F

AD-ADBS 092 CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAI=-=ETC F/6 17/2
A SURVEY OF THE PROPERTIES OF COMPUTER COMMUNICATION PROTOCOLS.==ETC(U)

NL

SEP 78 A E ITZKOWITZ
UNCLASSIFIED CERL=TR=0~1

END
u'u'é

m" 10 %2 2

=i
||||| T
e

|

S
O

Ll fle

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

ol
construction || - osff
engineering === i ka
research
'"“Yoratory

TECHNICAL REPORT O-1
September 1978

Aot 64 7
Vot 1.

A SURVEY OF THE PROPERTIES OF
COMPUTER COMMUNICATION PROTOCOLS
VOLUME I: THE FUNCTION, PROPERTIES, SPECIFICATION,

AND ANALYSIS METHODS OF
COMPUTER COMMUNICATION PROTOCOLS

ADAQ 63092

A. E. Itzkowitz

DDC FiLE. coPy

A/ 4
E=nl.

Approved for public release; distribution unlimited.

4

The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an
official indorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED
DO NOT RETURN IT TO THE ORIGINATOR

g i S

SELURILY CLAMIFICALIUN QF THIS PAGE (When vata tntered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.
;L iCERL-TR-o’JF / b o

3. RECIPIENT'S CATALOG NUMBER

Ve .

T Cand Subtitle)

e ———
C% A SURVEY OF THE OPERTIES OF COMPUTER COMMUNICA—‘

SPECIFICATION, AND ANALYSIS METHODS OF COMPUTER
COMMUNICATION PROTOCOLS ,

ne" 2

OD COVERED
FINAL (7-;» x|

TION PROTOCOLS, [7« THE FUNCTION, PROPERTIES, /—
/

6. PERFORMING ORG. REPORT NUMBER

, o L T
,'4iZ iAvrum E.;Itzkow1tz?
| - | |

8. CONTRACT OR GRANT NUMBER(s)

ey

9. PERFORMING ORGANIZATION NAME AND ADDRESS

U.S. ARMY ENGINEER

CONSTRUCTION ENGINEERING RESEARCH LABORATORY ng;
P.0. Box 4005, Champaign, IL 61820 - —

10. PROGRAM E

v ’ﬁi,“l.!ﬁﬂ-llumr NUMBERS
4A762

725AT1112-209

11. CONTROLLING OFFICE NAME AND ADDRESS »
J
i

r.n._.nzpoax‘nu&———-

Septamher W78

.

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

13. NUMBER OF PAGE!
41 (4~

15. SECURITY CL

Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Springfield, VA 22151

Copies are obtainable from National Technical Information Service

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

computer communication protocols
graphical techniques
remote access

\
A

20. A“‘IACT (Continue en reverse side if necewsary and identify by block number)

ical techniques, are presented and discussed.

This report is a two-part study on the properties of computer communica-
tion protocols. This volue focuses on the function and properties of current
computer communication protocols. Many different approaches to the specifi-
cation and analysis problem, ranging from textual description to formal graph-

DD , iy W73 EOImON OF 1 MOV 65 15 OBSOLETE, 3 @
7

—

UNCLASSIFIED

L‘szcumrv CLASSIFICATION OF THIS PAGE (When Data Entered)

4

SECURITY CLASSIFICATION OF THIS PAGE(When Nata Fntered)

t

i

; 3
1
3
é

SECURITY ASSIEICATION F THIS PAGEWhen Date Fnterad)

FOREWORD

This investigation was performed for the Engineer Information and
Data Systems Office (EIDSO), Office of the Chief of Engineers (OCE),
under Project 4A762/25AT11, “Engineering Software Development Methods";
Task 2, "Data and Language Structures"; Work Unit 209, “Design of a
Machine Protocol Language."” The OCE Technical Monitor was Mr. R.
McMurrer.

The investigation was performed by the Computer Services Branch
(SOC), Support Office (SO), U.S. Army Construction Engineering Research
Laboratory (CERL). Personnel directly involved in the study were Mr. A.
Itzkowitz and Ms. L. Lawrie of SOC.

Mr. W. Schmidt is Chief of SOC, and Mr. W. Assell is Chief of SO.
COL J. E. Hays is Commander and Director of CERL, and Dr. L. R. Shaffer
is Technical Director.

CONTENTS

DD FORM 1473
FOREWORD

INTRODUCTION. . cccocacscoccnscss e ALia sty ale atatate m atarolalai xintie L
Background
Objective
Qutline of Report

PROTOCOL FUNCTION AND DESIGN.vceeveeeooeanns e s
Functional Issues
Design Issues

CURRENT PROTOCOL SPECIFICATION METHODS..ceeeecececacsacs e
Text
Communication Control Graphs
General Machine Descriptions
Synchronization Models
Linguistic Models
Specialized Machine Descriptions

Summary
PROTOCOL SPECIFICATION CRITERIA..veeececcecnnnnns s slnieiviate s
SUMMARY AND CONCLUSIONS...... e P e e e et eta

ANNOTATED REFERENCES
DISTRIBUTION

13

29
30
31.

————————

A SURVEY OF THE PROPERTIES OF
COMPUTER COMMUNICATION PROTOCOLS
VOLUME I: THE FUNCTION, PROPERTIES,
SPECIFICATION, AND ANALYSIS METHODS
OF COMPUTER COMMUNICATION PROTOCOLS

1 INTRODUCTION

Background

The ability to access computer facilities from a remote location
has become increasingly important. This remote access capability makes
some previously expensive uses of computers econcmically effective, and
makes other uses, which until recently were nearly impossible, both fea-
sible and practical. Remote access makes computer facilities available
where they were previously unavailable, reduces the cost of data pro-
cessing, and enables the timely use of information by organizations and
persons separated by large distances.

A computer facility which supports any type of remote access capa-
bility contains a subsystem called the communications network. This
network contains the communication links necessary to connect machines
and terminals at different locations. Each point of the network to
which either a terminal or computer may be connected is called a node.
Whether the network has been designed primarily for machine to machine
communication, machine to terminal communication, or terminal to termi-
nal communication, there must be some agreement which defines how the
nodes may communicate over the network. This agreement is called a com-
munication protocol. The protocol may be simple or complex, depending
on the sophistication and function of the devices which will use it.

Certain necessary functions and capabilities of communication net-
works are well defined--for example, the remote batch job entry facil-
ity. Though the functions are defined in principle, their actual imple-
mentations are not. It is rare that two computers produced by different .
manufacturers have any communication facility implemented in the same |
way. Even systems of a single manufacturer may differ. It is unlikely
that these different implementations can be standardized in the near :
future. Therefore, an organization which must use the services of more '
than one remote facility must be prepared to support many communication i
protocols. One major obstacle to this type of support is the lack of
any standardized method of describing protocols. Each designer develops 3
his/her own notation, and specifications are often ambiguous, incom-
plete, and/or cryptic.

Objective

The objective of this report is to survey the function, properties,
specification, and analysis methods of computer communication protocols;
to discuss the criteria which have been used for judging specifications;
and to recommend a general approach to the problem of specifying commu-
nication protecols.

Outline of Report

Chapter 2 discusses aspects of data communications and properties
of protocols. Chapter 3 surveys some currently used methods of protocel
specification, modeling, and verification. Chapter 4 discusses the pro-
tocol specification criteria.

e ———

2 PROTOCOL FUNCTION AND DESIGN

The issues of data communication protocols can be divided into two
levels: functional issues and design issues. Functiconal issucs deal
with the execution time problems of data communications, such as error
recovery and flow control. Design issues deal with the reliability and
efficiency of the overall protocol design. These issues must be com-
pletely resolved before the protocol is specified.

Functional Issues

There are three phases in a data communication procedure: con-
nection, message transfer, and termination. The phases may be distinct,
or they may appear to merge together, depending on the function and to-
pology of the communication network. There are many functional issues
with which a protocol must deal. Although these issues are inter-
related, they have been divided for this discussion as follows:

1. Control of data transfers
2. Information coding

3. Flow control

4. Message framing

5. Error recovery

6. Protocol layering.

Control of Data Transfers

The protocol must specify how each party should control the trans-
fer of data. Three elements should be considered: message format, con-
trol information, and acknowledgements. The message format specifies
the form of the information contained in the message. The format will
typically consist of some leading control information (also called a
header), the data, and some trailing control information. Embedded in
the header and trailer is control infoermation, which is typically used
to specify the source and destination of the message, and other infor-
mation needed by the receiver (and/or the communication network) tc pro-
cess the message. Redundant information is also generally provided for
use in error recovery (see Error Recovery section). The acknowl-
edgement, or hand shaking, specifies the interaction of messages. how
the receipt of a message is acknowledged, when a particular kind of mes-
sage may be sent, etc.

