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Errors associated with several boundary encoding schemes
are discussed in terms of av~rage errors encountered when
using the schemes directly for measurement of the lengths of

LaJ arbitrarily directed straight lines. Ways in which the
—I measurement errors may be diminished are examined; the
U... simplest is to make an allowance for the number of corners

that appear when a line is represented by a l~—vay code.
C~~ The efficiencies of the various coding schemes are examined

~~~~~ and the 14—way code is found to be the most efficient of the
~~~~ close—neighbors coding schemes, although efficiency can be

further increased by use of a generalized code.
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1.

1. INTRODtJCT1ON

The detection of object boundaries is fundamental to most methods

of picture processing and optical. pattern recognition. Encoding these

boundaries as a numerical sequence for subsequent analysis inevitably

results in sampling errors. The magnitude of the errors will depend

on the coding scheme employed, although the significance of the errors

will depend on the use to which the data are put and a general analysis

of the effect of the errors may not be possible. Nevertheless , an

appreciation of the errors , together with other considerations, may well

determine which coding scheme is most advantageous ~.n particular

circumstances.

We are concerned here with errors made in determining the length

of a straight line or edge directly from its coding sequence. There

are certainly other ways of determining the length of a straight line,

of which the most obvious is to determine its end—points and calculate

the distance between them. However, this calculation may not be

practicable in certain situations, e.g., if the line were only “nearly”

straight; and it would be grossly in error for highly curved lines

which are dealt with in the accompanying paper (lb

Coding schemes are conveniently described by the number of different

possible direction vectors which may be taken from a point. The

schemes first analyzed here are the 4—way and 8—way codes extensively

discussed by Freeman [2], which are the most commonly used since they

arise naturally if a line or scene is vi ewed against a square grid, arid

the 6—way code which arises if a hexagonal grid is used. The greater 
- 

D

the number of direction vectors allowed from a point by a coding scheme,

the more accurately may an arbitrary line be coded arid the more accurately [flY CCOES
d/or SPECIM~

may its length be measured. Coding schemes allowing more than 8
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directions, although sacrificing a sequence consisting only of nearest

neighbor points on a square grid, are dealt with when we consider the

ways of reducing the metrication errors of 4— and 8—way coding. We

show that the average error in the measurement of length, which is about

27% for uncorrected 4—way coding, may be reduced to zero by a simple

algorithm.

Finally we examine the efficiency with which a line may be encoded ,

in terms of the number of stored bits required by the coding scheme.

This analysis shows that the 4—way code is the most efficient of the

close—neighbor codes , quite apart from its metric corrigibility .

2. METRICATION ERRORS IN 4—WAY CODING

Let a long but finite line of length 9. t’e placed in an arbitrary

orientation on a square grid. Let one end of the line be the origin

of co—ordinates and suppose that the line is of sufficient length that

its other end can be considered, without significant error, to lie on

a grid point. Let the inclination of the line to the x—axis be 0.

If the line is encoded by the 4—way scheme , it is represented by

a sequence of grid points 
~~~~ 

O~i~n (Fig. 1). (To avoid ambiguity

w€ take the sequence {s.} all lying on one side of the line. The

results which follow would be unaltered if the sequence were on the other

side or were straddling the line.) The path from s,~ to s~ along grid

lines is then the representation of the arbitrary line under 4—way coding

and the length of this path is what we refer to as the length obtained

directly from the coding sequence. Its value is obviously n if the grid

element is of unit length .

Define the relative error in the measurement of the length of an

arbitrary straight line inclined at 0 to the x—axis as

E(O) (measured length — true length) / (true length).
p
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In the case of 4—way coding it is evident from Fig. 1 that n, the

measure of the line OP, is equal. to OS + SP = £ (cosO + sinG) so that

(coso + sine) — 1,

IT

It follows that c(0) 
~ 
for 6 0 or 2 but has the value 0.414 for

11

• 0 = 1~. If al.]. values of 0 are equally probable, the average relative

error, , is readily obtained from the integral, of c 1~(e) over all

angles . Because of symmetry , the integral can be restricted to the
1!

range so that

II

(
1~

C4 ~4(0) ~o
J o

= 0.273. (1)

It is also of interest to consider the standard deviation, a, associated

with measurements at many angles of the length of the line. The

standard deviation is obtained from the variance of the measurements

defined by

1!

204 = (54(0) 
— 

‘ )2 dO (2)

0

• = 1 + ~~ 
-~~~~~iT ir’~

from which

04 
0.124.

Not only is there a large error associated with measurement of

length from the sequence obtained by use of 4—way coding, but also

there is a large standard deviation associated with a series of

measurements of lines of the same length but differing orientations.
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These large values arise because of the large angle between the

direction vectors available in 4—way coding.

3. METBICATION ERRORS IN 6—WAY AND 8—WAY CODING

It is to be expected that as the number of direction vectors

available from the coding scheme increases , the error and standard

deviation of the measurement of length will decrease. Using

corresponding geometrical constructions to that of’ Fig. 1 and the

method of the previous section , it is readily shown that for

6—way coding we have

— = - l  = 0.103
it

2 2 v’~ 12and 06 
= 

