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ABSTRACT -
) TS éﬁwﬂlﬂﬂé-
Tupaz et al. (1978) formulated model ,to study the be-

a
e
-
=

havior of waves in an unstable jet which varied downstream.
The linearized barotropic vorticity equation was solved
numerically. Waves were forced with a fixed period bn the
eastern boundary and a radiation condition was applied on
the western boundary.

In this thesis, cyclic boundary conditions are used on
the eastern and western boundaries. The numerical solutions
show amplitude growth in time which is'approximately expo-
nential. The solutions are normalized andAthe wave struc-
ture is obtained during three time segments. The wave
structures are not the same during these segments, but they
are very similar in areas of large amplitudes. In these

regions the behavior is very similar to that obtained by

Tupaz et al. (1978).




10.

11,

12,

13.

LIST OF FIGURES

(a) The most unstable wavelength

L(x), and (b) corresponding local growth rate
no(x). based on the parallel flow model - -« - - - -
Parallel flow model wave structure

of the most unstable mode for longitudes:

(a) x = 0 and (b) x = # 9619 - - - = = - = - - - -
Experiment I. The J(x,y) field (x 107 m sec") -
Experiment I. The u(x,y) field (x 10 m sec'l) - -

Experiment I. |y|,,e as a function of time,
where |y|. o is the root mean square of ¢' - - - -

Experiment I. The y' field at t = 30 days - - - -

Experiment I. Analyzed section of phase ©

. during the segment 80-87 days = = = = = = = -« - - -

Experiment I. Periods of the numerical model
for the time segment 80-87 days for latitudes:
(a) y =0 and (b) y = + 750 km = - = = = = = - = -

Experiment I. Periods of the numerical model
for the time segment 125-133 days for latitudes:
(a) y =0 and (b) y = + 750 km = = = = = = = =« - -

Experiment I. Periods of the numerical model
for the time segment 150-157 days for latitudes:
(a) y =0 and (b) y = # 750 km = = = = = = = - - -

Experiment I. Overview of phase tilt between
y =0and y = + 750 km for the time segments:
(a) 80'87 days (0;0)’ (b) ]25’]33 dayS ("--)
and (c) 150-157 days (—) = = = = = = = = « =« = - -

Experiment I. Wave packet envelope, <y'(x)>,
of the numerical model for the time seqgments:
(a) 80-87 days (...), (b) 125-133 days (----)
and (c) 150-157 days (—) = = = = = = = = = = = - -

Experiment I. Comparison of phase 6 of the
numerical model for time segments (e]*) 80-87

88y8 {.+.)» (62*) 125-133 days (e«=<=), (8,%)
150-157 days (=) and the most unstable wave-
length of the parallel flow model, 8, (===),

for longitude x = 0 = = =« = =« = = = 2 = = o o o - -




14,

15,

16.

17.

18.

19.

et.

z1.

Ze.

23.

24,

25,

Experiment I. Comparison of phase 8 of the

numerical model for the time segments (6,*) 80-87

days (...), (8,%) 125-133 days ?----), (63*) 150-

157 days (—) and the most unstable wavelength

of the parallel flow model, 6, (---), for longi-

tudes: (a) x = -3750 km and (8) x = 3750 km - - - - 40

Experiment I. Comparison of phase 6 of the

numerical model for time segments (61*) 80-87

days (...), (6,*) 125-133 days (----}, (63*) 150-

157 days (—) gnd the most unstable wavelength

of the parallel flow model, 6, (---), for longi-
tudes: (a) x = -10875 km and (g) Xx = 10875 km - - - &1

Experiment I. Comparison of phase 6 of the

numerical model for time segments (6,%) 80-87

days (...), (8,%) 125-133 days (+=--), (83*) 150-

157 days (—) dnd the most unstable waveléngth

of the parallel flow model, eo(---), for longi-

tude x = -21000 km - = = = ="« = <« - <« - - - === 42

Experiment I. Latitude y = + 750 km. (a) Wave-
length L(x)1* for time segment 80-87 days.
(b) Wavelength L(x)1 computed by smoothing L(x)q* - 45

Experiment I, Latitude y = + 750 km. (a) Wave-
length L(x),* for time segment 125-133 days.
(b) Wavelength L(x)z computed by smoothing L(x)z* - 46

Experiment I. Latitude y = #* 750 km. (a) Uave-
lTength L(x)y* for time segment 150-157 days.
(b) Havelengdth L(x)3; computed by smoothing L(x)3* - &7

Experiment I. Spatial growth rate, m(x)1*, for
time segment 80-87 days = = = = = = = = = = = = - 48

Experiment I. Spatial.growth rate, m(x)z*, for
time segment 125-133 days = = = = = = = = = = = - - 49

Experiment I. Spatial growth rate, m(x)3*, for

time segment 150-157 days = = = = = = =« = = = = - = 50

Experiment I. Comparison of the spatial growth

rates of the numerical model for time segments

(m(x),*) 80-87 days (...), (m(x)z*) 125-133 days
;, (m(x)3*) 150-157 days (—) and m(x)

computed from the parallel flow model - = « - - - - 51
Experiment II. |y as a function of time,
where leave is the?¥Bot mean square of yp'- - - - - 54

Experiment II. Overview of the phase tilt between
y =0 and y = + 750 km for the time segments:
(a) 80-87 days (...) and (b) 125-133 days (+=+=)- - 55




26.

