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G lossary of Spec ia l Terms an d Symbo l s

= # of alternatives in a multiple
choice question

a-value = discrimination index SD = standard deviation
AS! = Al ternative Similari ty Index SEE = Standard Error of Estimate
b-value = difficulty index sic = Score Information Curve
BME = Bayesian modal Estimation SME = Subject Matter Expert
c-value = pseudo-guessing index i = True score, Observed score -

CR1 = Cathode Ray Tube device Error
d-value = point biserial correlation iic = Test Information Curve , 1(9),
d.f. = distribution function , an ogive . 

~I(9,u)E = Error score USCSC = U.S. Civil Service Comission
e = base of natural logar ithm u = response vec tor , res ponse
exp() = e raised to the power of whatever pattern

is in the parenthesis after the u = response , u.~ 
= 1 if response

exp is correct & u1 
= 0 if response

f.f. = frequency function, bell shaped is wrong
curve w ( 9 )  = optimal weight of an i tem

1(9) = Test Information Curve X = Observed score
I(9,u) = Test Information Function — MICC • 

= 

IR F 
Curve , same 

9 = Theta, the ability scale
h F  = Item Information Function , I(9,u) J = Integral sign
IRF = Item Res po~se Function = Psi , logistic ogiveIRT = I tem Res ponse Theory

• KR-2O = Kuder-Richardson Formula 20 t = Phi , normal ogive
= Likelihood 

. = Sumation of a series of numbers
~O 1.7)= Logistic Frequency Function

L(9)U) = Likelihood of 9, given U = Product of a series of numbers
L (U19) = Likelihood of U, given 9
m = slope of the ogive at the b-value
MAPL = M i n imum Acceptable Performanc e

Level
MLE = Maximum Likelihood Estimation
N(O,1) = Normal f.f.
p-value = proportion of examinees selecting

an i tem alternative
= P1(9) = Probability of getting

i tem correct, given 9
Q~ 

= Q~(9) = Probability of getting
item wrong, given 9

rgg = I tem bi ser ial correla ti on
r9h 

= interitem tetrachoric correlation
r = reliability of classical test

• xx theor.y
REC Relati ve Efficiency Curve , ratio

of TIC’s
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A = # of alternatives in a multiple
choice question

a-value = discrimination index
ASI = Al ternative Similarity Index
b-value = difficulty index
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. BME = Bayesian modal Estimation

c-value = pseudo-guessing index
CRT = Cathode Ray Tube device
d-value = point biserial correlation
d.f. = distribution function , an ogive
E = Error score
e = base of na tural lo gar ithm
exp() = e raised to the power of whatever

is in the parenthesis after the
exp

f.f• = frequency function , bel l shaped
curve

I( 9) = Test In forma tion Curve
• . I ( 9,u ) = Item In forma tion Func tion

ICC = Item Charac ter i stic Curve , same
as IRF

IIF = Item In form ation Func tion , I(9,u)
IRF = Item Res ponse Func ti on

• IRT = Item Response Theory
KR-20 = Kuder-Richardson Formula 20
L = Likelihood
L(O,1.7)= Logistic Frequency Function
L(91U) = Likelihood of 9, given U
L(U ~9) = Likelihood of U, given 9
m = slope of the ogive at the b-value
MAPL = Minimum Acceptable Performance

Level
MIE = Maximum Likelihood Estimation
N(0,1) = Normal f.f.
p—va lue = proportion of examinees selecting

an item alternative
= P1(9) = Probability of getting

item correct, given 9
= Q1(9) = Probability of getting

- item wrong, given 9
r99 

= Item biserial correlation

• : rgh = interitem tetrachoric correlation

• 
~~ 

= reliability of classical test
theory

REC = Relative Efficiency Curve , ratio
• of TIC’s
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7 .
_ _- C - -  - 

.
.. -•—~~~~~

~

--.- -- -.
~~~ -- - -•- —~~~~~~~~~~~~~

,
—--.-•• .. - • --.--— •~~~



_ _ _

SD = standard deviation
SEE = Stan dard Error of Es tima te
SIC = Score In forma ti on Curve
SME = Subject Matter Expert
T = True score , Observed score -

Error
TIC = Test In forma tion Curve , 1 (9) ,

ZI(Q,u)
USCSC = U.S. Civil Service Coniui~sion
U = response vector, res ponse

pattern
u = response , u .~ 

= 1 if response
is correct & u 1 = 0 i f response
is wron g

W(9) = optimal weight of an i tem
X = Observed score

= Mean
9 = Theta , the ability scale
J = Integral sign

= Psi , logistic ogive
= Phi , normal ogive
= Sunination of a series of numbers
= Product of a series of numbers
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PREFACE

One year ago I had never heard of latent trait theory, an i tem
characteristic curve, or Fred Lord. On my first reading of Lord and
Novick (1968) Chap..ers 16 and 17, I understood absolutely nothing.
After several hours of study on my second reading, I fi nally comprehended
one simple equation. During the next several months I reread parts
of Lord and Novick as many as 20 times, I taught myself some differ-
ential calculus , integral calculus , mathematical statistics , probability
theory and linear algebra , I attended Fred Lord ’s course in Item
Response Theory at the Educational Testing Service, Princeton , NJ ,
and I read several publications on Item Response Theory.

I have now gotten to the point where I am able to use Item
Response Theory for my purposes, although there is still much that I
do not understand .

Upon reflection , I find that, as is true in many sciences , it is
not necessary to fully understand the theoretica l background and
mathematical development in order to apply the results of the model .

It is widely acknowledged in the field that one of the main
reasons that i tem response theory has been so slow to catch on among
testing practitioners is the mathematica l complexi ty of the literature .
Most of the literature is written with language and notation that is
standard for the researchers. However, that language and notation
is confusing to the thousands of testing practitioners , whose technical
training amounts to a couple of courses in statistics and tests and
measurement, if that much. On the other hand , many of the concepts
used in the literature are not difficult to understand , if explained
in less esoteric language and with a few examples .
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Therefore, it became my resol ve that no testing practitioner , such
as I , should have to go through what I went through in order to

gain a basic understanding of i tem response theory. The purpose of
this paper c to fulfill that resolve.

Since very little of this paper is original wi th me, by
ri ghts there should be a reference for nearly every sentence or

paragraph. Such complete references, however, will not be included
because they would be out of place for a primer, and usually not of

interest to the novi ce. My primary references are Lord & Novick (1966)
and Lord (in preparation). Some references will be included to di rect

the reader to more thorough and detailed explanations . Other refer-
ences will be included where authoritative support is deemed desirable.

~~p~~mer is necessarily incomplete. It is also inaccurate when

it contains oversimplifi cations which apply to the general case, but
do not apply to extreme, unus ua l, or uninteresting cases. This paper

will be guilty of such generaliti es and rules of thumb.

Other excel lent, less elementary introductory material is also
available. (See Baker, 1977; Hambleton & Cook , 1977; Sympson , 1977).

I am i ndebted to ENS Debra Cook , ENS Pamela Cranda ll , ENS Cha rles
Pastine , and LTJG Larry Young for their assistance in the analysis of

data.

r.y appreciation for the many suggestions and corrections made by
the several readers and reviewers is gratefully acknowledged. They

are: John A. Burt, Joseph Cowan, Myron A. Fischl , Steven Gorman, Karen

Jones , Frederick N. Lord , James R. McBr id e, W. A lan Nicewander ,

Malcolm J. Ree, and James B. Sympson.

I would also like to thank YN2 Ron Smith for his excellent art
work , and Jim Walls for his systems analysis and computer pro-

- • gramming .

THOMA S A. WAR M

January 22, 1978
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CHAPTER 1
INTRODUCTION

1.1 Item Response Theory (IRT ) is the most signifi cant development
in psychometrics in many years. It is , perhaps , to psychometrics
what Einstein ’s relativity theory is to physics. I do not doubt that
during the next decade it will sweep the field of psychometrics . It
has been said that IRT allows one to answer any question about an
item (test question), a test, or an exam i nee, that one is entitled to
ask. Although this statement is somewhat circular , it will give you
an i dea of the terri fic power of IRT and of the mathematical estima-
tion methods involved .

The most conirion application of IRT is with multiple -choi ce
questions in an ability test. That use will be the thrust of this
paper, although IRT also applies as well to free response (fill in)
items . I make no distinction between ability and knowledge testing.
IRT applies to tests for both . Thus , the word “ability ” will be used
for both types of tests. No application of IRT to personality or
interest testing will be discussed.

1.2 If we give several tests in the same subject matter area to a
group of exaniinees , we find that in general the same examinees score
hi gh on the tests and the same examinees score low. In other words ,
we find consistency in the performance of exami nees on the different
tests.

To explain this consistency we assume that there is something

• inside the exami nees that causes them to score consistently. We cal l
that something a mental trait.

- 
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In the vernacular the word “trait” inplies an innate , inherited
characteristic. We don ’t necessari ly mean that. We mean only that
characteristi c of the exami nee that causes consistent performance on
the tests, whatever , if anything, it is.

110 one has found a physical referent for a r~ental trait, and few
really expect to. It is sometimes tempting to think of a trait as
havinç a physical referent like a brain engram, but that is always

unnecessary. In this sense, a trait is an intervening vari able , as
opposed to a hypothetical construct. Since the mental trait has no
known physical referent, it is never observed di rectly. Therefore,
it is called a “latent” trait.

1.3 The scale of the latent trait is traditionally given the name of
the Greek letter theta (9). I will use the terms theta , ability level ,
amount  of trait, and amount of subject-matter-knowledge , interchangeably.

Theta is a continuum from minus infinity (—oo ) to plus infinity (+~~).
It has no natural zero point or unit. Therefore, the zero point and

unit are often taken as the mean and standard deviation , respectively,
of some reference sample of examinees. Thus, values of 0 usually vary
from -3 to +3, but may be observed outside that range . The Os of a
sample need not be distributed normally.

1.4 When an examinee walks into a testing room, he brings with him his
theta .* The purpose of the test, then , is to measure the relative
position of the examinees on the theta scale. The test interprets the

• exami nee ’s theta and produces a measurement of ability , which is often
the raw (number right) score. The test is the measuring instrument.
Often measurement of an ability wi th a test is made analogous to
measurement of height with a tape rule. But there is an important
di fference. Height, whether measured by an English rule or metric rule,
is always on an equa l interval scale. Histograms of a group of people

will always look the same, except for some linear stretching of a
scale.

• *The generic masculine pronouns will be used for convenience .

12 
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That is not the case wi th testing. The histograms of raw scores
of the same people on two tests will seldom look the same , even with

linear stretching of a scale. That is because each test has its own

peculiar scale (also called metric). The peculiarity of a test’s
metric distorts the distri bution of examinees . Until IRT there has

been no way to identify the peculiar scale of a test.

13
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CHAPTER 2

Classical Test Theory vs. Item Response Theory

2.1 Classical test theory has been developed over a period of many
years. Gulliksen (1950) is an excellent presentation of classical test

theory.

Mos t testing practitioners use classica l test theory, whether they
know it or not. The basic tools of most testing practitioners are :

a. p—val ue = proportion of exami nees selecting an item alter-
native (also called “item difficulty”),

b. d-value = point—biserial correlation between the item al-
ternative and the test (some use the biserial correlation) (also called
“item discrimination”),

c. mean of exam i nees ’ (number right) scores,

d. standard deviation of examinees ’ scores ,

e. skewness and kurtosis of examinees ’ scores ,

f. reliability of the test , usua lly KR-20 , the Kuder-Richardson
Formula 20 (a special case of Cronbach’ s coefficient alpha).

Anyone whose test analysis is principally based on the statistics
listed above is using classical test theory. The problem wi th those

- 

- statisti cs is that they are relative to the characteristics of the test

and of the exami nees.
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The p-value is relative to the ability level of the exami nees.
The same item gi ven to a high ability group and low ability group will
get two different p-values for the two groups. It can be show n that
p-values are not true measures of relative item difficul ty . It is not
uncoii~on for items measuring the same ability to reverse the order of
their p—values when gi ven to groups of di fferent average ability . For
example, item A may have a higher p-value than item B for one group of
exami nees , but have a lower p-value than item B for a different group .
This effect is not a matter of sampling error.

The a-value is relative to the homogeneity of the ability levels
of the exaniinees in the sample , the subj ect—matter homogeneity of the
i tems in  the test , and the dispersion of p-va lues of items in the test.

• The same item, given to a group of examinees who are similar in ability
and to another group with a wide range of ability, w i l l  produce two
different d-values for the two groups. Similarly, an item included in
a test wi th other items that are homogeneous in content and p-value
will get a d-value different from the d—value it will receive in a
heterogeneous test.

The mean , standard deviation , skewness and kurtosis will also vary
according to the characteristics of the test and exami nees.

The reliability is relative to the standard deviation of the test,
and to the p-values and d-values of the items in the test, al l of wh i ch
are dependent upon the particular abilities of the exarninees and the
characteristics of the test.

The following quote gives another liability of using classical
test theory in cul ture-fair testing studies :

“It can be shown that classical parameters (e.g. p-value) will
generally not be linearly related across subgroups of a population.
This means that the test for cultural bias using classical parameters

• can lead to an artifactual detection of bias. ” (Pine , 1977, p.40)
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Clearly, classica l test tneory statistics are meaningful only in
an extremely limi ted situation , i.e., when the same i tem is given to
the same population as part of strictly parallel tests. Such a situ-
ation rarely occurs. Furthermore, the basic precepts and definitions
of classical test theory are untestable , i.e. they are tautologies.
They are simply taken as true without any way to empirically determi ne
their relevance to reality . Some are assumed to be true even when this
does not appear to be warranted. Thus, no one knows if the classica l

test model applies to any real test.

2.2 In contrast IRT makes possible i tem and test statistics which are
dependent neither on the characteristics of the exami nees nor on the
other i tems in the test. They are invariant. With the i tem statistics
it becomes possible to describe in precise terms the characteristics of

the test before the test is administered . This capability allows one to
construct a test that is highly efficient in accomplishing the purpose
of the test. It also provides an extremely powerful tool for special
studies , such as item cultura l bias.

Moreover , the assumptions of IRT are explicit and have the po-
tential of empirical testing. It is possible to discover if the data
reasonably meet the assumptions.

17
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CHAPTER 3

A Brief History of Item Response Theory

3.1 The ori gi n of latent trait theory can be traced to Ferguson (1942)
and Lawley (1943). Item Response Theory is just one of several models
under latent trait theory. The Rasch model is another.

3.2 Other early publications using some of the same concepts are

Brogden (1946), Tucker (1946) Carroll (1950), and Cronbach and Warring-

ton (1952).

3.3 In 1952, Lord published his Ph.D. dissertation in which he pre-

sen ted IRT as a model or theory in its own right. At that time he
called it Item Characteristic Curve Theory . Thus , Lord is considered

the father and founder of IRT. Shortly after publishing his disser-
tation , Lord stopped wor k on IRT for ten years , due to a seemingly
intractable problem wi th it.*

3.4 In 1960, Rasch (1960) published his one-parameter sample-free
model . The Rasch model stirred ruch interest and considerable work was

done on it during the next decade. Its leading proponent in the U.S.
is Benjamin Wright , a psychoanalyst at the University of Chicago . (See

Wri ght , 1977 for references).

3.5 In 1965, Lord (1965) conducted a massive study , using a sample
size of greater than 100,000. That study showed that the “problem ” ,
which had deterred his work for so long, was not really a problem, and
that IRT was appropriate for real life multiple-choic e tests. With

that study Lord began work again on IRT.

*This problem is discussed in Section 14.2

4 . 
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3.6 In 1968, Lord and Novick published a psychometrics textbook,
wi thin which were four Chapters (17-20) by Allan Bi rnbaum (1968), a
well-known statistician (now deceased). Birnbaum ’s chapters worked out
in detail the mathematics of the two and three parameter normal ogi ve

and logistic models.*

3.7 Soon thereafter Urry (1970) completed his Ph.D dissertation in
which he cc~~ared the one, two, and three parameter models. He con-
cluded that the three parameter model best described the real world for
nultiple-choice tests .

3.8 Since Urry ’s dissertation , much work has been done on all three
models (i.e., one, two, and three parameter), but the three parameter
model is now receiving most of the attention because it best describes
reality . To wit , I shall deal wi th the 3-parameter model only.

3.9 Much of the work on the 3-parameter model is coming from 3 pri-
ncipal sources. The sources are:

a. Frederic N. Lord, Distinguished Research Scientist, Educa-

tional Testing Serv ice , Princeton, NJ.

b. Vern W. Urry, Personnel Research Psychologist , United States
Civi l Service Coimiission , Washington, D.C.

c. Davi d J. Weiss , Prof. of Psychology, Psychometric Methods
Program, University of Minnesota , Minneapolis , MN.

There are, of course, many other highly productive researchers
publishing excellent studies. Failure to include them in this list is

more an indication of my limi ted exposure than of the signifi cance of
their contributions .

*The normal ogi ve and l ogisti c ogive will be compared briefly ~n - •

Chapter 4.

t 
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3.10 The United States Civil Service Coniiiission has adopted a pa-
rticular application of IRT as official policy . The five U.S. armed

forces (including the U. S. Coast Guard) are also investigating the

application of IRT.

3.11 In 1977 Lord changed the name of his model from Item Character-

istic Curve Theory to Item Response Theory.
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CHAPTER 4

The Norma l Ogi ve and Logisti c Ogive

4.1 I trust the reader will recognize the normal curve plotted in
Fi gure 4.1 with the pluses (++++).  It has a mean =0, and standard
deviation =1. The formula for this normal curve is i dentified in

Figure 4.1 as N (O,l).

4.2 A bell— shaped curve like this is called a frequency function
(f.f.). It is called a frequency function even when the ordinate

(vertical axis) is defined as frequency , proportion , percent, or
density (Kendall and Stuart , 1977, p. 13). Therefore, we call the

norma l curve , the “normal frequency function. ”

4.3 Superimposed over the norma l f.f. in Figure 4.1 is a logistic *
curve or logistic frequency function , plotted with dots ( 
This logistic f.f. also has a mean =0 and standard deviation~~~1.O.
The formula for this logistic f.f. is identified in Figure 4.1 as

L(0,1.7). The 1.7 in the exponent of the formula is chosen to allow

the logistic f.f. to approximate the normal f.f as closely as possible.

The actual value is 1.6679, which is rounded to 1.7. In some of the
literature the 1.7 is represented by the upper case letter D. The
letter e is the base of natural logarithms ; e ~~ 2.718281828.

4.4 The reader will also recognize the S-shaped curve in Figure 4.4
as the normal cumulative frequency curve. An S-shaped curve is
called an ogi ve.** This curve gives the proportion of area under the
normal curve (Figure 4.1) that lies to the left of each point on the

abscissa (horizontal axis).

*pronounced lojistic
- 

. 
**pronounced oji ve

_  
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4.5 An ogive like this is called a distribution function (d.f.). It
is called a distribution function even when the ordinate is defined as
cumulative frequency , cumulative proportion , cumulative percent, or
cumulative a rea (Kendall & Stuart , 1977, p.13). Therefore , we ca l l  the
curve in Fi gure 4.4 a “normal distributi on function ,” or a “normal
ogi ve” . The formula for this normal d.f. is identified in Fi gure 4.4

asJ’N ( O ~l).

4.6 Also in Figure 4.4, but not discernable , is the logistic ogi ve
(or logistic d.f.) for the logistic f.f. in Figure 4.1. It is not
discernable , because it is so close to the normal ogi ve that on this
scale the two curves merge together in the width of the ink line. A
small portion has been magnified to a larger scale (lOx), so that the

difference may be seen. The magnified area was chosen at the place
where the 2 ogi ves are farthest apart. The reader can verify that at
any point on the abscissa the 2 ogives are always less than .01 apart
on the ordinate , as is indi cated by the inequality under the magni-
fication in Figure 4.4. The formula for this logistic d.f. is id-

• entifi ed in Fi gure 4.4 as fL(0,1.7).

4.7 The ogive wi th which we are concerned is the norma l ogive .
However, note the integral sign (f ’ ) on the ri ght side of the de-
finition for the f N(0,1).

The integra l sign there means that no algebraic function can be
found to describe the normal ogive . This fact makes the normal ogi ve
very cumbersome to work with mathematically, and requires numeri cal
methods to solve , or a table of va l ues.
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4.8 On the other hand the logistic ogive has no integra l sign on the
- r igh t  s ide  of i t s  definition ( ,/

‘ L ( 0 ,1.7)) . In fact , the expression

on the right in Figure 4.4 is the algebraic function describing the
logistic ogive. The logistic ogive is very easy to work wi th.*

4.9 For these reasons the logistic ogive is substituted as a con-
venient and very close approximation to the norma l ogive .

4.10 This paper wil l  only deal with the logistic ogive . Statements
• about the logistic ogive may be taken as close approximations to the

normal ogive model . The logistic f .f. is no longer of interest to us.

*Some interesting logistic identities are gi ven in Appendi x A.
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CHAPTER 5
More About Logistic Ogives

5.1 Figure 4.4 shows just one logistic ogive. There is actually an
i n f i n i t e  fami ly of logisti c (and normal ) ogives , each different in
some way from every other one.

5.2 Logistic ogives are stri ctly monotonic functions. They are
strictly monotonic because, going from left to right , the ogive
always gets higher and higher , never is completely horizontal , and

never goes down .

5.3 Notice the ogi ve in Figure 4.4. Between -2.0 and -0.5 on the
hori zontal axis the ogive is concave upward . Between 0.5 and 2.0 it
is concave downward . At some point between -0.5 and 0.5 this ogive
must change from being concave upward to concave downward. That
point  is ca l led  the “inflection point. ” The inflection point is
always the point where the slope of the ogi ve is at its maxi mum. The
inflection point for this ogive is located on the vertical axis at
.50 , and on the horizontal axis at 0.0.
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5.4 Three-parameter logistic ogives (with which we are exclusivel y
concerned ) may differ from each other in only 3 ways, one for each
parameter.

5.5 One way in which logistic ogi ves may differ is in the hori zontal
location of the infl ection point. Figure 5.5 shows 3 logistic ogi vcs
labeled E , F, and G wi th their inflection points at different places on
the abscissa. You can see that the 3 ogives are exactly the same
except for a sideways shift of the entire curve . Shi fting the infl ec-
tion point sideways , shifts the entire ogive sideways. The horizontal
position of the infl ection point is called the “b-parameter” . Some
call it , as we will , the “b—value ” . The b— values of ogives E, F, and G

in Figure 5.5 are - .5 ,0.0 and 1.0, respectively.

5.6 To include the b-parameter in the logistic ogi ve function, i t  is
only necessary to subtract the b-parameter from the horizontal axis
variable.

5.7 Figures 4.1, 4.4, and 5.5 were constructed with the hori zontal
axis labeled z. This label was chosen to facilitate understanding of
the logistic f.f and d.f., because of the reader ’ s likely familiari ty
with the traditional z-scores of measurement. Since we are concerned

wi th the ability scale called 9, we now and hereafter label the hor-
izontal axis, 9. Substituting 9 for z in the logistic function
and subtracting the b parameter, gives the height of the logistic
ogi ve by the function

29 _
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which is someti mes writ ten

W (e)a[ I+ex p(_ I.7(o_b))] ’

where exp means e raised to the power of whatever is in the pare n-
thesis after the exp . The upper case Greek letter psi (~~) is usedin the literature to mean the logistic ogi ve. Phi ($) i s used to
mean the normal ogi ve .

5.8 The logistic ogi ve has 2 asymptotes . The asymptotes are horizontal
lines that the ogi ve approaches at its extreme s , but never quite
reaches . The upper asymptote is located on the vertical axi s at
1.00. In Figures 4.4 and 5.5 you can see that the upper, right part
of the logistic ogi ves approach the value of 1.00 on the verti cal
axis. In the figures it may appear as though they touch the hori-
zontal line at 1.00, but , strictly speaking, they never quite do.

5.9 The lower asymptotes for the ogi ves in Figures 4.4 and 5.5 is
the horizonta l axis with a height of zero. Just as the upper part of
the ogive never quite reaches 1.00, the lower part of the ogive never
quite reaches the l ower asymptote.

5.10 All logistic ogi ves in IRT have an upper asymptote at 1.00, but
not all have a l ower asymptote at .00. In fact, few do.

5.11 Figure 5.11 shows 3 logistic ogives , labeled H, J, and K, which
are identica l except for different lower asymptotes. The l ower
asymptotes are at .15, .25, and .30 on the vertical axis. The
b—value for each ogive = 0.0. Note that the upper asymptote for all
3 ogives is at 1.00.

5.12 Note also that the infl ection points (all located at 0.0 on the
9 scale) for the ogi ves in Figure 5.11 are at different heights. In
fact, they are half-way between their asymptotes. That is always the
case. The infl ection point of the logistic ogi ve is always half-way
between its upper and l ower asymptotes.
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5.13 The lower asymptote is called the c-parameter or the c-value . It
is another of the 3 parameters of IRT.

5.14 The effect of the c-value is to squeeze the ogi ve into a smaller

ver ti ca l ran ge. The reduced ran ge is equal to 1 - c. The effect of

the reduced vertical range is to reduce the slope of the ogive at every

point on the 9 scale, other things being equal. We include the c—
para meter in  the logistic function by multiplying by 1 - c, and adding
c.

‘~1 (e)= c+(I_c)[ 1÷;I.7(O_b)1~

which is the same as

c+ (I-c) [i +ex P(_ L 7(9-b)~J 
-I

and

(I-c )
‘~
/(9)=ci.

[g+e 1.7(Q_
~]

The c-values of ogi ves H, J, and K in Figure 5.11 are .30, .25 ,
and .15, respectively.

1
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5.15 The third (and last) parameter of IRT is (you guessed it) the

a-parameter , or a—value .

5.16 The a-parameter is related to the slope of the either ogive at
the inflection point or in other words at the b-value . For the normal
ogive model (with c = 0.0)

oa m~~ 2.5m

where m is the slope of the ogi ve at the b-value.

5.17 Figure 5.17 shows 3 logistic ogives (L,N,&N), whi ch are i dentical
except for their a-values = .3, .8 and 2.0, respectively, with b = 0.0
and c = .00. As you can see, the larger the a—value , the steeper the
ogive . Speci fically,

where ‘V ’(6’)= the point on 9, where the height of the ogi ve = c + .6455(1-c).
The -1 that looks like an exponent of~ ’~~ i s not an exponen t at a l l ,
but indicates the inverse of the function. Typically, a function is
used by starting at some point on the abscissa , going vertically to the

function , and then horizonta l ly to the ordinate . The inverse procedure
would be to start at a point on the ordinate (in this case at c+
.8455(1—c)), go horizontally to the function , and then drop down to the
abscissa (9). That point on 9 is ’t’’(O). The -1 outside the brackets
is an exponent, which means to take the reciprocal . The number .8455
is the proportion of area under the logistic f.f. and to the left
of z-score = 1 (see Figure 4.1). The z-score = 1 is an arbi trary
mathematica l ly convenient point.
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5.18 The a-parameter enters the logistic function as part of the
exponent of e.

I -c
‘~I/ (9) = c +

-I. 70 (9-b)
I + e

This formula is the 3-parameter logistic ogive . It will look
rather ominous to the novice. However, it is not di fficult with a
pocket calculator with an eX key and a 1/x key. It is highly instru-

ctive to go through the calculation of several points of a typica l

logistic ogive and to plot them. An opportunity to do so is provided

below for an ogive with a = .9, b = - .4, and c = .2. The reader can

verify the results in Figure 5.18, which shows this logistic ogive wi th
its characteristic parts labeled .
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Pocket Calculator Instructions
Record your ’~~(9) here

a .9 0 
_ _ _ _

b = — .4 *‘(S) — c + (1--c)
— 1. 7a(B—b) 

______

c =  2 l+e 2.5

2

Enter  ~~y C omment 1 ~
0 (pick one)

— minus 1 .916

-.4 b
x times .5 .839

.9 a
x times

—1.7 constant
—1.7a(&--b) .569

+ plus —

1 constant — 1 . 5
1/X reciprocal 

2
x t imes —

.8 1—c 
2 5+ p lus

.2 c 
______

= ‘41 (0)

Nov p]ot’f’ (0) vs. 0 below.
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CHAPTER 6

The Item Response Function (IRF)

6.1 Let’s consider 2 examinees (Al and Bob) with di fferent ability

l evels , i.e. different Qs. Let ’s say Al has a higher 9 than Bob. That

means they are located at different places on the 9 scale. See Figure

6.1.
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6.2 What are the chances that Al will get i tem #1 correct? What are

the chances that Bob will get -i tem #1 correct? So far we don ’t know

the answer to either of those questions. But we do know one thing. Al
has a better chance of getting item #1 correct than Bob, because Al is

smarter than Bob (in ability 9). So let’s represent the probability of

each getting the item correct by a point above each (points A & B) in
Figure 6.2.

~ : 
~~~~~~~~~~~~~~t - - - - — 1~ 1 f l~ 4Hi~~ ~