~~~~~~

so that 06 = 0.046

for 8—war coding we have

= ~~~~— l  = —0.1008 it

2 1 1 8
and 00 = — + — — —o 2 it it

so that 08 = 0.088.

In the case of 8—way coding it is to be noted that the diagonal L
step is counted as being of unit length. It is possible to count the

diagonal step as being of length /~
‘ —— the scheme can be designated

8 (v ~~) —way coding — but this is a particular case , 2—sampling, of some

coding schemes considered below.

With regard to 6— and 8—way coding, it can be seen that although

their average relative errors and standard deviations are less than those

of 4—way coding, both remain relatively large .

_ _ _ _ _  - -
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5.

4 JIETHODS OF REDUCING THE AVERAGE METRICATION ERROR IN 4—WAY CODING

Correction of grid unit

If , for an arbitrary straight line encoded by the 4-way scheme

the grid unit is taker) to be 
~~

- ( 0.785) instead of its actual value

of 1, the average relative standard error, £4, is reduced to zero.

However, the standard deviation of a series of measurements is reduced

only by the same factor and so takes the value 0.098, i.e. nearly 10%.

Nevertheless, although this correction method leaves the standard

deviation unacceptably large for the measurement of random straight

lines, it is very convenient for measuring the length of closed non—

noisy curves, for which the standard deviation falls to very low values (1].

Corner counting I 
-

In a manner of speaking, the error in the measurement of length

of an arbitrary line or curve by 4—way encoding comes about because

the coding scheme introduces so many corners (Fig.l) and the question

arises of whether allowance can be made for this. Alternatively, one

could argue that to reduce both the average relative error and the

standard deviation to minimal values , two parameters will, be required

and since the only two quantities immediately in evidence are the grid

steps and the number of turns (corners ) made on the grid , these must be

incorporated into a correction algorithm.

Referring to Fig. 1, in the sector ~~~~~ the number of grid steps

taken is, as before,t(cos0 + sinG) and the number of corners encountered

is (2LsinG — 1). If 9. is large enough, the latter can be approximated

by 2tsinO . Now count each grid step as cz and for each corner deduct

a quantity S from the total measurement. Then the relative error in
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measuring directly the length of a line becomes

54 (0)  (a ,~~) = acos8 + (a — 28)sino — 1,

and the standard deviation is obtained as before (eq. (2)). By

standard procedures, choose a and ~ so that the average relative

error is zero and the standard deviation is a minimum. This yields

0.948

and 8=ir/8/2

= 0.278.

With these values , the average relative error is zero, as required,

and the standard deviation has the value 0.023. Although a standard

deviation of’ just under 2~% is not negligible , it can be tolerated in

many practical situations.

rn—sampling

Another way in which length measurement may be improved is that

which we call rn—sampling: after the line is 4—way encoded, every mth

point is selected and the length of the line is taken as 

~ 

d(m).

where d(m)~ is the geometric distance between s~~ and 5~ ,j + 1)m ’

Fig. 2 shows an example of 6—sampling.