Information Coding

Information coding deals with the meaning of the message, i.e., the

convention used to interpret the bits transmitted. The protocol must

i

either expiicitly or implicitly specify the transformations needed to be
performed on the message in order to convert it to and from its trans-
mitted format to the internal machine representations. There are some
well-defined code sets, such as ASCII, ! BCD, or EBCDIC. Other con-
ventions exist, and others may also be useful. The message may be bit-
oriented, so that the bit combinaticns do not conform to some character-
oriented code set, for example, transmission of binary data, or use of
the SDLC’ protocol. Conventions must be observed that specify which bit
combinations, if any, have special meanings as control characters. In
addition, if a transparency mode is necessary (a mode in which all bit
combinations may be transmitted as valid data), conventions for the
entry and exit from this mede must be observed.

Flow Control

The flow control properties of a communication protocol depend on
several factors, the most important of which are topology and re-
liability of the communication network, and the functicnal level of the
protocol. Protocols may exist at different functional levels. For ex-
ample, in a message switching network such as ARPANET,® the machines at
the nodes specify the destination of the message, but the internal net-
work processors must route the messages from node to node until the in-
tended receiver accepts the message. The user does not see the internal
network protocol, which specifies how messages are routed.

The topology of the communication network partially dictates the
expected efficiency of the communication links. A multipoint or multi-
drop data 1ink will require more control overhead to route messages than
a point to point link. However, if the frequency of communication be-
tween individual nodes is low, the extra control overhead can increase
the utilization of the data link. If there is frequent communication
between nodes, the extra overhead may cause contention problems,
decreasing the utilization of the link.

American National Standard Procedures for the Use of the Communication
Control Characters of American National Standard Code for Information
Interchange in Specified Data Communication Links, ANSI X3.28 (ANSI,
1976).

2 R. A. Donnan and J. R. Kersey, "Synchronous Data Link Control: A Per-

3 spective," IBM Systems Journal, Vol 13, No. 2 (1974), pp 140-162.
Stephen D. Crocker, John F. Heafner, Robert Metcalfe, and Jonathan
Postel, "Function-Oriented Protocols for the ARPA Computer Network,"
Proceedings of the Spring Joint Computer Conference, Vol 40, (American
Federation of Information Processing Societies [AFIPS], 1972), pp 271-
279.

Direction control is ancther factor. There are three types of
direction control: simplex, half duplex, and full duplex. A simplex
link allows transmission in one directicn only. A half duplex link
allows transmission in both directicns, but only in one direction at a
time. A full duplex link supports simultaneous bidirectional commu-
nicatien, and is often medeled as two simplex links. A full duplex link
requires a protocol capable of handling simultaneous two-way trans-
mission in order to use the link efficiently.

The reliability of the data links will affect the flow of data for
different protocols. If the network is highly reliable, and only a
small number of errors is expected, then the protocol will probably
specify error detection and retransmission schemes. If the reliability
is low, the protocol will prebably specify a more complex error recovery
scheme, which can allow errors to be corrected in each message without
retransmission. If the link is reliable, the number of expected re-
transmissions will be low, so that the former method is more efficient.
If the link is unreliable, a large number of retransmissions could be
expected, and the latter scheme will be more efficient.

Flow control must also deal with the problems of scurce and desti-
nation synchronization. There must be a mechanism which prevents a
source from producing messages faster than the destination can process
them. Some protocols treat this as an error condition, but this could
cause extra transmissions and overheads. Another method is the pre-
allocation of buffer space, which increases control overhead.

Message Framing

It must be possible to determine the start and end of a message.
Generally, some pattern of bits, sometimes referred to as the syn-
chronization pattern, precedes the message. This pattern also forces
the framing of the individual characters of the message. If the message
falls one bit out of sync, it can become completely garbled; however,
this issue is generally only important in low-level protocols.

Error Recovery

If all communication links were error free, and all nodes of a com-
munication network were always available, the design of protocels would
be straightforward and fairly simple. However, a major problem of pro-
tocol design and specification is error detection and recovery. The
treatment of error conditions directly affects the number of message re-
transmissions, buffer requirements at the nodes, line throughput and
utilization, and message delays. The different errcrs which must be
detected and recovered include:

i
|
|
|
|

Transmission errors

. Sequence erors
Synchronization violations
. Long-term failure.

S wne -

Transmission Errors. Transmissicen errors change individual bits in
a message. There are several ways to detect and recover from trans-
mission errors, Some systems require a destinaticn to repeat the mes-
sage to the sender. If the message is returned as it was sent, then it
is assumed to be correct. However, most networks cannot afford this
amount of overhead, so error-checking information is generally added to
each message. Vertical Redundancy Checking (VRC), alsc referred to as
parity, is cne such method. VRC adds one bit to each character (byte)
of the message, and requires that the total number of bits set in each
character be either always odd or always even. For example, using odd
parity, if the number of bits set in the character is odd, then the VRC
bit should be set to zero; otherwise, it should be set to one. This will
detect all one-bit errors in a character. This form of error detection
can be extended by adding more VRC bits per character. For example,
there is a four-out-of-eight code, where only four bits in an eight-bit
character may set to one. The only errors not detected by this method
are those which cause an equal number of zero and one bits to change
value. There are also codes which can correct errors, in effect giving
a multiple-bit pattern to a one-character mapping.

The entire message can be checked similarly. Logitudinal Redun-
dancy Checking (LRC), also called checksum or block checking, sums the
character codes for the entire message, maps the sum into a single char-
acter, and includes this block-checking character (BCC) in the message.
The destination node performs the same operation on the incoming message
and compares the checksums. Cyclic Redundancy Checking (CRC) is another
method of message checking which uses polynomial division of the message
to compute the checksum. These methods usually detect false message
framing, since it is unlikely that a falsely framed message will hadve
correct checksums. VRC and LRC are commonly used together in data com-
munication systems and are effective when the expected error rate is
fairly low.

Sequence Errors. Sequence errors occur when messages arrive at the
destination in a different order than they were transmitted from the
source. An example of this is a packet switching network, where the
messages are divided into smaller packets, and each packet is routed
separately; however, networks where the messages are not divided into
packets can also exhibit this kind of error. For example, in protocols
which do not require the acknowledgement of the previous message before
sending another message, the second message could arrive first.

10

-
st i i IORPUSPRO -Yo—-

e

Another type of sequence error occurs when an expected message is
missing or duplicated. A message can be duplicated if the protocol
specifies retransmission or no acknowledgement, and the destination 1s
either slow to respond or the acknowledgement is delayed.

Synchronizaticon Vicolations. Synchronization viclations occur when
the communicating nodes do not agree on the state of the communication;
i.e., both may be trying to transmit or receive. They may be syn-
chronized as source and destinaticon, but the message being transmitted
may be different from the message that the destination is prepared to
receive. This type of error is generally short-term, and can be caused
by a short-term failure of the communication link or a node.

Another type of error occurs when a node is slow to respond or when
a message is delayed. If one node is waiting for a message and it is
not delivered within some specified time, the destination must be able
to perform some recovery action. This is commonly known as a time-out.
When this kind of error occurs, synchronization must be re-established
whenever the transmitting node becomes available. If the node does nct
become available reasonably quickly, the condition is then classified as
a long-term error.

Long-Term Failure. The previous section dealt with short-term syn-
chronization problems. If communication between two nodes is lost for a
Tong period of time, then some specific recovery action may be speci-
fied. If the failure is in one link of the network, then messages may
be rerouted around that link. If the node itself has failed, then the
other communication nodes should be notified so that they may perform
some recovery action. For example, if the protocel is for remote batch
job entry, jobs may be able to run on another facility in the network.

Protocol Layering

In a network like ARPANET," host to host protocols are layered on
host to IMP protocols, which are layered on IMP to IMP protocols. Lay-
ering may exist even in a simple point to point protocol. For example,
the Houston Instrument plotters® are interfaced to the CDC UT20U remote
patch entry terminal by layering them on top of the existing line
printer protocol. Any line which begins with the characters '+:' is di-
verted to the plotter instead of the printer. The lower-level protocol
does not need to be aware of the higher-level protocol above it.

