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Introduction

Precipitated intermetallic compounds have long been of critical importance in
determining the properties of a very large number of aluminum alloys. Because of
the central role such precipitates play, the study of their structure and composi-
tion has widespread application in aluminum alloy metallurgy. In the past, the
study of most aluminum alloy precipitates has of necessity been carried out primarily

through the in situ X-ray methods first developed by Guinier [1] and Preston [2].

It is possible to selectively remove MnAl6 second phase particles by anodic dissolu-
tion of Al-Mn alloys in strong acids [3], but such acids are usually found to
dissolve both matrix and precipitate constituents. More recently the electron
~microscope and extraction-replica methods for the study of isolated precipitate
particles have been developed [4,5]. These methods, however, cannot readily be
used to produce the quantities of precipitates required for X-ray diffraction exper-
iments or normal chemical analysis. X-ray, rather than electron microscope methods
are needed, of course, if accurate lattice parameter measurements are to be made.

A variety of experimental procedures have been developed for the extraction
of second phases from steels and nickel-based alloys. Many inclusions and inter-
metallic compounds, including simple and complex carbides, oxides, nitrides, and
sulphides have been extracted from steels, for example, by the cold nitric acid
method [6]. Separation of phases from nickel-based alloys has also been conducted
for many years [7-11]. Carbide phases found in such alloys can be simply and
quantitatively extracted because their bonding is sufficiently different from that
of the fcc solid solution matrix, y, and the ordered fcc precipitate, +y'. By using

anddic dissolution techniques, separation of y', whose compcsition, structure, and

ponding are similar to the y matrix, has been successfully accomplished.
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Generally, galvanostatic or potentiostatic dissolution techniques have proven
more satisfactory than simple chemical methods [12]. A recent anodic dissolution
technique has been used, for example, to extract both precipitates and inclusions
from a wide variety of steels with either low or high carbon content as well as
with both low and high alloy content, including stainless steels [13]. This tech-
nique utilizes an NaCl EDTA (ethylenediaminetetraacetic acid) solution as an

electrolyte and current densities 7f approximately SOmA/cm2

to quantitatively ex-
tract the second phases. No equivalent anodic or electrochemical methods appear
to have been applied to the selective dissolution of aluminum alloys in organic
media. Based on a chemical process proposed by Honda and Hirokawa [14], an
electrochemical extraction methcd based on an organic medium specifically appli-
cable to age-hardenable aluminum alloys, which allows the specific extraction of
'second phase substances from aluminum base alloys [15], has now been developed.

In this present work, the aim was to apply this method specifically to Al-Li and
Al-Cu-Li 3alloys.

Experimental Procedure

A quantity of laboratory-produced aluminum alloy 2020 was obtained from Alcoa
Research Laboratories and spectrochemically analyzed. The nominal and ana!yzed
compositions are given in Table 1. Samples approximately 2 cm x 2 cm x 1 mm thick
were cut, ground flat on 240-grit SiC paper, solution heat treated for 3 hours at
525°C * 5°C, and water quenched. Aging heat treatments were carried out in fused
KN03-L1N03 salts for 24 hours at 350°C ¥ 4°C and 22 hours at 400°C * 4°C. These
overaged conditions were chosen to allow the formation of large precipitates which
give sharp diffraction profiles.

The electrochemical extraction process [15] consisted of immersing a sample in
a solution of 10 gm 8-hydroxyquinoline, 40 gm benzoic acid, 40 ml chloroform, and

110 m1 methanol, and depassivating the sample surface with an anodic current of
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approximately 10mA/cm2 at 35V ysing a pure Al wire as the counter-electrode. Once
~ the reaction began vigorously (a 1 minute), the sample was disconnected from the
current source and allowed to rest on the bottom of the beaker. In this way, pre-
cipitate particles were less likely to be dislodged from the sample surface as the
aluminum matrix went into solution. Upon the formation of a black surface layer
precipitates adhering to the partially dissolved aluminum substrate, the samples

were removed from the complexing solution and gently rinsed with methanol. Subse-

quently, the samples were mounted on a diffractometer stage and x-ray data were
taken. All diffractometer scans utilized Cu Ka radiation and were made at 0.4

degrees/minute over the range 10° < 26 < 147°.

