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% ABSTRACT

Errors associated with several boundary encoding schemes
are discussed in terms of avérage errors encountered when
using the schemes directly for measurement of the lengths of
arbitrarily directed straight lines. Ways in which the 4
measurement errors may be diminished are examined; the
simplest is to make an allowence for the number of corners l
that appear when a line is represented by a l-way code.

The efficiencies of the various coding schemes are examined
and the l-way code is found to be the most efficient of the |
close-neighbors coding schemes, although efficiency can be ’
further increased by use of a generalized code.
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1. INTRODUCTION

The detection of object boundaries is fundamental to most methods
of picture processing and optical pattern recognition. Encoding these
boundaries as & numerical sequence for subsequent analysis inevitably
results in sampling errors. The magnitude of the errors will depend
on the coding scheme employed, although the significance of the errors
will depend on the use to which the data are put and a general analysis
of the effect of the errors may not be possible. Nevertheless, an
appreciation of the errors, together with other considerations, may well
determine which coding scheme is most advantageous in particular

circumstances.

We are concerned here with errors made in determining the length
of a straight line or edge directly from its coding sequence. There
are certainly other ways of determining the length of a straight line,
of which the most obvious is to determine its end-points and calculate
the distance between them. HLowever, this calculation may not be
practicable in certain situations, e.g., if the line were only '"nearly"
straight; and it would be grossly in error for highly curved lines

which are dealt with in the accompanying paper [1].

Coding schemes are conveniently described by the number of different
possible direction vectors which may be taken from a point. The

schemes first analyzed here are the lU-way and 8-way codes extensively

discussed by Freeman [2], which are the most commonly used since they i
i 1
arise naturally if a line or scene is viewed against a square grid, and _'te Sectlona

f Section [J

the 6-way code which arises if a hexagonal grid is used. The greater

the number of direction vectors allowed from a point by a coding scheme,

the more accurately may an arbitrary line be coded and the more accurately ABITY (ODES

d,/0r SPECIAL

may its length be measured. Coding schemes allowing more than 8

o
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directions, although sacrificing a sequence consisting only of nearest
neighbor points on a square grid, are dealt with when we consider the
ways of reducing the metrication errors of L- and 8~way coding. We
show that the average error in the measurement of length, which is about
27% for uncorrected 4-way coding, may be reduced to zero by a simple

algorithm.

Finally we examine the efficiency with which a line may be encoded,
in terms of the number of stored bits required by the coding scheme.
This analysis shows that the b-way code is the most efficient of the

close-neighbor codes, quite apart from its metric corrigibility.

2. METRICATION ERRORS IN 4-WAY CODING

Let a long but finite line of length £ be placed in an arbitrary
orientation on a square grid. Let one end of the line be the origin
of co-ordinates and suppose that the line is cof sufficient length that
its other end can be considered, without significant error, to lie on

a grid point. Let the inclination of the line to the x-axis be 6.

If the line is encoded by the lY-way scheme, it is represented by

a sequence of grid points {Si}’ Og¢ign (Fig. 1). (To avoid ambiguity
we take the sequence {si} all lying on one side of the line. The
results which follow would be unaltered if the sequence were on the other
side or were straddling the line.) The path from s, to Sh along grid
lines is then the representation of the arbitrary line under L-way coding
and the length of this path is what we refer to as the length obtained
directly from the coding sequence. Its value is obviously n if the grid

element is of unit length.

Define the relative error in the measurement of the length of an

arbitrary straight line inclined at 6 to the x-axis as

€(0) = (measured length - true length) / (true length).




pome

In the case of 4-way coding it is evident from Fig. 1 that n, the

measure of the line OP, is equal to OS + SP = & (cos® + sin6) so that

eh(ﬁ) = (cos® + sine) - 1,

It follows that €(8) =0 for 6 = 0 or %.bux has the value 0.414 for

] =‘%. If all values of 6 are equally probable, the average relative
error, EL, is readily obtained from the integral of eh(e) over all
angles. Because of symmetry, the integral can be restricted to the
range OsOsﬁ'so that

€, = % eb(e) de

=1

ERE

0.273. (1)

It is also of interest to consider the standard deviation, o, associated
with measurements at many angles of the length of the line. The

standard deviation is obtained from the variance of the measurements

defined by
7
2 =
o =2|  (e,(0) - 5% a0 (2)
o)
2 6
from which
Ul‘ = 0.12“.

