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PREFACE

The David W. Taylor Lectures were conceived to honor our founder in

recognition of his many contributions to naval architecture and naval hydro-

dynamics. Admiral Taylor was a pioneer in the use of hydrodynamic theory
and mathematics for the solution of naval problems . He established a tra-

dition of applied scientif ic research at the “Model Basin” which has been
caref ully nurtured through the decades and which we treasure and maintain
today . It is in this spirit that we have invited Prof. Louis Landweber to

be a David W. Tay lor Lecturer.

Prof. Landweber was born in New York in 1912. He received his Bache—

b r  of Science degree in Physics from the City College of New York in 1932.
That year he came to the U.S. Experimental Model Basin at the Washington

Navy Yard as a j unior physicist. When the David Taylor Model Basin opened

at Carderock in 1940, Dr. Landweber headed a small research group which

shor tly afterwards was expanded into the Hydrodynamics Division. During

his years at Carderock , he continued to head this division, and he also

completed work on his Ph.D. at the University of Maryland. He was an advo—

cate of advanced training for the staff and taught courses for the
University at the Center .

After twenty—two years of distinguished research at the “Model Basin,”

Dr. Landweber left to become a professor at the University of Iowa. He

continued his research in ship hydrodynamics at the school’s Institute for

Hydraulic Research. During the intervening years since leaving the Center

in l9 i4, he has maintained close ties with his colleagues here at the

Center and has returned frequently for meetings and panel sessions. 

- - ,. ---~~~~ -. -

_ _ _ _ _ _ _  — - - -~~~~~~~~~ -~~--- , - .



FOREWORD

Af ter a lapse of twenty—four years, it was surprisingly easy and

pleasant to readjust for a month to a daily schedule of work in a mezzanine

office at the David W. Taylor Naval Ship Research and Development Center .

I found Ship Hydrodynamics to be alive and well, its problems being vigor-

ously attacked by a dedicated and talented staff, as in the “old days.”

The adjus tment was probably equally easy and pleasant for another
“a lumnus” and David Taylor Lecturer , John Wehausen. it is remarkable that

so many of the alumni have stayed in the field of Ship Hydrodynamics , an

indication of the challenging nature and attractiveness of the subject.
To all who visited me, to consult, gripe, reminisce or simply to

educate me, who extended generous hospitality in accordance with the

fortune—cookie admonition, “Take time to play in order to have a long

l i f e,” who invited me and arranged that day—to—day living would be con-

venient and comfortable for my wife and myself , in other words , to all
who helped disprove the old adage that “one cannot go home,” our deepes t
apprec iation.

vii
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ON IRROTATIONAL FLOWS EQUIVALENT TO THE
BOUNDARY LAYER AND WAKE

U~TRODUCT ION
of the simplest and most useful  results of boundary—layer  theory

is that the f low exterior to the boundary layer , which will be assumed to

be i r rotat ional, is pushed outwards by an amount called the displacemen t

chickness. This suggested , early in the development of boundary—layer

theory, that the accuracy of a boundary—layer calculation for a body could

be improved by adding the boundary—layer thickness to the body dimensions
and using the predicted pressure distribution on the so—thickened body in

a recalculation of the boundary layer. The irrotational field about the

thickened body, including the displacement thickness of the wake, is itself
of great interest, and numerous attempts have been made in this manner to
calculate the effect of the boundary layer and wake on the outer irrota—

tional flow.

The concep t of the thickened body gives an approxima te model which is
usually jus tif ied by its consistency with the approximations of thin

boundary—layer theory. We-shaLNreview the basis of this model and suggest

ways of refining it. Such a development would be useful for several current

problems of ship hydrodynamics, among them the determination of Betz
sources in a method of calculating viscous drag by an analysis of wake

survey data , and the investigation of the effect of the boundary layer and

wake on wavemaking resistance. r—~

We shall assume that the boundary layer and wake (BLW) are known ,

and seek an irrotational model which yields the actual outer flow. An

approximate solution of this problem has been given by Preston [1] and

Lighthill [2].

Solution of Preston and Lighthibb — Two—Dimensional Case

Let us consider a two—dimensional flow about a body of small curvature

in a uniform stream of velocity U , on which a thin boundary layer is

present. Coordinates parallel and normal to the surface will be denoted

by (s,n), and the corresponding velocity components by (u,v). We shall

1



suppose that the radii of curvature are so large compared wi th  the boundary—

layer thickness ó , that  the curvil inearity of the coordinate system may be

ignored . The normal velocity component at n = (S is then given by

v(6) 5 -
~~

-
~~ dn = - 5 ~~ dn = - + 

~~— 5 (U-i, ) dn = - (S

+ f (U(S
1) ,  6~ = 5 (

~
_ 

~
) dn (1)

where U u (s , (S) and is the displacement thickness. In the irrotat ional

flow about the body , with velocity components U1(s ,n ) ,  V1(s ,n ) ,  we have

(aU 1/ an ) 0 
= 0 where the subscript 0 denotes n = 0. Hence we may put

U 1(s ,n) = U 1(s ) ,  since

f~u \
U1(s ,n) U1(s ,O) + ~ U1(s ,0) = U

1(s ),  0 < n < (S

The normal velocity in this irrotational flow , at n = (S , would then be

given by V1(s ,6) V~~(s , O) + ô(~ V1/~ n) 0, and hence , since V1(s , 0) = 0 and
= — dU

1/~
s, we obtain

dU 1V1(s , ( S) — (S i— (2)

We also assume that U = u(s , (S) = U
1(s , (S) for a thin boundary layer. Thus

the f i r s t  term of the r ight  member of (1) is a t t r ibu tab le  to this ir rota—

tional flow , and the second term represents an additional outward flow due

to the boundary layer.

