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LISP cons tructs such as AND , OR , and COND , are expressed as macros in
terms of the applicative basis set. A small number of optimization tech-
niques , coupled with the treatment of function calls as GOTO statements,
serve to produce code as good as that produced by more tradi t ional comp i lers.
The macro approach enables speedy implementation of new constructs as
des i red w i thout sacrifi cing efficiency in the generated code.

A fair amount of analysis is devoted to determining whether env i ronments
may be stack-allocated or must be heap-allocated . Heap-allocated environ-
ments are necessary in genera l because SCHEME (unlike Algo l 60 and Algo l 68,
for example) allows procedures with free lexica lly scoped variable to be
returned as the values of other procedures: the. Algol stack-allocation environ-
ment strategy does not suffice. The methods used here Ind i cate that a
heap-allocating gerieraliza i ton of the “display” techni que leads to an ef f ic ie nt
Implementation of such “upward funarqs”. Moreover , compil e-time optimiza-
t ion and analysis can elim ina te many “funarqs” entirely, and so far fewe r
environment structures need be allocated at run time than might be
expected .

A subset of SCHEME (rather than triples , for example) serves as the
representation intermed l eate between the optimized SCHEME code and the Final
output code; code is exoressed in this subset in the so’called constinua-
tion-passinq style. As a subset of SCHEME , i t enjoys the same theoretical
properties; one could even apply the same optimizer used on the input code
to the intermediate code. However, the subset is so chosen that al l temp-
orary quant it ies are made man ifes t as variables , and no control stack is
needed to eva l uate it. As a result , this apparently app) icative represen-
tat ion admit s an impe ra t ive inter preta t ion wh i ch perm its easy transcri pt ion
to fianl i mperative machine code. These qualities suggest that an appl i ca-
tive language like SCHEME is a better candidate for an UNCOL than the more
imperative candidates proposed to date.
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RABBIT : A Compiler for SCHEME (A Dialect of LISP)

A Study in Compiler Optimization
Based on Viewing LAMBDA as RENAME and PROCEDURE CALL as 6010

using the techniques of
Macro Definition of Control and Environment Structures,

Source-to-Source Transformation, Procedure Integration, and Tail-Recursion

Guy Lewis Steele Jr.
Massachusetts Institute of Technology

May 1978

ABSTRACT

We have developed a compiler for the lexically-scoped dialect of LISP
known as SCHEME. The compiler knows relatively little about specific data
manipulation prinlitives such as arithmetic operators, but concentrates on general
issues of environment and control. Rather than having specialized knowledge
abou t a large variety of control and environment constructs, the compi ler handles
only a small basis set which reflects the semantics of lambda-calculus. All of
the traditional imperative constructs, such as sequencing, assignment , looping ,
GOb , as well as many standard LISP constructs such as AND, OR , and COND, are
expressed as macros in terms of the applicative basis set. A small number of
optimization techniques , coupled with the treatment of function calls as GOTO
statements , serve to produce code as good as that produced by more trad it ional
compilers . The macro approach enables speedy implementation of new constructs as
desired without sacrificing efficiency in the generated code.

A fa ir amoun t of analysis is devoted to determining whether environments,
may be stack-allocated or must be heap-allocated. Heap-allocated environments
are necessary in general because SCHEME (unlike Algol 60 and Algol 68, for
example) allows procedures with free lexically scoped variables to be returned as
the values of other procedures; the Algol stack-allocation environment str~itegy
does not suffice. The methods used here indicate that a heap-allocating
generalization of the “display ” technique leads to an efficient implementation of
such “u pward funar gs” . Moreover , compile-time optimization and analysis can
eliminate many “funargs” entirely, and so far fewer environment structures need
be allocated at run time than might be expected.

A subse t of SCHEME (ra ther than tr iples, for examp le) serves as the
representation intermediate between the optimized SCHEME code and the final
output code ; code is expressed in this subset in the so-called continuation-
passing style. As a subset of SCHEME , it enjoys the same theoretical properties;
one could even apply the same optimizer used on the input code to the
intermediate code . However, the subset is so chosen that all temporary
quantities are made manifest as variables, and no control stack is needed to
evalu ate it . As a resul t, th is apparently applicat ive representat ion adm its an
imperative interpretation which permits easy transcription to final imperative
mach ine code. These qualities suggest that an applicative language like SCHEME
is a better candidate for an UNCOL than the more imperative candidates proposed
to date.

Thesis Supervisor : Gerald Jay Sussnan
Title: Associate Professor of Electri~.al Engineering



Note
The first part of this report Is a slightly revised version of a

dissertation submitted in M~y 1977. Where it was of historical interest to
reflect changes in the SCHEME language which ocurred in the following year and
the effec t they ha d on RABBIT , the text was left intact, with notes added of the
form , “Since the dissertation was written , thus-and-so occurred.” The second
part , the Appendix , was not part of the dissertation , and is a complete listing
of the source code for RABBIT , with extensive commentary.

It is intended that the first part should be self-contained , and provide
a qualitative overview of the compilation methods used in RABBIT. The second
part is provided for those readers who would like to exa~ ine the prec ise
mechan isms used to carry out the general methods.

Thus there are five levels of thoroughne~s at which ~~ reader may
consume th is document:
(1) The reader who wishes only to skim is advised to read sections 1, 5, 6,
possibly 7, 8A, BB , 8C, 10, 11 , and 12. This will give a basic overview,
including the use of macros and the optimizing techniques.
(2) The reader who also wants to know about the details of SCHEME, the run-time
system , and a long example is advised to read the entire main text (about a third
of the document).
(3) The reader who wants to understand the low-level organization of the
algorithms , and read about the more tricky special cases, should read the main
text and then the commentary on the code.
(4) The reader who additionally wants to understand the nit-picking details
should read the code along with the commentary.
(5) The reader who wants a real feel for the techniques involved should read the
entire document , invent three new SCHEME constructs and write macros for them ,
and then reimplement the compiler for another run-time environment. (He ought
please also to send a copy of any documents on such a project to this author, who
would be very interested!)
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1. Introduction

The work described here is a continuation ( ! )  of that described in

[SCHEME], [Imperative], and (Declarative]. Before enumerating the points of the

thesis, we summarize here each of these documents.

A. Background

In [SCHEME] we (Gerald Jay Sussman and the author) described the

implementation of a dialect of LISP named SCHEME with the properties of lexical

scoping and tail-recursion ; this implementation is embedded within MacLISP

[Noon], a version of LISP which does not have these properties. The property of

lexical scoping (that a variable can be referenced only from points textually

within the expression which binds it) is a consequence of the fact that all

functions are closed in the “binding environment”. (Moses] That is, SCHEME is a

“full-funarg ” LISP dialect. (Note Full-Funarg Example) The property of tail—

recursion implies that loops written in an apparently recursive form will

actually be executed in an iterative fashion. Intuitively, function calls do not

“push control stack” ; instead, it is argument evaluation which pushes control

stack. The two properties of lexical scoping and tail-recursion are not

independent. In most LISP systems (LISP1.5M] (Moom] (Teitelman], which use

dynamic scopimg rather than lexical, tail-recursion is impossible because

function calls must push control stack in order to be able to undo the dynamic

bindings after the return of the function. On the other hand, it is possik,le to

have a lexically scoped LISP which does not tail-recurse, but it is easily seen

that such an implementation only wastes storage space needlessly compared to a

tail-recursing implementation . (Steele] Together, these two properties cause 

L
_ _ _ _ _ _ _  

_
-~~~
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SCHEME to reflect lambda-calculus semantics much more closely than dynamically

scoped LISP systems. SCHEME also permits the treatment of functions as full-

fledged data objects; they may be passed as arguments returned as values, made

part of composite data structures, and notated as independent, unnamed

(“anonymous”) entities. (Contrast this with most ALGOL-like languages, in which

a fuhction can be written only by declaring it and giving it a name ; imagine

being able to use an integer value only by giving it a name in a declaration!)

The proper ty of lexical scoping allows this to be done in a consistent manner

without the possibility of identifier conflicts (that is, SCHEME “solves the

FUNARG problem” [Moses]). In (SCHEME] we also discussed the technique of

“continuation-passing style”, a way of writing programs in SCHEME such that no

funct ion ever returns a value.

In [ Imperative ] we explored ways of exploiting these properties to

implement most traditional programming constructs, such as assignment, looping,

and call-by-name , in terms of function application . Such applicative (lambda-

calculus) models of programming language constructs are well-known to

theoreticians (see (Stoy], for example), but have not been used in a practical

programming system. All of these constructs are actually made available in

SCHEME by macros which expand into these applicative definitions. This technique

has permitted the speedy implementation of a rich user-level language in terms of

a very small , easy-to-implement basis set of primitive constructs. In

[Imperative] we continued the exploration of continuation-passing style, and

noted that the r~~ape operator CATCH is easily modelled by transforming a program

into this style. We also pointed out that transforming a program into this style

enforces a particular order of argument evaluation , and makes all intermediate

computational quantities manifest as variables.

In [Declarative] we examined more closely the issue of tail-recursion ,
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and demonstrated that the usual view of function calls as pushing a return

address must lead to an either inefficient or inconsistent implementation , wh ile

the tail-recursive approach of SCHEME leads to a uniform discipline in which

function calls are treated as 6010 statements which also pass arguments. We also

noted that a consequence of lexical scoping is that the only code which can

reference the value of a variable in a given environment is coda which is closed

in tha t environmen t or wh ich rece ives the value as an argument; this in turn

implies that a compiler can structure a run-time environment in any arbitrary

fash ion , because it will compile all the code which can reference that

environment , and so can arrange for that code to reference it in the appropriate

manner. Such references do not require any kind of search (as is commonly and

incorrectly believed in the LISP community because of early experience with LISP

interpreters which search a-lists) because the compiler can determine the precise

location of each variable in an environment at compile time. It is not necessary

to use a standard format, because neither interpreted code nor other compiled

code can refer to that environment. (This is to be constrasted with “spaghetti

stacks” [Bobrow and Wegbreit].) In [Declarative] we also carried on the analysis

of continuation-passing style, and noted that transforming a program into this

style eluc idates traditional compilat ion issues such as register allocation

because user variables and intermediate quantities alike are made manifest as

variables on an equal footing. Appendix A of (Declarative] contained an

algorithm for converting any SCHEME program (not containing ASET) to

continuation-passing style .

We have implemented two compilers for the language SCHEME . The purpose

was to explore compilation techniques for a language modelled on lambda-calculus,

using lambda-calculus-style models of imperative programming constructs. Both

compilers use the strategy of converting the source program to continuation-

-4
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passing style.

The first compiler (known as CHEAPY) was written as a throw-away

implementation to test the concept of conversion to continuation-passing style.

The first half of CHEAP? is essentially the algorithm which appears in Appendix A

of [Declarative], and the second is a simple code generator with almost no

optimization . In conjunction with the writing of CHEAPY, the SCHEME interpreter

was modified to interface to compiled functions. (This interface is described

later in this report.)

The second compiler , with which we are primarily concerned here, is known

as RABBIT. It , like CHEAP?, is written almost entirely in SCHEME (with minor

exceptions due only to problems in interfacing with certain MacLISP I/O

facilities). Unlike CHEAPY , it is fairly clever. It is intended to demonstrate

a number of optimization techniques relevant to lexical environments and tail-

recursive control structures. (The code for RABBIT, with commentary, appears in

the Appendix.)

B. The Thesis

(1) Function calls are not expensive when compiled correctly; they should be

thought of as 6010 statements that happen to pass arguments.

(2) The combination of cheap function calls, lexical scoping, tail-recursion,

and “anon ymous ” notation of functions (which are not independent properties

of a language , but aspects of a single unified approach ) permits the

definition of a wide variety of “imperative” constructs in applicative

terms . Because these properties result from adhering to the principles of

the well-known lambda-calculus (Church], such definitions can be lifted

intact from existing literature and used directly.
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(3) A macro facility (the ability to specify syntactic transformations) makes it

practical to use these as the only definitions of imperative constructs in a

programming system. Such a facility makes it extremely easy to define new

constructs .

(4) A few well-chosen optimization strategies enable the compilation of these

applicative definitions into the imperative low-level code which one would

expect from a traditional compiler.

(5) The macro facility and the optimization techniques used by the compiler can

be conceptually unified. The same properties which make it easy to write

the macros make it easy to define opti.izations correctly. In the same way

that many programming constructs are defined in terms of a small, well—

chosen basis set, so a large number of traditional optimization techniques

fall out as special cases of the few used in RABBIT. This is no accident.

The separate treatment of a large and diverse set of constructs necessitates

separate optimization techniques for each. As the basis set of constructs

is reduced, so is the set of interesting transformations. If the basis set

is properly chosen, their combined effect is “multiplicative” rather than

“additive”.

(6) The technique of compiling by converting to continuation-passing style

elucidates some important compilation issues in a natural way. Intermediate

quantities are made manifest; so is the precise order of evaluation .

Moreover, this is all expressed in a language isomorphic to a subset of the

source language SCHEME; as a result the continuation-passing style version

of a program inherits many of the philosophical and practical advantages.

For example, the same optimization techniques can be applied at this level

as at the original source level. While the use of continuation-passing

style may not make the decisions any easier, it provides an effective and
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natural way to express the results of those decisions.

(7) Continuation-passing style, while apparently applicative in nature, admits a

peculiarly imperative interpretation as a consequence of the facts that it

requires no control stack to be evaluated and that no functions ever return

values. As a result, it is easily converted to an imperative machine

language .

(8) A SCHEME compiler should ideally be a designer of good data structures,

since it may choose any representation whatsoever for environments. RABBIT

has a rudimentary design knowledge, involving primarily the preferral of

registers to heap-allocated storage. However, there is room for knowledge

of “bit-diddling ” representations.

(9) We suggest that those who have tried to design useful UNCOL ’s (UNiversal

Computer-Oriented Languages) (Sanmiet] (Coleman] have perhaps been thinking

too imperatively, and worrying more about data manipulation primitives than

about environment and control issues. As a result, proposed UNCOLs have

been little more than generalizations of contemporary machine languages. We

suggest that SCHEME makes an ideal UNCOL at two levels. The first level is

the fully applicative level, to which most source-language constructs are

easily reduced ; the second is the continuation-passing style level, which

is easily reduced to machine language. We envision building a compiler in

three stages: (a) reduction of a user language to basic SCHEME, whether by

macros , a parser of algebraic syntax, or some other means; (b) optimization

by means of SCHEME-level source-to-source transformations, and conversion to

continuation-passing style; and (c) generation of code for a particular

machine . RABBIT addresses itself to the second stage. Data manipulation

primitives are completely ignored at this stage, and are just passed along

from input to output. These primitives, whether integer arithmetic, string
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concatenation and parsing, or list structure manipulators, are chosen as a

function of a particular source language and a particular target machine.

RABBIT deals only with fundamental environment and control issues common to

most modes of algorithmic expression.

(10) While syntactic issues tend to be rather superficial, we point out that

algebraic syntax tends to obscure the fundamental nature of function calling

and tail-recursion by arbitrarily dividing functions into syntactic classes

such as “opera tors ” and “functions”. ((Standish], for example, uses much

space to exhibit each conceptually singular transformation in a multiplicity

‘of syntactic manifestations.) The lack of an “anonymous” notation for

functions in most algebraic languages, and the inability to treat functions

as data objects, is a distinct disadvantage. The uniformity of LISP syntax

makes these issues easier to deal with.

To the LISP community in particular we address these additional points:

(11) Lexical scoping need not be as expensive as is commonly thought. Experience

with lexically-scoped interpreters is misleading; lexical scoping is not

inherently slower than dynamic scoping. While some implementations may

entail access through multiple levels of structure, this occurs only under

circumstances (accessing of variables through multiple levels of closure)

which could not even be expressed in a dynamically scoped language . Unlike

deep-bound dynamic variables, compiled lexical access requires no search ;

unlike shallow-bound dynamic variables, lexical binding does not require

that values be put in a canonical value cell. The compiler has complete

discretion over the manipulation of environments and variable values. The

“display ” technique used in Algol implementations can be generalized to

provide an efficient solution to the FUNARG problem .

(12) Lexical scoping does not necessarily make LISP programming unduly difficult.



14

The very existence of RABBIT, a working compiler some fifty pages in length

written in SCHEME, first implemented in about a month, part-time,

substantiates this claim (which is, however, admitted to be mostly a matter

of taste and experience). (Note Refinement of RABBIT) SCHEME has also been

used to implement several Al problem-solving languages, including ANORD

[Doyle].
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2. The Source Language - SCHEME

The basic language processed by RABBIT is a subset of the SCHEME language

as described in [SCHEME] and (Revised Report), the primary restrictions being

that the first argument to ASET must be quoted and that the multiprocessing

primitives are not accommodated. This subset is summarized here.

SCHEME is essentially a lexically scoped (“full funarg”) dialect of LISP.

Interpreted programs are represented by S-expressions in the usual manner.

Numbers represent themselves. Atomic symbols are used as identifiers (with the

conventional exception of I and NIL, which are conceptually treated as

constants). All other constructs are represented as lists.

In order to distinguish the various other constructs, SCHEME follows the

usual convention that a list whose car is one of a set of distinguished atomic

symbols is treated as directed by a rule associated with that symbol. All other

lists (those with non-atomic cars, or with undistinguished atoms in their cars)

are combinations, or function calls. All subforms of the list are uniformly

evaluated in an unspecified order, and then the value of the first (the function)

is applied to the values of all the others (the arguments). Notice that the

function position is evaluated in the same way as the argument positions (unlike

most other LiSP systems). (In order to be able to refer to MacLISP functions,

global identifiers evaluate to a special kind of functional object if they have

definitions as MacLISP functions of the EXPR, SUBR , or LSUBR varieties. Thus

“(PLUS 1 2)” evaluates to 3 because the values of the subforas are (functional

object for PLUS>, 1, and 2; and applying the first to the other two causes

invocation of the MacLISP primitive PLUS.)

The atomic symbols which distinguish special constructs are as follows:

LAMBDA This denotes a function. A form (LAMBDA (van var2 ... yarn) body)
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will evaluate to a function of n arguments. The parameters van are

id~entiuiers (atomic symbols) which may be used in the body to refer to

the respective arguments when the function is invoked. Note that a

LAMBDA-expression is not a function, but evaluates to one, a crucial

distinction .

IF This denotes a conditional form. (IF a b C) evaluates the predicate a,

producing a value x; if x is non-NIL, then the consequent b is

evaluated, and otherwise the alternative c. If c is omitted, NIL is

assumed.

QUOTE As in all LISP systems, this provides a way to specify any S-expression

as a constant. (QUOTE x) evaluates to the S-expression x. This may be

abbreviated to ‘x, thanks to the MacLISP read-macro-character feature.

LABELS This primitive permits the local definition ,of one or more mutually

recursive functions. The format is:

(LABELS ((name l (LAMBDA ...))
(name2 (LAMBDA . . . ) )

(namen (LAMBDA ...)))
body)

This evaluates the body in an environment in which the names refer to

the respective functions, which are themselves closed in that same

environment. Thus references to these names in the bodies of the

LAMBDA-expressions will refer to the labelled functions. (Note

Generalized LABELS)

ASET’ This is the primitive side-effect on variables. (ASET’ var body)

evaluates the body, assigns the resulting value to the variable var,

and returns that value. (Note Non-quoted ASET} For implementation—

dependent reasons, it is forbidden by RABBIT to use ASET’ on a global
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variable which is the name of a primitive MacLISP function , or on a

variable bound by LABELS. (ASET’ is actually used very seldom in

practice anyway, and all these restrictions are “good programming

practice ” . RABBIT could be altered to lift these restrictions, at some

expense and labor.)

CATCH This provides an escape operator facility. (Landin] (Reynolds] (CATCH

var body) evaluates the body, which may refer to the variable var,

which will denote an “escape function” of one argument which , when

called, will return from the CATCH-form with the given argument as the

value of the CATCH-form . Note that it is entirely possible to return

from the CATCH-form several times. This raises a difficulty with

optimization which will be discussed later.

Macros Any atomic symbol which has been defined in one of various ways’ to be a

macro distinguishes a special construct whose meaning is determined by

a macro function . This function has the responsibility of rewriting

the form and returning a new form to be evaluated in place of the old

one. In this way complex syntactic constructs can be expressed in

terms of simpler ones.
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3. The Target Language

The “target language” is a highly restricted subset of MacLISP, rather

than any particular machine language for an actual hardware machine such as the

PDP-10. RABBIT produces MacLISP function definitions which are then compiled by

the standard MacLISP compiler. In this way we do not need to deal with the

uninteresting vagaries of a particular piece of hardware, nor with the

peculiarities of the many and various data-manipulation primitives (CAR, RPLACA ,

+, etc.). We allow the MacLISP compiler to deal with them, and concentrate on

the issues of environment and control which are unique to SCHEME. While for

production use this is mildly inconvenient (since the code must be passed through

two compilers before use), for research purposes it has saved the wasteful re-

implementation of much knowledge already contained in the MacLISP compiler.

On the other hand, the use of MacLISP as a target language does not by

any means trivialize the task of RABBIT. The MacLISP function-calling mechanism

cannot be used as a target construct for the SCHEME function call, because

MacLISP ’s function calls are not guaranteed to behave tail-recursively. Since

tail-recursion is a most crucial characteristic distinguishing SCHEME from most

LISP systems, we must implement SCHEME function calls by more primitive methods.

Similarly, since SCHEME is a full-funarg dialect of LISP while MacLISP is not, we

cannot in general use MacLISP ’s variable-binding mechanisms to implement those of

SCHEME. On the other hand, it is a perfectly legitimate optimization to use

MacLISP mechanisms in those limited situations where they are applicable.

Aside from ordinary MacLISP data-manipulation primitives, the only

MacLISP constructs used in the target language are PROG, GO, RETURN , PROGN, COND,

SETQ, and ((LAMBDA ...) ...). PROG is never nested ; there is only a single,

outer PROG . RETURN is used only in the form (RETURN NIL) to exit this outer
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PROC,; it is never used to return a value of any kind. LAMBDA-expressions are

used only to bind temporary variables. In addition , CONS, CAR , CDR, RPLACA , and

RPLACD are used in the creation and manipulation of environments.

We may draw a parallel between each of these constructs and an equivalent

machine-language (or rather , assembly lan gua ge) construct:

PROG A single program module.

GO A branch ins truc tion. PROG tags corres pond to instruction labels.

RETURN Exit from program module .

PROGN Sequenc ing of several instruc tions.

COND Conditional branches , used in a disciplined manner. One may think of

(COND (predi valuel)
( pred2 value2)

( predn valuen))

as representing the sequence of code

<code for predi>
JUMP-IF-NIL regl ,TAG L
<code for valuel>
JUMP ENDTAG

TAG 1 : <code for pred2>
JUMP-IF-NIL regl ,TAGZ
<code for value2)
JUMP ENDTAG

TAG2:
<code for predn>
JUMP-IF-NIL regl ,TAGQ
<code for valuen>
JUMP ENDTA G

TAGn : LOAD-VALUE NIL
ENDTAG :

which admits of some optimizations, but we shall not worry about this.

(The MacLISP compiler does, but we do not depend at all on this fact.)

SETQ Load register , or store into memory.
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LAMBDA We use this primarily in the form:

(( LAMBDA ( qi ... qn)
(setq van qi)

(setq yarn qn))
valuel ... valuen)

wh ich we may think of as saving values on a temporary stack and then

popping them into the variables:

<code for valuel> ;leaves result in regi
PUSH regi

(code for valuen>
PUSH re gi
POP yarn

POP van

This is in fact approximately how the MacLISP compiler will treat this

construc t. This is used to effect the simultaneous assignment of

several values to several registers. It would be possible to do

without the MacLISP LAMBDA in this case, by using extra intermediate

var iables , but it was decided that this task was less interesting than

other issues w i th in RABBIT , and that assignments of this kind would

occur sufficiently often that it was desirable to get the MacLISP

compiler to produce the best possible code in this case.

The form ((LAMBDA ...) ...) is also use d in some situat ion where the

user wrote such a form in the SCHEME code, and the arguments and

LAMBDA-body are all “trivial” , in a sense to be defined later.

CONS CONS is used , among other things, to “push” new values onto the current

env ironment. While SCHEME variables can sometimes be represented as

temporary MacLISP variables using LAMBDA, in general they must be kept
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in a “ consed environment” in the heap; CAR and CUR are used to “index”
the environment “stack” (which is not really a stack, but in general

tree-like). (N.B. By using CONS for this purpose we can push the

entire issue of environment retention off onto the LISP garbage

collector . It would be possible to use array-like blocks for

environments , and an Algol-like “display” pointer discipline for

variable access. However, a retention strategy as opposed to a

deletion strategy must be used in general, because SCHEME , unlike Algol

60 and 68, perm its procedures to be the values of other procedures .

Stack allocation does not suffice in general -- a heap must be used .

Later we will see that RABBIT uses stack allocation of environments and

a r~~’1 nn strategy in simple cases, and reverts to heap allocation of

s and a retention strategy in more complicated situations.)

CAR , + Primitive MacLISP operators such as + and CAR are analogous to machine-

language instructions such as ADD and LOAD-INDEXED. We leave to the

MacLISP compiler the task of compiling large expressions involving

these; but we are not avoiding the associated difficult issues such as

register allocation, for we shall have to deal with them in compiling

calls to SCHEME functions.

- -_— -- - ‘ -  - ‘ - - - - ‘

~~gJ
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4. The Target Machine

Compiled code is interfaced to the SCHEME interpreter in two ways. The

interpreter must be able to recognize functional objects which happen to be

compiled and to invoke them with given arguments; and compiled code must be able

to invoke any function , whe ther inter pre ted or compi led , with given arguments.

(Th is latte r in terface is tra di t ionally known as the “UUO Handler” as the result

of the widespread use of the PDP-10 in implementing LISP systems. [DEC) [Moon]

[Teitelman]) We define here an arbitrary standard form for functional objects,

and a standard means for invoking them.

Ii the PDP- 10 MacLISP implementation of SCHEME, a function is, in

general , represented as a list whose car contains one of a set of distinguished

atomic symbols. (Notice that LAMBDA is not one of these; a LAIIBDA-expression

may evaluate to a function , but is not itself a valid function.) This set of

symbols includes EXPR , SUBR , and LSUBR , denoting pr imit ive MacLISP func tions of

those respective types; BETA, denoting a SCHEIIE function whose code is

interpretive ; DELTA , denoting an escape function created by the interpreter for

a CATCH form, or a continuation given by the interpreter to compiled code ;

CBETA , deno ti n g a SCHEME func tion or cont inuat ion whose code is compi led; and

EPSILON , denoting a continuation created when compiled code invokes interpreted

code . Each of these function types requires a different invocation convention ;

the interpreter must distinguish these types and invoke them in the appropriate

manner. For example , to invoke an EXPR the MacLISP FUNCALL construct must be

used. A BETA must be invoked by creating an appropriate environment , us ing the

given arguments , and then in ter pret ing the code of the funct ion.

We have arbitrarily defined the CBETA interface as follows: there are a

number of “registers ” , in the form of global variables. Nine registers called

‘.
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**CONT**, **ONE**, **TWO**, ,.., **EIGHT** are used to pass arguments to compiled

func t ions .  **CONT** contains the continuation . The others contain the arguments

prescribed by the user; if there are more than eight arguments , however , then

they are passed as a list of all the ar gumen t s in register **ONE**, and the

others are unused . (Any of a large variety of other conventions could have been

chosen , such as the first seven arguments in seven registers and a list of all

remaining arguments in **EIGHT** . We merely chose a convention which would be

workable and convenien t , ref lec t the typical finiteness of hardware register

sets, and mirror familiar LISP conventions. The use of a list of arguments is

analogous to the passing of an arbitrary number of arguments on a stack,

sometimes known as the LSUBR convention . [Moon] [Declarative])

There is another re g ister cal led **flJN** . A function is invoked by

putting the functional object in **F(JN**, its arguments in the registers already

described , and the number of arguments in the register **NARGS**, and then

exiting the current function . Control (at the MacLISP level) is then transferred

to a routine (the “SCHEME IJUO handler”) which determines the type of the function

j
~ **flJN** and inv okes it.

A continuation is invoked in exactly the same manner as any other kind of

func tion , with two exceptions: a continuation does not itself require a

continuation , so **CONT** need not be set up; and a continuation always takes a

single argument , so **NARGS** need not be set to 1. (Note Multiple-

Argumen t Con t inua t ions)

A CBETA form has additional fixed structure . Besides the atomic symbol

CBETA in the car , there is always in the cadr the address of the code, and in the

cddr the environment. The form of the environment is completely arbitrary as far

as the SCHEME in t er preter is concern ed; indeed , the CHEAPY compiler and the

RABBIT compiler use completely different formats for environments for compiled

- -~~~~
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function . (Recall that this cannot matter since the only code which will ever be

able to access that environment is the code belonging the the functional closure

of which that environment is a part.) The “UUO handler” puts the cddr of **FUN**

in the register **EpJV**, and then transfers to the address in the cadr of

**FUN** . When that code eventually exits , control returns to the “UUO handler ”,

which expects the code to have set up **FUN** and any necessary arguments.

There is a set of “memory locations” -11- , -12-, ... which are used to

hold intermediate quantities within a single user function . (Later we shall see

that we think of these as being used to pass values between internally generated

functions within a module. For this purpose we think of the “registers” and

“memory locations ” being arranged in a single sequence **CONT**, **ONE**,

**EIGHT**, -11- , -12- , ... There is in principle an unbounded number of these

“memory loca tions ”, but RABBIT can determine
’ (and in fact outputs as a

declaration for the MacLISP compiler) the exact set of such locations used by any

given function.) One may think of the “memory locations” as being local to each

module , since they are never used to pass information between modules; in

practice they are imp lemented as global MacLISP variables.