Results and Discussion

X-ray diffraction data from two samples prepared by the method previously des-

cribed are shown in Table 2. The strong lines due to the aluminum matrix have been
omitted for clarity. ldentification of lines in these diffraction patterns was
based on a search of the literature on crystallography of phases present in the
alloy systems Al-Cu-Lt1 [16-18]. The d-spacings of compounds reported to have been
observed in Al1-Cu-Li alloys are given in Table 3, along with hkl indices and rela-
tive line intensities where available.

Comparison of Tables 2 and 3 show that T, phase (A17Cu4Li) and T] phase

8
(AIZCuLi) were found in both samples, i.e., those aged at 350°C and at 400°C. Due
to the minimal number of lines found, however, another sample was aged at 350°C

and extracted according to the original procedure [15]. By contrast with the method
used to produce the previously described samples, this sample, identified as Sample
C in Table 2, was extracted to produce a powder. The powder was washed and centri-
fuged several times and dried prior to ootaining Debye-Scherrer x-ray data. It

can be seen that many additional Ta and T] 1ines were found. The Cu lines are be-

lieved to indicate that Cu was present as an artifact of the complexing process.




The results obtained thus far suggest that phase identification in Al-Cuy-Li
alloys can be made by the electrochemical extraction and x-ray analysis process
described. In order to increase the number of lines obtained and, at the same
time, to obtain direct evidence of line intensity and peak broadening. afforded by
the diffractometer tracings as compared to Debye-Scherrer powder patterns, sample

C will be x-rayed on the diffractometer.

Conclusfons

It is apparent that Al-Cu-Li alloys are amenable to electrochemical extraction.

A combination of extracting to a powder and x-ray diffractometer scanning should
produce optimum results. Confirmation of this should then allow a determination of
the effects of minor alloying additions on the precipitated phases in A1-Cu-Li and
Al1-Li alloys, an evaluation of the sequential development of these phases during
age-hardening as a function of both lithium content and aging temperature, and an

assessment of the influence of the precipitates, as well as insolubles and disper-

soids, on fracture toughness.
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Table 1: Composition of Al 2020

e U4 M Fe St A
Nominal* 4.5 1.3 0.5 <0.25 <0.30 0.20 Remainder
Measured 4.07 1.08 0.33 0.091 0.22 0.19 Remainder

*T, H. Saunders, "Factors Influencing Fracture Toughness and Other
Properties of Aluminum-Lithium Alloys,"” Semi-Annual Report, June-
December 1976, Contract No. N62265-76-C-0271, to Naval Air Systems
Command, by Physical Metallurgy Div., Alcoa Laboratories.
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i
Table 3: ]2
d-Spacings for Phases Reported in Commercial Al 2020 ¥%
Compound A VLo g Compound N R AT H
Tg=Al,Cu,L1L'6] 3 368 m D INEIALE EPIPLY 10 %i
2.917 200 2.315 m 5
Cubic,CaF,-type  2.062 220 Cubic, 2.005 002 !
3=5.833A 1.759 an Cu3Au-type 1.793 210 ,:
1.684 222 (Ly, type) 1.637 m ¥
1.458 400 a= 4.01A 1.418 220 .
1.338 3N 1.337 221,300
1.308 420 1.268 310 ;
1.191 224 1.209 N3 :
1.123 333 1.158 222 !
1.031 404 1.003 400 1
0.922 206 0.920 133 i
0.779 246 0.819 224 §
0.772 333 i
Tl 4ee s 002 %
4.3 M 100 A17Cu2Fe[‘8J 7.405  10% 002 i
Hexagonal, 3.0 M 101 5.823 10 101 1
. . 315 M 102 hi1 for 3.893 20 103 E
| a=4.97A,c=9.35A 2.333 MS 004 predicted 3.703 100 004 !
2.187 M 12 reflections 2.853 10 14 ;
2.185 S 200 and 1/1, 2.782 6 n %
2.047 M 104 taken from 2.683 70 105 !
1.949 S 202 isomorphous  2.645 10 212 ]
l 1.579 M 204 compound, 2.239 ¢ 220 i
1,367 M 302 KC34(5140!0%:.0 2.162 10 116 5
2 |
1.333 M 214 2.090 6 301 !
1.320 M 16 Diy=Pr/mnc 2.047 30 215 }
1.240 M 220 type 2.007 8 107 1
1199 M 222 Tetragonal, 1.861 6 216 ;
1.09 M 224 2%6.333A 1.856 16 313 i
1.075 M 400 ¢=14.810A 1.659 10 315 i
1.062 M 314 1.587 10 324 i
1.047 M 402 1.416 6 420 ;

Weak lines omitted