27,

28,

29.

30.

al.

3.

33.

Experiment II. Wave packet envelope, <y'(x)>,
of the numerical model for the time segments:
(a) 80-87 days and (b) 125-133 days = = = = = = = = 57

Experiment II. Comparison of phase 8 of the
numerical model for time segments (8;*) 80-87
days (...), (92*) 125-133 days (.-.-; and the
most unstable wavelength of the parallel flow
model, 6, (---), for longitude x = 0 = = = = = = = 58

Experiment II. Comparison of phase 6 of the

numerical model for time segments (6,*) 80-87

days (...), (6,*) 125-133 days (+-+-) and the

most unstable 3ave1ength of the parallel flow

model, 6, (---), for longitudes:(a) x = -3750

km and (g) X = 3750 KM = = = = =@ = = = = = = « = = 59

Experiment II. Comparison of phase 6 of the

numerical model for time segments (06,*) 80-37

days (...), (8,*) 125-133 days (.-.-) and the

most unstable wavelength of the parallel flow

model, 6 _ (---), for longitudes:(a) x = -10875

km and (B) = = 10825 kot = = = = = <« « = = = = =« = - 60

Experiment II. Comparison of phase 8 of the

numerical model for time segments (6,*) 80-87

days (...), (08,*) 125-133 days (.---] and the

most unstable éavelength of the parallel flow

model, 8, (===), for longitude x = -21000 km - - - 61

Experiment II. Spatial growth rate, m(x)]*,
for time segment 80-87 days - = = = = = = = = = - = 62

Experiment II. Spatial growth rate, m(x)z*,
for time segment 125-133 days - = = = = ="= = = < =« 63

Experiment II. Spatial growth rate, m(x)(---),
from the parallel flow model and (a) m(x),*

for 80-87 days (...) and (b) m(x),* for 125-
133 days (.-.-) computed from numé

rical model - - - 64




ACKNOWLEDGEMENTS

The author expresses his sincerest appreciation to
Professor R. T. Williams and CDR J. B. Tupaz for their guid-
ance throughout this research. :

Many thanks are also extended to Dr. T. Rosmond for his
help in applying subroutine POISS to the numerical model,
and C.-P. Chang for reading the thesis and making helpful
comments.

A very special appreciation is extended to Manus Anderson,
Edwin Donnellan and Joanne Kallweit of the W. R. Church
Compute{ Center who provided outstanding computer support.

This work was supported by the Atmospheric Research
Section, National Science Foundation, under Grant ATM 77-14821,

and by the Naval Environmental Prediction Research Facility.




Rt g

I. INTRODUCTION

A jet, regardless of its latitudinal position in the at-
mosphere, may contain regions of large vorticity gradients
where the necessary condition for barotropic instability is
locally satisfied. Synoptic-scale moving disturbances occur-
ring at the level of a moderately strong easterly jet south
of the Tibetan high near 200 mb level appear to arise from
barotropic instability of the mean flow (Krishnamurti, 1971a,
1971b). If the observed disturbances are the result of baro-
tropic instability, they will extract energy from the mean flow.

Many investigators have studied the linear stability of
barotropic zonal flows over the years. Krishnamurti's obser-
vational and Colton's (1973) numerical studies both showed
that the zonal variation of the jet apparently had significant
effects on the dynamic behavior of the transient disturbances.

Tupaz et al. (1978) further extended the study of the
zonal variation‘of the basic flow. A numerical madel was
developed based on the linearized non-divergent barotropic
vorticity equation on a beta-plane. This study examined the
dynamics of transient barotropic waves in a region of variable
mean wind. The mean zonal wind was an easterly hyperbolic
secant-squared, or Bickley, jet and the mean meridional wind
was derived so that the mean flow would be non-divergent.
Using the numerical model, a periodic forcing was applied on

the inflow (eastern) boundary to generate waves which were




allowed tr propagate through the channe' and out through the
western boundary. As the waves moved, they reacted to the
local stability properties of the mean flow, whereas at each
point the fields varied periodically. The results, which
were obtained from long term integration; were compared with
the parallel flow theory by constructing a simple mechanistic
analytical model which incorporated the local stability con-
cept of the parallel flow theory.

In this thesis, the model developed by Tupaz et al. (1978)
is modified by changing the boundary conditions. The quanti-
ties on the eastern and western ends of the channel are set
equal to enforce cyclic continuity. This allows a wider
variety of wind profi]es-to be considered as long as they
are periodic in x. The use of these boundary conditions will
also improve our understanding of the mathematical behavior

of waves in a mean flow with downstream variation.