The registers **FUN** , **NMGS**, **ENV**, and the argument registers are

the only global registers used by compiled SCHEME code (other than the “memory

locations”). Except for global variables explicitly mentioned by the user

program , all comun ication between compi led SCHEME funct ions is throu gh these

registers. It is usefu l to note that the continuation in **CONT** is generally

analo gous to the usual “ con t rol stack” which contains return addresses, and so we

may think of **CONT** as our “stack pointer register”.
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5. Language Design Considerations

SCHEME is a lexically scoped (“full-funarg ”) dialect of LISP, and so is

an applicative language which conforms to the spirit of the lambda-calculus.

[Church] We divide the definition of the SCHEME language into two parts: the

environment and control constructs, and the data manipulation primitives.

Examples of the former are LAMBDA-expressions, combinations, and IF; examples of

the latter are CONS, CAR , EQ, and PLUS. Note that we can conceive of a version

of SCHEME which did not have CONS, for example, and more generally did not have

S-expressions in its data domain . Such a version would still have the same

environment and control constructs, and so would hold the same theoretical

interest for our purposes here . (Such a version, however, would be less

convenient for purposes of writing a meta-circular description of the language,

however!)

By the “spirit of lambda-calculus” we mean the essential propert4es of

the axioms obeyed by lambda-calculus expressions. Among these are the rules of

alpha-conversion and beta-conversion. The first intuitively implies that we can

un iformly rename a function parameter and all references to it without altering

the meaning of the function . An important corollary to this is that we can in

fact effectively locate all the references. The second implies that in a

situation where a known function is being called with known argument expressions,

we may substitute an argument expression for a parameter reference within the

body of the func tion ( prov ided no nam ing conflicts result, and that certain

restrictions involving side effects are met). Both of these operations are of

importance to an optimizing compiler. Another property which follows indirectly

is that of tail-recursion. This property is exploited in expressing iteration in

terms of applicative constructs, and is discussed in some detail in
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[Declarative].

We realize that other systems of environment and control constructs also

are reasonably concise , clear, and elegant, and can be axiomatized in useful

ways, for example the guarded commands of Dijkstra. (Djjkstra] However, that of

lambda-calculus is extremely well-understood, lends itself well to certain kinds

of optimi za tions in a natural manner , and has beh ind it a body of literature

whi ch can be used directly by RABBIT to express non-primitive constructs.

The desire for uniform lexical scoping arises from other motives as well,

some pragmatic , some philosophical. Many of these are described in [SCHEME],

[Imperative), [Declarative), and (Revised Report]. It is often difficult to

explain some of these to those who are used to dynamically scoped LISP systems.

Any one advantage of lexical scoping may often be countered with “Yes, but you

can do that in this other way in a dynamically scoped LISP.” However, we are

convinced that lexical scoping in its totality provides all of the advantages to

be described in a natural , elegant, and integrated manner , lar gely as a

consequence of its ‘reat simplicity.

There are those to whom lexical scoping is nothing new , for example the

ALGOL comunity . For this audience , however, we should draw attent ion to another

important feature of SCHEME, which is that functions are first-class data

objects. They may be assigned or bound to variables, returned as values of other

functions , placed in arrays , and in general treated as any other data obj ect.

Just as numbers have certain operations defined on them, such as addition , so

functions have an important operation defined on them, namely invocation .

The ability to treat functions as objects is not at all the same as the

ability to treat representations of functions as objects. It is the latter

ability that is traditionally associated with LISP; functions can be represented

as S-expressions. In a version of SCHEME which had no S-expression primitives,
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however , one could still deal with functions (i.e. closures) as such, for that

ability is part of the fundamental environment and control facilities.

Conversely, in a SCHEME which does have CONS, CAR, and CDR, there is no defined

way to use CONS by itself to construct a function (although a primitive ENCLOSE

is now provided which converts an S-expression representation of a function into

a function), and the CAR or CDR of a function is in general undefined. The omly

defined operation on a function is invocation. (Note Operations on Functions)

We draw this sharp distinction between environment and control constructs

on the one hand and data manipulation primitives on the other because only the

former are treated in any depth by RABBIT, whereas much of the knowledge of a

“real” compiler deals with the latter.  A P1/I compiler must have much specific

knowle dge about num bers , arrays , str ings, and so on. We have no new ideas to

presen t here on such issues, and so have avoided this entire area. RABBIT itself

knows almost nothing about data manipulation primitives beyond being able to

recognize them and pass them along to the output code, which is a small subset of

MacLISP . In this way RABBIT can concentrate on the interesting issues of

env ironment an d control , and exploit the expert knowledge of data manipulation

primitives already built into the MacLISP compiler.
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6. The Use of Macros

An important characteristic of the SCHEME language is that its set of

primitive constructs is quite small. This set is not always convenient for

expressing programs , however, and so a macro facility is provided for extending

the expressive power of the language . A macro is best thought of as a syntax

rewrite rule. As a simple example , suppose we have a primitive GCD which takes

only two arguments, and we wish to be able to write an invocation of a GCD

function with any number of arguments. We might then define (in a “production-

rule” style) the conditional rule:

(XGCD) => 0
(XCiCD x) =) x
(XGCD x . rest) ~> (GCD x (XGCD . rest))

(Notice the use of LISP dots to refer to the rest of a list.) This is not

considered to be a definition of a function XGCD, but a purely syntactic

transformation. In principle all such transformations could be performed bpfore

executing the program . In fact, RABBIT does exactly this, although the SCHEME

interpreter naturally does it incrementally, as each macro call is encountered .

Rather than use a separate production-rule/pattern-matching language, in

practice SCHEME macros are defined as transformation functions from macro-call

expressions to resulting S-expressions, just as they are in MacLISP. (Here,

however , we shall continue to use production rules for purposes of exposition.)

It is important to note that macros need not be written in the language for which

they express rewrite rules; rather , they should be considered an adjunct to the

interpreter , and written in the same language as the interpreter (or the

compiler). To see this more clearly, consider a version of SCHEME which does not

have S-expressions in its data domain. If programs in this language are
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represented as S-expressions , then the interpreter for that language cannot be

written in that language , but in another meta-language which does deal with 5-

expressions. Macros, which transform one S-expression (representing a macro

call) to another (the replacement form, or the interpretation of the call).

clearly should be expressed in this meta-language also . The fact that in most

LISP systems the language and the meta-language appear to coincide is a source of

both power and confusion .

In the POP-b MacLISP implementation of SCHEME, four separate macro

mechanisms are used in practice. One is the MacLISP read-macro mechanism (Moon],

wh ich per for ms transforma tions such as ‘FOO ~> (QUOTE FOO) when an expression is

read from a file. The other three are as described earlier, processed by the

interpreter or compiler, and differ only in that one kind is recognized by the

MacLISP interpreter as well while the other two are used only by SCHEME, and that

of the latter two one kind is written in MacLISP and the other kind in SCHEME

itself.

There is a growing library of SCHEME macros which express a variety of

traditional programming constructs in terms of other, more primitive constructs,

and eventually in terms of the small set of primitives. A number of these are

catalogued in [Imperative] and [Revised Report]. Others were invented in the

course of writing RABBIT. We shall give some examples here.

The BLOCK macro is similar to the MacLISP PROGN ; it evaluates all its

arguments and returns the value of the last one. One critical characteristic is

that the last argument is evaluated “tail-recursively” (I use horror quotes

because normally we speak of invocation, not evaluation, as being tail—

recursive). An expansion rule is given for this in [Imperative] equivalent to:

(BLOCK x) => x
(BLOCK x . rest) ~> ((LAMBDA (DUMMY) (BLOCK . rest)) x)
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This definition exploits the fact that SCHEME is evaluated in applicative order,

and so will evaluate all arguments before applying a function to them. Thus, in

the second subrule, x must be evaluated , and then the block of all the rest is.

It is then clear from the first subrule that the last argument is evaluated

“tail-recu rsively” .

One problem with this definition is the occurrence of the variable DUMMY ,

wh ich mus t be chosen so as not to confl ict with any variable used by the user.

This we refer to as the “GENSYM problem”, in honor of the traditional LISP

function which creates a “fresh” symbol. It would be nicer to write the macro in

such a way that no conflict could arise no matter what names were used by the

user. There is indeed a way, which ALGOL programmers will recognize as

equkvalent to the use of “thunks ”, or call-by-name parameters:

(BLOCK x) => x
( BLOCK x . rest) => ((LAMBDA (A B) (B) )

x
( LAMBDA () ( BLOCK . rest))-)

Consider carefully the meaning of the right-hand side of the second subrule.

First the expression x and the ( LAM BDA () ...) must be evaluated (it doesn ’t

matter in which order!) ;  the result of the latter is a function (that is, a

closure), which is later invoked in order to evaluate the rest of the arguments.

There can be no naming conflicts here , because the scope of the variabl es A an d B

(which is lexical) does not contain any of the arguments to BLOCK written by the

user. (We should note that we have been sloppy in speaking of the “arguments” to

BLOCK, when BLOCK is properly speaking not a function at all, but merely a

syntactic keyword used to recognize a situation where a syntactic rewriting rule

is applicable. We would do better to speak of “argument expressions” or “macro
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arg uments ” , but we shall continue to be sloppy where no confusion should arise.)

This is a technique which should be understood quite thoroughly, since it

is the key to writing correct macro rules without any possibility of conflicts

between names used by the user and those needed by the macro . As another

example , let us consider the AND and OR constructs as used by most LISP systems.

OR evaluates its arguments one by one, in order, returning the first non-NIL

value obtained (without evaluating any of the following arguments), or NIL if all

arguments produce NIL. AND is the dual to this; it returns NIL if any argument

does, and otherwise the value of the last argument. A simple-minded approach to

OR would be:

(OR) => ‘NIL
(OR x . rest) => (IF x x (OR . rest))

There is an objection to this , which is that the code for x is duplicated . Not

only does this consume extra space, but it can execute erroneously if x has any

side-effects. We must arrange to evaluate x only once, and then test its value:

(OR) => ‘NiL
(OR x . rest) ~) ((LAMBDA (V) (IF V V (OR . rest))) x)

This certainly evaluates x only once, but admits a possible naming conflict

between the variable V and any variables used by rest. This is avoided by the

same technique used for BLOCK :

(OR) => ‘NIL
(OR x . rest) ~> (( LAMBDA (V R) (IF V V (R)))

x
(LAMBDA () (OR . rest)))

Similarly, we can express AND as follows:
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(AND) => ‘1
(AND x) ) x
(AND x . rest) > ((LAMBDA (V K) (IF V (R) ‘NIL))

x
(LAMBDA ( )  (AND . rest)))

(The macro rules are not precise duals because of the non-duality between NIL—

ness and non-NIL-ness , and the requirement that a successful AND return the

actual value of the last argument and not just 1.) (Note Tail-Recursive OR)

As yet’ ano ther example , consider a modification to BLOCK to allow a

limited form of assignment statement: if (v :~ x) appears as a statement in a

block , it “assigns” a value to the variable v whose scope is the remainder of the

block . Let us assume that such a statement cannot occur as the last statement of

a block (it would be useless to have one in that position, as the variable would

have a null scope). We can write the rule:

( BLOCK x) ) x
(BLOCK (v : x) . rest) :> ((LAMBDA (v) (BLOCK . rest)) x)
( BLOCK x . rest) ~> ((LAMBDA (A B) (B))

x
(LAMBDA () (BLOCK . rest)))

The second subrule states that an “assignment” causes x to be evaluated and then

bound to v , and that the variable v is visible to the rest of the block .

We may think of := as a “sub-macro keyword” which is used to mark an

expression as suitable for transformation , but only in the context of a certain

larger transformation . This idea is easily extended to allow other

constructions , such as “simultaneous assignments” of the form

((var! var2 ... yarn ) :~ value! value2 ... valuen)
which first compute all the values and then assign to all the variables, and

“exchange assignments” of the form (X :~: Y), as follows:
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( BLOCK x) => x
( BLOCK (v := x) . rest)

~> ((LAMBDA (v) (BLOCK . rest)) x)
(BLOCK (vars := . values) . rest)

=> ((LAMBDA vars (BLOCK . rest)) . values)
(BLOCK (x := :  y) . rest)

=> ((LAMBDA (x y) (BLOCK . rest)) y x)
(BLOCK x . . rest) :> ((LAMBDA (A B) (B))

x
( LAMBDA () (BLOCK . rest)))

Let us now consider a rule for the more complicated CJND construct:

(COND) => ‘NIL
(COND (x) . rest) => (OR x ( COND . rest))
(COND (x . r) . rest) => (IF x (BLOCK . r) (COND . rest))

This defines the “extended” COND of modern LISP systems, which produces NIL if no

clauses succeed, which returns the value of the predicate in the case of a

singleton clause , and which allows more than one consequent in a clause. An

important point here is that one can write these rules in terms of other macro

constructs such as OR and BLOCK ; moreover, any extensions to BLOCK, such as the

limited assignment feature descriL~ed above, are auto.aticall~ inherited by COND.

Thus with the above definition one could write

( COND ( ( N U M B E R P  X )  (Y  :~ (SQRT X)) (i Y (SQRT Y ) ) )
(T ( HACK X ) ) )

where the scope of the variable Y is the remainder of the first COND clause.

SCHEME also provides macros for such constructs as DO and PROG, all of

which expand into similar kinds of code using LAMBDA, IF, and LABELS (see below).

In particular , PROG permits the use of GO and RETURN in the usual manner. In

this manner all the traditional imperative constructs are expressed in an

applicative manner. (Note ASET’ Is Imperative)

None of this is particularly new; theoreticians have modelled imperative

—gJ
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constructs in these terms for years. What is new, we think, is the serious

proposal that a practical interpreter and compiler can be designed for a language

in which such models serve as the sole definitions of these imperative

constructs. (Note Dijkstra ’s Opinion) This approach has both advantages and

disadvantages.

One advantage is that the base language is small. A simple-minded

interpreter or compiler can be written in a few hours. (We have re-implemented

the SCHEME interpreter from scratch a dozen times or more to test various

representation strategies; this was practical only because of the small size of

the language . Similarly, the CHEAPY compiler is fewer than ten pages of code,

and could be rewritten in a day or less.) Once the basic interpreter is written ,

the macro definitions for all the complex constr.ucts can be used without

revision . Moreover, the same macro definitions can be used by both interpreter

and compiler (or by several versions of interpreter and compiler!). Excepting

the very few primitives such as LAMBDA and IF, it is not necessary to “implement

a construct twice”, once each in interpreter and compiler.

Another advantage is that new macros are very easy to write (using

facilities provided in SCHEME). One can easily invent a new kind of DO loop, for

example , and imp lement it in SCHEME for both interpreter and all compilers in

less than five minutes . ( In  practice such new control constructs, such as the

ITERATE loop described in (Revised Report], are indeed installed within five to

ten minutes of conception , in a routine manner.)

A third advantage is that the attention of the compAler can be focused on

the basic constructs. Rather than having specialized code for two dozen

different constructs , the compiler can have much deeper knowledge about each of a

few basic constructs. One might object that this “deeper knowledge” consists of

recognizing the two dozen special cases represented by the separate constructs of
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the former case . This is true to some extent. It is also true, however, that in

the latter case such deep knowledge will carry over to any new constructs which

are invented and represented as macros.

Among the disadvantages of the macro approach are lack of speed and the

discarding of information . Many people have objected that macros are of

necessity slower than , say, the FSUBR implementation used by most LISP systems.

This is true in many current interpretive implementations, but need not be true

of compilers or more cleverly designed interpreters. Moreover, the FSUBR

implementation is not general; it is very hard for a user to write a meaningful

FSUBR and then describe to the compiler the best way to compile it. The macro

approach handles this difficulty automatically. We do not object to the use of

the FSIJBR mechanism as a special-case “speed hack” to improve the performance of

an interpreter , but we insist on recognizing the fact that it is not as generally

useful as the macro approach .

Another objection relating to speed is that the macros produce convoluted

code involving the temporary creation and subsequent invocation of many closures.

We feel , first of all, that the macro writer should concern himself more with

producing correct code than fast code. Furthermore, convolutedness can be

eliminated by a few simple optimization techniques in the compiler, to be

discussed below. Finally, function calls need not be as expensive as is

popularly supposed. [Steele]

Information is discarded by macros in the situation, for example, where a

DO macro expands into a large mess that is not obviously a simple loop; later

compiler analysis must recover this information. This is indeed a problem . We

feel that the compiler is probably better off having to recover the information

anyway, since a deep analysis allows it to catch other loops which the user did

not use DO to express for one reason or another. Another is the possibility that
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DO could leave clues around in the form of declarations if desired .

Another difficulty with the discarding of information is the issuing of

meaningful diagnostic messages. The user would prefer to see diagnostics mention

the originally-written source constructs, rather than the constructs into which

the macros expanded. (An example of this problem from another LISP compiler is

that it may convert (MEPIQ X ‘(A B C)) into (OR (EQ X ‘A) (EQ X ‘B) (EQ X ‘C));

when by the same rule it converts (PIEPIQ X ‘(A)) (a piece of code generated by a

macro) into (OR (EQ X ‘A)), it later issues a warning that an OR had only one

subform.) This problem can be partially circumvented if the responsibility for

syntax-checking is placed on the macro definition at each level of expansion .
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7. The Imperative Treatment of Applicative Constructs

Given the characteristics of lexical scoping and tail-recursive

invocations , it is possible to assign a peculiarly imperative interpretation to

the applicative constructs of SCHEME , which consists primarily of treating a

function call as a 6010. More generally, a function call is a 6010 that can pass

one or more items to its target; the special case of passing no arguments is

precisely a 6010. It is never necessary for a function call to save a return

address of any kind. It is true that return addresses are generated , but we

adopt one of two other points of view , depending on context . One is that the

return address , plus any other data needed to carry on the computation after the

called func tion has returned ( such as previously computed intermediate values and

other return addresses) are considered to be packaged up into an additional

argument (the continuation) which is passed to the target. This lends itself to

a non-functional interpretation of LAMBDA , and a method of expressing programs

called the continuation-passing style (similar to the message-passing actors

paradigm [Hewitt]), to be di scussed further below . The other view, more

intuitive in terms of the traditional stack implementation , is that the return

address sho u ld be pu shed before evaluat ing arguments ra ther than before call ing a

function . This view leads to a more uniform function-calling discipline , and is

discussed in [Declarative] and [Steele].

We are led by these points of view to consider a compilation strategy in

which function calling is to be considered very cheap (unlike the situation with

PLII and ALGOL , where programers avoid procedure calls like the plague -- see

[Steele]  for a discussion of this). In this light the code produced by the

sample macros above does not seen inefficient, or even particular ly convoluted.

Consider the expansion of (OR a b c):
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(( LAMBDA (V R) ( IF  V V ( R ) ) )
a
(LAMBDA ( )  ((LAMBDA (V R) (IF V V (K)))

b
(LAMBDA ( )  ((LAMBDA (V R) ( IF  V V ( K ) ) )

c
(LAMBDA () ‘NIL))))))

Then we might imagine the following (slightly contrived) compilation scenario.

First , for expository purposes, we shall rename the variables in order to be able

to distinguish them.

( ( LAMBDA (V i R i ) ( I F  V i V i’ (R i ) ) )
a
(LAMBDA ( )  ((LAMBDA (V2 R2) (IF V2 V2 (R2)))

b
(LAMBDA ( )  ((LAMBDA (V3 R3) (IF V3 V3 (R3)))

C
( LAMBDA () ‘ N I L ) ) ) ) ) )

We shall assign a generated name to each LAMBDA-expression , which we shall notate

by writing the name after the word LAMBDA. These names will be used as tags in

the output code.

((LAMBDA name! (Vi Ri) (IF Vi Vi (Ri)))
a
( LAMBDA name2 ( )  ((LAMBDA name3 (V2 R2) (IF V2 V2 (RZ)))

b
(LAMBDA name4 ( )  ((LAMBDA name5 (V3 R3)

(IF V3 V3 (R3)))
C
(LAMBDA name6 () ‘ N I L ) ) ) ) ) )

Next , a simple analysis shows that the variables Ri , R2, and R3 always denote the

LAMBDA-expressions named nameZ, name4, and name6, respectively. Now an optimizer

migh t simply have substituted these values into the bodies of namel , name3, and

name5 using the rule of beta-conversion , but we shall not apply that technique

here. Instead we shall compile the six functions in a straightforward manner.

We make use of the additional fact that all six functions are closed in identical
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environments (we count two environments as identical if they involve the same

variable bindings, regardless of the number of “frames” involved; that is, the

environment is the same inside and outside a (LAMBDA () ...)). Assume a simple

target machine with argument registers called regi, reg2, etc.

main: <code for a> ;result in regi
LOAD regz,[namez] ;(namez] is the closure for nameZ
CALL-FUNCTION 2,[namei] ;call name! with 2 arguments

name!: JUMP-IF-NIL regi ,nameia
RETURN ;return the value in regi

namela: CALL-FUNCTION O ,regz ;call function in reg2, 0 arguments

name2: <code for b> ;result in regi
LOAD reg2,[name4] ;[name4] is the closure for name4
CALL-FUNCTION 2,[name3] ;call naae3 with 2 arguments

name3: JUMP-IF-NIL regi ,name3a
RETURN ;return the value in regi

name3a: CALL-FUNCTION O,reg2 ;call function in reg2, 0 arguments

name4: (code for C> ;result in regi
LOAD reg2,(name6] ;[name6] is the closure for name6
CALL-FUNCTION Z,[names] ;call name5 with 2 arguments

name5: JUMP-IF-NIL regl ,name5a
RETURN ;return the value in regi

name5a: CALL-FUNCTION O,regz ;call function in reg2, 0 arguments

name6: LOAD regi ,’NI L ;constant NIL in regi
RETURN

Now we make use of our knowledge that certain variables always denote certain

functions , and convert CALL-FUNCTION of a known function to a simple GOTO. (We

have actually done things backwards here; in practice this knowledge is used

before generating any code. We have fudged over this issue here, but will return

to it later. Our purpose here is merely to demonstrate the treatment of function

calls as GOTOs.)

main : <code for a> ;result in regi
LOAD reg2,[name2] ;(name2] is the closure for nanie2
6010 name!
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namel: JUMP-IF-NIL regi ,naaeia
RETURN ;return the value in regi

namela: 6010 name2

name2: <code for b> ;result in regi
LOAD reg2,(name4] ;(naae4] is the closure for name4
6010 name3

name3: JUMP-IF-NIL regi ,name3a
RETURN ;return the value in regi

name3a: 6010 name4

name4: <code for C> ;result in regi
LOAD reg2 ,[name6] ;(nameô] is the closure for naae6
6010 name5

name5: JUMP-IF-NIL reg!,name5a
RETURN ;return the value in regi

naine5a: 6010 name6

nane6: LOAD regl ,’NIL ;constant NIL in regi
RETURN

The construction (foo] indicates the creation of a closure for foo in the current

environment. This will actually require additional instructions, but we shall

ignore the mechanics of this for now since analysis will remove the need for the

cons truc tion in this case. The fact that the ~~~ references to the variables

RI, R2, and R3 are function cal~~ can be detected and the unnecessary LOAD

instructions eliminated . (Once again, this would actually be determined ahead of

time , and no LOAD instructions would be generated in the first place. All of

this is determined by a general pre-analysis, rather than a peephole post-pass.)

Moreover , a 6010 to a tag which iranediately follows the 6010 can be eliminated .
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main : (code for a> ;result in regi
namel: JUMP-IF-NIL regl ,nameia

RETURN ;return the value in regi
namela:
name2: (code for b> ;result in regi
name3: JUMP-IF-NIL regl ,name3a

RETURN ;return the value in regi
name3a :
name4 : (code for c> ;result in regl
name5: JUMP-IF-NIL regi ,name5a

RETURN ;return the value in regi
name5a :
name6: LOAD reg!,’NIL ;constant NIL in regi

RETURN

This code is in fact about what one would expect out of an ordinary LISP

compiler. (There is admittedly room for a little more improvement.) RABBIT

indeed produces code of essentially this for., by the method of analysis outlined

here.

Sipiilar considerations hold for the BLOCK macro. COnsider the expression

(BLOCK a b c); conceptually this should perform a, b, and c sequentially. Let

us examine the code produced :

((LA M BDA (A B) ( B ) )
a
( LAMBDA ()  ((LAMBDA (A B) (B))

b
( LAMBDA () c))))

Renaming the variables and assigning names to LAMBDA-expressions:

((LAMBDA namel (Al 81) (6!))
a
(LAMBDA name2 ()  ((LAMBDA name3 (AZ B2) (82))

b
( LAMBDA name4 ( )  c))))

Producing code for the functions:
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main: <code for a>
LOAD reg2,(nameZ]
CALL-FUNCTION 2,[naael]

name!: CALL-FUNCTION 0,reg2

name2: <code for b>
LOAD reg2,[name4]
CALL-FUNCTION 2,[naae3]

name3: CALL-FUNCTION O ,reg2

name4: <code for c>
RETURN

Turning general function calls into direct GO’s, on the basis of analysis of what

variables must refer to constant functions:

main: <code for a>
LOAD regz,[namez]
6010 name!

namel: 6010 name2

name2: <code for b>
LOAD regz,(name4]
6010 name3

name3: GOTO name4

name4: <code for c>
RETURN

Eliminating useless 6010 and LOAD instructions:

main : <code for a>
name 1:
name2: <code for b>
name3:
name4: <code for c>

RETURN

What more could one ask for?

Notice that this has fallen out of a general strategy involving only an

approach to compiling function calls, and has involved no special knowledge of OR
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or BLOCK not encoded in the macro rules . The cases shown so far are actually

special cases. of a more general approach , special in that all the conceptual

closures involve d are closed in the same env ironment , and called from places that

have not disturbed that environment , but only used “registers”. In the more

general case , the environments of caller and called function will be different.

This divides into two subcases, correspondihg to whether the closure was created

by a simple LAMBDA or by a LABELS construction. The latter involves circular

references , and so is somewhat more complicated ; but it is easy to show that in

the former case the environment of the caller must be that of the (known) called

function , possibly with additional values added on. This is a consequence of

lexical scoping. As a result, the function call can be compiled as a 6010

preceded by an environment adjustment which consists merely of lopping off some

leading portion of the current one (intuitively, one simply “pops the unnecessary

crud off the stack”). LABELS-closed functions also can be treated in this way,

if one closes all the functions in the same way (which RABBIT presently does, but

this is not always desirable). If one does, then it is easy to see the effect of

expanding a PROG into a giant LABELS as outlined in (Imperative] and elsewhere:

normally, a 6010 to a tag at the same level of PROG will involve no adjustment of

environment , and so compile into a simple 6010 instruction, whereas a 6010 to a

tag at an outer level of PROG probably will involve adjusting the environment

from that of the inner PROG to that of the outer. All of this falls out of the

proper imperative treatment of function calls.
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8. Compilation Strategy

The overall approach RABBIT takes to the compilation of SCHEME code may

be sununarized as follows:

(1) Alpha-conversion (renaming of variables) and macro-expansion

(expansion of syntactic rewrite rules).

(2) Preliminary analysis (variable references, “trivial” expressions, and

side effects).

(3) Optimization (neta-evaluation).

(4) Conversion to continuation-passing style.

(5) Environment and closure analysis.

(6) Code generation .

During (1) a data structure is built which is structurally a copy of the user

program but in which all variables have been renamed and in which at each “node”

of the program tree are additional slots for extra information . These slots are

filled in during (2). In (3) the topology of the structure may be modified to

reflect transformations made to the program; routines from (2) may be called to

update the information slots. In (4) a new data structure is contructed from the

old one , radically different in structure, but nevertheless also tree-like in

form . During (5) information is added to slots in the second structure. In (6)

this information is used to produce the final code.
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A. Alpha-conversion and macro-expansion

In this phase a copy of the user program is made. The user program is

conceptually a tree structure ; each node is one of several kinds of construct

(constant , var iable , LAMBDA-expression , IF-expression, combination, etc.). Some

kinds of nodes have subnodes; for example, a LAMBDA-expression node has a

subnode representing the body, and a combination node has a subnode for each

argument. The copying is performed in the obvious way by a recursive tree-walk.

In the process all bound variables are renamed. Each bound variable is assigned

a new generated name at the point of binding, and each node for a reference to a

bound variable contains this generated name, not the original name. From this

point on all variables are dealt with in terms of their new names. (This is

possible because , as a consequence of lexical scoping, we can identify all

references to each bound variable.) These new names are represented as atomic

symbols, and the property lists of these symbols will later be used to store

information about the variables.

As each subform of the user program is examined, a check is made for a

macro call , which is a list whose car is an atomic symbol with one of several

macro-defining properties. When such a call is encountered, the macro call is

expanded , and the tree-walk is resumed on the code returned by the expansion

process.
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B. Preliminary analysis

The preliminary analysis (“phase 1’) is in three passes, each involving a

tree-walk of the node structure, filling in information slots at each node . (Two

passes would have sufficed , but for reasons of clarity and modularity there is

one pass for each type of analysis.)

The first pass (ENV-ANALYZE) analyzes variable references. For each node

we determine the set of all local (bound) variables referenced at or below that

node . For example , for a variable-reference node this set is empty (for a global

variable), or the singleton set of the variable itself (for a local variable);

for a LAMBDA-expression , it is the set for its body minus the variables bound by

that LAMBDA-expression ; for an IF-expression, it is the union of the sets for

the predicate , consequent, and alternative; and so on. We also compute for each

node the set of bound variables which appear in an ASET’ at or below the node.

(This set will be a subset of the first set, but no non-trivial use of this

property is used in this pass.) Finally, for each variable we store several

properties on its property list, including a list of all nodes which reference

the variable (for “reading”) and a list of of all ASET’ nodes which modify the

var iab le . These lists are bu ilt incrementally , with an entry added as each

reference is encountered during the tree walk. (This exemplifies the general

strategy for passing data around; any information which cannot be passed

conveniently up and down the tree, but which must jump laterally between

branches , is accumulated on the property lists of the variables. It may appear

to be “lucky” that all such information has to do with variables, but this is

actually an extremely deep property of our notation . The entire point of using

identifiers is to relate textually separated constructions. We depend on alpha-

conversion to give all variables distinct names (by “names” we really mean
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“compile-time data structures”) so that the information for variables which the

user happened to give the same name will not be confused.)

The second pass (TRIV-ANALYZE) locates “trivial” portions of the program.