t t-f-h-+-t ~ - - - - - -H -

~ ~~~~~~ L~~~-f4~ ~

~~~ ~ ;Ht Hi ~~Figure 6.2. The probabilities of Al and Bob getting : = ~~~~ 
1:~ T

Item * l eorrect as a function of their abilities. - it ): = = if riit

6.3 In doing so we have defined an ordinate as the probabilit y of
getting the item correct as a function of 9 (ability). Thi s may be

wri tten P~ (RIO) , and read , “the Probability of getting i tem i correct

gi ven (j) 0.” But for brevity it is usua l ly written P (9). The

• subscript (i) is often omi tted.

40 

~~~~- -- —~~- - - -_ ._-—~~~~~~~~~~~~~~~~~~~~~~ - --—
~~~~~~

--- --—-
~~~ 

— - -  —-
~~~~~ - -~ — - • --• • •  •_i_ ••_ ••••_ ___ ___



_____________________________________ - ~~~~~~~~~~~~~~~~~~~~~ • • -. - -
~: - -

6.4 Now let ’s take Carl , who is dumber (less ability 0) than Bob.

Carl has an even smaller chance of getting the i tem correct. See

Figure 6.4a .

ft
1__ 1

~ 
i~~:1:

Figure 6.4a. The probabilities of Al, Bob, and Carl
getting Item * 1 correct.

And let ’s also add Dave , and Ed and Fred who have less 9 still. See
Figure 6.4b.

-H~--~ _ _ _  ~~~~~~~~~ ~~44~~~ ~-4~~r -  ~~~~~~~~~~~~~~~~~~~
~~~~~~

- 

~~~~~~~~~~~~~~ ~~~~~ i i  _ _ _ _

• —.--,---F— -_--.- -- 4-,

Figure 6.4b. The probabilities of Al, Bob, Carl, Dave,
Ed, and Fred getting Item * 1 correct.

And we can add Olga , who is very bright. See Figure 6.4c.
___  _ _ _ _  • 

1 4 t ~ttt~
I
~ !~~~H4 ~

f~~ftffT~jJffJ ~ 
‘

~~~~~~

~~ ift; : t t j ~ :~ : , :~~~ :; ~

4~*t~
1H
~ ~

thLz ~~ 
_ _

I I I t t I H ~~. 
,t~tt -

Figure 6.4c. The probabilities of Al, Bob, Carl, Dave,
Ed, Fred, and Olga getting Item * 1 correct.
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6.5 Since the probability of getting the item correct is only a
function of the amount of ability ,* we can say that any who has
the same 0 as Al will have the same probability as Al of getting
the i tem correct (A). And , everyone who has the same 9 as Ed will
have the same probability as Ed of getting the i tem correct (E),
and so on. Therefore, we can connect th� points in Figure 6.4c,
which will tell us the P(9) for each 9. This curve is called the Item
Response Function (IRF) and was until recently called the Item Char-

