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PREFACE

The David W. Taylor Lectures were conceived to honor our founder in
recognition of his many contributions to naval architecture and naval hydro-
dynamics. Admiral Taylor was a pioneer in the use of hydrodynamic theory
and mathematics for the solution of naval problems. He established a tra-
dition of applied scientific research at the '"Model Basin'" which has been
carefully nurtured through the decades and which we treasure and maintain
today. It is in this spirit that we have invited Prof. Louis Landweber to
be a David W. Taylor Lecturer.

Prof. Landweber was born in New York in 1912. He received his Bache-
lor of Science degree in Physics from the City College of New York in 1932.
That year he came to the U.S. Experimental Model Basin at the Washington
Navy Yard as a junior physicist. When the David Taylor Model Basin opened
at Carderock in 1940, Dr. Landweber headed a small research group which
shortly afterwards was expanded into the Hydrodynamics Division. During
his years at Carderock, he continued to head this division, and he also
completed work on his Ph.D. at the University of Maryland. He was an advo-
cate of advanced training for the staff and taught courses for the
University at the Center.

After twenty-two years of distinguished research at the "Model Basin,"
Dr. Landweber left to become a professor at the University of Iowa. He
continued his research in ship hydrodynamics at the school's Institute for
Hydraulic Research. During the intervening years since leaving the Center
in 1954, he has maintained close ties with his colleagues here at the

Center and has returned frequently for meetings and panel sessions.




FOREWORD

After a lapse of twenty-four years, it was surprisingly easy and
pleasant to readjust for a month to a daily schedule of work in a mezzanine
office at the David W. Taylor Naval Ship Research and Development Center.
I found Ship Hydrodynamics to be alive and well, its problems being vigor-
ously attacked by a dedicated and talented staff, as in the "old days."

The adjustment was probably equally easy and pleasant for another
"alumnus" and David Taylor Lecturer, John Wehausen. It is remarkable that
so many of the alumni have stayed in the field of Ship Hydrodynamics, an
indication of the challenging nature and attractiveness of the subject.

To all who visited me, to consult, gripe, reminisce or simply to
educate me, who extended generous hospitality in accordance with the
fortune-cookie admonition, "Take time to play in order to have a long
life," who invited me and arranged that day-to-day living would be con-
venient and comfortable for my wife and myself, in other words, to all

who helped disprove the old adage that 'one cannot go home,"

our deepest

appreciation.
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ON IRROTATIONAL FLOWS EQUIVALENT TO THE
BOUNDARY LAYER AND WAKE

LNIE?DUCTION

~Yne of the simplest and most useful results of boundary-layer theory
is that the flow exterior to the boundary layer, which will be assumed to
be irrotational, is pushed outwards by an amount called the displacement
thickness. This suggested, early in the development of boundary-layer
theory, that the accuracy of a boundary-layer calculation for a body could
be improved by adding the boundary-layer thickness to the body dimensions
and using the predicted pressure distribution on the so-thickened body in
a recalculation of the boundary layer. The irrotational field about the
thickened body, including the displacement thickness of the wake, is itself
of great interest, and numerous attempts have been made in this manner to
calculate the effect of the boundary layer and wake on the outer irrota-
tional flow.

The concept of the thickened body gives an approximate model which is
usually justified by its consistency with the approximations of thin
boundary-layer theory. We-shall*review the basis of this model and suggest
ways of refining it. Such a development would be useful for several current
problems of ship hydrodynamics, among them the determination of Betz
sources in a method of calculating viscous drag by an analysis of wake
survey data, and the investigation of the effect of the boundary layer and
wake on wavemaking resistance. —

We shall assume that the boundary layer and wake (BLW) are known,
and seek an irrotational model which yields the actual outer flow. An
approximate solution of this problem has been given by Preston [1] and
Lighthill [2].

Solution of Preston and Lighthill - Two-Dimensional Case

Let us consider a two-dimensional flow about a body of small curvature
in a uniform stream of velocity Uo’ on which a thin boundary layer is
present. Coordinates parallel and normal to the surface will be denoted

by (s,n), and the corresponding velocity components by (u,v). We shall

PSSy
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suppose that the radii of curvature are so large compared with the boundary-
layer thickness §, that the curvilinearity of the coordinate system may be

ignored. The normal velocity component at n = § is then given by

§ § §
V(6)=f%!dn-—j-g—u-dn=-6%+g f(U—u)dn=—ég—g
0 0
§
d i u
+ o= 8], 51'_[ (1- U)dn (1)
0

where U = u (s,8) and Gl is the displacement thickness. In the irrotational
flow about the body, with velocity components UI(s,n), VI(s,n), we have
(BUIIBn)O = 0 where the subscript 0 denotes n = 0. Hence we may put

UI(s,n) = UI(S)’ since

BUI

UI(s,n) = UI(s,O) + n <53—)0 ] UI(S,O) = UI(s), 0<n<$§

The normal velocity in this irrotational flow, at n = §, would then be
given by VI(s,G) = VI(s,O) + 6(3VI/8n)0, and hence, since VI(S’O) = 0 and
8VI/3n = - dUI/Bs, we obtain

dUI
VI(s,d) = -4 = (2)

We also assume that U = u(s,§) = UI(S,G) for a thin boundary layer. Thus
the first term of the right member of (1) is attributable to this irrota-
tional flow, and the second term represents an additional outward flow due
to the boundary layer.

Put V' = %; (UGl) and consider that the "known' values of V' on the
contour n = §, the edge of BLW, pose an exterior Neumann boundary-value
problem for determining a source distribution m(s) on the surface of the

body and (if the body is symmetric) along the centerline of the wake.