(Cf. [Wand and Friedman].) Constants and variables are trivial; an IF—

expressions is trivial iff the predicate, consequent, and alternative are all

trivial; an ASET’ is trivial iff its body is trivial; a combination is trivial

iff the function is either a global variable which is the name of a MacLISP

primitive , or a LAMBDA-expression whose body is trivial, and the arguments are

all trivial. LAMBDA-expressions, LABELS-forms (which contain LAMBDA-

expressions), and CATCH-forms are never trivial. The idea is that a trivial

expression is one that MacLISP could evaluate itself, without benefit of SCHEME

control structures. (No denigration of MacLISP’s ability is intended by this

terminology ’) Note particularly the two special cases of combinations

distinguished here (in which the function position contains either the name of a

MacLISP primitive or a LAMBDA-expression); they are very important, and shall be

referred to respectively as TRIVFN-combinations and LAMBDA-combinations.

The third pass (EFFS-ANALYZE) analyzes the possible side-effects caused

by each node , and the side-effects which could affect it. It actually produces

two sets of analyses, one liberal and one conservative. Where there is any

uncertainty as to what side-effects may be involved, it assumes none in one case

and all possible in the other. The liberal estimation is used only to issue

error messages to the user about possible conflicts which might result as a

consequence of the freedom to evaluate arguments to combinations in amy order.

The user is given the benefit of doubt, and warned only of a provable” conflict.

(Actually, the “proof” is a little sloppy, and can err in both directions, but in

practice it has issued no false alarms and a number of helpful warnings.) The

conservative estimation is used by the optimizer, which will move expressions
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only if it can prove that there will be no conflict.

Side effects are grouped into classes: ASET, RPLACA and RPLACD (which

are considered distinct), FILE (input/output operations), and CONS. These are

not intended to be exhaustive ; there is also an internal notation for “amy side-

effect whatever”. The use of classes enables the analysis to realize, for

example , that RPLACA cannot affect the value of a variable per se. There is a

moderately large body of data in RABBIT about the side-effects of MacLISP

primitive functions . For example, CAR, CDR, CAAR , CADR , and so on are known not

to have side-effects , and to be respectively affected only by RPLACA , RPLA CD,

RPLA CA , RPLACA or RPLACD , and so on. Similarly, RABBIT knows that ASET’ affects

the values of variables , but cannot affect the outcome of a CAR operation . (It

may affect the value of the expression (CAR X), but only because a variable

reference is a subnode of the combination. The effects, or affectability, of a

combination are the union of the effects, or affectibility, of all arguments plus

those of the function.) The CONS side-effect is a special case. This side—

effect cannot affect anything, and two instances of it may be performed in the

“wrong” order, but performing a single instance twice will produce distinct (as

determined by EQ) and therefore incorrect results. In particular, closures of

LAMBDA-expressions involve the CONS side-effect. (The definition of SCHEME says

nothing about whether EQ is a valid operation on closures, but in general it is

not a good idea to produce unnecessary multiple copies.) On the other hand,

LAMBDA-expressions occurring in function position of a LAMBDA-combination do not

incur the CONS side-effect. The CONS side-effect is given special treatment in

the optimizer. (Note Side-Effect Classifications)

. .
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C. Optimization

Once the preliminary analysis is done, the optimization phase performs

certain transformations on the code. The result is an equivalent program which

will (probably) compile into more efficient code. This new program is itself

structurally a valid SCHEME program; that is, all transformations are contained

within the language . The transformations are thus similar to those performed on

macro calls , consisting of a syntactic rewriting of an expression, except that

the situations where such transformations are applicable are more easily

recognized in the case of macro calls. It should be clear that the optimizer and

the macro-functions are conceptually at the same level in that they may be

written in the same meta-language that operates on representations of SCHEME

programs . (Note Non-deterministic Optimization)

The simplest transformation is that a combination whose function position

contains a LAMBDA-expression and which has no arguments can be replaced by the

body of the LAMBDA-expression :

((LAMBDA () body)) ~) body

Another is that, in the case of a LAMBDA-combination, if some parameter of the

LAMBDA-expression is not referenced and the corresponding argument cam be proved

to have no side-effects (with an exception discussed below), then the parameter

and argument can be eliminated:

((LAMBDA (xl x2 x3) body) a! aZ a3)
=> ((LAMBDA (xl x3) body) a! a3)

if x2 is unreferenced in body and aZ has no side-effects

Repeated applications of this rule can lead to the preceding case.

A third rule is that, in a LAMBDA-combination, an argument can be
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substituted for one or more occurrences of a parameter in the body of the LAMBDA—

expression . (This rule is related to the view of LAMBDA as a renaming operator

discussed in [Declarative], and together with the two preceding rules make up the

rule of beta-conversion.) Such a substitution is permissible only if (a) either

the parameter is referred to only once or the argument has no side effects, and

(b) the substjtuti-~n will not alter the order in which expressions are evaluated

in such a way as to allow possible side-effects to produce different results.

Before performing the substitution it is necessary to show that side-effects will

not interfere in this manner. This issue is discussed in (Allen and Cocke],

[Geschk e], and [Wuif], and characterized more accurately in (Standish]. There is

also some difficulty if the parameter appears in an ASET’. Presently RABBIT does

not attempt any form of substitution for such a parameter. (ASET’ is so seldom

used in SCHEME programs that this restriction makes very little difference.)

This third rule creates an exception to the second. If an argument with

a side effect is referred to once, and is substituted for the reference, then the

second rule must be invoked to eliminate the original occurrence of the argument,

so that the side e f f ec t  will not occur twice. This requires a little collusion

between the two rules.

Even if such a substitution is permissible, it is not always desirable;

time/space tradeoffs are involved . The current heuristic is that a substitution

is desirable if (1) the parameter is referred to only once ; or (2) the argument

to be substituted in is a constant or variable ; or (3) the argument is a LAMBDA—

expression whose body is (3a) a constant, or (3b) a variable reference, or ( 3c) a

combination which has no more arguments than the LAMBDA-expression requires and

for which the arguments are all constants or variables. This heuristic was

designed to be as conservative as possible while handling most cases which arise

from typical macro-expansions.
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The case where the expression substituted for a variable is a LAMBDA-

expression constitutes an instance of procedure integration (Allen and Cocke].

The more general kind of procedure integration proposed in (Declarative), which

would involve block compilation of several user functions, and possibly also user

declarations or data type analysis, has not been implemented yet.

It would be possible to substitute a LAMBDA-expression for a variable

reference in the case of a variable bound by a LABELS. This might be useful in

the case of a LABELS produced by a simple-minded PROG macro, which produced a

labe lled func tion fo r each statement of the PROG; in such a case most labelled

functions would be referred to only once. We have not implemented this yet in

RABBIT. (N ote Loop Unroll ing )

Currently there is not any attempt to perform the inverse of beta—

conversion . This process would be that of locating common subexpressions of some

single large expression , making that large expression the body of a LAMBDA-

expression of one parameter, replacing all occurrences of the common

subexpression by a reference to the parameter, and replacing the large expression

by a combination whose function position contained the LAMBDA-expression and

whose argument was a copy of the common subexpression. More generally, several

common subexpressions could be isolated at once and made into several parameters

of the LAMBDA-expression . For example, consider:

( LAMBDA (A B C)
(LIST (1 (4 (- B) (SQRT (- (

~ 
B 2) (* 4 A C))))

(C 2 A))
(I (- (- B) (SQRT (- (A B 2) (a 4 A C))))

(C 2 A))))

Within the large expression (LIST ...) we might detect the common subexpressions

C- B), (SQRT ...), and (A  2 A). Thus we would invent three parameters Qi, Q2, Q3

and transform the expression into:
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( LAMBDA (A B C)
((LAMBDA (Qi Q2 Q3)

(LIST (I (+ Qi Q2) Q3)
(I C- Ql QZ) Q3) ) )

(- B)
(SQRT (

~~ 
(A  B 2) (* 4 A C)))

(a  2 A ) ) )

(There would be no problem of conflicting names as there is for macro rules,

because we are operating on code for which all variables have already been

renamed; Qi , Q2, and Q3 can be chosen as the next variables in the renaming

sequence.)

This approach doesn ’t always work if side-effects are present; the

abstracted (!) common subexpression may be evaluated too soon, or the wrong

number of times. This can be solved by wrapping (LAMBDA () .) around the common

subexpression , and replacing references by a combination instead of a simple

variable reference. For example :

( I F  (HA I RYP X)
(BLOCK (PRINT ‘IHere is some hair:I)

(PRINT X)
(PRINT ‘$End of hair.I))

(BLOCK (PRINT ‘IThis one is bald:l)
(PRINT X)
(PRINT ‘lEnd of baldness.I)))

We could not transform it into this:

((LAMBDA (QI)
( IF  (HAIRYP X)

(BLOCK (PRINT ‘IHere is some hair:I)
QI
(PRINT ‘lEnd of hair.I))

(BLOCK (PRINT ‘Ilh is one is bald:l)
Qi
(PRINT ‘lEnd of baldness.l))))

(PRiNT X))

because x would be printed before the appropriate leading message. Instead, we
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transform it into:

((LA M BDA (Qi )
( IF  (HA IRYP X)

(BLOCK (PRINT ‘tHere is some hair:$)
(Qi)
(PRINT ‘lEnd of hair.l))

(BLOCK (PRINT ‘IThis one is bald:l)
(Qi)
(PRINT ‘lEnd of baldness.I))))

( LAMBDA ( )  (PRINT X))T)

This is similar to the call-by-mane trick used in writing macro rules.

A more general transformation would detect nearly common subexpressions

as follows :

((LA MBDA (Qi)
(IF (HAIRYP X)

(Ql ‘tHere is some hair:l
‘lEnd of hair.I)

(Qi ‘Ilhis one is bald:$
‘$End of baldness.I)))

(LAMBDA (Q2 Q3)
(BLOCK (PRINT Q2) (PRINT X) (PRINT Q3))))

In this way we can express the notion of subroutinization .

(Note Subroutinization)

We point out these possibilities despite the fact that they have not been

implemented in RABBIT because the proble. of ~solating Common subexpressions

seems not to have been expressed in quite this w~y in the literature on

compilation strategies . We might speculate that this is because most compilers

which use complex optimization strategies have been for ALGOL-like languages

which do not treat functions as full-fledged data objects , or even permit the

writing of “anon ymous ” functions in functions calls as LISP does.

RABBIT does perform folding on constan t expressions [Allen and Cocke];

that is, any combination whose function is a side-effect-less MacLISP primitive
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and whose arguments are all constants is replaced by the result of applying the

primitive to the arguments. There is presently no attempt to do the same thing

for side-effect-less SCHEME functions, although this is conceptually no problem.

Finally, there are two transformations on IF expressions. One is simply

that an IF expression with a constant predicate is simplified to its consequent

or alternative (resulting in elimination of dead code). The other was adapted

from [Standish], which does not have this precise transformation listed, but

gives a more general rule. In its original form this transformation is:

( I F  (IF a b c) d e) =) ( IF  a ( IF  b d e) (IF c d e))

One problem with this is that the code for d and e is duplicated. This can be

avoided by the use of LAMBDA-expressions:

((LAMBDA (Qi Q2)
( I F  a

(IF b (Qi) (Q2))
(IF c (Qi)  (Q2 ) ) ) )

( LAMBDA ( )  d)
( LAMBDA ( )  e))

As before , there is no problem of nane conflicts with QI and Q2. While this code

may appear unnecessarily complex, the calls to the functions Qi and QZ will

typically, as shown above, be compiled as simple GOTO’s. As an example, consider

the expression :

( I F  (AND PRED1 PRED2 ) (PRINT ‘WIN) (ERROR ‘LOSE))

Expansion of the AND macro will result in:

(IF ((LAMBDA (V R) (IF V (R) ‘NIL))
PRED1
( LAMBDA ( )  PRED2))

(PRINT ‘WIN)
( ERROR ‘LOSE))
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(For expository clarity we will not bother to rename all the variables, inasmuch

as they are already distinct.) Because V and R have only one reference apiece

(and there are no possible interfering side-effects), the corres ponding arguments

can be substituted for them.

(IF ((LAMBDA (V R) (IF PRED! ((LAMBDA () PRED2)) ‘NIL))
PRED!
(LAMBDA ( )  PRED2))
(PRINT ‘WIN)
(ERROR ‘LOSE))

Now, since V and R have no referents at all, they and the corresponding arguments

can be eliminated , since the arguments have no side-effects.

( I F  ((LAMBDA ( )  (IF PREP! ((LAMBDA () PRED2)) ‘NIL)))
(PRINT ‘WIN)
(ERROR ‘LOSE))

Next, the combination ((LAMBDA () ...)) is eliminated in two places:

(IF (IF PRED1 PRED2 ‘NIL)
(PRINT ‘WIN)
(ERROR ‘LOSE))

Now, the transformation on the nested IF’s:

((LAMBDA (Qi Q2)
(IF PRED 1

(IF PRED2 (Qi) (Q2))
(IF ‘NIL. (Qi)  (QZ))) )

( LAMBDA ( )  (PRINT ‘WIN))
(LAMBDA ()  (ERROR ‘LOSE)))

Now one IF has a constant predicate and can be simplified:
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(( LAMBDA ( Qi Q2)
(IF PRED 1

(IF PRED2 (Qi) (Q2))
(Q2)))

( LAMBDA ( )  (PRINT ‘WIN))
(LAMBDA ()  (ERROR ‘LOSE)))

The variable Qi has only one referent, and so we substitute in, eliminate the

variable and argument, and collapse a ((LAMBDA () ..)):

((LAMBDA (Q2)
( IF  PRED1

(IF PRED2 (PRINT ‘WIN) (Q2))
(Q2)))

( LAMBDA ()  ( ERROR ‘LOSE)))

Recalling that (Q2) is, in effect, a 6010 branching to the common piece of code,

and that by virtue of later analysis no actual closure will be created for either

LAMBDA-expression, this result is quite reasonable. (Note Evaluation for

Control)

D. Conversion to Continuation-Passing Style

This phase is the real meat of the compilation process. It is of

interest primarily in that it transforms a program written in SCHEME into an

equivalent program (the continuation-passing-style version, or CPS version ),

written in a language isomorphic to a subset of SCHEME with the property that

interpreting it requires no control stack or other unbounded temporary storage

and no dec isions as to the order of evaluation of (non-trivial) subexpressions.

The importance of these properties cannot be overemphasized. The fact that it is

essentially a subset of SCHEME implies that its semantics are as clean, elegant,

m d  well-understood as those of the original language. It is easy to build an
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in ter pre ter for  th is subse t, given the existence of a SCHEME interpreter , which

can execute the transformed program directly at this level. This cannot be said

for other traditional intermediate compilation forms; building an interpreter

for triples [GriesJ , for example , would be a tremendous undertaking . The

continuation-passing version expresses all temporary intermediate results

explicitly as variables appearing in the program text, and all temporary control

structure in the form of LAMBDA-expressions (that is, closures). It is explicit

in directing the order of operations; there is no non-trivial freedom at any

point in the evaluation process.

As a result , once the CPS version of a program has been generated, the

remainder of the compilation process is fairly easy. There is a reasonably

direct correspondence between constructs in the CPS language and “machine-

language” operations (if one assumes CONS to be a “machine-language ” primitive

for augmenting environment structure, which we do). The later passes are

complicated only by the desire to handle certain special cases in an optimal

manner , most particularly the case of a function call whose function position

contains a variable which can be determined to refer to a known LAMBDA-

expression . This analysis must be done after the CPS conversion because it

applies to continuations as well as LAMBDA-expressions written by the user or

generated by macros.

The CPS language differs from SCHEME in only two respects. First, each

primitive function is different, in that it returns no value; instead, it

accepts an additional argument, the continuation, which must be a “function” of

one argument , and by definition invokes the continuation tail-recursively, giving

it as an argument the computed “va lue” of the primitive function . We extend this

by convention to non-primitive functions , and so all functions are considered to

take a continuation as one of its arguments (by convention the first —- this
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differs from the convention used in the examples in (SCHEME], (Imperative], and

[Declarative]). Continuations , however , do not themselves take continuations as

arguments.

Second , no combination may have a non-trivial argument. In strict

continuation-passing style (as described in note (Evalorder) of [Imperative]),

this implies that no combination can have another combination as an argument, or

an IF-expression with a non-trivial consequent or alternative, etc. We relax

this to allow as arguments any trivial form in the sense described above for the

preliminary triviality analysis. We note that, in principle , trivial expressions

require no unbounded space on the part of the SCHEME interpreter to evaluate, and

that the compiler need not worry about control and environment issues for trivial

expressions. (Trivial expressions do require unbounded space on the part of the

MacLISP run-time system, because the point of the triviality analysis is that

trivial expressions can be handled by MacLISP ! The question of what should be

considered trivial is actually a function of the characteristics of our target

machine. We note that , at the least, variables, constants, and LAMBDA -
I

expressions should be considered trivial. That the preliminary triviality

aflalysis does not consider LAMBDA-expressions trivial is a trick so that all

closures will be processed by the CPS-conversion process, and the fact that we

call it a triviality analysis is a white lie. See, however,

[Wand and Friedman].)

The effect of the restriction on combinations is startling . On the one

hand , they do not so constrain the language as to be useless; on the other hand,

they require a radically different approach to the expression of algorithms. It

is easy to see that no control stack is necessary to evaluate such code, for, as

mentioned in (SCHEME], control stack is used only to keep track of intermediate

values and return addresses, and these arise only in the case of combinations

- - - ------- - --~~~~~
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with non-trivial arguments , and conditionals with non-trivial predicates.

An algorithm for converting SCHEME programs to continuation-passing style

was given in Appendix A of [Declarative]. (Note Old CPS Algorithm) The one used

in RABBIT is almost identical, except that for the convenience of the code-

generation phase a distinction is made between ordinary LAMBDA-expressions and

continuations, and between combinations used to invoke “functions ” and those used

to invoke continuations. These sets can in fact be consistently distinguished ,

and it affords a certain amount of error-checking ; for example , a LAMBDA-

expression should never appear in the “function” position of a continuation-

invoking combination . Another fine point is that ASET’ can never be applied to a

variable bound by a continuation. Except for such differences arising from their

uses , the two sets of constructs are treated more or less identically in later

phases. An additional difference betwem the algorithm in (Declarative] and the

one in RABBIT is that trivial subforms are treated as single nodes in the CPS
- 

version ; these nodes have pointers to the non-CPS versions of the relevant code,

which are largely ignored by later processing until the final code is to be

generated .

It must be emphasized that there is not necessarily a unique CPS version

for a given SCHEME program; there is as much freedom as there is in the original

program to re-order the evaluation of subexpressions. In the course of the

conversion process decisions must be made as to what order to use in evaluating

arguments to combinations. The current decision procedure is fairly simple-

minded , consisting mostly of not making copies of constants and the values of

variables. The point here, as earlier, is not so much that RABBIT has a much

better algorithm than other compilers as that it has a far cleaner way of

expressing the result. (For a complex decision procedure for argument ordering,

see (Wulf].) (Note Non-deterministic CPS Conversion)
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E. Environment and closure analysis

This phase consists of four passes over the CPS version of the program.

As with the earlier preliminary analysis, each pass determines one related set of

information and attaches this information to nodes of the program tree and to

property lists.

The first pass (CENV-ANALYZE) analyzes variable references for the CPS

version in a manner similar to that of the first pass of the preliminary

analysis. The results of this previous analysis are used here in the case of

trivial expressions; with this exception the analysis is redone completely,

because additional variables are introduced by the CPS conversion. (None of

these new var iables can appear in an ASET’, however, and so the analysis of

written variables need not be done over.) In addition, for each variable

reference which does not occur in the function position of a combination, we mark

that variable with a non-nil VARIABLE-REFP propirty, used later to determine

whether closures need to be created for known functions.

The second pass (BIND-ANALYZE) determines for each LAMBDA-expression

whether a closure will be needed for it at run time. There are three

possibilities:

( 1 ) If the func tion denoted by the LAMBDA-expression is bound to some

variable , and that variable is referenced other than in function position,

then the closure is being treated as data, and must be a full (standard CBETA

format) closure. If the function itself occurs in non-function position other

than in a LAMBDA-combination , it must be fully closed.

(2) If the closure is bound to some variable, and that variable is referenced
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only in function position, but some of these references occur within other

partially or fully closed functions, then this function must be partially

closed. By this we mean that the environment for the closure must be “consed

up ” , but no pointer to the code need be added on as for a full closure. This

function will always be called from places that know the name of the function

and so can just perform a GO to the code, but those such places which are

within closures must have a complete copy of the necessary environment.

(3) In other cases (functions bound to variables referenced only in function

position and never within a closed function, or functions occurring in

function position of LAMBDA-combinations), the function need not be closed.

This is because the environment can always be fully recovered from the

environment at the point of call.

In order to determine this information, it is necessary to determine, for

each node, the set of variables referred to from within closed functions at or

below that node. Thus this process and the process of determining which

functions to close are highly interdependent, and so must be accomplished in a

single pass.

The second pass also generates a name for each LAMBDA-expression (to be

used as tags in the output code, as discussed in the examples earlier), and for

non-closed functions determines which variables will be assigned to “registers”

or “memor3 locations”. For these non-closed functions it may dater-mine that

certain variables need not be assigned locations at all (they are never

referenced, or are bound to other non-closed functions -- the latter circumstance
is important when a variable is known to denote a certain function, but the

optimizer was too conservative to perform beta-substitution for fear of

duplicating code and thus wasting space). Finally, for each variable which is

(logically, at run time not necessarily actually) bound to a known function (and
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wh ich never appears in an A SE T ’) , a property KNOWN-FUNCTION is put on its

property list whose value is the node of the CPS version of that function . This

property is used later in generating code for combinations in whose function

positions such variables appear.

The third pass (DEPTH-ANALYZE) examines each LAMBDA-expression and

determines the precise registers or memory locations through which arguments are

to be passed to each. Closed functions take their arguments in the standard

registers described earlier; non-closed functions may take their arguments in

any desired places. (Partially closed functions could also, but there is little

advantage to this.) The allocation strategy in RABBIT for non-closed functions

is presently merely stack-like; the deeper the nesting of a function , the higher

in the ordering of “registers” an d “memory locations” are the locations assigned .

(See e.g. [Johnsson] for a detailed analysis of the register allocation problem.)

The fourth pass (CLOSE-ANALYZE) determines the precise format of the

environment to be constructed for each closure . That is, while the third pass

handles cases for which stack-allocation of environments will suffice, the fourth

pass deals with heap-allocated environment structures. Recall that the format of

an env ironmen t can be completely arbitrary , since the only code wh ich can

possibly refer to an environment is the function for a closure of which the

environment was created. Therefore the compiler which compiles that function has

a free hand in determining the structure of the environment. For the sake of

simplicity, RABBIT chooses to generate code which represents environments s imply

as a list of variable values. Several environment lists may share a common tail.

The environment for a closure need not contain any variables not needed by the

closed function , but it may if this will allow the sharing of a single structure

among several closures. (There is a problem with variables modified by ASET’

which is discussed in the next paragraph.)

- -
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For each LAMBDA-expression which must be closed, three sets of variables

are computed: (1) the variables which will already be in the “consed”

environment structure at the time the closure is to be created; (2) additional

variables which must be added (“consed on”) to the existing structure to create

the closure (because at that point they are spread out in “registers”) (Note

Heap-Allocated Contours); (3) variables which must be added to the environment

immediately after entering the function because they must eventually be added in

for closures later and they are referred to in ASET’ constructs. The third set

arises from a requirement tha t ASET ’ constructs must have a consistent effect,

and confusion can arise if a variable ’s value can be in more than one place. If

the value were allowed to be both in a “register” and in an environment

structure , or in several different environment structures, then altering the

value in one place would not affect the other places. To assure consistency,

this third set is computed, and such variables must at rum time be placed in an

environment structure to be shared by all others which refer to such variables.

For every LABELS statement a set of variables is computed which is the

set of variables to be added to the existing environment on entry to the LABELS

body, in order to share this new structure among all the closures to be created

for the LABELS functions.
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F. Code generation

Given the foregoing analysis, the generation of code is straightforward,

and lar~~ly consists of using the information already gathered to detect special

cases. The special cases of interest relate almost entirely to function calls

and closures (indeed , there is little else in the language for RABBIT’s

purposes!).

RABBIT has prov ision for “block compiling” a number of functions into a

single module. This permits an optimization in which one function can transfer

control directly to another without going through the “UUO handler” . Even if

several user functions are not compiled into a single module, this is still of

advantage , because a single user function can produce a large number of output

func tions , as a consequence of the code-generation techniques.

A module consists of a single MacLISP function whose body is a single

PROG . This PROG has no local variables, but does have a number of tags, one for

each function in the module. On entry to the module, the register **ENV** will

contain the “environment” for the function to be executed. As noted above, the

format of this is arbitrary. For functions compiled by RABBIT, this is a list

whose car is a tag within the PROG and whose cdr is the “real environment” .

(Note Code Pointers) At the beginning of the PROG there is always the code

(GO (PROG2 NIL (CAR **ENV**)
(SETQ **ENV** (CDR **EpJV**))))

the effect of which is to put the “real environment” in **E~V** and then perform

a computed GO to the appropriate tag. (This is the only circumstance in which

the MacLISP PROG2 and computed GO constructs are used by RABBIT-compiled code.

Either could be eliminated at the expense of more bookkeeping, the former by
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using a temporary intermediate variable , the la tter by us ing a giant COND with

non-computed GO statements (which is effectively how the MacLISP compiler

compiles a computed GO anyway). As always, such trivial issues are left to the

MacLISP compiler when they do not bear on the issues of interest in compiling

SCHEME code.) For small functions , of ten the “ma in entry point” is the only

closed func tion , and it would be possible to eliminate the computed GO, but

RABBIT always outputs one, because is is chea p an d prov ides a useful error check .

Once the compu ted GO has been performed , the code follow ing the tag is

responsible for performing its bit of computation and then exiting. It may exit

by setting the **FUN** register to another function, setting up appropriate

argument registers, and then doing (RETURN NIL) to exit the module and enter the

UUO handler; or it may exit by directly transferring control to another function

within the module by performing a GO to the appropriate tag, after setting up the

arguments and **E~jV**. In the lat ter case the arguments may actually be passed

through “memory locations” rather than the standard ‘registers”. (Conceptually,

in this optimized case the environment needed for the function being called is

being passed , not in **ENV**, but spread out in those registers and locations

lower than those being used to pass the arguments.)

Starting with the CPS version of one or more user functions, the

generation of the code for a module proceeds iteratively. Code for each function

is generated in turn, producing one segment of code and a tag; this tag and code

will become part of the body of the module. In processing a function , other

functions may be encountered ; in general, each such function is added to the

list of outstanding functions for the module, and is replaced by code to generate

a closure for that function. When all functions have been processed, the outer

structure of the module is created.

Many situations are treated specially. For example,
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((LAMBDA ...) ...)

does not cause the LAMBDA-expression to be added to the list of outstanding

funct ions; ra ther , a MacLISP PROGN is constructed consisting of the argument

set-u p followed by the code for the body of the LAMBDA-expression. A more subtle

case is

( FOO ( LAMBDA . . .)  . . . )

where FOO is the name of a MacLISP primitive and the LAMBDA-expression is the

continuation . In this case a PROGN is constructed consisting of calling the

MacLISP primitive on the other arguments , putting this value into the appropriate

location, and then executing the body of the LAMBDA-expression . (It should be

noted that all these special cases must be anticipated by the analysis preceding

the code generation phase.)

In the case of ((LAMBDA . . . )  . . . ) ,  we must also handle the argument set-

up a little carefully, because parameters which are never referred to or which

represent known non-closed functions need not actually be passed. However, the

corresponding argument for the first case must nevertheless be evaluated because

it may have a side-effect. A good example is the result of expanding BLOCK

(neglecting the effects of optimization): there is a (continuation-passing

style) combination of the form:

((LAMBDA (C A B) (B C)) cont x (LAMBDA (C) y))

The argument x need not be passed , but presumably has a side effect and so must

be evaluated. The second LAMBDA-expression reed not be closed, and so requires

neither evaluation nor passing. The output code uses ~ PROGN to evaluate the

arguments which are potentially for effect. In this way the end result of a
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BLOCK construct actually turns out to be a MacLISP PROGN. (The routine

LAMBUACATE in the Appendix is responsible for this analysis.)

(No te Evalua tion for Effec t)

Another case of interest is a combination whose function position

contains a variable with a KNOWN-FUNCTION property. The value of this property

is the node for the CPS version of the function, which provides information about

pflç ir’ code generation strategies. We can decide which arguments needn ’t be

passed as for the ((LAMBDA ...) ...) case, and can also arrange to call the

function with a direct (MacLISP) GO to the appropriate tag within the module.

The set-up of the environment depends on whether the function is non-closed or

partially closed; in the latter case the partial closure is the environment, and

in the former the environment can be recovered from the current one (and may even

be the same).

A certain amount of “peephole optimization” [PicKeeman ] is also performed ,

primarily to make it easier for people to inspect the code produced, since the

MacLISP compiler will handle them anyway. Examples of these are avoiding the

generation of SETQ of a variable to the value of that same variable ; reduction

of car-cdr chains to single functions, such as (CAR (CDR (CDR x))) to (CADDR x);

removal of nested PROGN ’s such as

(PROGN a (PROGN b c) d) => (PROGN a b c d)

and the like ; and simplification of nested COPJD’s, such as

( COPJD (a b) (COND (a b)
(1 (COND (c d) => (c d)

...)

One of the effects of this last peephole optimization is that many times, when

the user writes a COND in a piece of SCHEME code, that COPID is expanded into IF
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cons truc ts, and then re-contracted by the peephole optimization into an

equivalent COND! (This fact is of no practical consequence, but looks cute.)
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9. Example: Compilation of Iterative Factorial

Here we shall provide a complete example of the co~pil.tion of a simple

function IFACT (iterative factorial), to show what quantities are computed in the

course of analyzing the code . We shall need some notation for the data

structures involved . Every node of the program is represented by a small data

structure which has a type and several named components. (In the actual

implementation , a node is represented as two such structures; one contains named

components comon to all program nodes, and the other contains components

specific to a given node type. We shall gloss over this detail here.) For

example , a LAMBDA-expression is represented by a structure of type LAMBDA with

components named LJVARS (user variable names), VARS (the alpha-converted names),

BODY (the node representing the body), EN!? (the environment of the node), and so

on. We shall represent a data structure as the name of its type, with the

components written below it and indented , with colons after each component name.