Put V’ = f (U S
1) and consider that the “known” values of V’ on the

contour n — ô, the edge of BLW, pose an exterior Neumann boundary-value

problem for determining a source distribution rn(s) on the surface of the

body and (if the body is symmetric) along the centerline of the wake.

2
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Preston and Li gh t h il l  g ive the solution without hesitation. Their result is

m = ~~- V ’(s , (S) = -
~~~~~~~

- (U( S~~) (3)

for  which the argument g iven b y Li ghthi ll  is: “This additional outflow is

exactly ‘as if’ the irr~ tat onal flow around the body were supp lemented by
the e f f e c t  of a sur face  d i s t r ibu t ion  of sources , whose strength ... is ..

Equation (3) does not seem as obvious to the present wri ter .  In order

to derive it , one must assume that the velocity U(s)  is undisturbed by the

dis t r ibut ion r n ( s ) ,  an assumption which may not be consistent with the

uniquely defined solution of the Neumann problem. According to this assump-

tion , the body surface is an equipotential for the distribution rn(s) (be-

cause the tangential velocity due to m(s) is zero). This immediately yields

rn(s) = ~~-V’(s ,O~) 

,
,
,.a
9i~~~~

’ 
(4)

since V’(s,O )  = 0 on the interior side of the equipoten tial surface and

V~ (s ,O+) — V’(s,O )  = 2rrm(s). Then, from the Taylor expression V’(s,(S)

V’(s,O÷
) + ~ (

~F) 0 + V ’(s,O÷
) ,  we obtain the approximate solu-

tion (3).

The special case of a fla t plate, (even in a nonzero pressure

grad ient) ,  however, confirms the approximate solution (3) without requiring

the equipotential assumption. Since the plate is the limiting case of a

4 V ’
r n ( s )

rn ( s )

Figure 1

very thin body , the distributions rn(s) are present on both sides. Applica-

tion of the Gauss flux theorem (the usual proof) im ’ediately gives Equa-

tion (3).

3



Another case tha t y ields (3) is that of a constant source distribution
on a circle. This gives a velocity potential due to a source of strength

2irma at the center of the circle of rad ius a, and hence V ’(s,n) V ’(s,O) =

(2irma) 
= 2iim . But the local element about the point s contributes Tim

to V1 . Hence, if we consider a nonuniform distribution which is large in

the neighborhood of s , and negligible elsewhere, we would obtain V’(s,n)

Tm , half of the Preston—Lighthill formula. This suggests that , without the

equipotential assumption, Eq uation (3) would give a good appr ox ima tion only

for very thin two—dimensional forms.

The distrib ution m (x) on the surface of the body y = f ( x ) ,  which
satisfies the boundary condition ~~/~ n = v’(s,O) can be determined as the

solution of the Fredholrn integral equation of the second kind , (see

Figure 2)

Figure 2

Tm(s) + m(t) 9..n r
~~ 

dt = V t  (s)  (5)

in which t also denotes arc length along the body contour . The indetermi-

nacy of the kernel -i-— ~.n r
~~ 

at s = t can be removed by apply ing , the

identity (at a smooth point of the contour)

-

~~~~

— Zn r
~~ 

dt = -

~~

--

~ 
~(

5~~ dt = T (6)

~~~~
where the complex vector r

st 
e , extending from s to t, has given the

pair of conjugate functions

_ _  

-

~~~~ 

4 ~~~~~~

- 

-

~~~~~~

- 

_

_ S_



/ 1.4~~ \
Zn~~ r e ) Znr + i 4

St St St

to which the Cauchy—Riemann Equations have been applied . We then obtain

from (5) and (6)

2irm(s) + f [rn(t) ~
1— Zn r 

n
_rn(s) 

~~~~~
— Zn 

r ]  
dt = Vt (s) (7)

Since the new integrand vanishes at the point s = t, where the largest con-

tribution to the integral in (5) occurs, the form in (7) suggests that the

Preston—Lighthill formula should give a good first approximation.

From formula (3) for the source distribution, Lighthill immediately
concludes that the displaced surface, obtained by the addition of the dis—
placement thickness, is a stream surface. This again requires the assump-

tion that all the flux from the source distribution rn(s) be outward , i.e.,

that the given contour be an equipotential for the distribution. For then,

the Gauss f lux theorem gives the relation

5

2rJ in ds = U n(s)

0

where n(s) denotes the stream surface generated by rn(s). Comparison with

(3) then shows that n(s) =

A Second Approximation for the Source Distribution —
Two—Dimensional Case

It appears to be easier to derive a formula for a source distribution
M(x) , equivalent to the BLW, for a thin, symmetric body , when M(x) is dis-
tributed on the axis of symmetry, the x—axis. The given profile will be

deno ted by y = f (x) , the edge of the boundary layer, EBLW , by y = g(x), and

the profile thickened by the displacement thickness by y = h(x). Put

5
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#

~~~~~

X

~~~~~

Y

~~~
Lu

~~~~

x

Figure 3

df/dx = tan y. For the irrotational flow, the velocity componen ts in the

x— and y—directions will be denoted by u(x,y) and v(x,y).

