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PREFACE

One year ago I had never heard of latent trait theory, an item
characteristic curve, or Fred Lord. On my first reading of Lord and
Novick (1968) Chap.ers 16 and 17, I understood absolutely nothing.

After several hours of study on my second reading, I finally comprehended
one simple equation. During the next several nionths I reread parts

of Lord and Novick as many as 20 times, I taught myself some differ-
ential calculus, integral calculus, mathematical statistics, probability
theory and linear algebra, I attended Fred Lord's course in Item
Response Theory at the Educational Testing Service, Princeton, NJ,

and I read several publications on Item Response Theory.

I have now gotten to the point where I am able to use Item

Response Theory for my purposes, although there is still much that I
do not understand.

Upon reflection, I find that, as is true in many sciences, it is
not necessary to fully understand the theoretical background and
mathematical development in order to apply the results of the model.

It is widely acknowledged in the field that one of the main
reasons that item response theory has been so slow to catch on among
testing practitioners is the mathematical complexity of the literature.
Most of the literature is written with language and notation that is
standard for the researchers. However, that language and notation
is confusing to the thousands of testing practitioners, whose technical
training amounts to a couple of courses in statistics and tests and
measurement, if that much. On the other hand, many of the concepts
used in the literature are not difficult to understand, if explained
in less esoteric language and with a few examples.




Therefore, it became my resolve that no testing practitioner, such
as I, should have to go through what I went through in order to
gain a basic understanding of item response theory. The purpose of
this paper is to fulfill that resolve.

Since very little of this paper is original with me, by
rights there should be a reference for nearly every sentence or

paragraph. Such complete references, however, will not be included
because they would be out of place for a primer, and usually not of

jnterest to the novice. My primary references are Lord & lovick (1968)

and Lord (in preparation). Some references will be included to direct
the reader to more thorough and detailed explanations. Other refer-
ences will be included where authoritative support is deemed desirable.

A primer is necessarily incomplete. It is also inaccurate when

it contains oversimplifications which apply to the general case, but
do not apply to extreme, unusual, or uninteresting cases. This paper
will be quilty of such generalities and rules of thumb.

Other excellent, less elementary introductory material is also
available. (See Baker, 1977; Hambleton & Cook, 1977; Sympson, 1977).

I am indebted to ENS Debra Cook, ENS Pamela Crandall, ENS Charles
Pastine, and LTJG Larry Young for their assistance in the analysis of
data.

My appreciation for the many suggestions and corrections made by
the several readers and reviewers is gratefully acknowledged. They
are: John A. Burt, Joseph Cowan, Myron A. Fischl, Steven Gorman, Karen
Jones, Frederick M. Lord, James R. McBrice, W. Alan Nicewander,

Malcolm J. Ree, and James B. Sympson.

I would also like to thank YN2 Ron Smith for his excellent art
work, and Jim Walls for his systems analysis and computer pro-
gramming.

THOMAS A. WARM

January 22, 1978
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CHAPTER 1
INTRODUCTION

1.1 Item Response Theory (IRT) is the most significant development
in psychometrics in many years. It is, perhaps, to psychometrics
what Einstein's relativity theory is to physics. I do not doubt that
during the next decade it will sweep the field of psychometrics. It
has been said that IRT allows one to answer any question about an
item (test question), a test, or an examinee, that one is entitled to
ask. Although this statement is somewhat circular, it will give you
an idea of the terrific power of IRT and of the mathematical estima-
tion methods involved.

The most common application of IRT is with multiple-choice
questions in an ability test. That use will be the thrust of this
paper, although IRT also applies as well to free response (fill in)
items. I make no distinction between ability and knowledge testing.
IRT applies to tests for both. Thus, the word "ability" will be used
for both types of tests. No application of IRT to personality or
interest testing will be discussed.

1.2 If we give several tests in the same subject matter area to a
group of examinees, we find that in general the same examinees score
high on the tests and the same examinees score low. In other words,
we find consistency in the performance of examinees on the different
tests.

To explain this consistency we assume that there is something
inside the examinees that causes them to score consistently. We call
that something a mental trait.




In the vernacular the word "trait" implies an innate, inherited
characteristic. We don't necessarily mean that. We mean only that
characteristic of the examinee that causes consistent performance on
the tests, whatever, if anythino, it is.

flo one has found a physical referent for a mental trait, and few
really expect to. It is sometimes tempting to think of a trait as
having a physical referent like a brain engram, but that is always
unnecessary. In this sense, a trait is an intervening variable, as
opposed to a hypothetical construct. Since the mental trait has no
known physical referent, it is never observed directly. Therefore,
it is called a "latent" trait.

1.3 The scale of the latent trait is traditionally given the name of
the Greek letter theta (8). I will use the terms theta, ability level,
amount of trait, and amount of subject-matter-knowledge, interchangeably.
Theta is a continuum from minus infinity (-00) to plus infinity (+pe).

It has no natural zero point or unit. Therefore, the zero point and

unit are often taken as the mean and standard deviation, respectively,
of some reference sample of examinees. Thus, values of © usually vary

F3 from -3 to +3, but may be observed outside that range. The Bs of a
sample need not be distributed normally.

1.4 When an examinee walks into a testing room, he brings with him his
theta.* The purpose of the test, then, is to measure the relative
position of the examinees on the theta scale. The test interprets the
exaninee's theta and produces a measurement of ability, which is often
the raw (number right) score. The test is the measuring instrument.
Often measurement of an ability with a test is made analogous to
measurement of height with a tape rule. But there is an important
difference. Height, whether measured by an English rule or metric rule,
is always on an equal interval scale. Histograms of a group of people
will always look the same, except for some linear stretching of a
scale.

*The generic masculine pronouns will be used for convenience.

12




_ That is not the case with testing. The histograms of raw scores
i of the same people on two tests will seldom Took the same, even with
linear stretching of a scale. That is because each test has its own

, peculiar scale (also called metric). The peculiarity of a test's
j metric distorts the distribution of examinees. Until IRT there has
E been no way to identify the peculiar scale of a test.

13
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CHAPTER 2
Classical Test Theory vs. Item Response Theory

2.1 Classical test theory has been developed over a period of many
years. Gulliksen (1950) is an excellent presentation of classical test

theory.

Most testing practitioners use classical test theory, whether they
know it or not. The basic tools of most testing practitioners are:

a. p-value = proportion of examinees selecting an item alter-
native (also called "item difficulty"),

b. d-value = point-biserial correlation between the item al-

ternative and the test (some use the biserial correlation)(also called
"jtem discrimination"),

c. mean of examinees' (number right) scores,
d. standard deviation of examinees' scores,

e. skewness and kurtosis of examinees' scores,

f. reliability of the test, usually KR-20, the Kuder-Richardson
Formula 20 (a special case of Cronbach's coefficient alpha).

Anyone whose test analysis is principally based on the statistics
listed above is using classical test theory. The problem with those

statistics is that they are relative to the characteristics of the test
and of the examinees.

15




The p-value is relative to the ability level of the examinees.

The same item given to a high ability group and low ability group will
get two different p-values for the two groups. It can be shown that
p-values are not true measures of relative item difficulty. It is not
uncormon for items measuring the same ability to reverse the order of
their p-values when given to groups of different average ability. For
exarple, item A may have a higher p-value than item B for one group of
examinees, but have a lower p-value than item B for a different group.
This effect is not a matter of sampling error.

The a-value is relative to the homogeneity of the ability levels
of the examinees in the sample, the subject-matter homogeneity of the
items in the test, and the dispersion of p-values of items in the test.
The same item, given to a group of examinees who are similar in ability
and to another group with a wide range of ability, will produce two
different d-values for the two groups. Similarly, an item included in
a test with other items that are homogeneous in content and p-value
will get a d-value different from the d-value it will receive in a
heterogeneous test.

The mean, standard deviation, skewness and kurtosis will also vary
according to the characteristics of the test and examinees.

The reliability is relative to the standard deviation of the test,
and to the p-values and d-values of the items in the test, all of which
are dependent upon the particular abilities of the examinees and the
characteristics of the test.

The following quote gives another liability of using classical
test theory in culture-fair testing studies:

"It can be shown that classical parameters (e.g. p-value) will
generally not be linearly related across subgroups of a population.
This means that the test for cultural bias using classical parameters
can lead to an artifactual detection of bias." (Pine, 1977, p.40)




Clearly, classical test tneory statistics are meaninoful only in
an extremely limited situation, i.e., when the same item is given to
the same population as part of strictly parallel tests. Such a situ-
ation rarely occurs. Furthermore, the basic precepts and definitions
of classical test theory are untestable, i.e. they are tautologies.
They are simply taken as true without any way to empirically determine
their relevance to reality. Some are assumed to be true even when this
does not appear to be warranted. Thus, no one knows if the classical
test model applies to any real test.

2.2 In contrast IRT makes possible item and test statistics which are
dependent neither on the characteristics of the examinees nor on the
other items in the test. They are invariant. With the item statistics
it becomes possible to describe in precise terms the characteristics of
the test before the test is administered. This capability allows one to
construct a test that is highly efficient in accomplishing the purpose
of the test. It also provides an extremé1y powerful tool for special
studies, such as item cultural bias.

loreover, the assumptions of IRT are explicit and have the po-

tential of empirical testing. It is possible to discover if the data
reasonably meet the assumptions.

17
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CHAPTER 3

A Brief History of Item Response Theory

3.1 The origin of latent trait theory can be traced to Ferguson (1942)
and Lawley (1943). Item Response Theory is just one of several models
under latent trait theory. The Rasch model is another.

3.2 Other early publications using some of the same concepts are
Brogden (1946), Tucker (1946) Carroll (1950), and Cronbach and Warring-
ton (1952).

3.3 In 1952, Lord published his Ph.D. dissertation in which he pre-
sented IRT as a model or theory in its own right. At that time he
called it Item Characteristic Curve Theory. Thus, Lord is considered
the father and founder of IRT. Shortly after publishing his disser-
tation, Lord stopped work on IRT for ten years, due to a seemingly
intractable problem with it.*

3.4 In 1960, Rasch (1960) published his one-parameter sample-free
model. The Rasch model stirred ruch interest and considerable work was
done on it during the next decade. Its leading proponent in the U.S.
is Benjamin Wricht, a psychoanalyst at the University of Chicago. (See
Wright, 1977 for references).

3.5 In 1965, Lord (1965) conducted a massive study, using a sample

size of greater than 100,000. That study showed that the "problem", 1
which had deterred his work for so long, was not really a problem, and
that IRT was appropriate for real life multiple-choice tests. With
that study Lord began work again on IRT.