acteristi c Curve (ICC). See Figure 6.5

- t~Ory i i I r ~ 
— • ~ - I r 

r - — i--.— - . - .4 . 4 , , . _
~ I 4-~ -~~ 

,—:T::~
— $ 4 , , 

~~~~ ~~~~~~~ ~~~~~~ 
$ 

- - 4 •t 1 - ’ - t~~~
• 4 ’  4~~~•~~~~ •

• ~~~- ‘  . - 4 . s - + f f . 4~~ — t  • - . . , , -* . . .~~~~ I I

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 4 4 . 4 4  ‘ t f ’ ’ t 4 ~~~~~~~~~~~~~~~~~~~~~~~~~~

: ~: : -: : t ; : ~ 
- - 

- : :i : : : ; : :~ ~ I ~t1_t i i
__ 

I 

4~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I +

Figure 6.5. The Item Response Function of Item
* 1.

6.6 We know several things about this IRF.

(1) It cannot rise higher than J , because a probability = 1.0
is a sure thing, and nothing can be more probable than a sure thing.

(2) It will never reach a height of 1.0, because in testing there
is no such thing as a sure thing. Therefore, the curve has an upper
asymptote of 1.00.

(3) Between Ed and Bob the curve has to rise rapidly, because it
must rise from point E to point B in the short distance between Ed’s
O and Bob ’s 0.

*assuming unidimensionality , which will be discussed in Section 14.4.
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(4) The curve must always rise (i.e. can never be horizontal or
go down ) as we move from left to right , because as ability increases ,
so does the probability of getting the i tem correct. Therefore, the
curve is strictly monotonic.

(5) It cannot go below 0.00, because a probability = 0.00 is an
absolute impossibility , and nothing can be less probable than an
absolute impossibility . Therefore, the curve has a lower asymptote.

(6) Since the item is a mu l tiple—choice question , there is
usually a fair probability of getting the i tem correct strictly by
chance alone , no matter how low the 9. Traditionally, we have taken
this probabilit y to be 1/A , where A = the number of alternatives in the
multipl e—choice question. A 4-choice item has been thought to have a
chance probability of 1/4 = .25, and a 5—choice i tem , a chance pro-
babilit y of 1/5 = .20. Whatever the chance probability of getting
a multiple-choice item correct is , it is not expected to be zero .
It is expected to be somewhat areater than zero. Therefore, the curve
in Figure 6.5 is expected to have a lower asymp tote above zero . (In
Section 7.3 we shall see that the lower asymptote is seldom 1/A )

6.7 You have probably noticed that all of the things we observed about
the IRF are also true about the 3-parameter normal ogi ve and logisti c
ogi ve .

Therefore, we conclude that the normal (or logistic) ogi ve may be
used to descri be the IRF very well. And we may use the logistic ogive

function to describe the IRF mathematically.
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6.8 If somehow we knew and we were to plot the probabilities of
getting item #2 correct for Al , Bob, Carl , Dave , Ed, Fred, and Ol ga , we
mi ght get an IRF like Figure 6.8.

Figure 6.8. The Item Response Function of Item
*2.
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6.9 Figure 6.9 shows both i tem #1 and i tem #2

F E D  D DAVE ML AL OLSA
Figure 6.9. The IRFs of Items * 1 and * 2.

For Olga , Ed and Fred (and anyone else wi th their Os) the probability
(P2(9)) of getting i tem 2 correct is about the same as their P,(9) for
item #1.

But item #2 is harder for Al , Bob , Carl , and Dave than item #1,
because for all of them the probability of getting item #2 correct
( I~(Q)) is lower than the probability of getting item #1 correct. And
it wou ld be harder for anyone who has the same ability as Al , Bob ,
Carl , or Dave .

6.10 We also notice that the probabilities of getting item #2 correct
for Bob , Carl , Dave , Ed and Fred are all about the same . Item #2 ,
then , does not do a good job in distinguishing among people wi th
abilities like Bob ’s or below . This observation is consistent wi th
what we intuiti vely understand about i tems. A hard i tem does not
discrimi nate among low abilit y people , because they all get it wrong

(unless they make a lucky guess). An easy i tem does not distinguish
among high ability people , because they all get it correct. A test
composed of items with IRFs like i tem #2’s IRF would not be a good test
for measuring the relative ability of people like Bob , Carl , Dave, Ed
and Fred.

Note: In practice , any particular examinee may either know the answer
to a particular i tem (in which case his probability of getting it
correct is 1.00), or not know it (in which case his probability of
getting it correct is chance). Strictly speaking, we can not talk about

the probability of a particula r person getting correct a particular
i tem. However, for pedagogical reasons we will violate this restriction
in this section. (See Section 8.2 for clari fication.)
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6.11 However , Olga ’s ~(O) for i tem #2 is much higher than A l ’ s

~ O). Therefore, item #2 will distinguish between people like Al and
Olga . If a distinction in that range of ability is our purpose , then

a test made of i tems like #2 would be a pretty good test.

6.12 Item #3 might have an IRF like that in Figure 6.12. This i tem
rises over a longer range than does either i tem #1 or i tem #2, but its
slope is less at every point during its rise. This low slope means
that i tem #3 is discriminating over a wide range of 9, but is not
doing so well at any particular 9.

FRED ED DAVE CARL 5 9 Al. OLSA

Figure 6.12. The IRF of Item * 3.

6.13 Figure 6.13 shows the IRFs for both item #1 and item #3.

_ _ _ _  I
)TEM I~~3 4 4 4 j 4 4 U

/\,4P +.OO
FRED ED DAVE CARL SOS AL OI.SA

9 
-

Figure 6.13. The IRF of Items * 1 and * 3.
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It is interesting to note that i tem #3 is harder than i tem #1 for
Al and Bob , but easier for Dave , Ed, and Fred. This possibility of
reversed relative item difficulty for persons of different ability Is
one of the surprising resul ts of IRT .

6.14 We have seen that the greater the slope of the IRF , the greater
the discrimi nation , but the smaller the range of discrimination. We
have already noted in Chapter 5 that the a—parameter of the logistic
ogive describes its slope . Therefore, the a—value is called the
discrimination index of the IRE. The greater the a—v alue of the IRF I
the better the i tem discriminates.

6.15 Also apparent is the fact that the shift of the IRE as a whole
to the left makes the i tem easier in general , and to the right makes
the i tem harder in general. The left-right shift of the logistic ogive
is described by the b—parameter. Thus , the b—value is the difficulty
index of the IRF. The more difficult the i tem is , the larger (in the
positive direction) the b-value of the IRE.

6.16 The IRFs of items 1, 2, and 3 have different l ower asymptotes.
Since the IRF never goes below the l ower asymptote, this difference in
IRFs means that the items are of different difficulty even for exam—
inees of very low ability . But examinees of very low ability will
know almost nothing about the i tem, and therefore have to guess. The
difference in lower asymptotes of IRF’ s means that very low ability
examinees have a better chance of guessing the correct choice of some
i tems that of others . This result of IRT will be discussed further in
Section 7.3. The l ower asymptote of the logistic ogive is the c—

• 
- parameter. The c—v alue of an IRE is called the “guessing index ” or

more properly the “pseudo-guessing index ” of the i tem. Both terms are
used.
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Figure 6.17. The IRFs of four actual items from the
Coast Guard Knowled ge section of the U. S. Coast
Guard Warrant Off icer Test, series 8.
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6.17 Fi gure 6.17 shows the IRE’ s for 4 actual i tems from the Coast
Guard Knowledge section of the U.S. Coast Guard Warrant Officer test.

Item #17 is a very difficult , but highly discriminating i tem. It has a
c-value of .00, which means that nearly all examinees below 9 = 1 ,

answered the i tem incorrectly. Item #17 is a very unusua l i tem in two
respects, its extremely high a-value , and .00 c-value. It is , however ,

an idea l item for ma ny purposes.

Item #21 is an easy item with somewh at low discrimi nation. Item
#47 is slightly easier than #21, but has good discrimination. Item #50

is an i tem with medi um difficulty , and poor discrimi nation.

6.18 The IRE should not be confused with the i tem-test curve . The

item-test curve has raw score as the horizonta l axi s instead of 9.

The i tem-test curve, therefore, suffers from the same problems of

distorted scale as the raw score. The i tem—test curve has no par-

ticular shape , and is not independent of the other i tems in the test.

In fact, the average of the i tem—test curves of all i tems in a test is

always a straight line of slope = 1(i.e. 45°). Thus , for many purposes
the i tem—test curve is useless as an analytic tool.

I-
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CHAPTER 7

The a, b, & c parameters

7.1 The a-value is the discrim ination index of the item. If ~ is
normally distributed , in the norma l ogi ve model the a-value is related
to the d-value in the fol l owing very complex way (from Schmidt , 1977).

~~~~

dJ(KR~2Q)(g~c)2y2~d2pq

where d = d—va lue , the point biserial item—test correlation

p = p-~c l ue, the proportion of examinees correctly answering the item

q 1—p

KR—20 = Kuder—Richardson formula 20 reliability

y = the height of the N (O,1) curve at the z score that cuts off

p’proportion of the area under the N(O,1) frequency functi on .

c = c-value

1-c

t
4

- 
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The a-value is related to the slope of the IRE , and can range from
0.0 to + ~o just as the slope can. Negative slopes are possible , but
not of interest to us. Experience has shown that a-values of typica l
i tems vary from about .5 to 2.5 with most from 1.0 to 2.0. The highest

• 1 have observed is 3.76. An i tem with a low a—value discrimi nates
poorly over a wi de range of 0. Wi th a high a-value the item discri-
mi nates well , but over a small range of 9. Items with a-values below
.80 are not very good i tems for most purposes.

7.2 The b-value is the difficulty index. If 0 is normally distributed ,
it is related to the p-value in the norma l ogi ve model (from Schmidt ,
1977) in the following way :

yz(I -c)~~KR-2O
b~~ 

d~/~~

where z = the z-score that cuts off p~proport ion in the upper portion
of the area under the N(O,1) frequency function , and the other symbols
are as defined in Scction 7.1 above . Typical b-values range from -2.5
to +2.5. A b-value of -2.5 indicates the i tem is very easy. An i tem
wi th a +2.5 b—value is very di fficult , and i tems wi th 0.0 b-values are
of medium di fficulty .
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7.3 The c—value is the guessing parameter or pseudo—guessing para-
meter . It indi ca tes the proba b ilit y of examinees w i th very low
abili ty of getting the item correct. Most c-values range from .00 to
.40. Items with c -values of .30 or greater are not ve ry good items .
It is desirable to have the c-value at .20 or less. The lower the
c—value is , the better. A zero c -value is ideal. Typicall y, the

c—value is about 1/A - .05, where A = the # of alternatives. Thus ,
4-choice i tems often have c ~~~.20 (i.e. .25— .05), and 5—choice i tems

often have c~~~~15 (i.e. .20- .05).

Items do not have a c-value of 1/A because examinees do not , in
fac t, guess randomly when they do not know the answer (as has often

been assumed in classical test theory analyses).

7.4 Two explanation s have been offered for the fact of non-random
guessin g (c~~~1/A).

Lord has suggested that i tem writers are very clever in writing

distractors that are very attractive to low ability examinee s. Thus ,
when low 9 examinees do not know the answer they are attracted more to
distractors than to the correct answer , and so get the item wrong more
often than if they guessed randomly.

• 
- The other explanation is my own , based upon personal knowledge of

item writ i ng and test taking behavior:

(1) When an item writer sits down to wri te items , he , for  the
momen t, i s not concerne d w i th the d istr ib ut ion of the correct answers
(the keyed choices) among the four (for four—choice i tems ) possible

posi tions (i.e. choice A , cho i ce B , choice C , and choice D).
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(2) He has a tendency to try to hide the correct choice, in a
four—cho ice item there are only 2 places to hide it — choice B, or
choice C. Therefore, he writes many more i tems , keyed B or C than A
or D, and in fact there seems to be a much stronger tendency toward C.
(I have verified this tendency with many i tem writers). This also
seems to be true for 5-choice i tems .

(3) When he finishes writing the items , he tabulates the numbers
of i tems keyed for each position , and usually finds that he has many
more C’s than A’ s, B’ s, or D’s (or E’s in 5—choice items).

(4) Most testing organizations have a requirement that there
should be about equal numbers of i tems with the keyed choice in each
of the 4 or 5 possibl e positions.

(5) The i tem writer then begins to revise the order of the
choices in items to decrease the number of i tems keyed C, and increase
the number of i tems keyed A and D and maybe B. He continues to revise
the order of the choices of i tems until he has satisfied the require-
ment of about equal numbers of keyed choices in each position.

(6) Naturally, to save himself work and time (the Law of Least
Effort) he wants to revise as few i tems as possible. Therefore, he
stops revising i tems when he gets within the requirement of about
equal numbers . Because he started with more i tems keyed C, he also
ends up with more i tems keyed C (but not as many), because he only
needs about equal numbers .

If the above scenario is as universal as I believe , it means
- I that , in the set of all multiple — choice i tems in the worl d , more are

keyed C than any other choice. It is true of almost all of the tests I

have checked .
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There is a widespread rule of thumb among examinees : “If you
don ’t know at all , guess C. ” I have heard this rule of thumb from

coast to coast, from high school and college students , and from
civilian employees and military personnel taking promotional tests .
I do not know the source of this rule of thumb , but it is possible
that the rule of thunt gradually grew from exami nees ’ observations

of the frequency of keyed choice positions , as I have suggested
above.

Whatever the ori gi n of the rule of thumb , it represents rational
behavior , gi ven a higher frequency of choices , keyed C, among the
population of all multiple -choice i tems. By choosing choice C (when
you don ’t know at all), you will get more items correct by chance in
the long run than by guessing at random.

Thi s analysis suggests that the c—values of i tems keyed C will
be higher than for i tems keyed A , B, and D. I was able to test this
hypothesis with 127 i tems from 6 forms of the verbal parts of the
SCAT —Il seri es of tests , published by the Educational Testing Ser-
vices , Princeton, NJ . The c-values were provi ded by Fred Lord .
A two-by-two frequency table of A , B, 0 vs C by above-average c-value
vs below-average c—value yielded a Chi square signifi cant beyond the
.001 l evel . This result strongly supports the hypothesis that low
ability exarni nees get i tems keyed C correct more often than they get
items keyed A , B, or 0 correct.

The results suggest 2 alternative courses of action for testing
organ i za tions.

(1) Require that there be exactly the same number of keys
in each position. This action would thwart the test-wiseness
of those who use the rule of thumb . However , it represents an
undesirable rigidity .
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(2) A better course of action would be to key C for less than
1/4 of the i tems (for 4-choice i tems). This action would cause
a lower average c-value for the test. The lower average c-value
would increase the total information in the test, which as we
will see in Sec. 9.4 is highly desirable.

7.5 The Rasch model assumes that all i tems in a test have the same
a—value , and that c = .00 for all items . Both assumptions are nearly
always unrealistic.
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CHAPTER 8
The Test Characteristic Curve

8.1 The scale of 0 is continuous , but since most of the calculations
are done on di gital computers , 0 is usually broken into small , dis-
crete intervals of .05 9 units , and values of P(Q) are calculated for
each .05 interval from 0 = -5.0 to 9 = +5.0. The very broad range

from -5.0 to 5.0, and the small .05 intervals are used in the interest
of accuracy . Larger or smaller intervals and a broader or narrower
range may be used depending on the purpose and degree of accuracy
desired.

8.2 Table 8.2 below gives the P(0) for 17 values of 9 for each of the
4 items , shown in Figure 6.17.

57

p



_________ - - - - ___________

P( 9)

9 #17 #21 #47 #50 ~~P(Q)

-2.7 .00 .30 .38 .20 .88

—2.3 .00 .33 .40 .23 .96
-2.0 .00 .37 .45 .25 1.07
—1. 7 .00 .43 .52 .28 1.23
—1.3 .00 .53 .66 .33 1.52
— 1.0 .00 .71 .87 .44 2.02
— .7 .~0 .62 ~77 .48 1.77 -

•

-.3 .00 .82 .94 .52 2.28
0 .00 .88 .97 .59 2.44
.3 .00 .92 .99 .65 2.56
.7 .00 .96 .99 .74 2.69

1.0 .01 .97 .99 .79 2.75
1.3 .04 .98 .99 .84 2.85
1.7 .35 .99 .99 .89 3.22
2.0 .78 .99 .99 .91 3.67
2.3 .96 .99 .99 .94 3.88
2.7 .99 .99 .99 .96 3.93

Table 8.2

An i tem is scored dichotomously , which means the examinee either
gets the item correct (for which he gets an observed score o-f 1) or
he gets the i tem wrong (for which he gets an observed score of 0).
The dichotomous score is a result of the typi cal use of multiple-
choice i tems. An examine&s dichotomous score (0 or 1) is not a
very accurate measure of his knowledge.
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P(9) may be interpreted in two ways. A P(Q) = .78 means both:

(1) 78% of the examinees with the given 9 will get the
item correct, and

(2) An exami nee will get correct 78% of the i tems for
which his P(0) = .78.

If an exami nee answers 100 questions for all of which his P(Q)
= .78, he is expected to get 78 i tems correct and 22 items wrong for a
% score of 78%. If there were some way to give him partial credit of
.78 points for each of the 100 i tems instead of 0 or 1 point he would
also get a % score of 78%. This notion of partial credit for an i tem
depending on his P(Q), leads to the idea of a true score on the item.

It is often not true that the examinee is 100% or 0% certain of
his answer. Yet on a multiple —c hoice i tem he either gets full (100%)
credit for the item (1, if he gets it correct) or no (0%) credit
(0, if he gets it wrong). The exami nee ’s degree of certainty , if
measurable could be taken as a more precise measure of his knowledge .
P(9) mi ght be interpreted as this measure of his knowledge , and is
called his true score on the i tem. The sum of his true i tem scores
is his true test score. His true test score is the raw score he
would get , if there were no measurement error in the test.

The far right column in Table 8.2 is the sum of the P(0)’s of the
4 i tems for each of the listed points on the 9 scale. The~~~P(9) is
the true test score of an examinee with a given 9 on a test composed
of the 4 i tems.
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8.3 If we plot the true test scores against 0, we get a test
characteristic curve (TCC). Figure 8.3 shows the TCC. The TCC
gives the true score for each point on the 9 scale. Notice that
the TCC is neither a straight line nor an ogi ve. Each test will
have its own TCC, which is the sum of the IRE’ s of the i tems in
the test.

8.4 One of the interesting uses of the TCC is to determi ne the
distribution of the true scores on the test. Figure 8.4 shows how
this is done. If the examinees ’ Os are normally distributed , as
shown on 9 (upside down), the examinees ’ true scores will be as shown
on the left. The true score distribution is found by projecting the
intervals from the 0 scale onto the TCC , and then representing the

same area on the true score scale within the projected intervals.
Figure 8.4 is an excellent demonstration of how the peculiarities of

a test produce a distorted metric.

8.5 It is i mportant to note that true scores (T) are not observed
scores (x). Observed score is defined as true score plus error
(x = I + E). However, Lord (1969) has found that the distribution
of X will be similar to the distribution of T, but sometimes with
the high points of the true score distribution flattened somewhat,
and the low points higher. The flattening is due to error.