In the m—seaiplirig of’ a straight boundary , the vectors from one

selected point of the sequence , 5 .,  to the next one , 8~ + m’ can have

only a limited number of values. This is illustrated in Fig.3 for

vectors in the first quadrant. If OP = O~ = m , then the ends of the

vectors will fall on the line PQ. Furthermore, if OA is a typical

vector, inclined at angle •i to the x—axis, then OB + BA = m; and if

1 1
BA = i (where i , like m , is an integer )then OB = m — i and = tan m —  I

• - —-— —-- -- -~~~~~~~~~~~~~ •~~~
-. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The next available vector in Fig. 3 is OC , where DC = i+l and the

angle of that vector is = tan 1 1

A line OF , inclined at 0 to the x—axis , where •~
would be measured by a series of vectors equivalent in Fig. 4 to OR + RP.

Since (ORsin$ . + RPsin$ .~ 1) = OPsinO , etc., it readily follows that in

this case the error of measurement is

= ~~~ {r .(i+i ) — r .~~1( i) )  cosO — (r.(m— ~~i )  — r.~ 1(m—i))sin 0 
— ml

2 2 .2where r .  = Cm — j )  + j

Write L = ‘ a(0)d O where = 0 and 4 = •

J+ i
Write the average error for rn—sampling as c(rn).

Then ~(m) = ~~
- (it, + + . . . + ~~~~~

From this it follows, on evaluating the integrals, that
rn—i

— 2 1 2 iisCm ) = — {2 — 
~ ~~~ 

(r
~+i 

— r
~

) —

= {l - 
~~~~~ 

{((m - ~~~ ) 2 
+ (i+l)2)~ - ((rn-i )2 + i2

~~~
2 

- 1 (3)

Value of the average relative error in measurements of an rn—sampled line

Write ~(m) = E
m 

— 1 where Em is obtained from eq. (3) .  Table 1

gives values of ~ (m) and numerical forms of Em for various values of m.

It is interesting to note that , ~ (m) being always positive, the average

length measured increases as the sampling interval falls in such a way

as to provide a straight line in a log.log plot of’ ~ (rn) vs. m (Fig.5) .

This closely parallels the manner in which , as discussed by Mandelbrot (3],

the measured length of a coastline increases as the measuring rod is

reduced.

As expected, ~(m) tends to zero as in becomes very large. This can

~~~~ - • -~~~~~ ~~~~~~~~~~~~~ - -~~
- ---

~~~ -~~~~~-~~= —--- -
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be proved formally by referring to AOCA in Fig. 3 and noting that

OA = r
~
, OC = r~~1 and CA = 1~ , from which it follows that

r1
2 

+ r .~ 1
2 

— 2r.r.~ 1 cos(4 .~ 1 
— = 2

or 
~
‘i+i — r .) 2 = 2 + 2r.r .~ 1( cos(4 .~ 1 

—

As rn becomes very large , 
~~~~~~~ 

— 4i~ ) becomes very small . In these

circumstances , write cos(4 . +1 — — 1 = — ‘ i+l — 
4i’1 1 2

m
— 

2r.r. ‘ i+l 
—

i i+ l

since for very small values, 
~~~~~ 