*This problem is discussed in Section 14.2
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3.6 In 1968, Lord and Novick published a psychometrics textbook,
within which were four Chapters (17-20) by Allan Birnbaum (1968), a
well-known statistician (now deceased). Birnbaum's chapters worked out
in detail the mathematics of the two and three parameter normal ogive
and logistic models.*

3.7 Soon thereafter Urry (1970) completed his Ph.D dissertation in
which he ccmwpared the one, two, and three parameter models. He con-
cluded that the three parameter model best described the real world for
multiple-choice tests.

3.8 Since Urry's dissertation, much work has been done on all three
models (i.e., one, two, and three parameter), but the three parameter
model is now receiving most of the attention because it best describes
reality. To wit, I shall deal with the 3-parameter model only.

3.9 MNuch of the work on the 3-parameter model is coming from 3 pri-
ncipal sources. The sources are:

a. Frederic M. Lord, Distinguished Research Scientist, Educa-
tional Testing Service, Princeton, NJ.

b. Vern W. Urry, Personnel Research Psychologist, United States
Civil Service Commission, Washington, D.C.

c. David J. Weiss, Prof. of Psychology, Psychometric Methods
Program, University of Minnesota, Minneapolis, MN.

There are, of course, many other highly productive researchers
publishing excellent studies. Failure to include them in this list is
more an indication of my Timited exposure than of the significance of
their contributions.

*The normal ogive and logistic ogive will be compared briefly in
Chapter 4.




3.10 The United States Civil Service Cormission has adopted a pa-
rticular application of IRT as official policy. The five U.S. armed
forces (including the U. S. Coast Guard) are also investigating the
application of IRT.

3.11 In 1977 Lord changed the name of his model from Item Character-
istic Curve Theory to Item Response Theory.
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CHAPTER 4
The Normal Ogive and Logistic Ogive

4.1 1 trust the reader will recognize the normal curve plotted in
Figure 4.1 with the pluses (++++). It has a mean =0, and standard
deviation =1. The formula for this normal curve is identified in

Figure 4.1 as N(0,1).

4.2 A bell-shaped curve like this is called a frequency function
(f.f.). It is called a frequency function even when the ordinate
(vertical axis) is defined as frequency, proportion, percent, or
density (Kendall and Stuart, 1977, p. 13). Therefore, we call the
normal curve, the "normal frequency function."

4.3 Superimposed over the normal f.f. in Figure 4.1 is a logistic*
curve or logistic frequency function, plotted with dots (..... ).

This logistic f.f. also has a mean =0 and standard deviation ==1.0.

The formula for this logistic f.f. is identified in Figure 4.1 as
L(0,1.7). The 1.7 in the exponent of the formula is chosen to allow
the logistic f.f. to approximate the normal f.f as closely as possible.
The actual value is 1.6679, which is rounded to 1.7. In some of the
literature the 1.7 is represented by the upper case letter D. The
letter e is the base of natural logarithms; e = 2.718281828.

4.4 The reader will also recognize the S-shaped curve in Figure 4.4
as the normal cumulative frequency curve. An S-shaped curve is
called an ogive.** This curve gives the proportion of area under the
normal curve (Figure 4.1) that lies to the left of each point on the
abscissa (horizontal axis).

*pronounced lojistic
**pronounced ojive
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4.5 An ogive like this is called a distribution function (d.f.). It
is called a distribution function even when the ordinate is defined as

cumulative frequency, cumulative proportion, cumulative percent, or

cumulative area (Kendall & Stuart, 1977, p.13). Therefore, we call the

curve in Figure 4.4 a "normal distribution function," or a “normal
ogive". The formula for this normal d.f. is identified in Figure 4.4

as’j'N(O,l).

4.6 Also in Figure 4.4, but not discernable, is the logistic ogive
(or logistic d.f.) for the logistic f.f. in Figure 4.1. It is not
discernable, because it is so close to the normal ogive that on this
scale the two curves merge together in the width of the ink line. A
small portion has been magnified to a larger scale (10x), so that the
difference may be seen. The magnified area was chosen at the place
where the 2 ogives are farthest apart. The reader can verify that at
any point on the abscissa the 2 ogives are always less than .01 apart
on the ordinate, as is indicated by the inequality under the magni-
fication in Figure 4.4. The formula for this logistic d.f. is id-
entified in Figure 4.4 as ‘]ﬂL(0,1.7).

4.7 The ogive with which we are concerned is the normal ogive.
However, note the integral siagn (/) on the right side of the de-
finition for the Jf N(0,1).

The integral sign there means that no algebraic function can be
found to describe the normal ogive. This fact makes the normal ogive
very cumbersome to work with mathematically, and requires numerical
methods to solve, or a table of values.

25
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4.8 On the other hand the logistic ogive has no intecral sign on the

right side of its definition ( ‘,"L(0,1.7)). In fact, the expression
on the right in Figure 4.4 is the algebraic function describing the

logistic ogive. The logistic ogive is very easy to work with.*

4.9 For these reasons the logistic ogive is substituted as a con-
venient and very close approximation to the normal ogive.

4.10 This paper will only deal with the Togistic ogive. Statements
about the logistic ogive may be taken as close approximations to the
normal ogive model. The logistic f.f. is no longer of interest to us.

*Some interesting logistic identities are given in Appendix A.
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£ CHAPTER 5
More About Logistic 0gives

| 5.1 Fiqure 4.4 shows just one logistic ogive. There is actually an
infinite family of logistic (and normal) ogives, each different in
some way from every other one.

5.2 Logistic ogives are strictly monotonic functions. They are
strictly monotonic because, going from left to right, the ogive
always gets higher and higher, never is completely horizontal, and
never goes down.

5.3 Notice the ogive in Figure 4.4. Between -2.0 and -0.5 on the
horizontal axis the ogive is concave upward. Between 0.5 and 2.0 it
is concave downward. At some point between -0.5 and 0.5 this ogive

é must change from being concave upward to concave downward. That
point is called the "inflection point." The inflection point is
always the point where the slope of the ogive is at its maximum. The
inflection point for this ogive is located on the vertical axis at
.50, and on the horizontal axis at 0.0.

27
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5.4 Three-parameter logistic ogives (with which we are exclusively
concerned) may differ from each other in only 3 ways, one for each
paraneter.

5.5 One way in which logistic ogives may differ is in the horizontal
location of the inflection point. Figure 5.5 shows 3 logistic ogives
labeled E, F, and G with their inflection points at different places on
the abscissa. You can see that the 3 ogives are exactly the same
except for a sideways shift of the entire curve. Shifting the inflec-
tion point sideways, shifts the entire ogive sideways. The horizontal
position of the inflection point is called the "b-parameter". Some
call it, as we will, the "b-value". The b-values of ogives E, F, and G
in Figure 5.5 are -.5,0.0 and 1.0, respectively.

5.6 To include the b-parameter in the logistic ogive function, it is
only necessary to subtract the b-parameter from the horizontal axis
variable.

5.7 Figures 4.1, 4.4, and 5.5 were constructed with the horizontal
axis labeled z. This label was chosen to facilitate understanding of
the logistic f.f and d.f., because of the reader's likely familiarity
with the traditional z-scores of measurement. Since we are concerned
with the ability scale called 8, we now and hereafter label the hor-
jzontal axis, 8. Substituting 8 for z in the logistic function

and subtracting the b parameter, gives the height of the logistic
ogive by the function

\7 (9)=[| +e"-7(e'b)]-'
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which is sometimes written

\y(e)s[uexp(-u.?(e-b))]"

in the literature to mean the logistic ogive. Phi (

mean the normal ogive.

quite reaches the lower asymptote.

o Ci

are identical except for different Tower asymptotes.

3 ogives is at 1.00.

between its upper and lower asymptotes.

31

where exp means e raised to the power of whatever is in the paren-
thesis after the exp. The upper case Greek letter psi (‘i’) is used
) is used to

E 5.8 The logistic ogive has 2 asymptotes. The asymptotes are horizontal
lines that the ogive approaches at its extremes, but never quite
reaches. The upper asymptote is located on the vertical axis at

1.00. In Figures 4.4 and 5.5 you can see that the upper, right part

of the logistic ogives approach the value of 1.00 on the vertical

axis. In the figures it may appear as though they touch the hori-
zontal Tine at 1.00, but, strictly speaking, they never quite do.

5.9 The Tower asymptotes for the ogives in Figures 4.4 and 5.5 is
the horizontal axis with a height of zero. Just as the upper part of
the ogive never quite reaches 1.00, the lower part of the ogive never

5.10 A11 logistic ogives in IRT have an upper asymptote at 1.00, but
not all have a lower asymptote at .00. In fact, few do.

5.11 Figure 5.11 shows 3 logistic ogives, labeled H, J, and K, which
The Tower

asymptotes are at .15, .25, and .30 on the vertical axis.
b-value for each ogive = 0.0. Note that the upper asymptote for all

5.12 Note also that the inflection points (all located at 0.0 on the
@ scale) for the ogives in Figure 5.11 are at different heights.
fact, they are half-way between their asymptotes. That is always the
case. The inflection point of the logistic ogive is always half-way




5.13 The lower asymptote is called the c-parameter or the c-value. It
is another of the 3 parameters of IRT.

5.14 The effect of the c-value is to squeeze the ogive into a smaller

vertical range. The reduced range is equal to 1 - ¢c. The effect of
the reduced vertical range is to reduce the slope of the ogive at every
point on the @ scale, other things being equal. We include the c-
parameter in the logistic function by multiplying by 1 - ¢, and adding

C.

-l
\I, (9)= c+ (|-c)[ |+e'|.7(9-b)]

which is the same as

¥ ©)=c+ (t-c) l+exp(-l.7(9-b)_;l ?

and

Y@©=c+ S
% e-:.?(e-b)]

The c-values of ogives H, J, and K in Figure 5.11 are .30, .25,
and .15, respectively.
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5.15 The third (and last) parameter of IRT is (you guessed it) the
a-parameter, or a-value.

5.16 The a-parameter is related to the slope of the either ogive at
the inflection point or in other words at the b-value. For the normal
ogive model (with ¢ = 0.0)

Q= 1/5:;|n== 2.5m

where m is the slope of the ogive at the b-value.