Preston and Lighthill give the solution without hesitation. Their result is

e S o ld
m = o V' (s,d) e e (Uél) (3)
for which the argument given by Lighthill is: '"This additional outflow is

exactly 'as if' the irrotational flow around the body were supplemented by
the effect of a surface distribution of sources, whose strength ... is ..."
Equation (3) does not seem as obvious to the present writer. In order
to derive it, one must assume that the velocity U(s) is undisturbed by the
distribution m(s), an assumption which may not be consistent with the
uniquely defined solution of the Neumann problem. According to this assump-
tion, the body surface is an equipotential for the distribution m(s) (be-

cause the tangential velocity due to m(s) is zero). This immediately yields

+

0
m(s) = %E-V'(s,0+) ///’//6:—— (4)
v' =0

since V'(s,0_) = O on the interior side of the equipotential surface and
V'(s,0+) - V'(s,O_) = 2mm(s). Then, from the Taylor expression V'(s,§) =
V'(s,0+) + 4 (g%i) 0 L V'(s,0+), we obtain the approximate solu-
tion (3).

The special case of a flat'plate, (even in a nonzero pressure
gradient), however, confirms the approximate solution (3) without requiring

the equipotential assumption. Since the plate is the limiting case of a

I'j_l' m(s)

<] 1 1 J

L—I—I m(s)

Figure 1

very thin body, the distributions m(s) are present on both sides. Applica-
tion of the Gauss flux theorem (the usual proof) im-:ediately gives Equa-
tion (3).

i e . A —— - - —
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Another case that yields (3) is that of a constant source distribution
on a circle. This gives a velocity potential due to a source of strength

2mma at the center of the circle of radius a, and hence V'(s,n) = V'(s,0) =

(2mma)
a

to V'. Hence, if we consider a nonuniform distribution which is large in

= 2mm. But the local element about the point s contributes 7m

the neighborhood of s, and negligible elsewhere, we would obtain V'(s,n) =
mm, half of the Preston-Lighthill formula. This suggests that, without the
equipotential assumption, Equation (3) would give a good approximation only
for very thin two-dimensional forms.

The distribution m(x) on the surface of the body y = f(x), which
satisfies the boundary condition 3¢/8ns = v'(s,0) can be determined as the
solution of the Fredholm integral equation of the second kind, (see

Figure 2)

Figure 2

. dt = V'(s) (5)

ad
mm(s) + § m(t) o n'r
s
in which t also denotes arc length along the body contour. The indetermi-

nacy of the kernel 5%— 2n L at s = t can be removed by applying, the

identity (at a smooth point of the contour)

) 5y ] )
§F2nrstdt—§§g¢stdt'" (6)

i¢

st
where the complex vector R , extending from s to t, has given the

pair of conjugate functions




i¢st)

n (rst e =% r _+ i}

st st

to which the Cauchy-Riemann Equations have been applied. We then obtain
from (5) and (6)

2mm(s) + jl [m(t) 5%— n rst-m(s) 5%- n rSt

} dt = V'(s) (7)
S t

Since the new integrand vanishes at the point s = t, where the largest con-
tribution to the integral in (5) occurs, the form in (7) suggests that the
Preston-Lighthill formula should give a good first approximation.

From formula (3) for the source distribution, Lighthill immediately
concludes that the displaced surface, obtained by ﬁhe addition of the dis-
placement thickness, is a stream surface. This again requires the assump-
tion that all the flux from the source distribution m(s) be outward, i.e.,
that the given contour be an equipotential for the distribution. For then,

the Gauss flux theorem gives the relation

S

Zﬂf m ds = U n(s)
0

where n(s) denotes the stream surface generated by m(s). Comparison with
(3) then shows that n(s) = 61.

A Second Approximation for the Source Distribution -
Two-Dimensional Case

It appears to be easier to derive a formula for a source distribution
M(x), equivalent to the BLW, for a thin, symmetric body, when M(x) is dis-
tributed on the axis of symmetry, the x-axis. The given profile will be
denoted by y = f(x), the edge of the boundary layer, EBLW, by y = g(x), and
the profile thickened by the displacement thickness by y = h(x). Put

&
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Figure 3

df/dx = tan Y. For the irrotational flow, the velocity components in the
x- and y-directions will be denoted by u(x,y) and v(x,y).
We wish to determine the source distribution M(x) such that, on

y = g(x), the stream function Y(x,y) assumes the values

b = U(s-8)) : ®)
We have
G R . R LT T e
(Bs )g = (¢x ds +lpy ds )g £ < vV ds 8 ds )g 9
But
v(x,g) = v(x,0) + g vy(x,O) = m™(x) - g u (x,0) (10)
- - oy, ~ e R . > - - . . .- -. - @ - ‘e -~
u(x,g) = u(x,0) + g uy(x,O) = u(x,0) (11)

since uy(x,O) = 0 by symmetry. Also, by (8), we have

(3), - & wean($),

g g e —




and hence, substituting (10), (11), and (12) into (9) and solving for M(x),

we obtain
™) S o (800 ux,00-U(8-6))] (13)

Since, as is seen from Figure 3,
g(x) = f(x) + 8§ sec Y (14)
and
U = u(x,g) sec Y = u(x,0) sec y (15)

we can write (13) in the form
™(x) = g; {u(x,O)[f(x)+61 sec Y]} (16)

Here we have assumed that f(x), §, 61, (u-UO), v and Y are small quantities
of the first order and terms of third and higher order have been neglected.