4 Stephen D. Crocker, John F. Heafner, Robert Metcalfe, and Jonathan i
Postel, "Function-Oriented Protocols for the ARPA Computer Net- i
work," Proceedings of the Spring Joint Computer Conference, Vol 40

5 (1972), pp 270-271.

Bateh Terminal Controller-Complot BTC-7-200 Instruction Manual

(Houston Instrument, Inc., revised ay 1§7é).

11

One problem with layered protecols is error recovery. The fact
that a message is correct at one level does not mean that it will be
correct at a higher level. Each level must be prepared to handle error
conditions, and this may lead to additional overheads. Recovery at the
low lTevels can reduce the number of errors detected at higher levels,
but will not eliminate them. Pouzin® concludes that there is no simple
criterion to determine at which levels error recovery should appear.

| Design Issues

Depending on the individual communication network and the intended
use of its protocols, the particular functional issues which must be
considered and their solutions can differ from protocel te protocol.
The design issues (listed below), however, are consistent and must be
considered for every protocol.

1. Verification

2. ldentification of protocol inadequacies
3. Detection of deadlocks

4, Detection of critical races.

It must be possible to verify that a protocol! performs as required.
It is necessary to identify the situations in which the protocol is in-
adequate or incurs unacceptable overheads, and be able to redesign it
when necessary. Possible deadlock situations must be detected: for ex-
ample, whether two nodes can go into a receive state and never return to
the send state. Similarly, critical races must be detected (those con-
ditions which may cause different actions to take place, depending on
now quickly a message is delivered or how a node responds). The error
recovery procedure chosen must also yield a stable system; for example,
is the protocol self-synchronizing (that is, does it tend to synchronize
itself even if it was initially not synchronized).

6 Louis Pouzin, "An Integrated Approach to NETWORK Protocols,"

Proceedings of the National Computer Conference (1975).

12

ol - -

2 CURRENT PROTOCOL SPECIFICATION METHODS

The design, verification, and implementation of communication pro-
tocols are interrelated. Because of this interrelationship, the speci-
fications and models which have been used in any one of these activities
may also be considered useful for the others. The following general
schemes have been used during at least one of the activities of protocol
design and analysis.

1. Text

2. Communication control graphs

3. General machine descriptions

4. Synchronization models

5. Linguistic models

6. Specialized machine descriptions.

Text

Natural language text is usually the first method employed to
specify almost anything. Its advantages are generality and expres-
sibility. However, the completeness, conciseness, and clarity of a tex-
tual protocol specification depend totally on the author. Often, many
types of graphical aids accompany a textual description for the sake of
clarity.

The difficulty with textual specifications stems from the gener-
ality of natural languages. Two persons reading the same text can in-
terpret the protocol differently. The definition may be ambiguous, its
ccmpleteness is usually questionable, and it is often quite lengthy.

One textual description of the BSC protocol,” which is a reasonably es-
tablished and simple line control discipline, is 36 pages long, but may
not be complete. It is unsuitable as an implementation guide because of
its length.

Communication Control Graphs

Graphical methods have Tong been used in conjunction with text to
clarify the exchange of messages and the different possible inter-
actions. There are several different graphical representations which
are fundamentally the same.

/ J. L. Eisenbies, "Conventions for Digital Data Communication Link

Design," IBM Systems Journal, Vol 6, No. 4 (1967), pp 267-392.

13

Time Line Diagrams

The time line diagram is laid out in columns, with one column for
each communicating part or station. The interactions of messages and
time flow from the top to the bottom of the diagram. The messages which
may be sent or received at each interaction are shown as branches of the
diagram within the column of the active party. When a message is com-
plete, the diagram crosses from the column of the message sender to the
column of the message receiver. To illustrate the differences between
the graphical methods, consider a two-station half-duplex communication
which uses the control characters SOH, STX, ETX, ACK, and NAK. Figure 1
is a time line diagram of a small fragment of the protocol.” The branch
around the SOH character indicates that it is optional.

ANSI Representation

The ANSI representation collapses the multiple column notation of
the time line diagram into a single flow by marking the line turnarounds
(those positions in the graph where the flow of messages changes
directions). Figure 2 is the ANSI representation of the example proto-
col fragment.® The graph is read from left to right.

State Transition Graph

The state transition graph is an extension of the ANSI repres-
entation. The system states of the communicating stations are added as
circles on the graph. Figure 3 is the state transition graph of the ex-
ample protocol fragment.'® The state transition graph notation may be
converted into tables that define a finite state machine which can rec-
ognize the valid messages of the protocol.

Summary of Communication Control Graphs

The graphical methods clearly show the flow of information over the
communication link, and may show the state of the sender or receiver.
These methods can become complicated as the compiexity of the protocol
and the number of stations increase. They are incomplete as a sole
source of protocol specification, ignoring the transformations performed
on the messages, such as code translation and parity. They may be used
to show which messages are possible, but not how, why, or when.

g Byron W. Stutzman, "Data Communication Control Procedures," Computer

Surveye, Vol 4, No. 4 (December 1972).

10 Byron W. Stutzman.

Byron W. Stutzman.

14

Station | - Station 2 Station 2+ Station |

SO

e1ix
T i

nak QAL Invalid
or no
reply

i |

erp erp

|

Figure 1. Time-line diagram.

‘rL_s_qi heading L—m... fext efx A ack A

—_ . — 1 ——

Invalid
or no
reply —\

erp

Figure 2. ANSI representation.

15

1____ﬁ___....___................---n-uinh—-----ﬁ"-‘i""""

— - e ———— > e

Figure 3. State transition graph.

General Machine Descriptions

Since machines are used in the data communication process, one way
to describe a communication protocol is to describe the actions of a ma-
chine which can communicate using the protocol. In this context, almost
any method that has been used to describe computer hardware or software
can pe used to describe a protocol. Generally, to describe a protocol
in this way, two machines must be described: the sender and the
receiver. O0ften, both the sender and receiver are the same machine.

: Sender-Receiver Interactions

One straightforward method of describing the actions of two commu-
nicating machines is to compare lists of their actions. Postel!! uses
the following example.

SENDER RECEIVER
SO: Send message RO: Receive message
S1: Start timer R1: If check sum = ok
S2: If timer runout R2: Then send ACK
S3: Then retransmit R3: And go to RO
; S4: And go to Sl R4: If check sum = bad
3 S5: If ACK received R5: Then go to RO
i S6: If check sum = bad
S7: Then go to S2
S8: If check sum = ok

S$9: Then go to SO

1 Jonathan B. Postel, A Graph Model Analysis of Computer Communication

Prot§cols, Ph.D. Dissertation, NTIS No. AD 777 506/H (UCLA, January
1974).

16 |

This example is shown to be a simple positive acknowledgement pro
tocol, but Vittle other information is revealed. The description 1tselt
is a type of structured text, and suffers from the problems of textudl
descriptions. It is adequate as a general description meant to give the
flavor of a communication protocol, but not as a complete description
for use as an implementation guide.

Flow Charts

Flow charts, used to describe both computer hardware and software,

L clearly show the flow of control of an algorithm. For example, the pro-
- tocol used by the CDC 200 user terminal is described in a detailed four-
page foldout flow chart in the 200 iser Tovmina! Hardoare Referenc

Marual . 1?2

The problems with flow charts are similar to the problems with 1
structured text. They may not be sufficiently detailed (for example,
leaving critical implementation details unspecified), or they may become
too complex to understand.

Finite State Machines

As previously stated, a state transition diagram can be turned into
tables which define a finite state machine that can recognize the proto-
col. Finite state techniques have been used for both protocol descrip-
tions and implementations.'®-17 The basic procedure is to make a table
consisting of one column for each valid character in the message and one

L 200 User Terminal Hardware Reference Mariual, Publication No. 82128000

13 (Control Data Corporation, June 1969). 1
Dennis M. Birke, State Transition Programming Techniques and Their |
Use in Producing Teleprocessing Device Control Programs, M. S. Thesis
14 (University of Pittsburgh, 1971). |
Dennis M. Birke, "State-Transition Programming Techniques and Their
Use in Producing Teleprocessing Device Control Programs," Procecdings
i of the &nd Symposium on Problems in the Optimization of Data Commu-
: nications Systems (Association for Computer Machinery [ACM], October
i 15 20-22, 1971}, pp 21-31.
2 Dines Bjorner, "Finite State Automation--Definition of Data Commu-
i ! nications Line Control Procedures," Proceedings of the Fall Joint

Computer Conference (International Federation for Information Pro-
16 cessing [IFIP], 1970), pp 477-491.