5.17 Figure 5.17 shows 3 logistic ogives (L,M,&N), which are identical
except for their a-values = .3, .8 and 2.0, respectively, with b = 0.0 E
and ¢ = .00. As you can see, the larger the a-value, the steeper the ‘
ogive. Specifically,

a= [‘I/-:Q)-b] g

where ‘}’"(0): the point on 8, where the height of the ogive = ¢ + §456(1-c).
The -1 that looks like an exponent of'i’ﬁj is not an exponent at all,

but indicates the inverse of the function. Typically, a function is

used by starting at some point on the abscissa, going vertically to the

function, and then horizontally to the ordinate. The inverse procedure
would be to start at a point on the ordinate (in this case at c +
.8455(1-c)), go horizontally to the function, and then drop down to the
abscissa (@). That point on 6 isW7'(l). The -1 outside the brackets
is an exponent, which means to take the reciprocal. The number .8455

is the proportion of area under the logistic f.f. and to the left

of z-score = 1 (see Figure 4.1). The z-score = 1 is an arbitrary
mathematically convenient point.
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5.18 The a-parameter enters the logistic function as part of the
exponent of e.

| -Cc
-1.7a(6-b) |

\P(9)=c+
|+e

This formula is the 3-parameter logistic ogive. It will Took
rather ominous to the novice. However, it is not difficult with a
pocket calculator with an eX key and a 1/x key. It is highly instru-
ctive to go through the calculation of several points of a typical
logistic ogive and to plot them. An opportunity to do so is provided
below for an ogive with a =.9, b = -.4, and ¢ = .2. The reader can :
verify the results in Figure 5.18, which shows this logistic ogive with
its characteristic parts labeled.
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CHAPTER 6
The Item Response Function (IRF)

Let's consider 2 examinees (Al and Bob) with different ability

6.1

levels, i.e. different 8s. Let's say Al has a higher @ than Bob. That
means they are located at different places on the @ scale. See Figure
B %
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6.2 What are the chances that Al will get item #1 correct? What are
the chances that Bob will get item #1 correct? So far we don't know
the answer to either of those questions. But we do know one thing. Al
has a better chance of getting item #1 correct than Bob, because Al is
smarter than Bob (in ability 8). So let's represent the probability of
each getting the item correct by a point above each (points A & B) in
Figure 6.2.

B b I Ml
] P
n S 1] ERESSNS
[ 4_#.4H
T
Figure 6.2. The probabilities of Al and Bob getting glp L1
Item # 1 correct as a function of their abilities. ﬁb 'W‘

6.3 In doing so we have defined an ordinate as the probability of
getting the item correct as a function of @ (ability). This may be
written P, (RJ6), and read, "the Probability of getting item i correct
given (') 0." But for brevity it is usually written PT(Q). The
subscript (i) is often omitted.
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6.4 Now let's take Carl, who is dumber (less ability @) than Bob.
Carl has an even smaller chance of getting the item correct. See

Figure 6.4a.

) gl )
¥
i
PR 1
4 T T
s ( T T
1 !

Figure 6.4a. The probabllmes of Al, Bob, and Carl
getting Item # 1 correct.

And let's also add Dave, and Ed and Fred who have less 8 still. See
Figure €.4b.
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Figure 6.4b. The probabilities of Al, Bob, Carl, Dave,
Ed, and Fred getting Item # 1 correct.
And we can add Olga who is very br1ght See Figure 6.4c.
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Figure 6.4c. The probabilities of Al, Bob, Carl, Dave,

, Fred, and Olga getting Item # 1 correct.
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6.5 Since the probability of getting the item correct is only a
function of the amount of ability,* we can say that any who has

the same 8 as Al will have the same probability as Al of getting

the item correct (A). And, everyone who has the same © as Ed will
have the same probability as Ed of getting the item correct (E),

and so on. Therefore, we can connect th2 points in Figure 6.4c,
which will tell us the P(0@) for each @, This curve is called the Item
Response Function (IRF) and was until recently called the Item Char-
acteristic Curve (ICC). See Figure 6.5
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Figure 6.5. The Item Response Function of Item

6.6 We know several things about this IRF.

(1) It cannot rise higher than ), because a probability = 1.0
is a sure thing, and nothing can be more probable than a sure thing.

(2) It will never reach a height of 1.0, because in testing there
is no such thing as a sure thing. Therefore, the curve has an upper
asymptote of 1.00.

(3) Between Ed and Bob the curve has to rise rapidly, because it

must rise from point E to point B in the short distance between Ed's
@ and Bob's 8.

*assuming unidimensionality, which will be discussed in Section 14.4.
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(4) The curve must always rise (i.e. can never be horizontal or
go down) as we move from left to right, because as ability increases,
so does the probability of getting the item correct. Therefore, the
curve is strictly monotonic.

(5) It cannot go below 0.00, because a probability = 0.00 is an
absolute impossibility, and nothing can be less probable than an
absolute impossibility. Therefore, the curve has a lower asymptote.

(6) Since the item is a multiple-choice question, there is
usually a fair probability of getting the item correct strictly by
chance alone, no matter how low the 8. Traditionally, we have taken
this probability to be 1/A, where A = the number of alternatives in the
multiple-choice question. A 4-choice item has been thoucht to have a

chance probability of 1/4 = .25, and a 5-choice item, a chance pro-
bability of 1/5 = .20. Whatever the chance probability of getting

a multiple-choice item correct is, it is not expected to be zero.

It is expected to be somewhat areater than zero. Therefore, the curve
in Figure 6.5 is expected to have a lower asymptote above zero. (In
Section 7.3 we shall see that the lower asymptote is seldom 1/A)

6.7 You have probably noticed that all of the things we observed about
the IRF are also true about the 3-parameter normal ogive and Togistic
ogive.

Therefore, we conclude that the normal (or logistic) ogive may be
used to describe the IRF very well. And we may use the logistic ogive

function to describe the IRF mathematically.
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6.8 If somehow we knew and we were to plot the probabilities of
getting item #2 correct for Al, Bob, Carl, Dave, Ed, Fred, and Olga, we
might get an IRF like Figure 6.8.
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Figure 6.9. The IRFs of Items # 1and # 2.
For Olga, Ed and Fred (and anyone else with their 8s) the probability
(P2(8)) of getting item 2 correct is about the same as their B(@) for
item #1.

But item #2 is harder for Al, Bob, Carl, and Dave than item #1,
because for all of them the probability of getting item #2 correct
(R(8)) is lower than the probability of getting item #1 correct. And
it would be harder for anyone who has the same ability as Al, Bob,
Carl, or Dave.

6.10 We also notice that the probabilities of getting item #2 correct
for Bob, Carl, Dave, Ed and Fred are all about the same. Item #2,
then, does not do a good job in distinguishing among people with
abilities Tike Bob's or below. This observation is consistent with
what we intuitively understand about items. A hard item does not
discriminate among low ability people, because they all get it wrong
(unless they make a lucky guess). An easy item does not distinguish
among high ability people, because they all get it correct. A test
composed of items with IRFs T1ike item #2's IRF would not be a good test
for measuring the relative ability of people like Bob, Carl, Dave, Ed
and Fred.

Note: In practice, any particular examinee may either know the answer
to a particular item (in which case his probability of getting it
correct is 1.00), or not know it (in which case his probability of
getting it correct is chance). Strictly speaking, we can not talk about
the probability of a particular person getting correct a particular
jtem. However, for pedagogical reasons we will violate this restriction
in this section.(See Section 8.2 for clarification.)
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6.11 However, 0Olga's gge) for item #2 is much higher than Al's
gge). Therefore, item #2 will distinguish between people like Al and

Olga. If a distinction in that range of ability is our purpose, then
a test made of items like #2 would be a pretty good test.

6.12 Item #3 might have an IRF like that in Figure 6.12. This item
rises over a longer range than does either item #1 or item #2, but its
slope is less at every point during its rise. This low slope means
that item #3 is discriminating over a wide range of 8, but is not
doing so well at any particular 8.

'\\,-ﬁoo
1 D,AV!!:ARLL)DG A’L ’

FRED ED OLGA

Figure 6.12. The IRF of Item # 3.

6.13 Figure 6.13 shows the IRFs for both item #1 and item #3.
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e .
Figure 6.13. The IRF of Items # 1and # 3.
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It is interesting to note that item #3 is harder than item #1 for
Al and Bob, but easier for Dave, Ed, and Fred. This possibility of
reversed relative item difficulty for persons of different ability is
one of the surprising results of IRT.

6.14 We have seen that the greater the slope of the IRF, the greater
the discrimination, but the smaller the range of discrimination. We
have already noted in Chapter 5 that the a-parameter of the logistic
ogive describes its slope. Therefore, the a-value is called the
discrimination index of the IRF. The greater the a-value of the IRF,
the better the item discriminates.

6.15 Also apparent is the fact that the shift of the IRF as a whole
to the left makes the item easier in general, and to the right makes
the item harder in general. The left-right shift of the legistic ogive
is described by the b-parameter. Thus, the b-value is the difficulty
index of the IRF. The more difficult the item is, the larger (in the
positive direction) the b-value of the IRF.

6.16 The IRFs of items 1, 2, and 3 have different lower asymptotes.
Since the IRF never goes below the lower asymptote, this difference in
IRFs means that the items are of different difficulty even for exam-
inees of very low ability. But examinees of very low ability will
know almost nothing about the item, and therefore have to guess. The
difference in lower asymptotes of IRF's means that very low ability

examinees have a better chance of guessing the correct choice of some
items that of others. This result of IRT will be discussed further in
Section 7.3. The lower asymptote of the logistic ogive is the c-
parameter. The c-value of an IRF is called the "guessing index" or
more properly the "pseudo-guessing index" of the item. Both terms are

used.




1.00
20
so_

70
P(e).60_
.50_
.40 _]
.30

Ple)-

e —————— R ——————

wO-8
CGK

E- 3¢
a=3.76
b=1.80
c= .00

wO-8
CGK
I
=
80
.70—4

P(elso.

Figure 6.17. The IRFs of four actual items from the
Coast Guard Knowledge section of the U. S. Coast

Guard Warrant Officer Test, series 8.
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6.17 Figure 6.17 shows the IRF's for 4 actual items from the Coast
Guard Knowledce section of the U.S. Coast Guard Warrant Officer test.
Item #17 is a very difficult, but highly discriminating item. It has a
c-value of .00, which means that nearly all examinees below 8 = 1,

answered the item incorrectly. Item #17 is a very unusual item in two
respects, its extremely high a-value, and .00 c-value. It is, however,

an ideal item for many purposes.

Item #21 is an easy item with somewhat low discrimination. Item
#47 is slightly easier than #21, but has good discrimination. Item #50
is an item with medium difficulty, and poor discrimination.

6.18 The IRF should not be confused with the item-test curve. The
jtem-test curve has raw score as the horizontal axis instead of 6.