For the irrotational flow about the body without a boundary layer, (16)
yields the well-known, second-order approximation for a centerplane

distribution,
™y (x) = $= [u(x,0) £(x)] (1)

Hence, the additional source strength due to the boundary layer is given by

MG - M) = 11? g; [u(x,0) 8, sec y] (18)

The .result in (18) resembles the Preston-Lighthill formula (3), especially
when the body slope is small. The distribution strength is approximately




doubled because a pair of distributions on the body surface has coalesced
on the centerplane, as was done in the example of the boundary layer on a
flat plate.

Similarly to (14), the displacement-thickness profile, y = h(x), may

be expressed by

h(x)

f(x) + 61 sec Y (19)

and (17) becomes

A=

M) = T4 (00,0 h(x)) (20)

Comparison with the form of (16) now shows that, to the second order of
accuracy, the irrotational flow about the displaced surface satisfies the

specified boundary condition (8) at the edge of the boundary layer and wake.

Solutions for Axisymmetric Flow - First Approximation

Let ro(s) denote the radius of a body of revolution, where s is arc
length along a meridian section of the body, and r the radial distance to an
arbitrary point. Let n denote distance from the body along the outward
normal to its surface. We shall also employ cylindrical coordinates, (x,r)
where the axis of symmetry is taken as the x-axis, and put ro(s) = f(x)
and tan Y = df/dx. The edge of the boundary layer is defined by the surface

’//,/”” x' -x=46"gin Y'
r.| |r

\J




r.(s) = r . (s) + 8§ cos y or g(x) = f(x") + 8 (x') cos vy (x') (21)
8 0

By a Taylor expansion about x, with dy/ds = - k, where k is the curvature

of the meridian profile, and with x' - x = §(x") cos Y(x'), g(x) becomes
. R
g(x) = f(x) + § sec Yy + 88" tan y - E-ké tan” Y sec Y + ... (22)

The element of arc along a curve n = constant is h, ds = (1+kn) ds. The

1
equation of continuity is then
d(ru) ., 0 Fy
e [(1+kn) rv] = 0O (23)

where u(s,n) and v(s,n) are the actual velocity components in the directions
of increasing values of s and n. We shall also require the velocity com-
ponents U(s,n) and V(s,n) of the "equivalent" irrotational flow.

The boundary-layer thickness of an axisymmetric boundary layer is
usually defined as

§
. ) ) _ u(s,n) )
(Sl = J. ro [l m] dn (24)
0 :

An alternative definition, in which a higher-order term is retained, is

given by

§* §
f r U(5,6)‘dn = J’ r[U(s,8)-u(s,n)] dn = r, U 61
0 0

Since r = r, + n cos Y, this yields the quadratic equation

0

t §* + % 6*2 cos Y = 1, 61 (25)




-——

and the relation

261

261 cos Y
1+ | 14—
)

§* (26)

1/2

The equivalent irrotational flow is determined by the values of v(s,§).

By (23), we have

§ )
(1+k6) e v(s,8) = - f %; (ru) dn = f %E [r(U-u)~rU] dn
0 0

- 2
d - d §° d
fo gl bR I e et k. 00

where U = U(s,8). 1In the irrotational flow about the body without a bound-

ary layer, with velocity components (UI,VI), (27) becomes

$

f g—s [rUI(s,n)] dn
0 ‘

(1+k$) Ts VI(s,G) =

2
" d_ 2oa
% =0 g gy - 5 G5 (Up w08 V)

since (3U /an) _o = 0, and U (s,n) = U (s,0) + 0(67) = U (s). If the
boundary layer is thin, then UI(s) = U and the first term of the right
member of Equation (27) can be interpreted as that contributing an addi-
tional flux due to the boundary layer. We define the additional normal
velocity V' due to the boundary layer by

4

s (28)

(1+k$) r6V' = (rOUG

1)

10

§



1f the body were a circular cylinder of constant radius ry, we could
immediately determine the source strength m(s) equivalent to the effect of

the boundary layer. Application of the Gauss flux theorem gives

' =
anév 4n(2ﬂrom)

and hence by (28),

IQ-

(Uél) (29)

8
]
Sl
=%

s

A generalization of (29) can be derived from the integral-equation
formulation of the Neumann problem for the prescribed boundary-layer flux.

If P and Q are points on the body surface, we have

3 1 ’
2mm(P) = -/. m(Q) =— — dS_. + V' (P) (30)
| BnQ rPQ Q

The singularity of the kernel when Q coincides with P can be removed by

means of the relation, valid at smooth points of the surface,

) 1
e e o O . (31)
js‘ 8nQ rPQ Q

Thus (30) may be written in the form

) 1 9 1
4mm(P) = f [m(Q) ~— — - m(P) ——-—]ds + V'(s,0) (32)
J BnP rPQ anQ rPQ Q

which suggests the first approximation

11




1 " 1 d
m(P) = i V'(s,0) = T Ae

(rouél) (33)
a generalization of (29).

In order to improve upon the approximate source distribution (33), we
shall now consider an axial source distribution M(x). For irrotational
flow about the given body, r = f(x), the modified Munk formula of Landweber

[3] gives the approximate solution, in terms of the free-stream velocity U

0’
L 4 2
Mo(x) "z (l+kl) U0 5 £7(x) (34)
where kl is the longitudinal added-mass coefficient. For the thickened
body, with r = rl(x) = f(x) + 61 sec Y, formula (34) gives
=1 d 2
Ml(x) =7 (1+k1) U0 ax ©1 (x)
" i 4 Aoy & 2N
= MO + 2 (l+kl) U0 e (f(‘i1 sec Y + 2 Gl sec Y) (35)

If the alternative displacement thickness §* is used, the same expression

is applicable, with 61 replaced by &%,

Axisymmetric Flow ~ Second Approximation

We shall now derive a second-order approximation for an axial source
distribution for slender bodies. The given profile is r = ro(x) = f(x),
the edge of the boundary layer is r = g(x), and the displacement-thickness
profile is r = h(x). The velocity components in the x- and r-directions

for the equivalent irrotational model are u(x,r), v(x,r).