We wish to determine the source distribution M(x) such that, on

y = g(x) , the stream f unction ~~x,y) assumes the values

= U((S— (S
1) 

. (8)

We have

= (~p ~2~ +~p ~~~ = (_ v~~~~ +u~~~~ ) (9)
\ ~s / g \ x ds y ds ,‘ g ds ds g

But

v(x ,g) = v(x ,O) + g v(x,O) = IIM(x) — g u(x ,O) (10)

- . - S .  — .  - — - . — S .:

u(x ,g) u(x , 0) + g U~~(X~~O) ~ u(x , 0) (11)

since u~~(x~ O) = 0 by symmetry. Also, by (8), we have

(•
~~)g 

— ~~ [u(cS— (S1) ]  (~~~)g 
(12)

6



and hence, substituting (10), (11), and (12) into (9) and solving for M (x),
we obtain

irI4(x) 
~ 4~— [g(x) u(x,O)—U((S— (S1)J (13)

Since, as is seen from Figure 3,

g(x) = f(x) + (S sec y (14)

and

U u(x,g) sec y °‘ u(x,O) sec y (15)

we can write (13) in the form

7111(x) f {u(x,O)[f(x)+(S1 sec yJ} (16)

Here we have assumed that f(x), ~ ~~ (u—U0
) ,  v and y are small quantities

of the first order and terms of third and higher order have been neglected.

For the irrotational flow about the body without a boundary layer , (16)
yields the well—known, second—order approximation for a centerplane

distribution,

irM0 (x) ~j — [u(x ,0) f ( x ) ] (17)

Hence, the additional source strength due to the boundary layer is given by

M(x) — M0(x) = f [u(x 0) 
~l 

sec y] (18)

The .result in (18) resembles the Preston—Lighthill formula (3), especially

when the body slope is small. The distribution strength is approximately7



doubled because a pair of distributions on the body surface has coalesced

on the cen terplane, as was done in the example of the boundary layer on a

f l a t  p late.

Similarly to (14), the displacement—thickness profile , y = h(x), may

be expressed by

h(x) f(x) + sec y (19)

and (17) becomes

M
1(x) ~ 

[u(x,O) h(xfl (20)

Comparison with the form of (16) now shows that, to the second order of

accuracy , the irro tationab flow abou t the displaced sur f a ce sa ti s f ies the

specified boundary condition (8) at the edge of the boundary layer and wake.

Solutions for Axisymmetric Flow — First Approximation

Let r
0
(s) denote the radius of a body of revolution , where s is ar c

length along a meridian section of the body, and r the radial dis tance  to an

arbitrary point. Let n denote distance from the body along the outward

normal to its surface. We shall also employ cylindrical coordinates, (x,r)

where the axis of symmetry is taken as the x—axis , and put r 0 (s) = 1(x)

and tan ‘y = df/dx. The edge of the boundary layer is defined by the surface

g (x)

,“~~~~~~ ~
1
~

’ 7
~

_
~ = 6’ sin y’

x x ’

Figure 4

8
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r
6

(s) = r0
(s) + iS cos y’ or g(x) = f (x ’) + (S (x’) cos y (x’) (21)

By a Taylor expansion about x, with dy/ds = — k, where k is the curvature

of the meridian profile, and with x’ — x = 6 (x ’) cos y(x ’) ,  g(x)  becomes

g(x) = f (x )  + (S sec y + (S(S’ tan y — ~ k(S~ tan
2 y sec y + ... (22)

The element of arc along a curve n = constant is h
1 
ds = (l+kn) ds. The

equation of continuity is then

~(ru) 
+ -

~~-— [(l+kn) rv] = 0 (23)

where u(s ,n) and v(s ,n) are the actual velocity components in the directions

of increasing values of s and n. We shall also requIre the velocity coin—

ponents U(s,n) and V(s,n) of the “equivalent” irrotational flow.

The boundary—layer thickness of an axisymmetric boundary layer is

usually defined as

= - [
~- ~~~~~~]~~

n (24)

An alternative definition, in which a higher—order term is retained , is

given by

r U( s ,(S) dn = r[U(s,ô~—u(s,n)] dn = r0 U

Since r = r0 + n con y, this yields the quadratic equation

r
0 
(S* + I (S*2 cos y = r0 l (25)

9
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and the relation

26
= 

1 
1/2 

(26)r 2iS1 cos y
1+ I 1+

L r0

The equivalent irrotational flow is determined by the values of v (s ,(S) .

By (23), we have

(l+k (S) r6 v(s,
(S) = - 

f  f (ru) dn = [r(U-u)-rU ] dn

S.. — 2
= 

~~
— (r0u(S1) — (S 

~~~~~ (r~U) — 
~~

— 

~~~~

- (U ~~s y) (27)

where U = U (s ,6) .  In the irrotational flow about the body without a bound—

ary layer , with velocity components (U1,V1) ,  (27) becomes

(l+k(S) r (S V1(s ,(S) = - 

f  ~~ [rU~ (s ,n)J dn

d 62 d
— (S a— (r~U 1) — y- ~~

— (U1 con y)

0 since (~ U 1/~ n)~ ,_0 = 0, and U1(s ,n) = U1
(s ,O) + 0(6 2) ~ U 1(s) .  If the

boundary layer is thin , then U 1(s) ~ U and the first term of the right

member of Equation (27) can be interpreted as that contributing an addi—

tional flux due to the boundary layer. We define the additional normAl

velocity V 1 due to the boundary layer by

(l+kó) r 6V ’ = 
~~

— (r 0U6 1) (28)

10
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If the body were a circular cylinder of constant radius r0, we could
immediately determine the source strength rn(s) equivalent to the effect of
the boundary layer.  App lication of the Gauss flux theorem gives

2rr r
(S
V’ = 4ir(2rrr

0m)

and hence b y (28) ,

m = 
~~~~~

- 
~~

— (u(S1) (29)

A generalization of (29) can be derived from the integral—equation

formulation of the Neumann problem for the prescribed boundary—layer flux.
If P and Q are points on the body surface, we have

2rTm(P) = f m (Q) ~~— —1— dS + V’(P) (30)
Q P Q

The singularity of the kernel when Q coincides with P can be removed by
means of the relation, valid at smooth points of the surface,

.. ( ~n 
~
.
~
L_ dS

Q
= _ 2 7 r  - (31)

Thus (30) may be written in the form

4~m(P) = f [m(Q) ~~~~~~~~~~~~~~~~~~~~~ m (P) ~ —~~— 1dS + V’(s,O) (32)
s p rpQ Q PQJ Q

which suggests the first approximation

_ _ _ _ _ _ _ _ _ _  -~~ 
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m (P) = V t (s,O) -
~~~~

— f (r
0U6 1

) (33)

a generalization of (29).