The item-test curve, therefore, suffers from the same problems of
distorted scale as the raw score. The item-test curve has no par-
ticular shape, and is not independent of the other items in the test.
In fact, the average of the item-test curves of all items in a test is
always a straight line of slope = 1(i.e. 45°). Thus, for many purposes
the item-test curve is useless as an analytic tool.
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CHAPTER 7
The a, b, & c parameters

7.1 The a-value is the discrimination index of the item. If @ is
normally distributed, in the normal ogive model the a-value is related

to the d-value in the following very complex way (from Schmidt, 1977).

da/Pq
ax

4 (KR-20)(1 -C)2y2 'd{pq

where d = d-value, the point biserial item-test correlation
p = p-value, the proportion of examinees correctly answering the item
q = 1-p
KR-20 = Kuder-Richardson formula 20 reliability
y = the height of the N(0,1) curve at the z score that cuts off

p'proportion of the area under the N(0,1) frequency function.

c = c-value

v 2 P=C
P 1-c 3




The a-value is related to the slope of the IRF, and can range from
0.0 to + po just as the slope can. Negative slopes are possible, but
not of interest to us. Experience has shown that a-values of typical
items vary from about .5 to 2.5 with most from 1.0 to 2.0. The highest
I have observed is 3.76. An item with a low a-value discriminates
poorly over a wide range of 8. With a high a-value the item discri-
minates well, but over a small range of . Items with a-values below
.80 are not very good items for most purposes.

7.2 The b-value is the difficulty index. If @ is normally distributed,
it is related to the p-value in the normal ogive model (from Schmidt,
1977) in the following way:

yz(l-c)q/KR-ZO
d+/paq

where z = the z-score that cuts off p/proportion in the upper portion
of the area under the N(0,1) frequency function, and the other symbols
are as defined in Section 7.1 above. Typical b-values rance from -2.5
to +2.5. A b-value of -2.5 indicates the item is very easy. An item
with a +2.5 b-value is very difficult, and items with 0.0 b-values are
of medium difficulty.
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7.3 The c-value is the guessing parameter or pseudo-guessing para-
meter. It indicates the probability of examinees with very low
ability of getting the item correct. Most c-values range from .00 to
.40. Items with c-values of .30 or greater are not very good items.
It is desirable to have the c-value at .20 or less. The lower the
c-value is, the better. A zero c-value is ideal. Typically, the
c-value is about 1/A - .05, where A = the # of alternatives. Thus,
4-choice items often have ¢ @®=.20 (i.e. .25-.05), and 5-choice jtems
often have c &R415 (i.e. .20-.05).

Items do not have a c-value of 1/A because examinees do not, in
fact, guess randomly when they do not know the answer (as has often
been assumed in classical test theory analyses).

7.4 Two explanations have been offered for the fact of non-random

guessing (C#I/A) ;

Lord has suggested that item writers are very clever in writing
distractors that are very attractive to low ability examinees. Thus,
when Tow 8 examinees do not know the answer they are attracted more to

distractors than to the correct answer, and so get the item wrong more
often than if they guessed randomly.

The other explanation is my own, based upon personal knowledge of
item writing and test taking behavior:

(1) When an item writer sits down to write items, he, for the
moment, is not concerned with the distribution of the correct answers
(the keyed choices) among the four (for four-choice items) possible
positions (i.e. choice A, choice B, choice C, and choice D).
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(2) He has a tendency to try to hide the correct choice. 1In a
four-choice item there are only 2 places to hide it - choice B, or

choice C. Therefore, he writes many more items, keyed B or C than A
or D, and in fact there seems to be a much stronger tendency toward C.
(1 have verified this tendency with many item writers). This also
seems to be true for 5-choice items.

(3) When he finishes writing the items, he tabulates the numbers
of items keyed for each position, and usually finds that he has many
more C's than A's, B's, or D's (or E's in 5-choice items).

(4) Most testing organizations have a requirement that there
should be about equal numbers of items with the keyed choice in each
of the 4 or 5 possible positions.

(5) The item writer then begins to revise the order of the
choices in items to decrease the number of items keyed C, and increase
the number of items keyed A and D and maybe B. He continues to revise
the order of the choices of items until he has satisfied the require-
ment of about equal numbers of keyed choices in each position.

(6) Naturally, to save himself work and time (the Law of Least
Effort) he wants to revise as few items as possible. Therefore, he
stops revising items when he gets within the requirement of about
equal numbers. Because he started with more items keyed C, he also
ends up with more items keyed C (but not as many), because he only
needs about equal numbers.

If the above scenario is as universal as I believe, it means
that, in the set of all multiple-choice items in the world, more are
keyed C than any other choice. It is true of almost all of the tests I
have checked.
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There is a widespread rule of thumb among examinees: "If you
don't know at all, guess C." I have heard this rule of thumb from

coast to coast, from high school and college students, and from
civilian employees and military personnel taking promotional tests.
I do not know the source of this rule of thumb, but it is possible
that the rule of thumb gradually grew from examinees' observations
of the frequency of keyed choice positions, as I have suggested
above.

Whatever the origin of the rule of thumb, it represents rational
behavior, given a higher frequency of choices, keyed C, among the
population of all rultiple-choice items. By choosing choice C {(when
you don't know at all), you will get more items correct by chance in
the Tong run than by guessing at random.

This analysis suggests that the c-values of items keyed C will
be higher than for items keyed A, B, and D. I was able to test this
hypothesis with 127 items from 6 forms of the verbal parts of the
SCAT-II series of tests, published by the Educational Testing Ser-
vices, Princeton, NJ. The c-values were provided by Fred Lord.

A two-by-two frequency table of A, B, D vs C by above-average c-value
vs below-average c-value yielded a Chi square significant beyond the
.001 level. This result strongly supports the hypothesis that low
ability examinees get items keyed C correct more often than they get
items keyed A, B, or D correct.

The results suggest 2 alternative courses of action for testing
organizations.

(1) Require that there be exactly the same number of keys
in each position. This action would thwart the test-wiseness
of those who use the rule of thumb. However, it represents an

undesirable rigidity.
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(2) A better course of action would be to key C for less than
1/4 of the items (for 4-choice items). This action would cause
a lower average c-value for the test. The lower average c-value
would increase the total information in the test, which as we
will see in Sec. 9.4 is highly desirable.

7.5 The Rasch model assumes that all items in a test have the same
a-value, and that ¢ = .00 for all items. Both assumptions are nearly

always unrealistic.
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CHAPTER 8
The Test Characteristic Curve

8.1 The scale of @ is continuous, but since most of the calculations
are done on digital computers, @ is usually broken into small, dis-
crete intervals of .05 8 units, and values of P(8) are calculated for
each .05 interval from @ = -5.0 to 8 = +5.0. The very broad range
from -5.0 to 5.0, and the small .05 intervals are used in the interest
of accuracy. Larger or smaller intervals and a broader or narrower
range may be used depending on the purpose and degree of accuracy
desired.

8.2 Table 8.2 below gives the P(8) for 17 values of © for each of the
4 items, shown in Figure 6.17.
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p(8)

9 #17 #21 #47 #50 T P(8)
-2.7 .00 .30 .38 .20 .88
S2.3 1 .33 .40 .23 .9
-2.0 .00 .37 .45 .25 1.07
<12 . 8 .43 .52 28 1.23
=33 00 .53 .66 .33 1.52
-1.0 .00 b .87 44 2,02
=7 00 .62 7 48 1,77

-.3 .00 .82 .94 .52 2.28

0 .00 .88 .97 .59 2.44

3 .00 .92 .99 .65  2.56
i S .96 .99 74 2,69

16 .01 .97 .99 .79 2.75

1.3 .04 .98 .99 .84 2.85

1.7 .35 .99 .99 .89 3.22

2.0 .78 .99 .99 91  3.67

2.3 .9 .99 .99 .94 3.88

2.7 9 .99 .99 .96  3.93

Table 8.2

An item is scored dichotomously, which means the examinee either
gets the item correct (for which he gets an observed score of 1) or

he gets the item wrong (for which he gets an observed score of 0).
The dichotomous score is a result of the typical use of multiple-

choice items. An examinee's dichotomous score (0 or 1) is not a
very accurate measure of his knowledge.
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P(0) may be interpreted in two ways. A P(©) = .78 means both:

E (1) 78% of the examinees with the given @ will get the
item correct, and

(2) An examinee will get correct 78% of the items for
which his P(8) = .78.

If an examinee answers 100 questions for all of which his P(8)
= .78, he is expected to get 78 items correct and 22 items wrong for a
% score of 78%. If there were some way to give him partial credit of
.78 points for each of the 100 items instead of O or 1 point he would
also get a % score of 78%. This notion of partial credit for an item
depending on his P(@), leads to the idea of a true score on the item.

It is often not true that the examinee is 100% or 0% certain of
his answer. Yet on a multiple-choice item he either gets full (100%)
credit for the item (1, if he gets it correct) or no (0%) credit

(0, if he gets it wrong). The examinee's degree of certainty, if
measurable could be taken as a more precise measure of his knowledge.
P(8) might be interpreted as this measure of his knowledge, and is
called his true score on the item. The sum of his true item scores
is his true test score. His true test score is the raw score he
would get, if there were no measurement error in the test.

The far right column in Table 8.2 is the sum of the P(8)'s of the
4 items for each of the listed points on the @ scale. The:EfP(O) is
the true test score of an examinee with a given 8 on a test composed
of the 4 items.
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8.3 If we plot the true test scores against 8, we get a test
characteristic curve (TCC). Figure 8.3 shows the TCC. The TCC
gives the true score for each point on the 8 scale. Notice that
the TCC is neither a straight Tine nor an ogive. Each test will |
have its own TCC, which is the sum of the IRF's of the items in
the test.

8.4 One of the interesting uses of the TCC is to determine the
distribution of the true scores on the test. Figure 8.4 shows how
this is done. If the examinees' 8s are normally distributed, as
shown on © (upside down), the examinees' true scores will be as shown
on the left. The true score distribution is found by projecting the
intervals from the @ scale onto the TCC, and then representing the
same area on the true score scale within the projected intervals.
Figure 8.4 is an excellent demonstration of how the peculiarities of
a test produce a distorted metric.

8.5 It is important to note that true scores (T) are not observed
scores (X). Observed score is defined as true score plus error

(X =T+ E). However, Lord (1969) has found that the distribution
of X will be similar to the distribution of T, but sometimes with

the high points of the true score distribution flattened somewhat,
and the low points higher. The flattening is due to error.
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CHAPTER 9
The Item Information Function (IIF)

9.1 We can see in Figure 6.17a that item #17 will not help us to
distinguish among examinees whose 8's are less than 1.0 because

they will all get the item wrong. Apparantly, there is something
about item #17 that leads all examinees with 8 € 1.0 to choose

the wrong alternative. This is an unusual situation, but

actually occurs with this question. A test made exclusively of items
like #17 would do nothing to distinguish among examinees with 8 <

1.0 because they would all get zero on the test. It would give us no
distinguishing information about them.