12
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s’ _g(x)
V(s,§ SEE
— f (x)
s
v(x,r)
t—-»u(x,r)

M(x)

Figure 5

Let us apply the Gauss flux theorem to the volume of the body of
revolution generated by the profile r = f(x), extending from the nose to a
transverse section at x, assuming that the flow about the body is generated
by an axial source distribution Mo(x). Since r = f(x) is a stream surface,

the flux theorem gives

4nf M, dx=f zmrul'(x,r) dr (36)
0 0

Here [uI(x,r), vI(x,r)] denote the velocity components of the irrotational
flow when the given profile is a stream surface, as distinct from the
components (u,v) of the equivalent irrotational flow. Differentiating (36)
and integrating by parts, we then obtain

.

du
. 14 2 % T
Mln)/s £ 2= [f ug (%, £) f r o= dr] (37)
0

13
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We shall assume that f, § and Y are small of first order, and neglect

9 BuI 8(rvI)
terms of fourth and higher order in (37). Then, since r e Ry ey
dM
= 2r 5;9 is small of order f3, (37) yields
ee Weo
Mo(x) or o [f uI(x,f)]
or, since uI(x,f) = UI(s,O) cos Y = UI(S,G) cos Y
Lo
Mo(x) Wi [£ UI(S,6) cos Y] (38)

Similarly, the source distribution Ml(x) for the irrotational flow about

the surface displaced by the displacement thickness §* is given by

Ml(x) = % %; [ (f+6* sec Y)2 UI*(S,G) cos Y]

where UI* denotes the s-component of the velocity. Then, assuming that

UI(S,G) = UI*(S,G), we obtain

g—x [ (2£6%+6%% sec v) U (s,8)] (39)

I

Ml(x) - Mo(x) =

Similarly, when the surface of revolution is generated by r = g(x) and

the axial distribution is M(x), the Gauss flux theorem gives
x s g
47 J’ M(x) = J- 2mg(x) V(s,8) (1+kS) dS + I 2mru(x,r) dr

0 0 0

or, by (27), and integration-by-parts of the last integral,

14




| 2
M(x) = %; wes)) - 6 37 (uf) - :,_‘5-— g-x (U cos v) + 1 g—x [%ilz.0))

The same analysis, applied to the source distribution Mo(x), yields

2
AN 8% d .
ZMO(x) = -4 5;-(Ulf) - 5—-5;-(UI cos Y) + 7 dx (g uI(x,g)]

and hence, assuming U(s,§) = UI(s,G) and u(x,g) = uI(x,g), we obtain

M(x) - My (x) = %g—x wes,) (40)

Comparison of (39) and (40) now shows that Ml(x) = M(x) if

f6* + %-6*2 sec Y = fél (41)

This agrees with the definition of &* in (25) when Yy is small. Otherwise,

the displaced surface should be taken in accordance with (41) rather than
(25).

A Vorticity Theorem

Consider a steady mean flow of an incompressible fluid about a body at
rest in an otherwise unbounded fluid, with mean vorticity present in the
boundary layer and wake, BLW, bounded internally by the body surface S and

externally by the surface T; see Figure 6. The boundary conditions to be

T
U
s s S, BLW

Figure 6

15
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satisfied are:

1. The velocity vector v on S+, the exterior side of S, satisfies the
nonslip condition, v = 0.

2. The flow exterior to T is irrotational.
Then we have the following theorem:

The disturbance flow field exterior to S can be generated by the vorticity

in BLW alone.
Proof:

First let us suppose that distributions of vorticity and irrotational
singularities are present in B, the interior of the region bounded by S.
The velocity components normal to S induced by these distributions define
a Neumann problem for a source distribution M on S, equivalent to the in-
terior distributions.

We now have a source distribution M on S and vorticity @ in BLW. The
tangential velocity v, is continuous across S, and hence, by the nonslip
condition, v, = on the interior side of S. Also the flow induced by the
distribt " is irrotational within B. Hence v = 0 within B, and,
consequently, the ..cmal component of the velocity on the interior side of
S is zero. But, because of the nonslip condition, w is zero on the ex-
terior side of S also, hence the strength of the source distribution must
be zero. This leaves only the vorticity distribution W; as we wished to

show.

Verification with Stokes Solution for a Sphere

Stokes solution for a sphere of radius a in a uniform stream in the

x-direction, expressed in spherical coordinates (R,0,¢), is given by

Figure 7
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v, = Ucos 6 + 2 & 2 cos 0 (44)
R R3 R
vg = - Usin 6+ (A—3-§>sine (45)
R R
el iad B2
A= z Ua”, B 4 Ua

Here the first and second terms represent components due to the uniform
stream and a doublet at the center of the sphere, and the last terms are
due to vorticity. We shall now show that the velocity at points of the
x-axis, (6 = 0, R > a), can be obtained from the vorticity outside the
sphere, together with the uniform stream.