For example:

LAMBDA
UVARS : (A B)
VARS : (VAR-43 VAR-44)
BODY: COMB INAT ION

ARGS: VARIABL E
VAR : F

VARIABLE
VAR : YAR-44

VARIABLE
VAR: VAR-43

Notice that the value of a component may itself be a structure. These structures

are always arranged in a tree, so no notation for cycles will be needed. In the

case where a component contains a list of things, we will write the things as a

LISP list unless the things are structures, in which case we will simply write
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th em in a ver tical stack , as shown in the example above. To conserve space, in

any single diagram we will show only the named components of interest.

Components may seem to appear and then disappear in the series of diagrams, but

in practice they all exist simultaneously.

The source code for our example:

( DEFINE IFACT
( LAMBDA ( N )

(LABELS ((F (LAMBDA (P1 A)
(IF (= M 0) A

(F (— P1 1) (C P1 A))))))
(F N 1))))

The alpha-conversion process copies the program and produces a tree of

structures. All the bound variables are renamed, and VARIABLE no des refer to

these new names. The GLOBALP component in a VARIABLE node is non-NIL iff the

reference is to a global variable. The ENV component is simply am a-list

relating the user names of variables to the new names; this a-list is computed

during the conversion as the new names are created at LAMBDA , LABELS , and CATCH

nodes.

LAMBDA
ENV : ( )
UVARS: (N)
VARS: (VAR-i)
BODY :

LABELS
(NV: ((N VAR-i ))
UFNVAR S : (F)
FNVARS ; (FNVAR-2)
F N D E F S :

LAMBDA
(NV : ((F FNVAR-2) (N VAR-i))
UVARS : (M A)
VARS : (VAR-3 VAR-4)
BODY: IF

(NV: ((A VAR.4) (N VAR-3) (F FNVAR-Z) (N VAR.l))
PRED: COMBINATION

(NV: *** (
~ es bslow)

ARGS : VARIABLE
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(NV: ***
VAR: a

GLOBALP : T
VARIABLE

(NV : ***
VAR: VAR-3
GLOBALP: NIL

CONSTANT
(NV : ***
VALUE: S

CON : VAR IABLE
(NV : ***
VAR: VA~-4
GLOBALP: NIL

ALT: COMBINATION
(NV : ***
ARSS: VARIABLE

(NV: ***
VAR: FNVAI-2
GLOSALP: NIL

COMBINATION
(NV: ***
*RGS: VARIABLE

(NV : e**
VAR: -
GLOBALP: T

VARIABLE
(NV : ***
VAR : VAR-3
GLOBALP: NIL

CONSTANT
(NV : •‘.

VALUE: I
COMBINATION
(NV: *ae
AROS: VARIABLE

(NV : *a*
VAR: •

GLOS*LP: T
VARIABLE

(IV : U.

VAR: VAR-3
GLOSALP: NIL

VAR IASLE
(NV : a**
VAR : VAR -4
6LOSALP: NIL

BODY: COMBINAT ION
(NV: ((F FNVA I-2) (N VAR-i))
ANGS: VARIABLE

(NV : ((F FNVAI-2) (N VAR-i ))
VAR : FNVAR -7
OLOIALP: Nil.
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VARIABLE
[NV: ((F F NVAR-Z ) (N VAR-i))
VAR: VAR- i
6LOBALP: NIL

CONSTANT
[NV : ((F F NVAR .2) (N VAR-i))
VALUE : I

The reader is asked to imagine that the expression

((A VAR - 4) (N VAR -3) (F FNVAR .2) (N VAR -I))

occurs where *** appears in the diagram. It should be clear how the EPIV

components are computed on the basis of variables bound at the LAMBDA and LABELS

nodes. The ENV information propagates down the tree to VARIABLE nodes, where it

is used to supply the correct new name for the one used by the original code.

The first step in the preliminary analysis is the determination of

referenced variables:

LAMBDA
R(FS: ( )
VARS : (VAR -i)
BODY :

LABELS
REES: (VAR-i )
FNVARS : (FNVAR -2 )
F ND (F5:

LAMBDA
R (FS: (FNVAR-2 )
VARS : (VAR -3 VAR- N )
BODY: IF

REFS: (FNVAR .2 VAR- 3 VAR- N )
PRED: COMBINATION

REIS: (VAR- a )
AISS: VARIABLE

R(FS: ( )
VAR: a

GLOIALP: T
VARIABLE

REFS: (VAR-a)
VAR : VAR-3
GLOBALP: NIL

CONSTANT
R (FS: ( )
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VALUE : S
CON : VARIAB LE

R(FS: (VAR.4)
VAR : VAR -N
GLOBALP: NIL

ALT: COMBINATION
REFS: (FNVAR-2 VAR-3 VAR-N)
ARGS : VAR IABLE

R[F5: (FNVAR.2)
VAR: FNVA R- 2
GLOBALP: NIL

COMBINATION
REFS : (VAR-3)
ARGS : VARIA BLE

REFS: ( )
VAR: -

GLOBALP: T
VARI ABLE

REFS: (VAR- a)
VAR: VAR -3
GLOBALP : NIL

CONSTANT
R(FS: ( )
VALUE : 1

COMBINATION
REFS: (VAR-3 VAR -N )
ARSS: VARIABLE

REFS ; ()
VAR: *
GLOBALP : T

VARIABLE
REFS : (VAR-a)
VAR: VAR-3
GLOBALP: NIL

VARIABLE
REFS: (VAR-N)
VAR: VAR.4
GLOBALP : NIL

BODY ; COMBINAT ION
REFS: (FNVAR -2 VAR -i )
ARGS: VA RIABLE

REFS: (FNVAR-2)
VAR : FNVAR -2
GLOBALP: N IL

VARIABLE
REFS : (VAR .i)
VAR : VAR -i
GLOBAIP: NIL

CONSTANT
REPS : ()
VALUE: 1
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The REFS component is a list of all local variables referenced at or below the

node . Notice that, in general , the REFS component of a node is the union

(considering them as sets) of the REFS components of its subnodes. In this way

the information sifts up from the VARIABLE nodes. At a LAMBDA, LABELS, or CATCH,

the variables bound at that node are filtered out of the REFS sifting up. The

REFS for the outer function must always be 
~~~ , a useful error check. In this

example , we see that VAR-i (N) is not referenced by the function FNVAR-2 (F).

This indicates that a closure for this function need not contain the value for

VAR-i in its environment. (We will not actually u~e the information for this

purpose, since later analysis will determine that the function need not have a

closure constructed for it.) Another Component ASETVARS is computed for each

node , which contains the set of variables appearing m a n  ASET’ at or below the

node . We have omitted this information from the diagram since the value is the

empty set in all cases . Certain properties are placed on the property list of

each variable as well , which are not shown here .

The next pass locates trivial subforms:

LAMBD A
T RIVP : NIL
VARS : (VA R-i )
BODY :

LABE L S
TR IVP : NIL
FNVAR S : (FNVAR-2)
FNDEFS:

LAMBDA
TR IVP : NIL
VARS : (VAR-3 VAR-N)
BODY : IF

TRIVP : NIL
PREP: COMBINATION

TRIVP : T
ARGS : VARIABLE

TRIVP : T
VAR: •

GLOBALP: 7
VARIABLE
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TRIVP : T
VAR : VAR-3
GLOBALP: NIL

CONSTANT
TRIVP : T
VALUE : 0

CON : VARIA BLE
TRIVP : T
VAR : VAR-N
GLOBALP: NIL

ALT: COMBINATION
TR IVP : NIL
ARGS: VARIABLE

IRIVP : T
VAR: FNVAR -Z
GLOBALP : NIL

COMBINATION
TRIVP : I
ARGS: VARIABLE

TRIVP : T
VAR: -

GLOBALP: T
VAR IABLE

TRIVP: T
VAR: VAR- 3
GLOBALP: NIL

CONSTANT
TRIVP : T
VALUE : 1

COMBINATION
TRIVP : T
ARGS : VAR IABLE

TRIVP : I
VAR : *
GLOBALP : I

VARIABLE
TRIVP : T
VAR: VAR- 3
GLOBALP : NIL

VARIABLE
TRIVP : I
VAR : VAR .4
GLOBALP : NIL

BODY: COMBINAT ION
TRIV P: N IL
ARGS : VAR IABLE

TRIVP : I
VAR : FNVAR .2
GLOBALP : NIL

VARIABLE
TRIV P : T
VAR : VAR.i
GLOBALP: NIL
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CONSTANT
TRIVP: I
VALUE : 1

Constants and variables are always trivial, and trivial combinations (involving

only MacLISP primitives) are located. As before, in this pass information sifts

up from below. One possibility not yet explored in RABBIT is to isolate entire

SCHEME functions (for example FNVAR-2), determine that it is, as a whole,

tr ivial , compile it as a simple MacLISP SIJBR, and reference it as a primitive.

This wou ld in turn render trivial the combination (F N 1) in the body of the

LABELS, for example.

The analysis of side-effects merely determines that no side-effects are

present , and is uninteresting for our example . The optimization pass finds no

transformations worth making. We will skip over these steps to the conversion to

continuation-passing style. As a simple S-expression, this may be rendered as:

(LAMBDA (CONT-5 VAR-I)
(LABELS ((FNVAR-2

(LAMBDA (CONT-6 VAR-3 VAR-4)
(IF (= VAR-3 0)

(CONT-6 VAR-4)
(FNVAR-2 CONT-6

(- VAR-3 1)
(* VAR-3 VAR-4))))))

(FNVAR-2 CONT-5 VAR-i 1)))

In rendering this as a tree of data structures, we use structures of type CLAPIBDA

instead of LAMBDA , etc., in order to prevent confusion . Trivial forms are

represented by structures of type TRIVIAL with pointers to the data structures

from before. We will not notate such data structures in the following diagrams,

but will simply write an S-expression as a reminder of what the trivial form was.

The types RETURN and CONTINUATION are like CCOPIBINATION and CLAPIBDA, but are

distinguished as discussed above for convenience and for purposes of consistency
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checking -

CLAMBOA
VARS : (CONT-5 VAR- i )
BODY: CIABELS

F NVARS : (FNVAR-2)
FND (F5 : CLA$BDA

VARS: (COlT-B VAR .3 VAR-N )
BODY: CIF

PREP: TRIVIAL
(. VAR -a 0)

CON: RETURN
COlT: CVARIABLE

VAR: COIl-B
VAt : TRIVIAL

VA R.4
ALl: CCOMBINAIION

ANGS: TRIVIAL
F N VAR .2

CVAR IABLE
VAR : cONT-B

TRIVIAL
(- VAR- a 1)

TRIVIAL
(* VAR-a VAR-4)

BODY: CCOMBINAT ION
ARSS : TRIVIAL

FNVAR -2
CVAR IABLE

VAR: CONT-5
TRIVIAL

VAR-i
TRIVIAL

1

The first post-conversion analysis pass computes EPJV and REFS components

as before, this time including the variables introduced to represent

continuations. The ENV in this case is not an a-list, but simply a list of

variables , since no renaming is taking place. The EPIV information sifts down

from above during the tree walk, and on the way back the REFS information sifts

up. For a TRIVIAL node , the REFS information is taken from the pre-conversion

node referenced by the TRIVIAL node; this REFS information i-s shown here as a

reminder. As before , the REFS information for a node is always a subset of the
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ENV information .

CL *18 DA
[NV : ( )
R( F5 :  ( )
VAR S : (CONT-5 VAR -i)
BODY: CLABEL S

(NV: (CONT-5 VAR-i)
RE FS : (CONT-5 VA R -i )
FNVA RS: (FNVAR-2)
FNDE FS: CLAM BDA

[NV : (FN VAR- Z COIfl-5 VAR-i )
REP S: (FNVAR-2)
VARS: (CONT-6 VAR-3 VAR-N)
BODY: CIF

ElY: ***
REFS: (FNVAR-2 CONT-6 VAR-3 VAR-N)
PRED: TRIVIAL

REPS: (VAR-a)
(a VAR-3 0)

CON : RETURN
ElY :
REFS : (CONT- 6 VAR -4)
COlT: CVAR LABLE

(NV:
REFS : (CONI-6)
VAR: COIl-B

VAL : TRIVIAL
REPS: (VAR-N)
VAR-N

ALT: CCOMBINAIION
(NV: ***
REPS: (FNVAR-2 CONT.6 VAR -3 VAR-N)
ARGS: TRIVIAL

REFS: (FNVAR- 2)
FNVAR-2

CVARIABLE
(NV:
R(FS: (COlT-B)
VAR: CONT-6

TRIVIAL
REPS: (VAR-a)
(. VAR -3 1)

TRIVIAL
REPS: (VAR-3 VAR -N )
(a VAR.3 VAR-N)

BODY: CCOMBINAT ION
(NV : (FNVAR-2 COlT-S VAR -I )
REPS: (FNVAR-2 COlT-S VAR-i)
ARGS : TRIVIAL

REPS: (FNYAR-2)
F NVAR -2

- - - - - -r
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CVAR IABLE
(NV: (FNVAR-2 COlT-S VAR-i)
REPS: (CONT-5)
VAR : coNI-s- TRIVIAL
REPS: (VAR-i )
VAR-i

TRIVIAL
REPS: ()
1

The reader is asked to imagine that where *** occurs the expression

( CONT-6 VAR-3 VAR-4 FNVAR-2 CONT-5 VAR- i)

had been written instead. An additional operation performed on this pass is to

flag all variables referenced in other than function position. These include

VAR-i , VAR-3, etc.; but FNVAR-2 is not among them.. •This will be of importance

below.

The next pass determines all variables referenced by closures at or below

each node, and also decides which functions will actually be closed. It is

determined that FNVAR-2 need not be closed, because it is referred to only in

function position (as determined by the previous pass), and is not referred to by

any other closures. As a result , no closures are created at all in this

func tion, and so all the computed sets of variables are empty. This pass also

assigns the name F-7 to the outer function, for use later as a tag.

The third pass computes the ‘depth of each function, which determines

th ~~ ’~~i~$~ what registers or other locations arguments will be passed for each

In th is case the outer CLMBDA is assigned depth 0, and the one

.•‘ WU? is atsign.d depth 2, because it is not closed, and is contained

- . ~~~~~~ • r  2 arguments. In this way registers are allocated in a

.. ~~~~~~~~ .u cI.s.d rwnc%&o.s are of depth 0, and all unclosed

.~ ~, 1.1 af t~. containing func tion and its number
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environments for closed functions. Since there are none in this example, this

analysis is of little interest here.

Finally, we are ready to generate code. Consider the S-expression form:

(LAMBDA (CONT-5 VAR-i)
(LABELS ((FNVAR-2

( LAMBDA (CONT-6 VAR-3 VAR-4)
(IF (~ 

VAR-3 0) -

(CONT-6 VAR-4)
(FNVAR-2 CONT-6

(- VAR-3 1)
(* VAR-3 VAR-4))))))

(FNVAR-2 CONT-5 VAR-i 1)))

The first function encountered is the outer one (named F-i). In analyzing its

body we note the LABELS, and place all the labelled functions (that is, FNVAR-2)

on the queue of functions yet to be processed. We then analyze the body of the

LABELS. This is a combination , and so we analyze each argument , producing code

for each . Each argument must be TRIVIAL, a (C)VARIABLE, or a (C)LAMBDA-

expression . (We shall refer to this set of possibilities as meta-trivial ,

which means what “trivial did in [Imperative].) The variable FNVAR-2 refers to

a known function which is not closed, and so we need not set up **FLJN**. The

others may be referred to as **CONT**, **ONE**, and the constant 1, respectively.

These are to be passed to FNVAR-2 through the registers **TWO**, **THREE** , and

**FOUR** (as determined by the register allocation pass). Thus the code for F—i

looks like this:

F-7 ((LAMBDA (Q-40 Q-41 Q-42)
(SETQ **FOUR** Q-42)
(SETQ **THREE** Q-41)
(SETQ **T?,~o** Q-40))

**CONT** **OPJE** ‘1)
(GO FNVAR-2)

The first form sets up the arguments , using a standard Usimultaneous assignment
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of arguments.

One way to think about this trick is as follows. A closure consists of a

pointer to a piece of code and a set of values determined at the time of closure .

When the closure is invoked , we execute the code , making ava ilable to it ( a )  the

set of values (its environment), and (b) some additional arguments. Slicing

these components a different way, we may think of calling the bare code,

supplying all the values as arguments; we pass the arguments in some registers,

- and the environment values in some other registers. Put yet another way, if we

can determine that every caller of the closed function can reconstruct the

necessary environment at the time of the call (because it will have available the

necessary values anyway), then we can avoid constructing the closure at the point

where the function should be closed, and instead arrange. for each caller to pass

the environment through specified registers . As mentioned earlier, the compiler

has a completely free hand in determining the format of an environment’

As it happens , the function labelled FNVAR-2 does not reference CONT-5 or

VAR-i , and so this argument is of no importance here. It is determined that the

following register assignments will apply:

CONT-5 **CONT** 
-

VAR- i **ONE**
FNVAR-2 <none>
CONT-6 **fl40**
VAR-3 **THREE**
VAR-4 **FOUR**

(Note Continuation Variable Hack ) We will see below that some unnecessary

shuffling of values results ; a more complicated register assignment technique

would be usefu l here . (One was outlined in (Declarative], but it has not been

implemented. See also (Wulf] and [Johnsson].)

The fourth post-conversion analysis pass determines the format of
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construction . The second branches to the code for FNVAR-2. Because a known

function is being called , it is not necessary to set up *ØJARGS**. Because

FNVAR-2 requires no closure , it is not necessary to set up **ENV**.

The next function on the queue to process is FNVAR-2. Its body is an IF

(actually a CIF); this is compiled into a COND containing the code for the

predicate , consequent, and alternative:

(COND (<predicate> <consequent))
(T <alternative)))

The predicate is guaranteed to be ,neta-trjvial. It is, in this example, a

trivial combination ; this is compiled by changing all the variable references

appropriately, producing (= **THREE** 0).

The consequent involves calling an unknown continuation which is in

**T~4O**. The returned value is in **FOIJR**. The code produced is:

(SETQ **FUN** **T140**)
(SETQ **ONE** **FOUR**)
(RETURN NIL)

The (RETURN NIL) exits the module , passing control to the dispatcher in the

SCHEME interpreter , which will arrange to invoke the continuation .

The code for the alternative is similar to that for the body of F—i ,

because we are calling the known function FNVAR-2. The generated code is:

((LAMBDA (Q-43 Q-44)
(SETQ **FOUR** Q-44)
(SETQ **THREE** Q-43))

( -  **flIREE** ‘1)
(* **THREE** **FOIJR**))
(GO FNVAR-2)

The argument set-up ought to involve copying **TWO** into **TWO**, but a peephole

optimization eliminates that SETQ.
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Put t ing  all  this together, the code for FNVAR-2 is:

FNVAR-2 (COND ((= **THREE** ‘0)
(SETQ **Ft%N** **TWO**)
(SETQ **ONE** **FOUR**)
(RETURN NIL))
(1 ((LAMBDA (Q’-43 Q-44)

(SETQ **FOJR** Q-44)
(SETQ **THREE** Q-43))

(- **TI4R~E** ‘1)
(* **THREE** **FOIJR**))
(GO FNVAR-2)))

(We have glossed over the peephole optimizations which eliminate occurrences of

PROGN in such places as COND clauses.)

There are no more functions to be processed, and so we now create the

final module. The final output, with comeents inserted by RABBIT for debugging

purposes , and declarations supplied by RABBIT for the benefit of the IlacLISP

compiler , looks like this:

(PROGN ‘COMPILE
( COMMENT MODULE FOR FUNCTION IFACT)
(DEFUN 1-37 ( )

( PROG ( )
(DECLARE (SPECIAL 7.37))
(GO (PROG 2 NIL (CAR e*(IIVa*) (SETQ *aE~~a* (COR aa(NVaa))))

P-7 (COMMENT (DEPTH a 0) (FNP a NIL) (VARS a (COIl-S N)))
((LAMBDA (Q-N0 Q-Ni Q-N2)

(SETQ *a,OtJRaa Q-42)
(S(TQ *aTHRE(** 0-41)
(S(TQ **TWO* * Q-41))

**CONTaA a*ON (.a ‘1)
(COMMENT (DEPTH • 2) (PIP • $OCLOS () (YARS a (CONT.$ I A)))
(GO FNVAR-2)

F NV AR -2
(COMME NT (DEPTH • 2) (PIP a NOCLOSE) (VANS • (COlT-B I A)))
(colD ( (a  aaIHp((a* 0)

(SETQ **FUN** e*TWO* .)
(SETQ aaON(a* aaFODR .*)
(RETURN NIL))

(T ((LAMBDA (Q-43 Q-NN)
(SETQ a*pO (JR** Q-4N)
(SETG **Tf$RE [** 9-Na))

(- **fl$Q[(ea ‘1)
(a a*THRE (a* **FO (JRu))

-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - --~~~~~ - - 
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(COMMENT (DEPTH • 2) (FNP — NOCLOSE ) (VARS (COlT-B I A )))
(GO FNVAR-2)))))

(SF10 7-37 (GET ‘7-37 ‘SUBR))
(SETQ IFACT (LIST ‘CBETA 7-37 ‘P.7))
(DEPPROP 7-37 IFACT USER-FUNCT ION))

In the interpolated coninents, FNP refers to whether the function being entered or

be ng cal led is closed or not (the possibilities are NIL, NOCLOSE, and EZCLOSE).

The VARS are the passed variables, expressed~ as the names from the original

source code , except for those introduced by the CPS conversion. The form (SETQ

IFACT ...) constructs the closure for the globally defined function IFACT. The

DEFPROP form provides debugging information .

The points of interest in this example are the isolation of trivial

subforms , and the analysis of the function FNVAR-2 which allows it to be called

with GO. Examination of the output code will show that FNVAR-2 is coded as an

iterative loop. While the register allocation leaves something to be desired,

the inner loop does surprisingly little shuffling. (This should be compared with

the code suggested in [Declarative ] for th is function.)

For those who prefer Urealu machine language, we give a plausible

transcription of the MacLISP code into our hypothetical machine language:

IFACT: PUSH CONT ;CONT contains the return address
PUSH ONE
PUSH 1
POP FOUR
POP THREE
POP TWO
GOTO FNVAR2
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FNVAR2: JUMP-IF-ZERO TIIREE,FNV2A
MOVE ONE,FOUR
RETURN (TWO) ;return to address in TWO

FNV2A: MOVE TEMP,THREE ;TEMP is used to evaluate
ADD TEMP ,1 ; trivial forms
PUSH TEMP
MOVE TEMP ,THREE
MUL TEIIP,FOUR
PUSH TEMP
POP FOUR
POP THREE
GOTO FNVAR2

While this is not the world’s most impressively tight code, it again shows the

essential iterative structure of the inner loop. The primary problem is the

absence of analysis of which registers are used when. Leaving aside the question

of allocating registers, one could at least determine when assigning values to

registers for argument set-up can occur sequentially rather than simultaneously .

There are a few other obvious optimizations which have not been

performed, for example the elimination of (GO FNVAR-2) just before the tag FNVAR-

2. Wh ile this would not have been difficult, we knew that the MacLISP compiler

would take care of this for us; since it is not a very interesting issue, we let

it slide.
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iO. Performance Measurements

RABBIT has provision for metering runtime usage, and for controlling

whether certain options in the optimizer are used. The standard test case has

been RABBIT compiling itself (!); by running both interpreted and compiled

version of this task, some comparisons have been made. Two different compiled

versions have also been tested, where the code was produced with or without using

the optimizer.

The overall speed gain of unoptimized compiled code over interpreted code

has been measured to be a factor of 25. The speed gain ratio excluding time for

garbage collection was 17, and the garbage collection time ratio was 34. (The

SCHEME interpreter does a lot of consing. The straight runtime ratio of 17 is

roughly typical for standard LISP compilers on non-numeric code.)

The overall speed ratio of optimized compiled code to unoptimized

compiled code has been measured to be 1.2. The speed ratio excluding garbage

collection was 1.37, and the garbage collection time ratio was 1.07. We conclude

that the amount of consing was reduced very little, despite optimizations which

may eliminate closures, because the phase-Z analysis. of closures eliminated most

consing from that source anyway . Eliminations of register shuffling because of

substitutions of one variable for another were probably more significant.

Combining these figures yields an overall speed ratio for optimized

compiled code over interpreted code of about 30.

Turning now to the analysis of compilation time, as opposed to running

time , we have found that using the optimizer approximately doubles the cost of

compilation . It might be possible to reduce this with a more clever optimizer;

presently RABBIT wastes much time re-doing certain analysis unnecessarily. The

extra time needed by the optimizer excluding garbage collection is only half

H ~~~~~~~~~~~~~~~~~~

• - -
~~~~~~~~~~~~~