In order to improve upon the approximate source distribution (33), we

shall now consider an axial source distribution M(x). For irrotational

flow about the given body , r = f(x), the modified Munk formula of Landweber

[3] gives the approximate solution, in terms of the free—stream velocity U0,

M0
(x) 

~ 
(l+k1) U0 f- f2(x) (34)

where k1 is the longitudinal added—mass coefficient. For the thickened

body , with r = r1
(x) = f ( x) + 

~l 
sec y, formula (34) gives

M1(x) 
= -

~~ (l+k
1

) U
0 f r12(x) -

M0 + 
-
~~ (1+k1) u0 f- (f61 sec y + ~ 61

2 sec2 (35)

If the alternative displacement thickness (S* is used , the same expression

is applicable, with 
~l 

replaced by (S*~

Axisymmetric Flow — Second Approximation

We shall now derive a second—order approximation for an axial source

distribution for slender bodies. The given profile is r = r0(x) 
= f(x),

the edge of the boundary layer is r = g(x), and the displacement—thickness

profile is r = h(x). The velocity components in the x— and r—directions

for the equivalent irrotational model are u(x,r), v(x,r).

12
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S t
g (x)

V(s,(S 

~ — f(x)

0 
_

Figure 5

Let us apply the Gauss flux theorem to the volume of the body of

revolution generated by the profile r = f ( x ), extending from the nose to a

transverse section at x, assuming that the flow about the body is generated

by an axial source distribution M
0(x). Since r = f(x) is a stream surface,

the flux theorem gives

4v f M
0 

dx = 2rru~ (x , r ) dr (36)

Here [u 1 (x ,r), v1(x ,r)] denote the velocity components of the irrotational
flow when the given profile is a stream surface, as distinct from the

components (u,v) of the equivalent irrotational flow. Differentiating (36)

and integrating by parts, we then obtain

M
0(x) 

= f [f2 u1(x ,f)- r2 ~~~ dr] (37)

13



We shall assume tha t f , (S and y are small of first order , and neglect
2 ~~ a(rv1)terms of fourth and higher order in (37). Then, since r -

~~
--— = r

dM0 
x

2r i— is small of order f , (37) yields

M0 (x) = -
~~ 

~
j— [f 2u1(x,f ) ]

or , since u1(x ,f )  = U
1(s,

O) cos y U
1

(s ,(S) cos y

M0(x) 
= ~ ~~

— [f
2U1(s,6) con y]  (38)

Similarly , the source distribution M1(x) for the irrotational flow about

the surface displaced by the displacement thickness (S* is given by

M
1

(x) = -

~~ 
f- [(f+G* sec ~)

2 
U
1*(s,

(S) cos

where U1* denotes 
the s—component of the velocity. Then, assuming that

U1(s,
(S) = U1*(s,

6), we obtain

M1(x) — M0 (x) = -
~~ 4~ [ (2f(S*+(S*2 sec y ) U1(s , 5) ]  (39)

Similarly , when the sur fa ce of revolution is generated by r = g(x)  and

the axial distribution is M(x), the Gauss flux theorem gives

4rr J M(x ) = J 2n g(x)  V(s , S)(l+kô) dS + J 2lrru(x ,r) dr

0 0 0

or , by ( 27) ,  and integration—by—parts of the last integral ,

14
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2M(x) ~~
— (Uf(S

1) — (S (Uf) — f- s— (U con ‘y) + ~ f [g 2u(x ,g) ]

The same analysis, applied to the source distribution M0 (x) , y ields

(S2
2M0 (x) = — (S ~~ (U

1
f )  — 

r- ~~
— (U

1 cos y) + ~ i— [g 2u1(x ,g) ]

and hence , assuming U(s ,6) = U
1(s , (S) and u(x ,g) = u1(x ,g) ,  we obtain

M( x) — M0 (x) = -
~~

- 
~~

— (uf(S1) (40)

Comparison of (39) and (40)’ now shows that M1(x) = M( x) if

f(S* + I (S*2 sec y = f(S
1 (41)

This agrees with the defini t ion of (S* in (25) when y is small. Otherwise,
the displaced surface should be taken in accordance with (41) rather than

(25).

A Vor t ici ty Theo rem
Consider a steady mean flow of an incompressible fluid about a body at

rest in an ot herwise unbounded f luid , with mean vorticity present in the
boundary layer and wake , BLW , bounded internally by the body sur face S and
externally by the surface T; see Figure 6. The boundary conditions to be

U

Figure 6
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satisfied are:

1. The velocity vector v on S~~, the exter ior side of S , satisfies the

nonslip condition, v = 0.

2. The flow exterior to T is irrotational.

Then we have the following theorem:

The disturbance flow field exterior to S can be generated by the vorticity

in BLW alone.

Proof:

First let us suppose that distributions of vorticity and irrotational

singularities are present in B, the interior of the region bounded by S.

The velocity components normal to S induced by these distributions define

a Neumann problem for a source distribution M on 5, equivalent to the in—

ten or distributions.