— 4 .)  
~~ 

sin(4~~1 
— = r ..~~ •

Then it follows that

rn—i
I v ~2 itLt 
~~ L .r .41 — r.j = 1 —

1=0

from which, immediately, Lt Em = 
-
~~~ and Lt ~(m) = 0.

In practice , the limiting situation would be finding the two ends

of a straight line and calculating the distance between them.

It is worth remarking that 2—sampling is a version of 8—way coding

in which the diagonal step has the value J~. This case has been

considered by Kulpa [4] with the same result as is derived here from

the general formula.

5. EXPERIMENTAL VERIFICATION

The validity of several of’ the formulae given in the preceding

sections was confi rmed by computer program. A straight line of known

length but with random orientation was digitized. For each method of

measurement the line (usually of length 200) was measured at fifty

______ -
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random orientations with the results given in Table 2. The small

differences between the theoretical and experimental values can be

ascribed to truncation errors .

6. RELATIVE FREQUENCY OF DIAGONAL STEPS IN ENCODED STRAIGHT LINES

Freeman ( 5 ] (see also Groen and Verbeek [6 ]) considers the relative

frequency of unit and diagonal steps in the encoded sequence of’ an

arbitrary straight line . He reaches his result with the assumption that

lines emanate from each encoded point with uniformly random orientation.

This assumption can be avoided by comparing the average relative

errors obtained in the measurement of’ straight lines encoded by the

8—way and the 8(/~)—way schemes. The difference between these

average errors is due to diagonal steps being counted as of length

1 or v’~. Suppose that in the encoded “average line”, of true length

9., there are n steps of which a fraction p are diagonal. Then, with

8—way coding, using the formula for average relative error

— _ n - L  _ 2/~£0 — — — — 1o 9. ii

and with 8(/~)—way coding

C 8( ,/~ ) = 
n(l - p) +~~ pv’~~ - ~ = 

3(v’~ - 1)  - 1

Eliminating n/9. yields p = v’~— 1 which is the result of Freeman [5] and

of Groen and Verbeek [6].

7. CODING EFFICIENCY

Although, in particular circumstances , one definite coding scheme

may be more convenient than others, there appears to be no general rule

by which the merits of different schemes may be compared. It is

nevertheless possible to approach such a comparison on the basis of the

results of the previous sections.



10.

To begin with, consider the number of bits , 1~, which must be

stored in the encoding of a straight line under the coding scheme

chosen , with the implication that the smaller the number of bits stored,

the higher is the coding efficiency . For a w—way cede with steps of

equal length , a straight line of 1eri~jth P~ will, on average , be encoded

by a sequence of £(i + s )  direction vectors , and each vector will

require log2w bits to specify it. Hence the number of bits required

to encode the line is, on averEq
~.
e,1I

~ 
= £(1 + ~~)log9w. Values of

are given in Table 3 for w 4, 6 and 6. The table shows that 4—way

coding requires, on average, significantly fewer bits to be stored for

the encoding of a straight line than do either of the other two

schemes .

A reduction in the amount of data stored can be brought about if

the h—way encoded line or edge is rn—sampled. For a straight line of

length ~ the 4—w ay encoding results , on average, in £(i + direction

vectors . If this sequence is m—sanpled (which provides 1
~m direction

vectors) the number of direction vectors is reduced to 9.(l + ~ )/m but

the number of bits required to specify each one is 1og2
14m. Hence the

number of bits required to encode the n-sampled line is , on average,

N = 9~(l +

Values of N /2. are given in Table 3. It should be noted that these

values are for an rn— sampled 1k—way—encoded straight line; for lines

which initially were encoded by the 6—way or 8—way schemes , the values

of N / Q. would be , respectively 13.4% and 29.3% smaller.

It can be seen from Table 3 that rn—sampled data of an encoded

straight line can be stored efficiently , even when allowance is made

for the practical consideration that bits can be stored only as integers .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The rn—sampling of an encoded straight line is , of course , a special

case with a limited number, 13m, of resulting direction vectors. For

an arbitrarily curved line for which the original close—neighbor coding

was rn—sampled , more directions would appear for each value of rn,

resulting in a code which is a variant of’ the generalized codes

discussed by Freeman [7]. The form of such a code is shown in Fig. 6(a)

and , in Freeman’s notation, specifying an rn-sampled arbitrary curve would

require a (a , . . ., m—b ,m—2 ,m)—code where a = 1 or 2 according as m is

odd or even . For this form of generalized code the number of distinct

direction vectors is (m + 1) 2 if m is odd or (m + 1)
2_i i± m is even.

In the accompanying paper [I] we show that an arbitrary closed

curve of length 9. is b—way encoded by t(i  + ) direction vectors .

Accepting this result , it follows that if the coding were rn— sampled ,

the number of direction vectors would be Nm = (1 + E4)log2
(m +

if in is odd or the corresponding quantity if m is even. Table 3

includes values of Nm/9. and the advantage of rn-sampling in terms of

dat a storage requirements is readily seen . However , this mechanical

method of reducing the quantity of stored data risks losing significant

features of’ the encoded curve. In Fig. 6(b) if A were a sampling point

and with m~6 , the protrusion to the right of A would disappear. To

avoid such loss of features it would be necessary to allow m to vary

and the value of Nm/9. would increase accordingly .

Data storage requi rements are not the only considerations which

apply in choosing a scheme to encode a line or edge . Two other obvious

properties of lines are length and shape. We have shown above that a

simple algorithm (a general correction factor together with an allowance

for corners) may be used to reduce on average to zero the measurement

~

-

~

-- 

~
-
~~~~~~~~~