- . -
~~~~~~~-
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again the overall compilation time, but ~he garbage collection time triples,

because the optimizer copies and re-copies parts of the program.

There is also one error check which is very expensive; it checks every

argument of a combination against every other argument to check for possible

side-effect conflicts (this is the Uliberalu analysis in EFFS-ANALYZE, and the

testing done by CHECK-COMBINATIOPJ-pEFFS). Use of this error check increased

compilation time by thirty percent.
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Il. Comparison with Other Work

The only other work we know of similar to ours is that in

[Wand and Friedman]. They use a technique from category theory known as

factorization to isolate trivial expressions. As far as they go, their work is

similar to ours ; they have written a compiler for LISP code, producing output

code which uses continuations. However, they indicate that they cannot interface

compiled and interpreted code correctly. Moreover, while they use continuations,

they do not make general use of closures , and in fact there is no clue that

closures are permitted in their source language, or that functions are

permissible as data objects. (In fact , there is evidence to the contrary in

several examples they give involving an expression

(MAPCAR (QUOTE (LAMBDA . ..)) . ..)

These seem to indicate that they have not made the crucial distinction between

treating a function as a data object and treating a representation of a function

as data.) Wand and Friedman do realize the importance of tail-recursion , but

fail to mention the necessity for lexical scoping (perhaps taking it for

granted). We feel that the contributions of category theory may provide

interesting new ways to analyze programs, but also feel that Wand and Friedman

have not , in the work cited , explored it thoroughly, since they have not even

explored the issue of closures as such .

Somewhat more distantly related is the work of Carter and others at the

IBM T.J. Watson Research Lab. [Carter] This work is similar in spirit, in that

it uses “macro definitions” of complex operators, which are integrated into the

program being compiled , followed by source-to-source program transformations

which optimize the resulting code. However, they have primarily worked with
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definitions of complex data manipulations, such as string concatenation , whereas

this report has dealt exclusively with environment and control operations.

(Also , as a matter of taste, we find SCHEME a simpler and more tractable language

to deal with than the low-level dialect of PLII used in (Carter], partly because

of its closeness to lambda-calculus and partly because SCHEME inherits from LISP

the natural ability to deal with representations of its own programs.)
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12. Conclusions and Future Work

Lexical scoping, tail-recursion , the conceptual treatment of functions

(as opposed to representations thereof) as data objects, and the ability to

notate “anonymous” functions make SCHEME an excellent language in which to

express program transformations and optimizations. Imperative constructs are

easily modelled by applicative definitions. Anonymous functions make it easy to

avoid needless duplication of code and conflict of variable names. A language

with these properties is useful not only at the preliminary optimization level,

but for expressing the results of decisions about order of evaluation and storage

of temporary quantities. These properties make SCHEME as good a candidate as any

for an UNCOL . The proper treatment of functions and function calls leads to

generation of excellent imperative low-level code.

We have emphasized the ability to treat functions as data objects. We

should point out that one might want to have a very simple run-time environment

which did not support complex environment structures , or even stacks. Such an

end environment does not preclude the use of the techniques described here. Many

optimizations result in the elimination of LMBDA-expressions; post CPS-

conversion analysis eliminates the need to close many of the remaining LAMBDA—

expressions . One could use the macros and internal representations of RABBIT to

describe intermediate code transformations, and require that the final code not

actually create any closures. As a concrete example, imagine writing an

operating system in SCHEME , with machine words as the data domain (and functions

excluded from the run-time data domain). We could still meaningfully write, for

example:
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(IF (OR ( STOPPED ( PROCESS I))
(AWAITING-INPUT (PROCESS I)))

(SCHEDULE-LOOP (+ I 1))
(SCHEDULE-PROCESS I))

While the intermediate expansion of this code would conceptually involve the use

of functions as data objects, optimizations would reduce the final code to a form

which did not require closures at run time.

An experiment we would like to try would be to use CGOL [Pratt], a

program which parses ALGOL-like syntax and produces LISP code , as a front end for

RABBIT. The result would be a compiler for an ALGOL-like language which would

produce code by the processes of parsing (by CGOL); macro-expansion ,

optimization , and output of ?IacLISP code (by RABBIT); and generation of PDP-1O

machine language (by the MacL ISP compiler).

Among the interesting issues we have not dealt with or have not yet

implemented in RABBIT are: compilation of data manipulation primitives,

interaction of such primitives, procedure integration of the most general form,

and complex register allocation . A particularly interesting issue is that of

data type analysis. Such analysis would solve certain problems which cannot

easily be solved now by RABBIT. For example, consider the piece of code:

(IF (OR A B) X Y)

The macro-expansion and optimization phases will reduce this to:

(IF A (IF A X Y) ( I F  B X Y ) )

The difficulty is that RABBIT has no way of knowing that A is known to be non-

null in the first inner IF by virtue of the testing of A in the outer IF. If it

could realize this , then the code would reduce to the more reasonable:
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(IF A X (IF B X Y ) )

Compare this with the case of (IF (AND ...) ...) presented earlier.

One particularly nagging difficulty concerns an interaction between CATCH

and optimization by substituting expressions for variables. The problem is that

if an expression with a side-effect is substituted into a place which is

evaluated after the return of a call to an unknown function (where it had been

written at a place normally evaluated before the call), and if a CATCH is

performed within that unknown function , and the escape function is subsequently

called more than once, then the expression with a side-effect will be evaluated

twice instead of once. There is no possible way to decide whether this can

happen , other than to be fearful of all unknown function calls. In practice this

defeats most optimization . We have ignored this difficulty in RABBIT. It

probably indicates that escape functions are even more intractable than we had

earlier believed. It would not be so bad if we could insist that an escape

function be called no more than once (or rather, that a CATCH be returned from no

more than once, implying that if the escape function is used it must be

dynamically within the body of the CATCH). If this restriction is enforced, or

if CATCH is forbidden , then in fact no continuation can be invoked more than

once , which , with other suitable restrictions, accounts for the ability of most

languages to use stacks instead of trees for their control stacks.
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Notes

(Note ASET’ Is Imperative)

It is true that ASET’ is an actual imperative which produces a side

effect, and is not expressed applicetjvely. ASET’ is used only for two purposes

in practice: to initialize global variables (often relating to MacLISP

primitives), and to implement objects with state (cells, in the PLASM sense

(Smith and Hewitt] (Hewitt and Smith]). If we were to redesign SCHEME from

scratch , I imagine that we would introduce cells as our primitive side-effect

rather than ASET’. The decision to use ASET’ was motivated primarily by the

desire to interface easily to the MacLISP environment (and, as a corollary, to be

able to implement SCHEME in three days instead of three years~).

We note that in approximately one hundred pages of SCHEME code written by

three people, the non-quoted ASET has never been used, and ASET’ has been used

only a dozen times or so, always for one of the two purposes mentioned above. In

most situations where one would like to write an assignment of some kind, macros

which expand into applicative constructions suffice.
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(Note Code Pointers)

Conceptually a closure is made up of a pointer to some code (a ‘script

(Smith and Hewitt]) and an environment. In a RABBIT-formatted CRETA, the pointer

to the code is encoded into two levels: a pointer to a particular piece Of

PIacLISP code, plus a tag within that PROG. This implementation was forced upon

us by MacLISP . If we could easily create pointers into the middle of a PROG . we

could avoid this two-level encoding.

On the other hand , this is not just an engineering kiudge, but can be

provided with a reasonable semantic explanation: rather than compiling a lot of

little functions, we compile a single big function which is a giant CASE

statement. Wherever we wish to make a closure of a little function, we actually

close a different little function which calls the big function with an extra

argument to dispatch on.

(Note Continuation Variable Hack)

Since the dissertation was written, a simple modification to the routine

which converts to continuation-passing style has eliminated some of the register

shuffling. The effect of the change was to perform substitutions of one

continuation variable for another, in situations suc~h as:

((CLAIIBDA (CONT-3 ...) ...)
CONT-2 ...)

where CONT-2 would be substituted for CONT-3 in the body of the CLAMBDA-

expression . Once this is done1 CONT-3 is unreferenced, and so is not really

passed at all by virtue of the phase-2 analysis. The result is that

continuations are not copied back and forth from register to register. In the
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iterative factorial example in the text, the actual register assignment would be:

CONT-5 **CONT**
VAR-i
FNVAR-Z cnone)
VAR-3
VAR- 4

This optimization is discussed more thoroughly in the Appendix near the routine

CONVERT-COMBINATION .

(Note Dijkstra ’s Opinion)

In (Dijkstra ] a remark is made to the effect that defining the while—do

construct in terms of function calls seems unusually clumsy, In [Steele] we

reply that this is due partly to Dijkstra’s choice of ALGOL for expressing the

definition . Here we would add that, while such a definition is completely

workable and is useful for compilation purposes, we need never tell the user that

we defined while-do in this manner~ Only the writer of the macros needs to know

the complexity involved ; the user need not, and should not, care as long as the

construction works when he uses it. 

—. — —~-~
—- - - - - ____________________________________ - -~~~~~—
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(Note Evaluation for Control)

It is usual in a compiler to distinguish at least three “evaluation

contexts” : value , control, and effect. (See [Wuif], for example.) Evaluation

for control occurs in the predicate of an IF, where the point is not so much to

produce a data object as simply to decide whether it is true or false. The

results of AND , OR, and NOT operations in predicates are “encoded in the program

counter” . When compiling an AND, OR, or NOT, a flag is passed down indicating

whether it is for value or for control; in the latter case, two tags are also

passed down, indicating the branch targets for success or failure. (This is

called “anchor pointing ” in [Allen and Cocke].)

In RABBIT this notion falls out autonatically without any special

handling, thank~s to the definition of AND and OR as macros expanding into IF

statements. If we were also to define NOT as a macro

(NOT x) =) (IF x ‘NIL ‘1)

then nearly all such special “evaluation for control” cases would be handled by

virtue of the nested-IF transformation in the optimizer.

One transformation which ought to be in the optimizer is

(IF ((LAMBDA CX Y ...) (body>) A B ...) <con) <alt>)
=> ((LAMBDA (X Y ...) (IF <body) (con) <alt>)) A B ...)

which could be important if the <body) is itself as IF. (This transformation

would occur at a point (in the optimizer) where no conflicts between X, Y,

and variables used in <con> and <alt> could occur.)
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(Note Evaluation for Effect)

This is the point where the notion of evaluation for effect is handled

(see (Note Evaluation for Controlfl. It is detected as the special case of

evaluation for value where no one refers to the value! This nay be construed as

the distinction between “statement” and •expression” made in Algol—like

languages.

(Note Full-Funarg Example)

As an example of the difference between lexical and dynamic scoping,

consider the classic case of the “funarg problem”. We have defined a function

MAPCAR which , given a function and a list, produces a new list of the results of

the function applied to each element of the given list:

(DEFINE IIAPCAR
(LAMBDA (FM L)

(IF (NULL L) NIL
(CONS (FM (CAR I.)) (NAPCAR FM (COR L ) ) ) ) ) )

Now suppose in another program we have a list X and a number L, and want to add L

to every element of X:

(NAPCAR (LAMBDA (Z) (+ Z L)) X)

This works correctly in a lexically scoped language such as SCHEME, because the L

in the function (LAMBDA (Z) (+ Z L)) refers to the value of I. at the point the

LAMBDA-expression is evaluated. In a dynamically scoped language, such as

standard LISP, the L refers to the most recent run-tine binding of L, which is

the binding in the definition of NAPCAR (which occurs between the time the

LAMBDA-expression is passed to NAPCAR and the time the LAMBDA-expression is
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invoked).

(Mote Generalized LABELS)

Since the dissertation was written, and indeed after (Revised Report]

came out, the format of LABELS in SCHEME was generalized to permit labelled

functions to be defined using any of the same three formats permitted by DEFINE

in [Revised Report]. RABBIT has been updated to reflect this change, and the

code for it appears in the Appendix .

(Note Heap-Allocated Contours)

RABBIT maintains heap-allocated environments as a simple chained list of

variable values. However, all the variables which are added on at once as a

single set may be regarded as a new “contour” in the Algol sense. Such contours

could be heap-allocated arrays (vectors), and so an environment would be a

chained list of such little arrays. The typical Algol implementation technique

using a “display ” (a margin array whose elements point at successive elements

(contours) of the environment chain) is clearly applicable here. One advantage

of the list-of-all-values representation actually used in RABBIT is that null

contours automatically add no content to the environment structure , which makes

it easier to recognize later, in the code generator, that no environment

adjustments are necessary in changing between two environments which differ only

by null contours (see the code for ADJUST-KNOWNFN-CENV in the Appendix).
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(Note Loop Unrolling)

In the case of a LABELS used to implement a loop, the substitution of a

labelled function for the variable which names it would constitute an instance of

ioop unrolling [Allen and Cocke], particularly if the substitution permitted

subsequent optimizations such as eliminating dead code. Here, as elsewhere, a

specific optimization technique falls out as a consequence of the more general

technique of beta-conversion.

(Note Multiple-Argument Continuations)

One could easily define a SCHEME-like language in which continuations

could take more than one argument (that is, functions could return several

values); see the discussion in (Declarative]. We have elected not to provide

for this in SCHEME and RABBIT.

(Mote Non-deterministic CPS Conversion)

As with optimization, so the conversion to continuation-passing style

involves decisions which ideally could be made non-deteruinistically. The

decisions made at this level will affect later decisions involving register

allocation, etc., which cannot easily be foreseen •t this stag..
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(Note Non-deterministic Optimization )

To simplify the implementation, RABBIT uses only a deterministic (and

very conservative) optimizer. Ideally, an optimizer would be non-deterministic

in structure ; it could try an optimization , see how the result interacted with

other optimizations, and back out if the end result is not as good as desired.

We have experimented briefly with the use of the AJIORD language [Doyle] to build

a non-deterministic compiler , but have no significant results yet.

We can see more clearly the fundamental unity of macros and other

optimjzations in the light of this hypothetical non-deterministic implementation.

Rather than trying to guess ahead of time whether a macro expansion or

optimization is desirable, it goes ahead and tries, and then measures the utility

of the result. The only difference between a macro and other optimizations is

that a macro call is an all-or-nothing situation : if it cannot be expanded for

some reason , it is of infinite disutility, while if it can its disutility is

finite. This leads to the idea of non-deterministic macro expansions, which we

have not pursued .

(Note Non-quoted ASET)

The SCHEME interpreter permits one to compute the name of the variable,

but for technical and philosophical reasons RABBIT forbids this. We shall treat

“ASET’” as a single syntactic object (think “ASETQ”).

Hewitt (private coimnunication) and others have objected that the ASET

primitive is “dangerous” in that one cannot predict what variable may be

clobbered , and in that it makes one dependent on the representation of variables

(since one can “compute up ” an arbitrary variable to be set). The first is a

valid objection on the basis of programaing style or programning philosophy.
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(Indeed , on this basis alone it was later decided to remove ASET from the SCHEME

language , leaving only ASET’ in (Revised Report].) The second is only slightly

true; the compiler can treat ASET with an non-quoted first argument as a sort of

macro . Let VI , V2 , • ., VN be the names of the bound variables accessible to the

occurrence of MET in question . These names are all distinct, for if two are the

same, one variable “shadows” another, and so we may omit the one shadowed (and so

inaccessible). Then we may write the transformation:

(ASET a b) ~) ((LAMBDA (Q1 Q2)(COND ((EQ Qi ‘Vi) (ASET’ Vi QZ))
((EQ Qi ‘VZ) (MET’ VZ Q2))

((EQ Qi ‘V N) (ASET’ WI QZ))
(T (GLOBAL-SET P Qi Q2))))

b)

This transformation is to be made after the alpha-conversion process , which

renames all variables; Qi and Q2 are two more generated variables guaranteed not

to conflict with Vi , ..., VN. This expansion makes quite explicit the fact that

we are comparing against a list of !ynbols to decide which variable to modify.

The actual run-time representation of variables is not exploited, the one

exception being the GLOBAL-SET operator , which raises questions about the meaning

of the global environment and the user interface which we are not prepared to

answer.

(See also (Mote MET’ Is Imperative).)

- -
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(Note Old CPS Algorithm)

We reproduce here Appendix A of [Declarative]:

Here we present a set of functions, written in SCHEME, which convert a

SCHEME expression from functional style to pure continuation-passing style.

(No te PLASMA CPS)

( ASET GENT (PIPNUM 0)

(DEFINE GENTEMP
(LAMBDA (x)

(IMPLODE (CONS )C (EXPLODEN (ASET GENTEMPNUM (+ GENTEMPNUM 1)))))))

GENTEMP creates a new unique symbol consisting of a given prefix and a unique

number.

(DEFINE CPS (LAMBDA (SEXPR ) (SPRINTER (CPC SEXPR NIL tCONT#))))

CPS (Continuation-Passing Style) is the main function ; its argument is the

expression to be converted. It calls CPC (C-P Conversion) to do the real work,

and then calls SPRINTER to pretty-print the result, for convenience. The symbol

#CONT# is used to represent the implied continuation which is to receive the

value of the expression .
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(DEFINE CPC
(LAMBDA (SEXPR (NV CONT)

(COND ((ATOM SEXPR) (CPC-ATOM SEXPR (NV CONT))
( (E Q (CAR SE XPR) QUOTE)
(IF CONT “( CONE .SEXPR ) SEXPR))
((EQ (CAR 5~XPR) LAMBDA)
(CPC-LAMBDA SEXPR ENV CONY))

( (E Q (C AR SEXPR) IF)
(CPC-IF SEXPR (NV CONT))

( (E Q (C AR SEXPR) CATC H)
(CRC-CATC H SEXPR (NV CONT))
((EQ (CAR S(XPR ) ‘LABELS)
(CRC-LABELS S(XPR ENV CONT))

(( AN D (A TOM (C AR SE XPR))
(GET (CAR S(XPR) AMACRO))

(cPc (FUNCALL (GET (CAR SEXPR) AMACRO) SEXPR) (NV CONT))
(T (CPC-FORM SEXPR (NV CONT)))))

CPC mere ly dispatches to one of a number of subsidiary routines based on the form

of the expression SEXPR . ENV represents the environment in which SEXPR will be

evaluated; it is a list of the variable names. When CPS initially calls CPC.

ENV is NIL. CONT is the continuation which will receive the value of SEXPR . The

double-quote (“) is like a single-quote , except that within the quoted expression

any subexpressions preceded by convna ( , )  are evaluated and substituted in (also,

any subexpressions preceded by atsign (@) are substituted in a list segments).

One special case handled directly by CPC is a quoted expression; CPC also

expands any SCHEME macros encountered.

(DEF INE CPC-AT OM
(LAMBDA (SE XPR (NV CONT)

((LAMBDA (AT) (IF CONT “(.CONT ,AT ) AT))
(COND ((NUMBERP SEXPR) SEXPR)

((14(MQ SEXPR ENV) SEXPR)
((GET S(XPR CPS-NAME))
(T (IMPLOOE (CONS ~ (EXPLODEN SEXPR))))))))

For convenience , CPC-ATOM will change the name of a global atom. Numbers and

atoms in the environment are not changed; otherwise, a specified name on the

property list of the given atom is used (properties defined below convert +
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in to  “++ “ , etc.); otherwise , the name is prefixed with “V. Once the name has

been converted , it is converted to a form which invokes the continuation on the

atom . ( I f  a null continuation is supplied , the atom itself is returned.)

(DEFINE CPC-LAMBDA
(LAMBDA (SEXPR (NV CONT)

((LAMBDA (CN)
I(LAMBDA (LX) (IF CONI ‘~ ,CONT ,LX) LX))
“(LAMBDA (e(cADR SEXPR) CM)

.(CPC (CADOR SEXPR)
(APPEND (CADR S(XPR) (CONS CM (NV))
CN))))

(GENTEMP ‘C))))

A LAMB DA expression must have an additional parameter, the continuation supplied

to its body, added to its parameter list. CN holds the name of this generated

parameter. A new LAMBDA expression is created, with CM added , and with its body

converted in an environment containing the new variables. Then the same test for

a null CONT is made as in CrC-ATOM .

(DEFINE CPC-IF
(LAMBDA (SEXPR (NV CONT)

((LAMBDA (1(N)
“( (LAMBDA (.KN)

.(CPC (CAOR SEXPR)
(NV
( (LAMBDA (PM)

“(LAMBDA (.PN)
( i F  .PN

,(CPC (CADOR SEXPR)
(NV

,(cPt (CADDOR SIXPR)
(NV
1(N))))

(GENTEMP •P) ) ) )
CONI))

(G(NTUIP ‘ K ) ) ) )

First , the continuation for an IF must be given a name KM (rather, the name held

in KM ; but for conven ience, we will continue to use this ambiguity, for the form
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of the name is indeed Km for some number n), for it will be referred to in two

places and we wish to avoid duplicating the code. Then, the predicate is

converted to continuation-passing style, using a continuation which will receive

the result and call it PM . This continuation will then use an IF to decide which

converted consequent to invoke. Each consequent is converted using continuation

KM .

(DEFINE CPC-CATCH
(LAMBDA (SEXPR (NV CONT)

((LAMBDA (EN)
“((UMIDA ( EN)

((LAMBDA (,(CADR SEXPR))
.(CPC (CADDR SEXPR )

(CONS (CADR SEXPN) (MV)
(N))

(LAMBDA (V C) ( ,EM V))))
,CONT))

(GENTEMP ‘E) ) ) )

This routine handles CATCH as defined in [Sussnan 75], and in converting it to

continuation-passing style eliminates all occurrences of CATCH. The idea is to

give the continuation a name EN, and to bind the CATCH variable to a continuation

(LAMBDA (V C) ...) which ignores its continuation and instead exits the catch by

calling EN with its argument V. The body of the CATCH ii converted using

continuation EN.

(DEFINE CPC-LABELS
(LAMBDA (SEXPR (NV cONT)

(DO ((X (cADa SEXPR) (COR K))
(V (NV (CONS (CAAR K) Y)))
((NULL X)
(00 ((w (CADR SEXPR) (CON W))

U NIL (CONS (LIST (CAAN W)
(CPC (CABAl W) V NIL))

1)))
((NULL W)

(LA$ELS .(REVUSE 1)
.(CPC (CADDR SEXPI) V CONT))))))))
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Here we have used DO loops as defined in MacLISP (DO is implemented as a macro in

SCHEME). There are two passes, one performed by each DO. The first pass merely

collects in Y the names of all the labelled LAMBDA expressions. The second pass

converts all the LAMBDA expressions using a null continuation and an environment

augmented by all the collected names in Y, collecting them in Z. At the end, a

new LABELS is constructed using the results in Z and a converted LABELS body .

(DEFINE CRC-FORM
(LAMBDA (SEXPR (NV CONT)

~(LA~ELS ( (LOOPI
- (LAMBDA (K V Z)

(IF (NULL K)
(DO ((F (REVERSE (CONS CONT Y))

(IF (NULL (CAR 1)) F
(CPC (CAN Z)

(NV
“(LNSDA (.(CAA Y)) F))))

(V V (CDR Y))
(Z 1 (CON 1)))
((NULL 1) F))

(COND ((OR (NULL (CAR K))
(ATOM (CAR K)))