I
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CHAPTER 9
The Item Information Function (IIF)

9.1 We can see in Figure 6.l7a that i tem #17 will not help us to
distinguish among examinees whose 9’s are less than 1.0 because
they will all get the item wrong. Apparantly, there is something
about i tem #17 that leads all examinees with 0< 1.0 to choose
the wrong alternative . This is an unusual situation , but
actually occurs with this question. A test made exclusively of i tems

like #17 would do nothing to distinguish among exami nees with 0<
1.0 because they would all get zero on the test. It would gi ve us no
distinguishing information about them.

Item #17 also gi ves us no distinguishing info rmation about
examinees with 0 = 2.7 or greater because they will all get it
correct. On a test composed of i tems like #17, all examinees with
9) 2.7 would get 100%.

Between 9=1.0 and 9=2.7 , it is a different story . From 0=1.0
to 9=1.5 , P(0) goes from P(0= l.O)= .O0 to P (9=1.5)= .08. The change
of P(Q) means that the item does help to distinguish among exami nees
withi n the range of 9 where the change of P(9) occurs . In this case
the difference between the P(9) ’ s (to be denoted dp) = .08 (.08- .OO )
is small. The change (dp ) occurs over a range (dO) of 1/2 0 units
(1.5-1.0). The ratio of dp to dO (dp/dO) is equa l to the average
slope of the IRF over the range of dO. For the range from 9=1.0 to
9=1.5, dp/dQ = .08/.5 = .16.
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From 9 = 1.5 to 9= 2.0 for item #17 , P(Q) changes from .08 to
.78, a very large change . dp = .70 (.78- .O8) in this range , and
dp/dQ = .70/ .5 = 1.40 , which is very large . Item #17 is an excellent
i tem for distinguishing among examinees in the range 0 = 1.5 to 0 =
2.0. A test composed of items l i k e  #17 woul d give scores from about
8% to 78% for examinees whose 9’s go from 1.5 to 2.0. This test
would give us a lot of distinguishing info rmation about exami nees in
this range of 9, because it would spread them out over a wi de range
of test scores.

We can see that the greater the slope of the IRF , the more in-
formation the item gives us about examinees in the range being
consi dered.

9.2 If we could make the range of 0 over which we fi nd the slope
smaller and smaller , we would eventually get to the slope of the IRE
at a point which would be the slope of the tangent line to the IRE at
a particular point of 9.

The slope of the IRE would be a measure of the relative amount
of information the item gi ves about exami nees at that point. The
greater the slope , the more information. 
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Fortunately, there is an easy way to find t he slope of the
logistic ogive . The slope of the IRE is given by:

I .la(O-b)
, dP 

— 
I .7a(I-c)e

dO [ i+e 1.7°(°4
~
]2

where a, b , and c are the item parameters and 9 is the point
where dp/d9is the slope . The slope is also someti mes denoted as

or P ’ for short. In calculus P’ ( 9 )  is known as the f i r s t

deri vative of P(O). Since the slope (P’) is a measure of information ,
it is possible to plot a curve that shows the amount of information
an i ter~ gi ves at each point on the 9 scale.

9.3 However, there is a catch. For mathematical and statisti cal
reasons which we will not go into , P’(9) is not a completely

aprropriate measure of information , but a related function is.
The function is:

2 
2

I(e,u) = P (I.7a) ( 1 c) 
2

~9)Q(G) [c+e 
L7a(Q-b~[1

—I.7a(Q_
b)]

where P~ is P’ squa red , and Q (O) 1 - P( O ) .  Note that the
exponent of the l e f t  e in  the denom inator  is pos i t i ve , and the
exponent of the right e is negati ve .
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Figure 9.4a. The Item Information Functions of four
real items.
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That function is called the Item Information Function (l IE ), and

is written I(Q ,u). The above formula for I(Q ,u ) may look even more

ominous than the formu la for P(Q) ,  but in fact it is only s lightly
more complicated. It is still feasible to calculate points of
I(Q ,u) with a typical scientifi c hand calculator.

9.4 Figure 9 .4a shows the I(Q ,u) for the four items whose IRF’ s are

shown in Figure 6.17. (Note that the vertical scale for item ~17 is
different from the others.) In comparing the  IRFs  w i t h  the  I I F s ,
you will note three important relationships .

(1) The lIE is highest close to where the slope of the IRE is
steepest.

(2) The total area under the lIE increases as the a-value
increases.

(3) The total area under the lIE decreases as the c—value
increases .

The fact that total information (i.e. total area under the IIF)
increases as the a-value increases , demonstrates the importance of
high a-values for items . However , there is another effect of high
a-values . As the a-value increases , the width of the 9 scale over
which the information is distributed decreases . The effect is called
the bandwidth paradox*. Thus , sometimes a compromise must be made
between the total information provided by the i tem and the distri-
bution of information over 9.

*This bandwidth paradox is different from the bandwidth paradox
described by Cronbach (1960 , p.602).
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The total information (A 9 ) of item g is given by

= 
I.7~ (C. c# (h-c)) 

= ~~~ + 
I.70c 09 c~ 17 (+

cio~ c)

where a and c are the item parameters and log c is the natura l log-
arithm of c. From inspection of the formula for Ag~ you can see that
as the a — v a l u e  i nc reases , so does Ag. Also apparent is the fact that ,
as c approaches  zero , A g approaches 1.7a . Therefo re , the maximum
tota l information an item can provide is 1.7a. Not so obvious from
the formula for A g is the relation that , as c approaches 1.00, A9
approaches zero . This occurs because log c is negative except when c
= 1, and because when c = 1, c log c/ ( 1—c)  = — 1. This relation
explains the effect of the c -value: the c—value destroys information.
Figure 9.4b shows how total information decreases as c increases while
ho lding the a—value constant.

Since the b—value is not included in formula for Ag the b-value
does not affect the total information.

9.5 The point on 9 where the lIE is highest is not at the b—value ,
as one mi ght expect (except when c=0). The point on 9 where informa-
tion is greatest is given by

~ [
iou (.5 + .5 

~~~

• where “log ” means the natura l logarithm .
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The point on 9 where information is raxirized is always to the
ri rht of the b—v alue , (except when c=O , it is at the b-value), but
never farther to the richt than .41/a.

9.C The lIE is syni~etrical vihen c=O and skewed to the right when
c�O. The larçer is c , the greater the right-skew . The right-skew
occurs because the c-value destroy s more information at low levels
of 9 than at high levels. This result makes sense because exami nees
at low Os will guess more than examinees at high Os. Guessing (i.e.
the opportunity to get t he item correct by guessing) destroy s infor-
mation. It is for this reason that fi ve-choice item s are preferred to
four-choice ite ms.
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Figu re 10. 2 a, b, and c. The Test Info rmation
Curve of (1O.2a) a test composed of items # 17
and # 21, (1O,2b) a tes t composed of items #17,
# 21, and # 47 , and (1O ..2c) a test composed of
items # 17, # 21, # 47 , and # 50 from the USCG
Warrant Officer Test.
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CH A PT ER 10
The Test Information Curve and Relative Efficiency Curve.

10.1 The Test Information Curve (TIC) is nothing more than the sum of
the lIEs. lIEs are summed by “stacking them on top of each other. ”
“Stacking ” liEs merely means that the heights (i.e. the amount of
information) of the IIFs at a particular value of 9 are added together
to get the height of the TI C at that value of 9. Plotting the sum of
i tem information at each value of 9 gives the TIC . The height of the
TIC at 9 is written as 1(9).

I (9)~~ I (9~a)

10.2 Figure 10.2a shows the sum of the liEs for items #17 and 21 as
shown in Figure 9.4a . Figure 10.2b shows the lIE of item #47 added to
Figure 1O.2a . Figure 10.2c shows the lIE of i tem #50 added to the
other 3 items . A test composed of these four i tems would have the
w ierd TIC in Figure 10.2c .

10.3 The TIC shows the relative amounts of information provided by
the test at each point on 9. Where you want information depends on
what you will use the test for. If you want to select a few examinees
from a large number , then you want a lot of information at high levels
of 9, so that you can tell just which examinees are the best. For
example , see Figure 10.3a. If you want to select all examinees except
a few, then you want a lot of info rmation at low Os so you can tell
wrtich exami nees are the worst (e.g. see Figure 10.3b).
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-3 -2 -l 0 I 2 3
0

Figure 10.3a. Test Information Curve of a hypo-
thetical test , which would be efficient for a high
cut score (e = 2.0).

• ‘(9)

-3 -2 -I 0 I 2 .3

Figure 10.3b. Test information Curve of a hypo-
thetical test , which would be efficient for a low
cut score çe ~ -2.3~.
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1(e)

e 2 3

Figures 1O.3c The Test Information Curve of a hypo-
thetical test, which would be efficient at both high
and low cut-scores.

3-

2-

REL.
E F F.

IO.3c
i O.3 b ~~~~~~

.5.

-2 -I 0 I 2 3

Figure 10.4. The Relative Efficiency Curve compar-
ing Test Information Curve in Figure 10.3c to that in
Figure l0.3b.
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Sometimes a test is designed for more than one purpose , such as
to be used wi th two cut scores for entrance into two di fferent
schools. In this case a two-humped TIC will gi ve good i nformation at
the two cut scores . (e.g. see Figure 1O.3c).

A TIC of any desired shape may be constructed, provided the
i tems with the necessary IIFs are available to construct the TIC.

10.4 Usually we already have a test and want to revise it to make i t
better serve our purpose. A comparision of the new and old versions
should be made using the Relative EfficiencyCurve (REC). The REC is
nothing more than the ratio of the TICs. The ratio of the two curves
is found by dividing the 1(0) of one test by the 1(9) of the other
test at each point on 0. Figure 10.4 is the REC , conparing the TIC
in Figure 10.3c to the TIC in Figure 10.3b.

Where the REC is above 1.0, the test in Figure 10.3c(the test
for which the 1(9) is the numerator of the REC ratio) is better than
the test for Figure 10.3b. Where the REC is below 1.0, the test for
Figure 10.3b is better. And where the REC = 1.0, the two tests are
the same.

By starting with an old test, making substitutions of i tems, and
calculating the REC , you can experiment with and improve the old test
by trial and error. It does not take long to develop some skill in
replacing i tems to improve the TIC as desired.

10.5 Every test has some error in it. The Standard Error of Estimate
(S.E.E.) is the expected standard deviation of errors of estimated
ability. That is , if we were to give a test to a group of examinees
wi th identical Os, and estimate their Os wi th the test, the standard
deviation of those estimates would be the S.E.E.
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10.6 If the estimate of 0 is a maximum likelihood estimate (see

Chapter 12), the S.E.E. at a particular 9 is easy to calculate from

the TIC. The S.E.E. is equal to the square root of the reciprocal

of the heig ht of the TIC (1(9)).

~EE

Since 1(0) varies along the 9 scale , so will the S.E.E. The

larger 1(9) is , the sr~aller the S.E.E. A sr~all S.E.E. at a cut point
is hi ghly desirable.

10.7 The average S.E.E. (S.E.E.) over examinees is related to the
reliability of Classical Test Theory (rxx), when the scores are stand-
ardized to a standard deviation = 1.0.

This relation implies tha t a test with high reliability ~.ay be a
poor test for your purposes because it has lo~-5’ information at the
critical values of 0. Similarly, a test with low reliability ray be at-.

excellent test f3r some purposes , if it has h ig h i nfor m a t i on where i t
is needed. Thus , relia bility is hi ghly misleadin g as to the valui of a

test.

The relation also makes clear the dependence of reliability Oil the
distribution of abilit y. If many exarni nees are on the 0 scale where
there is high information , then the reliabi lity will be hinher than if

they are distributed on 0 at points where information is low .
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CHAPTER 11

The Score Info rmation Curve

11 .1 The test information curve (1(9)) gives the maximum amount of
i nformat ion about 0 that can be extrac ted from the test . However , to
get the max i mum informa t i on , i tems mus t be optimally weighed. The
optima l weight (W(0)) of an i tem is given by

Ps I.7oe’7°~~~~W~(9) = PiQ I.7a(G-b)
c+ e

There is a curious characteristic of W(9). It varies with 9.
That means that i tem A should receive different weights for examinees

with di fferent Os. But to get W(9), you must know 9, which is what
you are trying to get by giving the test.

11.2 There are two ways to approach this dilemma .

(1) The most satisfactory way is to use an iterative computer
program , such as LOGIST or OGIVIA (see Chap. 15). These computer
programs , in effect, make use of the optimal item weights and
hence yield maximum information about 0.

(2)  A rough approximation would be to take raw scores on the
test , divide the distribution of raw scores into , say, top.
mi dd le an d bo ttom groups and then rescore using different
item weights for each group. This procedure would not yield

maxi mum information , but woul d p rovi de more information than
not using variabl e i tem weights at all .

7q
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11.3 If neither of the options in Section 11.2 is possible , then you
nay have to resort to the use of number-right score. In this case

the amount of information provided by this scoring procedure becomes

of interest. The ar,iount of information provided by a nur ter-right

score is callcd the number-r ig ht Score Information Curve (SIC). The

formula for the SIC (also written as I(9,X)) is

I(G,x)=

11.4 The SIC usually has the same cienera l shape as the TIC , but is

l ower than the TIC at all values of 9. At hic’h 9 the TIC and SIC will

be nearly the same height (i.e. SIC/TIC~~~1.0). As 0 becomes smaller

and smaller , SIC/TIC becomes smaller. This result means that , at high

Os little information is lost by using a number-right score , but at low

Os relat i vely much information is lost. Such is the penalty for use of

the inefficient number-right score .

11.5 The SICs of two tests may be used just as the TICs are used. A
rough approximation of the standard error of estimate may be found for

each 9 using the number-right scoring procedure , and the ratio of the SICs
of two number-right scored tests may be interpreted in the same manner as
the Relative Efficiency Curve for TICs. (Strictly speaking , for this inter-
pretation to be legitimate , the test score must be shown to be an unbiased

estimate of 0.)

11.6 The SIC is plotted by a computer program avai lable from the Educa-

tion al Testing Service (see Chapter 15), and may be derived from a

program by John Gugel (see Section 15.4).

80



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CHAPTER 12

Maximum Li kel i hood Estimation of 0

12.1 There are two main ways in IRT to estimate an examinee ’ s 0.
They are called the Maximu m Likeliho od Estimation method and the

Bayesian Modal Estimation method. Both methods use the actua l re-

sponse pattern of the exarninee rather than the raw score. The differ-

ence between the two methods is merely an additional assumption made by the

Bayes ian metho d.

12.2 A response is indicated by the l ower case letter u. If the examinee

gets i tem i correct , then u1=1 , and if he gets it wrong, then u.~ O. A
response pattern is also called a response vector, and is represented by

the uppercase letter U. A response pattern is a list of zeroes and ones ,

indicating which questions the examinee got correct or wrong in the order
the i tems appear in the test. For example; in a four-item test, an exam-
inee who got the first two i tems correct and the last two wrong would have

a response pattern U = 1100. If he got the fi rst and third i tems correct
and the other two i tems wrong, his response pattern would be U = 1010. II

he got the first three wrong and the last i tem correct, he would have a
response pattern U = 0001.

12.3 We recall that P1 (9) is the probability that an examinee with
abil ity 0 wil l  get item i correct. Q~ (9) is the probability that an
examinee with ability 0 will get item i wron g. Q j

(Q ) r 1_ P
~~ (Q ). We w i ll

abbreviate P1 (e) and ~~~~ 
by P

~ 
and
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12.4 Probability theory tells us that the probability of independent
events occurring tociether is equal to the product of their separate
probabilities. We know that the probability of getting one i tem
correct or wronc is i ndependent of the probability of getting other

iter.s correct or wrong for any given value of 0. We know this bccause

of the assumpt ion of local independe nce. *

12 .! Therefore , the probab i li ty of an exar i nee ~ett i ng item 1 correct
and i tem 2 wrong i s P1Q2. The probability of getting both i tems wrong
is Q 1Q2. Getting i tem 1 correct and i tem 2 wrong is the response
pattern U 10. Therefore , P(U=10)=P1Q2, P(U=00)=Q 1Q2, P(L=01)=Q 1P2,
and P(L= 11)=P1p25

Sim i larly, for three i tems for a given 0, i f :

P1 = .3 Q 1 = .7
P2 = .6 Q2 = .4
P3 = .8 = .2

*The assumption of local independence will be discussed in Sec. 14.3.
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then

U L ( U~9) = Likelihood

000 Q1Q2Q3 = .7 x .4 x .2 = .056

001 Q1Q2P3 = .7 x .4 x .8 = .224

010 Q,P2Q3 = .7 x .6 x .2 = .084

100 P,Q 2 Q3 = .3 x .4 x .2 = .024

011 Q,P2P3 = .7 x .6 x .8 = .336

101 P1 Q2P3 = .3 x .4 x .8 = .096

110 P,P2 Q 3 .3 x .6 x .2 = .036

111 P~ P2 P3 = .3 x .6 x .8 = .144
Table 12.5

The likelihood of each possible response pattern for a
given U where the P (O) is as given in Section 12.5.

12.6 These probabilities are calle d likelihoods (and written L(U~9)).
Each li kelihood is the cond itional probabili ty of a res ponse

pattern (U) given 9, i.e. L(U~0). The general formula for a like-

lihoo d is

L (UI9) 
n~~ .u

Q
.I u
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The upper case Greek letter ‘71”means the product of all theI~ 1
where i goes from 1 to n (n = the # of items in the test), just as ,
in statistical notation ~ . 1 means the sum of a series of numbers
where i goes from 1 to n.

When u . = 11 
pu Q i U 7Y

’Q1 I P’Q° P / 7 ~

When u1 = 0
p 7Q,’” =1~°Qf ° = p 7Q~ / . Q=Q;

When u.~ = 1, the ~ 
drops out , and when u1 = 0, the 

~ 
drops out.

Thus ,~PL~QI~~is just a convenient mathematical way of getting rid of
the P or Q depending on the value of u~. For a three-item test the
likel i hood of U = 011,

L(u=olIle) = cr3 P
~

Qi
~~ 

=

= ~uQI-u 
. pUQt~~. ~~~~ 

. 

~~Q~ ’ ~~~~~~

= p0Q1 
. p
~ Q°

. P~Q
O Q. 

~~
. p
3
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- # 1  ‘ #2 
l 

#3