Item #17 also gives us no distinguishing information about
examinees with 8 = 2.7 or greater because they will all get it
correct. On a test composed of items Tlike #17, all examinees with
8> 2.7 would get 100%.

Between 6=1.0 and 6=2.7, it is a different story. From 6=1.0
to 6=1.5, P(8) goes from P(8=1.0)=.00 to P (8=1.5)=.08. The change
of P(9) means that the item does help to distinguish among examinees
within the range of 6 where the change of P(8) occurs. In this case
the difference between the P(0)'s (to be denoted dp) = .08 (.08-.00)
is small. The change (dp) occurs over a range (d8) of 1/2 © units
(1.5-1.0). The ratio of dp to d@ (dp/de) is equal to the average
slope of the IRF over the range of d8. For the range from 6=1.0 to
6=1.5, dp/de = .08/.5 = .16.




S

From @ = 1.5 to 8= 2.0 for item #17, P(8) changes from .08 to
.78, a very large change. dp = .70 (.78-.08) in this range, and
dp/de = .70/.5 = 1.40, which is very large. Item #17 is an excellent
item for distinguishing among examinees in the range 8 = 1.5 to @ =
2.0. A test composed of items like #17 would give scores from about
8% to 78% for examinees whose 8's go from 1.5 to 2.0. This test
would give us a lot of distinguishing information about examinees in
this range of 8, because it would spread them out over a wide range
of test scores.

We can see that the greater the slope of the IRF, the more in-
formation the item gives us about examinees in the range being
considered.

9.2 If we could make the range of 9 over which we find the slope
smaller and smaller, we would eventually get to the slope of the IRF

at a point which would be the slope of the tancent line to the IRF at
a particular point of Q.

The slope of the IRF would be a measure of the relative amount
of information the item gives about examinees at that point. The
greater the siope, the more information.
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Fortunately, there is an easy way to find the slope of the
logistic ogive. The slope of the IRF is given by:

|.7a(©-b
,_dp _ L.7a(l-c)e Mo

by v [1+¢l7a(0-b])

where a, b, and ¢ are the item parameters and @ is the point

where dp/d8is the slope. The slope is also sometimes denoted as
P'(8), or P' for short. 1In calculus P'(8) is known as the first
derivative of P(8). Since the slope (P') is a measure of information,
it is possible to plot a curve that shows the amount of information

an iter: gives at each point on the 8 scale.

9.3 However, there is a catch. For mathematical and statistical
reasons which we will not go into, P'(8) is not a completely
aprropriate measure of information, but a related function is.
The function is:

= 2
Ieu) P ___ (7" (I-c) -
Pe)Q(e) [c b I.7a(9-b§|['+e-,,7a(9-b)]

2 is P' squared, and Q(8) = 1 - P(8). Note that the
exponent of the left e in the denominator is positive, and the
exponent of the right e is negative.

where P
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Figure 9.4a. The Item Information Functions of four
real items.
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That function is called the Item Information Function (IIF), and
is written I(8,u). The above formula for I(8,u) may look even more
ominous than the formula for P(8), but in fact it is only slightly
more complicated. It is still feasible to calculate points of
I1(8,u) with a typical scientific hand calculator.

9.4 Figure 9.4a shows the 1(8,u) for the four items whose IRF's are
shown in Figure 6.17. (Note that the vertical scale for item #17 is
different from the others.) In comparing the IRFs with the IIFs,
you will note three important relationships.

(1) The IIF is highest close to where the slope of the IRF is
steepest.

(2) The total area under the IIF increases as the a-value
increases.

(3) The total area under the IIF decreases as the c-value
increases.

The fact that total information (i.e. total area under the IIF)
increases as the a-value increases, demonstrates the importance of
high a-values for items. However, there is another effect of high
a-values. As the a-value increases, the width of the 8 scale over
which the information is distributed decreases. The effect is called
the bandwidth paradox*. Thus, sometimes a compromise must be made
between the total information provided by the item and the distri-
bution of information over 6.

*This bandwidth paradox is different from the bandwidth paradox
described by Cronbach (1960, p.602).
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The total information (Ag) of item g is given by

ag - lT(c loge(ie) l.?a+”%?—°=l7°“’ﬂ_f.lc C)
£F-

where a and c are the item parameters and log ¢ is the natural log-
arithm of c¢. From inspection of the formula for Ag, you can see that
as the a-value increases, so does Ag_ Also apparent is the fact that,
as c approaches zero, Ag approaches 1.7a. Therefore, the maximum
total information an item can provide is 1.7a. Not so obvious from
the formula for Ag is the relation that, as ¢ approaches 1.00, Ag
approaches zero. This occurs because Tog c is negative except when c
= 1, and because when ¢ = 1, ¢ log ¢/(1-c) = -1. This relation
explains the effect of the c-value: the c-value destroys information.
Figure 9.4b shows how total information decreases as ¢ increases while
holding the a-value constant.

Since the b-value is not included in formula for Ag, the b-value
does not affect the total information.

9.5 The point on @ where the IIF is highest is not at the b-value,
as one might expect (except when c=0). The point on 8 where informa-
tion is greatest is given by

3 !
Qmoxl(e J b+ T76 [ l0g(S5+.54/1 +8c]

where "l1og" means the natural logarithm.
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The point on 6 where information is raxirized is always to the
richt of the b-value, (except when ¢=0, it is at the t-value), but
never farther to the richt than .41/a.

9.6 The IIF is symmetrical when c=0 and skewed to the right when
c#ZC. The larcer is c, the greater the right-skew. The right-skew
occurs because the c-value destroys rore information at lTow levels
of @ than at high Tevels. This result makes sense because exarinees

at Tow Os will guess more than exariinees at hich 6s. Guessing (i.e.
the opportunity to get the item correct by quessing) destroys infor-
mation. It is for this reason that five-choice iters are preferred to

four-choice itens.
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Figure 10.2 a, b, and c, The Test Information
Curve of (10.2a) a test composed of items # 17
and # 21, (10.2b) a test composed of items #17,
# 21, and # 47, and (10.2c) a test composed of
items # 17, # 21, # 47, and # 50 from the USCG
Warrant Officer Test,
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CHAPTER 10
The Test Information Curve and Relative Efficiency Curve.

10.1 The Test Information Curve (TIC) is nothing more than the sum of
the IIFs. IIFs are summed by "stacking them on top of each other."
“Stacking" IIFs merely means that the heights (i.e. the amount of
information) of the IIFs at a particular value of @ are added together
to get the height of the TIC at that value of 8. Plotting the sum of
item information at each value of @ gives the TIC. The height of the
TIC at © is written as I(9).

I(6)=3I(8u)

10.2 Figure 10.2a shows the sum of the IIFs for items #17 and 21 as
shown in Figure 9.4a. Figure 10.2b shows the IIF of item #47 added to
Figure 10.2a. Figure 10.2c shows the IIF of item #50 added to the
other 3 items. A test composed of these four items would have the
wierd TIC in Figure 10.2c.

10.3 The TIC shows the relative amounts of information provided by
the test at each point on 8. Where you want information depends on
what you will use the test for. If you want to select a few examinees
from a large number, then you want a Tot of information at high levels
of 8, so that you can tell just which examinees are the best. For
example, see Figure 10.3a. If you want to select all examinees except
a few, then you want a lot of information at low 8s so you can tell

which examinees are the worst (e.g. see Figure 10.3b).
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Figure 10,3a, Test Information Curve of a hypo-
thetical test, which would be efficient for a high
cut score (O = 2,0).
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Figure 10,3b, Test Information Curve of a hypo-
thetical test, which would be efficient for a low
cut score (8 = -2,3),
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Figures 10.3c The Test Information Curve of a hypo-
thetical test, which would be efficient at both high

and low cut-scores.
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Figure 10.4. The Relative Efficiency Curve compar-
ing Test Information Curve in Figure 10.3c to that in

Figure 10.3b.
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Sometimes a test is designed for more than one purpose, such as
to be used with two cut scores for entrance into two different

schaols. In this case a two-humped TIC will give good information at
the two cut scores. (e.g. see Figure 10.3c).

A TIC of any desired shape may be constructed, provided the
items with the necessary IIFs are available to construct the TIC.

10.4 Usually we already have a test and want to revise it to make it
better serve our purpose. A comparision of the new and old versions
should be made using the Relative EfficiencyCurve (REC). The REC is
nothing more than the ratio of the TICs. The ratio of the two curves
is found by dividing the I(8) of one test by the I(8) of the other
test at each point on 6. Figure 10.4 is the REC, comparing the TIC
in Figure 10.3c to the TIC in Figure 10.3b.

Where the REC is above 1.0, the test in Figure 10.3c(the test
for which the I(8) is the numerator of the REC ratio) is better than
the test for Figure 10.3b. Where the REC is below 1.0, the test for
Figure 10.3b is better. And where the REC = 1.0, the two tests are
the same.

By starting with an old test, making substitutions of items, and
calculating the REC, you can experiment with and improve the old test
by trial and error. It does not take long to develop some skill in
replacing items to improve the TIC as desired.

10.5 Every test has some error in it. The Standard Error of Estimate
(S.E.E.) is the expected standard deviation of errors of estimated
ability. That is, if we were to give a test to a group of examinees
with identical 8s, and estimate their 8s with the test, the standard
deviation of those estimates would be the S.E.E.
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10.6 If the estimate of @ is a maximum likelihood estimate (see
Chapter 12), the S.E.E. at a particular @ is easy to calculate from
the TIC. The S.E.E. is equal to the square root of the reciprocal

of the height of the TIC (I(9)).
/

YL ey

Since I(8) varies along the © scale, so will the S.E.E. The
larcer 1(8) is, the smaller the S.E.E. A small S.E.E. at a cut point
is hichly desirable.

10.7 The averace S.E.E. (S.E.E.) over examinees is related to the

reliability of Classical Test Theory (ryy), when the scores are stand-
ardized to a standard deviation = 1.0.

et 0
fyx =1~ SEE

This relation implies that a test with hich reliability ray Le a
poor test for your purposes because it has low inforration at the
critical values of @. Similarly, a test with low reliability ray be an
excellent test for some purposes, if it has high inforration where it
is needed. Thus, reliability is hichly misleadinc as to the value of a
test.