IT. BASIC EQUATIONS

A. GENERAL FORMYULATION

This study employs the barotropic vorticity equation to
describe motion in a periodic channel. The development which
follows Tupaz et al. (1978) begins with the barotropic vor-

ticity equation on a beta (B8) plane:

9L g g = i} =
i R 3y +Bv=0Q-0c, (2.1}
where
- 9V ou
c=gy - M. (2.2)

Here, B is the constant value of the north-south gradient of
Coriolis parameter computed at 10° latitude. Q 1is a forcing
function which represents the non-barotropic and diabatic
effects which are required to maintain the basic state vor-
ticity field, and D, is a frictional coefficient. The mo-
tion is assumed to be non-divergent so that a stream function

(p) can be introduced which is defined by

= . = Y
u 5y ° v 5 {2.3)
The vorticity becomes
G = Vzw " (2.4)
12




Pap—

- - »
——————————————

The non-divergent barotropic vorticity equation may now be

written,

2 2
3 o2, 29 39%p , B9 AV .. B8 . o . p g2
S VYA e TRy TR T - Rye . (2.5)

The linearization of eq. (2.5) is accomplished by separat-
ing the stream function into its mean (bar) and perturbation

(prime) quantities of the form:
P(x,yat) = B(x,y) + v'(x,y,t) , (2.6)

where |w3| < < |§| . Substituting (2.6) into (2.5) and

dropping the quadratic terms in ¢' Tleads to

8, o2y L BB W BB G BBt
IV et PR % w T
ay' 3 o2 T SR 1
tar YV By DeVey (2.7)

It is assumed that Q' = 0 and § is defined in such a way
that § is a steady-state solution of (2.5). Equation (2.7)

can also be rewritten in Jacobian form such that

23' s - 2l - ' 2= a'
v L @) - J e -8 gt
2.4
-vaw 9 (2.8)
_ da 3b da adb
where :ﬂ'(a,b) "3 Ty -3y 3%

Equation (2.8) is a Poisson equation for the tendency of the

]
perturbation stream function (%% )
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Equation (2.7) is solved in a channel defined by

-D<y=<D

Xy S X S Xp .

The boundary conditions of the north-south walls y = + D

are
' =0 . | (2.9)

Cyclic boundary conditions are used in the east-west direc-
tion. Tupaz et al. (1978) applied a time-periodic forcing

on the eastern boundary to introduce waves into the region

from the east, and used a radiation condition for both ten-
dency and vorticity at the western boundary to allow the

waves to move smoothly through the boundary.

B. ZONALLY VARYING BASIC FLOW
The basic velocity field is defined by an easterly Bick-

ley jet

i(x,y) = U(x) sech?(ghy) - Uy = - B2 . (2.10)
Here, d(x) 1is a characteristic length scale of the jet, U(x)
is the maximum velocity at y = 0, and Uo is a constant
velocity. The basic flow stream function is specified to be

constant at the northern and southern boundaries (y = + D).

Equation (2.10) can be integrated to give

P(x,y) = U(x) d(x){tanh(a{;T) + tanh(a%;y)}
- U (y+D) + §(-D) , (2.11)

14
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where

B(D) + 20D - §(-D)

U(x) =

T coth (3%77) . (2.12)

Therefore, if d(x) varies slowly in x , so does the basic

~ flow. The x-variation for the characteristic length scale is

given by
' (x-X )
850 km + 350 km{cos (21 —= 1} ,
d = L
1200 km
-;('<X<;(-,
o—-"="o
K TR
X > % " {2.13)

~

Here, Xo is the longitude where the x-variation of the cosine

function starts and L 1is the wavelength of this variation.

15
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III. FIMITE DIFFERENCE EQUATIONS

Equation (2.7) is solved by finite differences. Centered
time differences are used except for the friction term which.
is approximated with a forward step. The Jacobians are com-
puted with the form which was developed by Arakawa (1966) for
non-linear conservation.

The tendency of the disturbance stream function is de-

fined by

where superscript t 1is the current time and subscripts i
and j refer to the x and y grid points, respectively.
In the following finite difference equations, At(1 hour) is
the time step. Ax(375 km) and Ay(125 km) are the x and
y grid point intervals, respectively. Equation (2.7) is

written using the Leapfrog finite difference scheme:

SR T R SRR

t t
¥5e1,4 ~ ¥11,4!