Gregor V. Bochman, "Communication Protocols and Error Recovery Pro-

cedure," Proceedings of the ACM SIGCOMM SIGOPS Interprocess Cormmi-
17 nications Workshop (ACM, March 24-25, 1975), pp 45-56.

Byron W. Stutzman, "Data Communication Control Procedures," Computer

Surveys, Vol 4, No. 4 (December 1972).

17

|
|

row for each state. The valid transitions from each state to its suc-
cessor state are marked in the states row in the column of the character
that will make it change states. The action that the machine must per-
form as it makes the transition, such as check message parity, is also
marked in the table. All unmarked transitions are invalid. Figure 4 is
an example of the state transition matrix. Bochman'® extends the no-
tation to specifically show whether the action performed is a local
actien, a send action, or a receive action.

EVENT
soh stx a otx ack ok ':;ar'l:f;'
; A2 | 8,4
2 c,3
CURRENT 3 £y 3 o
STATE
4 (7
s 65 | H,6
o 30 N

A-J ROUTINES TO BE
PERFORMED UPON
TRANSITION TO THE
NEXT STATE

a - TEXT CHARACTERS

Figure 4. State transition matrix.

The problem with the finite state description is that the actions
the protocol machine is to perform are not formally specified. Also,
there are no guarantees that finite state machines are sufficient to de-
scribe all protocols.

Computer Programs

The most complete description of a protocol machine which exists as
a computer program is the computer program itself. Most protocol de-
scriptions are transmitted as programs. Unfortunately, however, most
protocol machines are programmed in assembly language, which requires

L Gregor V. Bochman, pp 45-56.

the user to have specific knowledge of the implementation hardware in
order to transfer it to another machine. Also, since machine architec-
tures vary widely, the description may need drastic revision before the
protocol will function on another machine. Protocol machines generally
require the use of interrupt processing, and so far there is no commonly
used high-level language which handles asynchrenous processing clearly
and eff1c1ent1x However, this is currently an active research area.
Brinch Hansen ° nas developed a language based on Pascal?® called Con-
current Pascal. This language is designed to handle systems of commu-
nicating asynchronous processes and has a computer operating system
written into it. Hansen and Lindahl’' have specified a similar languace
called g al-Time Pascal. Wirth has designed a language called

Modula,” also based on Pascal, which is oriented toward the DEC PDP-11
computer. The analysis of protocol software is subject to all of the
problems of general software analysis and verification.

Summary of General Machine Descrviptions

Protocols that are based on general machine descriptions are prom-
ising. They can be complete; they are executable, thereby affording
some verification of their operation; and they seem to be the shortest
path to implementation of a protocol. The problem appears to be that
general methods do not yield a clear enough description, independent of
some hardware, to be easily usable. Twc special forms of machine re-
presentations will be discussed in the Specialized Machine Descriptions
Section.

Synchronization Models

Recently, there has been much interest in verifying and analyzing
the actions of protocols. Synchronizaticn properties have received much
attention. Within the context of this work, several different for-
mal isms have evolved which have been used for different analyses. While
none of these models seems to be general enough to be used alcne as a

19 Per Brinch Hansen, Concurrent Pascal Introduction and Concurren

oo Fascal Report (Caleorn1a Inst1tute of Techno]oqy. Ju]y 1975).
Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Report

21 (Springer-Verlag, 1975).
Gilbert J. Hansen and Charles F. Lindahl, liminary Speecification

of Real Time Pascal, Technical Report NAVTRAEQUIPCEN 76-C- 0017 1
NTIS No. AD A03 1451 (Computer Laboratory, Naval Training Equlpment
Center, July 1976).

Niklaus Wirth, "Modula: A Language for Modular Multiprogramming,"
"The Use of Modula," and "Design and Implementation Modula," .o 7war
Practice and Experience, Vol 7, No. 1 (January, February 1977).

22

19

protocel description, some have properties which may prove to be useful
as part of a total description. The following are some of the more
prominent models mentioned in recent literature.
Petri Nets

Petri nets’’ ”” ar: designed to model the synchronization problems
of a system composed of concurrent asynchronous processes. This is a
directed graph model which has two types of nodes: places and transi-
tions. A place which is connected to a transition via an arc is called
an input place of the transition node if it precedes the transition, and
is called an output place if it follows the transition. Places may be
marked by zero or more tokens. On the Petri net diagram, a place ap-
pears as a circle, a token as a heavy dot, and a transition as a line
perpendicular to one of its arcs. The state of the system is repres-
ented by the pattern of tokens on the places, which is called the mark-
ing. The system changes states by moving tokens. The mechanism which
moves the tokens is the firing of a transition. A transition fires
where each of its input places has at least one token. The action of
the transition is to remove one token from each of its input places, and
to add one token to each of its output places. Figure 5 is an example
of a Petri net.

Petri nets can clearly show the overall state of a system of commu-
nicating processes. The possible sequence of states is identifiable.
Certain properties of the Petri net have a direct bearing on the system
stability. The practical problem with Petri nets is that they get so
complex that it becomes nearly impossible to analyze a real system.

The UCLA Graph Model

The UCLA graph mode}’® has been used by Postel as an alternative to
Petri nets for analyzing protocols. The model consists of arcs and
nodes, where the arcs correspond to the flow of control and the nodes

23 Robert C. Chen, "Representation of Process Synchronization,"

Proceedings of the ACM SIGCOMM/SIGOPS Interprocess Communications
24 Workshop (ACM, March 24-25, 1975), pp 37-42.

Kurt Lautenbach and Hans A. Schmid, "Use of Petri Nets for Proving

Correctness of Concurrent Process Systems," Proceedings of IFIP 74
25 (IFIP, 1974), pp 187-191.
76/8, CONF 760430-1, presented at the 14th Annual Southeast Regional
26 ACM Conference, Birmingham, Alabama (April 22-24, 1976).

Jonathan B. Postel, 4 Graph Model Analysis of Computer Communication

ngzﬁcols, Ph.D. Dissertation, NTIS No. AD777506/H, (UCLA, January

1 .

20

Pamela B. Thomas, The Petri Net as a Modeling Tool, NTIS No. K/CSD/INF-

il

2

WUREROEREY] RSP

e

»

Petri net.

21

Figure 5.

=9

— anitig o sy e o .
e i E e) e A ———

represent computations. The major advance of the UCLA graph model over
Petri nets is the addition of input and output logic for a node. Petri
nets use only an "and" logic, requiring that all input places have at
least one token and all output places receive one token. The UCLA graph
model allows either “and" logic or “exclusive or" (EOR) logic for both
node input and output. When EOR logic is used on input, the node may
choose which input to remove the token from, if more than one is marked.
Similarly, on output, the node chooses the position of the token.

Figure 6°7 is an example of a UCLA graph model; "*" represents "and"
logic, and "+" represents "exclusive or" logic. Although the graphs may
become complicated, Postel has found that some graphs may be reduced
into graph modules, which can simplify the analysis of the graphs.

Other Synchronization Models

The subjects of interprocess synchronization and communication are
active areas of research. Other tools from these areas which may apply
to the protocol area include the use of semaphores,?® critical
regions,”® and monitors’® to insure mutual exclusion. These techniques
are oriented toward processes which share some common memory. A differ-
ent approach is to use an algebra-like notation to specify the allowable
synchronization as opposed to the exclusion. This “"path expression no-
tation’'73? specifies the allowable orderings of activities. There are
various notations used. For example, ";" is used as a sequencing oper-
ator, "+" is used as an “exclusive or" operator, and "*" is used to mean
zero or more times. The expression "path (a ; (b + ¢)*) end" means
that an allowable execution can consist of an occurrence of "a" followed

&t Jonathan B. Postel, A Graph Model Analysis of Computer Communication

Protocols, Ph.D. Dissertation, NTIS No. AD 777 506/H (UCLA, January

1974).
e8 F. W. Dijkstra, "Hierarchical Ordering of Sequential Processes,"

Operating Systems Techniques, C. A. R. Hoare and P. H. Perrot, eds.
29 (Academic Press, 1972).

Per Brinch Hansen, “Concurrent Programming Concepts," Computing Sur-
309 22¥e, Vol 5, No. 4 (ACM, December 1973), pp 223-245.