The relation also rakes clear the dependence of reliability on the
distribution of ability. If many examinees are on the 8 scale where
there is hich information, then the reliability will be hicher than if
they are distributed on @ at points where information is Tow.
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CHAPTER 11
The Score Information Curve

11.1 The test information curve (I(8)) gives the maximum amount of
information about @ that can be extracted from the test. However, to
get the maximum information, items must be optimally weighed. The
optimal weight (W(Q)) of an item is given by

/. /.7a (6-b)
Pi |.70e
wie) = =

T PQi .7a(6-b)
cC+ e

There is a curious characteristic of W(8). It varies with 8.
That means that item A should receive different weights for examinees
with different 8s. But to get W(8), you must know O, which is what
you are trying to get by giving the test.

11.2 There are two ways to approach this dilemma.

(1) The most satisfactory way is to use an iterative computer
program, such as LOGIST or OGIVIA (see Chap. 15). These computer
programs, in effect, make use of the optimal item weights and
hence yield maximum information about 8.

(2) A rough approximation would be to take raw scores on the
test, divide the distribution of raw scores into, say, top.
middle and bottom groups and then rescore using different
item weights for each group. This procedure would not yield
maximum information, but would provide more information than

not using variable item weights at all.




11.3 If neither of the options in Section 11.Z is possible, then you
rmay have to resort to the use of nurber-richt score. In this case
the armount of information provided by this scoring procedure becomes
of interest. The amount of information provided by a nurter-richt
score is called the number-right Score Information Curve (SIC). The

formula for the SIC (also written as I(8,X)) is

I(g x)=_(_§_P")_2_
¢ =P Q

11.4 The SIC usually has the same ceneral shape as the TIC, but is
lower than the TIC at all values of 8. At hich @ the TIC and SIC will
be nearly the same heicht (i.e. SIC/TIC==1.0). As 8 becomes smaller
and smaller, SIC/TIC becomes smaller. This result means that, at hich
@s 1ittle information is lost by usinc a number-richt score, but at Tow
@s relatively much information is lost. Such is the penalty for use of

the inefficient number-right scorve.

11.5 The SICs of two tests may be used just as the TICs are used. A

rough approximation of the standard error of estimate may be found for

each 8 using the number-right scoring procedure, and the ratio of the SICs
of two number-right scored tests may be interpreted in the same manner as
the Relative Efficiency Curve for TICs. (Strictly speaking, for this inter-
pretation to be legitimate, the test score must be shown to be an unbiased

estimate of 8.)

11.6 The SIC is plotted by a computer program available from the Educa-
tional Testing Service (see Chapter 15), and may be derived from a

program by John Gugel (see Section 15.4).
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CHAPTER 12

Maximum Likelihood Estimation of 8

12.1 There are two main ways in IRT to estimate an examinee's 8.
They are called the Maximum Likelihood Estimation method and the

Bayesian Modal Estimation method. Both methods use the actual re-

sponse pattern of the examinee rather than the raw score. The differ-

ence between the two methods is merely an additional assumption made by the
Bayesian method.

12.2 A response is indicated by the lower case letter u. If the examinee
gets item i correct, then u;=1, and if he gets it wrong, then u;=0. A
response pattern is also called a response vector, and is represented by

the uppercase letter U. A response pattern is a list of zeroes and ones,
indicating which questions the examinee got correct or wrong in the order
the items appear in the test. For example; in a four-item test, an exam-
inee who got the first two items correct and the last two wrong would have
a response pattern U = 1100. If he got the first and third items correct
and the other two items wrong, his response pattern would be U = 1010. If
he got the first three wrong and the last item correct, he would have a
response pattern U = 0001.

12.3 We recall that P,(@) is the probability that an examinee with
ability @ will get item i correct. Q;(@) is the probability that an
examinee with ability @ will get item i wrong. Q;(8)=1-P,(8). We will

abbreviate Pi(g) and Qi(g) by P; and Q;.
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12.4 Probability theory tells us that the probability of independent
events occurrinc tocether is equal to the product of their separate
probatilities. We know that the probability of cettina one item
correct or viron¢ is independent of the probability of cetting other
iters correct or wrong for any given value of 8. We know this because
of the assumption of local independence.*

12.5 Therefore, the probability of an examinee cetting item 1 correct
and item 2 wrong is P1Q,. The probability of getting both iters wrong
is Q1Qp. Getting item 1 correct and item 2 wrong is the response
pattern U=10. Therefore, P(U=10)=P102, P(U=OO)=Qle, P(L=01)=QP,,
and P(U=11)=P1p2.

Similarly, for three items for a civen 8, if:

By= Q = .7
P, = .6 0, = .4
Bk Qg = .2

*The assurption of local independence will be discussed in Sec. 14.3.




j=

000

001

010

100

011

101

110

111

Likelihood

1]

"

Table 12.5

1]

3 |-u
77; PI UQ/'
.056

.224
.084
.024
.336
.096
.036

.144

The likelihood of each possible response pattern for a
given @ where the P,(6) is as given in Section 12.5.

12.6 These probabilities are called likelihoods (and written L(U}8)).
Each likelihood is the conditional probability of a response
pattern (U) given 0, i.e. L(U|9).
lihood is

The general formula for a Tlike-

u -
L (u[ey=n" 'P.uQ. ;
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u 1-u
The upper case Greek letter q:‘ineans the product of all the ,F,? O,’ 's
where i goes from 1 to n (n = the # of items in the test), just as,
. in statistical notation E..:'means the sum of a series of numbers
; where i goes from 1 to n.

1

When uj e
- / -/ =Fel=r
PUQ; =P '@} Rl =P,

0

When u;

PuQItaPiQ! s PIQ) /-0 Gi

/

When u; =1, the Q; drops out, and when u; = 0, the P, drops out.

Thus, P4Q"“is just a convenient mathematical way of getting rid of

the P or Q depending on the value of U;. For a three-item test the
likelihood of U = 011,

L(U=O|l|9)=¢3 puqi' Y -

i= }

ud-u _u.d-u _u l-u= 0_1-0 Pl 1-] PlQH=
=FQ PrQ, - RQy =P QR0 Ay
01 10 4.0 o
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n ' g ' g
l ‘ i
" § Q].\ Pa % Py Qo pueotole) e
r
-3.0,.29 .71\ .36 .64'.21 .79 .71 x .36 x .79 = .202 .169
2.5 .32 .68!.39 .61|.22 .78 .68 x .39 x .78 = .207 .173

-2.0 .37 .63 .45 .55 .25 .75 .63 x .45 x .75 = .213 .178

1.5 .50 .50!.60 .40/ .30 .70 .50 x .60 x .70 = .210 .176

1.0 .62 .38 .77 .23 .38 .62 .38 x .77 x .62 = .181 .15
-0.5 .77 .23 .90 .10 50 .50 .23 x .90 x .50 = .104 .087
0.0 .88 .12 .97 .031.59 .41 .12 x .97 x .41 = .048  .040
0.5 |

.83 .07 .99 .01 |.70 .30 O7 x .99 x .30 = 021 .018
1.64.97 .031.99 .01 .79 .21 .03 x .99 x .21 = .006 .00l

1.5 (.98 .02.,.99 .01 .87 .13 2% 99 x (13 = 003 .000

2.0 .99 .01 (.99 .01 ,.91 .09 0 % .99 x .09 = 000 .O00
{

2.5 .99 .01 ‘.99 .01, .95 .05 O X .99 x 05 = 000 00D

xL(Ul8) = 1.195 1.000 ;

Table 12.7

The method of calculating the Maximum Likelihood
Estimate of 8 from a test of 3 items for an examinee
with the response pattern, U = 010.

86




12.7 \hen we give a test, we get each examinee's response pattern,
and wve want his 0. L(UlQ) is not what we want, since we already have

U. What would help us estimate an examinee's @ is just the reverse,
i.e. L(0]u).

Fortunately, Bayes' Theorerm allows us to get L(8JU) from L(uje).

_Lwle)

L(e|u>
2L(U|6)

To use Bayes' Theorem we have to get the L(UJ8) at several points on
the © scale. How many points we use is determined by how accurately
we want to estimate @.

To show how this is done, L(U=010J8) is calculated in Table 12.7
for three hypothetical items at 12 values of 8.

The total of the L(U]8)s isZL(UIB) . The richt column shows
L(e]v)= L(U)Q)/ZL(UIG). Any examinee, no matter what his @, could
conceivably have a U = 010 in this three-item test. There is a finite
probability of U = 010 at every 6.

However, the 1ikelihood of an examinee having U = 010 varies
considerably with 8. An examinee with 820.0 is unlikely to have
L = 010. In fact, only 6% of examinees with 8 20.0 will have U = 010.

Note: The proponents of Maximum Likelihood Estimation do not agree
with the use of Bayes' Theorem in this explanation.
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Figure 12.7. The graph of the likelihoods in Table
12.7, called the likelihood function.

This curve is called the likelihood function.

If you had to guess the @ of an examinee with U = 010, what @
would you guess from the information in Table 12.7? You should guess
his 8 = -2.0 because the 1ikelihood of U = 010 is greater at 8 = -2.0
than at any other 8. Therefore, you vould be right more often than if
you cuessed any other 8. By choosing the @ with the createst likeli-
hood, you have chosen the © with the maximum likelihood. And that is
the Maximum Likelihood method of estimating 8! That's all there is to
it.
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Now Took at the L(UJ8) colurn. At which value of @ is L(uje)
greatest? It is at @ = -2.0, the same as the @ with the maximum L(8J
U). That will always be the case because the L(@JU)'s are just the
L(Ul8)'s divided by the constant $L(UJB). So the © with the maxinum
L(8JU) will always be the sare as the 8 with the maxirum L(U[8).

_Therefore, it is not necessary to divide by ZZL(U’Q) in order to find

the 8 with the maxirum likelihood.

Since we divided by 3 L(U}8) in order to apply Bayes' Theorem,
we find that Bayes' Theorer: is not necessary for raximur. likelihood
estimation.
Another short cut is to take the logarithm of the Pi and Qi's
and add them, instead of multiplying the Pi's and Qi's. The sum of the

logarithms will also always be maximum at the same value of 8. A graph
of the log likelihoods is called the loc likelihood function. The log
likelihood function will always be highest at the same 8 at which the
likelihood function is highest.

It should be noted that, in this example, you would be richt
in estimating @ = -2.0 only 17.8% of the time and wrong 82.2% of the
time. But this is true only because the test had only three items.
With a loncer test there would be one 8 at which the likelihood is
much greater than any other.

12.8 Table 12.8 shows the maximum likelihood method of estimating
0 for a test made of the four items whose IRF's are shown in Ficure
6.17.

(1) across the top are 17 values of ©

(2) under the 8's are the P(8)'s for each of the four items.

(3) the item numbers and parameters are in the top left corner.
(4) down the left side are the 16 possible response patterns for
four items and the raw (# right) score represented by the response
patterns.
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(5) in the body of the table are the L(U[8)'s for each
possible U for the 17 values of 8. Each L(UJ8) is
multiplied by 1000 to eliminate decimal values.