We now have a source distribution N on S and vorticity w in BLW. The

tangential velocity vt is continuous across S , and hence , by the nonslip
condition, v~ = on the interior side of S. Also the flow induced by the

dist r ibL - 
is irrotational within B. Hence v = 0 within B, and,

consequently, th~ .~ ma1 component of the velocity on the interior side of

S is zero. But, because of the nonslip condition, v is zero on the ex-

terior side of S also, hence the strength of the source distribution must

be zero. This leaves only the vorticity distribution w~ as we wished to

show. -

Verification with Stokes Solution for a Sphere

Stokes solution for a sphere of radius a in a uniform stream in the

x—direction , expressed in spherical coordinates (R,O,~ ), is given by

U
~~: 

E
~~~~~~~~

.__.

~~

x 
-

Figure 7
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= U cos 0 + 2 
(

~~~

-

~~

- + con 0 (44)

v
0~~._ U s i n 0 + (~~j-

_
~~~
)
sin 0 (45)

1 3 3A = 
~~

- Ua , B = - 
~~

- Ua

Here the first and second terms represent components due to the uniform

stream and a double t at the center of the sphere , and the last terms are

due to vorticity. We shall now show that the velocity at points of the

ic—axis , (0 = 0, R > a), can be obtained from the vorticity outside the

sphere, together with the uniform stream.

The vorticity, determined from the last terms of (44) and (45), is

given by

w
R wO 0, W .

~~~~ 2
sthO (46)

At constant R and 0, a vortex ring of unit strength induces a velocity (by

the Biot—Savart Law), at a point x of the x—axis, given by

2 2
R sin 0

2(x2—2x.R cos

The velocity due to the vorticity in the space exterior to the sphere is
then given by

IT
1’ 1’ R sin3 O d O dRu B  2 2 3/2 (47)

J 4~ 
(x —2xR cos 0+R )

17
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With the substitution p = cos 0, integration with respect to p yields

u = — —
~~~--- ( I— [(X 2_R 2 ) 2 ( 1 

— 
1 1

\+2(x
2
+R
2)(JR_x I _R_x)

4x~ .1 R 2 [ \ I R-x I I R + x l /

— 4 (IR—xl) 3— (R+x)3j dR

This is readily evaluated by considering separately the integrations from

a to x , and from x to ~~~. The former yields

u
1
=~~~!5j5 

J

X

R~~~~~~~~~
i
~~~2_a2

and the latter gives

4 C dR Uau = — B  i2 ~ J R2 x
x

Hence

Ua3 3Ua (48)
2x

in agreement with the distrubance velocity in (1) when 0 = 0, given in (44) .

This result indicates that the doublet at the center of the sphere is

an irrotational equivalent of the negative of the internal vorticity , since

the sum of their fields is zero exterior to the sphere .

Some Applications of the Vorticity Theorem
We have previously investigated irrotational equivalents of the bound-

ary layer and wake such that the outer irrotational flow was preserved . It

18



was seen that this could be accomplished in various ways, such as a source

distribution on the given surface and along the wake, a source distribution

on the edge of the boundary layer and wake, or by the irrotational flow

about the displacement—thickness surface. In none of these irrotational

models was it possible to retain the given body as a stream surface.

Intuitively, it appears desirable to match the boundary conditions on

both the body and the edge of the boundary layer and wake, in order to

obtain a more realistic irrotational model. We have seen that the vorticity

distribution alone yields both the nonslip condition on the body and the

boundary condition on EBLW. In the previous models only the boundary condi-

tion on EBLW was employed. An additional source distribution, on the body

or in its interior is required in order to satisfy the condition that the

body remain a stream surface. The condition of zero tangential velocity

would not be satisfied, but this seems to be physically less important in

an irrotational model.

The boundary conditions on the body surface S and on EBLW define a

Neumann problem which can be readily formulated as a pair or integral equa-

tions to be solved simultaneously for a pair of source distributions. The

locations of the source distributions may vary, even for a given body , as

has already been illustrated. If these are taken to be distributions m(P)

on S and p (Q)  on T; one obtains the integral equations

- 

2irm(P) — fm ( P ’ )  
~~~~ r~~,, dSp ,  — f~~~~~~~~

’) 

~~~~~~~~ 
~~~ 

dSQI

= — U 0

~~~

— (49)

2iip(Q) - 
$ 

p(Q’) ~~~ r
l 

dS , - 
f 

m ( P ’)  ~~~~ 1 dSp ,  = v(Q) (50)

T 
n
Q QQ? Q n

Q
rptQ

where P and P’ denote points on S , and Q and Q ’ on EBLW , and v(Q) denotes
the normal component of the velocity at T, which is assumed to be known .

19
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The Poincar~ Transformation [4]

It is well known that the velocity field induced by a vortex ring is

identical to that of a doublet sheet on ~ surface capping the ring. The

Poincare~ transformation, derived below, et ables more general relationships

between fields of vorticity and irrotational distributions to be obtained.

Since the entire disturbance flow field is induced by the vorticity alone,

the velocity field of the equivalent irrotational distributions would be

identical to that induced by the vort ici ty in the regions exterior to the

vorticity domain. For the case where the vorticity lies in the boundary

layer and wake of a body, the vorticity induces not only an irrotational

field exterior to its outer boundary T, but also an irrotational f ield
within the body. Because of the nonslip condition, the induced velocity

within the body must be zero. Thus, in contrast with the distributions

previously considered , the Poincare transformation offers the possibility of

matching the boundary condli. ions on both the interior and exterior bound-

aries of BLW.

Let us suppose that vorticity w = curl v is present in a domain D,

bounded by a closed surface 5, and denote the domain exterior to D by E.