C. A. R. Hoare, "Monitors: An Operating System Structuring Concept,"
31 CACM, Vol 17, No. 10 (October 1974), pp 549-557.

R. H. Campbell and A. N. Habermann, “The Specification of Process

Synchronization by Path Expressions," Proceedings of an International

Sympostum Held at Racquencourt on Operating Systems (Springer Verlag,
32 April 23-24, 1974).

A. N. Habermann, Path Expressions, Technical Report (Computer Science
Department, Carnegie-Mellon University, June 1975).
P. E. Laver and R. H. Campbell, "Formal Semantics of a Class of High
Level Primatives for Coordinating Concurrent Processes," deta Infor-
matica,No. 5 (1975), pp 297-332.

33

22

RESEND

*

Figure 6. The UCLA graph model.

by zero or more occurrences of either "b" or “c." Work is continuing in
this area, and its ultimate application to protocols is not yet deter-
mined.

Linguistic Models

The data communications process has been compared to communications
by formal language,’“ with the communications message considered to be a
sentence. Thus, it is possible to use much of the work done in the area
of parsing languages to describe protocols. The language, consisting of
all the allowable messages, is specified by a formal grammar, usually in
a BNF notation. This can directly describe an automaton which can
receive (parse) the messages. It is neater and more powerful than the
finite stage graph method for complex messages, but suffers from many of
the same problems. Although the allowable messages are well described,
several items are not specified formally: how and when the messages are
generated, how they are used, and those functions termed "semantics" in
the compiler areas. Figure 7°° is an example of a protocol specified
using BNF notation.

<FRAME > c:= "SOH" <HEADING>

" <TEXT>
EOT " <TAIL>

DLE" <DISCONNECT >

<HEADING > s "XX" <HEADING >
ii= "sTX” <TEXT>
<TEXT > ¢ o= "XX" <TEXT>
t:= "ETX" <FRAME>
<TAIL > tr= "|=|" <FRAME>
<D/SCONNECT > s "EOT*

Figure 7. A linguistic description using BNF.
(xx is any valid text character;
1=1 indicates a line turnaround.)

= Hans-Jurger Hoffman, On Linguistic Aspects of Communication Line Con-

trol Procedures, 1BM Report No. RZ345 (IBM Research Laboratory, Feb-
35 ruary 2, 1970).
Hans-Jurger Hoffman.

24

S b ——————

Specialized Machine Descriptions

Recent work in defining abstract machines for describing commu-
nication protocols could allow programming technology to be applied to
protocols, without dependence on a particular implementation. The fol-
lowing approaches have appeared recently.

Interlocutors

Danthine and Bremer®®’?’ have modeled a protocol as a colloquy be-
tween two special machines called interlocutors. Each interlocutor has
three inputs and outputs and a set of internal states. The inputs are
for text from the other interlocutor (the communications links), text
from the user for transmission to the other user, and commands from the
user. The outputs are text to the other interlocutor, text to the user,
and commands for the user (see Figure 8).°%® The internal structure of
the interlocutor consists of a processing unit, an input unit, an output
unit, and several buffers. The processing unit is divided into two
parts: one deals with fixed operations (Danthine lists eight), and one
deals with the variable part of message processing, called context pro-
cessing. The operation of the fixed portion is governed by a set of ma-
trices defined for the protocol and application. Figure 9°° shows the
internal structure of an interlocutor. The problem with the inter-
locutor approach appears to be that the context processing part has not
yet been sufficiently structured. The parts of a protocol that require
the most analysis would likely fall into this category, thus defeating
many of the advantages of the structure.

COMMANDS__7a Ce COMMANDS

MESSAGES
ma (ol e TEXT
‘ s

B

TEXT __ Ta
——

TEXT

TEXT

t______l__COMMANDS

COMMANDS__ Ca

Figure 8. Communication structure of two interlocutors of a colloquy.

36 Andre A. S. Danthine and Joseph Bremer, “An Ax1omat1c Descr1pt1on of

the Transport Protocol of Cyclades," Professional Conference on Com-
37 puter Networks and Teleprocessing (March 31 - Apr11 2]976)

Andre A. S. Danthine and Joseph Bremer, "Communication Protocols in a

Network Context," Proceedings of the ACM SIGCOMM/SIGOPS Interprocess
3g Comminications Workshop (ACM, March 24-25, 1975), pp 87-92.

Andre A. S. Danthine and Joseph Bremer, ”An Axiomatic Descr1pt1on of
Cyc]ades " Professional Conference on Computer Networke and Tele-
proceseing (March 31 - April 2, 1976).

39 Danthine and Bremer.

25

T] m
0 N_-buffers l_- Unit

[O_vegister | [s_ register |
User Network
Processing Unit

: L
L I3 biiftere uait

Figure 9. Internal structure of an interlocutor.

Protocol Machines

Gouda and Manning"°~“? have defined a "Protocol Machine" as an
entity capable of communicating with other compatible protocol machines
via sent and received messages. Each protocol machine consists of two
structures: a data structure and a control structure. The control
structure is a directed graph, called a sequence graph, which has four
possible types of nodes: (1) the send node, (2) the receive node,

(3) the update node, and (4) the decision node. A subclass of protocol
machines (sr machines) which have only send and receive nodes has also
been identified. The data structure which the protocol machine may ma-
nipulate consists of variables that map to and from fields in the mes-
sagey that may be sent or received. Figure 10“? shows a sample data
structure and sequence graph for a protocol machine. Gouda and Manning
have shown that send and receive nodes have direct representations as
Petri nets. The approach appears to have some promise, although the
model does not presently appear to be general enough to represent arbi-
trary protocols. In particular, it appears that asynchronous processing
is excluded.

40 Mohamed G. Gouda and Eric G. Manning, "On the Modeliing, Analysis,

and Design of Protocols--A Special Class of Software Structures,"

Proceedings of the 2nd International Conference of Software

Engineering, 1EEE No. 76CH1125-4C (Institute of Electrical and Elec-
47 tronic Engineers [IEEE], 1976) pp 256-262.

Mohamed G. Gouda and Eric G. Manning, "Protocol Machines: A Concise

Formal Model and Its Automatic Implementation," Procesdings of the

3rd Intermational Conference on Computer Communication (International
42 Council for Computer Communication, August 3-6, 1976), pp 346-350.

Mohamed G. Gouda and Eric G. Manning, "Toward Modular Hierarchical

Structure for Protocols in Computer Networks," Proceedings of Compcon
43 76 (IEEE, September 1976).

"On the Modelling, Design, and Analysis of Protocols."

26

Figure 10a. Sequence graph.

decoder |
source E;ut
S butter| variable v,
/ i v output |destination
variable v, puffer D
variable v,
source [Input -
Ss buffer
decoder 2

Figure 10b. The data structure of a protocol machine.

Program Process Modeling Language

Riddle"* uses a programming language form of notation (the Program
Process Modeling Language [PPML%) to model the message transfer activ-
ities of a system of asynchronous processes. The language does not
provide details about the internal operation of each process, but the
sending and receiving of messages and the internal flow of control are
modeled. Riddle also develops an algebra-like notation to describe mes-
sage flow within the system, called Message Transfer Expressions (MTE).
The basic modeling scheme chosen does have some limitations: in partic-
ular, the direct modeling of synchronous communication is not possible.
However, the overall approach appears to be very promising.

44 William Ewing Riddle, The Modeling and Analysis of Supervisory Sys-

tems, Ph.D. Dissertation (Stanford University, 1972).

24,

B ——

Summary

Each of the preceding models has merit for particular applications
and aralyses, but each is primarily applicable to communications over
error-free channels. However, some work has been done (for example,
by Sunshine®® which considers error-prone communication links.
Schneider"® has proposed a uniform all-inclusive modeling technique to
model error, efficiency, overhead, and other properties of protocols.
There does not appear to be any consensus at this time concerning which
approach is most promising.

i William Ewing Riddle, The Modeling and Analysis of Supervisory Sys-
45 tems, Ph.D. Dissertation (Stanford University, 1972).
Carl A. Sunshine, Interprocess Communication Protocols for Computer
Networks, NTIS No. ADA 025 508, Ph.D. Dissertation (Stanford Univer-
46 Sity, December 1975).
Michael G. Schneider, 4 Structural Approach to Computer Network
Simulation, Technical Report 75-20 (Computer Information and Con-
trol Sciences Department, Institute of Technology, University of
Minnesota, December 1974).