The vorticity, determined from the last terms of (44) and (45), is

given by

w, = w, =0, w, == sin 0 (46)

At constant R and 0, a vortex ring of unit strength induces a velocity (by

the Biot-Savart Law), at a point x of the x-axis, given by

R2 sin2 )
2 2
2(x -2xR cos 6+4R")

3/2

The velocity due to the vorticity in the space exterior to the sphere is

then given by

W

~ 3
o =3 f f 2R sin™ 0 d© <21R3/2 47)
2 %0 (x“-2xR cos 6+R")
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With the substitution u = cos 0, integration with respect to u yields

=

u=_L3 fl_z [(XZ_RZ)Z 1 - 1 >+2(x2+R2)(|R—x|—R—x)
= kx| (R

-
- 3 (Rexp)’-r0? | v

This is readily evaluated by considering separately the integrations from

a to x, and from x to ©. The former yields

X
& QHE_ HaNUa 2_ 2
ul—33fRdR —~—3(x a’)
X 2x
a
and the latter gives
(e o]
u=ggfs&=_u;a_
2 3 R2 X
X
Hence
u = + _I—J—aj 3—Ua_
bt Bl 37 2x
2x

in agreement with the distrubance velocity in (1) when 6 = 0, given in (44).

(48)

This result indicates that the doublet at the center of the sphere is

an irrotational equivalent of the negative of the internal vorticity, since

the sum of their fields is zero exterior to the sphere.

Some Applications of the Vorticity Theorem

We have previously investigated irrotational equivalents of the bound-

ary layer and wake such that the outer irrotational flow was preserved.

18
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was seen that this could be accomplished in various ways, such as a source

distribution on the given surface and along the wake, a source distribution

on the edge of the boundary layer and wake, or by the irrotational flow

about the displacement-thickness surface. In none of these irrotational

) models was it possible to retain the given body as a stream surface.

Intuitively, it appears desirable to match the boundary conditions on

both the body and the edge of the boundary layer and wake, in order to
obtain a more realistic irrotational model. We have seen that the vorticity
distribution alone yields both the nonslip condition on the body and the
boundary condition on EBLW. In the previous models only the boundary condi-
tion on EBLW was empioyed. An additional source distribution, on the body
or in its interior is required in order to satisfy the condition that the

{ body remain a stream surface. The condition of zero tangential velocity

s would not be satisfied, but this seems to be physically less important in

f an irrotational model.

The boundary conditions on the body surfaee S and on EBLW define a
Neumann problem which can be readily formulated as a pair or integral equa-
tions to be solved simultaneously for a pair of source distributions. The
locations of the source distributions may vary, even for a given body, as
has already been illustrated. If these are taken to be distributions m(P)

on S and H(Q) on T; one obtains the integral equations

| 3 1
21m(P) - fm(w = o ds,, - fu(Q') = = ds,,
BnP Topr P BnP rPQ' Q
S T
& ox
e U0 BnP B
W
) 1 9 1 :
2mu(Q) - ju(Q') e — Ry = jm(P') e e 48y = Q)  (50)
A BnQ rQQ' Q A SnQ rP'Q P

where P and P' denote points on S, and Q and Q' on EBLW, and v(Q) denotes

the normal component of the velocity at T, which is assumed to be known.
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The Poincar€ Transformation [4]

It is well known that the velocity field induced by a vortex ring is
identical to that of a doublet sheet on &« surface capping the ring. The
Poincaré’transformation, derived below, erables more general relationships
between fields of vorticity and irrotational distributions to be obtained.
Since the entire disturbance flow field is induced by the vorticity alone,
the velocity field of the equivalent irrotational distributions would be
identical to that induced by the vorticity in the regions exterior to the
vorticity domain. For the case where the vorticity lies in the boundary
layer and wake of a body, the vorticity induces not only an irrotational
field exterior to its outer boundary T, but also an irrotational field
within the body. Because of the nonslip condition, the induced velocity
within the body must be zero. Thus, in contrast with the distributions
previously considered, the Poincare transformation offers the possibility of
matching the boundary conditions on both the interior and exterior bound-
aries of BLW.

Let us suppose that vorticity w = curl v is present in a domain D,
bounded by a closed surface S, and denote the domain exterior to D by E.
Here v denotes the velocity vector of the fluid flow. We shall distinguish
between a fixed point P(x,y,z) at which induced velocities are calculated,
and variable points of integration, Q(&,n,Z). The position vector from P

to Q is T and has the magnitude r

PQ PQ’

The velocity induced by a vorticity distribution can be expressed

either by means of the Biot-Savart Law,

J—-—O‘ dt (51)
D
or in terms of the vector potnetial,
- 1 w
VP - VP X - dt (52)
D =

20

WSS
- - ————n r————-—




We shall need to distinguish between the vector operators

18 .33 ,g? =18 43
VpElgp+igptkgrand V=144 j

/
The Poincare transformation is as follows:

v, x [fv—x‘lm- j:ﬂds] =VP[ %lldr-f‘;—'ﬂds]
TpQ PQ |, TPQ s TPQ

D S

4 » P in D
+ {27 Vps Pon S (53)
0 P in E

where n is the unit vector in the direction of the outward normal to S.

First suppose that P is in E. Then we have

J'vxv ., x Hv(m>v<—:«§) x;J a

=vaJ"r‘~x‘ids+ijG-vprLdr (54)
s FQ D PQ
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But

f?dr—f%ﬂds (55)
PQ S PQ

Substituting (55) and (54) now yields (53) for P in E.

