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*\ ABSTRACT
)

The shape of an object can be determined from the shading in a single image by
solving a first-order, non-linear partial differential equation. The method of characteristics
can be used to do this, but it suffers from a number of theoretical difficulties and
implementation problems. This thesis presents an iterative relaxation algorithm for solving
this equation on a grid of points. Here, repeated local computations eventually lead to a
global solution.

The algorithm solves for the surface orientation at each point by employing an
iterative relaxation scheme. The constraint of surface smoothness is achieved while
simultaneously satisfying the constraints imposed by the equation of image illumination.
The algorithm has the distinct advantage of being capable of handling any reflectance
function whether analytically or empirically specified.

Included are brief overviews of some of the more important shape-from-shading
algorithms in existence and a list of potential applications of this iterative approach to
several image domains including scanning electron microscopy, remote sensing of topography

. and industrial inspection.
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1. INTRODUCTION
Making machines more useful is a major goal of artificial intelligence. One
obvious way of making machines more useful is to enable them to deal directly with their
environment. Making machines "see” is one way to do this. How to make machines see is

not so obvious.

Simply put, the goal of machine vision is to develop systems which take an image,

whether it be a photograph, an X-ray or a painting, and have it produce a symbolic
description of the abject(s) within the image. The design of such a system is a matter of
great debate, as is the form of the description itself.

In this thesis, we are concerned with one small part of this difficult transformation
from image to description - that of computing the shape of a smooth surface from an image

of that surface.

1.1 What is Image Analysis?

The purpose of machine vision is to define and describe the components of a scene
given an image of that scene. Historically, this process has been divided into two parts.
The purpose of image analysis is to extract features from a raw image and to convert those
features into a convenient symbolic representation. The purpose of scene analysis is to
interpret the symbolic features produced by image analysis according to some externally
defined goal.

Early artificial intelligence research in machine vision conceritrated on images of

scenes containing plane-faced polyhedra. Initially, the distinction between image analysis
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and scene analysis seemed quite clear. The purpose of image analysis was to generate a two-
dimensional line drawing of the scene (Horn, 1973). The purpose of scene analysis was to
interpret a two-dimensional line drawing in terms of the three-dimensional objects which
gave rise to it [Roberts, 1965; Guzman, 1968; Huffman, 1971; Clowes, 1971; Turner, 1971;
Mackworth, 1973; Waltz, 1975; Winston, 1975). As the field matured, the actual distinction
between image analysis and scene analysis became less clear. More recent work [Winston,
1973; Shirai, 1975; and Freuder, 1976] made use of a richer form of interaction between image
analysis and scene analysis. Nevertheless, a conceptual distinction between the two still
exists.

The shape-from-shading problem lies within the realm of image analysis. It deals
directly with an image as input to determine a representation of shape suitable for

subsequent scene analysis.

1.2 The Difficulties with Image Analysis -

Despite strong motivation and years of concerted effort, researchers have failed to
come up with a “universal® shape-from-shading method. To be sure, inroads have been
made in many specialized areas but each approach involves many assumptions about the
imaging situation and is applicable only in limited circumstances. What is it that makes the
analysis of images so elusive?

The purpose of this section is to point out some of the difficulties associated with
the interpretation of image intensities. Knowledge cf these difficulties is necessary to predict

when and why certain image analysis techniques will work and when and why they will fail.
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1.2.1 The Data in an Image

A great deal of information is contained in the intensity values recorded in an
image, and this massive quantity of data has proven to be a stumbling block to image
analysis. Image analysts often rely on data compression and forget about actual image
intensities as soon as possible. One method of image analysis is to extract features of
intensity which are important and to throw away everything else, but those features one can
extract easily are those which can be conveniently defined in terms of properties of images.
Properties of images, however, do not usually correspond directly with properties of the
objects which gave rise to them.