28

44 PROTOCOL SPECIFICATION CRITERIA

This report has surveyed the functional requirements of commu-
nication protocols and the ways in which protocols have been specified,
analyzed, and implemented. Throughout the survey, the inter-
relationships of the different phases of the protocol life cycle re-
quirements, design, analysis, implementation, and use have become appar-
ent. Furthermore, any protocol specification or description should be
useful during all phases. Bochman“’ has defined three general proper-
ties that a protocol specification should have.

1. The protocol specification should be in a comprehensive form.

2. The protocol specification should allow the proving of certain
protocol properties, particularly that the error recovery is effective,
and that all possible situations have been considered.

3. The protocol specification should lead easily and naturally
toward its implementation.

A.protocol specification must not only be complete, but it should
be provably complete. It should be useful at each phase of the protocol
life cycle and should not require reinterpretation to be useful at an-
other phase. It must be comprehensive and unambiguous. It shculd be
possible to partition a protocol specification into different levels of
abstraction. Protocol layering should also be apparent in the specifi-
cation; when a specification depends on a lower-level protocol, this
should be explicitly noted. The protocol specification should be inde-
pendent of any particular hardware or any particular implementation. It
should clearly indicate how the functional issues of the protocol are
resolved.

47 Gregor V. Bochman, “Communication Protocols and Error Recovery Pro-

cedures," Proceedings of the ACM SIGCOMM/SIGOPS Interprocess Communica-
tione Workshop (ACM, March 24-25, 1975), pp 45-50.

29

5 SUMMARY AND CONCLUSIONS

This report has surveyed the current status of communication proto-

cols. The issues of protocol design are considered in two categories:
functional issues and design issues. The functional issues vary from
protocol to protocol, depending on its intended function and environ-
ment. The design issues deal with the reliability and efficiency of the
protocol, and shouid be considered for any protocol.

The methods employed to describe and analyze protocols range from
informal textual descriptions tc very formal specific machine repres-
entations. Bochman's goals--comprehensive form, proving of properties,
and natural implementation--are used as a general basis for evaluating
protocol specification methods. No currently used representation was
found to be sufficient as the sole method of specifying protocols.

No general approach to the specification of communication protocols
can be ruled out at this time; however, it appears that methods of the
general machine description class are more likely to lead toward a
useful specification methodology, since they directly describe the ac-
tions of the communicating parties, which is what must be implemented.
The finite state subclass is useful when the state space of the protocol
is reasonably small, since it is concise, directly implementable, and
analyzable. However, when the state space is large, a more general ap-
proach must be taken.

The trends observed in some of the newer computer languages can
lead to a language which is machine independent, efficiently imple-
mentable, and suitable as a vehicle for protocol specification and im-
plementation. Current work in languages should be augmented to include
the formal description of messages and the primitive operations which
manipulate the messages. Techniques to analyze the behavior of systems
of communicating parties specified in this way must also be developed in
order to detect abnormal conditions such as critical races and dead-
locks. The combination of these approaches into a unified methodology
can lead to the better understanding and implementation of communication
protocols.

30

ANNOTATED REFERENCES

1. Abrams, Marshall, Robert Blanc, and Ira Cotton, editors, Computer
Networks: A Tutorial, Cat. No. JH3100-5C (IEEE Computer Society,
Octaber 1975).

A compendium of papers, mostly previously published, dealing with
many aspects of computer networks. It covers the networking vocab-
ulary, configurations, components, software, utilization, mea-
surement, evaluation, costs, and management.

i 2 Abramson, Norman and Franklin F. Kuo, editors, Computer Commu-
nications Networks (Prentice-Hall, Inc., 1973).

A collection of articles by several authors covering different as-
pects of designing an entire system. It surveys some existing net-
works, design philosophies, communication links, data transmission,
interfacing, concentrators, and economic and regulatory consid-
erations.

3o Akkoyunlu, Erlap, Arther Bernstein, and Richard Schantz, "Inter-
process Communication Facilities for Network Operating Systems,"
1 Computer, Vol 7, No. 6 (June 1974), pp 46-55.

The reasons and goals of computer networking are surveyed. The re-
quirement for interprocess communication is introduced, and several
different approaches are compared.

4. American National Standard Procedures for the Use of the Commu-
nication Control Characters of American National Standard Code for
Information Interchange in Specified Data Communication Links, ANSI

X3.28 (ANSI, 1976).

5. Bateh Terminal Controller-Complot BTC-7/200 Instruction Manual ?
(Houston Instrument, Inc., revised May 1972).

6. Belford, Geneva, Steve Bunch, John Day, et al., 4 State of the Art
Report on Network Data Management and Related Technology, CAC Docu-
ment No. 150 (Center for Advanced Computation, University of I11i-

{ nois, April 1, 1975).

A wide-ranging report considering hardware, software, communication
media and techniques, and other topics of interest in the context
of networking. Some emphasis is given to facilities found in AR-
PANET.

10.

LLE

12.

Birke, Dennis M., Stato=Transition Programning Techniques and Thelre
Use in Productng 'l'eleprocessing Devices Control Programs, M.S.

Thesis (University of Pittsburgh, 1971).

The use of state transition methods for programming communication
link procedures is discussed, and a simple example is shown.

Birke, Dennis M., "State-Transition Programming Techniques and
Their Use in Producing Teleprocessing Device Control Programs,"
Proceedings of the 2nd Symposium on Problems in the Optimization of
Data Communications Systems (Association for Computer Machinery
[ACM], October 20-22, 1971), pp 21-31.

A shortened conference paper covering the same material as the
thesis with the same title.

Bjorner, Dines, "Finite State Automation--Definition of Data Commu-
nication Line Control Procedures," Proceedings of the Fall Joint
Computer Conference (AFIPS, 1970), pp 477-491.

This paper describes the use of finite state descriptions for the
specification, analysis, and implementation of communication proto-
cols.

Bochman, Gregor V., "Communication Protocols and Error Recovery
Procedures," Proceedings of the ACM SIGCOMM/SIGOPS Interprocess
Communications Workshop (ACM, March 24-25, 1975), pp 45-50.

This publication Tists the types of situations that a communication
protocol must deal with. An extended finite state notation is used
as an analysis tool. A method for determining synchronization
properties of protocols is introduced.

Bochman, Gregor V., "Logical Verification and Implementation of

Protocols," Proceedings of the 4th Data Communications Symposium
(October 7-9, 1975), pp 7-15 to 7-20.

The problems of specifying, analyzing, and implementing a data com-
munication protocol are discussed. An example is analyzed, and
some existing tools from other disciplines are considered.

Brinch Hansen, Per, Concurrent Pascal Introduction and Concurrent
Pascal Report (California Institute of Technology, July 1975).

An introduction and description of the Concurrent Pascal language,
designed for programming systems of concurrent processes.

13.

14.

15.

16.

17.

18.

Brinch Hansen, Per, “Concurrent Programming Concepts," (ompucting
Surveys, Vol 5, No. 4 (ACM, December 1973), pp 223-245.

This paper describes the evolution of language features for multi-
programming, including semaphores, critical regions, and menitors.
Problems of multiprogramming are illustrated by examples.

Campbell, R. H., and A. N. Habermann, “The Specification of Process
Synchronization by Path Expressions," Procccedinge cf an Inter-
national Symposium Held at Racquencourt on Operating Systoms

(Springer Verlag, April 23-25, 1974).

An introduction to the use of path expressions for describing the
synchronization of a system of asynchronous processes.

Chen, Robert C., "Representation of Process Synchronization,"
Proceedings of the ACM SIGCOMM/SIGOPS Interprocess Communicati
Workshop (ACM, March 24-25, 1975), pp 37-42.

This paper shows the application of Petri nets to the repres-
entation of process synchronization.

Chou, W., H. Frank, and R. Van Slyke, "Simulation of Centralized
Computer Communications System," Data Networke: Analyeis and
Design, 3rd Data Communications Symposiwm, IEEE No. 73CH0828-4C
(IEEE, 1973), pp 121-130.

This paper describes a simulation approach for a general central-
ized computer communication system with emphasis on efficiency and
versatility. A hybrid approach is used to ease program development

> and to shorten computer running time. The techniques are illus-

trated by application to the NASDAQ system.

Clark, David W., Charles Hoffman, John Stannard, and Walter Levy,
Communication Computer Language Comtrarn, Report RADC-TR-69-190
(Rome Air Development Center, July 1969).