Next consider the case that P is in D, and let ﬂb denote the volume

and S0 the surface of a small sphere of radius r, about P. Then we have

vvax"dr=vxf—v""dT+fo~——VX"dr (56)
P r P r P r
PQ A % PQ

0

where D' =D - Vb. The last integral in (6) is proportional to the
velocity induced by the vorticity within Vb, according to (52) and hence
must vanish as the radius of the sphere approaches zero. Also, by

Equations (54) and (55), we have

v xf I grw % fﬂds#v xf BEV 48
P r P r At r
8, %

+fo\_/-\7-1—dT (57)
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and

i L il Y s SETRRRE 6. 2 AT ven e (58)
Pr r r r

The convention on the positive sense of n requires that it be directed

inwards on the sphere SO' For the term in (57), we have

X (nxv) dS =7+ f e L o
) % 2 0

NN
[y

g f _n><_vds=J' .
P r P\lr
PQ PQ
Sy So So 0
z-f EE-\-/dQ+4m—rP (59)
So
2
where dS = L d2; and in (58),
VJ'mdS=—J.r—1r_1-\7dQ (60)
P r
g % S
0 0
Also we have
lim VPI Z~'—‘1dr -VPJ‘ Z"' dt (61)
r0+0 D' PQ D PQ

since the velocity field of a volume distribution of sources is continuous.

Collecting the results in Equations (56) to (61) now yields (53) for P in D.
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Finally, when P is a '"smooth" point of S, i.e., a point at which the
tangent to S is continuous, we introduce a small hemisphere about P, of
radius ro, and apply the Poincare transformation to the so-diminished
volume D', and to the bounding surface, consisting of the hemispherical

surface S, and the remainder S' of S. The proof is similar to that for

0
P
° L
n
SO
D S
Figure 8

P in D. In Equations (57) and (58), we need only to replace S by S', and

in Equation (59) Aﬂ;P becomes ZHGP, or, indeed, av, if P is a corner point

P
of S of solid angle a. Instead of (61), we need

1im V_ x B dg= g o § B 4o
>0 P rP P rP
ro SI Q S Q

and

1in V J' Y8 45 = ¥ J"”“ ds
P ) < P r
£ 0 PQ | "PQ

which are verified by observing that the velocity fields of the surface

distributions of vorticity, n x 3, and of sources, v e ﬁ, are continuous.

Equivalent Irrotational Flow From Poincare Transformation

Let us apply the Poincar€ transformation (53) to a case in which the
flow is entirely due to the vorticity in a domain D, bounded by a closed
surface S. We shall seek to express the velocity at a point P of E as the

gradient of a velocity potential.
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The first term of (53) is seen to give the velocity ;VP due to vortic-

ity in the form of the vector potential (52), as 4mv Since the assumed

VP*
flow is solenoidal, the third term of (53) is zero. We then have, from

(53),

by = Y X %"—"- ds - v, J lr’-ﬂ ds (62)

This expresses the velocity in terms of that induced by a source distribu-
tion of strength ;n/4ﬂ and by a vortex sheet of strength n X v = VSE; both

on S. Here we have expressed the velocity vector v = ﬁvn + gvs, where s

is the unit vector in the direction of the projection of v on the tangent
plant at Q. Then, putting n X s = t, we obtain the form given above.

In order to express the field of the vortex sheet as the gradient of
a potential, let us define a function ¢1, harmonic in D, which on S

satisfies

n x ;l =n X v, v; = V¢1 (63)
We have then
3¢1
v R S (64)

and hence, by integration along s, the values of ¢1 on S may be presumed to
be given in terms of the known values of v Thus the boundary condition
(64) sets up a Dirichlet problem for determining ¢1.

Since V x ¥y 0, application of the Poincare transformation to ;1,
taking (63) into account, yields

s s .=
v x ﬂds=va e 48 (65)
5

P r r
L 2 PQ
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Hence (62) becomes

2 : E-(Gl—G)
Vvp = am P = ds (66)
s =

a velocity field due to a source distribution of strength
0 =n -+ (v-v))/4m (67)

The form of 0 shows that n ° ;l is the normal component of the velocity on
the interior side of the source distribution on S. Uniqueness of solutions
of Neumann problems on S then shows that ;1 is the irrotational velocity
field in D associated with the source distribution 0 on S.

An alternative source distribution on S can also be found directly as
the solution of the exterior Neumann problem for the given values of vV en
on S, as was done previously in considering the displacement effects of the

boundary layer. Applied to the vorticity field BLW in the flow about a

body, the present approach reqﬁires that a composite bounding surface,

=S_+T+
Sxg FT+A

be used, where SB is the surface of the given body, and A is the transverse
surface of the truncated wake. If the transverse section is taken suffi-
ciently far downstream, the effects of the source distribution on A may be
neglected, and the Neumann problem could be formulated as a pair of simul-
taneous Fredholm integral equations of the second kind. The resulting
source distribution, however, would not coincide with that given in (67).
In the present treatment, the value v ° n=20 on SB is preserved, whereas,

in deriving (67), the tangential component v X n = 0 on S_, in accordance

B’
with the nonslip condition, was preserved. In the former case, SB remains

a stream surface, in the latter, an equipotential.
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Betz Method for Determining Viscous Drag

Betz [5] and Landweber and Wu [6] use equivalent irrotational flows to
derive formulas for the viscous drag of a body in terms of measured values
of pressure and velocity at a transverse section of the wake. A refine-
ment of these derivations, in which additional wake characteristics are
taken into account, will now be presented.

The body is taken at the center of a circular channel of large radius,
and is at rest in a uniform stream of velocity U in the positive x-
direction. The disturbance velocity components in a rectangular (x,y,z)

coordinate system are (u,v,w), and p denotes the pressure.

