : in

Fig. 5, the intersection point of branches a and c occurs at a

smaller value - of Jk 1f than in Pig. 2 , and the uppermost negative
branch (branch b) moves to a smaller value of )k1~ before termi-

nating . As before, the termination point occurs when the decay

constant no longer satisfies the requirement Re~ > 0. In addition ,

the point of intersection of branches a and b occurs at a much

smaller value of Ik
1
l than in Fig. 2.

a
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In Fig. 6, the frequency dependence of the imaginary part of

the surface polariton wave vector for 
~ox 

— 0.001 c is presented

It shows a behavior somewhat different from that shown in Fig . 3,

the case for — 0.000lc. The frequency range where complex

conjugate wave vectors occur is larger for the higher drift

velocity, while the maximum value of Ick2/w~ I is smaller.

Figure 7 shows dispersion curves for the highest drift

velocity considered here, namely V0,~ — 0.Olc. The relative

behavioral changes discussed in the last two paragraphs continue

for V0,~ — 0.Olc , except for one obvious difference: branches a and b

now coincide over an appreciable frequency range , the wave vectors

in this range being complex conjugates of one another. As the

frequency increases, the branches separate, the lower one finally

intersecting branch c in the same manner as shown in Pigs. 2 and

5. The intersection point differs from those of Figs. 2 and 5

in that it occurs at a smaller value of 1k
1
!. In addition ,

branch b in Fig. 7 moves to a smaller value of 1k
1 1 before

terminating than is the case in Figs. 2 and 5. The

plot of ICk 2/w~ ! vs. w is shown in Fig. 8 for — 0.Olc .

Note from Figs . 3, 6 , and 8 that the frequency range where complex

conjugate wave vectors occur is larger, the higher the drift

velocity, while the maximum value of Ick2/w~ I is smr~~ler.

We now consider in detail the degenerate modes whose wave

vectors form a complex conjugate pair. One of these modes

has the imaginary part of the wave vector negative , so that the

amplitude increases as the mode propagates . We therefore have
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an apparent instability. This instability may be caused by

the presence of the surface. Specifically, the important factor

leading to the instability may be the large electron density

gradient that occurs in the vicinity of the crystal surface.

So—called convection and nonconvection instabilities occur

in plasmas~~
5’16~ and are labeled according to whether or not the

signs of the group velocities (c1W/dk
~
) of the interacting modes

are the same prior to switching on the interaction. If the group

velocities have the same sign, then the interaction can result

in a convective instability.which may be interpreted as an

amplifying wave. If, however, the group velocities have opposite

signs, the interaction can result in a nonconvective instability

where certain real wave vectors correspond to complex frequencies

or in an evanescent wave where certain real frequencies correspond

to complex wave vectors.

For the interaction associated with the intersection of

branches a and c, we shall regard the unperturbed modes to be

the surface polaritons and the electron drift current. The

latter is taken to have a positive drift velocity (group velocity),

whereas the former has a negative group velocity. Since the two

group velocities are of opposite sign, we expect that there may

be either an evanescent wave or a nonconvective instability.

Our calculations show that tht degenerate branch under discussion

occurs in a range of real frequencies with complex wave vectors.

Consequently, the growing wave of this degenerate branch is an

evanescent wave .
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We now turn to the second type of interaction which is

associated with the intersection of branches a and b . In this

case the two group velocities of the interacting modes have the

same sign. As already stated , this branch involves a range of real

frequencies with complex wave vectors. We have also verified that

if we choose the wave vector real, the frequencies for the de-

generate branch are complex . The growing wave in this second

type of degenerate branch is therefore an amplifying wave and

corresponds to a convective instability. It should also be

emphasized that the instabilities reported in this paper occur

in the presence of only one type of current carrier and do not

require two types of current carriers such as electrons and holes.

In a recent paper~~
6
~ Tajima and Ushioda have presented

theoretical results on surface polaritons in polar semi-

conductors in the presence of a current. Under certain cir-

cumstances, they find instabilities associated with the coupling

of surface plasmons with surface optical phonons , but do not

report instabilities of the type discussed in the present

paper. Tajima and Tjehioda used a different method of handling

spatial dispersion than the present authors and did not in—

veetigate negative values of the wave vector, so it is not

surprising that they did not observe the instabilities reported

here.
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FIGURE CAPTIONS

Fig. 1. Dispersion curves for surface polaritons in n—type Si +

(V0~
/c O.OO01).

Fig. 2 Dispersion curves for surface polaritons in n-type Si

(Vox/C — 0.0001).

Fig. 3. The frequency dependence of the imaginary part of the wave

vector associated with surface polaritons in n—type Si

(V /c — 0.0001)

Fig. 4. The frequency dependence of the real part of the decay

constant associated with surface polaritons in n—type Si

— 0.0001).

Fig. 5. Dispersion curves for surface polaritons in n—type Si

(V 0~
/c — 0.001).

Fig. 8. The frequency dependence of the imaginary part of the wave

vector associated with surface polaritons in n—type Si

(V 0~
/c — 0.001).

Fig. 7. Dispersion curves for surface polaritons in n—type Si

(V ,/c — 0.01).

Fig. 8. The frequency dependence of the imaginary part of the wave

vector associated with surface polaritons in n—type Si

(Vox/C — 0.01).
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