This report describes a communications-oriented compiler system
which accepts high-level statements that describe a set of commu-
nication line units combined to constitute a real-time on-line com-
munications test. Limitations are noted and discussed.

Cohen, P. M., Programming Languages for Communication Processors,
Technical Note No. 24-73, NTIS No. ADA-014 544 (Defense Commu-
nications Agency System Engineering Facility, May 1973).

This note describes some work in the area of implementation lan-
guages for communication.

19.

20.

21.

22.

23.

4.

25,

Cohen, P. M., The Use of a Communications-Oriented Language Within
a Software Engineering System, Technical Note No. 17-75, NTIS No.
ADA-014511 (Defense Communications Engineering Center, April 1975).

Some requirements of communications-oriented language are outlined,
and the feasibility of using such a system is discussed.

Crocker, Stephen D., John F. Heafner, Robert Metcalfe, and Jonathan
Postel, "Function-Oriented Protocols for the ARPA Computer Net-
work," Proceedings of the Spring Joint Computer Conference, Vol 40
(AFIPS, 1972), pp 271-279.

This paper provides a general description of the different proto-
cols available in the ARPANET.

Danthine, Andre A. S., and Joseph Bremer, "An Axiomatic Description
of the Transport Protocol of Cyclades," Professional Conference on
Computer Networks and Teleprocessing (March 31 - April 2, 1976).

This paper introduces the notion of the interlocutor as a model of
a data communication protocol machine. It describes the Cyclades
transport protocol using the interlocutor.

Danthine, Andre A. S., and Joseph Bremer, "Communication Protocols
in a Network Context," Proceedings of the ACM SIGCOMM/SIGOPS Inter-

process Communications Workshop (ACM, March 26-25, 1975), (1 87-92.

This paper provides a further discussion of the interlocutor as a
model for protocol analysis.

quJSdﬁ Standard Network Access Protocol (Bell Canada, November 30,
1974).

A description of the protocols available via the Bell Canada
Datapac service.

Dennis, Jack B., First Version of a Data Flow Procedure Language,
MAC Technical Memorandum No. 61 (M.I.T., May 1975).

A language for representing computational procedures based on the
concept of cdata flow is presented in terms of a model which allows
concurrent execution of noninterfering program parts.

Digital Network Architecture Design Specification for: Data Access
Protocol D.A.P. (Digital Equipment Corp., July 10, 1975).

34

26.

27.

28.

29.

30.

31.

32.

This document describes the DECNET-DAP communication protocol. The
basic goal of DECNET is to create a set of facilities allowing for
device sharing, program sharing, and interprogram communication.

Digital Network Avehitecture Design Specetfication for: Netwopk
Service Protocol (NSP) (Digital Equipment Corp., July 10, 1975).

This document describes the DECNET-NSP protocol.

Dijkstra, E. W., "Hierarchical Ordering of Sequential Processes,"
Operating Syetems Techniques, C. A. R. Hoare and R. H. Perrot, eds.
(Academic Press, 1972).

This paper describes some of the problems of synchronizing systems
of concurrent processes, using semaphores as the synchronizing
primitive, and illustrating them with examples.

Donnan, R. A., and J. R. Kersey, "Synchronous Data Link Contrael: A
Perspective," /BM Systeme Jowrmal, Vol 13, No. 2 (1974), pp 140-
162.

This is a description of the IBM SDLC communication protocol.

Eisenbies, J. L., "Conventions for Digital Data Communication Link
Design," 7BM Systems Jowurnal, Vol 6, No. 4 (1967), pp 267-392.

This is a description of the IBM binary synchronous communication
protocol (BSC).

General Information--Binary Synchronous Communications, Order No.
GA27-3004-3, 3rd ed. (IBM, October 1972).

Gouda, Mohamed G., and Eric G. Manning, "On the Modelling, Anal-
ysis, and Des1gn of Protocols--A Special Class of Software Struc-
tures," Proceedings of the 2nd Intermational Conferer ftwar

Engineering, 1EEE No. 76CH1125-4C (IEEE, 1976), pp 256 262

This paper discusses the problems of protocol specification, anal-
ysis, and design. A model called protocol machines is introduced,
and examples of its use are shown.

Gouda, Mohamed G., and Eric G. Manning, "Protocol Machines: A Con-

cise Formal Model and Its Automatic Impliementation," Pro«cod vy
the 3rd Intermational Conference on Computer Communication (Inter-
national Council for Computer Communication, August 3-6, 1976), pp
346-350.

35

33.

34.

35.

36.

37.

This is an introduction and overview for using Protocol Machines to
model data communications. Another model, called synchronous digi-
tal machines, is introduced and the relation between the two models
is discussed.

Gouda, Mohamed G., and Eric G. Manning, “"Toward Modular Hier-
archical Structures for Protocols in Computer Networks,"
Proceedings of Compcon 76 (IEEE, September 1976).

A structure using independent processes is advocated for modeling
and designing communication protocols.

Gray, James P., "Line Control Procedures," FProcecdings of the
TEEE, Vol 60 (IEEE, November 1972), pp 1301-1312.

This paper discusses the basic principles of line control pro-
cedures. Two specific line controls are used as examples.

Habermann, A. N., Path Expressions, Technical Report (Computer Sci-
ence Department, Carnegie-Mellon University, June 1975).

The use of Path Expressions to describe the synchronization of a
system of concurrent processes is introduced.

Hansen, Gilbert J., and Charles E. Lindahl, Preliminary Specifica-
tion of Real Time Pascal, Technical Report NAVTPAEQUIPCEN 76-C-
0017-1, NTIS No. ADA031451 (Computer Laboratory, Naval Training
Equipment Center, July 1976).

This report describes a programming language based on PASCAL for
use in real time control applications.

Heart, Frank E., Interface Message Processors for the AR?A Computer
Network, Quarterly Technical Report No. 3, NTIS No. ADAO16614
(1 July 1975 to 30 September 1975).

This is a status report on IMPs on the ARPANET. It includes a dis-
cussion of contention errors between independent concurrent pro-
cesses, and of some work done to identify where these types of
errors can occur.

Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther, and D. C.
Walden, "The Interface Message Processor for the ARPA Computer Net-
work," Proceedinge of the Spring Joint Computer Conference, Vol 40
(AFIPS, 1972), pp 551-567.

This is a description of the IMP hardware and software. It dis-
cusses network design, messages, links, reliability, and recovery.

36

o ——

o dl Aeg

39,

44.

41.

42.

43.

44,

45,

Hoare, C. A. R., "Monitors: An Operating System Structuring Con-
cept," cacm, Vol 17, No. 10 (October 1974), pp 549-557.

This paper develaps the concept of the wmonitor as a structuring

tool for synchronizing the actions of asynchronous concurrent pro-
cesses.

Hoffman, Hans-Jurger, On Linguistic Aspects of Communication line
Comtrol Procedures, 1BM Report No. RZ345 (IBM Research Laboratory,
February 2, 1970).

The strings of a digital communication are considered as instances
of sentences in a language. Linguistic treatment defines the rules
to be obeyed for message transmission. Finite state implementation
is shown to be directly obtainable from the linguistic description.

Information Processing--Basic Mode Control Procedures for Data (om-

munication Systems, Reference No. 1S0 1745-1975(E) (International
Standards Organization, January 2, 1975).

The Interface Message Processor Program (Balt, Beranek, and Newman,
Inc., September 1975).

A description of the IMP software, covering the HOST-IMP and IMP-
IMP protocols, interfacing, routing, and data structures.

Introduction to Minicomputer Networks (Digital Equipment Corp.,
1974).

This introduces computer to computer communications, covering net-
work structures, functions, and hardware and software components.
Line control procedures and applications of networks of PDP-11 com-
puters are also described.

Jensen, Kathleen, and Niklaus Wirth, Pascal User Manual and Report
(Springer-Verlag, 1975).

This manual provides the definitive description and reference for
the programming language Pascal.

Lauer, P. E., and R. H. Campbell, "Formal Semantics of a Class of
High-Level Primatives for Coordinating Concurrent Processes," Ac-ta
Informatica, No. 5 (1975), pp 297-332.

This is a more formally and theoretically oriented treatment of
path expressions. Alternate solutions to a well-known problem of
synchronization are analyzed.

37

A P N A SR

46.

47.

48.

49.

S0

51.