B D
NN\ 5 geic
u
Uo Po S 0 {
—_—
==
S0 P p
i NN <
Figure 9
We select a control surface consisting of the transverse sections AB, £ 9

far ahead of the body, CD or S a moderate distance behind it, and the
portion of the channel wall lying between these sections. On the section
Ar', designated SO’ the pressure is the constant Py and the velocity is
(UO, 0, 0). Application of the momentum theorem to this control surface

yields the expression for the body drag D,

D = f{po—p—p [(U0+u)2-U02]} ds (68)
S

in which p is the mass density of the fluid. If the wake is turbulent,

Reynolds stresses will be present, but these can be taken into account most
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efficiently by averaging the resulting expression derived for the drag.
In terms of the total heads, defined by

1

b 1 2 ¥ _ 2l
ngo_p0+sz0’ ng-p+2 [(U0+U)+V

] (69)
where g is the acceleration of gravity, (68) becomes

D= f ‘Og (Hy-H)- % p [(U0+U)2—U02-v2—w2] } ds (70)
S

We now consider an equivalent irrotational velocity field (U0 + UpsVys
wl), with pressure Pys generated by a volume distribution of sources of
strength p in BLW, such that (ul,vl,wl) = (u,v,w) on T, the outer boundary
of BLW. We again apply the momentum theorem, to the flow within the same
control surface generated by this distribution of sé-called Betz sources,
to obtain the expression for the force on the sources within the control

volume,

Mgps 2 2 2 2
DS e &, .[ [(U0+ul) -UO -V, v, ] dS (71)
S

the term corresponding to the difference in heads vaniéhing since the
' field is irrotational.
Another expression for the force on the Betz sources is given by the

Lagally formula

Rl 4mp J‘ u(U0+ul) dt (72)
£72
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where ¥ denotes the control volume. This is not the usual application of
the Lagally theorem, which gives the force on a closed body. Here it
represents the reaction on the Betz sources due to the flux of momentum of
the source-generated discharge.

Since the flux through the bounding surface T is the same with Betz
sources as in the solenoidal (divergenceless) real flow, the difference in
flux for the flows through the area A of S intersected by the wake is at-

tributable to the Betz sources. The Gauss flux theorem then yields the

4m f udT = f (ul—u) ds (73)
¥ A

Far downstream, the section S will be denoted by S and the wake area

formula

by A_. In terms of the flux Q across this wake area, we have the well-

known formula for the drag,

D = p UyQ, Q=-fudS (74)
A

[ee]

A similar expression for the force on the Betz sources, obtained from the

asymptotic form of (71), is

D =-pU u, dS
Sy, 0 .£ 1

o

But

J’ uldS-J‘ (ul-u) dS+f u ds
S, s S,

oo

and since uy = u except within the wake and, by continuity, J’ u ds =0,
S
(e <]

we obtain
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DSoo = -0 U0 J‘ (ul—u) ds
A

[e e}

and hence, from the asymptotic form of (73),

DSoo = - 4mp UO J. M dt
BLW

Comparison with the asymptotic form of (72) now yields

u uy dt = 0
BLW

From the asymptotic form of (73), we can also show that

4m .f udt = Q
BLW

which implies, by (74) and (76), that

This is derived by neglecting uy

in comparison with u in (6), since the

(75)

(76)

77)

(78)

(79)

Betz sources are concentrated near the body, so that uy diminishes as the

inverse square of the distance, while, for a turbulent wake, |u| diminishes

as the inverse 2/3-power of the distance.

i e
Put ¥ + ¥ ¥ LW and define a mean value uy of uy by

B

ulf udT=J‘ uuldr

V' V'
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We then obtain, from (77),

But, by (73) and (78),

f udT=f udr—judT=%-%J(ul-u)ds
A

A5 BLW ¥

Then, by (74),

< EEE- 7 E RO PR (81)
e Bl - ol s
¥ A

Hence, by (73) and (81), (72) becomes

u
- 1
DS =-0p .[ (ul—u)(U0+u1) ds + T D (82)
0
A
A formula for the viscous drag D can now be obtained by subtracting
the expression for DS in (71) from that for D in (70) and then substituting
for DS from (82). Observing that the resulting integrand is nonzero only

over the wake area A, we obtain the result

-w

‘1 a8 (83)

w2 J.[2g(H0—H)+(ul—u)(u1+u—261)+v2+w2-v : 1

1
ur: B
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In applying (83), total head tubes which measure a total head Hm’

given by
pg H_=p+ % 0 [(U0+u)2+)\(v2-m2)], o<y el (84)

where A is a calibration constant, (see Reference [9]), and velocities

9 1/2
W[ 2am] -y, (85)
are used for H and u. In terms of Hm and U with the small difference

between u and u neglected in higher-order terms, (83) becomes

D = ——glg——-.[ [2g(HO—Hm)+(u1—um)(ul+um—261)
Ty Vs o

-vl?'—w12+)\ (o) ] 48 (86)

When the wake is turbulent, the mean value of D, obtained by replacing
(u,v,w) by (u+u',v+v',wtw') and averaging, where (u',v',w') denote the com-

ponents of the turbulent velocity fluctuations, becomes

p/2 2

T Y =il emi—, o . _— -’ 2_
D = J.[Zg(ﬂo Hm)+(u1 um)(u1+um 2ul) vyw,

1-u, /Uy 4

X o) ~u" (v'2+w'2)] ds (87)

where Hm and u ~now refer to their mean values. The Reynolds stress terms

combine into (2>\-1)u'2 for isotropic turbulence, and would hence be
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v

negligible for A = 1/2. Jin Wu's measurements [7] indicate that the tur-
bulent stresses would contribute about 2 percent to the calculated drag
with A = 0; but his actual value was A = 0.5, with which the turbulence

terms became negligible. We shall assume that the turbulence stresses in
2

B w, + A

(87) may be neglected. We shall also neglect the terms - v 1

1
(v2+w2) since these are small and partly cancel each other.