(LOOP 1 (CDR X)
(CONS (CPC (CAR K) (NV NIL) Y)
(CONS NIL 1)))

((EQ (CAAR K) ‘QUOTE)
(LOOP1 (COR K)

(COIlS (CAR K) Y)
(CONS NIL 1)))

(((0 (CUR K) ‘LAMBOA)
(LOOP 1 (CDI K)

(CONS (CPC (CAR K) (NV NIL) V)
(CONS NIL Z~))

(T (LOOP 1 (CON K)
(CONS (GENTEMP ‘T) V)
(CONS (CAR K) Z))))))))

(LOOP1 SEXPR NIL NIL))))

This, the most complicated routine , converts forms (function calls). This also

operates in two passes. The first pass, using LOOP1, uses X to step down the

expression , collecting data in V and Z. At each step, if the next element of X

can be evaluated trivially, then it is converted with a null continuation and
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added to V . and NIL is added to Z. Otherwise, a temporary name TN for the result

of the stibexpression is created and put in V. and the subexpression itself is put

in Z. On the second pass (the DO loop), the final continuation-passing form is

constructed in F from the inside out. At each step, if the element of Z is non -

nul l , a new continuation must be created. (There is actually a bug in CPC-FORM,

which has to do with variables affected by side-effects . This is easily fixed by

changing LOOP1 so that it generates temporaries for variables even though

variables evaluate trivially . This would only obscure the examples presented

below , however, and so this was omitted.)

(LABELS ((BAR
(LAMBDA ( DUMMY K Y)

(IF (NULL X) ‘ ICPS ready to go!~
(OAR (PUTPROP (CAR K) (CAR Y) ‘CPS.NAME )

(CDI K)
(COP V ) ) ) ) ) )

(BAR NIt.
- a // T NIL)
-- ** I / / I  ‘T ‘NIL)))

This loop sets up some properties so that “+“ will translate into “++ “ instead of

“%+“, etc .

Plow let us examine some examples of the action of CPS. First , let us try

our old friend FACT, the iterative factorial program.

(DEFINE FACT
(LAMBDA (N)

(LABELS ((FACT1 (LAMBDA (N A)
(IF (. NI)  A

(FACT 1 C. N i) (a N A) ) ) ) ) )
(FACT! N 1))))

Applying CPS to the LAMBDA expression for FACT yields: 

- -~~~~~~~~~
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( ICONT#
(LAMBDA (N C?)

(LAB LS ((FACT1
(LAMBDA (M A C lO)

((LAMBDA (1(11)
(X” M o

(LAMBDA (P12)
(IF P12 (1(11 A)

(.- N 1
(LAMBDA (T13)

(aa N A
(LAMBDA (T14)

(FACT 1 Ti3 T14 K l1 ) ) ) ) ) ) ) ) )

(FACT1 N 1 C?))))

As an example of CATCH elimination , here is a routine which is a

paraphrase of the SQRT routine from [Sussman 75]:

(DEFINE SORT
(LAMBDA (X (PS )

((LAMBDA CANS LOOPTAG)
(CATCH RETURNTAG

(BLOCK (ASET’ LOOPTAG (CATCH N N))
(IF

(RETURNT AS ANS )
NIL)

(ASET’ ANS “ s ” )

(LOOPTAG LOOPING))))
1.0
NIL)) )

Here we have used “--- “ and “ :==~ as ellipses for complicated (and relatively

uninteresting) arithmetic expressions. Applying CPS to the LAMBDA expression for

SQRT yields:
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( CONT#
(LAMBDA (K (PS C33)

((LAMBDA (ANS LOOPTAG C34)
((LAMBDA ((35)

((LAMBDA (RETURNTAG )
((LAMBDA ((52)

((LAMBDA (M) ((52 N))
(LAMBDA (V C) ((52 V) ) ) )

(LAMBDA (151)
(USET’ LOOPTAS 151

(LAMBDA (137)
((LAMBDA (A B CU) (B CBS))

T37
(LAMBDA (C4I)

((LAMBDA (1(47)
((LAMBDA (PSI)

(IF PSI
(RETUINTAG ANS ~47)
(1(47 ‘NIL)))

I.--))
(LAMBDA (14?)

((LAMBDA (A I C41) (S C41))
T42
(LAMBDA (c43)

(SUET’ ANS t~~—
(LAMBDA (145)

((LAMBDA (A S C44 )
(S C44))

145
(LAMBDA (C46)

(LOOPTAS
LOOPTAG
CU))

c43))))
C4I))))

(35))))))
(LAMBDA (V C) ((35 V))))

C 34))
1.0
‘NIL
C33) ) )

Note that the CATCHes have both been eliminated. It is left as an exercise for

the reader to verify that the continuation-passing version correctly reflects the

semantics of the original.

_ _ _ _ _ _ _ _- — —.- --— - -.-. -,~ 
-
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(Note Operations on Functions)

It would certainly be possible to define other operations on functions,

such as determining the number of arguments required, or the types of the

arguments and returned value, etc. (Indeed, after the dissertation was written,

it was decided to include such an operator PROCP in (Revised Report].) The point

is that functions need not conform to a specific representation such as 8—

expressions. At a low level, it may be useful to think of invocation as a

generic operator which dispatches on the particular representation and invokes

the function in an appropriate manner. Si.ilarly, a debugging package might need

to be able to distinguish the various representations. At the user level,

however , it is perhaps best to hide this issue, and answer a type inquiry with

merely “function”.

(No te Ref inement of RABBIT)

Since the original dissertation was written I have continued - to refine

and improve RABBIT. This effort has included a complete rewriting of the

Optimizer to make it more efficienct and at the same time more lucid. It also

included accommodation of changes to SCHEME as documented in (Revised Report].

This work has spanned perhaps eight months ’ t ime, because the availability of

computer time restricted me to testing RABBIT only once or twice a night. Thus,

the actual time expended for the improvements was much less than ten hours a

week.
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(Mote Side-Effect Classifications)

The division of side-effects into classes in RABBIT was not really

necessary to the primary goals of RABBIT , but was undertaken as an interesting

experiment for our own edification . On. could easily imagine a more complex

taxonomy. A case of particular interest not handled by RABBIT is dividing the

MET side-effect into ASET of each particular variable; thus an ASET on FOO

would not affect a reference to the variable BAR. This could have been done in

an ad hoc manner , but we are interested in a ore general method dealing only

with sets of effects and affectabilj tj es,

(Note Subroutinization) -

We have not said anything about how to locate candidate expressions for

subroutinization . For examples of appropriate strategies, see [Geschke] and

[Aho, Johnson , and Ullman]. Our point here is that SCHEME, thanks to the

property of lexical scoping and the ability to write “anonymous” functions as

LAMBDA-expressions, provides an ideal way to represent the result of such

transformations.
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(Note Tail-Recursive OR)

Since the dissertation was written, the SCHEME language was redefined in

[Revised Report] to prescribe a “tail-recursive” interpretation for the last form

in an AND or OR. This requirement necessitated a redefinition of OR which is in

• fact dual to the definition of AND.
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Appendix

We present here the complete working source code for RABBIT, written in
SCHEME. (The listing of the code was produced by the ‘0” listing generator,
wr itten by R ichard M. Stallman , Guy L. Steele Jr., and other contributors.)

The code is presented on successive odd-numbered pages. Commentary on
the code is on the facing even-numbered page. An index appears at the end of the-
listing, indicating where each function is defined.

It should be emphasized that RABBIT was not written with efficiency as a
par ticul ar goal. Ra ther , the uppermost goals were clarity, ease of debugging,
and adaptability to changing algorithms during the development process Much
informa tion is generate d , never used by the compilation process, and then thrown
away, simply so that if some malfunction should occur it would be easier to
conduct a post-mortem analysis. Information that is used for compilation is
often retained longer than necessary. The overall approach is to create a big
data structure r J then , step by step, fill in slots, never throwing anything
away, eve’ • may no longer be needed.

The ~~~~~~~~~~ ~ could be increased in speed, particularly the optimizer,
which often recon:~utes information needlessly. Determining whether or not the
recomputation was necessary would have cluttered up the algorithms, however,
making them harder to read and to modify, and so this was omitted. Similarly,
certain improvements could dramatically decrease the space used. The larger
functions in RABBIT can just barely be compiled with a memory size of 256K words
on a P1W-iD. However, it was deemed worthwhile to keep the extra information
available for as long a time as possible.

The implementation of RABBIT has taken perhaps three man-months. This
includes throwing away the original optimizer and rewriting it completely, and
accomodating certain changes to the SCHEME language as they occurred. RABBIT was
operational , without the optimizer, after about one man-month ’s work. The
dissertation was written after the first version of the optimizer was
demonstrated to work. The remaining time was spent analyzing the faults of the
first optimizer , writing the second version, aCcomodatimg language changes,
making performance measurements, and testing RABBIT on programs other than RABBIT
itself. 

•
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The main modules of RABBIT are organized something like this:

CONFILE , TRA 1JSDUCE , PROCESS-FORM (Bookkeeping and file handling)
COMPILE (Compile a function definition )

ALPHATIZE (Convert input , rename var iables)
MACRO-EXPAND (Expand macro forms)

META-EVALLIATE (Source-to-source optimizations)
PASSI-ANAL.YZE (Preliminary code analysis)

ENV-ANALYZE (Environment analysis)
TRIV-ANALYZE (Triviality analysis)
EFFS-ANALYZE (Side effects analysis)

FIETA-IF-FtJDGE (Transform nested IF expressions)
META-COIIBINATION-TRIVFN (Constants folding)
PIETA- COMBINATION-LAMBDA (Beta-conversion)

SUBST-CANDIDATE (Substitution feasibility)
META-SLJBSTITIJTE (Substitution , subsumpt ion)

CONVERT (Convert to continuation-passing style)
CENV-ANALYZE (Environment analysis)
BIND-ANALYZE (Bindings analysis)
DEPTH-ANALYZE (Register allocation )
CLOSE-ANALYZE (Environment structure design)
COMPILATE-ONE-FUNCTIOPJ (Generate code, producing one module)

COMPILATE (Generate code for one subroutine)
COMP-BODY (Compile procedure body)
ANALYZE (Generate value-producing code)
TRIV-ANItLYZE (Generate “trivial” code)



A 1:QUUX ;RA BBIT 568 GIS 12:14 :50 Monday . May 15 , 1978 FQ+10.2N.39 M.45 .
Created 23 :29 :15  Sundsy, May 14. 1978 FQ+13H.53M .29S.

RRRRRRRR AA 68686666 68888608 111111 TTTT ITTTTT
RRRRRRRR AA 86866868 BBBBBB8B 111111 T T TTTT T TTT
RRR RRRRR AA 88886688 B886BBBB 111 1 1 1 TTTTTTTTTT
PR RR AA AA 68 66 86 86 11 IT
PR PR AA AA 88 88 88 88 71 IT
PR PR AA AA 06 88 88 00 II TT
RR PR AA AA 08 80 88 08 II TT
PR PR AA AA 68 88 88 88 II IT
PR PR AA AA 88 08 88 80 II IT
RRRRRRRR AA AA 88868860 BBB88888 II IT
RRRRRRRR AA AA 868B8686 60080888 II IT
RRRPRRRR AA AA 88888B86 88688888 II TT
PR PR AAAAAAAAAA Be 88 88 88 II IT
PP PR AAAAAAAAA A 68 BB 86 BB 11 TT
PR RR AAAAA AAAAA 86 66 06 88 II II
PR PR AA AA 88 88 88 88 II IT
PR PR AA AA 86 88 88 88 II TI
PR PR AA AA 88 88 88 88 11 IT
PR RR AA AA 88606888 86888888 111 1 1 1 IT
PR PR AA AA 68886888 88888880 lUll ! IT
PR PR AA AA 80686668 88808888 11 1111 TT

AI:QUUX;RABBIT 568 GIS 12:14:50 Monday. May 15. 1970 FQ+1D.2H .39M.4S.
Created 23:29:15 Sunday. May 14. 1978 FQ+13H.53M.29S .

5555555555 666666 888888
5555555555 666666 888888
5555 555555 666666 888888
55 66 66 88 88
55 66 66 88 86
SS 66 66 86 88
55 66 88 88
55 66 88 88
55 66 88 86
55555555 66666666 686688
5555 5555 66666666 888888
55555555 66666666 806888

55 66 66 88 86
55 66 66 86 68
55 66 66 86 68

55 55 66 66 88 68
55 55 66 66 68 68
55 55 66 66 88 88
555555 666666 886888
555555 666666 688668 -

555555 666666 866666

Switch Settings : L(LISP] Z A N 69V 110W X
Fonts: F(FONTS;22F6 KST..]
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The DECLARE form s are for the benefit of the MacLISP compiler , which will
process the result of compiling this file (i.e. RABBIT compiling itself). The
first few forms are concerned with switch settings, allocation of memory within
the MacLISP compiler , and loading of auxiliary functions which must be available
at compile time .

The large block of SPECIAL declarations contains the name of every SCHEME
func t ion in the file. This is necessary because the run-time representation of a
global variable is as a MacLISP SPECIAL variable. The compiled function objects
will reside in MacLISP value cells , and SCHEME functions refer to each other
through these cells.

The second set of SPECIAL declarations (variables whose names begin and
end with a “*“) specify variables used globally by RABBIT. These fall into three
categories: variables containing properties of the SCHEME interpreter which are
parameters for the compiler (e.g. **ARGUPIENT-REGI$TERS**); switches, primarily
for debugging purposes , used to control certain compiler operations (e.g.
*FUDGE*); and own variables for certain functions, used to generate objects or
gather stat ist ics (e.g. *GENTE1IPN(JPI* and *DEPROGNIFY-COUNT*).

The PROCLAIM forms are to RABBIT as DECLARE forms are to the MacLISP
compiler. These provide declarations to the incarnation of RABBIT which is
compi ling the f ile. The subforms of a PROCLAIM form are executed by RABBIT when
it encounters the form in a file being compiled. (We will see later how this is
done . )

0



001 RABB IT COMPILER .* - LISP- * -  RABBIT 560 05/16/76 P•g. 1
002
003 (DEClARE (FASLOAD ( QUUx ) SCH MAC))
004 (DECLARE (MACROS T )  (NEU IO T ) )
005 (DECLARE (ALIOC ‘ ( L I S T  (300000 450000 .2) FIXNUM 50000 SYMBOl. 24000)))
006 ( DEClARE (DEFUN DISPLAC E (X Y ) Y) )
007
008 ( DECLARE (SPEC IAL EMPTY TR IVFN GENT EMP GENFLUSH GEN-GLOBA L-NAM E PRINT-WARNING ADDPPOP DELPROP SLTPROP
009 ADJOIN UNION INTERSECT REMOVE SETOI FF PAIRLIS COMPILE PASS1-ANALY ZE TEsT-coMPILL
010 NODIFY A1 PHATIZE ALPHA -ATOM ALPHA -LAMBDA ALPHA-IF AIPI4A-ASET ALPHA-CATCH
011 ALPHA -LABElS AIPHA-LAB EIS-DEFN ALPHA-BLOC K MACRO-EXPAND ALPHA-COM8INATION
012 ENV-ANALYZE TRIV-ANALYZE TRIV-ANALYfl.FN-p EFFS-ANALYZE EFFS .UNION EF~ S-ANALVZ (-IF
013 EFFS-ANALYZE-CO PIBINATION CHECK-COMBINATION-pEFFS ERASE-NODES META-EVALUA IE
014 META -IF-FUDGE META-COIIBINA TION-TRIVFN META-COM8INATION-LAMBDA SUBST-CANDIOATE
015 REANALY ZE 1 EFFS-INTEPSECT EFFECTLESS (FEECTIESS-EXCEPT-CONS PASSABLE
016 META-SUBSTITUTE COPY-CODE COPY-NODES CNODIFY CONVERT MAKE -RETURN CONVERT-LAMBDA-FM
017 CONVERT -IF CONVERT-ASET CONVERT-CATCH CONVERT-LABELS CONVERT-COMBINATION
018 CENV-ANALYZE CENV-TRIV-ANALY ZE CENV-CCOMBINATION-ANALYZ E BIND-ANALYZE REFO-VAPS
019 BIND-ANALYZE-CIAMBDA BIND-ANALYZE-CONT !NtJATIOM BlND-ANAIYZE-CIF SINO-ANALYZE.CASEI
020 B IND-ANALYZE-CLABELS BIND-ANALYZE-RETURN B IND-ANALYZE-CCOMB INAIION
021 BIND-CCOMBINAT ION-ANALYZE DEPTH-ANALYZE F ILTEP-CLO SEREFS CLOSE-ANALYZE COMPILATE
022 DEPROGNIFY1 TEMPLOC ENVCARCDR REGSLIST SET-UP-ASETVARS COfIP-BODY PRODUCE-IF
023 PRODUCE-ASET PRODUCE-LABELS PRODUC(-LAM8DA-CQMBI’~AIIO N ~‘QODUCE-TRIVFN-COMBINATION
024 PRODUCE -TRIVFN -COMBINAT ION-CONT INLJA TION PPODUCE-TPIVF$-LG~lB INAIION-CVAP IABLE025 PRODUCE-COMBINATION PRODUCE -COMBINATION-VARIA BLE ADJUST-KNOWNFN-CENV
026 PRODUCE -CONTINUA rION-RETURN PRODUCE-RETURN PRODUCE-RETURN-i LAMBOACATE PSETOIFY
027 P5ETQIFY-METH’)~ 7 PSETQIFY-METHOD-3 PSETQ-ARGS PSETQ-ARGS-ENV PSETQ-TEMPS
028 MAPANALYZE ANALYZI. ANALYZE-CLAMBDA ANALYZE-CONTINUATION ANALYZE-CIF ANALYZE-CLABELS
029 ANALYZE -CCOIlBINATIO~1 ANALYZE-RETUR N LOOKUPICAIE CONS-CLOSEREFS OUTPUT-ASET
030 CONDICATE DECARCDRATE TRIVIALIZE TRIV-LAMBOACATE COMPILAIE-ONE-FUNCTION
031 COMPILATE-LOOP USED-TEMPLOCS REMARK-ON MAP-USER-NAMES COMF lIE TRANSDUCE
032 PROCESS-FORM PROCESS-DEFINE-FORM PROCESS-DEFINITION CLEANUP SEXPREY CSLXPRFY
033 CHECK-NUMBER-OF-A RGS DUMPIT STATS RESET-STATS INIT-RABBIT))
034
035 (DECLARE (SPECIAL “EMPTY” *GENTEMPNUM* “GENTEMPLISTa “GLOBAL-GEN-PREFIX” “ERROR-COUNT” *ERROR~LIST*
036 “TEST” “TESTINGa “OPTIMIZE” “REANALYZE” “SUBSTITUTE” “FUDGE” “NEW-FUDGE”
037 *SINGLE~SU85T* “LAMBDA-SUBSTa *FLUSH-ARGS” “STAT-VARS” “DEAD-COUNT” aFUDGE-COUNT”
038 “FOLD-COUNT” “FLUSH-COUNT” “CONVERT-COUNT” “SUBST-COUNT” CDEPROGNIFY-COUNT”
039 “LAMBDA -BODY-SUBST* “LAMBOA-BODY-SUBST-IRY-COUNTa *LAM8DA~BODY~SUBSI~SUcCESS_COUNT*
040 “cHECK-PEFFSa “*COI4T+ARG-PEGS”* *“ENV+CONT+APG-REGS*” *“AP6U5~’NT-RE6ISTFR5”*
041 AaNU$B(R-OF-ARG-REGSaa *BUFFER-RAN~~M-FORM5* *DlSPLAc[.5W*))042 -

043 (PROCLAIM (aExpR PRINT-SHORT)
044 (SET’ “BUFFER-RANDOM-FORMS ” NIL)
045 (AlLoc ‘(LIST (240000 340000 1000) FIXNUM (30000 40000 1000)
046 SYMBOL (14000 24000 NIL) HUNK4 (20000 53000 NIL)
047 HUNK8 (20000 50000 NIL) HUNK16 (20000 60000 NIL))))
048
049 (SET’ “STAT-VARS” ‘(“DE AD-COUNT ” “FUDGE-COUNT” “FOLD-COUNT4 “FLUSH-COUNT” “cONvERT-couNT.
050 *SUBST-COUNT ” “DEPPOG N IFY-COUNTe aLAM8DA-BOOY-SUBST- TRY-COUNT”
0 51 “LAM8DA-BOOY-SUB ST-SUCCESS-COIJNT4))
052
0 53 (ALI,OC ‘(L IST (240000 340000 1000) FIXNUM (30000 40000 1000)
054 • SYMBOL (14000 24000 NIl) HUNK4 (20000 50000 NIl)
055 

- 
HUNK6 (20000 50000 NIL ) HUNK16 (20000 70000 NIL)))

056 -
057 (APPLY ‘GCTWA ‘(T)) ;GC USELESS ATOMS (CAN’T SAY (EVAL’ (6CTWA I)) BECAUSE OF NCOMPLR)
058 (REPLACE) •UNOO ANY DISPLACED MACROS
059 (SET’ “DISPLACE-S W” NIL) ;DON’T LET MACROS SELF-DISPLACE
060 (GRINDEF) ;LOAD THE GRINDER (PRETTY-PRINIER)
061
062 (DECLARE ( / IOEFINE DEFINE ISCHEME FUNCTION I)) ;OECLARATIOIIS FOR LISTING PROGRAM
063 (DECLARE (/ PDEFINE DEFMAC IMACLISP MACRO)))
064 (DECLARE (/ PDEFINE SCHMAC IPDP-10 SCHEME MACROI))
065 (DECLARE (/PDEFINE MACRO ISCHEME MACROD)
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The variable *EMPTY* is initialized to a unique object (a list cell whose
car is *EMPTV* -- this is so that no other object can be EQ to it, but it can be
easily recognized when printed) which is used to initialize components of
structures. (We will sea later how such structures are defined.) We do not use,
say, NIL to represent an empty component because NIL might be a meaningful value
for that component. The predicate EMPTY is true of the unique object.

TR1VFN is a predicate which is true of utrivialu functions. A function
is triv ial If it is a MacLISP pr imit ive (an EXPR , SUBR , or LSUBR) , or has been
declared to be primitive via a *EXPR or *LEXPR proclamation.

(INCREMENT FOO) expands into the code (ASET’ FOO (+ FOO 1)).

CATENATE is a utility macro which may be thought of as a function . Given
any number of S-expressions it produces an atomic symbol whose print name is the
concatenation of the print names of the S-expressions. Usually the S-expressions
will be atomic symbols or numbers.

(CATENATE ‘FOO ‘- 43) => FOO-43

— I~ENTEMP is used to generate a new unique symbol, given a specified
prefix. The global variable *GENTEMPNLJPI* starts at zero and increases
monotonicially. Each call to GENTEMP catenates the prefix, a hyphen , and a new
value of *GENTEI9PNUM* . Because the numeric suffixes of the generated symbols
increase with time , one can determine in which order symbols were generated . We
also will use different prefixes for different purposes, so that one can tell
which part of the compiler generated a given symbol. This information can be
invaluable for debugging purposes; from the names of the symbols appearing in a
data structure , one can determine how that structure was created and in what
order . (The generated symbols are themselves used primarily as simple markers,
or as simple structures (property lists). The use of the print names amounts to
tagging each marker or structure with a type and a creation timestamp . A LISP—
like language encourages the inclusion of such information.)

(GENTEPtP ‘NODE) => NODE-2534

A list of all generated symbols is maintained in *GENTEMPLIST*. GENFLIJSH
can be called to excise all generated symbols from the MacLISP obarray; this is
periodically necessary when compiling a large file so that unneeded symbols may
be garbage-collected . The symbols are initially interned on the obarray in the
First place for ease of debugging (one can refer to them by name from a debugging
breakpoint). GEM-GLOBAL-NAME is used to generate a symbol to be used as a run-
time name by the compiled code. The prefix for such names is initially ? for
testing purposes, but is initialized by the file transducer as a function of the
name of the file being compiled . This allows separately compiled files to be
loaded together without fear of naming conflicts.



001 RABBIT 566__05/15/76 P.ge z
002 (cOND ((NOT (BOUNDP ‘“EMPTY”)) -
003 (SET’ “EMPTY” (LIST ‘“EMPTY”))))
004
005 (DEFINE EMPTY
006 (LAMBDA ( X )  (EQ X * EMPTY *)))
007
006
009 (DEFINE TRIVF N
010 (LAMBDA (Sm)
011 (GETL Sm ‘(EXPR SUBR LSUBR “EXPR *L(XPR))))
012
013
014 (DEFMAC INCREMENT (X) “(ASEI ,X (+ ,X 1)))
015
016 (DEFMAC CATENATE ARGS
017 ‘(IMPLODE (APPEND P(MAPCAR ‘(LAMBDA (X)
018 (COND ((OR (ATOM X) (NOT (EQ (CAR X) ‘QUOTE)))
019 (EXPLODEN ,X))
020 (1 ‘(QUOTE .(EXPLODEN (CADR IC))))))
021 AR6S))))
022
023
024 (cOND ((NOT (BOUNOP ‘ *GENTEMPNUM” ))
025 (SET ’ *GENT(MPNUM* 0 ) ) )
026
027 (cONO ((NOT (BOUNDP ‘*GENTEMPLIST*))
026 (SET’ *GENTEMPLIST” NIL)))
029
030 (DEF INE GENTEPIP -

031 (LAMBDA (IC)
03 2 (BlOCK ( INCREMENT “GENTEMPNUM* )
033 (LET ((Sm (CATENATE X ‘i- ) “GENTEMPNUM*)))
034 (ASET’ “GENTEMPLIST” (CONS SYM *6(NT~MPLIST”)) Sm))))035
036 (DEFINE GENFLUSH
037 (LAMBDA ( )
036 (BLOCK (AMAPC REI4OB *GENTE~~LIST* )
039 (ASET’ “GENTEMPLIST” NIL))))
040
041 (DEFINE GEN-GIOBAL-NAME
042 (LAMBDA ( )  (GENTEMP “GLOBAL-GEN-PREFIX.)))
043
044 (SET~ “GLOBAL- GEN-PREF IX ” ‘ I? ) )
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WARN is a macro used to print a notice concerning an incorrect program
being compiled. It generates a call to PRINT-WARNING , which maintains a count
and a l ist of the error messages , and prints the message, along with any
associated useful quantities .

(WARN F00 is greater than BARI FOO BAR)

would print (assuming the values of FOO and BAR were 43 and 15)

;Warning: FOO is greater than BAR
43

; 15

WARN is used only to report errors in the program being compiled . The MacLISP
ERROR function is used to signal internal inconsistencies in the compiler.

ASK is a macro which prints a message and then waits for a reply.
Typically N I L  means nnou , and anything elsa means eyes”.

SX and CSX are debugging aids wh ich print intermed iate data structures
internal to the compiler in a readable form. They make use of SPRINTER (part of
the MacLISP C’,RIND pretty-printing package) and of SEXPRFY and CSEXPRFY, which are
def ined below .

The EQCASE macro provides a simple dispatching control structure. The
f irst form evaluates to an item , and the clause whose keyword matches the item is
executed. If no clause matches, an error occurs. For example:

(EQCASE TRAFFIC-LIGHT
(RED (PRINT ‘STOP))
( GREEN (PRINT ‘GO))
(YELLOW (PRINT ‘ACCELERATE ) (CRASH)))

expands into the code:

(COND ((EQ TRAFFIC-LIGHT ‘RED) (PRINT ‘STOP))
( (EQ TRAFFIC-LIGHT ‘GREEN ) (PRINT ‘GO))
((EQ TRAFFIC-LIGHT ‘YELLOW) (PRINT ‘ACCELERATE) (CRASH))
(T ( ERROR ‘~ Losing EQCASE I TRAFFIC-LIGHT ‘FAIL-ACT)))



001 RABBIT 566 05/15/76 P•ps 3
002 (0(FMAC WARN (MSG . STUFF)
003 “ (PRINT-WARNING ,PISG (LIST lSTUFF)))
004
005 (DEFINE PRINT-WARNING
006 (LAMBDA (PISG STUFF )
007 (BLOCK (INCREMENT “ERROR-COUNT”)
008 (ASET’ “ERROR-LIST” (CONS (Coils MSG STUFF) “ERRO*-LIST~))
009 (TYO 7 (SYMEVAL ‘TYO)) ;SE11
010 (TERPRI (SYMEVAL ‘ TY O))
011 (PRINC ‘);Warning: (SYMEVAC. ‘TYO) )
012 (TYO 7 (SYMEVAL ‘TYO)) ;SELL
013 (PRINC MSG (SYNEVAL ‘TYO))
014 (AMAPC PRINT-SHOR T STUFF))))
015
016 (OEFUN PRINT-SHORT (X)
017 ((LAMBDA (PRINLEVEL PRINLENGTH IERPRI)
0 18 ( TERPRI (SYTIEVAL ‘ TYO))
019 (PRINC ‘I; I (SYM EVAL ‘TYO))
020 (PRIN1 IC (SYNEVAL ‘TY O)))
021 3 8 T) )
022
023
024 ( SCHMAC ASK (MSG)
025 ‘(BLOCK (TERPRI) (PRINC ‘.1456) (IY0 40) (READ)))
026
027
-028 (OEFMAC SIC (IC) “(SPRINTER (SEXPRFY ,X NIL))) ;DEBUGGING AID
029 (D(FMAC CSX (X) ‘(SPRINTER (CSEXPRFY ,X) ))  ;DEIUGGING AID
030
031
032 (DEFMAC EQCASE (OSJ . CASES )
033 ‘(cOND •(MAPCAR ‘(LAMBDA (CASE)
034 (OR (ATOM (CAR CASE))
035 (ERROR ‘ Ilosine EQCASE cl.usel))
036 ‘((EQ .OBJ ‘ .(CAR CASE)) P(CD* CASE)))
037 CASES)
136 (T (ERROR ‘ILesIng EQCASEI ,OSJ ‘FAIL-ACT))))
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The next group of macros implement typed data structures with named
components. ACCESSFN , CLOBBER, and HIJNKFN allow definition of very general
structure access functions. Their precise operation is not directly relevant to
this exposition; suffice it to say that they are subsidiary to the DEFTYPE macro
on the next page .

DEFTV PE defines structure udata types with named components. These
structures are implemented as MacLISP hunks . (A hunk is essentially a kind of
list cell with more than two pointer components; it may be thought of as a
short , fixed-length vector. Hunks are accessed with the function (CXR n hunk),
which returns the nth component of the hunk. (RPLACX n hunk newval) analogously
alters the nth component. CXR and RPLACX are thus similar to CAR/CDR and
RPLACA/RPLACD.)

Slo t 0 of each hunk is reserved for a uproperty list ; this feature is
not used in RABBIT. Slot 1 always contains an atomic symbol which is the name of
the type . Thus every structure explicitly bears its type. The form (HUNKFN TYPE
1) creates a function (actually a macro) called TYPE which when applied to a hunk
will fetch slot 1. Slots 2 upward of a hunk are used to contain named
components. A structure does not contain the component names. (However, the
symbol which is the name of the type does have a list of the component names on
its property list. This is useful for debugging purposes. There is, for
example , a package which pretty-prints structured data types, showing the
components explicitly as name-value pairs, which uses this information.)

- - ---  - - - --  - -- -- -----_----- -



001 RABBIT 5~~~_O5/15~/j8 Page!
002 (DECLARE ( / @D EFINE ACCESSFN IACCE SS MACR OS ))
003
004 (DEFMAC ACCESSFN (NAME UVARS FETCH PUT)
005 ((LAMBDA ( VAR S CNAME )
006 (00 ( ( A  VARS (CDR A ) )
007 (B ‘*Z” “(CDR .B))
D08 (C NIL (CONS “(CAR .0) C ) ) )
009 ((NULL A)
0 10 ‘(PROGN CONPILE
011 (DEFMAC ,NAME *Z*
012 ((LAMBDA .(NREVERSE (cDR (REVERSE VARS)))
013 .FETCH)
014 e(REVERSE (CON C))))
015 (DEFMAC .CNAME “Za
016 ((LAMBDA .VARS
017 ,(COND (PUT (CAR PUT))
018 (T ““(CLOBBER ,,FETC H
019 ,THE-NEW-VALU E~ )))020 I(REVERSE C ) ) ) ) ) ) )
021 (COND (PUT UVARS)
022 (T  (APPEND UVARS ‘ (THE-NEW-VALUE ) )))
023 (CATENATE ‘ICLOBBER-I NAME)))