Practical vision systems exist for domains in which there is a direct correlation
between properties of images of the domain and interesting properties of objects in the
domain. Domains which are inherently two-dimensional generally provide such a good
correlation. Optical character recognition [IBFI, 1969), blood cell analysis [Young, 1969), and
automatic fingerprint identification [Grasselli, 1969], are three such examples.

The research in this thesis attempts to exploit ¢/l the data in an image rather than
to compress the data into a more manageable, reduced size. The transformation from object
space to an image space is a functional mapping from an object point (x, y, z) to an image
point (u, v) and a corresponding intensity value I. Roughly speaking then, the
dimensionalities of the two domains match. Difficulties arise from the fact that the image
generating transformation is many-to-one. Therefore the inverse transformation (the

solution of the shape-from-shading problem) is not uniquely determined without further




assumptions. The physical interpretation is that any number of surfaces can give rise to the
same image, so shape-from-shading can only be achieved by imposing constraints in the

form of prior expectations about the imaged surface.

1.2.2 Image Illumination

The image depends on more than just the shape of the surface and the location
from which it is viewed. As we all know, object surfaces appear differently at different times
of day. In fact, a single surface can have an infinite number of images depending upon the
distribution of incident illumination. Changes in illumination can cause a surface to appear

quite differently even when viewed from the same direction.

1.2.3 Surface Photometry

A third factor confounding the shape-from-shading problem is the fact that
different surfaces reflect light in different ways. The composition of the surface of an object
determines how much light is reflected and in what directions. As a result, identically
shaped surfaces under identical lighting conditions can give rise to different images. Even
objects of the same material appear differently depending upon whether they are wet, dry,
clean or dirty. The conclusion is that objects of the same shape under identical lighting

conditions can give rise to different images.
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1.2.4 Human Performance

Humans are remarkably successful at interpreting image intensities despite the
problems caused by projection, illumination and surface photometry. The facf that humans
are capable of interpreting single images of arbitrarily shaped, unfamiliar objects rules out
any need for high-level information and any need for more than one image. It seems that
the determination of shape from the shading information in an image must be possible since
the human visual system can achieve it.

The numerical approach that is presented in this paper for solving the shape-
from-shading problem is not intended to reflect the way the human (or any other animal’s)
visual system works. The desire is the less ambitious, yet useful, goal of designing a

mechanical system capable of determining shape from a single image.

1.3 The Problem

As we have seen, a generally applicable shape-from-shading machine must deal
with a wide variety of difficult problems. The differences among present algorithms can be
viewed in terms of which complications are actually solved and which are avoided entirely
(by simplifying assumptions). For example, occluding contours pose a problem to some
shape-from-shading techniques whereas restricting the domain to images of smooth surfaces
containing no occluding contours is a way to avoid this problem.

This thesis presents a practical shape-from-shading algorithm which sidesteps some
of these complications to be sure, but also overcomes some previously insurmountable ones.

The method which will be described is capable of ascertaining surface shape from the
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shading information in a single image. The only information required beside the image
itself is the reflectance function of the surface and some suitable set of initial conditions,
provided the surface is smooth at all points in the region to be analyzed.

Heretofore, only the analytic approach due to Horn (1975}, of solving a first-order,
non-linear, partial differential equation was capable of determining surface shape from a
single image. However, Horn's method is practical only when the reflectance can be
described as a simple analytic function of the surface gradients, since it requires the
derivatives of the reflectance map. The algorithm of this thesis is capable of determining
surface shape for nearly any reflectance function. In fact, the reflectance need not be known
analytically; an empirically defined reflectance function works just as well. Both algorithms
are restricted to image regions of smooth surfaces with known photometric properties.

The algorithm is posed as an iterative relaxation scheme. It seeks to
simultaneously satisfy the constraints of the equations of image formation and surface
smoothness at all points in the image. Global constraint is achieved by propagating pseudo-
local smoothness operators throughout the image. The goal is convergence to the unique
surface shape that gave risé to the image.