---
~
-

~~~~~~~ 
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error in determining the length of a straight line directly from its

b—way encoding. This algorithm , moreover , is applicable in determining

the lengths of noise—free curved lines [1] . It thus appears that

considerations of metrication hardly affect the quantification of the

efficiency of b—way coding. It should be mentioned that the algorithm

used with length measurement of b—way encoded lines could be applied,

with different values of the correction factors, to other coding schemes.

The average relative error could not, of course, be further reduced,

but the standard deviation of a series of’ measurements could be.

The shape of a line , even in a local region , is an undefined or

imprecisely defined property unless the line is straight or is of’ a

simple geometric shape (circular , parabolic , e tc . ) .  If , at least in

a local region , the line is continuous and differentiable, its curvature

at a point may be obtained. For a digitized encoded line, a form of

discrete curvature may be specified at each point from the two direction

vectors involving the point [8, 9], or sections ~f the line extending

over many point s may be approximated by circular arcs [10]. However,

extracting such features of a line (11 — 13] involves procedures which

average (one or more times, of. [9 ]) over several points of the encoded

sequence; and the more points included in the averaging the smaller

the dependence on the coding scheme . In these circumstances, and even

though intuition suggests that shape is best encoded by the available

coding scheme with most direction vectors, no measure of efficiency

is available nor does practical experience suggest that, say , b—way

coding is worse than 8—way coding.

-~~ — ~~-~~~~~~~~~~~~~~~~ ---~ ---~--- -- -- ~~~~~~~~~~~~~~~ 
-
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8. CONCLUSIONS

If a straight line or edge is encoded as a sequence of points,

the simplest way of measuring the length of the line is to count the

number of steps, each of known length, through the sequence. The

smaller the number of direction vectors provided by the coding scheme,

the greater is the average error in determining length by this means

(Fig.5); and with b—way coding the average error is just over 27% and

the standard deviation of a series of measurements is just over 12%.

However , a simple algorithm reduces the average error to zero and the

standard deviation to less than 2.5%. It is necessary to go to a

20—way code (5—sampling of b—way encoding) before the average error of

length measurement falls below 1%, although the standard deviation is

down to 2.5% with 8(~’~)—way coding (2—sampling of b—way encoding)

(Table 2).

In terms of data storage, b—way encoding requires significantly

less capacity, on average, than the other close—neighbor coding schemes.

k Sampling the b—way encoded data at regular intervals for either a straight

line or an arbitrary closed curve greatly reduces the necessary storage

capacity (Table 3) but for an arbitrary curved line this advantage is

offset by the risk of losing significant shape features. To avoid

such loss it would be necessary to sample at irregular intervals and

this would cause an increase in the number of direction vectors and the

number of bits stored. Quite generally, details of shape are best

preserved by coding with short direction vectors and , in the limit,

by using close—neighbor coding schemes .

We conclude that, of the close—neighbor schemes, b—way coding is

the most efficient. However, more generalized coding schemes, apart



—

- - -

from reducing the number of bits to be stored, have the advantage

pointed out by Freeman and Sagliri [7] of involving less processing
time in the further analysis which m ight be undertaken of the line

or boundary.

- - —-•



~~1~~~ i~~~~7 TTiTTTI~~~

REFERENCES

1. T. J. Ellis , D. Proffit , D. Rosen and W. Rutkowski , Measurement
of the lengths of digitized curved lines, University of
Maryland, Computer Science Center , TR—6 97, September 1978.

2. H. Freeman, Computer processing of line—drawing images, Computer
Surveys, 6, 197b, 57 — 97.

3. B. Mandeibrot, Fractals, Freeman & Co., San Francisco, 1977

4. Z. Kulpa, Area and perimeter measurement of blobs in discrete
binary pictures, Computer Graphics and Image Processing, 6,
1977 , 4314 — 1451.

5. H. Freeman, On the encoding of arbitrary geometric configurations ,
IRE Trans. Electronic Comp. (IEEE Trans. Comp.), EC—lO, 1961,
260 — 268.

6. F. C. A. Groen and P. W. Verbeek, Freeman—code probabilities of
object boundary quantized contours, Computer Graphics and
Image Processing, 

~~
, 1978, 391 — 402.

7. H. Freeman and A. Saghri, Generalized chain codes for planar
curves, Paper delivered at the 4th International Pattern
Recognition Conference, Kyoto , November 1978.

8. H. Freeman, On the digital computer classification of geometric
line patterns, Proc. Natl Electronics Conf., 18, 1962, 312 — 3214.

9. M. J. Eccles, M. P. C. McQueen and D. Rosen, Analysis of digitized
boundaries of planar objects , Pattern Recognition, 9, 1977,
31 — 42. —

10. B. Shapiro, Ph.D. thesis, Computer Science Center, University of
Maryland, July 1978.

11. A. Rosenfeld and E. Johnston, Angle detection in digitized curves,
IEEE Trans.Comp ., C—22, 1973, 875 — 879.

12. W. Rutkowski and A. Rosenfeld, A comparison of corner—detection
techniques for chaifl—coded curves, University of Maryland,
Computer Science Center, TR—623, January 1978.

13. H. Freeman and L. S. Davis, A corner—finding algorithm for chain—
coded curves, IEEE_Trans.Comp., 0—26, 1977, 297 — 303. 



Table 1. Exact formulae and average errors in rn—sampling
of straight lines

m No.of B —

direction m c(m)
vectors

1 4 1 0.27324

2 8 1 — (2 — 12)2/2 0.05479

212 — 2

3 12 1 — (~ 
— [5)2/3 0.02556

= 2~~ 
— 11/3

14 16 1 —  ((4 — /~))2 + (/j~ — /~)
2
}/4 0.011438

21i~~— 1O + 2/5

5. 20 1 — ( (5— / i~)
2 + (v’i~~— /i3)

2}/~ 0.00922

2/17 — 6T + 2v~~i5 5

6 2 4  1 — ( ( 6— / )2 + (/2~~-/ö)
2 ÷ (/2~~— / i~ )

2
}/6 0.006141

2 / 2 6 - T 0 + 2 / l 3 0 + 2 /j b
3 3

7 28 1 — {(.,
~ — ,/37) 2 

+ (,/
~~ 

— ,/~~)2 + (/~~ — 5)2}/7 0.001471

= 2/37 — + 21I~~~ + 1O1~~7 7 7

10 40 0.00232

30 120 0.00026

100 bOO 0.00002

— -- —. .L. _-~~~~~ — - - - -  --- - 
- 