2., t-at
ex 2 ot . CREE
(3.2)
.t+At t-At
R el R MR S (3.3)




The finite difference form for the Laplacian of the tendency

is given by
t ¢ t
2 . T gt Vi | Tty g
LER Axiﬁ Ay
(3.4)
and for the Jacobian terms it is given by:
t = b} -9 TET LI S (3.5)
:ﬂi.j FAxAy " ‘Ti+1,§ Ti-1,37 2,417 1,51
- - .t |t
A\ 2N TSl PR PR RS PORRRI S P U PRI
.. 1 t t
Ji.5 " wmxayVia,Gia, e - FHa,ga) R s
. t t
= bioq,35(5800, 541 7 Fiar, 1)
t t
= UL ga Gl ga t Foga)
ot t .
* 0y 5108561, 5-1 7 Siat,5-107
and
Q t 1 t
Ji.5 ° 7axay %, 341 Wier, 541 = Y0, 541) (3.7)
- 53%, o (¥ -9 )
1,3-1%441, 541 = Y41, 51
|t b 4 < ¢
= i, e, g0 7 Vi, ga0)
lt b 4
* oo, Wi, ge 7 Biay a1

17




s

where
t 2 CDt ®t ®t
(9,V°9'] = + + . (3.8
Ji,j Ji.j :u-uj :ﬂ.iLL .
3

:]'g’jlw',vzﬁlb is exp;nded in the same manner as for (3.8).
This Jacobian conserves both kinetic energy and enstrophy in
the non-iinear formulations (Arakawa, 1966).

A forward time step is used for the initial time step and
every 30 time steps thereafter to damp the internal gravity
waves produced by the leépfrog method. A Matsuno finite dif-
ference scheme is tested in place of the forward time step
and the results show that the Matsuno scheme provides further
damping, but that the change is not significant.

The boundary conditions employed by Tupaz et al. (1978)
relieved the probiem of reflection of incident waves from the
boundary back into the interior region (Pearson, 1974). An
Euler-backward finite difference scheme was employed every
time step to provide additional damping of the short waves.

The frictional terms are evaluated at the previous time
step in order to insure linear computation stability (Haltiner,
1971).

The Poisson Eq. (3.1) is solved for the tendency using the
POISS subroutine which is a cyclic reduction algorithm for
solving block tridiagonal systems of arbitrary dimensions with
Dirichlet boundary conditions (Swarztrauber and Sweet, 1978).

The subroutine POISS solves the linear system of equations

of the form:

18
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+B.X +C. X

AiXion, 8%, 50 %, 5, -2 g g T Y

i,J

for I =1,2, ... M and J =1,2, ... N .
(3.9)

The east-west boundary conditions for all quantities are

represented by
i=0,1

xi’J+1 = Xi,] j =0, Jd+ (3.10)
It should be noted that Eq. (3.9) is not in the correct form
which satisfies the model. Therefore, the model must be

flipped prior to entering the solver and then flipped back

upon exiting with the solved eigenvalue-solutions.




IV. LOCAL STABILITY OF BASIC FLOW

A parallel flow model of Williams et al. (1971) is used
to determine the local growth rate of the variable mean flow.
This is taken from Tubaz et al. (1978) and then transposed
to fit the basic flow model used for this study in order to
gain some insight on the stability characteristics of the
mean flow. This model is\hereafter referenced as the par-
allel flow model. If 23y/ax is set equal to zero in (2.5)

the governing equation of this model is

; 2 "
[ﬁw%;\»uf]vzw'us--g—;x%w. (4.1)
¥

Wiy) ~ -b sechz(ﬁ) + U,

whefe U is a specified constant that scales the magnitude
of the central velocity of the Bickley jet (y=0). The
characteristic length d 1is also a specified constant.
Equation (4.1) is solved with the initial value technique
used by Williams et al. (1971). Assuming that all perturba-
tions are perio&ic in x, Eq. (4.1) is Fourier transformed in
x and the resulting equations are 1ntegr§ted until the solu-
tion grows.with a constant exponential rate. This approach
gives the growth rate, phase sbeed and wave number structure
of the most unstable meridional mode as a function of the

zonal wave number k .

20
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In general, these equations have a set of normal mode
solutions and a continuous spectrum of solutions (Case, 1960;
Pedlosky, 1964 and Yanai and Nitta, 1968). However, only
the normal mode solutions can give significant growth and
the most unstable mode wi}l dominate after a sufficient
period of time. |

Figure 1 shows the growth rate (n) corresponding to the
most unstable wavelengths (L) as a function of x based on
the parallel flow model. The parameters for the mean flow
are given in Section V. The largest growth rate occurs at
x=0 where the jet achieves its maximum central velocity
(G =- 30msec ']. In the inflow and outflow region for
X < - 11,100 km and x > 11,100 km, respectively, the growth
rate becomes negative and approaches the linear frictional
damping rate. The most unstable wavelengths range from
3650 km at x=0 to 4600 km in the inflow and outflow regions.
This variation follows the variation in the y-scale of jet
d(x) which is given by (2.16) (Tupaz et al., 1978).