It is important to point out that the numerical shape-from-shading algorithm is not
intended to be a stand-alone system. Rather, it performs one small part of the
transformation from image to high level description. It is up to other methods to isolate

regions of smooth isotropic surfaces. Then this algorithm can be utilized to determine the

shape within those regions.
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1.4 Applications for Shape-From-Shading

The ultimate shape-from-shading algorithm would be capable of determining the

shapes of all visible surfaces in an arbitrary scene. However, as we have seen, many

assumptions about a domain must be made to keep things tractable. Several domains which

possess properties that can be exploited for image analysis are described in this section.

Planetary MépLing:

Images returned from satellites provide one worthwhile domain for image
analysis. Images of the moon from the Apollo missions, of Mars from the
Viking spacecraft, and of the earth from LANDSAT are examples of likely
candidates. In theory, a shape-from-shading machine could determine the
surface topography of a portion of a planet from a single satellite photo. The
absence of complicating features such as cities, clouds, and variations in
surface vegetation in images of the moon, Mars and Mercury provide a major
simplification that renders them suitable for analysis.

The Bin of Parts Problem:

Automation of assembly lines in factories often requires knowledge of the
spatial position and orientation of a part. This knowledge is especially
difficult to acquire wnen the parts lie in a pile or in various orientations on a
conveyor belt. Machine vision can bridge the gap. Properties of the
intensities recorded in an image of a part can be directly related to the
position and orientation of the part. Identification of a particular object in an
image of many different objects is also possible.

The Scanning Electron Microscope:

The scanning electron microscope (SEM) produces images which are
particularly easy to interpret because the intensity recorded is a function of the
orientation of the object at that point and thus gives rise to a form of shading.
This differs from the situation in optical and transmission electron
microscopes where intensities depend instead on the thickness and optical or
electron density at each point. The geometry of the scanning electron
microscope allows several simplifications in the algorithm for determining
shape from shading. Additionally, it should be easy to combine the SEM with
a minicomputer to obtain three-dimensional information because of the
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random access capability of the microscope beam [Horn, 1975]. A shape-from-
shading algorithm for SEM images would be especially useful because, at the
magnifications used, no other way exists to accurately determine the three-
dimensional shape.

Automatic Visual Inspection:

Many tasks of inspection involve the routine search for particular features in
an image of an object. The repetitive nature of these tasks makes it desirable
to accomplish this automatically. The fact that all images to be analyzed may
be of the same object under similar lighting conditions allows one to ignore
the effects of lighting and utilize the properties of the object to be imaged.
Inspection of defects in metal castings [Woodham, 1978a) and military
surveillance are two leading examples.
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2. THE TOOLS

In the course of previous research, several mathematical and theoretical formalisms
have been developed for use in image analysis. For the uninitiated, this chapter describes

those tools which facilitate discussion of the concepts presented in the thesis.

2.1 Definitions

To prevent confusion between terminology used here and that from other
disciplines, this section defines many of the relevant terms which may otherwise be somewhat
ambiguous.

For our purposes, an image is any function of two variables which could have been
generated by the procedures described in the remainder of this chapter. That is, an image is
nothing more than our intuitive notion of a shaded picture. Digital computers sometimes
require a digitized image, which is simply a set of intensity values corresponding to a finite
number of image points usually selected to lie on a square grid. A synthetic image is actually
a digitized image that has been produced mathematically by a digital computer in a way
that models the normal imaging process. A square grid is often superimposed upon a real
image to select an image point (u, v) at each vertex. The neighbors of image point (u, v) are
those image points which are closest to (u, v). The size of a neighborhood depends on the
context in which the term is used.

For reasons discussed later, each image point has an associated surface point on the

object which gave rise to that image. Every surface point has a unique local surface
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orientation which is the orientation of a plane tangent to the surface at that point. The
solution of the shape-from-shading problem will be in the form of the local surface
orientation at the surface point associated with every image point. Often we will speak of
the "orientation at an image point” which is to be taken as an abbreviation for the local
surface orientation of the surface point associated with that image point. The shape or
topography of a surface will be represented by the local surface orientation at a set of surface
points. One may recover explicit depth values by integrating the local surface gradients
over the entire region, so information in this representation is essentially equivalent to
explicit knowledge of depth values of surface points to within a constant of integration. A
surface with continuous first partial derivatives is called smootA.