Not only is there a large error associated with measurement of
length from the sequence obtained by use of L-way coding, but also

there is a large standard deviation associated with a series of

measurements of lines of the same length but differing orientations.




These large values arise because of the large angle between the

direction vectors available in U-way coding.

3. METRICATION ERRORS IN 6~WAY AND 8-WAY CODING

It is to be expected that as the number of direction vectors

available from the coding scheme increases, the error and standard

deviation of the measurement of length will decrease. Using
corresponding geometrical constructions to that of Fig. 1 and the
method of the previous section, it is readily shown that for
6-way coding we have
o & B S 5w e
56 ™
RN
and °6 e + p 2
so that 8s = 0.0L6 ;
for 8-way coding we have
€ = 22_ 5 . .10
m
2 . 1 4 LB
and 9% * 37 T % ne
so that og = 0.088,
In the case of 8-way coding it is to be noted that the diagonal
step is counted as being of unit length. It is possible to count the

diagonal step as being of length Y2 -- the scheme can be designated

8 (v2)-way coding — but this is a particular case, 2-sampling, of some

coding schemes considered below.

With regard to 6- and 8-way coding, it can be seen that although
their average relative errors and standard deviations are less than those

of b~way coding, both remain relatively large.




k .METHODS OF REDUCING THE AVERAGE METRICATION ERROR IN 4-WAY CODING

Correction of grid unit

If, for an arbitrary straight line encoded by the 4~way scheme
the grid unit is taken to be E- (= 0.785) instead of its actual value
of 1, the average relative standard error, EL, is reduced to zero.
However, the standard deviation of a series of measurements is reduced
only by the same factor'ﬁ and so takes the value 0.098, i.e. nearly 10%.
Nevertheless, although this correction method leaves the standard
deviation unacceptably large for the measurement of random straight
lines, it is very convenient for measuring the length of closed non-

noisy curves, for which the standard deviation falls to very low values [1].

Corner counting

In a manner of speaking, the error in the measurement of length

of an arbitrary line or curve by l-way encoding comes about because

the coding scheme introduces so many corners (Fig.l) and the question
arises of whether allowance can be made for this. Alternatively, one
could argue that to reduce both the average relative error and the
standard deviation to minimal values, two parameters will be required
and since the only two quantities immediately in evidence are the grid
steps and the number of turns (corners) made on the grid, these must be

incorporated into s correction algorithm.

Referring to Fig. 1, in the sector Osesﬁ, the number of grid steps
taken is, as before, 2(cos® + sing) and the number of corners encountered
is (2%s8in® - 1). If & is large enough, the latter can be approximated
by 228in6. Now count each grid step as a and for each corner deduct

a quantity B from the total measurement. Then the relative error in




measuring directly the length of a line becomes

€,(8) (a,8) = acos® + (a - 2B)sind - 1,
and the standard deviation is obtained as before (eq. (2)). By

standard procedures, choose o and B so that the average relative

error is zero and the standard deviation is a minimum. This yields
a=7(1 + v2)/8
= 0.948
and B = m/8V2
= 0.278,

With these values, the average relative error is zero, as required,
and the standard deviation has the value 0.023. Although a standard
deviation of just under 23% is not negligible, it can be tolerated in

many practical situations.

m-sempling
Another way in which length measurement may be improved is that

which we call m-sampling: after the line is 4-way encoded, every mth

point is selected and the length of the line is taken as 2 d(m)j
J=o

where d(m)j is the geometric distance between s._ and s(

jm j+1l)m

Fig. 2 shows an example of 6-sampling.

In the m—sampling of a straight boundary, the vectors from one

selected point of the sequence, sj, to the next one, s. , can have

j+m
only a limited number of values. This is illustrated in Fig.3 for
vectors in the first quadrant. If OP = 0Q = m, then the ends of the

vectors will fall on the line PQ. Furthermore, if OA is a typical

vector, inclined at angle ¢i to the x-axis, then OB + BA = m; and if

% 1

BA = i (where i, like m, is an integer ) then OB = m - i and ¢i = tan

m-1i.
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The next available vector in Fig. 3 is OC, where DC = i+l and the

-1 i+l
m-1 L

angle of that vector is ¢i+l = tan
A line OP, inclined at 6 to the x-axis, where ¢, ses¢i+l(Fis-h),
would be measured by a series of vectors equivalent in Fig. 4 to OR + RP.