Eigensolutions of the most unstable discrete mode for
two jet profiles are shown in Fig. 2. Only the lower half
of the y domain is shown because the solutions are symmetric
about y=0. Both solutions show barotropic growth as the
phase tilt is opposite to the shear in G. The maximum tilt
occurs at x=0 where the growth rate is the largest. In
addition, the eigensolution amplitude is a maximdm at y=0 for

x=0, but at x = 9314 km the maximum has shifted to y = + 800

km.
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V. NUMERICAL RESULTS FOR EXPERIMENT I

The numerical investigation of the variable mean wind i
model comprises two experiments. Experiment I is the princi-
pal one and it employs the same friction that was used by E
Tupaz et al. (1978). A friction coefficient of De = 0.15

x 1073 sec']

is used which is equivalent to an e-folding |

decay time of approximately 7.7 days. The second experiment

is the frictionless case and will be discussed in Section VI.
The following parameters are used in Experiment 1.

' i

4000 km, X - X, = 40,125 km, G(0,0) = =30 m s~ , |

Al g *u
u, = 0, L = 36,000 km, Ax = 375 km, Ay = 125 km ,
At =1 hr, X_ = + 18,000 km

(]

Figures 3 and 4 show the stream function ¢(x,y) and the

zonal velocity Uu(x,y) which are derived from the above

-

parameters. The model has 108 grid intervals in the x-direc-

tion and 32 intervals in the y-direction. Tupaz et al. (1978)
used the same domain, but his mean flow was not the same at
; i X = XE and X = XN‘ However in this study, the scale of
% variation of the jet is reduced to insure that the basic
zonal velocity would be periodic in the inflow and outflow
regions. Equation (2.13) specifies that the jet scale, d(x),
X

| varies between 500 km at a(x,O)ma and 1200 km at G(x,O)min.

The initial disturbance field is of the form:
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v (Xx,y,0) = sin%% CO:EzngOX ; (5.1)

A wave number of 10 is chosen as a result of the average wave-
length which was obtained by Tupaz et al, (1978). The initial
conditions and the jet flow are both symmetric about y=0 and
this symmetry is maintained throughout the integration.
Therefore, only the lower half of the y plane will be depicted
in the results of both experiments.

The integration of the numerical model is extended for a
period of 170 days. A close examination of wave structure,
phase tilt, period, wavelength, and spatial growth is made
for the segments 80-87 days, 125-133 days and 150-157 days.
Overall growth occurs during the entire period and is expected
since the waves travel through the region and then reappear
at the input boundary. It was expected that the overall
growth would be exponential in behavior. Figure 5 shows the
root mean square for the entire domain of ' plotted on a
log scale vs time. If the growth were truly exponential, the
curve in Fig. 5 would be linear. But in fact the curve is
quasi-linear with departures from the linear behavior occur-
ring periodicdally about every 56 days. Figure 5 shows the
first departure occurs near t=21 days and continues for 28
days. It should also be noted that the growth rate is nega-
tive from t=38 days to t=47 days. This departure from the
linear appears again at t=75 days for 25 days and again at

t=135 days for 26 days.
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Fig. 5. Experiment I. f¢fave as a function of time, where

lwlave is the root mean square of y'.
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The y' field at t=30 days is shown in Fig. 6. An entire
train of barotropic waves actually exists throughout the length
of the channel, but the waves upstream of x = -3500 km and in
the outflow region are not shown.because of their relatively
small amplitude. This is the same type of wave behavior ob-
served by Tupaz et al. (;978).

The phase is calculated for the segments mentioned earlier.
This is accomplished by observing each grid point in the '
field and recording the first three times it passes through
zero in either direction. A seven day period (P) is used in
order to insure that a full period is recorded. Tupaz et al.
(1978) observed a periodicity of 3.25 days. The actual phase

for each grid point 1is computed using the following formula:

0
360 (N-No)

0 = ————-————P (5.2)

where N represents the first time it passed through zero and
N° is the starting point in time of the sign calculations
for each time segment. Although the wave continues to grow

during the time segment, the period should not change appre-

ciably. Figure 7 represents an analyzed section of the phase

tilt for the segment 80-87 days. We note that all the waves
shown tilt oppositely to the mean wind shear, which is neces-

sary for barotropic instability. The maximum tilt is observed

downstream of x=0 where the jet velocity is maximum.
The periods at y=0 and y =+ 750 km for all three time seg-

ments are shown in Figs. 8-10. Although the periodicity is
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not constant, it is about 77 hours (3.2 days). This is also
representative of the entire channel. Deviations near the
inflow/outflow boundaries could be attributed to the small
amplitudes in this region. Figures 10a and b show an increase
in period at x = -6500 km to 93 hours (3.87 days) and 90 hours
(3.75 days), respectively, and a decrease at x = 6500 km to

39 hours (1.65 days) for a and b, respectively. Figure 8
shows only an increase at x = 6500 km to 100 hours (4.17 days)
and 93 hours (3.87 days) for a and b, respectively. This
abnormal behavior could be connected to the departure of the
growth rate from the iinear behavior illustrated in Fig. 5.