Several quantities associated with illumination and the reflection of light need to
be defined as well. Irradiance is the density of the incident flux while radiance is the flux
emitted per unit surface area per unit projected solid angle [Nicodemus, Richmond and Hisa,
1977). Image irradiance is often referred tc as image intensity. Grey-levels are quantized

measurements of image irradiance. Objects which have the same photometric properties at

all surface points are referred to as isotropic.

2.2 Image Generation

To understand the formation of an image, one must consider two separate
processes. One deals with the geometry of projection while the other deals with the intensity
of light recorded in an image. Thus the generation of a synthetic image consists of

determining where in an image to place a surface point and what to record at that image

2
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point (Strat, 1978].

2.2.1 The Transformation from Ob ject Space to Image Space.

S

In order to calculate the image point (u, v) which corresponds to a particular
surface point (x, y, z), we can consider the projection of that surface point onto th'.e image
plane as shown in Figure 1. (To avoid inverting the image, it is convenient to think of the
image plane as in front of the lens rather than behind it.) For simplicity, the lens (the
viewpoint) is positioned at the origin and the image plane is perpendicular to the Z axis. In
Figure |, f is the focal length (the distance between the viewpoint and the image plane). As
can be seen, a straight line connects the viewpoint, the image point and the surface point.
By the proportionality of similar triangles,

u/f =x/z and vVv/f=y/2z (21)
so

unfl:x and v=£y ' (2.2)
These equations, which determine an image point (u, v) corresponding to object point (x, y,
2), define the standard perspective projection. If the size of the objects in view is small
compared to the viewing distance, then for all surface points (x, y, z), z is nearly constant and

Equations (2.2) become (after scaling the image by the constant z/f):
u=x and Vay (2.3)
which define the standard orthographic projection. The projection of images obtained using
a telephoto lens is approximately orthographic. With the assumption of orthographic

projection, all rays from the surface to the image plane are parallel, so the use of separate




(a) Perspective Projection
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(b) Orthographic Projection

Figure | Geometry of Image Projection

The geometry of perspective projection is given in (a). A straight line connects the
viewpoint, the image point and the surface point. The focal length, f, is the distance
between the viewpoint and the image plane. When the viewpoint is far compared to the
object’s size, the lines connecting image points to object points become parallel. This
projection is orthographic as shown in (b).
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image coordinates is redundant, and image coordinates (x, y) and object coordinates (x, y)
can be referred to interchangeably.

A word of caution is in order here. Because the projection (orthographic or
perspective) is from three dimensions to two dimensions, some information is lost. It is
possible that more than one object point be projected into the same image point. Because
our visual world usually consists of opaque objects, only the point that is nearest the viewer
will generally be visible. That is, of all the object points (x;, y;, z;) that project into image
point (u,v), only the one with the smallest z; will appear at (u, v) in the image. All others
will not appear in the image. The implication for the inverse projection is as follows.
Assume image point (u, v) has been found to correspond to object point (x, Yo, 2,)- Then
no object points occur along the line connecting image point and object point for which
2<z,

A corollary of this hidden surface phenomenon is the presence of occluding
contours. Two points which are adjacent in the image do not necessarily correspond to two
points which are adjacent on the object, even if the object has a smooth surface. One part
of an object can obscure another.

In the work that follows, orthographic projections and images of smooth surfaces

without occluding bounds are generally assumed. Occasionally, a method will be applicable

to perspective projection as well and this will be pointed out.

i
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2.2.2 The Determination of Grey-Levels in an Image

The last section described where a point on the surface of an object will appear in
an image of that object, given a particular imaging geometry. This section deals with what
grey-level gets recorded at that point given the imaging geometry and the photometric

properties of the object.