~~~~~~~~~~ 
_
~Li1~ ~~~~~ 

_ .23 P Q L9L~~ - iL~~LIi1

-3.0~ .29 .7l~ .36 .64~ .21 .79 .71 x .36 x .79 = .202 .169

-2.5 .32 .68 .39 .61 I .22 .78 .68 x .39 x .78 = .207 .173

-2.0 
- 

.37 .63 .45 .55 .25 .75 .63 x .45 x .75 .213 .178

-1.5 .50 .50 .60 .4O~ .30 .70 .50 x .60 x .70 = .210 .176

-1.0 .62 .38 .77 .23 .38 .62 .38 x .77 x .62 = .181 .151

-0.5 .77 .23 .90 .10 .50 .50 .23 x .90 x .50 = .104 .087

0.0 .88 .12 .97 .03 .41 .12 x .97 x .41 = .048 .040

0. 5 .93 .07 ‘ .99 .01 .70 .30 .07 x .99 x .30 = .021 .018

1.0 .97 .03 .99 .01 .79 .21 
- 

.03 x .99 x .21 = .006 .00 1

1.5 .98 .02 .99 .01 .87 .13 .02 x .99 x .13 = .003 .000

2.0 .99 .01 .99 .01 .91 .09 .01 x .99 x .09 = .000 .000

2.5 .99 .01 .99 .01 .95 .05 .Ol x . 9 9 x . 0 5  = .000 000
- 

XL(U I9)  = 1.195 1.000

Table 12.7

The method of calculating the Maximum Likelihood
Estimate of U from a test of 3 items for an examinee
with the response pattern , U = 010.
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12.7 1!hen we give a test, we get each exami nee ’s response pattern ,

and we want his 0. L(UI9) is not what we want , since we already have
U. What would help us esti mate an exa minee ’ s 9 is just the reverse,
i.e. L(O~L) .

Fortunately , Bayes ’ Theorem allows us to get L(9~U) from L(U19).

L(G I U) L( U IQ )

~L(u Ie)

To use Bayes ’ Theorem we have to get the L(L’IO) at several points on

the 9 scale. How many points we use is determi ned by how accurately
we want to estimate 9. 

-

To show how this is done , L(U=010JO) is calculated in Table 12.7
for three hypothetical items at 12 values of 9.

The total of the L(UIe~ iszLWIe~ . The right column shows

L(e)U~~L(UI9.)/~ L(UIe~. Any exarrinee , no natter what h i s  0, cou ld

conceivably have a U = 010 in this three-item test. There is a finite

probability of U 010 at every 0.

However , the likel i hood of an examinee having U = 010 varies

considerabl y with 9. An exaniinee with Q.�.0.0 is unlikel y to have

U = 010. In fact , only 6% of exam inees wi th 0�.0.0 will have U = 010.

Note: The proponents of Maximum Likelihood Estimation do not agree
with the use of Bayes ’ Theorem in this explanation.
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A graph of the likelihoods (for U = 010) would look like Figure
1,,

—IL

~~~ H ~ ~It ~~ 
~~~~~~~~ ~t~iJ

Figure 12.7. The graph of the likelihoods in Table
12.7, called the likelihood function.

This curve is called the likelihood function.

If you had to guess the 9 of an exami nee with U = 010, what 9
would you guess from the information in Table 12.7? You should guess
his 0 = -2.0 because the likelihood of U = 010 is greater at 9 = -2.0
than at any other 9. Therefore, you would be right more often than if
you guessed any other 9. By choosing the 9 with the greatest likeli-
hood , you have chosen the 0 with the maximum likelihood . And that is
the Maximu m Likel i hood method of estimating 0 That’s all there is to
it.
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Now look at the L(UJO) column . At which value of 0 is L(U~9)
greatest? It is at 9 = -2.0, the same as the 0 with the maximu m L(O~
U). That will always be the case because the L(Q~U)’s are just the
L(U~Q) ’ s div ided by the constant ~~L(UI6). So the 9 wi th the maximu m
L(OJU) will always be the sare as the 9 with the maxi mum L(L’~Q) .
jherefore, it is not necessary to divide by ~~L(L’~Q) in order to find
the 9 with the maximum likelihood.

Since we divided by ~ L(UI9) in order to apply Bayes ’ Theorem ,
we find that Bayes ’ Theorem is not necessary for maxi mum likelihood
estimation.