(6) underlined in each row is the maximum L(UlG)

(7) down the right side are the values of @ where the
underlined maximum likelihoods occur. These B8's are the
maximum Tikehood estimates (MLE) of @ for each of the 16
possible U.

Note that the MLE for U = 0000 is - 0@, and the MLE for U = 1111
is + @0. That is a characteristic of the MLE. The MLE will not give a
finite estimate of @ unless the examinee has missed at least one item
and answered at least one item correctly. This limitation is not
serious because raw scores of 0% or 100% are usually rare.

The MLE of 9> 2.7 is due to the Timited range of 6 used in this
example. A larger range of 6 would yield a more precise MLE of 8.

The many cells with L(U|8) = 0 in the body of Table 12.8 are due
to the very unusual item #17.

12.9 Now compare in Table 12.8 the raw scores on the left with the
MLE's on the right. You can see that a raw score of 1 represents

@s from -2.3 to +2.0, an extreme range! A raw score of 2 represents
8s from -1.3 to greater than +2.7. A raw score of 3 represents @8's
from +1.3 to greater than +2.7.

The extreme range of 8, depending on the U's represented by a
single raw score, demonstrates well the inadequacy of using raw
score as an estimate of ability. The inadequacy of raw score as an
estimate of ability is due to the fact that raw score cannot dis-
tinguish chance success from knowledge success on an item. In

contrast, the MLE takes guessing into account by using the additional
information in the response pattern.
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CHAPTER 13

Bayesian Modal Estimation of 8

13.1 The Bayesian Modal method of estimating @ takes up where the MLE
stops. The proponents of the Bayesian Modal method (called Bayesians)
reason that if the distribution of 8 is known or assumed, then that
knowledce or assumption provides additional information which can be
used to more accurately estimate 8.

13.2 Bayesians assume that 6 is distributed normally. The assumption
of normality means that the probability of any randomly-chosen examince
having a 8 at the extremes is less than his probability of having a

0 located near the mean. The assumption of normality is made on an a
priori basis (i.e. before empirical evidence). Thus, it is called tie
normal "prior" distribution.

13.3 Suppose the likelihood of 8;|U is very close to the likelihood of

92’U, but that there are many more examinee's at @, than at 8;. In
this case we would be right more often by estimating 8 at 92 than at

91. In doing so we would, in effect, be weighting our Tlikelihood by
the number of examinees at the two © values. If we take this icea to

its logical extreme, we should weight all likelihoods by the proportion
of examinees at each value of © in order to reduce our errors.

13.4 By assuming a normal distribution of 8 we can weight the Tike-

Tihood by the relative proportions of area under the normal curve.
To do this we merely multiply the area within the interval of the normal

curve at 8, designated J/N(O,l), times L(UJ8). Table 13.4*shows how this
is done using the likelihoods from Table 12.8.

*There are several computational errors in Table 13.4. However,

These errors do not affect the explanation of the concepts involved.
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using the likelihoods from Table 12.8&.

(1) the top row are points of © which are midpoints of
intervals of 6.

(2) the 2nd and 3rd rows are the limits of the intervals.
(3) the 4th row is the proportion of area under the normal |
curve and within the interval. *

(4) in the body of the table each column is the area in the 4th
row multiplied by the corresponding likelihood from Table 12.8
(times 104000 to remove decimal values), i.e. L(UJ8) x_/N(0,1)),
(5) the largest value in each row is underlined.

(6) the © for the underlined likelihoods are in the right
column. These are the Bayesian Modal Estimates (BME) of ©.

The BME is called rodal because, when we choose the largest value
in each row, we are choosing the mode of the distribution of L(U}@) x

SM,1) .

13.5 Bayesian.Modal Estimates are more conservative than MLEs (con-
servative means closer to zero, the mean of the normal prior distri-
bution). MNote that with U=0000 and U=1111, the BMEs of @ are
finite. The finiteness of @ estimates of BME when either all or

no items are answered correctly is a minor advantage of BME.
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13.6 There is an active controversy between the Bayesians and the
proponents of the MLE. The Bayesians argue that MLE is the same as

a BME, if © is assumed to be distributed rectangularly. (A rectan-
gular distribution of @ means that there are equal numbers of exam-
inees at all @ values, even at +00 and -06). And so, say the Bayesians,
since a normal distribution of @ is more reasonable to assume than a
rectangular distribution, the BME is a more accurate estimate of 8.

The proponents of MLE argue that the coincidence of the MLE
(which assumes no distribution of @) being the same as a BME with
rectangular distribution is irrelevant. The important thing is that
MLE makes no assumption about the distribution of @, whereas BME makes
the additional assumption, which will be sometimes false.*

13.7 1 shall not take sides in this matter, because for me the point
is moot. The only computer program available to me at present is
OGIVIA-3 (See Chap. 15), which uses the BME. Therefore, I shall
continue to use BME until I have a program which uses MLE. At that
time I shall have to make a decision.

13.8 Another type of Bayesian estimation is called Owen's Bayesian,
after its inventor, R. L. Owen (1975). The Owen's Bayesian method
is used primarily in tailored testing (See Chap. 17).

*] apologize to both sides of this complex issue for this meager
representation of their positions.
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CHAPTER 14
Assumptions

14.1 There are 4 basic assumptions of IRT. The first of these is a
minor assumption. It is an assumption of any test theory and without
which there would be no justification for testing.

Assumption #1: The Know-Correct Assumption: if the examinee
knows the correct answer to the item, he will answer it correctly.*
We have probably all violated this assumption while taking tests by
marking a different choice than we intended to mark. Occasionally,
an examinee will inadvertently skip an item, and then mark all the
rest of his answers in the wrong places. This is merely a clerical

error, but there is no provision for it in any test theory. Another
way to state the first assumption is: if he got the item wrong,
then he did not know the answer.

14.2 Assumption #2: The Normal Ogive Assumption: The IRF takes the

form of the normal ogive. This is the problem, mentioned in Section
3.3, which deterred Lord's work for 10 years. The difficulty lay with
3 parts of the IRF.

a. The lower asymptote
b. The upper asymptote
c. The middle or rapidly rising part of the IRF

*The reader should take careful note that the inverse of this assump-
tion is NOT made. That is, it is NOT ASSUMED that if the examinee
gets the item correctyhe knows the answer. I emphasize this distinc-
tion because many persons upon first reading of assumption #1 misread
it as its inverse.

97




r———-”r 7

(1) As previously noted, the c-value of an IRF is often not
1/A. This is the case with observed parts of the lower asymptote.
But what about the unobserved parts? If an item from the SAT with
¢ = .09 were given to extremely Tow @ persons such as kindergarten
children or mentally retarded persons, would the lower tail of the
IRF rise to 1/A?

(2) 1t has been charged by Hoffman (1962), that tests may
penalize extremely high ability persons, because they know too much.
That is, they consider factors far beyond the intended scope of the
jtem, and therefore get it wrong. If that were the case, then the IRF
would curve down away from the upper asymptote at high 8's. This has
been called the Banesh Hoffmann Effect. |

(3) It was not known that the IRF was monotonic, and that its
general shape was that of a normal ogive.

In 1965 Lord published a massive study with a sample size greater
than 100,000. Specifically, he found:

a. the lower tail of the IRF did not rise for almost all items.
The very few items that did rise, did so to a very small

extent.

b. no evidence of the Banesh Hoffman Effect.

c. good indications that the IRF is strictly monotonic.
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14.3 Assumption #3: Local Independence. Local independence means
that the probability of an examinee getting an item correct is un-
affected by the answers given to other items in the test. Local
independence does NOT mean that the items correlate zero with each
other.

The most common situation where local independence does not hold
is in a speeded test. In a speeded test an examinee may get the last
items wrong, simply because he did not reach them. A distinction is
made between not-reacheq items and omitted items. Not-reached items
are those unanswered items which have no answered items after them
in the sequence of items in the test. Omitted items (omits) are un-
answered items which have at least one item answered after them in
the sequence of items in the test. This distinction is important, when
deciding what to do with not-reached items and omits in scoring answer
sheets. Not-reached items are not attempted (and hence there is no
possibility of being correctly answered) simply because of the pre-
sence of the early items, which were attempted during the time limit.

Furthermore, earlier items which were attempted may have been

nissed, because the examinees felt rushed and could not give their
best efforts to the items.

Similarly, in long tests, fatigue effects may impact the local
independence of itenms.

Certain reading comprehension tests might violate local inde-
pendence when several items are all based upon some common reading
passage. However, it is not entirely clear whether such items violate
local independence.
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Chain items violate local independence. An example of chain
items follows:

RIE 0 o e, g T

(1) Who discovered America?
(2) Where was he born?

Clearly, if the first item were not in the test, the second item would
be meaningless. Fortunately, chain items are rare.

Local independence also means that items are uncorrelated for
individuals with the same 8. This interpretation suggests a statis-
tical test for local independence. (Lord, in preparation, p. 26).

rah [6 = 0. gfh

where rgh‘e = the tetrachoric correlation between items g and h
for examinees with exactly the same ability.

To use this statistical test requires that first it is necessary to

get a large number of examinees with identical @'s. Then, using their

responses, calculate the interitem tetrachoric correlation. That

correlation should not be significantly different from zero. This

E 1 procedure has at least 2 practical difficulties.

t First, it should be done for all (or at least several) values of
0. It is nearly impossible to get large sample sizes at many ©

values.

require calculation of n(n-1)/2 tetrachoric correlations (n = # of

items in the test) for each value of 8. A 50-item test would require

1225 correlations at each @ value. If 10 @ values were chosen, that . Z
would mean 12,250 correlations. :

Second, it must be done for all pairs of items, which would %
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A similar but simpler procedure would be to partial out of the
interitem correlations the affect of 8. This may be done by using
the item-test biserial correlation. Then

Ygh- Ygo Yhe
Ygh-6 =
A 1-¥838 All-Yehe

where r p = the tetrachoric correlation among all examinees between
items g and h (g#h), and rgg = the biserial correlation between item
g and 6. . rgh,O should not be significantly different from

Zero.

Before using this test of local independence, care should be
taken that the implicit assumptions of the statistics involved are

satisfactorily met. In any case it should only be considered as a
rough estimate.

This latter procedure would require n(n-1)/2 tetrachoric co-
rrelations plus n biserial correlations (which are usually available

anyway).

Because of the practical rarity of conditions violating local
independence, this assumption is usually not tested.