Figure 11 is an overview of the phase tilt for all three
time segments. Although they are not the same, they are
similar in the region from x = 3875 to x = -12000 km, They
tend to be different in the region where the amplitude is
small,

The envelope of the wave packet is evaluated at y = -750
km where the wave disturbance amplitude is large. The nor-
malized y' field is used because the waves are still grow-
ing and results are something close to a sinusoidal variation.
This envelope, <y'(x)>, 1is obtained by recording the average
of the magnitudes of the maximum and minimum w'/lwlue
values that occur at each longitude over a period of 7 days.

Here, is the root mean square ' . Figure 12 shows

'Wlave
the wave packet of all three time segments for y = + 750 km,
Note that the maximum amplitude in Fig. 12 is near the point

where the parallel flow growth rate drops to zero in Fig. 1.

2
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Although they are not the same, it should be noted that they
are downstream of the max jet core.

Tupaz et al. (1978) derived the disturbance kinetic
energy equation to better understand the dynamics of baro-
tropic instability. They found a number of energy terms but
observed thay the Reynolds stress term, <(u'v' 3u/ay)>, was
the only dominate source for disturbance kinetic energy. This
supported the large amplitudes and spatial gradients of y'
encountered a considerable distance downstream of the jet.

It is expected that this energy balance will also hold in this
study. Since this is a region of tilt opposite to the shear,
there is a conversion of mean flow kinetic energy to distur-
bance flow kinetic energy. Figures 1 and 2 illustrate the
large energy conversion of this type for the parallel flow
model.

Figures 13-16 show the phase angle 6 of the wave distur-
bance as a function of y for three different time segments.
The phase, 8y for the most unstable wavelength of the par-
allel flow model is also included (see Section 4). We note
that the waves upstream of -10875 km tilt oppositely to the
mean wind shear, which implies barotropic instability. In
one case, the maximum tilt is downstream of x=0, which is
where Tupaz et al. (1978) observed the maximum tilt. Between
x = =10875 and x = 3750,the phase tilt compares closely to
the parallel flow model 90. At the eastern boundary (Fig. 15b),
92* compares rather well to 90, but 9]* and 63* show exces-
sive tilt for the comparatively weak instability in this re-

gion. This excessive fluctuation may partially be explained

38




‘0 = x apn3lbuo| uoy .A-|-voo ¢ |apow

MolJ |3|Leded 9yl jo yjbuaanem_a|qeisun 3sow ay3 pue (—) shep /G|
051 (x£0) “(-=-*) sAep gg1-521 (x%0) *(""*) sAep 78-08 (xlg) SIuaubas
Wil 404 |3pow {edLJBWNU By} O p Iseyd jo uosiaedwo) ‘] judwiaadx3y gy @4nbr4 :

<« (wy 000L) A

ST 2 [ 2 1 s

0 02- 0%- 09- 08- 00L- 02L- Ovl-

« (3seyd) .6




o ‘wy 0G/€ = x (q) pue wy 0G/€-
-1buoy a0y °(---) "o

= x (e):sapny
‘L9pow Mo}y |d|Leaed 3y3 jo0 :um:m~m>u3 d|qejsun jsow ayj pue
(—) sAep 5i-0GL (s€0) *(=+-*) sAep gel-52L (x%0) “(***) skep /8-08 (x'6)
i sjuawbas awiy) ayj 4o [3pow |eIAswNU Y3 S0 o dseyd JO uosiaedwo) °J Judwiusadx3z “p| *bHi4
(9) uy 0GLE = x (e) wy 0GLE- = X
0z-F T 0z-F i g
5 .l |
% | .
! S A
E T B! HY <
: . . | k il —
- . - o— =
S . \) 51 o S
s v S
... .’ Hwal\
9 I
o°L-r < 0°L-f -. i
V)
J
y7
G-
0 ,
i A 1 1 | - B T 1 1 [ N | 1 1 A
| 0 02- 0¥~ 09- 08~ 00L- 0Zl- OvLl- 0 0¢- 0b- 09-

08- 00l- 0ZL- OvlL-
« (®seyd) o®

« (aseyd) 0




3
; o ‘wy G/80L = X (Q) pue wy G/80L- = X (e):s3pnyjbuoy
404 *(===) "o “|apow mo|j |3||esed 3yl j0 cumcowo>ux a|qejsun 3sow Yl pue ,
(—) skep G1-051 (x£0) *(=+=+) sAep geL-G2L («%0) (" ") sAep (8-08 (xl6) p
sjuswbas awl} 404 [3pow [edjaswnu Y3 o g aseyd jo uvostaedwo) “°1 juawpuaadx3y °gL 614
(9) S/801 = x (®) wy G/80l- = x

0°¢-I m_ s 'r g ¥
... t
' g -l
i :
_; o |

v =<

5 1-pF 4 s 1-F ! "