Since (0Rsin¢i + RPsin¢i+l) = OPsin6@, etc., it readily follows that in

this case the error of measurement is

kb - = 2 il P o F o
e(0) = = {ri(1+l) ri+l(1)) cos@ (ri(m-1+1) ri+l(m i))siné - m}
where r? = (m - j)2 + j2.
¢.
. o e Al - =1
Write Ii = e(6)d® where ¢, = 0 and ¢y =7 *
03

Write the average error for m-sampling &s e(m).

Tim) =<
Then e(m) = ~ (Io +L+. .0 L)

From this it follows, on evaluating the integrals, that

m-1
T =22 -3 T (o -2 3
i<=o
m-1
=2l Y (-T2 s @d) - (@? BB -0

i=o

Value of the average relative error in measurements of an m-sampled line

Write €(m) = %'Em - 1 where E is obtained from eq.(3). Table 1
gives values of e(m) and numerical forms of E, for various values of m.
It is interesting to note that, €(m) being always positive, the average
length measured increases as the sampling interval falls in such a way
as to provide e streight line in a log.log plot of e(m) vs. m (Fig.5).
This closely parallels the manner in which, as discussed by Mandelbrot [3],
the measured length of a coastline increases as the measuring rod is

reduced.

As expected, €(m) tends to zero as m becomes very large. This can

e —————————<S
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be proved formally by referring to AOCA in Fig. 3 and noting that

OA =71, 0C =r, . endCA= V2, from which it follows that

1+1
2 2
T+ 2riri+1 cos(¢i+l - ¢1)

2

or (r 2 + 2riri+l(cos(¢i+l - ¢i) -1).

i+l - r.)2
i
As m becomes very lerge, (¢i+l - ¢i) becomes very small. In these

2
circumstances, write cos(¢i+l - ¢i) -1=- (¢i+l ¢i)

2
m
® === ($. .~ 9.)
2riri+l i+1 1
since for very small values, (¢i+l - ¢i) v sin(¢i+l - ¢i) o ? ’
i7i+l

Then it follows that

m-1
1
Lt oo Z (r
me :
1=o

i e
T e

from which, immediately, Lt B * % and Lt e(m) = O.
mee me

In practice, the limiting situation would be finding the two ends

of a straight line and calculating the distance between them.

It is worth remarking that 2-sampling is a version of 8-way coding
in which the diagonal step has the value V2. This case has been
considered by Kulpa [4] with the same result as is derived here from

the general formula.

5. EXPERIMENTAL VERIFICATION

The validity of several of the formulae given in the preceding
sections was confirmed by computer program. A straight line of known
length but with random orientation was digitized. For each method of

measurement the line (usually of length 200) was measured at fifty




random orientations with the results given in Table 2. The small

differences between the theoretical and experimental values can be

ascribed to truncation errors.

6. RELATIVE FREQUENCY OF DIAGONAL STEPS IN ENCODED STRAIGHT LINES

Freeman [5] (see also Groen and Verbeek [6]) considers the relative
frequency of unit and diagonal steps in the encoded sequence of an
arbitrary straight line. He reaches his result with the assumption that
lines emanate from each encoded point with uniformly random orientation.
This assumption can be avoided by comparing the average relative
errors obtained in the measurement of straight lines encoded by the
8-way and the 8(V2)-way schemes. The difference between these
average errors is due to diagonal steps being counted as of length
1 or ¥2. Suppose that in the encoded "average line", of true length
£, there are n steps of which a fraction p are diagonal. Then, with

8~way coding, using the formula for average relative error

and with 8(v2)-way coding

_8(Z-1) _
m

Eé(/ﬁ) 3 n(l - p) + np/g-- [ i1

£
Eliminating n/% yields p = v2-1 which is the result of Freeman [5] and

of Groen and Verbeek [6].

T. CODING EFFICIENCY

Although, in particular circumstances, one definite coding scheme
may be more convenient than others, there appears to be no general rule
by which the merits of different schemes may be compared. It is

nevertheless possible to approach such a comparison on the basis of the

results of the previous sections.