024
02 5 (DEFMAC CLOBBER (IC Y ) -

026 ‘(,(CATENATE ‘ ICLOBBER- I (CAR IC)) P (coR X) ,Y))
027
028 (DECLARE (/PDEFINE HUNKFN IHUNK ACCESS HACROI))
029
030 (DEFMAC HUNKFN (NAME SLOT)
031 “ (ACCESSFN ,NAME (THE-HUNK NEW-VALUE )
032 “(CXR ..SLOT ,THE.HUNK)
033 (RPLACX ,, SLOT ,THL-NUNK ,NEW-VALU~~))
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Consider for example the form

(DEFTYPE LAMBDA ( UVARS VARS BODY))

This defines a structured data type called LAMBDA with three named components
UVARS , VARS , and BODY . It also defines a series of macros for manipulating this
data type.

For access, the macros LAMBDA \UVARS, LAMBDA\VARS, and LAMBDA\BODY are
defined . These each take a single argument , a data structure of type VAR IABLE ,
and return the appropriate component. (The TYPE function can also be applied to
the data object, and will return LAMBDA.)

For construction , a macro CONS-LAMBDA is defined . For example , the form:

(CONS-LAMBDA (UVARS = LISTI)
(VARS LIST2))

would construct a LAMBDA structure with the TYPE, UVARS, VARS , and BODY slots
initialized respectively to LAMBDA , the value of LISI1, the value of LIST2, and
the “empty object” (recall the EMPTY predicate above). Any component names
(possibly none!) may be initialized in a CONS-xx.x form, and any components not
mentioned will be initialized to the empty object. (The “ = “ signs are purely
syntactic sugar for mnemonic value. They can be omitted.)

For alteration of components , a macro ALTER-LAMBDA is defined . For
example , the form

(ALTER-LAMBDA FOO
( UVARS : LIST1)
( BODY : (LIST A B)))

woul(: alter the UVARS and BODY components of the value of FOO (which should be a
LAMBDA structure - this is not checked) to be respectively the values of LIST1
and (LIST A B). Any non-zero number of componen ts may be modi f ied by a single
ALTER-xxx form . (The “ := “ signs are purely syntactic sugar also.)

A great advantage of using these structure definitions is that it is very
easy to add or delete components during the development of the program . In
par ticular , when a new component is added to a type, it is not necessary to find
all instances of creations of objects of that type; they will simply
automatically initialize the new slot to the empty object. Only parts of the
program which are relevant to the use of the new component need be changed .



001 RABBIT 568 05/15/78~~~je5002 (DECLARE (/IDEFINE DEFTYPE IDATA TYPEI))
003
004 SLOT 0 IS ALWAYS THE PROPERTY LIST . AND SLOT 1 THE HUNK TYPE .
005
006 (HUNKFN TYPE 1)
007
008 (DEFMAC DEFTYPI (NAME SLOTS SUPP)
009 “(PROGN ‘COMPILE
010 (DEFMAC .(CATENATE ‘ ICONS-I NAME ) KWDS
011 (PROGN (DO ((K KVDS (CON K)))
012 ( ( NULL K ))
013 (OR ,(cOND ((CON SLOTS) “(MEMQ (CAAR K) ‘,SLOTS))
014 (T “(EQ (CAAR K) ‘,(CAR SLOTS))))
015 (ERROR ‘,(CATENATE ‘IInv .lld Keyword Arg~snent to CONS-I
016 NAME )
017 (CAR K)
018 ‘FAIL-ACT)))

019 “(HUNK ‘ ,‘ .NAME
020 0(00 ((S ‘,SLOTS (CON 5))
021 (IC NIL
022 (CONS ((LAMBDA (KWD )
023 (CON D (KW O (CAR (LAST KWD)))
024 (T ‘*EMPTY.)))
025 (ASSQ (CAR 5) KWDS))
026 IC)))
027 ((NULL 5) (NREVERSE IC)))
028 NIL )))
029 (OEFMAC .(CATENATE ‘IAL TER-I NAME ) (OBJ KWOS)
030 (PROGN (DO ((K KWDS (CON K)))
031 ((NULL K))
032 (OR ,(COND ((CON SLOTS) “(MEMO (CAAR K ) ‘.SLOTS))
033 (T “(EQ (CAAR K) ‘,(CAR SLOTS))))
034 

- 
(ERROR ‘.(CATENATE ‘Ilnva fl d Keyword Argument to A LTER-I

035 NAME )
036 (CAR K)
037 ‘FAIl-ACT)))
038 (00 ((1 (+ (LENGTH KWDS ) 1) (- I i))
039 (VANS NIL (CONS (GENSYN ) VANS)))
040 ((“ 1 0)
041 “((LAMBDA ,VARS
042 •(BLOCKIFY
043 (MAPCAR ‘(LAMBDA (K V)
044 (CLOBBEI ( .(C A T E NATE  ‘ ,NAM(
045
046 (CAR K))
047 (.(CAR VANS)))
048 - (,V)))
049 KWDS
050 (CDR VARS))))
051 (LAMBDA ( )  .OBJ)
052 I(MAPCAR ‘(LAMBDA (K) “(LAMBDA ( )  .(CAR (LAST K))))
053 KWDS))))))
054 0(00 ((5 SLOTS (CON 5))
055 (N 2 (+ N 1))
056 (IC NIL (CONS “ (HUNKFN •(CATENATE NAME ‘I\I (CAR S))
057 ,N)
058 IC)))
059 ((NUlL 5) (NREVERS( X)))
060 (DEFPR0P ,NAME .SIOTS COMPONENT-NAMES)
061 (DEF PROP • NAME • SUPP SUPPRESSED-COMPOIIENT-NAMES)
062 ‘(TYPE .NAME DEFINED)))
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On this page are two groups of utility functions. One group manipulates
property lists , an d the other man ipulates sets of objects represented as lists.

For (ADIWROP SYII VAL PROP), the PROP proper ty of the symbol SYM shoul ’ be
a list , of things. The object VAL is added to tnis list if it is not already a
member of the list.

DELPROP performs the inverse of ADDPROP ; it removes an object from a
list round as the property of a symbol.

(SETPR OP SYFI VAL PROP) puts the property-value pair PROP,VAL on the
property list of SYM; but if SYM already has a PROP property, it is an error
unless the new value is the same as (EQ to) the existing one. That is, a
redundant SETPROP is permitted , but not a conflicting one.

(ADJOIN ITEM SET) produces a new set SET U (ITEM).
UNI ON produces the union of two sets.
INTERSECT produces the intersection of two sets.
(REMOVE ITEM SET) produces a new set SET - (ITEM).
(SETDIFF SEll SET2) produces the set SET1 - SET2 .

A l l  of the set opera t ions are accomplished non-destructively; that is,
the given arguments are not modified . Examples: -

(ADJOIN ‘A ‘(A B C)) => (A B C)
(ADJOIN A ‘(B C D)) => (A B C D)
(UNION ‘(A B C) ‘(B D F)) => (D F A B C)
(INTERSECT ‘(A B C) ‘(B D F)) =) (B)
(REMOVE ‘B ‘(A B C)) => (A C)
(SETOIFF ‘(A B C) ‘(B B F)) => (A C)



001 RABBIT 566 05/15/78 t~ge 6
002 ;;; ADO TO A PROPERTY WHICH IS A LIST OF THINGS
003
004 (DEFINE ADDPROP
005 (LAMBDA (SYN VAL PROP)
006 (LET ((L (GET SYM PROP)))
007 (IF (NOT (MEMO VAL L))
008 (PUTPROP SYM (CONS VAL I) PROP)))))
009
010 INVERSE OF ADDPROP
011 -
012 (DEFINE DELPROP
013 (LAMBDA (5Th VAL PROP )
014 (PUTPROP 5Th (DELQ VAL (GET STh PROP)) PROP)))
015
016 LIKE PUTPROP . BUT INSIST ON NOT CHANGING A VALUE ALREADY THERE
017
018 (DEFINE SETPROP -

019 (LAMBDA (STh VAL PROP)
020 (LET ((L (GETL 5Th (LIST PROP))))
021 (IF (AND L (NOT (EQ VAL (CADR L))))
022 (ERROR IAtte~pt to redefin e a unique propert yl
023 (LIST ‘SETPROP SIN VAL PROP)
024 ‘FAIL-ACT)
025 (PUTPROP 5Th VAL PROP)))))
026
027 OPERATIONS ON SETS , REPRESENTED AS LISTS
026
029 (DEFINE ADJOIN
030 (LAMBDA (IC 5)
031 (IF (MEMO K 5) S (CONS K 5))))
032
033 (DEFINE UNION
034 (LAMBDA (IC Y)
035 (DO ((Z V (CON Z))
036 (V IC (ADJOIN (CAR 2) V)))
037 ((NULL 2) V))))
038
039 (DEFINE IN TERSECT
040 (LAMBDA (x Y)
041 (IF (NULL IC)
042 NIL
043 (IF (MEMO (CAR IC) Y)
044 (CONS (CAR IC) (INTERSECT (CON IC) Y))
045 (INTERSECT (CON IC) Y)))))
046
047 (DEFINE REMOVE
046 (LAMBDA (IC 5)
049 (IF (NULL 5)
050 5
051 (IF (EQ X (CAR 5))
052 (COP 5)
053 ((LAMBDA (Y)
054 (IF (EQ V (CON 5)) 5
055 (CONS (CAl 5) Y)))
056 (REMOVE IC (CDI 5)))))))
057
058 (DEFINE SETOIFF
059 (LAMBDA (K Y)
060 (00 ((2 IC (COR Z))
061 (W NIL (IF (14(140 (CAl 2) Y)
062 V
063 (CONS (CAR 2) V))))
064 ((NULL Z) W ) ) ) )
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The PA IRLIS function is similar to, but not identical to, the function of
the same name in the LISP 1.5 Manual. The difference is that the pairs of the
association list produced are 2-lists rather than single conses. This was dome
purely so that structures produced by PAIRLIS would be more readable when
printed; the ease of debugging was considered worth the additional CONS and
access time .

(PAIRLIS ‘ (A  B C) ‘ (X Y Z) ‘((F P) (6 Q)))
=> ((C Z) (B Y) (A X) (F P) (6 Q))

The COMPILE function is the main top-level function of the compiler. It
is responsible for invoking each phase of the compiler in order. NAME is the
name of a function (an atomic symbol), and LAMBDA-EXP the corresponding lambda-
expression ; these are easily extracted , for example , from a SCHEME DEFINE-form.
SEE-CRUD is NIL for normal processing, or T for debugging purposes. O P T I M I ZE is
a switch controlling whether the optimization phase should be invoked ; it can be
I, N I L , or MAYBE (meaning to ask the (human) debugger).

The overall flow within COMPILE is as follows: check number of
arguments; apply ALPHATIZE to the lambda-expression to produce the pass 1 data
structure; optionally optimize this data structure ; perform pass 1 analysis;
convert the pass 1 data structure to a pass 2 (continuation-passing style) data
structure ; perform pass 2 analysis; generate code. The value of COMPILE is the
MacLISP code produced by the code generator.

PASS1-ANALYZE is a separate function so that it can be used by the
optimizer to re-analyze newly created subexpressions.

CL is a debugging utility . (CL FOO) causes the function FOO (which
should be defined in the running SCHEME into which the compiler has been loaded)
to be compiled . Various debugging facilities, such as SEE-CRUD, are enabled.
This is done by using TEST-COMPILE.



001 RABBIT 568 05/15/76 P.ge 7
002 (DEFINE PAIRLIS
003 (LAMBDA (Li L2 L)
004 (DO ((V Li (CDR V))
005 (U 12 (CON U))
006 (E L (CONS (LIST (CAR V) (CAR U)) E)))
007 ((NULl V) E))))
008
009
010 (DEFINE COMPILE
Oi l (LAMBDA (NAME LAMBDA-EXP SEE-CRUD OPTIMIZE )
012 (BLOcK (CHECK-NUMBER-OF-ARGS NAME
013 (LENGTH (CADR LAMBDA-EKP))
014 T)
015 (LET ((ALPHA-VERSION (ALPHATIZE LAMBDA-EICP NIL)))
016 (IF (AND SEE-CRUD (ASK ISee •lph.-conversion?I ))
017 (SIC ALPHA-VERSION))
018 (LET ((OPT (IF (EQ OPTIMIZE ‘MAYBE )
019 (ASK IOpt imize?I)
020 OPTIMIZE)))
021 (LET ((META-V(RSION
022 (IF OPT -

023 (META-EVALUATE ALPHA-VERSION )
024 (PASS1-ANALYZE ALPHA-VERSION NIL NIL))))
025 (OR (AND (NULL (NODE\REFS META-VERSION))
026 (NULL (NODE\A5ETS META-VERSION )))
027 (ERROR ‘IENV-ANALY ZE lost - COMPILE)
028 NAME
029 ‘FAIL-ACT))
030 (IF (AND SEE-CRUD OPT (ASK ISee met .-ev .1Q.$lon?I))
031 (SIC META-VERSION))
032 (LET ((CPS-VERSION (CONVERT META-VERSION NIL (NOT (Null OPT)))))
033 (IF (AND SEE-CRUD (ASK 1 5cc CP5-cor~veri iont)))
034 (CSX cPS-VERSION))
035 (CENV-ANALYZE CPS-VERSION NIL NIL )
036 (BIND-ANALYZE CPS-VERSION NIL NIL )
037 - (DEPTH-ANALYZE CPS-VERSION 0)
038 (CLOSE-ANALYZE CPS-VERSION NIL )
039 (c0MP1LATE-ONE-FUNCTION CPS-VERSION NAME))))))))
040
041 (DEFINE PASS1-ANALYZE
042 (LAMBDA (NODE REDO OPT)
043 (BLOC K (ENV-ANALYZE NODE RED~~044 (TRIV-ANALYZE NODE lE~~ ) -
045 (IF OPT (EFFS-ANALYZI NODE REDO))
046 NODE)))
047
048
049 (SCHMAC Cl (FNNAME ) “ (TEST-COMPILE .FNNAML ))
050
051 (DEFINE TEST-COMPILE
052 (LAMBDA (FNNAME )
053 (lET ((FN (GET FNNAME ‘SCHEME !FUNCTION)))
054 (COND (FN (ASET’ *TESTING* 1)
055 (ASET’ *TEST* NIL) ;PUREIY TO RELEASE FORMER GARBAGE
056 (A5ET *ERROR~CODNT* 0)057 (ASET’ •ERROR.LISTa NIL)
058 (ASEV *TEST* (COMPILE FNNAME FN T ‘MAYBE))
059 (SPRINTER *T(5T*)
060 “(,(IF (ZEROP *ERROR-COLJNT*) ‘NO *ERROR-COUNT*) ERRORS))
061 (T “(.FNNAME NOT DEFINED))))))
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Here are the structured data types used for the pass 1 intermediate
representation . Each piece of the program is represented as a NODE, which has
various pieces of information associated with it. The FORM component is a
structure of one of’ the types CONSTANT. VARIABLE , LAMBDA , IF , ASET , CATCH ,
LABELS, or COMBINATION . This structure holds information specific to a given
type of program node, whereas the NODE structure itself holds information which
is needed at every node of the program structure . (One may think of the FORM
component as a PASCAL record variant.)

The ALPHATIZE routine and its friends take the S-expression definition of
a function (a lambda-expression ) and make a copy of it using NODE structures.
This copy, like the S-expression , Is a tree. Subsequent analysis routines will
all recur on this tree, passing informat ion up and down the tree , either
distributing information from parent node to child nodes, or collating
information from child nodes to pass back to parent nodes. Some information must
move laterally within the tree , from branch to branch ; this is accomplished
exclusively by using the property lists of symbols, usually those generated for
renamings of variables (since all lateral information is associated with variable
references - which is no accident’).

The function NOD IFY is used for constructing a node, with certain slots
properly initialized . In particular , the METAP slot is initialized to NIL ,
indicating a node not yet processed by NETA-EVALUATE ; this fact will be used
later in the optimizer. A name is generate d for the node , and the node is put on
the property list of the name . This property is for debugging purposes only ;
given the name of a node one can get the node easily. The name itself may also
be used for another purpose by CONVERT-COMBINATION, to represent the intermediate
quantity which is the value of the form represented by the node.

_ _ _ _  
_  _ _  
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001 RABB IT 566 05/15/78 Page 8
002 ALPHA-CONVERS ION
003
004 HERE WE RENAME ALL VARIABLES , AND CONVERT THE EXPRESSION TO AN EQUIVALENT TREE-LIKE FORM
005 WITH EXTRA SLOTS TO BE FILLED IN LATER. AFTER THIS POINT . THE NEW NAMES ARE USED FOR
006 VARIABLES , AND THE USER NAMES ARE USED ONLY FOR ERROR MESSAGES AND THE LIKE . THE TREE-LIKE
007 FORM WILL BE USED AND AUGMENTED UNTIL IT IS CONVERTED TO CONTINUATION-PASSING STYLE .
008
009 • ; ;  WE ALSO FIND ALL USER-NAMED LAMBDA-FORMS AND SET UP APPROPRIATE PROPERTIES.
010 ;;; THE USER CAN NAME A LAMBDA-FORM BY WRITING (LAMBDA (IC) BODY NAME).
011
0 12 (DEFTY PE NODE (NAME SEXPR (NV REFS ASE T S TRIVP EFFS AFFD PEFFS PAFFD METAP SUBSTP FORM) (SEXPR))
013 :NAME : A GENSYM WHICH NAMES THE NODE’S VALUE
014 ;SEXPR : THE S-EXPRESSION WHICH WAS ALPHATIZED TO MAKE THIS NODE
015 (USED ONLY FOR WARNING MESSAGES AND DEBUGGING)
016 ;ENV : THE ENVIRONMENT OF THE NODE (USED ONLY FOR DEBUGGING)
017 :REFS: ALL VARIABLES BOUND ABOVE AND REFERENCED BELOW OR BY THE NODE
016 ~ASETS : ALL LOCAL VARIABLES SEEN IN AN ASET BELOW THIS NODE (A SUBSET OF REFS)
019 , ;TRIVP : NON-NIL 1FF EVALUATION OF THIS NODE IS TRIVIAL
020 •EFF S: SET OF SIDE EFFECTS POSSIBLY OCCURRING AT THIS NODE OR BELOW
021 ;AFFD: SET OF SIDE EFFECTS WHICH CAN POSSIBLY AFFECT THIS NODE OR BELOW
022 ;PEFF~~: ABSOLUTELY PROVABLE SET Of EFFS
023 ;PAFFD: ABSOLUTELY PROVABLE SET OF AFFD
024 ;METAP : NON-NIL 1FF THIS NODE HAS BEEN EXAMINED BY THE META-EVAIUATOR
025 ;SUBSTP:FLAG INDICATING WHETHER META-SUBSTITUTE ACTUALLY MADE A SUBSTITUTION
026 ;FORM : ONE OF THE BELOW TYPES
027
028 ( DEFTYPE CONSTANT (VALUE ))
029 ;VALIJE : THE S-EXPRESSION VALUE OF THE CONSTANT
030 (DEFTYPE VARIABL E (VAR GLOBA LP)) -

031 ;VAR : THE NEW UNIQUE NAME FOR THE V”~RIABLE , GENERATED BY ALPHATIZE .
032 ; THE USER NAME AND OTHER INFORMATION IS ON ITS PROPERTY LIST.
033 ;GLOBA LP: N IL UNLESS THE VARIABLE IS GLOBAL (IN WHICH CASE VAR IS THE ACTUAL NAME )
034 (DEFTYPE LAMBDA (UVARS VARS BODY))
035 ;UVARS : THE USER NAMES FOR THE BOUND VARIABLES (STRICTLY FOR DEBUGGING (SEE SEXPRFV))
036 ;VARS : A LIST OF THE GENERATED UNIQUE NAMES FOR THE BOUND VARIABLES
037 ;BODY : THE NODE FOR THE BODY OF THE LAMBDA EICPRE SSION
038 (DE FTYPE IF (PRED CON ALT))
039 ;PRED: THE NODE FOR THE PREDICATE
040 ;CON : THE NODE FOR THE CONSEQUENT
041 ;ALT: THE NODE FOR THE ALTERNATIVE
042 (DEFTYP E ASET (VAR BODY GLOBAIP))
043 ;VAR : THE GENERATED UNIQUE NAME FOR THE ASET VARIABLE
044 ;BODY: THE NODE FOR THE BODY OF THE ASET
045 ;GLOBAIP: NIL UNLESS THE VARIABLE IS GLOBAL (IN WHICH CASE VAR IS THE ACTUAL NAME)
046 (DE FTYPE CATCH (UVAR VAR BODY))
047 ;UVAR : THE USER NAME FOR THE BOUND VARIABLE (STRICTLY FOR DEBUGGING (SEE SEXPRFY))
048 ;VAR : THE GENERATED UNIQUE NAME FOR THE BOUND VARIABLE
049 ;BODY: THE HODE FOR THE BODY OF THE CATCH
050 (DEFTYP E LABELS (UFNVARS FNVARS FND€FS BODY))
051 ;UFNVARS : THE USER NAMES FOR THE BOUND LABELS VARIABLES
052 ;FNVARS : A LIST OF THE GENERATED UNIQUE NAMES FOR THE LABELS VARIABLES
053 ;FNDEF5: A LIST OF THE NODES FOR THE LAMBDA-EXPRESSIONS
054 ;BOOY: THE NODE FOR THE BOY OF THE LABELS
055 (DEFTYP E COMBINATION (ARGS WARNP))
056 ;ARGS: A LIST OF THE NODES FOR THE ARGUMENTS (THE FIRST IS THE FUNCTION )
057 ;WARNP : NON-NIL 1FF CHECK-COMB INATION-PEFFS HAS DETECTED A CONFLICT IN THIS COMBINATION
058
059 (DEFINE NODIFY
060 (LAMBDA (FORM SEXPR (NV )
061 (LET ((N (CONS-NODE (NAME “ (GENTEMP ‘NODE))
062 (FORM “ FORM)
063 (SEXPR “ S XPR)

064 (ENV • (NV )
065 (METAP “ NIL))))
066 (PUTPROP . ($OO(\NAME N) N ‘NODE)
067 N)))
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ALP HAT IZE takes an S-expression to convert , and an environment. The
latter is a list of 2- l ists; eac h 2-list is of the form (user-name new-name).
This is used for renaming each variable to a unique name. The unique names are
generated within ALPHA-LAM BDA , ALPHA-LABELS , and ALPHA-CATCH, where the var iable
bindings are encountered. The new name pairings are tacked onto the front of the
then-current environment , and the resul t  used as th e environment for converting
the body .

ALPHAT I ZE merely does a dispatch on the type of form, to one of the sub—
functions for the various types. It also detects forms which are really macro
c a l l s, and expands them by calling MACRO-EXPA ND, which returns the form to be
used in place of the macro call. ( BLOCK is handled as a separate special case.
In the interpreter , BLOCK is handled specially rather than going through the
general MACRO mechanism. This is done purely for speed. Defining BLOCK as a
macro in the compiler can confuse the interpreter in which the compiler runs, and
so it was decided simply to handle BLOCK as a special case in the compiler also.)
A LP H AT I ZE allows the S-expression to contain already converted code in the form
of NODEs ; this fact is exploited by the optimizer (see META-IF-FUDGE below), but
has no use in the initial conversion .

ALPHA-ATOM creates a CONSTANT structure for numbers and the special
symbols NIL and T. Otherwise a VARIABLE structure is created. If the symbol (it
better be a symbol!) occurs in the environment , the new-name is used, and
otherwise the symbol itself. The slot GLOBALP is set to T iff the symbol was not
in the environment .

ALPHA-LAMBDA generates new names for all the bound variables. It then
converts its body, after using PAIRLIS to add the user-name/new-name pairs to the
environment . The result is used to make a LAMBDA structure . A ~~~~ is made of
the list of variables in the UVARS slot; it must be copied because later META—
COMBINATION-LAMBDA may splice out elements of that list. If so, it will also
splice out corresponding members of VMS, but that list was freshly consed by
ALPHA-LAMBDA .



001 RA BBI T~~68.__05/15/78 P.ge 9
002 ;;; ON NODE NAMES THESE PROPERTIES ARE CREATED:
003 NODE THE CORRESPONDING NODE
004
005 (DEFINE ALPHATIZE
006 (LAMBDA (SEXPR (NV)
007 (COND ((ATOM SEXPR) -
008 (ALPHA-ATOM SEXPR (NV))
009 ((HUNKP SEXPR)
010 (IF (EQ (TYPE SEXPR) ‘NODE)
011 SEXPR
012 (ERROR ‘(Pecu liar hunk - ALPHATIZEI S(XPR ‘FAIL-ACT)))
013 ((EQ (CAR SEXPR) ‘QUOTE)
014 (MODIFY (CONS-CONSTANT (VALUE • (CADR SEXPR))) SEXPR (NV))
015 ((EQ (CAR SEICPR) ‘LAMBDA )
016 (ALPHA-LAMBDA SEXPR (NV))
017 ((EQ (CAR SEXPR) ‘IF)
018 (ALPHA-IF S(XPR (NV))
019 (( EQ (CAR SEX PR ) ‘AS ET)
020 (ALPHA -A SET SEXPR (NV ))
021 ((EQ (CAR SEICPR) ‘CATCH)
022 (ALPHA-CATCH SEXPR (NV))
023 ((EQ (CAR SEXPR ) LABELS)
024 (ALPHA-LABElS SEXPR (NV))
025 ((EQ (CAR SEKPR) ‘BLOCK)
026 (ALPHA-BLOC K SEXPR (NV))
027 ((AND (ATOM (CAR SEXPR))
028 (EQ (GET (CAR SEXPR) AINT) ‘ANACRO))
029 (ALPHATIZE (MACRO-EXPAND SEXPR) (NY))
030 (T (ALPHA-COMBINATION SEXPR (NV)))))
031
03 2 (DEFINE ALPHA-ATOM
033 (LAMBDA (SEXPR (NV)
034 (IF (OR (NUMBERP SIXPR) (NULL SEXPR) (EQ S(XPR ‘T)).
035 (MODIFY (CONS-CONSTANT (VALUE • S(XPR)) SEXPR (NV )
036 (LET ((SLOT (ASSQ SEXPR ENV)))
037 (MODIFY (CONS-VARIABLE (VAR • (IF SLOT (CADR SLOT) SEXPR))
038 (SLOBALP • (NULL SLOT)))
039 SIXPR
040 (NV)))))
041
042 (DEFINE ALPHA-LAMBDA
043 (LAMBDA (SEXPR (NV)
044 (LET ((VARS (DO ((I (LENGTH (CADR S(XPR)) (-  I 1))
045 (V NIL (CONS (6ENT(MP ‘VAR) V)))
046 ((~ 1 0) (NREVtRSE V)))))
047 (IF (C000R SEXPR)
048 (WARN (Malformed LAMBDA expre ssloni SLXPR))
049 (MODIFY (CONS-LAMBDA (UVARS • (APPEND (CADR S(XPR) NIL))
050 ;;SEE ME TA-COMBINAT ION-LAMBDA
051 (VARS • VARS)
052 (BODY • (ALPHATIZ ( (CADDR SEXPR)
053 (PAIRLIS (CADR S(XPR)
054 VARS
055 (NV))))
056 S(XPR
057 (NV))))
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ALPHA-IF simply converts the predicate,, consequent , and alternative, and
makes an IF structure .

ALPHA-ASET checks for a non-quoted first argument. (Presently RABBIT
does n ot allow f or computed ASET var iables . Since RABBIT was wr itten , such
computed variables have in fact been banned from the SCHEME language (Revised
Report].) For simplicity, it also does not allow altering a global variable
which is the name of a MacLISP primitive . This restriction is related only to
the kiudginess of the PDP-lO MaCLISP SCHEME implementation , an d is not an
essential problem with the language . The ERROR function was used here rather
than WARN because the problems are hard to correct for and occur infrequently.
Aside from these difficulties , ALPHA-ASET is much like ALPHA-ATOM on a variable;
it looks in the environment , converts the body, and then constructs an ASET
structure .

ALPHA-CATCH generates a new name “CATCHVAR-nn for the bound variable,
tacks it onto the environment , and converts the body; it then constructs a CATCH
structure -

ALPHA-LABELS generates new names NFMVAR_n N for all the bound variables;
it then constructs in LENV the new environment , using PAIRLIS. It then converts
all the boun d funct ion def in it ions an d the body , using this environment. In this
way all the function names are apparent to all the functions. A LABELS structure
is then crea ted.



001 RABBIT 568 05/15/76 P.g,_~O002 (DEFINE ALPHA-IF 
-

003 (LAMBDA (S(XPR (NV)
004 (MODIFY (CONS-IF (PR(D • (ALPHATIZ( (CADR SEXPR) (NV))
005 (CON • (ALPHATIZE (CADOR SEXPR) (NV))
006 (ALT • (ALPHATIZ ( (CA000R SEXPR) (NV)))
007 SEXPR
008 (NV)))
009
010 (DEFINE ALPHA-ASET
011 (LAMBDA (SEXPR (NV)
012 (LET ((VAR (COND ((OR (ATOM (CADR SEXPR))
013 (NOT (EQ (CAADR S(XPR) ‘QUOTE)))
014 (ERROR ‘(Can ’t Compile Non-quoted ASET VsrlableJ
015 S(XPR
016 ‘FAIL-ACT))
017 (T (CADADR S(XPR)))))
018 (LET ((SLOT (ASSQ VAR (NV)))
019 (IF (AND (NULL SLOT) (TRIVFN VAR))
020 (ERROR ‘ (If l egal to A5(T a MacLISP pr imit ive )
021 S(XPR
022 ‘FAIL-ACT))
023 (MODIFY (CONS-ASET (VAR • (IF SLOT (CADR SLOT) VAR))
024 (GLOSALP • (NULL SLOT))
025 (BODY • (ALPHATIZE (CROON SEXPR) (NV)))
026 SEXPR
027 (NV)))))
028
029 (DEFINE ALPHA-CATCH
030 (LAMBDA (SLXPR (NV )
031 (LET ((VAR (GENT MP ‘CATCHVAR)))
032 (NODIFY (COIlS-CATCH (VAR • VAR )
033 (UVAR • (CADR SEKPR))
034 (BODY • (ALPHATIZE (CADDI S(XPR )
035 (CONS (LIST (CAUR SEXPR) VAR)
036 (NV))))
037 SEXPR
038 - (NV))))
039
040 (DEFINE ALPHA-LABELS
041 (LAMBDA (5EXPR (NY)
042 (LET ((UFNVARS (AMAPCAR (LAMBDA (K)
043 (IF (ATOM (CAR K))
044 (CAR K)
045 (CAAR K)))
046 (CADR SEXPR))))
047 (LET ((FNVARS (DO ((I (LENGTH UFNVARS) (- I 1))
048 (V NIL (CONS (GENTEMP ‘FNVAR) V)))
049 ((. 1 0) (NREVERSE V)))))
050 . (LET ((LENV (PAIRLIS UFNVARS FNVARS (NV)))
051 (MODIFY (CONS-LABELS (UFNVARS • UFNVARS)
052 (FNVARS • FNVAIS)
053 (FNDEFS • (AMAPCAR
054 (LAMBDA (K)
055 (ALPHA-LAB(LS-DEFN K LENV))
056 (CADR SEXPI)))
057 (BODY • (ALPHATIZE (cADOR SEXPR) LENY)))
058 S(XPR
059 (MV))))))
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ALPHA-LA BELS-DEFN parses one LABELS definit ion clause . An extension to
the SCHEME language (made just after the publication of (Revised Report]!)
allows a LABELS definition to take on any of the same three forms permitted by
DEFINE. Thus this LABELS form actually defines FOO, BAR , and BAZ to be
equivalent functions:

(LABELS ((FOO (LAMBDA (X Y) (BLOCK (PRINT X) (. X Y))))
(BAR (X Y) (PRINT X) (+ X Y))
((BAZ X Y) (PRINT X) (+ X Y ) ) )

(LIST (FOO 1 2) (BAR 1 2) (BAZ 1 2)))

ALPHA-BLOCK implements the standard macro definition of BLOCK. (BLOCK x)
is simply x, and ( BLOCK x - y) expands into:

((I.AMBDA (A B) (B)) x (LAMBDA ( )  (BLOCK - y)))

MACRO-EXPAND takes a macro call and expands it into a new form to be used
in place of the macro call. In the PDP-10 MacLISP SCHEME implementation there
are three different kinds of macros. Types MACRO and MACRO are defined by
MacLISP code , and so their defining functions are invoked using the MacLISP
primitive FUNCALL. Type SMACRO is defined by SCHEME code which is in the value
cell of an atomic symbol; thus SYPIEVAL is used to get the contents of the value
cell , and th is SCHEME function is then invoked.

ALPHA-COMBINATION converts all the subforms of a combination , mak ing a
list of them , and Creates a COMBINATION structure . If the function position
contains a variable , it performs a consistency check using CHECK-NUMBER-OF-AROS
to make sure the right number of arguments is present.

0



001 RA BBIT 568 05/15/78 Page 11
002 (DEF INE ALPHA-LAB ELS- DEFN — — - - -—

003 ( L AMBD A (L OEF LENV)
004 (AIPHATIZE (IF (ATOM (CAR 10(F))
005 (IF (CDDR 10(F)
006 ‘(LAMBDA (CADR 10(F) .(BLOCKIFY (CDDR LD(F)))
007 (CADR LD(~ ))008 ~(LAMBDA .(CDAR LOEF ) .(BLOCKIFY (COR 10(F))))
009 LENV)))
010
0 11 (DEFINE ALPHA-BLOCK
012 (LAMBDA (SEXPR (NV)
013 (COND ((NULL (CDR SEXPR))
014 (WARN (BLOCK with no forms I
015 (ENV • ,(AMAPCAR CAR (NV)))
016 (ALPHATIZE NIL (NV))
017 (T (LABELS ((HUNG
018 (LAMBDA (BODY)
019 (IF (NULL (CON BODY))
020 (CAR BODY)
021 ((LAMBDA (A B) (B))
022 .(CAR BODY)
023 (LAMBDA () •(MUNG (COR BOOY) ) ) ) ) ) ) )
024 (AIPHATIZE (MUNG (COR SEXPR)) (NV))))))
025
026 (DEFINE MACRO-EXPAND
027 (LAMBDA (S~XPR)
028 (LET (~ M (GE T L (CAR SEX PR ) ‘(MACRO AMACRO SMACRO))))
029 (IF (NULL H)
030 (BLOCK (WARN (missing macro definition ) SEXPR)
031 (ERROR ‘(Undefined Macro Form ) ,S(XPR ‘FAIL-ACT))
032 (EQCASE (CAR M)
033 (MACRO (FUNCALL (CADR N) S(XPR))
034 (AHACR0 (FUNcALL (CADR N) SEXPR))
035 (SMAcRO ((SYMEVAL (CADR H)) S(KPR)))))))
036
037 (DEFINE ALPHA-COMBINAT ION
038 (LAMBDA (S(XPR (NV)
039 (LET ((N (MODIFY (CONS-COMBINATION
040 (WARNP • NIL )
041 (ARGS • (AMAPCAR (LAMBDA (K) (ALPHATIZ ( X (NV))
042 S(XPR)))
043 SEXPR
044 ENV)))
045 (LET ((N (NOOE\FORH (CAR (COMBINATION\ARGS (NO0E~FORM N))))))046. - (IF (AND (EQ (TYPE N) ‘VARIABLE )
047 (VAR IASL (\GLOBALP H))
048 (CHECK-NUMBER-OF-ARGS
049 (VARIABL (\VAR M )
050 (LENGTH (CON (C0MlINATION\ARGS (NOOE\FORM N))) )
051 - NIL))