: i S

. | sis S

X 2 = -
. . = <t
/! L | =
OGP| ™ ¥ s o- —.l — .n\ +
S°-F /
0
L 4 1 L L i 1 | [ | 1 1 1 1 1
0 0c- Ob- 09- 08- 00L- 0CL- ObL- 0 02- O0¥- 09- 08- 00L- GZL- ObL-
+ (9seyd) o® M

« (3seud) 0

i, S, o 2,



*wy 00012- = x @pn3tbuo| a0y .A---vom ¢ |apouw

MO|J |@|Le4ed 3y3 jo yjbuapaaem_a|qejsun 3}sow 3yl pue Aﬂlv sAep /61

051 (x£0) €(-*-*) sAep ge1-GZL (x%) (") sAep /8-08 (x'0) Sjuswbas
k| 3wy 404 |dpow [edi4dwnu 3yl jo @ 3seyd jo uospaedwo) 1 Judwraadx3 9| ‘614

|
“ uy 000lec- = X
w, *mps
i 0°¢ m "
, ! :
i | ;
. s 1 \ .
] : *
g =
“-‘ur-‘-\c 'o m “
O —.l' a-o Imx“
'
5 .
] 4 |
1 1 1 1 1 1 1 1

0 09 Oy O 0 G¢- COb- 09- 08-
-« (9seyd) L

I —————————




by the small amplitudes which are present in this region.
Near the outflow boundary (Fig. 16) the tilt is reversed in
e; and e;. This indicates dynamic stability or a flow of
energy from the disturbance back to the mean floJ. This can
also be detected in Figs. 11b and c¢. In almost all cases, we
observe that the tilt of the wave disturbance qualitatively
adjusts to the local stability of the mean flow. Since the
parallel flow model can only solve the most unstable discrete
mode, dynamic damping is not indicated in Fig. 15 for the
outflow region. MNote that the phase tilt is unstable on the
average. This is because the waves show a net growth on
moving through the region.

The wavelengths for the numerical model are computed

using the formula:

_ 2n 2Ax
L -‘ Ae H ] (5.3)
where A6 represents the change in phase over 2Ax .
Equation (5.3) can be simplified and expressed in degrees
resulting in
0

- 360 _2ax (5.4)

A@
In addition, a smoothing process is applied in those areas
where the wavelength varies noticeably to give a more accurate
picture of the wavelength throughout the channel. This cal-
culation is made by choosing a questionable point { O ) in

the y domain of the phase field and adding 180° to it. This
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new phase is then located by moving in both x directions. The
distance between the new phases is calculated in terms of the
number of x grid points and multiplied by Ax to give the
corrected,or smoothed,wavelengths. Figures 17-19 show the
variation of wavelength, L(x)*, for all three time segments
at y = + 750 km. L(x)o represents the smoothed wavelength.
Comparing the wave]ehgths of y=0 (not shown) and y = + 750 km,
it is observed that the wavelengths are quite similar for
each time period. The maximum wavelengths are within + 4500
km of x=0 and tend to decrease toward the boundaries when
the wavelength pattern becomes noisy. This is the same region
that the phase tilt (Figs. 15b, 16) experiences large devia-
tions from the par?l]e] flow model due to the small ampli-
tudes. Tupaz et al. (1978) observed that the wavelength at
y = + 750 km was larger upstream and smaller downstream of
x=0 than at y=0.

Figures 20-22 contain the spatial growth, m:_3, computed
from the numerical model, respectively. Figure 23 is the
smoothed version of m;_3 and the spatial growth rate (m) of

the parallel flow model obtained by using

m = -n/C, (5.4)

where. Cr is the phase of the waves and n is the local
growth rate (Tupaz et al., 1978). The value of m;_3 is com-
puted directly from the wave packet envelope. In Fig. 22,
we see that m;_3 has a larger maximum than m and the maximum

is shifted slightly upstream from the jet maximum. A1l three
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curves pass through zero at the same point in which the wave
packet envelopes are a maximum (see Fig. 12). Note again the
noisy pattern near the eastern boundary. Tupaz et al. (1978)
observed these same features except that the m* curve was
skewéd to the left with respéct to m and the jet maximum.
fhis was the result of the tilt structure in the wave lagging
spatially behind the expected value from the local stability
conditions. The (*) represents the maximum and minimum ob-
served by Tubaz et al. (1978). Note the similarity of the
maximum and minimum to m3* and m:_z, respectively. The reason
that m;_3 shows more damping in the outflow region than the

parallel flow model is because the latter can only give the

eigensolutions of the most unstable mode.

e b e,



VI. NUMERICAL RESULTS FOR EXPERIMENT II

Experiment II is the frictionless case and employs
the same parameters and calculations procedures that are
used in Experiment I. However, a]fhough the integration for
this experiment is extended for 170 days, only the time seg-
ments of 80-87 days and 125-133 days are included in these
results.