To begin with, consider the number of bits, N, which must be

stored in the encoding of a straight line under the coding scheme
chosen, with the implication that the smaller the number of bits stored,
the higher is the coding efficiency. For a w-way ccde with steps of
equal length, a straight line of length 2 will, on average, be encoded
by a sequence of 2(1 + E;) direction vectors, and each vector will

require loggw bits tc specify it.  Hence the number of bits required

to encode the line is, on average,ﬁ; =2(1 + E;)logow. Values of ﬁ;/z

are given in Table 3 for w = 4, 6 and §. The table shows that L-way
coding requires, on average, significantly fewer bits to be stored for
the encoding of a straight line than do either of the other two

schemes.

A reduction in the amount of date stored can be brought about if
the U~way encoded line or edge is m-sampled. For a straight line of
length & the L-way encoding results, on average,in £(1 + EL) direction
vectors. If this sequence is m-sanpled (which provides 4m directiocn
vectors) the number c¢f direction vectors is reduced to 2(1 + —L)/m tut
the number of bits required to specify each one is logehm. Hence the

number of bits required to encode the m-seampled line is, on average,

ﬁ; = 2(1 + Eh)logg(hm)/m.

Values of ﬁ;/z are given in Table 3. It skould be noted that these
values are for an m-sampled lL-way-encoded straight line; for lines
which initially were encoded by the 6-way or 8-way schemes, the values

of ﬁ;/% would be, respectively 13.4% and 29.3% smaller.

It can be seen from Table 3 that m-sampled data of an encoded

straight line can be stored efficiently, even when allowance is made

for the practical consideration that bits can be stored only as integers.
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The m—-sampling of an encoded straight line is, of course, a special

case with a limited number, Um, of resulting direction vectors. For

an arbitrarily curved line for which the original close-neighbor coding
was m-sampled, more directions would appear for each value of m,
resulting in a code which is a variant of the generalized codes
discussed by Freeman [7]. The form of such a code is shown in Fig. 6(a)
and, in Freeman's notation, specifying an m~sampled arbitrary curve would
require a (a,...,m~4,m~2,m)-code where a = 1 or 2 according as m is

odd or even. For this form of generalized code the number of distinct

direction vectors is (m + l)2 if m is odd or (m + 1)2—1 if m is even.

In the accompanying paper [1] we show that an arbitrary closed
curve of length % is lU-way encoded by £2(1 + EL) direction vectors.
Accepting this result, it follows that if the coding were m-sampled,
the number of direction vectors would be Nm = (1 + Eh)logz(m + 1)2/m
if m is odd or the corresponding quantity if m is even. Table 3
includes values of lel and the advantage of m-sampling in terms of
data storage requirements is readily seen. However, this mechanical
method of reducing the quantity of stored data risks losing significant
features of the encoded curve. In Fig. 6(b) if A were a sampling point
and with m26, the protrusion to the right of A would disappear. To
aveid such loss of features it would be necessary to allow m to vary

and the value of Nm/E would increase accordingly.

Data storage requirements are not the only considerations which
apply in choosing a scheme to encode & line or edge. Two other obvious
properties of lines are length and shape. We have shown above that a

simple algorithm (a general correction factor together with an allowance

for corners) may be used to reduce on average to zero the measurement




error in determining the length of a straight line directly from its
k—way encoding. This algorithm, moreover, is applicable in determining
the lengths of noise-free curved lines [1]. It thus appears that
considerations of metrication hardly affect the quantification of the
efficiency of lU-way coding. It should be mentioned that the algorithm
used with length measurement of U-way encoded lines could be applied,
with different values of the correction factors, to other coding schemes.
The average relative error could not, of course, be further reduced,

but the standard deviation of a series of measurements could be.

The shape of a line, even in a local region, is an undefined or
imprecisely defined property unless the line is straight or is of a
simple geometric shape (circular, parabolic, etc.). If, at least in
a local region, the line is continuous and differentiable, its curvature
at & point may be obtained. For a digitized encoded line, a form of
discrete curvature may be specified at each point from the two direction
vectors involving the point [8, 9], or sections of the line extending
over many points may be approximated by circular arcs [10]. However,
extracting such features of a line [11l - 13] involves procedures which
average (one or more times, cf.[9]) over several points of the encoded
sequence; and the more points included in the averaging the smaller
the dependence on the coding scheme. In these circumstances, and even
though intuition suggests that shape is best encoded by the available
coding scheme with most direction vectors, no measure of efficiency
is available nor does practical experience suggest that, say, L4-way

coding is worse than 8-way coding.