2.2.2.1 Imaging Geometry

When a ray of light strikes the surface of an opaque object, it may be absorbed or
reflected. The intensity at a point in an image of that object will depend only on the
amount of‘ light that is radiated (reflected) toward the viewer.

The amount of light radiated in a particular direction by a surface element
depends on the orientation of the surface and the distribution of light sources around it, as
well as on the nature of the surface material. The effect of the nature of the surface is
described by its photometric properties and depends on the surface microstructure of the
object material. Naturally, what constitutes microstructure depends on one’s point of view.
For our purposes, surface structures not resolved in a particular imaging situation will be
considered microstructure. For most surfaces, there is a unique value of radiance for a given
surface orientation no matter how cbmplex the distribution of light sources.

The simplest case is that of a single point source where the geometry of reflection is
governed by the three angles shown in Figure 2. The incident angle between the local
normal and the incident ray is called i, while e is the view angle between the local normal

and the emitted ray and g is the angle between the incident and emitted rays and is termed
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the phase angle. The fraction of incident illumination at a given surface point that is
reflected in the direction of the viewer is given by the reflectance function ¢i, e, g). Cases
with a more complicated distribution of light sources can be modeled simply by the

superposition of single point sources.

Normal
Q .

/ N\

Source

<J

Viewer

Figure 2. Geometry of Reflection This figure shows the relationship
between the various angles at a particular surface element. Angles i, e
and g are called the incident, emittant and phase angles respectively.

2.2.2.2 Gradient Space

It is necessary to have a convenient way to represent surface orientation explicitly.
Gradient space, as popularized by Huffman (1971], and Mackworth [1973), and the “slant/tilt"
formalism [Stevens, 1979] are two useful representations for reasoning about surface
orientation. Because it simplifies the equations of the numerical shape-from-shading
algorithm, gradient space is the only one we will pursue here.

If the equation of a smooth surface is given as z = f(x, y), then the surface normal

toward the viewer at the point (x, y) is

s diation,




it is convenient to define

_aflx,y) d L aflx,y) (2.4)
P - an q 97

so that the surface normal becomes (p, g, -). The quantity (p, q) will be called the gradi.mt
and gradient space is defined to be the two-dimensional space of all such points (p, q).

We should look at some examples in order to gain a feel for gradient space.” Given
our viewer-centered representation, the direction to the viewer maps inta the origin in E
gradient space. The distance from the origin in gradient space correséonds to the
inclination of a plane with respect to the view vector. We find that the distance f;'om the
origin equals the slope of the surface with respect to the direction toward the viewer, i.e.
tan(e). Additionally, the angular position of a point in gradient space corresponds to the

direction of steepest descent on the object surface.

2.2.2.3 The Reflectance Map
For a given type of surface and a given distribution of light sources, there is a
fixed value of radiance for every orientation of the surface normal and hence for every point
(p. q) in gradient space. Thus image intensity is a single-valued function of p and q.
We need to define the relationship between the angles i, e and g and gradient
point (p, q). It is convenient to work with the cosines of the angles,
I=cos(i); E=cos(e); G=cos(g)

since these can be obtained easily from dot products of the three unit vectors. Suppose for
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now that we have a single distant light source and that its direction is given by a vector (pg,
Qs. -1). From Figure Ib it can be seen that the direction toward the viewer from any surface

point is (0, 0, -1) for an orthographic projection, and the surface normal is (p, q, -1). So

73 ! (25)

V 12,2

) ST AR (26)
,[ top2eg?
o 1+psp+sq

Vip2a? Vipla?
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It is now apparent that G is constant given our assumption of orthogonal projection and
distant light source. We can then derive the reflectance map R(p, q) from an arbitrary
photometric function ¢XI, E, G) by solving the above equations for p and q in terms of I, E

and G. The details are tedious and are omitted here, but the results can be found in [Horn,

1977a).

2.3 Determination of Reflectance Maps

In this section we focus on the issues of what the reflectance map might look like

and how it is obtained. See [Horn, 1977a] for further details on reflectance maps.