Still unknown are the terms uy and Gl in (87). For estimating ul,

we shall assume that uy depends upon z alone, «ad is given by u; = uE(z),

the measured value of u at the wake boundary T. According to the defini-

tion of Gl as a mean of uy in ¥', we observe that the mean is weighted by

the value of the source strength Y which, together with u diminishes to

l’
zero as x > ©®, This suggests that the values Gl = 0 and Gl = GE at A
can be used to obtain bounds for the drag formula, the '"true" value lying
closer to the bound given by Gl = Gc. Because Gl occurs both in the

integrand and in the denominator of the expression for the drag, it is not
immediately evident which of the two bounds is fhe larger. Denoting these
bounds by D, when u, = 0 and D, when u, = GE’ and applying the afore-

1 1 2 1
mentioned approximations, we obtain from (87),

- ] 23 .2
Dl -g .[ [Zg(Ho Hm)+uE u ] dS (88)
A

3 ) s .,J - '3
and, with up + u, 2uE replaced by un up in the last term,

_ —pL2
l—uE/U0

D

; J' [2g (Hy=H )~ (ug-u )] ds (89)

A

The latter form was given by Tzou and Landweber [8].

That D1 < D2 is indicated by the following argument. Since the source
strength Y represents the displacement effect of the boundary layer and
wake, it is a positive quantity of total strength given by (78). Conse-

quently, according to (77), u; cannot be of one sign throughout BLW. Over
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most of the boundary-layer edge of T, GE > 0. In the region of the rear of
the body and the near wake, there would be some pressure recovery (especial-

ly if separation has not occurred) and u, on T would there become negative,

E
and gradually approach zero with increasing downstream distance. This

suggests that u_ in (89) and Gl in (86) are negative. Since the difference

E
in heads, HO - Hm, contributes about 90 percent of the magnitude of the
integrand in (88) and (89), and GE << UO, (89) may be written as

) _E & B )P
D2 =5 (l+ T > f Zg(HO Hm) ds 5 J’ (uE um) ds
g A A

which yields

g(HO-Hm) ds - p J. uE(uE-um) ds
A

o
N
|
o
H
0
)
S| uf!
o |
p—

]

©
a|loel
o |

i f [g(Hy-H)-Ug(up-u )] ds (90)
A

Applying the expression for Hm in (85, and
4 1 2

in (90) and neglecting the term uE2 - umz, we obtain

« _E
D, ~D; =5 .I (pg-p,) dS > 0 (91)
Vo
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since ;E < 0 at A and, according to Jin Wu's data [10], Pn is a maximum at
the center of the wake, so that P~ Pp > 0. The data given in Reference
[8] indicate, however, that, at a section at 0.6 of the length behind the
stern of a ship model, GE is zero within the accuracy of the measurements.
This indicates that the simpler expression (88) is suitable for computing

the viscous drag from wake-survey data.
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College of Eng

J.M. Robertson
Theoretical & Applied Mech
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State Univ of Iowa
Iowa Inst of Hyd Res
20 L. Landweber

1 J. Kennedy
1 V.J. Patel

Johns Hopkins Univ/
Mechanics Dept

Kansas State Univ
Engineering Exp Station
D.A. Nesmith

Lehigh Univ/Fritz Lab Lib

Long Island Univ
Grad Dept of Marine Sci

Delaware Univ/Math Dept

Univ of Maryland
1 Eng Lib
1 P.F. Cunniff
1 C.L. Sayre
1 Plotkin

Mass Inst of Technol
Dept of Ocean Eng
1 P. Mandel

J.R. Kerwin

N. Newman

P. Leehey

M. Abkowitz

F. Noblesse

e

Univ of Mich/Dept NAME
1 T.F. Ogilvie
1 H. Benford
1 R.B. Couch

Univ of Minn/St. Anthony Falls
1 C.S. Song
1 J.M. Killen
1 F. Schiebe
1 J.M. Wetzel
1 A. Arndt
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City College, Wave Hill
1 WwW.J. Pierson, Jr.
1 A.S. Peters
1 J.J. Stoker

Univ of Notre Dame
A.F. Strandhagen

Penn State Univ
Ordnance Res Lab

Southwest Res Inst
1 H.N. Abramson
1 G.E. Transleben, Jr.
1 Applied Mech Review

Stanford Univ/Dept of Civ Eng
1 R.L. Street

1 B. Perry
1 Dept of Aero and Astro/
J. Ashley

Stanford Res Inst/Lib

Stevens Inst of Tech
Davidson Lab
1 J.P. Breslin
1 S. Tsakonas
1 Lib

Utah State Univ/Col of Eng
Roland W. Jeppson

Univ of Virginia/Aero Eng Dept
1 J.K. Haviland
1 Young Yoo

UPI
1 Schetz
1 Nayfeh

Webb Institute
1 E.V. Lewis
1 L.W. Ward

Worcester Poly Inst/Alden
Res Lab
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Aerojet-General
W.C. Beckwith

Bolt, Beranek & Newman, MA

Boeing Company/Commercial
Airplane Group
1 Paul E. Rubbert
1 Gary R. Saaris

CALSPAN, INC.
Applied Mech Dept

Dynamics Technology
Flow Rgsearch, Inc.
Eastern Res Group

General Dynamics Corp
1 Convair Aerospace Div
A.M. Cunningham, Jr.,
MS 2851
1 Electric Boat Div
V.T. Boatwright, Jr.

Gibbs & Cox, Inc.
Tech Info Control Section

Grumman Aircraft Eng Corp
W.P. Carl, Mgr.
Grumman Marine

Hydronautics, Inc.
1 P. Eisenberg
1 M.P. Tulin
L T.I. Tsu

Lockheed Aircraft Corp
Lockheed Missiles & Space
1 R.L. Waid
1 R. Lacey

Marquadt Corp/General Applied

Sci Labs
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