Another short cut is to take the logari thm of the P.~ and 
‘S

and add them, instead of multiplying the 
~~~~~~ 

and Q
~

’s. The sum of the

logarithms will also always be r-axirium at the same value of 9. A graph

of the log likelihoods is called the log likelihood function. The log

likelihood function will always be highest at the same 9 at which the
likelihood function is highest.

It should be noted that , in this example , you would be right
in estimating 0 = -2.0 only 17.8% of the ti me and wrong 82.2% of the
time. But this is true only because the test had only three i tems .
With a lonc’er test there would be one 0 at which the likelihood is
nt1ch greater than any other.

12.8 Table 12.8 shows the maximum likelihood method of estimating
0 for a test made of the four i tems whose IRF’ s are shown in Figure
6.17.

(1) across the top are 17 values of 9

(2) under the 9’s are the P(O)’s for each of the four i teris.
(3) the i tem numbers and parameters are in the top left corner.

(4) down the left side are the 16 possible response patterns for
four i tems and the raw (# right) score represented by the response

patterns. 
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(5) in the body of the table are the L(UIQ)’s for each
possibl e U for the 17 values of 9. Each L(UIG) is
multiplied by 1 000 to elimi nate decima l va l ues.
(6) underlined ir each row is the maximum L(U (G)
(7) down the righ t side are the values of 0 where the
underlined maximum likelihoods occur. These 9’ s are the

maximum likehood estimates (MLE) of 0 for each of the 16
possible U.

Note that the MLE for U = 0000 is - oo, and the NLE for U = 1111
is + oo. That is a characteristic of the MLE. The MLE will not gi ve a
finite estimate of 0 unless the examinee has missed at least one i tem
and answered at least one item correctly. This limi tation is not

serious because raw scores of 0% or 100% are usually rare .

The NLE of 0 >2.7  is due to the limi ted range of 9 used in this
example. A larger range of 0 would yield a more precise MLE of 9.

The many cells with L(UI0) = 0 in the body of Table 12.8 are due
to the very unusual i tem #17.

12.9 Now compare in Table 12.8 the raw scores on the left wi th the
MLE’s on the right. You can see that a raw score of 1 represents
Os from -2.3 to +2.0 , an extreme rang & A raw score of 2 ~represents

Os from -1.3 to greater than +2.7. A raw score of 3 represents 9’s
from +1.3 to greater than +2.7.

The extreme range of 0, depending on the U’s represented by a
single raw score, demonstrates well the inadequacy of using raw
score as an estimate of ability . The inadequacy of raw score as an
estimate of ability is due to the fact that raw score cannot dis-
ti nguish chance success from knowledge success on an i tem. In
contrast, the MLE takes guessing into account by using the additional
information in the response pattern.
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CHAPTER 13

Bayesian nodal Estimation of 0

13.1 The Bayesian Modal method of estimating 9 takes up where the MLE

stops. The proponents of the Bayesian ~
1odal method (called Bayesians)

reason that if the distribution of 9 i s known or assumed , then that
knowledge or assumption provides additional information which can be

used to more accurately estimate 0.

13.2 Bayesians assume that 0 is distributed normally. The assumption

of normality means that the probability of any randomly-chosen examinee

hav ing a 9 at the extremes is less than his probability of h aving a

9 located near the mean. The assum ption of normality is made on an a

priori basis (i.e. before empirical evidence). Thus , it is called ti~
normal “prior ’ distri bution.

13.3 Suppose the likelihood of 01~U is very close to the likel i hood of
02fU , but that there are many more examinee ’s at 

~2 
than at 01. In

this case we would be right more often by estimating 0 at 
~2 

than a t
0i. In doing so we would , in effect , be w e i g h t i n g  our l i k e l i hood by
the number of examinees at the two 0 values. If we take this idea to

its logical extreme , we should weight all likelihoods by the proport ion
of examinees at each va l ue of 0 in order to reduce our errors.

13.4 By assuming a normal distribution of 9 we can weight the like-
lihoo d by the relative proportions of area under the normal curve .
To do this we merely multi p ly the area within the interval of the norma l
curve at 9, designated J~N(O ,1), times L(UIQ). Table 13.4*shows how th i s
is done using the l ike lihoods from Table 12.8.

*There are several computational errors in Tabl e 13 .4. However ,
These errors do not affect the explanation of the concepts involved .
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using the likel ihoods from Table 12.8.

(1) the top row are points of 9 whi ch are midpoints of

intervals of 0.
(2) the 2nd and 3rd rows are the limi ts 0f the intervals.

(3) the 4th row is the proportion of area under the normal

curve and wi thin the interval .

(4) in the body of the table each colurrin is the area in the 4th

row multiplied by the corresponding likelihood from Table 12.8
(times 1(4000 to remove decima l values), i.e. L(UI9) xJTh(O,1)).

(5) the largest value i n each row is underl i ned.
(6) the 9 for the underlined likelihoods are in the right

column . These are the Bayesian Moda l Estimates (BrE ) of 0.

The Bf~E is called ciodal because, when we choose the 
larçest value

in eac h row , we are choosing the mode of the distribution of L(UJ9) x

J~(0,1) .

13.5 Bayesian r~odal Estimates are more conservati ve than MLEs (con-
servative means closer to zero, the mean of the normal prior distri-

bution). flote that wi th U 0000 and U ll ll , the BMEs of 0 are
finite . The finiteness of 9 estimates of BME when either all or

no i tems are answered correctly is a mi nor advantage of BME.



13.6 There is an active controversy between the Bayesians and the
proponents of the MIE. The Bayesians argue that MLE is the same as
a BME, if 9 is assumed to be distributed rectangularly. (A rectan-
gular distribution of 0 means that there are equal numbers of exam-
inees at all 0 values , even at +00 and -oo). And so, say the Bayesians ,
since a normal distribution of 9 is more reasonable to assume than a
rectangular distribution , the BME is a more accurate estimate of 9.

The proponents of MLE argue that the coincidence of the MLE
(which assumes no distri bution of 0) being the same as a BME with
rectangular distribution is i rrelevant. The important thing is that
MLE makes no assumption about the distribution of 9, whereas BME makes
the additional assumption , which will be sometimes fal se.*

13.7 I shal l not take sides in this matter, because for me the point
is moot. The only computer program available to me at present Is
OGIVIA-3 (See Chap. 15), which uses the BME . Therefore, I shall
continue to use BME until I have a program which uses MLE. At that
time I shall have to make a decision.

13.8 Another type of Bayesian estimation is called Owen ’s Bayesian,
after its inventor , R. L. Owen (1975). The Owen ’s Bayesian method
is used primarily in tailored testing (See Chap. 17).

*J apologize to both sides of this complex issue for this meager
representation of their positions.
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CHAPTER 14
Assumptions

14.1 There are 4 basic assumptions of IRT. The first of these is a
mi nor assumption . It is an assumption of any test theory and without

* 
which there would be no justification for testing.

• Assumption #1: The Know—Correct Assumption: if the examinee
knows the correct answer to the item, he will answer it correctly.*
We have probably all violated this assumption while taking tests by
marking a different choice than we intended to mark . Occasionally,
an examinee will inadvertently skip an i tem, and then mark all the
rest of his answers in the wrong places. This is merely a clerical
error, but there is no provision for it in any test theory. Another
way to state the first assumption is: if he got the item wrong,
then he did not know the answer.

14.2 Assumption #2: The Normal Ogive Assumption: The IRF takes the
form of the normal ogive. This is the problem , mentioned in Section
3.3, which deterred Lord ’s work for 10 years. The difficulty lay with
3 parts of the IRF.

a. The lower asymptote
b. The upper asymptote
c. The middle or rapidly rising part of the IRF

*The reader should take careful note that the inverse of this assump-
• tion is P~OT made . That is , it is ~4OT ASSUMED that if the exami nee

gets the i tem correct, he knows the answer. I emphasize this distinc-
tion because many persons upon first reading of assumption #1 mi sread
it as its inverse.
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(1) As previously noted, the c—value of an IRF is often not
1/A. This is the case wi th observed parts of the lower asyn~tote.

But what about the unobserved parts? If an item from the SAT wi th

c = .09 were gi ven to extremely low 9 persons such as kindergarten

children or mentally retarded persons, would the lower tail of the

IRF rise to 1/A?

(2) It has been charged by Hoffman (1962), that tests may

penalize extremely high ability persons, because they know too nrjch.

That is , they consider factors far beyond the intended scope of the

item, and therefore get it wrong. If that were the case, then the IRF
would curve down away from the upper asynptote at high 9’ s . This has
been called the Banesh Hoffmann Effect.

• (3) It was not known that the IRF was monotonic, and that its

general shape was that of a normal ogive.

In 1965 Lord published a massive study with a sanpie size greater

than 100,000. Specifically, he found:

a. the lower tail of the IRF did not rise for almost all items.

The very few items that did rise, did so to a very small

extent.

b. no evidence of the Banesh Hoffman Effect.

c. good indications that the IRF is strictly monotonic.

I
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14.3 Assumption #3: Local Independence. Local independence means
that the probability of an examinee getting an item correct is un-

-• 

• 
affected by the answers given to other items in the test . Local
independence does NOT mean that the i tems correlate zero wi th each
other.

The most comon situation where local independence does not hold
is in a speeded test. In a speeded test an exami nee may get the last
items wrong, simply because he did not reach them. A distinction is

• made between not-reached items and omitted items . Not-reached items
are those unanswered items which have no answered items after them
in the sequence of items in the test. Omi tted items (omi ts ) are un-
answered items which have at least one item answered after them in
the sequence of items in the test. This distinction is important, when
deciding what to do with not-reached items and omi ts in scoring answer
sheets . Not-reached items are not attempted (and hence there is no
possibility of being correctly answered ) simply because of the pre-
sence of the early items , which were attempted during the time limit.

Furthermore, earlier items which were attempted may have been
missed, because the examinees felt rushed and coul d not give their
best efforts to the items.

• Similarly, in long tests, fatigue effects may impact the local
independence of items .

Certain reading comprehension tests mi ght violate loca l inde-

pendence when several items are all based upon some coninon reading
passage. However, it is not entirely clear whether such items violate
local independence.
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F

Chain i tems violate local independence . An example of chain

items follows :

• (1) Who discovered America?
(2) Where was he born?

Cl early, if the first item were not in the test, the second item would

be meaningless. Fortunately, chain i tems are rare.

Local independence also means that items are uncorrelated for
individuals with the same 0. This interpretation suggests a statis—
tical test for local independence . (Lord, in preparation , p. 26).

rgh 1~ 
= 0, g~h

where rghlo = the tetrachoric correlation between items g and h
for examinees with exactly the same ability .

To use this statistical test requires that first it is necessary to

get a large number of exami nees wi th identical 9’s. Then , using their

responses , calculate the interitem tetrachoric correlation. That

correlation should not be significantly different from zero. This

procedure has at least 2 practical difficulties.
First, it should be done for all (or at least several ) values of

9. It is nearly impossible to get large sample sizes at many 9

val ues .

Second, it must be done for all pairs of items, which would
require calculation of n(n-1)/2 tetrachoric correlations (n = # of
items in the test) for each value of 9. A 50-item test would require

1225 correlations at each 0 value. If 10 9 va l ues were chosen , that

would mean 12,250 correlations.
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A similar but simpler procedure would be to partial out of the
interitem correlations the affect of 9. This may be done by using
the item-test biserial correlation. Then

rgh - rgo YhQ
Y~h~9 _ _ _ _ _  _ _ _ _ _

/~-~~ge “ii-T2he
where rgh = the tetrachoric correlation among all exami nees between
items g and h (g/h), and rgg = the biserial correlation between item
g and 9. rgh;g should not be sign i ficantly different from

zero.

Before using this test of local independence, care should be
taken that the implici t assumptions of the statistics involved are
satisfactorily met. In any case it should only be considered as a
rough estimate.

This latter procedure would require n(n-1)/2 tetrachoric co-
rrelations plus n biserial correlations (which are usually available
anyway).

Because of the practical rarity of conditions violating loca l
• i ndependence , this assumption is usually not tested.

14.4 Assumption #4: Unidimensio nality . The assumption of unidimen—
sionality is the most complex and most restrictive assumption of IRT.
In general, unidimensional ity means that the items measure one and
only one area of knowl edge or ability . However, unidimensiona lity

does NOT mean that the items correlate positively wi th each other. In
fact, it is conceivable for all i tems to correlate negatively with
each other and still be unidimen sional .

As a rule of thumb , tests that look unidime nsional probably are
unidimensional. Thus , typical ability tests, such as verbal , numer ical ,
spatial perception , mechanical comprehension and tool knowledge are
probably unidimensional.
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Another rule of thumb is , items that test bits of knowle4ge
that were learned together are probably unidimensional. Thus, a final
examination for a college course might be considered unidimensiona l .
An excellent example of this rule is given by Bejar, Weiss , and
Kingsbury (1977). That study involved a test in college introductory
biology . Part of the course was covered by a test divided into 3
content areas, called “Chemistry ,” “The Cell ,” and “Energy.” The
single test for all 3 content areas was found to be essentiall y
unidimensional.

Unidimensiona lity in a test covering 3 such diverse sounding
content areas is surprising. The fact of its unidimens ionality may
have resulted from the i tems testing bits of knowledge which were
learned together in the college course.

It may well have been, however , that the subject—matters of the
3 content areas were not as diverse as they sound . It is likely that
“Chemistry” was the chemistry necessary to understand the cell . And
“The Cell” content was necessary to understand the “Energy ” use and
transfer within the cell. This possibility suggests another rule of
thumb. Items that test bits of knowledge which are logically and
sequentially related may be expected to be unidimensional.

Rules of thumb are, by definition , sometimes erroneous. I do not
suggest that they replace efforts to empirically verify unidimension-
ality . However, in view of the difficulty of empirical verification ,
some readers may find them helpful.

:
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14.5 There is no completely satisfactory test for unidimens ionality
among multiple-choice items . The reason for this situation is that
most tests for unidimensiona lity invo l ve factor analysis of interitem
tetrachoric correlations . Unfortunately, the tetrachoric correlation
assumes 9 is normally distributed , and is not entirely appropriate when
c ~~O; i.e., when the item can be correctly answered by guessing.
Cristofferson (1975) has made the best attempt to develop a test for unidimen—

sionality(Lord , in preparation , Section 2.4, p.27). However, the
rn

mathematics of his method are complex and will not be discussed .

I have found 8 methods of testing for unidimensiona lity in the
literature. Six of the eight use factor analysis. To avoid repe-
tition , the initial factor analysis steps which are conmon to all
six will be described.

(1) convert the actual responses of exami nees i nto zeroes and
ones; zero, if the response is wrong, and one, if the response is
correct. Factor analysis requires a sample 10 times the # of items
(N = iOn);

(2) calculate a matri x of interi tern tetrachoric correlations
(not the phi coefficient), using the zero-one responses;

(3) replace each value in the diagonal with the correlation
in its row that has the largest absolute value (most factor analysis
computer programs have an option to do this automatically). If there
are too many items for the capacity of the computer, a random sample
of items may be used;

(4) do a principal component (or principal axis) factor analysis
for the first 9 factors (9 is an arbitrary, typical number).

- 
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14.6 I have given short titles for easy reference to each of the tests
for unidime risionality :

(1) The Eigenvalue Test. Plot the eigenvalues of the nine
factors against the factor rank , as shown in Figures 14.6(1)a and

14.6(1)b. The items may be considered unidimensiona l if the eigenvalue
of the first factor is large compared to the second factor, and the

eigenvalues of the remaining factors are all about the same. The graph
should look something like Fi gure 14.6(i)a if the i tems are unidi—
mens iona l , and like Fi gure 14.6(i)b if the items are not unidimen-
sional . (Lord and Novick , 1968, p.283).

(2) The Random Baseline Test. Thi s test is a variation of the

Eigenvalue Test. It is necessary to do the Ligenvalue Test first.
To get the random baseline , create with a random generator a matri x

of zeroes and ones of the same order as the matri x in step (1) of
Section 14.5. Then perform steps (2), (3), and (4) just as wi th the

Elgenvalue Test. Plot the eigenvalues from the random data on the same
graph as the Eigenvalue Test. tinidimensiona lity is indicated if only

the first factor eigenvalues are distinguishable for the 2 sets of data
(NcBri de and Weiss , 1974,p.30). See Fi gures 14.6(2)a and 14.6(2)b.

(3) The Biserial Test. Compute the correlation between the

i tem-test biserial correlation and the i tem first factor loading.
A hi gh (.80 or higher) correlation supports the assumption of uni-
dimensionality . (McBride and Weiss , 1974 ,p.31,33 and 37) .

(4) The Factor Loading Test. Unidi mensionality is indicated
if the fi rst factor loadings for all items are signifi cant and have
the same sign (+ or -) . (f~cBride and Weiss, 1974,p.33).
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Figures 14.6(1) a and b. A hypothetical illustra-
tion of the Eigenvalue Test forunidimens ionality.
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Fi gures 14.6(2) a and b. A hypothetical illustration
of the Random Baseline Test for unidimens tonality.
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(5) The Congruence Test. If the exami nees can be separated
into two meaningful subgroups (Black /White , male / female), then a factor
analysis (steps (1) to (4) in Section 14.5) can be performed on each
group. The Coefficient of Congruence (CAB ) of the item first factor
loadings between the 2 groups w~ll approach zero, giving evidence of
unidinensionality with respect to the variable on which the groups were
defined , i.e. race , sex. (Pine , 1977,p.4). (See Roninel l , 1970,p.461

for Coefficient of Congruence).

(Lj a~Ltb )2

L. = loading of item i for group A onia the 1st factor
L.b = loading of i tem i for group B on

1 the 1st factor
n = number of items in the test

CA B = Coefficient of Congruence between
groups A & B

(6) The Coninunality Test. It has been suggested that unidiren-
sionality nay be tested by

,
~J hi2 hi2

G =

where r1~ 
= interi tem tetrachoric correlation

h~ = the item cornunality

n = the number of correlations

According to Green , et al (1977, p.836) this function which I have

designated G, approac hes 1.00 as dimensionality approaches unity .
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I have applied G to data published in McBride and Weiss (1974).
This data gi ves item comunalities and interitem tetrachoric correla-
tions for six real , word knowl edge tests, and six sets of random data .
The six real tests were found by McBride & Weiss to be essentially uni-
dimensional by three different measures of unidirnensionality , i.e.
the Random Baseline Test (see 14.6(2) above), the Biserial Test (see

14.6(3) above), and the Factor Loading Test (see 14.6(4) above). C for
the real tests ranged from .419 to .484, and had a Spearma n rank
correlation with the first factor percent of comon variance of rho =

1.00. On the random data, G ranged from .284 to .348, and had a Spear-
man rank correlation with the fi rst factor percent of coninon variance
of rho = .60. It appea rs that when c ~ 0, & approaches neither one
(fo r unidimensionality ) nor zero (fo r nonunidirnensionality). Further-
more, C is no better as an indicator of unidiniensionality than is
the first factor percent of coninon variance.

(7) The Part/Whole Test. If the items may be separated into
disti nctive types or content , the a and b values may be estimated
separately for each type and for the entire test. If the parameter
estimates under the two conditions (part vs. whole ) correlate highly,
unidimensionality is supported (Bejar , 1977(b), p.13).

(8) The Vector Frequency Test. Assumi ng 9 is normally distri-

buted, and gi ven the item parameters, it is possible to calculate
the expected frequency of all possible response patterns. A comparison
wi th the observed frequency of all possible response patterns will
yield a non—signifi cant chi—square , if unidimensionality is present

(Bock and Lieberma n, 1970).

14.7 Unidimensionality is a sufficient condition for loca l independ-
ence. That is , if you have unidiniensionality , then you a l so alwa ys have
local independence. The reverse is not true. Local independence is
neces sary for , but does not guarantee , unidimens ionality .
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CHAPTER 15

Computer Programs

15.1 There are several computer programs available for estimating
examinees ’ Qs and i tem parameters. Only 2 of those are in general
use. Both are written in FORTRAN .

15.2 LOGIST was written at the Educational Testinc Service and is
the program used by Lord for his work (See Wood et al , 1976). The

LOGIST and related programs provi de a complete set of options for calcu-

lating and printing:

a. examinee ’s 9,
b. item parameters,
c. i tem response curves,
d. test characteristic curve ,
e. item information functi on,
f. score information curve , and
g. relative efficiency of 2 tests .

LOGIST allows either exami nee ’ s 9 or item parameters as fi xed
input, and puts all other estimates on the same scale as the input
parameters . It is by far the more versatile program. Lor d recomen ds
that, to get good estimates, at leas t 1000 examinees and 30 items are
needed in the test.

However , LOGIST has one prac tica l di sa dvan tage. I t requ i res from
30 minutes to two hours of computer CPU (Central Processing Unit) time.
Consequently , I was una bl e to conv i nce rr~’ data processing people to
implement LOGIST and have not been able to use it. 
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LOGIST uses a maximum likel i hood estimation procedure . It
computes all parameters at the same time , using an iterative tech-
nique. The iterative technique computes the fi rst estima tes from the
raw data . Then , those estimates become input for the second iteration
of computation , using the same maximum likel i hood procedure to compute
the second estimate . The second estimate becomes input for the third ,
and so on. The iterations continue until the estimates converge , and
do not change significantly from one iteration to the next. Sometimes
the estima tes do not converge , but drift off to infinity or fluctuate
wildly back and forth. In these cases, LOGIST applies certain l imit-
ing rules.

The a and b parameters from LOGIST correlate positively. This is
an unexpected and undesirable result. When c parameters do not
converge , LOGIST sets all non—converging c parameters equal to some
average value , usually between .10 and .25. This may occur with 50%
to 80% of the items in a single test, which suggests that the c
parameter is not well estimated by LOGIST.

15.3 OGIVIA* was written for Dr. Vern Urry of the U.S. Civil Service
Commission (USCSC) by Jerry Edwards, Univers ity of Washington and
revised by John Gugel of the USCSC. It has also been called URRY
and ESTEM in the literature . There are several versions of it, the
current one being called OGIVIA—3. OGIVIA-3 calculates and pri nts
both a classical i tem analysis and the i tem parameters. It has
options for the normal ogive and logistic models , but does not have
the scaling option of LOGIST. It does not print out exami nees’ 9’s,
but could be made to do so without much trouble.

*pronounced og~ve-eye-aye 
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OGIVIA uses a Bayesian modal estimation procedure. It estimates Item
parameters, using raw scores as an estimate of 9, by fitting the data
to a logistic (or normal ) ogive. Chi Square Is the test for goodness
of fit. It then re-estimates 9 with the estimated item parameters
using an iterative technique until the 9 estimates
converge or 20 iterations are done, whichever comes first. The re-estimates
of 9 are then used to re-estimate the item parameters by the same curve
fitting technique. Estima tes of 9, typically, do not converge on a small

F 
-

. percent (about 1%) of examinees ; and i tem parameters sometimes do not

converge on as many as 5% to 10% of the items.

OCI VIA needs at least 1000 examinees and 60 i tems in the test,
with a test KR-20 of +.90 in order to get good estimates. I have
used it wi th as few as 150 examinees on a test of 30 i tems with
apparent success for my purposes. Uses of such small numbers should
be done wi th caution. OGIVIA requ ires only two to five minutes of
CPU time on the computer. This fact makes OGIVIA much more attractive
than LOGIST, despite the possible difficulties of Bayesian estimations.

An interesting feature is an F—ratio for each item, which tells
how well the i tems responses fit the model . An F-ratio of 4.00 or
5.00 or less means the data fit the model . In a comparison of the
F-ratios of 8 tests between the normal ogive model and the logistic

• model , the logistic model fit the data slightly better than the norma l
ogive model .

Urry has a new version of OGIVIA , called ANCILLES , which needs
only 30 items, but little is known about it because it is so new.

The a and b parameters of OGIVIA do not correlate highly. However,

the c parameter estima tes fluctuate considerably from sample to
sample. This indicates that OGIVIA, too, does not estimate the c
parameter we l l.
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15.4 programs which print out IRFs, IIFs and TICs are available from

the USCSC. These were written by John Gugel .

15.5 Al l of these computer programs are availabl e for the asking.
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CHAPTER 16
Equating the 9—Scales

16.1 When raw data is fed into LOGIST or OGIVIA , the program cal-
culates the i tem parameters (called “calibrating ” the item) and the
examinees ’ Qs all at once. The a and b va l ues are on the same scale
as 9, which is set to have a mean = 0, and standard deviation = 1. If
the same test is given to two groups of exami nees, and the i tems
calibrated separately for each group, the a and b values from the
separate calibrations will not be comparable because the scales of 9
will be on different metrics. And the examinees Qs will not be
comparable from group to group. 1~ll that is necessary to correct this
situation is to l ump both groups together and treat them as one group.
Then the 9s for all exami nees wfll be on the same scale.

16.2 Another (more laborious) method is to transform the 9—scale for
one group to the 9-scale of the other group. This transformation is
possible because the b-val ue of an i tem is invariant (except for
linear transformations of the 9—scale), and because the 9—scales are
linearly related.

The linear relationship is based on the traditional standardi—
• zation formula b b b
• 2 - 2  I - I

SD 
- SD~.b

where b1 the i tem b—value on the metric of Group 1,

b2 = the i tem b-value on the metric of Group 2,

• b 1 & 50b ’ = the mean and standard deviation of
• the b—values of the items on metric
• of Group 1,
• b2 & SDb = the mean and standard deviation of

2 the b—values of the i tems on metric
of Group 2.
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Lord (in preparation) recomends that , when calculating the
b and SDb, items with low a values (a 4.8) and extreme b-values
(lbI )2.0) be excluded , because b-values for such items are not well
estimated.

Solving equation 16.2a for b1,

b~ = b2+ 
[II_(: 2]

Since b is on the 9—scale , 9 may be substituted for b, and

~, ~~~~~~~~~~~~~~~~~~~~~~ 
f~.2c

This equation may be used to transform an exami nee ’s 9 score from one
scale to another. It is NOT proper to use a regression equation based

on the correlation of the b—values or 9 from the two groups of exam-

inees for this purpose.

• 16.3 Suppose from a bank of 100 items we construct two tests con-
taining the following i tems:

Test Item Bank #s

A 1-60
B 41-100

Each test has 60 items , 20 of which are comon to both tests . Suppose
further, we give the tests to two groups of exami nees (one test to
each group), and calibrate the tests separately.
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We now want to put all 100 items on the same scale. We can do so
because we have 20 comon items on the two tests and we have those
items calibrated on both scales. First, calcu late the mean an d sta ndard
deviation of the b-values on each scale of the 20 coninon items. Then

all the b-values of one test may be converted to the metric of the other

test with Equation 16.2b. The 9s may be converted with Equation 16.2c.

The a—values are converted by dividin g by the ratio of the b-value

standard deviations.

- . SDb,~~~~ • SD~a1 — a 2 -- S Dba SDbs

• NOTE: Remember, a2 and b2 means the a an d b va l ues on the old scal e
an d a1 and b1 are the item’s a an d b va lues on the new scale.

The c—values are already on the same scale , because they are on the
S 

P(Q) axis of the IRF. Thus , al l c-values are always on the same scale

and need no conversion .

• In order to build a large bank of calibrated i tems on the same
• scale , it is desirable to include in the test items from the bank which

have already been calibrated along with new i tems. These items , which
are used to link one 9-scale to another 9—scale , are called “anchor

items.” A minimum of 17 anchor items is recomended. More than 17
Is desirable.

• [15
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16.4 Occasionally the situation wi ll arise where two different tests

(i.e. , no coninon i tems) are given to two groups of examinees at

different times , and some of the examinees take both tests (called f,,
“anchor persons”). This situation may be handled in ei ther of two

ways .

(1) If there are enough persons , combine the answer s heets

of the anchor persons for both tests , and treat the two tes ts as one

long test. Then the 9-scales of the two separate tests may be

rescaled to the combined test 9-scale as described in Section 16.2

above.

(2) Calibrate each test separately. Take the two 9 values of

the anchor persons and calculate their means and standard deviati ons

for each test. Then use:

~~[so~ 9 ÷[9  
(sa.~ ~;1(fO.~J [ ~~~~ J

to rescale all examinee ’s Os,

• b, 
[s)Dei [.. - (so.1 

~• L’~J L
to rescale the b—values , and to rescale a-values :

f SD~ \— a  Za,—

Again , the c-values are already on the same scale .

The use of the Os to rescale assumes that 9 has not changed between

administrations of the two tests.

~•.1IIJIII1~~•~ ~~~~~~~~~~~~~
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16.5 Even if no anchor persons have taken both tests , it still may be
possible to take items from both tests , create a third test, administer
it to a third group of exami nees , and then use the thi rd test as anchor
items to link the origi nal 2 tests.

16.6 Anchor items should be chosen in wder to make the estimate
of SDb as accurate as possible. A ll estimates of b-values have some
error in them. To reduce the proportionate contribution of estimation
error to SDb we want the SDb as large as possible. That conclusion
suggests that the anchor i tem b-va l ues should have a bimodal distri-
bution. That is , half of the anchor items should have high b-values ,

and half should have low b-values .

However, very high and very low b-values are not estimated well ,
which means they have a signifi cant amount of error in them. We
should , therefore, compromise between a large SDb and large error
in estimates of b. This reasoning suggests that anchor i tems should
be bimodally distributed with half the i tems having moderately high
b—values , say 1~~ b ‘~~~ 1.5, and half wi th moderately low b-values ,

i.e., — 1.54b ~ -1.0.

The b-values are with respect to the groups to be tested. If

there is good reason to believe that the group to be tested has about

the same distribution of ability as those on whom the anchor i tems
were calibrated , then the bimodall y distributed b-values are the best
anchor i tems. However, if the group turns out not to have about the

same distribution of ability as the calibration group , half the anchor

items may be either too easy or too hard , and the anchor i tems will

not serve their purpose well.
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A safer method would be to select anchor i tems to have a rec-

tangular distribution of b—values from —1.5 to 1.5. In this way

you will be confident of getting many anchor i tems of appropriate

difficulty and still have a large SOb.

The a-values of anchor items should be as large as possible ,

and the c—values as small as possible. However, the a—value is more

important than the c—value.
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CHAPTER 17
Tailored Testing

17.1 Psychometrists long have known and dep lored the fact that many
i tems on a test are not appropriate for a given exami nee, i.e. they
are either too hard or too easy. Until IRT there was no satisfactory
way to avoid this problem, and at the same time get a decent measure
along the ability scale.

With IRT came the possibility of tailored testing, which is so
• named because it allows the “tailoring ” of the test to the ability of

the exami nee. Tailored testing is also called adaptive testing.
Variations of it are called stradaptive testing and fl exilevel test—

‘ ing.

17.2 Tailored tests are administered by a computer with the items
presented on a CRT (Cathode Ray Tube device , which is similar to a
television set). (See Ree, l977a.) It works like this:

(1) The exami nee sits in front of a CR1 attached to a typewriter
keyboard .

(2) The examinee registers on the computer with his identi-
fication , test name and other pertinent information.

(3) In the computer are stored a bank of 150 to 200, or more ,
precalibrated i tems along with their i tem parameters . The computer
selects an i tem of average difficulty and presents the i tem to the
examinee o~ the CRT.

• (4) The examinee records his answer on the typewri ter keyboard .
(5)  The computer uses the examinee ’s response and the i tem

parameters to estimate the examinee ’s most likely 9, and then selects
another i tem. The i tem selected is the one which will best help the
computer estima te 9 after the examinee answers the i tem. If the
exami nee got the i tem correct , he will get a different next i tem than
if he got the i tem wrong.
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(6) Steps (4) and (5) above are repeated until the computer
meets the cri terion for stopping the test. The criterion for stopping
the test is called the “stopping rule. ”

17.3 Examinees with different response patterns will , in general ,
get a different set of items; yet their final estimates will be on
the same metric. Not all exami nees may get the same number of i tems,
yet all 0 estimates can be to the same degree of accuracy .

17.4 Stopping rules can be designed as desired to fit the situation.
Three typical stopping rules are :

(1) Stop when a specified number of i tems have been administered .
(2) Stop when the SEE of the exami nee ’s 9 has dropped below

a specifi ed value ; often SEE ~~ .0625 is used.
(3) Stop when no more i tems remain in the bank that will provide

a significant amount of information about the examinee.

It is not uncommon to combine some of tue above rules.

17.5 Because the computer selects i tems on the basis of item informa-
tion , the computer will usually select items with high a—values first ,
and then after high a-value i tems have been exhausted , select other
i tems.

17.6 The reader will recall from Section 12.8 that the maximum likel i-
hood method (MLE) will estimate 9 at plus or minus infinity until the
examinee gets one i tem wrong and one item correct. Therefore, if the
exami nee gets the first i tem correct , the computer will give the
hardest item in the bank second . And it wil l continue to give the

hardest i tems until the exami nee gets one wrong.

— 
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Similarly, if the examinee gets the first i tem wrong, the com-
puter will give the easiest i tems until the exami nee gets one correct.
Since Bayesian estimation methods (see Chapter 13) do not have this
characteristic , it has been proposed to combine the two estimation
methods , using Bayesian estimation until the examinee has gotten one
item wrong and one i tem correct; and then swi tch to MLE.

Owen (1975) has developed a hig hly efficient algorithm for
Bayesian scoring. The Owen ’s Bayesian scoring procedure is widely
used .

17.7 Tailored testing has several advantages over conventional tests.
(1) Depending upon the characteristics of the i tem bank , a

tailored test will use only 10% to 50% of the number of i tems required
by a conventional test and at the same time will measure more accurate-
ly than the conventional test at almost all va l ues of 0. Tailored
tests can measure to any specified degree of accuracy .

(2) A tailored test takes much less time to administer , or
several abilities can be measured by a tailored test in the same time
needed to measure one ability by a conventional test.

(3) Security of the i tems is much improved , because different
exami nees get different i tems, and because the i tems are much less
accessible (in the computer as opposed to hard copy).

17.8 The use of tailored testing also has some problems .

The cost of large scale use of tailored testing machines is

E 
currently prohibitive because of the cost of CR1 devices , an on— line

L 

time—sharing computer , and telephone lines to hook the CR1 devices
to the computer. Moreover, it often takes 5 seconds for the computer
to do its calculations and present the next i tem. If only 20 CRT
devices were on line at a time , the delay to get the next i tem could
be 100 seconds or almost two minutes. Such delay would wipe out
the advantage of reduced administration time that makes tailored
testing attractive . The reliability of telephone land lines is also
often a problem.
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A feasible alternative would be a self—cont ained tailored testing
machine wi th the items presented on a Microfiche , and the calculations
done by a microprocessor.

Major Brian Waters , USAF , has developed a prototype of such a
machine , which could be mass-produced for about $500 each. His design
requires the exami nee to find the item on the Microfiche film. The
microprocessor “senses” the location of the film and will not accept
a response from the exami nee if he is looking at the wrong item.
Waters estimates that the microprocessor could be made to control
the Microfiche machine (i.e. present the item automatically) for a

• mass—produced cost of $1500 each.

Another potential problem is that of legal defensibility .
Imagine an examinee who, after talking to another examinee , finds out
that his items were different, he got a different number of items, he
got more items correct, and yet got a l ower score on the test. This
situation contains all the necessary elements for a law suit. Now
imagine trying to explain to a judge or jury that, in fact, the
examinee wa~ not improperly discrimi nated against , and that the
Bayesian modal or maximum likelihood method of estimating theta was
more accurate . Also consider the hundreds of so-called “testing
experts ” across the country who have never heard of i tem response
theory and who might be called to testify. You may now have an
inkling of the enormous problems ahead for what Lord calls “occult
scoring methods.” -

17.9 Nevertheless , work is progressing toward the use of tailored
testing. The U.S. Civil Service Comission has adopted the use of
tailored testing as a matter of pol icy. The U.S. Air Force Human
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Resources Laboratory, San Antonio , Texas , has a tailored testing
machine operating on an experimental basis at the San Antonio AFEES
(Armed Forces Entrance Examination Station). (Ree, l977a) S~vera 1 studi es of
live tailored testing have been published by the Psychometric Methods
Program at the University of Minnesota . The Educational Testing
Service is also considering tailored testing and intends to
engineer its own tailored testing machine .

17.10 Obtaining a large bank of calibrated i tems is not a simple
matter. As a result, the military services have formed an Ad Hoc
Group on Adaptive Testing. One of its purposes is to share cali-
brated i tems. It has become evident that even the sharing of the
i tems gets complicated . (See Ree, 1978.) Below is a list of information
necessary to share items.

(1) item itself with key
(2) reference for the correct answer
(3) a, b , and c values
(4) evidence of goodness-of-fit (i.e. if OGIVIA is used , the

Chi—Square and F-ratio).
(5) evidence of unidir nensionality
(6) the name of the dimension

(7) the computer program used to estimate parameters
(8) normal ogive or logistic model (on OGIVIA , 1st or 2nd cycle)

• (9) descri ption of the sample on whom calibrated , and size
(10) evidence of cultural— fairness
(11) description of anchor items used , if any .
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Once the bank has been established , a method for controlling its
use must be established. Most users will want the i tems with high
a—values and low c-values . If the users are giving the items to the
same population , several users may give the same item to the same
examinees. Such over-exposure can destroy the worth of the i tem.

Items in the bank may be duplicates or near duplicates. Thus ,
careful visual inspection of the i tems in the bank will be required.

17.11 Such problems are only a few of those which will be encountered
as work progresses. A humorous , actual example can give an idea of
how problems cannot be anticipated.

At the San Antonio AFEES, examinees were being tested on a
tailored-testing machine. The CRT device was hooked to the computer
by telephone line. The telephone used for the connection sat on the
table beside the CR1 device . On the telephone were two buttons
la beled “ DATA” and “TALK.”

One exami nee, when left alone , pressed the “TALK” button, break-
ing the connection with the computer, and called his mother in Dallas.
(Ree, 1977b.)

Murphy ’s Law reigns supreme.
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CHAPTER 18

Item Cultural Bias

18.1 The study of culture-fair testing has become highly complex ,
since the issue came to public attention in the late 1960’s.
There are at least 5 statistical definitions of bias and
fairness, and 3 ethical positions. This paper will not try

to sort out those matters . For some of the more important papers ;
see Cleary , 1969 ; Darlington , 1971; Hunter & Schmidt , 1976 ;
and Thorndike, 1971 .

Moreover , the issue of the practical effect of test bias on
predicting some outside cri terion , such as job performance or
college GPA is also not of concern here, since we have guaranteed
construct validity by the requirement for unidiniensionality .
In this sense the cri terion is the exami nee ’s true 9.

18.2 Studies of item-bias using classical test theory often

compare the item p-values for one group with the item p-values
of another group. Items with significantly different p-values

between the 2 groups are thought to be culturally -biased i tems.
Such an approach is inappropriate for at least 2 reasons. First ,

the method assumes that the two groups have the same average
ability . That assumption is probably false even if the groups

are matched on moderator variables such as educational level ,
since the quality of education varies considerably from school
to school .

L 
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Second, the comparison of p-values across groups assumes that
the bivariate distribution of the p-values is linearly related .

Lord (1977) gives several proofs that the p-va lues can NOT be
linearly related. One proof will be described here.

Consider 2 i tems. Item one is extremely easy, and item two
is extremely difficult. Assume both items are admi nistered to
two different ethnic groups , A a B, in a test with other items of
intermediate difficulty . The p-values for both groups for i tem
1 will be 1.00 because the i tem is so easy. The p-values for
both groups for item 2 will be the c-value of the i tem, if the

item is so hard that all members of both groups have to guess at
the answer. We can plot the points represented by the p-values

of these 2 items. (See Fig. 18.2a).

1.00

Gi~upB
p-value

• /
.50

,

• 
/

/
~ 2,

.

.00_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.00 C .50 .00
Group A p-value

Figure 18.2a. The bivariate distribution of p-values
for two hypothetical items, * 1 and * 2, for two
hypothetical groups, A and B. Item * 1 is extremelyeasy, and item * 2 is extremel y difficult for both
groups.
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In order to be linearly related the bi variate distribution of p-values

of the other items in the test between groups must fall around the
straight dashed line in Fig. l8.2a, connecting the points for

items 1 and 2. However , if group A does better as a whole on the
tes t than group B, the p-value points for many i tems of intermediate

diffi culty wil l fall to one side of the strai ght line. (See Fig.

l8.2b).

1.00

Group B
P-val ue

.00 .50 100

Group A p-value

Figure 18.2b. The bivariate distribution of p-values
of items in a hypothetical test on which Grou p A does
better than Group B.
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The line of best fit then must pass through the points for i tems
1 and 2, and through the middle of the bivariate distribution of the
p—values for other items in the test. That line must be curved to
do so, as is the solid line in Fig. 18.2b. Therefore , the relation-
ship between p—values cannot be linear. The same is true of other
classical item parameters, suc h as the “corrected” p-val ue, the
inverse normal transfo rmation of the p-va lue, and “delta ” (Lord
and Novick , 1968, p. 381).

For this reason (and others ) the use of classical test theory
item parameters is inappropriate for, and can lead to erron eous
identification of item bias.

1 . 3  The a ,b, and c item parameters are invariant across groups
under the assumption of unidimensionalit,y. Therefore , it should

not matter in principle on what group the item is calibrated .
Whatever the group , the a , b, and c va lues should be the same
except for some random estimate error, once the a and b values

are on the same metric.

If the a and/or b and/or c values are signi ficantly different ,
when calibrated separately on two groups (and put on the same metric),

it means that examinees wi th identica l Qs will have different

chances of getting the item correct (P(9)) , depending on their
group. That situation is clearly unfair. Thus , we may define
bias between groups A & B as

where k is some of value of 0.
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for one 0-value , then they will
not be equal for other 9-values. However , it is not true that they
must be unequa l for all 9-values . It is quite possible for an i tem
to be biased at, say, high 9 and not biased at low 9. Thi s
possibility stems from the fact that the P(Q)’s may be different
due to any one or more of the 3 item parameters being di fferent.

18.4 If 
~~~~~~~~~~ 