14.4 Assumption #4: Unidimensionality. The assumption of unidimen-
sionality is the most complex and most restrictive assumption of IRT.
In general, unidimensionality means that the items measure one and
only one area of knowledge or ability. However, unidimensionality
does NOT mean that the items correlate positively with each other. 1In
fact, it is conceivable for all items to correlate negatively with
each other and still be unidimensional.

As a rule of thumb, tests that look unidimensional probably are :
unidimensional. Thus, typical ability tests, such as verbal, numerical, {

spatial perception, mechanical comprehension and tool knowledge are

probably unidimensional.
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Another rule of thumb is, items that test bits of knowledge
that were learned together are probably unidimensional. Thus, a final
examination for a college course might be considered unidimensional.
An excellent example of this rule is given by Bejar, Weiss, and
Kingsbury (1977). That study involved a test in college introductory
biology. Part of the course was covered by a test divided into 3
content areas, called "Chemistry," "The Cell," and "Energy." The

single test for all 3 content areas was found to be essentially
unidimensional. s !

Unidimensionality in a test covering 3 such diverse sounding
content areas is surprising. The fact of its unidimensionality may
have resulted from the items testing bits of knowledge which were 1J
learned together in the college course. H

It may well have been, however, that the subject-matters of the ‘
3 content areas were not as diverse as they sound. It is likely that
"Chemistry" was the chemistry necessary to understand the cell. And y
"The Cell" content was necessary to understand the "Energy" use and ;‘
transfer within the cell. This possibility suggests another rule of '
thumb. Items that test bits of knowledge which are logically and
sequentially related may be expected to be unidimensional.

Rules of thumb are, by definition, sometimes erroneous. I do not
suggest that they replace efforts to empirically verify unidimension-
ality. However, in view of the difficulty of empirical verification,
some readers may find them helpful.
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14.5 There is no completely satisfactory test for unidimensionality

among multiple-choice items. The reason for this situation is that

most tests for unidimensionality involve factor analysis of interitem
tetrachoric correlations. Unfortunately, the tetrachoric correlation

assumes 0 is normally distributed, and is not entirely appropriate when

c #0; i.e., when the item can be correctly answered by guessing.
Cristofferson (1975) has made the best attempt to develop a test forunidimene
sionality(Lord, in preparation, Section 2.4, p.27). However, the

mathematics of his method are complex and will not be discussed.

I have found 8 methods of testing for unidimensionality in the
literature. Six of the eight use factor analysis. To avoid repe-
tition, the initial factor analysis steps which are cormon to all
six will be described.

(1) convert the actual responses of examinees into zeroes and
ones; zero, if the response is wrong, and one, if the response is
correct. Factor analysis requires a sample 10 times the # of items
(N = 10n);

(2) calculate a matrix of interitem tetrachoric correlations
(not the phi coefficient), using the zero-one responses;

(3) replace each value in the diagonal with the correlation
in its row that has the largest absolute value (most factor analysis
computer programs have an option to do this automatically). If there
are too many items for the capacity of the computer, a random sample
of items may be used;

(4) do a principal cormponent (or principal axis) factor analysis
for the first 9 factors (9 is an arbitrary, typical number).
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14.6 I have given short titles for easy reference to each of the tests

for unidimensionality:

(1) The Eigenvalue Test. Plot the eigenvalues of the nine
factors against the factor rank, as shown in Figures 14.6(1)a and
14.6(1)b. The items may be considered unidimensional if the eigenvalue
of the first factor is larce compared to the second factor, and the
eigenvalues of the remaining factors are all about the same. The graph
should look something Tike Figure 14.6(1)a if the items are unidi-
mensional, and like Figure 14.6(1)b if the items are not unidimen-
sional. (Lord and Novick, 1968, p.283).

(2) The Random Baseline Test. This test is a variation of the
Eigenvalue Test. It is necessary to do the Eigenvalue Test first.
To get the random baseline, create with a random generator a matrix
of zeroes and ones of the same order as the matrix in step (1) of
Section 14.5. Then perform steps (2), (3), and (4) just as with the
Eigenvalue Test. Plot the eigenvalues from the random data on the same
graph as the Eigenvalue Test. Unidimensionality is indicated if only

the first factor eigenvalues are distinguishable for the 2 sets of data
(McBride and Weiss, 1974,p.30). See Ficures 14.6(2)a and 14.6(2)b.

(3) The Biserial Test. Compute the correlation Letween the
item-test biserial correlation and the item first factor loading.
A high (.80 or higher) correlation supports the assumption of uni-
dimensionality. (McBride and Weiss, 1974,p.31,33 and 37).

(4) The Factor Loading Test. Unidimensionality is indicated
if the first factor loadings for all items are significant and have
the same sign (+ or -). (McBride and Weiss, 1974,p.33).
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Figures 14.6(1) a and b, A hypothetical illustra-
tion of the Eigenvalue Test for unidimensionality.
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Figures 14,6(2) a and b, A hypothetical illustration
of the Random Baseline Test for unidimensionality.
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(5) The Congruence Test. If the examinees can be separated

into two meanincful subgroups (Black/White, male/female), then a factor
analysis (steps (1) to (4) in Section 14.5) can be performed on each
agroup. The Coefficient of Congruence (CAB) of the item first factor
loadings between the 2 groups w’11 approach zero, giving evidence of
unidimensionality with respect to the variable on which the groups were
defined, i.e. race, sex. (Pire, 1977,p.4). (See Rormell, 1970,p.461
for Coefficient of Congruence).

CA’B;\/.Z (L L)

Lia = loading of item i for group A on
the 1st factor
Lib = loading of item i for aroup B on

the 1st factor
n = number of items in the test

CA B " Coefficient of Congruence between
" groups A & B

(6) The Communality Test. It has been sucgested that unidimen-
sionality may be tested by

Yi

=
hi hi

G = i Dj

where rij = jnteritem tetrachoric correlation

hi = the item communality

n = the number of correlations

According to Green, et al (1977, p.836) this function which I have
designated G, approaches 1.00 as dimensionality approaches unity.
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I have applied G to data published in McBride and Weiss (1974).
This data gives item communalities and interitem tetrachoric correla-
tions for six real, word knowledge tests, and six sets of random data.
The six real tests were found by McBride & Weiss to be essentially uni-
dimensional by three different measures of unidimensionality, i.e.
the Random Baseline Test (see 14.6(2) above), the Biserial Test (see
14.6(3) above), and the Factor Loading Test (see 14.6(4) above). G for
the real tests ranged from .419 to .484, and had a Spearman rank
correlation with the first factor percent of common variance of rho =
1.00. On the random data, G ranged from .284 to .348, and had a Spear-
man rank correlation with the first factor percent of common variance
of rho = .60. It appears that when c¢ # 0, G approaches neither one
(for unidimensionality) nor zero (for nonunidimensionality). Further-
more, G is no better as an indicator of unidimensionality than is
the first factor percent of common variance.

(7) The Part/Whole Test. If the items may be separated into
distinctive types or content, the a and b values may be estimated
separately for each type and for the entire test. If the parameter
estimates under the two conditions (part vs. whole) correlate highly,
unidimensionality is supported (Bejar, 1977(b), p.13).

(8) The Vector Frequency Test. Assuming @ is normally distri-
buted, and given the item parameters, it is possible to calculate
the expected frequency of all possible response patterns. A comparison
with the observed frequency of all possibie response patterns will
yield a non-significant chi-square, if unidimensionality is present
(Bock and Lieberman, 1970).

14.7 Unidimensionality is a sufficient condition for local independ-
ence. That is, if you have unidimensionality, then you also always have
local independence. The reverse is not true. Local independence is
necessary for, but does not guarantee, unidimensionality.
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CHAPTER 15

Computer Programs

15.1 There are several computer programs available for estimating
examinees' Os and item parameters. Only 2 of those are in general
use. Both are written in FORTRAN.

15.2 LOGIST was written at the Educational Testino Service and is

the program used by Lord for his work (See Wood et al, 1976). The

LOGIST and related programs provide a complete set of options for calcu-
lating and printing:

a. examinee's 0,

b. item parameters,

c. item response curves,

d. test characteristic curve,

e. item information function,

f. score information curve, and

g. relative efficiency of 2 tests.

LOGIST allows either examinee's 8 or item parameters as fixed
input, and puts all other estimates on the same scale as the input
parameters. It is by far the more versatile program. Lord recommends
that, to get good estimates, at lTeast 1000 examinees and 30 items are
needed in the test.

However, LOGIST has one practical disadvantage. It requires from
30 minutes to two hours of computer CPU (Central Processing Unit) time.
Consequently, I was unable to convince my data processing people to
implement LOGIST and have not been able to use it.
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LOGIST uses a maximum likelihood estimation procedure. It
computes all parameters at the same time, using an iterative tech-
nique. The iterative technique computes the first estimates from the
raw data. Then, those estimates become input for the second iteration
of computation, using the same maximum 1ikelihood procedure to compute
the second estimate. The second estimate becomes input for the third,
and so on. The iterations continue until the estimates converge, and
do not change significantly from one iteration to the next. Sometimes
the estimates do not converge, but drift off to infinity or fluctuate
wildly back and forth. In these cases, LOGIST applies certain limit-
ing rules.

The a and b parameters from LOGIST correlate positively. This is
an unexpected and undesirable result. When c parameters do not
converge, LOGIST sets all non-converging c parameters equal to some
average value, usually between .10 and .25. This may occur with 50%
to 80% of the items in a single test, which suggests that the c
parameter is not well estimated by LOGIST.

15.3 O0GIVIA* was written for Dr. Vern Urry of the U.S. Civil Service
Commission (USCSC) by Jerry Edwards, University of Washington and
revised by John Gugel of the USCSC. It has also been called URRY

and ESTEM in the literature. There are several versions of it, the
current one being called OGIVIA-3. O0GIVIA-3 calculates and prints
both a classical item analysis and the item parameters. It has
options for the normal ogive and logistic models, but does not have
the scaling option of LOGIST. It does not print out examinees' 8's,
but could be made to do so without much trouble.

*Pronounced ogive-eye-aye
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OGIVIA uses a Bayesian modal estimation procedure. It estimates item
parameters, using raw scores as an estimate of 8, by fitting the data
to a logistic (or normal) ogive. Chi Square is the test for goodness
of fit. It then re-estimates 8 with the estimated item parameters
using an iterative technique until the 8 estimates
converge or 20 iterations are done, whichever comes first. The re-estimates
of @ are then used to re-estimate the item parameters by the same curve
fitting technique. Estimates of 8, typically, do not converge on a small
percent (about 1%) of examinees; and item parameters sometimes do not
converge on as many as 5% to 10% of the items.

OGIVIA needs at least 1000 examinees and 60 items in the test,
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