2.3.1 Analytic Reflectance Functions

A particularly simple case is that of a lambertian or matte surface. This type of
surface looks equally bright from all directions and the radiance depends only on the cosine
of the incident angle.

If we consider a point source at (ps, gs, -1) not near the viewer, the reflectance map
becomes

(Ps: s D) " (p, q, 1) L 1+psp+qsq .

Kps. s DI IKp, g, -DI Vig el Vipha

Setting R constant gives us a second-order polynomial in p and q showing that loci of

R(p, @) = cos(i) = (2.8)

constant reflectance are conic sections. The line separating lighted from self-shadowed
regions, the terminator, is a straight line satisfying l+psp+qsq=0. Similarly, the locus of R({p,
q)=1, the maximum value, is the single point (ps, q;). Contours of constant R(p, q) are
plotted in Figure 3 for the case pg=0.7 and qs=0.3.

White paint consists of small transparent pigment particlesl such as SiO, or TiO,
of high refractive index and small size suspended in a transparent medium of low refractive
index. This arrangement ideally reflects light equally in all directions and is an example of
a real material closely approximating the ideal lambertian surface. Other t.a.xamples are fresh
snow, crushed glass and many flat paints.

The reflectance maps of some other surfaces have been approximated analytically
[Horn, 1977a). These include surfaces with both a matte and specular component of

" reflection, the material in the maria of the moon when viewed from great distances, and

some substances when imaged by a scanning electron microscope.




Figure 3 The Lambertian Reflectance Map
This is the reflectance map for matte surfaces when the light source is not near the viewer.
Contours of constant reflectance are shown.

l+psp+qsq
Viep,2eq,2 Visp2ig?

The direction to the single light source is (ps, q¢) = (0.7, 0.3).

R(p, Q) = cos(i) =
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2.3.2 Empirical Reflectance Functions

For most surfaces, it is not possible to determine the reflectance function in closed

form. One might hope to predict reflectance functions on a theoretical basis starting with’

some assumed microstructure of the surface. For example, many paints can be analyzed in
this manner. However, little hope exists for modeling real surfaces well enough and still
being able to solve the resulting set of equations, so one must resort to experimental
techniques.

One way to measure the reflectance function is to use a photo-goniometer. This
simple instrument can position a small flat sample in any orientation. By recording the
radiance for a given surface orientation (p, g) one can obtain the value of reflectance for one
point on the reflectance map. Repeating the process for all orientations (p, q) determines the
entire reflectance map. These measurements are extremely time-consuming when made
manually and difficult to make with any degree of precision. An effort has b.een made to
instrument the goniometer so that reflectance measurements can be gathered automatically by
a computer [Ammar, 1978].

To avoid the need to physically move the sample into all possible orientations, one
can instead use a test object which presents all possible orientations. The simplest object to
use is a sphere. One can then obtain an image with fixed source and viewer (i.e. fixed
phase angle g). The local surface orientation at a point in the image can be determined by

simple trigonometry and paired with the recorded intensity values at that point in the image.

Obraining all orientation-intensity pairs is equivalent to specifying the reflectance map for




e

the given source and view vectors.
Regardless of how the reflectance map is obtained it is important to remember that
it gives scene radiance as a function of local surface orientation (p, q) in a viewer-centered

coordinate system.
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3. CURRENT METHODS

Before giving the details of the numerical algorithm, we outline several related
approaches. They provide a foundation for constructing the numerical scheme as well as a

means for comparison.

3.1 The Analytic Approach

Perhaps the most important work in shape-from-shading is due to Horn. His
approach attempts to recover the surface shape from a single image by explicitly solving the

differential equations of image illumination [Horn, 1970] and [Horn, 1975].

3.1.1 The Set-up

First define the following quantities:

Let the object irradiance at the surface point (x, y, z) be denoted by a(x, y, i
z). For physical systems, a(x, y, z) is constant or obeys some inverse- :
square law with respect to distance from the source.

Let t be the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>