then the item can be used to distinguish
between groups A & B, even in the unusual circums tance of all
exaniinees in both groups having identica l Os. This distinction

means that the interitem correlation , given e is not zero .

r1~ (Q ~ 
0

But r1~~ = 0 is a requirement for local independence
(see Sec . 14.3), and local independence is a necessary (but not
sufficient) condition for unidimensiona lity (see Sec. 14.7).
Therefore, if 

~~~~~~~~~~ 
the test is not unidimensional

with respect to groups A and B. The problem of i tem bias , then ,
is one of violation of the assumptions of local i ndependence and
unidimensionality wi th respect to the groups of examinees. I
hereby name this condition “group dimensionality ” .

18.5 If many of the items are group dimensional , that condition
may be detected by the Congruence Test (see Sec. 14.6(5)). If

only a few items are biased , the Congruence Test may not be sen-
sitive enough to detect them. In any case we still may wish to
know just how a particular i tem is biased , and what relative
effect that bias has on the groups of exami nees .

18.6 One method used to make this determi nation is the comparison
of the IRF’s of the item for each of the groups. Fi gures l8.6a
to 18.6e show the IRFs of actual items from an experimental form
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e
Figure 18.6a, b, and c. Item Response Functions of
Blacks and Whites for three real items from an experi-
mental form of the Coast Guard Selection Test.
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Figures 18.6d and e. Item Response Functions of
Blacks and Whites for two real items from an experi-
mental form of the Coast Guard Selection Test.
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of the Coast Guard Selection Test (CGST-Xl), when calibrated
separately for Blacks and Whites . From Fig. l8.6a we can see
that the P(Q) of item #32 is greater for Bl acks than Whi tes at
every value of 9, although for 9 greater than 0.0 and less than
-4.0, they are not much different. Thus, this i tem is biased
in favor of Blacks for 9 between -4.0 and 0.0, and fair for
both groups elsewhere on the 9-scale. Since the range of 0
where this i tem is biased coincides very closely with the range
of 0 where the i tem provides most of its information , the i tem - -

is not both fair and useful anywhere, and thus is a bad i tem.

Figure lC.6b shows the IRF’s for a similar i tem, but which
is biased in favor of Whites instead. This i tem is biased for
9 = -0.6 to 9 = -2.4 and for 9 (-3.2. The i tem is not signifi cantly
biased from 9 = —2.4 to 0 = -3.2 and for 9>-0.6.

Figure l8.6c shows the IRF’s of an item that appears fair
or nearly fair at all 9 in spite of a rather substantial difference
in the a-values for the two groups.

The item in Fi gure 18.6d is biased in favor of Blacks for 9
from 0.4 to 2.0, but biased in favor of Whites for all 9 less
than 0.0.

The i tem in Fi gure l8.6e is Black—biased at 9<-l .0, and
White-biased for -0.8(0<1.0.

1C.7 In my interpretations of the figures in Section 18.6 I have
tended to disregard small differences between the IRF’ s which
appear insignifi cant on the graphs . Actually, it is not yet
known how much of a difference between the IRFs of group di-
mensional i tems make a significant difference in the estimation
of 9. Such a determination would depend upon the distributions
of 9 for the two groups , which as I indicated in Section 18.2 cannot
be expected to be the same.
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18.8 In actual practice the item parameters are usually estimated
with both groups l umped together in the sample. When this combin ed-
group calibration is done , the resulting item para meters are scme

compl icated (not a simple or even weighted) average of the separate-
group calibrated parameters. However , as a rough rule of thumb
the IRF of the combined—group falls generally between the IRF’ s
of the separate groups. If the combined-group parameters are
then used to esti mate Os for both groups , the result wil l  be a
non-systematic distorti on of the Os for both groups.

18.9 Attempts have been made to develop samp le-free indicators of
item bias.

One way is to plot the item parameters for the 2 groups as
I have done for each of the parameters for Blacks and Whites from
CG ST—Xl in Figures 18.9a , l8.9b , and 18.9c. The solid lines show
the theoreti cal , expected line of best fit , assuming unidirnensionality .
The dashed lines were rather arbitrarily chosen to exemplify an
acceptance region. If the dashed lines were chosen statistically ,
items whose item numbers lie outside the region would have statis-
tica lly, significantly different item parameter(s). Another method
is used by Lord (1977). He divided his tota l sample into 2
random groups , and by conducting separate calibrations on each
random group , constructed his own empirica l test of significance.
After identifying biased items , Lord then repeated the ent ire 5-step
procedure to eliminate the contamination of the biased items . His
procedures contemplates the possibil ity that the presence of strongly
biased items may mask the moderate bias of other items .

Rudner (1977) has compared 4 different methods of bias detect-
ion , the best of which appears to be the calculation of the area
between the two IRFs .

- 133

— 5 - ----- __ • __ _ _ _____ ___ _ ____5-____ 5-•_ ___ .~
__i _
~
____ 

—5--- - -•- - , -  —~~~—- - — . - - - -.---~~~~~~~~~ -.- ---- - - - - - .5- 5  -



— — - :.—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~ ~~

0

V

0
- •(n

(/) ‘

-
.
~
.

S ‘.4
‘1-4 W 10
0 .~\ C)

0
• r0

N

-o~~0 p~ 
— C..J U

• _‘-. • 4

\ p, -J

i ~ _ w

N -
S 

.
~~~~—