Here v denotes the velocity vector of the fluid flow. We shall distinguish

between a fixed point P(x,y,z) at which induced velocities are calculated ,

and variable points of integration, ~~~~~~~~ The position vector from P

to Q is rpQ and has the magnitude rEQ.

The velocity induced by a vorticity distribution can be expressed

either by means of the Biot—Savart Law,

C w xr
~~~~~~~~~~~~~ j ~~~~ (51)

D r~Q

or in terms of the vector potnetial ,

- 1v~~ =~~~~ V~~ x 
J

_-_ dT (52)

D

20



We shall need to distinguish between the vector operators

The Poincar~ transformation is as follows:

~~~~ [f ~~~~~~dT j n x v
d J  

= V ~~
[fr

dT
frdS]

4-ir 
— 

Pin D
+ 2ir ~~ Pon S (53)

0 Pin E

where n is the unit vector in the direction of the outward normal to S.

First suppose that P is in E. Then we have

V x 
J~~~~~

dT =

= V  X I~~~~d S +  I 1 . V V ~L~~~~V .V —~-— ld TP ,j r~ Q 
~D L P P r~Q 

P P rpQJ

= V~ x 
5 

dS + V~, j  
~ 

. V~, 
.
~~~~

— dT (54)
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But

f V —~—d i = - I [v. (- —~-~~~1dTP r~Q 
~D ~ 

\rpQJ 
r
pQJ

= f ~~~~~ dT — f !1J! dS (55)

Substituting (55) and (54) now yields (53) for P in E.
Next consider the case that P is in D , and let denote the volume

and S
0 the surface of a small sphere of radius r0 about P. Then we have

V x f ~~~~~~ di = V x f ~~~~ di + V > I ~~~ di (56)P ,j r}~Q ~ ‘D’ 
r~Q P r~Q

where D ’ = D — The last integral in (6) is proportional to the
velocity induced by the vorticity within 

~~~~ 
according to (52) and hence

must vanish as the radius of the sphere approaches zero. Also, by
Equations (54) and (55), we have

~ f ~~~~~~ di = V~ x f 
~: 

dS + V~ x 

~~~ 

dS

~~~~~ f . V - ~L.dT (57)
D’ PQ

22
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and

f ~ 
. V di = I ~~~~~~~~~ dT — f !~~~~~~ dS — I ~~--~~~ dS (58)

J P r~,Q .1 r}~Q •) r~Q J 
tpQ

The convention on the positive sense of n requires that it be directed

inwards on the sphere S
0
. For the term in (57), we have

x I ~
-

~

<
-

~~~ dS = I V~, (~
J:_’\x (flXV) dS =- ‘

~~
- I ~x (~ x) 

r~
2 df2

~ 
rpQ J \

rpQ/ J 0 r

- - 

~ -f 
~ 

. 
~~~ + 4ir~ , (59)

SO 
- -

where dS = r0
2 df~; and in (58),

•j

. 
!.:.a dS — — f ~ 

• ~df~ (60)

Also we have

1. V.
lim V I — di — V I — di (61)
r0

-~O 
~D ’ 

r pQ 
~D 

r~Q

since the velocity field of a volume dis tr ibut ion of sources is continuous .
Collecting the results in Equations (56) to (61) now y ields (53) for P in D.
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Finally , when P is a “smooth” point of 5, i.e., a point at which the

tangen t to S is cont inuous, we introduce a small hemisphere abou t F, of

radius r0, and apply the Poincare transformation to the so—diminished

volume D ’, and to the bound ing surface , consisting of the hemispherical

surface S0 and the remainder S’ of S. The proof is similar to that for

Figure 8

P in D. In Equations (57) and (58) ,  we need only to replace S by S ’ , and

in Equation (59) 4T1v~ becomes 2lTv~~ or , indeed , av~ if P is a corner point
of S of solid angle ~~. Instead of (61), we need

lim V x f ~~-~~d S = V  >< f !~~~~dS
‘~ ~, rpQ P j rpQ

and

lim V I !_ad S = V
r0

-0  P j rpQ P ,j r~Q

which are verified by observing that the velocity fields of the surface

distributions of vorticity, n x ~~, and of sources, ~, are continuous.

Equivalent Irrotational Flow From Poincare Transformation

Let us apply the Poincar~ transformation (53) to a case in which the
f l ow is enti rel y due to the vorticity in a domain D , bounded by a closed

surface S. We shall seek to express the velocity at a point P of E as the

gradient of a velocity potential .
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The first term of (53) is seen to give the velocity VVP due to vortic—

ity in the form of the vector potential (52), as 47r~~p . Since the assumed

flow is solenoidal, the third term of (53) is zero. We then have, from

(53),

47T
~vp = V~ x dS - V~ 

~ 

dS (62)

This expresses the velocity in terms of that induced by a source distribu-

tion of strength 
n1
14T and by a vortex sheet of strength n >< v = v5t~, both

on S. Here we have expressed the velocity vector v = nv + sv , where s

is the unit vector in the direction of the projection of v on the tangent

plant at Q. Then, putting n X s = t , we obtain the form given above.

In order to express the field of the vortex sheet as the gradient of

a potential, let us define a function P1, harmonic in D, which on S

satisfies

n X v = f l X V , 1 = V c ~1 (63)

We have then

onS (64)

and hence , by integration along s , the values of 11l on S may be presumed to

be given in terms of the known values of v .  Thus the boundary condition
(64) sets up a Dirichlet problem for determining t~~.