~~~~~~~~~~~~~ 
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Table 2. Experimental veri fication of error formulae

Coding scheme Theoretical values Experimental values

a av.error s.d..

Close neighbor codes

b—way 0.273 0.1214 0.277 0.120

6—way 0.103 0.0146 — —

8—way — 0.100 0.088 — 0.081 0.077

8(/2)—way 0.055 0.025 0.053 0.027

rn—sampled data

2—sampled 0.055 0.053 0.027

3—sampled 0.026 0.025 0.015

4—sampled O.OZ4 o.oib 0.0087

5—sampled 0.0092 0.0089 0.0057

10—sampled 0.0023 0.0021 0.00114

20—sampled 0.00058 0.00053 0.00036

corner—corrected 14 —w a& encoding

0 0.023 0.00088 0.0214

_______________________________________________________________________ — - ______ ...



Table 3. Number of bits per unit length required to encode a line

STRAIGHT LINES ARBITRARY CLOSED CURVES

Coding scheme Theoretical Practical Theoretical Practical

Close—neighbor codes

b—way 2.51e6 2.5146

6—way 2.850 3.308

8—way 2.701 2.701

rn—sampled 4-way—encoded data

2—sampled 1.910 1.910 1.910 1.910

3—sampled 1.522 1.698 1.698 1.698

b—sampled 1.273 1.273 1.1459 1.592

5—s ampled 1.101 1.273 1.317 1.528

6—sampled 0.973 1.061 1.185 1.273

7—sampled 0.874 0.909 1.091 1.091

10—sampled 0.678 0.7614 0.879 0.891

20—sampled 0. 1402 0.14146 0.559 0.573 
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