Figure 24 shows the root mean square ' for the entire
domain. Note that the total growth is nine orders of magni-
tude greater than that observed in Experiment I (see Fig. 5).
In addition, the curve in Fig. 24 is more linear in appear-
ance than Fig. 5 but still experiences the departures from
the linear behavior during the same time interval that were
observed when friction Qas included.

The periods at y=0 and y = + 750 km show very little
variation and closely resembled those pictured in Figs. 7
and 8. The predominating period which is representative for
the entire channel is the same as Experiment I (77 hours or
3.2 days).

Figure 25 is an overview of the phase tilt for the two
time segments. The region of similarity extends from x =
5000 km to x = -15,000 km. Uhen the amplitudes are small,

the behavior becomes erratic as observed in Experiment I

(see Fig. 11).
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The wave packet envelope, <y'(x)>, is shown in Fig. 26.
When comparing Fig. 26 to Fig. 12, it is observed that the
curves are almost identical. Since the tilt is opposite to
the shear, there is a conversion of mean flow kinetic energy
to disturbance flow kinetic energy.

Figures 27-30 show the phase ang]g tilt of the wave dis-
turbance y-structure compared to the most unstable wavelength
of the parallel flow model eo. In both cases, the maximum
tilt was at x=0. Comparing them to Figs. 13-16 in Experiment
I, we see a similar structure except for Figs. 27 and 29a
which show greater tilt between 500-750 km. Note again the
excessive tilt of e]* for the comparatively weak instability
shown in Fig. 29b, and the elimination of the growth of eé*
of y greater than -1000 km in Fig. 30 for the Figs. 15b and
16, respectively, in Experiment I. The curve for 92* stresses
the dynamic stability which can also be observed in Fig. 25b.

The wavelength patterns for y=0 and y = + 750 are very
similar to those observed in Experiment I. The maximum wave-
length occurred within + 4000 km of x=0.

The spatial growth rates (Figs. 31-33) are near mirror
images of Figs. 20, 21 and 23. The growth rates are a little
larger than in Experiment I as would be expected because there

is no friction.
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VII. SUMMARY AND CONCLUSIONS

This study solved the model developed by Tupaz et al.
(1978) with different boundary conditions. They examined
the behavior of linear waves in a zonally varying easterly
jet which was barotropically unstable in certain longitudes.
The waves were forced with a period w on the eastern
boundary and a radiation condition was applied on the west-
ern boundary to allow the waves to move smoothly out of the
region. After a period of adjustment the solution at every
point varied with period w , but as each wave moved through
the domain it experienced growth or décay in résponse to
the local mean flow.

In the present study, the Tupaz model was modified by
changing the boundary conditions to cyclic continuity on the
eastern and western ends of the channel. 1In addition, the
mean was modified slightly so that it satisfied cyclic con-
tinuity. Experiment I corresponded to Experiment I in
Tupaz et al. (1978) and Experiment II was frictionless, but
otherwise the same as Experiment I.

In Experiment I, the root mean square stream function
grew with time because as each wave moved through the channel,
its net growth was added when it reentered the region. This
growth was approximately exponential with the departures from
exponential growth having a period of about 56 days. In order

to compare the wave behavior in this study with that of
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Tupaz et al., (1978), the fields were normalized to remove
the overgrowth in time. A procedure was developed to deter-
mine the phase and amplitude of the waves during a particular

time segment. The following time segments were chosen for

ana]ysis: 80-87 days, 125-133 days, 150-157 days. The wave

structure features were not the same for the three periods,
but the features were very similar in the large amplitude
regions. The predominant period was about 3.2 days which was
very close to the forced period of 3.25 days used by Tupaz

et al. (1978). The largest phase tilt was found near the

jet maximum and in two of the segments the phase tilt reversed
in the stable regions as was found by Tupaz et al. (1978).
The amplitude of the wave envelope was a maximum near the
point where the parallel flow growth rate was zero. The
average of the maximum spatial growth rates was very close

to the value obtained by Tupaz et al. (1978). This verified
their result that the spatial variation in the growth rate
could augment the maximum growth rate. The downstream wave-
length was somewhat erratic, but it was generally a maximum
near the jet maximum and it was a minimum where the jet was
weak. The results for the frictionless case were similar,
but the total growth was much larger.

In general, the wave behavior with cvclic boundary condi-
tions was very similar to that obtained by Tupaz et al.
(1978). However, the solutions in this thesis were more dif-
ficult to analyze because the wave structure in the three
time segments was not the same., This was undoubtedly related

to the non-exponential overall growths. Apparently as the
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waves came out of the barotropic damping region and entered
the jet region they did not have the structure to begin growth
smoothly. In this region the wave phase structure was par-
ticularly erratic., When the present model was used to deter-
mine wave structure and behavior with other wind profiles,
the structure shouldlhave been computed frequently and then
the typical structure could have been obtained by averaging.
This study should be extended to the nonlinear case, by
including a forcing term to.maintain the mean flow when there

are no waves present. When waves are introduced the modifi-

cation of the mean flow could be studied.
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