Since V )( = 0, applIcation of the Poincare transformation to
taking (63) into account , yields

x 
5 

dS = V~ 5 r~Q 
dS (65)
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Hence (62) becomes

- 1 ______vVP = ~ V~, j  r dS (66)

~ 
PQ

a velocity field due to a source distribution of strength

a = • ( _
l )/4 11 (67)

The form of a shows that n is the normal component of the velocity on

the interior side of the source distribution on S. Uniqueness of solutions

of Ne umann problems on S then shows that is the irrotational velocity

field in D associated with the source distribution 0 on S.

An alternative source distribution on S can also be found directly as

th e solution of the exterior Neumann problem for the given values of v •
on S. as was done previously in considering the displacement ef fec ts of the
boundary layer. Applied to the vorticity field BLW in the flow about a

bod y,  the present approach requires that a composite bounding surface ,

be used , where SB is the surface of the given body , and A is the transverse
surface of the truncated wake . If the transverse section is taken suff i-
ciently far downstream, the effects of the source distribution on A may be

neglected, and the Neumann problem could be formulated as a pair of simul-

taneous Fredholm integral equations of the second kind. The resulting

source distribution , however, would not coincide with that given in (67).
In the present treatment , the value ~ n = 0 on SB is preserved , wher eas ,
in deriving (67) ,  the tangential component V x 

~ = 0 on SB, in accordance

with the nonslip condition , was p reserved . In the former case , SB remains
a st ream surface , in the latter , an equipotential.

26
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Betz Method fo r  Determining Viscous Drag

Betz [5] and Landweber and Wu [6] use equivalent irrotational flows to

derive formulas for  the viscous drag of a body in terms of measured values

of pressure and velocity at a transverse section of the wake . A ref m e —

ment of these derivations, in which additional wake characteristics are

taken in to accoun t , will now be presented .

The body is taken at the center of a circular channel of large radius ,

and is at rest in a uniform stream of velocity U in the positive x—

direction. The disturbance velocity components in a rectangular (x ,y , z)

coordinate system are (u ,v ,w ) ,  and p denotes the pressure.

_____B - _____ _ _ _ _ _ _

n iIj U + u
U 0 S 0

S p0 _ _ _

C

Figure 9

We select a control surface consisting of the transverse sections AR ,

fa r ahead of the body, CD or S a moderate distance behind it , and the

portion of the channel wall lying between these sections . On the section

Ai’ , designated S~~, the pressure is the constant p0. and the velocity is

(U0, 0, 0). Application of the momentum theorem to this control surface -

yields the expression for the body drag D,

D = 5 {p 0—p—p [ (U 0+u) 2 —U0
2 ]} dS (68)

in which p is the mass density of the fluid. If the wake is turbulent ,

Reynolds stresses will be present , but these can be taken into account most
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efficiently by averaging the resulting expression derived for the drag.

In terms of the total heads, defined by

pg H
0 = p0 + 4 p U0

2 , pg H = p + 4 p [(U 0+u) 2+v2
.4w2 ] (69)

where g is the acceleration of gravity, (68) becomes

D = 5 { pg (H0— H) — 4 p [ ( U 0+u) 2—U 0
2—v 2 —w 2 ] } dS (70)

We now consider an equivalent irrotational velocity field (U0 + u1,v1,
with pressure p1, generated by a volume distribution of sources of

st rength p in BLW, such that (u 1. v1,w1
) (u ,v ,w) on T , the outer boundary

of BLW. We again app ly the momentum theorem , to the flow within the same

cont rol surface generated by this distribution of so—called Betz sources,
to obtain the expression for the force on the sources within the control

volume ,

D = — 4 p 5 [(U
0+u1

) 2—U 0
2—v1

2—w1
2 ] dS (71)

the term corresponding to the difference in heads vanishing since the

field is irrotational.
Another expression fo r the f orce on the Betz sources is given by the

Lagally fo rmula

D - 47r p f p(U
0+u1) di (72)
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where ~~ denotes the control volume . This is not the usual application of

the Lagally theorem, which gives the force on a closed body .  Here it

represents the reaction on the Betz sources due to the flux of momentum of

the source—generated discharge.

Since the flux through the bounding surface T is the same with Betz

sources as in the solenoidal (divergenceless) real flow, the difference in

f lux  for  the flows through the area A of S intersected by the wake is at-

tributable to the Betz sources. The Gauss flux theorem then yields the

formula

4ir J p di = 5 (u1-u) dS (73)

Far downstream, the section S will be denoted by S~ and the wake area

by A~,,. In terms of the flux Q across this wake area, we have the well—
known formula for the drag, - 

-
S

D p U 0Q, Q = _ f u d S  (74)

A similar expression for the force on the Betz sources , obtained from the

asymptotic form of (71), is

D = - p U
0 5 u

1 
dS

But

5 u1 dS - 5 (u1—u) dS + 5 u dS

and since u1 u except within the wake and , by continuity , f u dS = 0,

we obt ain Sc,,
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D c,, = - p U
0 5 (u 1

-u) dS (75)

and hence , from the asymptotic form of ( 73) ,

D = - 4vp U0 J p di (76)

BLW

Comparison with the asymptotic form of (72)  now yields

f p u 1 d i = 0  (77)

BLW

From the asymptotic form of (73), we can also show tha t

411
f 

p d i = Q  (78)

BLW

which implies, by (74) and (76) , that

(79)

This is derived b y neg lecting u1 in comparison with u in ( 6 ) ,  since the

Bet z sources are concentrated near the body, so that u1 diminishes as the

inverse square of the distance , while , fo r a turbulent wake , u i  diminishes

as th e inverse 2/3—power of the distance.