12.




8. CONCLUSIONS

If a straight line or edge is encoded as a sequence of points,
the simplest way of measuring the length of the line is to count the
number of steps, each of known length, through the sequence. The
smaller the number of direction vectors provided by the coding scheme,

the greater is the average error in determining length by this mesns

(Fig.5); and with L-way coding the average error is just over 27% and
the standard deviation of a series of measurements is just over 12%.

However, a simple algorithm reduces the average error to zero and the

l
standard deviation to less than 2.5%. It is necessary to go to a %
20-way code (S5-sampling of 4-way encoding) before the average error of E
length measurement falls below 1%, although the standard deviation is !
down to 2.5% with 8(/2)-way coding (2-sampling of L-way encoding)

(Table 2).

In terms of data storage, Y-way encoding requires significantly |
less capacity, on average, than the other close-neighbor coding schemes.
Sampling the l-way encoded data at regular intervals for either a straight
line or an arbitrary closed curve greatly reduces the necessary storage
capacity (Table 3) but for an arbitrary curved line this advantage is
offset by the risk of losing significant shape features. To avoid
such loss it would be necessary to sample at irregular intervals and
this would cause an increase in the number of direction vectors and the
number of bits stored. Quite generally, details of shape are best
preserved by coding with short direction vectors and, in the limit,

by using close-neighbor coding schemes.

We conclude that, of the close-neighbor schemes, W-way coding is

the most efficient. However, more generalized coding schemes, apart




TT——y

1k,

from reducing the number of bits to be stored, have the advantage
pointed out by Freeman and Saghri [7] of involving less processing
time in the further analysis which might be undertaken of the line

or boundary.
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Table 1. Exact formulae and average errors in m-sampling
of straight lines

X I;gx"eg:ion Em E(m)
vectors
1k 1 0.2732k
g8 1-(2-v2)%2 0.05L479
=2/2 -2
Sl 4 1-(3-v5)%3 0.02556
= 2/5 - 11/3
L 16 1~ {4 - /I0)2 + (/IO - B2 0.01438
= 2/10 - 10 + 2/5
5. 20 1= U5 - /IN? + (1T - 335 0.00922
¢ = 2/17 - 67 + 2/221
5 bl
6 24 1 - {(6 - /28)% + (/36 - /20)° + (/20 - /1B)%}/6  0.006k1
\ = 2/26 - 70 + 2/130 + 2/10
3 3
1 T &8 1- (7T - /302 + (/31 - v®)% + (/35 - 517 o0.00km1

2/37 - 199 + 2/1073 + 10v29
1

i 7

10 ko
30 120
100 LoO




Table 2. Experimental verification of error formulae

Coding scheme Theoretical values Experimental values

€ (o] av.error s.d.

Close neighbor codes

L—way 0.273 0.124 0.277 0.120
6-way 0.103 0.046 - =
8-way - 0.100 0.088 o 0.081 0.077
8(v2)-way 0.055 0.025 0.053 0.027
m-sampled daﬁa

2-gsampled 0.055 0.053 0.027
3-sampled 0.026 0.025 0.015
4-sampled 0.014 0.01k 0.0087
S5-sampled 0.0092 0.0089 0.0057
10-sampled 0.0023 0.0021 0.001k
20-sampled 0.00058 0.00053 0.00036

corner-corrected L-way encoding

0 0.023 0.00088 0.024

T




Table 3. HNumber of bits per unit length required to encode a line

STRAIGHT LINES ARBITRARY CLOSED CURVES

Coding scheme Theoretical Practical Theoretical Practical

: Close-neighbor codes

b-way 2.546 2.546
% 6-way 2.850 3.308
8-way 2.701 2.701

m-sampled 4~way-encoded data

: 2-sampled 1.910 1.910 1.910 1.910
: 3-sampled 1.522 1.698 1.698 1.698
é L-gampled 1.273 1.273 1.459 1.592

% 5-sampled 1.101 1.273 1.317 1.528

i 6-sampled 0.973 1.061 1.185 1.273

\ 7-sampled 0.87h 0.909 1.091 1.091
10-sampled 0.678 0.764 0.879 0.891

' 20-sampled 0.ko2 0.L4L46 0.559 0.573
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various coding schemes are examined and the 4-way i ;
code is found to be the most efficient of the close- : :
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