S
•

;( 
~

•

134

- ~~~~~~
—. -—-- — —.---——5--

~~~~~~~~~~
.-- -—- - —— - - - - ——  ~~~~~~~~~~ —- --  ——5- - -—-  -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~ -5--- - - -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -‘---5 -~~~~



-~~ ~~~~~~~~~~~~~~~~~~~ - z’-~-. ~~~
—

~~~~
-—-

~~

11

c’J

~-

41 - 4 1
4

N

\ “

Q
-

--

\
S 

— If)~~~~~~\
04

‘4. ~~4~~~~~I W

00
\ N  .~P~~’ QJ .0

0 N
•

N 0
• 

‘
- • \ S

- ‘- S

-
.

H

-5 0 0 0• ’
C’J — •- • 0 ‘

135

4

L ._-_---_-_--_--- - - —-— ---5--’— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 



_ _ _  ~~~~~~T T

\

1!
.~ ‘2 \
0 • it)
~~~~~ U) .-’~ \ 10

~~~~~~ Q) 0
rO -

\

N S

S

z • 0 0

-

• 
2

I
136

L ~~~~~~~~~~~~~ - —~~~~~~~ ---~~~ 5-~~~~~~~~~~ - -  ~~~~

.

~~~~~
—- —-— -•- - - -- -



r -:--
~5-T:

-- ”::--5- ~~~~~~

— IiL~~~~~~~~~~~~~~~
_
~~~~~~~~

_ - --— -- -

~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ J1’~

Both methods (Lord ’ s and Rudner ’s) assume that the c-values
for both groups are the same , an assumption ~-thich both Lord and
Rudner would agree is false.

Lord (in preparation , pp. 296-298) provides true statistical
di fference tests for maximum likelihood estimates of a-values
and b—values (but not c—values).

18.10 What makes an item culturally-biased (i.e., group dimen-
sional)?

In 1968 I conducted research to try to answer this question
(using classical test theory). I made two lists of 20 i tems
-each. One list contained only Black-biased i tems, and the other
only White—biased i tems. Even with intense study of the two lists
neither I nor Black testing practitioners to whom I showed the
lists could come up wi th any consistent set of hypotheses to

explain the bias. ~y conclusion was that i tem—bias may not be
identifi ed by inspection.

More recent investigations offer some hope. Lord (1977)

found a reading comprehension item on Bl ack history in the U.S.
to be Black-biased at all values of 0. Durovi c (1978) found that
two mi nori ty revi ewers had strong negative reactions to the two
items out of 14 that failed the Rasch model test of fit. Scheunema n
(1976) found that her chi-square procedure identifi ed i tems as

— biased , which contained content readily interpreted as culturally —
biased from a coniiion sense point of view.

j 
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These results suggest that at least some biased items may
be identi fiable by inspecting their content. Nevertheless, other
item-bias seems inexplicable by content, such as the following —

two vocabulary items from the Scholastic Aptitude Test. Both items
seek the OPPOSITE of the stem word .

2. INJURE (quo ted from Lord, 1977, p. 29)
A. release
B. refrain —

C. smooth
0. embellish

* F. heal

8. GEL (quoted from Lord, in preparation , p. 294 )
A. glaze
B. debase
C. corrode
*0 melt
F. infect

Both i tems are Black-biased (i.e., in favor of Blacks ) at low
9 and White—biased at high 9.
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18.11 Testing practitioners must often make practical decisions

even in the total absence of relevant info rmation. Because I am
such a testing practitioner , and because of r,w penchant for rules

of thumb , I offer the following guidelines for rejecting i tems

as biased between groups A and B. Let

d(a), d(b), d(c) = the absolute values of the di fference of the a,

b, and c valu es, respectively, for the two groups (after being
converted to the same scale).

Then , I declare as biased any item which meets any one or more of

the four following conditions :

( 1 ) d ( a )~>.8O
(2) d(b).>.50
(3) d(c)>.15
(4) d(a) + d(b) ) - l .OO

The dotted lines in Figures l8.9a, l8.9b, and l8.9c reflect the

fi rst three of these cri teria. There are so many legitimate
objections to these rules of thumb that I shall not try to justify
them. I developed them merely by looking at my data and trying

to come up with something usable and plausible. Perhaps the

outrageousness of my suggestion will motivate the research necessary

to develop truly scienti fic cri teria. In the meantime practi tioners

must practice.
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18.12 As a slight digression I feel compelled to mention a study
reported by Weiss (1975). The study was only a smal l part of the

cited reference (pp. 33—35) , and I shall discuss only a portion of
the results . Furthermore, Weiss is very cautious in his interpre-
tion. Nevertheless , the potential implications of the results , if
replicable , are of such tremendous import to the field of culture-
fair testing that I feel all testing practitioners should be aware

of them.

Weiss investigated (among other things ) the effect of ininediate
feedback on test score. He administered a conventional multiple-
choice test to Black and White high school students with the items
presented by computer on a CRT. (This was not tailored testing.
All exami nees received the sane i tems.)

Half of each group (Black and Whi te) received i ninediate feedback

from the computer after each response, i ndi cating whether or not

the exami nee got the i tem correct. The other half of each group

received no feedback.

Feedback was in the form of one of six statements used in a
pseudorandom order, such as “ri ght on” , “that’s coo l , now try this
one” , and “all ri ciht, how about this one”. The six statements were
selected from those suggested by other students at the same high
school in order to make the feedback meaningful to the exami nees.

With no feedback Blacks scored much worse than Whites , an
unfortunate result that has been frequently observed.
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However , under the feedback condition Blacks did as well as
(actually slightly better than) Whites . Further analysis of the

data showed that without feedback Blacks skipped (left unanswered)
more items than Whites . But wi th feedback the Blacks skipped almost

no items .

These results suggest that differences in observed test scores
between groups may be due to motivat ional variables , such as a

need for encouragement on the part of Blacks , and that, when
received , Blacks score as well as Whi tes .

If these results pro ve to be replicable , the use of testing
machines wi th appropriate feedback could resolve a large part of
the culture-fair testing controversy .
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CHAPTER 19
Setting Minimum Passing (Cut—Off) Scores

19.1 One of the more comon uses of testing is the classification of
exami nees into two or more categories. For instance , a college
entrance examination may be used to classify into acceptable vs.
nonacceptab le categories , or remedial program vs. regular program
vs. advanced placement categories. A job knowledge test may be used
to classify applicants into hire vs. don ’t hire , or promote vs. don ’t
promote categories. Each of these examples is one of “classifica-
tion .” The examinees are being “classified” into discrete categories. -

The classical methodology is to conduct a validation study in
which large numbers of persons are tested and measured on the criter-
ion . Then, making the dubious assumption of a linear relationship
between test score and criterion measure , the criterion measure is
predicted from the test scores. The predicti ve validity study , the
ideal , is almost always extremely expensive and usually impossible in
practice. Its less satisfactory alternative , the concurrent validity
study, is also usually expensive , and often fraught with problems .

19.2 There are two exciting, inexpensive alternatives to this im-
portant and most troublesome psychometric problem , which I shall
briefly describe with variations , combining them with IRT . Both
techniques are simple to use and rather ingenious.

19.3 Living ston (1976) described a method of finding a criterion-
referenced cut-score , which requires only a few criterion measurements
The Livingston method follows :

(1) Give the test to a group of exami nees.
(2) Pick an exami nee with an average test score and measure
his performance on the criteri on .
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(3) If he is conpetent (satisfactory ) on the cri terion , pick
another examinee with a l ower test score. If he is incompetent
(unsatisfactory ) on the cri terion , pick an exami nee wi th a
higher score.
(4) Repeat step (3) over and ove r, each time reducing the
di fference between the last test score and the next one.
(Livingston gi ves several methods of minim izing the number
of cri terion measurements required). With each repetition
of step (3), the range of uncertainty of the test score that
corresponds to the level of minimu m competence will be
diminished. When you have “zeroed-in” on the minimum test

score with sufficient accuracy , you can stop.

Livingston ’s technique has two signifi cant limi tati ons. First ,
it uses the number-right score as the predictor. As we have seen
in Sec. 12.9, the number-right score can correspond to a wide range
of 0, unless the test happens to have hi gh information at the
cut-off 9. Since the cut-off 0 is not known at the beginning of
the technique , finding high information at the ultimately—determined
cut-off 0 would be pure luck. Selecting examinees on the basis of
their 9 estimates would improve this method. (This would be an ideal
application of tailored testing.) Once the cut-off 9 is found , one
can redesign the test to have high information at that 0, and then use
the corresponding number-right score for selection.

Second, the technique seems to assume that the cri terion-measure is
unidirnensional , and the same dimension as the test. Obtaining a
unidimensional cri terion measure will be diffi cult in many practica l
ci rcumstances.
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Both use of the number—right score and nonunidimensionality of

the criterion (and/or the test) will result in failure to find a
sharp cut-score. Rather , the percent of exami nees found satisfactory
will rise gradually as test score increases , l ooking much like an IRF.
The decision must then be made of an acceptable risk level of pro-
bability of success on the criterion. Usually a 50% risk is used .

In some situations it may be relatively easy to identify in-
itially a group of persons of marginal competency (e.g. “Superv i sor,
give me a list of your barely acceptable subordinates. ”) If it is
feasible to do so, one may administer the test to them , and find their
average 0 (or average number-right score, if need be). Their average
9, or score , would be near the best cut—off .

The Livingston technique of selecting exami nees with hig her or
lower 9 is analogous to the i tem selection technique in tailored
testing of selecting harder or easier i tems. Hence, I dub this
technique “tailored cutting. ”

19.4 The other cut-score setting technique , called MAPL ,* (Minimum
Acceptable Performance Level) was introduced by Nedelsky (1954).

One version of the MAPL procedure follows :
(1) Assemble a group of six to eight subject—matter experts

(SMEs).
(2) Instruct the SMEs to form a picture in their minds of the

barely acceptable person for the job (or other criterion).

*pronounced “maple ”
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(3) Each SME then reads each test i tem and i tem distractor and

asks himsel f the question, “Would the barely acceptable person know

that this distractor (wrong alternative ) is wrong?”

(4) If his answer to the question is

(a) definitely no, he assigns two points to the distractor.

(b) definitely yes, he assigns 0 points to the distractor.
(c) neither definitely yes nor no, he assigns one point

to the distractor.
(5) Two points are always assigned to the correct choice (key).

(6) Add up the points assigned to all the choices of the i tem
(including the key ) by each of the SF’~Es.
(7) Average the total points assigned to the item by the S~Es.
(8) Divi de the average total points into two. The quotient

is called the ASI (Alternative Similari ty Index).

ASI = 2+(average total points )

(9) Add up the ASIs for all the i tems in the test. This sum is

the MAPL for the test. The MAPL is the number-right score of

the minimall y acceptable person.

MAPL = ~~ASI

MAPL is amazingly sin .ple and highly effective in i dentifying
unsatisfactory individuals and/or training need areas. (See Meredi th ,

1977).

19.5 MAPL may be made even simpler and perhaps more effecti ve by
combining it with IRT.

- 
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The AS ! is , in fact , an estimate of the P(0) of a person with
a barely acceptable 9. This identity may be seen by considering
the two extreme cases. If the SMEs assign two points to every
dist ractor in a four—choice item, then the AS ! = 2 ~ (2+2+2+2)
2 -~-8 = 1/4 = .25. The SMEs have , in effect , j udged that the barel y
acceptable person would not know that any of the distractors are
wrong , and hence all choices are equally attractive. The bare ly
acceptable person then would have to guess and , assuming he guesses
randomly, would have a .25 chance of guessing correctly.

On the other hand , if the SMEs assigned zero points to every
distractor , that means the SMEs judged that the barel y acceptable
person wil l  know all the distractors are wrong. He will thus be
sure to get the item correct and the ASI 2 -‘ (2+0+0+0 ) = 2 -~ 2
1.00.

If the test is unidimensional and if the i tems have been pre—
calibrated , then , using the ASI as an estimate of P(Q) , it is an
easy matter to get the 9 of the barely acceptable person for that
item wi th the following formula:

9 b * l.7a

where, log means the natural logarithm. This formula is merely the
logistic formula for P(9), solved for 9, and substituting AS ! for
P(Q). MAPL 9 is the estimated 9 of the minimally acceptable person.

L - - 
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In the usual application of MAPL the SMEs must assign points
to every distractor of every item in the test. However , in this

suggested alternative , the SMEs would only have to do a few items ,
perhaps 10 to 15. The MAPL 9 would then be the average estimated
9 of the barely acceptable person for the 10 to 15 items .

This melding of MAPL and IRT also has some l imitations. MAPL 9
presumes , as doe s MAPL , that the SMEs are able to properly make the
decisions required of them.

Since the ASI cannot be less than .25 (for a four-choice item),
it assumes that c = 1/A , which we have shown is often not the case.
Therefore, it would be wel l to choose items which have c~~~.25.

This technique also has a compounding of error. That is , the
ASI is an estimate of P(9), and the a, b , and c values are estimates
of the true i tem parameters. When the two estimates are combined ,
their separate errors may be multipl ied . To reduce this compounding
of error, i tems should be chosen which have moderately low a—values ,
i.e. about a = 1.00. Furthermore , the i tems used should have a range
of b-values from, say, -1.00 to +1.00.

MAPL 9 is untried , and should be used with caution until adequate
research on it can be done . It is , therefore, more of a suggestion
than a true alternative.
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POST WORD

The purpose of any comunication is the creation of understand-

ing. That is my sole purpose: to create understanding of IRT in the

reader.

If there is any part of this publication that you do not under-

stand , then I have not been completely successfu l in my effort.

Therefore, I would sincerely appreciate any coments , suggest-

ions , questions , corrections , ideas , or discussion about this pu-
blication . Please feel free to telephone or write to me for further

¶ explanation , discussion , cri t ic ism, or j ust plain chew the fat about
I RT.

THOMA S A. WARM , Chief , Exam Branch
Research and Examination Division
U.S. Coast Guard Institute
P.O. Substation 18
Oklahoma City , OK 73169

(405)686-2417 -- commercial
732—2417 —— FTS
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APPENDIX A
LOGISTIC IDENTITIES & EQUATIONS

9 ability parameter
a ,b ,c ~itsm parameters

e~noturoI Iogardhm base

289

Let x 1.7o (9- b )

-x -I.7a(6-b) 
= [.81~~ I_eb]’~ eI 70b

L ebJ L 19J 
- 

et bae

$ eX

I _______

1+5* 1+1*

_______ 
e

(I+ ,*)2 
~+

..x)2

P(9)=c# J -c ~ ~ ~5I.7ab + ~I.7a9

~~~~ •I.Tob + •I.1b9

Q(9) I_p(O)~ 
I-c

I +e~

p(~).Q(9) = 
(I-c ) ~~ +

I.7a(I_c )e*

[i +.z :r [i +e~ :it

I(O,u) ~ ~~~~ ~ 
2~~~~~~ 0 

. If c =~~, I(O,u).I.7a P’(O)
P• Q [c+e~f lj +i~

2

~.7a)* ( I_ cXI_ e *)e~
(I+e *)S

W(e) = 
~~1(Ø)  

— 
i.iaQL

P(e) . Q(9) c + e*
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