Put ~~ + ~~~
‘ = 

~BLW 
and de f ine a mean value of u1 by

~ 
p di = f p u

1 
di (80)

;
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We then obtain , from ( 7 7 ) ,

_ j P u 1 d i f  P u 1 d i u
1J  

p d i

But , by (73) and (78) ,

J p di = 

~~LW 

di — 
j  

p di = ~~~~~
- — -

~ j- 5 (u 1—u)

Then , by (74) ,

— J p Il
l di = 

U
l [-f- — 5 (u l

_u) dS] (81)

Hence, by (73) and (81), (72) becomes

D = — p 5 (u1
—u) (U 0+~ 1) dS + 

~~~~~~ 

D (82)

A formula for the viscous drag D can now be obtained by subtracting

the expression for  D in (71) from that for  D in (70) and then substituting
for D from (82) . Observing that the resulting integrand is nonzero only

over the wake area A , we obtain the result

D = ~~ f [2 g(H0—H)+(u1—u)(u1+u—2~1)+v
2-fw2—v1

2
—w1

2
] dS (83)

u1 A
U0
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In applying (83) , total  head tubes which measure a total head H ,

given by

pg H = p + 4 p [(U0+u)2+A( v2+w2)J, 0 < A < 1 (84)

where A is a cal ibrat ion constant , (see Reference [ 9 ] ),  and velocities

2 
1/2

U
m 

= [ (H
m-SP) ] — U

0 
(85)

are used for  H and u. In terms of H and u , with the small d i f fe rence

between u and u neg lected in hi gher—order terms , (83) becomes

D = ~/2 $ [2 g(H
0
—H )+(u

1
-u )(u

1
+u —2~ 1

)
l—u 1/U 0 A

—v1
2
—w1

2+A( v2+w2)] dS (86)

When the wake is turbulent, the mean value of D, obtained by replacing

(u,v,w) by (u+u ’,v+v’,w-f-w’) and averaging, where (u’,v’,w’) denote the com-

ponents of the turbulent velocity fluctuations, becomes

D = 
l~~~1/U 0 

5 [2g(H0_11~)+(u1_u~)(u1+u~_2~1)_v 12_w12
+A (v 2+w2 ) —u ’2+A (v t 2+w 1 2

)] dS (87)

where H and u now refer to their mean values. The Reynolds stress termsm m

combine into (2A—l)u ’2 for isotropic turbulence, and would hence be
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negligible for  A = 1/2. Jin Wu ’s measurements [7 ]  indicate that the tur-

bulent stresses would contribute about 2 percent to the calculated drag

with A = 0; but his actual value was A = 0.5 , with which the turbulence

terms became negligible. We shall assume that the turbulence stresses in

(87) may be neglected . We shall also neglect the terms — V
1

2 
— w

1

2 
+ A

(v 2+w2 ) since these are small and partly cancel each other .
Still unknown are the terms ‘i

~ 
and u1 in (87). For estimating j11,

we shall assume that u1 depends upon z alone , ~nd is given by u1 = uE ( z ) ,

the measured value of u at the wake boundary T. According to the defini-

tion of u1 as a mean of in ~~~
‘ , we observe that the mean is weighted by

the value of the source strength p which , together with u1, diminishes to

zero as x —‘- ~~~. This suggests that the values = 0 and U
1 

= U
E 

at A

can be used to obtain bounds for the drag formula , the “ true” value lying

closer to the bound g iven by U
1 

= U
E~ 

Because occurs both in the

integrand and in the denominator of the expression for the drag , it is not

immediately evident which of the two bounds is the larger . Denoting these

bounds by D
1 

when = 0 and D2 when = U
E~ 

and applying the afore-
ment ioned approx imations , we obtain from (87),

D
1 

= 

~ 5 [2 g(H 0-H )+u~
2-u 2 ] dS (88)

and , with uE + U — 2U
E 

replace — ’ by U — uE in the last term ,

= 
p/2 $ [2 g(H 0

_H~ )_ ( u ~ _u~ ) 2 ] dS (89)
l-u E /U O A

The la t ter  form was given by Tzou and Landweber [8].

That D1 
< D2 is indicated by the following argument. Since the source

st rength p represents the displacement effect  of the boundary layer and

wake , it is a positive quantity of total strength given by (78). Conse-

quently, according to (77), u1 cannot be of one sign throughout BLW. Over
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most of the boundary—layer edge of T, UE 
> 0. In the region of the rear of

the body and the near wake , there would be some pressure recovery (especial-

ly if separation has not occurred) and uE 
on T would there become negative ,

and gradually approach zero with increasing downstream distance. This

suggests that  UE 
in (89) and in (86) are negative. Since the difference

in heads , H0 — H
m~ 

contributes about 90 percent of the magnitude of the

integrand in (88) and (89) , and ti
E 

<< U0, (89) may be wr i t ten  as

D
2 

= -
~~ (1+ ~-) 5 2g(H0— H ) dS - -

~~ 5 (ti
E
_U

rn)
2

which yields

— D1 
p 5 g(H 0— H )  dS — p 

j  
U
E
(U
E
_U
m
) dS

p 5 [g(H 0
_H )_ U

0 (u~ _u~ ) ]  dS (90)

Apply ing the expression for  H in (85) and

pg H
0 

= 
~E 

+ 4 ~ (U 0+u~ ) 2

in (90) and neglecting the term u~ — ti , we obtain

D2 
- D1 5 ~~~~~~~ 

dS > 0 (91)
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since < 0 at A and , according to Jin Wu ’s data [10], p is a maximum at

the cen ter of the wake, so that 
~m 

— 

~E 
> 0. The data given in Reference

[8] indicate, however , that , at a section at 0.6 of the length behind the
stern of a ship model , 11

E 
is zero within the accuracy of the measurements.

This indica tes tha t the simpler expression (88) is suitable for computing
the viscous drag from wake—survey data.
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