52.

|

Lautenbach, Kurt, and Hans A. Schmid, "Use of Petri Nets for Prov-
ing Correctness of Concurrent Process Systems,"
74 (IFIP, 1974), pp 187-191.

Proceedings of IFIT]

The theory of Petri nets is introduced and is shown to be useful
for deriving theorems on the properties of concurrent systems.

Martin, James, Introduction to Teleprocessing (Prentice-Hall, Inc.,
1972).

This is a basic introduction to computer communications. This book
surveys most communications topics very briefly.

Martin, James, Telecommunications and the Computer (Prentice-Hall,
Inc., 1969).

This is a survey of the technology of data communications. Heavy
emphasis is placed on hardware, telecommunications networks, sig-
naling, and message routing.

Martin, James, Teleprocessing Network Organization (Prentice-Hall,
Inc., 1970).

This provides a complete overview of data communications. Differ-
ent transmission media and modes of operation are discussed. Some
examples of 1ine control are given.

Metcal fe, Robert M., Strategies for Interprocess Communication in a
Distributed Computing System, presented at the Symposium on Com
puter Communications Networks and Teletraffic (Polytechnic Insti-
tute of Brooklyn, April 4-6, 1972).

This paper distinguishes between distributed interprocess commu-
nication and centralized interprocess communication.

Mills, David L., "Communication Software," Proceedings of the
TEEE, Vol 60 (IEEE, November 1972), pp 1333-1341.

This is a tutorial introduction to the function and construction of
communications software, including network control, message prepro-
cessing, and error recovery.

Parent, Michel, "Presentation of the Control Graph Models,"
Proceedings of an International Symposium Held at Racquencourt on
(perating Systems (Springer Verlag, April 23-25, 1974).

A graph model that can be used to analyze problems in systems of
concurrent processes is introduced and explained.

38

G

54.

85.

50.

57 .

Postel, Jonathan B., A Graph Model Analysis of Computer Commu-
nication Protocols, NTIS No. AD777506/H, Ph.D. Dissertation, (UCLA,
January 1974).

This dissertation focuses on the analysis of computer to computer
communication protocols, using graph modeling techniques. The UCLA
graph model is explained and used to model and analyze a sample
protocol. The concept of a graph module is introduced.

Pouzin, Louis, "An Integrated Approach to Network Protocols,"
Proceedings of the National Computer Conference (1975).

This provides a description of the requirements for communication

protocols in a heterogeneous computer network. The relationship be-

tween different protocol levels is discussed and the concept of
protocol nesting is introduced.

Pouzin, Louis, "Presentation and Major Des1gn Aspects of the Cy—
clades Computer Network, Data Networks: Analysis and |

Data Communication SymposLum, IEEE No. 73CH0828 4C (IEEE 1973)
80-87.

This describes the design and functions of the Cyclades computer
network .

Riddle, William Ewing, The Modeling and Analysis of Supervisor:
Systems, Ph.D. Dissertation (Stanford dn1vers1ty, 1972)

A programming language-1like modeling language (PPML) is introduced
and used to model systems of asynchronous concurrent processes. An
algebraic notation (message transfer expressions [MTE]) is used to
analyze the message interactions of the system.

Schneider, G. Michael, A Structural Approach to Computer Network
)zmu?afYOﬂ, Technical Report 75-20 (Computer Information and Con-
trol Sciences Department, Institute of Technology, University of
Minnesota, December 1975).

A modeling system intended to model all phases of computer to com-
puter communication is described.

Schneider, G. Michael, DSCL--A Data Specification and Conversion
Language for Networke, Technical Report 74-27 (Computer Information
and Control Sciences Department, Institute of Technology, Univer-
sity of Minnesota, December 1974).

This paper describes the initial work on a processor for supporting
the real time translation and transmission of data streams between

39

aa

o

59,

60.

6l.

62.

63.

nodes of a computer network. A primary component is the data spec-
ification and conversion language specifying the physical and log-
ical structure of data streams and their translations.

Schneider, G. Michael, Resource Sharing Computer Networks, Tech-
nical Report 75-3 (Computer Information and Control Science
Department, Institute of Technology, University of Minnesota, Feb-
ruary 1975).

This paper defines a resource-sharing computer network, and looks
at user services that can be provided. Some current design prob-
lems are outlined.

Schneider, G. Michael, The Implementation of Centralized Services
in Resource Sharing Computer Networks, Technical Report 75-16 (Com-
puter Information and Control Sciences Department, Institute of
Technology, University of Minnesota, September 1975).

This report describes a model for the implementation of centralized
services within a distributed resource-sharing computer network.

It describes existing models for low-level interprocess commu-
nication and uses them to construct a model for a centralized net-
work service protocol.

Stanford Research Institute, ARPANET Protocol Handbook, compiled by
F. Feinler and J. Postel, NTIS No. ADAO27964 (April 1976).

This collection of documents describes ARPANET protocols as of
April 1976.

Stutzman, Byron W., "Data Communication Control Procedures,"
Computer Surveys, Vol 4, No. 4 (December 1972).

This is a tutorial on the methods used to control the transmission
of digital information over data communication links. Models and
terminology of communication systems and their functions are intro-
duced. '

Sunshine, Carl A., Interprocess Communication Protocols for Com-
puter Networks, NTIS No. ADA025508, Ph.D. Dissertation (Stanford
University, December 1975).

This paper focuses on the design and analysis of interprocess com-
munication protocols for networks of computers. It examines re-
quirements and performance of host to host protocols.

40

04.

65.

66.

67.

Thomas, Pamela B., 7The Pelel Net as a Modoling Tool, NTIS No.
K/CSD/INF-76/3, CONF 7060430-1, presented at the 14th Annual South-
east Regional ACM Conference, Birmingham, Alabama (Apri)

23-24, 1976).

The Petri net model is defined and presented as a modeling tool for
coordination of asynchronous processes.

200 User Terminal Hardware Reference Manual, Publication No.
82128000 (Control Data Corporation, June 1969).

An overview of the hardware, operation, and programming consid-
erations of the 200 user terminal, a terminal for remote batch job
entry.

Fundamentals of Computer Network Communications, No. SP0076 (Sperry
Rand, 1970).

This introduction to computer communications covers communication
links, transmission methods, modem operation, data terminals,
codes, message exchanges, control operations, and future devel-
opments.

Walden, David C., "A System for Interprocess Communication in a Re-
source Sharing Computer Network," cacy, Vol 15, No. 4 (April 1972),
pp 221-230.

A system of communication between processes in a time-sharing
system is described, and the communication system is extended so
that it may be used between processes distributed throughout a com-
puter network.

Wirth, Niklaus, "Modula: A Language for Modular Multiprogramming,"
“The Use of Modula," and "Design and Implementation of Modula,"
Software Practice and Experience, Vol 7, No. 1 (January, February
1977).

This provides a discussion and examples of the use and imple-
mentation of Modula.

o e

CERL DISTRIBUTION

Chief of Engineers
ATTN: DAEN-DSE

ATTN: DAEN-ASI-L (2)
ATTN: DAEN-RDL

Dept of the Army
WASH DC 20314

Defense Documentation Center
EIDSO

Each District and Division
ATTN: ADP Coordinator

University of I11inois
Computer Science Dept.
ATTN: Dr. J. W. S. Liu
ATTN: Dr. M. D. Mickunas
Urbana, IL 61801

Computer Systems Command

Institute for Research in Mgt. Info.

(12)

and Computer Sciences (CSCS-AT)

Fort Belvoir, VA 22060

U.S. Army Computer Systems Command

ISRAD Project Office
Fort Belvoir, VA 22060

A survey of the properties of computer communication
protocols. - Champaign, IL : Construction Engineer-
ing Research Laboratory ; Springfield, VA : NTIS,
1978.

2 v. ; 27 cm. (Technical report ; 0-1)

Contents : v. 1. Itzkowitz, A. E. The function,
properties, specification and analysis methods of
computer communication protocols.--v. 2. Liu, J. W. S.,
Mickunas, M. D. Future developments of computer net-
work protocols.

1. Computer networks. I. Itzkowitz, Avrum E.
LE. Lag, J. WS, S TIE. Mieckiunas. M. B. IV. Title :
Function, properties, specification and analysis
methods of computer communication protocols.

V. Title : Future developments of computer network
protocols. VI. Series: U.S. Construction Engineer-
ing Research Laboratory. Technical report ; 0-1.