052 N))))

~~.1
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Once the S-expression funct±on definition has been copied as a NODE tree,
COMPILE calls PASS1-ANALYZE to fill in various pieces of information . (If
optimization is to be performed , COMPILE instead calls META-EVALUATE . META-
EVALUATE in turn calls PASSI -ANALYZE in a coroutining manner we will examine
later.) PASS1-ANALYZE in turn calls ENV-ANALYZE , TRIV-ANALYZE , and EFFS-ANALYZE
in order. Each of these has roughly the same structure . Each takes a node and a
flag called REDOTHIS. Normally REDOTHIS is NIL and the information has not yet
been installed in the node , and so the rout ine proceeds to analyze the node and
install the appropriate information .

When invoked by the optimizer , however , there may be informa tion in the
node already, bu t tha t informat ion may be incorrect or obsolete as a resul t of
the  optimizing transformations. If REDOTHIS is non-NIL , then the give-n node must
be reanalyzed , ev en if the information is already present. If REDOTH IS is in
fact the symbol ALL , then all descendants of the given node must be reanalyzed.
Otherwise , only the given node requires re-analysis, plus any descendants which
have not had the information installed at all. We will see later how these
mechanisms are used in the optimizer.

The purpose of ENV-ANALYZE Is to fill in for each node the slots REFS and
ASETS. The first is a set (represented as a list) of the new-names of all
variables bound above the node and referenced at or below the node , and the
secon d (a su bset of the f irs t ) is a set of such names wh ich appear in an ASET at
or below the node. These lists are computed recursively. A CONSTANT node has no
su ch ref erences; a VARI ABLE node (with GLOBM~P = NIL) refers to its own
variable. An ASET node adds its variable to the ASET list for its body. Most
other kinds of nodes merely merge together the lists for their immediate
descendants. In order to satisfy the “bound above the node” requirement, those
structures which bind variables (LAMBDA , CATCH , LABELS) filter out their own
bound variables from the two sets.

As an ex amp le , consider this function :

(LAMBDA (X)
((LAMB DA (Y)

((LAMBDA (W)
(ASET’ Z (* X Y)))

(ASE T ’ V (- V 1))))
( -  X 3 ) ) )

The no de f or (-  X 3) would have a REFS list (X) and an ASET list (). The node
for the ASET on Z would have REFS:(X Y)  (or perhaps (Y X)~ and ASETS=(); Z does
not appear in the ASETS list because it is not bound above. The node for the
combinati on ((LAMBDA (W) - - - .) would have REFS~(X Y) and ASETS (Y). The
node for the lambda-expression (LAMBDA CV ) ...) would have REFS (X) and
ASETS=(), because Y is filtered out.



001 RABBIT 568 O5/1j/?6 Page 12
002 ENVIRONMENT ANALYSIS.
003
004 ;;. FOR NODE S ENCOUNTERED WE FILL IN :
005 REFS
006 AS ET S
007 ON VARIABLE NAMES THESE PROPERTIES ARE CREATED:
008 BI NDING THE NODE WHERE THE VARIABLE IS BOUND
009 USER-NAME THE USER’S NAME FOR THE VARIABLE (WHERE BOUND)
010 ;;; READ-REFS VARIABLE NODES WHICH READ THE VARIABLE
011 ;;; WR ITE-REFS ASET NODES WHICH SET THE VARIABLE
012
013 NORMALLY . ON RECURRING TO A LOWER NODE WE STOP IF THE INFORMATION
014 IS ALREADY THERE . MAKING THE PARAMETER ~REDOTHIS BE ‘ALL’ FORCES
015 •.;  RE-COMPUTATION TO ALL LEVELS; MAKING IT ‘ONCE’ FORCES
016 ;;; RECOMPUTATION OF THIS NODE BUT NOT OF SUBNOOES.
017
018 (DEFINE (NV-ANALYZE
019 (LAMBDA (NODE REDOTHIS)
020 (IF (OR R(DOTHIS (EMPTY (NODE\R(FS NODE)))
021 (LET ((FM (NODE\FORM NODE))
022 (REDO (IF (EQ REDOTHIS ‘ALL) ‘ALL NIL)))
023 (EQCASE (TYPE FM)
024 (CONSTANT
025 (ALTER-NODE NODE
026 (REFS :• NIL)
027 (AS(TS := NIL)))
028 (VARIABLE
029 (ADDPROP (vARIABLES,VAR FM) NODE ‘R(AD-REFS)
030 (IF (VA~ IABLE\GLOBALP FM)
031 (S(TPROP (VARIABLE\VAR FM) (VARIABLE\VAR FM) USER-N~AME))
032 (ALTER-NODE NODE
033 (REFS :‘ (AND (NOT (VARIABL (\GLOBALP FM))
034 (LIST (VARIABLE \VAR FM))))
035 (ASETS :~ NIL)))
036 (LAMBDA
037 (00 ((V (LAMBDA\VARS FM) (CDR V))
036 (UV (LAMBDA\UVARS FM) (CON UV)))
039 ((NULL v))
040 (SETPROP (CAR V) (CAR UV) ‘USER-NAME)
041 (SETPROP (CAR V) NODE ‘BINDING))
042 (LET ((B (LAMBOA\BOOY FM)))
043 

- 
(ENV-ANALYZ ( B REDO) -

044 (ALTER-NODE NODE
045 (REFS :— (SETDIFF (NO0 (\REFS B)
046 (LAMBDA\VARS FM)))
047 (ASETS :‘ (SETDIFF (NOO(\AS (TS B)
048 . (LAMBDA\VARS FM))))))
049 (IF
050 (LET ((PRED (IF\PRED FM))
051 (CON (IF\CON FM))
052 (ALT (If’~ALT FM)))
053 ((NV-ANALYZE PRED REDO)
054 ((NV-ANALYZE CON REDO )
055 ((Nv-ANALYZE ALT REDO)
056 (ALTER-NODE NODE
057 (R(FS :‘ (UNION (NOOE\R(FS PRED)
058 (UNION (NOD(\REFS CON)
059 (NOOE\R (FS ALT))))
060 (ASETS :• (UNION (NOO \AS TS PRED)
061 (UNION (NOD (\ASETS CON)
062 (NOD(\AS (TS ALT)))))))
063 (ASET
064 (LET ((B (ASET\BOOY FM))
065 (V (ASET\VAR FM)))
066 ((NV-ANALYZE I REDO)
067 (ADDPROP V NODE ‘WRITE-REFS)
068 (IF (AS(T\GLOBALP FM)
069 (ALTER-NODE NODE
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It should be easy to see the the topmost node of the node-tree must have
REF S~() and ASETS=(), because no variables are bound above it. This fact is used
in COMPILE for a consistency check. (After writing this last sentence, I noticed
that in fact this consistency check was not being performed, and that it was a
good idea. On being installed , this check immediately caught a subtle bug in the
optimizer . Consistency checks pay off !)

Another purpose accomplished by ENV -ANALYZE is the installation of
several usefu l properties on the new-names of bound variables. Two properties,
READ-REFS and W RITE-REF S , accumul ate for each variable the set of VARIABLE nodes
which refer to it and the set of ASET nodes that refer to it. These lists are
very important to the optimizer. A non-empty WRITE-REFS set also calls for
special action by the Code generator.

When a LAMBDA node is encountered , that node is put onto each new-name
un der the BINDING proper ty, and the user-name is put under the USER-NAME
property; these are used only for debugging.
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070 (REFS :‘(NODE\REFS B))
071 (ASETS :‘ (NODE\ASETS B)))
072 (ALTER-NODE NODE
073 (REFS :‘ (ADJOIN V (NODE\REFS B)))
074 (ASETS :‘ (ADJOIN V (NOOE\AS (TS B)))))))
075 (CATCH
076 (LET ((B (CATCH\BODY FM))
077 (V (CATCH \VAR FM)))
078 (SET PROP V (CATCH\UVAR FM) ‘USER-NAME )
079 (S(TPROP V NODE ‘BINDING)
080 ((NV-ANALYZE B REDO)
081 (ALTER-NODE NODE
052 (REFS :‘ (REMOVE V (NOD(\REFS B)))
083 (ASETS :‘ (REMOVE V (NODE\ASETS B))))))
084 (LABELS
085 (Do ((V (LABELS\FNVARS FM) (CaR V))
086 (UV (LABELS~UFNVARS FM) (CON UV))057 . (0 (LABELS\FNDEFS FM) (CaR 0))
088 (R NIL (UNION R (NODE\REFS (CAR 0))))
089 (A NIL (UNION A (NOOE\ASETS (CAR 0)))))
090 ((NULL V) -

091 (LET ((B (LABELS\BOOY FM)))
092 (ENV.ANALYZE B REDO)
093 (ALTER-NODE NODE
094 

- (R(FS :“ (SETOIFF
095 (UNION R (NOD(\REFS B))
096 (LABELS~FNVARS FM)))097 (ASETS :— (S(TDIFF
096 (UNION A (NOD (~AS(TS B))099 (LABELS\FNVARS FM))))))
100 (SETPROP (CAR V) (CAR UV) ‘USER-NAME )
101 (SETPROP (CAR V) NODE ‘BINDING )
102 ((NV-ANALYZE (CAR 0) REDO)))
103 (COMBINATION
104 (LET ((ANGS (COMB (NATION\ARGS IN)))
105 (AMAPC (LAMBDA (X) ((NV-ANALYZE K REDO)) ARGS)
106 (DO ((A ARGS (CON A)) -

107 (N NIL (UNION N (NODE\REFS (CAR A))))
106 (S NIL (UNION S (NODE\AS(TS (CAR A)))))
109 ((NULL A)
110 (ALTER-NODE NODE
111 (REFS :‘ R)
112 (ASETS :—
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TR IV-ANALYZE fills in the TRIVP slot for each node . This is a flag
which , if non-NIL , indicates that the code represented by that mode and its
descendants is “trivial” , i.e. it can be executed as simple host machine
(MacLISP) code because no SCHEME closures are involved. Constants and variables
are trivial , as are combinations with trivial arguments and a provably trivial
func tion . While lambda-expressions are in general non-trivial (because a closure
must be constructed), a special case is made for ((LAMBDA ...) - ..), i.e. a
combination whose function is a lambda-expression . This is possible because the
code generator will no~ really generate a closure for the lambda-expression .
This is the first example of a trjchotomy we will encounter repeatedly.
Combinations are divided into three kinds : those with a lambda-expression in the
function position , those with a trivial MacLISP primitive (satisfying the
predicate TRIVFN) in the function position, and all others.

All other expressions are, in general, trivial iff all their subparts are
t r i v i a l .  Note that a LABELS is trivial iff its body is trivial; the non—
triviality of the bound functions does not affect this.

The triviality flag is used by phase 2 to control conversion to
con tinuation-passing style. This in turn affects the code generator, wh ich
compiles trivial forms straightforwardly into MacLISP code, rather than using the
more complex techniques required by non-trivial SCHEME code. It would be
possible to avoid triviality analysis entirely; the net result would only be
less optimal final code.



001 - RABBIT 568 0~/ 5{78__P.ge _13
002 ;;; TRIVIAL I TY ANALYSIS
003
004 ;;; FOR NODES ENCOUNTERED WE FILL IN:
005 ;;; TRIVP
006
007 ;;; A COMBINATION IS TRIVIAL 1FF ALL ARGUMENTS ARE TRIVIAL , AND
008 ;;; THE FUNCTION CAN BE PROVED TO BE TRIVIAL . WE ASSUME CLOSURES
009 ;;. TO BE NON-TRIVIAL IN THIS CONTEXT , SO THAT THE CONVERT FUNCTION
010 ;;; WILL BE FORCED TO EXAMINE THEM.
011
012 (DEFINE TRIV-ANALYZE
013 (LAMBDA (NODE REDOTHIS)
014 (IF (OR REOOTHIS (EMPTY (NOOE\TRIVP NODE)))
015 (LET ((FM (NODE\FORN NODE))
016 (REDO (IF (EQ REDOTHIS ‘ALL ) ‘ALL NIL)))
017 (EQCASE (TYPE FM)
018 (CONSTANT
019 (ALTER-NODE NODE (TRIVP :- T)))
020 (VARIABLE
021 (ALTER-NODE NODE (TRIVP :— T)))
022 (L AMBDA
023 ‘ “V-ANALYZE (LAM8D(~\BO0Y FM) REDO)
024 (ALTER-NODE NODE (TRIVP :‘ NIL)))
02S (IF
026 (TRIV-ANALYZ ( (IF\PREO FM) REDO)
027 (TRIV .ANALYZE (IF\CON FM) REDO)
025 (TRIV-ANALYZ( (IF\ALT FM) REDO)
029 (ALTER-NODE NODE
030 ( TRIVP :- (AND (NOD(\TRIVP (IF\PRED FM))
031 (NO0(\TRIVP (IF\CON FM))
032 (NOOE\TRIVP (IF\ALT FM))))))
033 (ASET
034 (TRIV-ANALYZE (ASET~BOOY FM) REDO)
035 (ALTER-NODE NODE (TRIVP : (NODE\TRIVP (ASET~BODY FM)))))
036 (CATCH
037 (TRIV-ANALY ZE (CATCH\BODY FM) REDO)
036 (ALTER-NODE NODE (TRIVP :‘ NIL )))
039 (LABELS
040 (AMAPC (LAMBDA (F) (TRIV-ANALYZE F REDO))
041 (LABELS\FND(FS FM))
042 (TRIV-ANALYZE (LABELS\BOOY FM) REDO)
043 (ALTER-NODE NODE (TRIVP :‘ NIL)))
044 (COMBINATION
045 (LET ((ARG S (COM8INATIOR\ARGS FM)))
046 (TRIV-ANALYZE (CAR ANGS ) REDO)
047 (DO ((A (CON ARGS) (CON A))
048 (SW T (AND SW (NODE\TRIVP (CAR A)))))
049 ((NULL A)
050 (ALTER-NOD E NODE
051 (TRIvP :- (AND SW
052 (TRIV -ANALY ZE-FN- P
053 (CAR ARGS))))))
054 (TRIV-ANALYZ( (CAR A) REOO)))))))))
055
056 (DEFINE TRIV-ANA IYZE-FN-P
057 (LAMBDA (FN)
058 - (OR (AND (EQ (TYPE (NOuL\FORM FN)) ‘VARIABLE )
059 (TRIVF N (VARIABL (\VAR (NOOE\FORM FN))))
060 (AND (~EQ ( TYPE (NOOE\FORN IN)) ‘LAMBDA)
061 (N00(~TR1VP (LAMBOA\BOOY (NOBEVORN 11)))))))
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EFFS-ANALYZE analyzes the code for side-effects . In each node the four
slots EFFS , AFFD , PEFFS , and PAFFD are filled in. Each is a set of side effects,
which may be the symbol NONE, meaning no side effects; ANY, meaning all possible
side effects; or a list of specific side effect names. Each such name specifies
a category of possible side effects. Typical names are ASET, RPLACD , and FILE
(which means input/output transactions).

The four slots EFFS , AFFD, PEFFS, and PAFFD refer to the node they are in
and all nodes beneath it. Thus each is computed by taking the union of the
corresponding sets of all immediate descendants , then adjoining any effects due
to the current node .

EFFS is the set of side effects which may possibly be caused at or below
the current node ; PEFFS is the set of side effects which can be proved to occur
at or below the node . These may differ because of ignorance on RABBIT’s part.
For ex amp le , the node for a combination (RPLACA A B) will have the side-effect
name RPLACA adjoined to both EFFS and PEFFS, because the RABBIT knows that RPLACA
causes an RPLACA side effect (how this is known will be discussed later). On the
other hand , for a combination ( FOO A B), where FOO is some user function , RABBIT
can only conjecture that FOO can cause any conceivable side effect, but cannot
prove it . Thus EFFS will be forced to be ANY , while PEFFS will not .

AFF D is the set of side effects which can possibly affect the evaluation
of the current node or its descendants. For example, an RPLACA side effect can
affect the evaluation of ( CAR X) ,  but on the other hand an RPLACD side effect
cannot. PAFFD is the corresponding set of side effects for which it can be
proved. (This set is “proved” in a less rigorous sense than for PEFFS. The name
RPLACA would be put in the PAFFD set for (CAR X),  even though the user might know
that while there are calls to RPLACA in his program, none of them ever modify X.
PEFFS and PAFFD are only used by CHECK-COMBINATION-PEFFS to warn the user of
potential conflicts anyway, and serve no other purpose . EFFS and AFFD . on the
other hand , are used by the optimizer to prevent improper code motion . Thus EFFS
and AFFD must be pessimistic , and err only on the safe side; while PEFFS and
PAFFD are optimistic , so that the user will not be pester ed with too many warning
messages.)

The CONS side effect is treated specially. A node wh ich causes the CONS
side effect must not be duplicated , because each instance will create a new
object;  hut whereas two RPLACA side effects may not be executed out of order.
two CONS side effects may be.

The computation of AFFD and PAFFD for variables depends on whether the
variable is global or not. If it is, SETQ and RPLACD can affect it (RPLACD can
occur because of the peculiarities of the PDP-1O MacLISP implementation);
otherwise , ASET can affect it if indeed any ASET refers to it (in which case ENV—
ANALYZE will have left a WRITE-REF S property); otherwise, nothing can affect it.
Similar remarks hold for the computation of EFFS and PEFFS for an ASET node . The
name SETQ applies to modifications of global variables, while ASET applies to
local variables.

-- - -
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002 ;;; SIDE-EFFECTS ANALYSIS
003 FOR NODES ENCOUNTERED WE FILL IN: EFFS , AFFD , PEFF S , PAF FD
004 ;;. A 511 OF SIDE EFFECTS MAY BE EITHER ‘NONE OR ‘AllY, OR A SET.
005
006 (DEFINE EFFS-ANALYZE
007 (LAMBDA (NODE REDOTHIS)
008 (IF (OR REDOTHIS (EMPTY (NODE\EFFS NODE)))
009 (LET ((FM (NOOt\FORM NODE))
010 (REDo (IF (EQ REDOTHIS ‘ALL) ‘ALL NIL)))
011 (EQCASE (TYPE FM)
012 (CONSTANT
013 (ALTER-NODE NODE
014 (EFFS := ‘NONE)
015 (AFFO :~ ‘ NONE )
016 (PEFFS :~ ‘NONE )
017 (PAFFD :~ ‘NONE)))
018 (VARIABLE
019 (LET ((A (CORD ((VARIA1LL\GLOBALP FM) ‘(SETQ))
020 ((GET (VARIABLE \VAR FM) ‘WRITE-REFS) (ASET))
021 (T ‘NONE))))
022 (ALTER-NODE NODE
023 ((FF5 :~ ‘NONE)
024 (AFFD :~ A)
025 (PEFFS :~ NONE)
026 (PAFFO :~ A))))
027 (LAMBDA
028 (EFFS-ANALYZE (LAMBDA\BOOY FM) REDO)
029 (ALTER-NODE NODE
030 ((FF5 :~ ‘(CONS))
031 (AFFD :~ NIL )
032 (PEFF S :- ‘(CONS))
033 (PAFFO :~ NIL)))
034 (IF (EFFS-ANALYZE-IF NODE FM REDO))
035 (ASET
036 ((FF3-ANALYZE (ASET\BOOY FM) REDO)
037 (LET ((ASETEFFS (IF (ASET\GLOBALP FM)
038 ‘(SETQ )
039 ‘(ASET))))
040 (ALTER-NODE NODE
041 (EFFS :~ (EFFS-UNION ASETEFFS
042 (NODE\EFFS (ASET\BODY FM))))
043 (AFFO :~ (NOD(~ AFFD (ASET\BO DY FM)))
044 (PUFS := (EFFS-UNION ASETEFFS
045 (NODE\PEFFS (A.SET\BODY FM))))
046 (PAFFO :~ (NOD(\PAFFD (ASET\BOOY FM))))))

(CATCH
048 (EFFS-ANALY Z E (CATCH\BODY FM) REDO)
049 (ALTER-NODE NODE
050 ((IFS ~ (NOD( \EFFS (CATCH\BODY FM)))
051 (AFFD :~ (NODE\AFFD (CATCH\BODY FM)))
052 - (PEFFS :~ (NODE \PEFFS (CATCH\BOOY FM)))
053 (PAFFD := (NODE\PAFFD (CATCH\BOOY FM)))))
054 (LABELS

p 055 ( ANAPC (LAMBDA (F) ((FFS-ANALYZE F REDO))
056 (LA BELS~FNDEFS FM))
057 (EFFS-ANALYZ ( (LAB(LS\BOOY FM) REDO)
oss (ALTER-NODE NODE
059 ((FF5 :— ((FFS-UNJON ‘(CONS)
060 (NOOE\EFFs (LABELS\BODY FM))))
061 (AFFO :~ (NODE\AFFD (LABELS\BODY FM)))
062 (P(FFS :~ ((IFS -UNION ‘(CONS )
063 (NODE\P(FFS (LABELS\BODY FM))))
064 (PAFFO :~ (NOOE\PAFFD (LABELS\BOOY FM)))))
065 (COMBINATION
066 ((IFS-ANALYZE-COMBINATION NODE FM RE0O)))))))
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(While it may be held that allowing ASET’ on variables is unclean , and
that the use of cells as in PLASM A is semantically neater, it is true that
because of the lexical scoping rules it can always be determined whether a given
variable is ever used in an ASET’ . In this way one can say that variables are
divided by the compiler into two classes: those which are implicitly cells, and
those which are not.)

A closure (LAMBDA-expression ) causes a CONS side-effect. This is not so
much because SCHEME programs depend on being able to do EQ on closures (it is
unclear whether this is a reasonable thing to specify in the semantics of
SCHEME), as because ther e is no point in creat ing two closures when one will
suff ice . Adjoining CONS to EFFS will prevent the creation of such duplicate code
by the optimizer. The same idea holds for LABELS (which has LAMBDA-expressions
within it).

Notice that a LAMBDA node does not add to its four sets the information
from its body ’ s sets. This is because evaluation of a LAMBDA-expression does not
immediately evaluate the body . Only later, when the resulting closure is
invoked , is the body executed.

EFFS-UNIO N gives the union of two sets of side effects. It knows about
the special symbols NONE and ANY . 

-

EFFS-ANALYZE-IF computes the side-effect sets for IF nodes. It has been
made a separate function only because its code is so bulky; it must perform a
three-way union for each of four sets.

EFFS-ANALYZE-COMBINATION computes the side-effect sets for COMBINATION
nodes. First the function is analyzed , then the arguments. The unions of the
four sets over all the arguments are accumulated in EF , AF , PEF , and PAF . CHECK—
COMBINATION-PEFFS is called to warn the user of any possible violations of the
rule that SCHEME is pr ivileged to choose the order in which to evaluate the
subiorns of a combination . Finally, there are three cases depending on the form
of the function position .

If it is a variable , then the property list of the variable name is
searched for information about that function . (The genera ted names for local
variables will never have any such information ; thus information will be found
only for global variables. Th is information is used to augment the sets. (A
clever technique not used in RABBIT would be to arrange for situations like
((LAMBDA (F) <bodyl>) (LAMBDA C . . . )  <body2>), where F denotes a “known function’
(see the description of BIND-ANALYZE below), to put on the property list of F the
side-effect information for <body2>, to aid optimization in <bodyl>.)

If the funct ion pos it ion is a LAMBDA-expression , then the four sets of
the body of the LAMBDA-expression are unioned into the four sets for the
COMBINATION node . This is because in this case we know that the body LAMBDA-
expression will be executed in the course of executing the COMBINATION node.

In an y other case , an unknown function is computed , and so it must be
assumed that any side-effect is possible for EFFS and AFED.



001 RAB81T 568 05/15/78 Page 15
002 (DEFINE EFFS-UNION 

--

003 (LAMBDA (A B)
004 (cOND ((EQ A ‘NONE ) B)
005 (((0 B ~NONE) A)
006 ((EQ A ‘ANY) ‘ANY)
007 ((EQ B ‘ANY) ‘ANY)
008 (T (UNION A 8)))))
009 -

010 (DEFINE EFFS -ANALYZE-IF
011 (LAMBDA (NODE FM REDO)
012 (BLOC K ((FF5-ANALYZE (IF\PRED FM) REDO)
013 ((FF5-ANALYZE (IF\CON FM) REDO)
014 (EFFS-ANALYZ E (IF \ALT FM) REDO)
015 (ALTER-NODE NODE
016 ((FF5 :~ (EFFS-UNION (NO O (\EFFS (JF\PRED FM))
017 (EFFS-UNION (NOD E\EFFS (IF’~,CON FM ))
018 (NODE\EFFS (IF\ALT FM)))))
019 (AFFD :~ ((FF5-UNI ON (NOO(\AFFD (IF\PREO FM))
020 (EFFS-UNION ( NODE\A FFD ( IF\CO N FM))
021 (NODE\AFFD (IF\ALT FM)))))
022 (PEFFS := (EFFS-UNION (NODE\PEFFS (IF\PRED FM))
023 (EFFS-UNION (NODE \PEFFS (IF\cON FM))
024 (NODE\P(FFS (IF\ALT FM)))))
025 (PAFFO :~ ((FF5-UNION (NODE\PAFFD (IF\PR(0 FM))
026 (EFFS-UNION (NOD (\PAFFO (IF\CON FM))
027 (NODE\PAFFD (IF\ALT FM)))))))))
028
029 (SET’ *CHECK~pEFF5* NIL)
030
031 (DEFINE EFFS-ANALYZE-COMBINATION
032 (LAMBDA (NODE FM REDO)
033 (LET ((ARGS (COMBINATION\ARGS FM)))
034 (EFFS-ANALYZE (CAR ARGS) REDO)
035 (DO ((A (COR ARGS) (COR A))
036 ((F ‘NONE ( (FF 3-U NIO N (F ( NODE \EFF S (CAR A) ) ) )
037 (AF ‘NONE ((FF3-UN ION AF (NODE\A FFD (CAR A ) ) ) )
038 (PEE ‘NONE (EFFS-UNION PEF (NOOE\PEFFS (CAR A))))
039 (PAF ‘NONE (EFFS-UNION PAF (NODE\PAFFO (CAR A)))) )
040 ((NULL A)
041 (IF *CHECK-p(FFS* (CHECK-CQM8INATION-PEFFS FM))
042 (CORD ((EQ (TYP E (NODE\FORM (CAR ARGS))) ‘VARIABLE)
043 (LET ((V (VARIABLEWAR (NODE\FORM (CAR ARGS)))))
044 (lET ((VE (GET V ‘EN-SIDE-EFFEcTS))
045 (VA (GET V ‘EN-SIDE-AFFECTED)))
046 (ALTER-NODE NODE
047 ((FF5 :~ (IF V( (EFFS-UNION (F yE) ‘ANY))
048 (AFFD :“ (IF VA ((FF5-UNION AF VA) ‘AMY))
049 (PEFFS := ((FF5-UNION P(F Vt))
050 (PAFFD :~ (EFFS-UNION PAF V A ) ) ) ) ) )
051 ((EQ ( TYPE (NOOE\FORM (CAR ARGS))) ‘LAMBDA)
052 (LET ((B (LAMBDA\BODY (NODE\FORM (CAR ARGS)))))
053 (ALTER-NODE NODE
054 (EFFS :~ (tEES-UNION (F (NOD(\EFFS B)))
055 (AFFD :~ ((FF5-UNION AF (NOD(\AFFD B)))
056 (PEFFS :~ ((FF3-UNION PEE (NODE\PEFFS B)))
057 (PAFFD :~ ((FF5-UNION PAF (NODE\PAFFD B))))))
oss (T (ALTER-NODE NODE
059 ((FF5 :“ ‘ANY) -
060 (AFFO := ‘ANY)
061 (PUFS :~ ((FF5-UN ION PEE
062 (NOOE\PEFFS (CAR ARGS))))
063 (PAFFD :~ ((FF5-UNION PAF
064 (NO0(\PAFFD (CAR ARGS))))))))
065 (UFS-ANALYZE (CAR A) REDO)))))
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CIIECK-COFIBINATION-PEFFS checks all the argument forms of a combination
(including the function position ) to see If they are all  inde penden t of each
other with respect to side effects. I f  not , a warning is issued. This is
because the semantics of SCHEME specify that the arguments may be evaluated in
any order , and the user may not depend on a particular ordering.

The test is made by comparing all pairs of arguments within the
combination . If the side-effects of one can “provably” affect the evaluation of
the other , or if they both cause a side effect of the same category (other than
CONS , which is special), then the results may depend on which order they are
evaluated in. The test is not completely rigorous , and may err in either
direct ion , but “probably” a reasonably written SCHEME program will sat isfy the
test .

T h i s  check is controlled by the switch *CHECK-PEFFS* in EFFS-ANALYZE-
COMBINATION . This switch is provided because empirical tests show that
performing the test slows down compilation by twenty to thirty percent. The test
has proved valuable in trapping programming errors, and so is normally on , but it
can be turned off for speed in compiling programs in which one has confidence.

EFFDEF is a macro which expands into a number of DEFPROP forms. This is
used to define side-effect information about primitive functions. For example:

(EFFDEF CADR NONE (RPLACA RPLACD))

states that CADR causes no side-effects , and is “provably ” affected by the RPLACA
and RPLACD categories of side-effects. Similarly:

(EFFDEF MEMQ NONE (RPLACA RPLACD) T)

specifies the same information for PIEMQ, but the “1” means that a call to MEM Q
with constant arguments may be “folded” (ev aluated, and the result compiled
instead), despite the fact that some side effects can affect it. This represents
a judgement that it is extremely unlikely that someone will write a program which
modifies a constant argument to be given to MEMQ .



001 RABBIT 568 05 /15/78 P.g. 16
00 2 (DEFINE CHECK-COMBINATION-P EFFS
003 (LAMBDA (FM)
004 (IF (NOT (COMBINAIION \WARNP FM))
005 (DO ((A (COMBINATION\ARGS FM) (CDR A)))
006 ( ( N U L l  A ) )
007 (DO ((B (CDR A) (CDR 8)))
006 ( ( N U L L  B ) )
009 (IF (NOT (EFF(CTLESS (EFFS-INT(RS (CT (NODE\P(FFS (CAR A))
010 ( NOOE\ PAFFO (CAR B ) ) ) ) )
011 (BLOCK (WARN Ico-arg anent may aFFect later one l
012 (NODE\SEXPR (CAR A))
013 “(EFFECTS = •(NODE\P(FFS (CAR A)))
014 (NODE\ SEX PR (CAR B) )
015 “(AFFECTED BY .(NODE\PAFFD (CAR B))))
016 (ALTER-COMBINATION FM (WARNP T))))
017 (IF (NOT (EFFECTLESS (EFFS-INTERSECT (NODE\PEFFS (CAR B))
016 (NODE~PAF FD (CAR A)))))
019 (BLOCK (WARN Ico-.rgtxnent may af f ec t  earlier onel
020 (NODE\SEXPR (CAR B))
021 ‘(EFFECTS ,(NO DE\PE FFS (CAR B ) ) )
022 (NODE\SExPR (CAR A))
023 “ (AFFECTED BY .(NODE \PAFFD (CAR A))))
024 (ALTER-COMBINATION FM (WARNP :=
025 (IF (NOT (EFFECTLESS-EXCEPT-CON S ((FF5-INTERSECT (NODE\PEFFS (CAR A))
026 (NOD(\P(FFS (CAR B)))))
027 ( BLOCK (WARN Ico-arguments may have ~nter?er1ng efrectal
028 (NODE\SEXPR (CAR A) )
029 “ (EFFECTS ,(NODE%,P(FFS (CAR A)))
030 (NO0(\SEXPR (CAR B))
031 “(EFFECTS — ,(NODE\P(FFS (CAR B))))
032 (ALTER-COMBINATION FM (WARNP :-
033
034 (DEFMAC EFFDEF (EN (FF5 AF FD FOLD)
035 ‘(PROG N (D E FPR OP ,FN •EFF3 EN-SID E-EFFECTS)
036 (OEFPROP ,FN ,AFFD EN-SIDE-AFFECTED)
037 .(AND FOLD “(DEFPROP ,FN T OKAY-TO-FOLD))))
038
039 (DECLARE (/ID(FINE EFFOEF ISIDE EFFECTSI))
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This page contains declarations of side-effect information for many
stanhldrd pr imit ive functions. The EFFDEF macro used to make the declarations is
descr ibed on the previous page .



001 ~~BB!!~~~~~ .~ 5/15I78_ Page 17
00 2 (PROG N ‘COMPILE
003 (EFFDEF + NONE NONE)
004 (EFFDEF - NONE NONE )
005 ( E F F D E F  ~ NONE NONE )
006 (EFFOEF f t  NONE NONE )
007 (EFFOEF NONE NONE )
008 ((FFDEF < NONE NONE )
009 ( E FFDEF ) NONE NONE)
010 (EFFDEF CAR NONE (RPLACA))
011 ((FFDEF CDR NONE (RPLACD))
012 (EFFOEF CAAR NONE (RPLACA) )
013 (EFFOIF CADR NONE (RPLACA RPLACD))
014 (EFFDEF COAR NONE (RPLACA RPLACD))
015 ((FFDLF CDDR NONE (RPLACD))
016 (EFFDEF CAAAR NONE (RPLACA))
017 (EF F DE F CAAD R NON E (RPLACA RPLACD))
018 (EFFOEF CADAR NONE (RPLACA RPLACO))
019 (EFFOEF CADOR NONE (RPLACA RPLACD))
020 ((FFDLF COAAR NONE (RPLAcA RPLACD))
021 (EFFDEF CDADR NONE (RPLACA RPLACD))
022 (E F F DE F CD DAR NONE (RPIACA RPLACO))
023 (EFEDEF CDDDR NONE (RPLACD))
024 (EFFDEF CAAAAR NONE (RPLACA))
025 (EFFDEF CA AA O R NONE ( RPLACA RPLACD))
026 (EFEDEF CAADAR NONE (RPLACA RPLACD))
027 (EFFDEF CAAODR NONE (RPLACA RPLACD))
028 (EFFDEF CADAAR NONE (RPLACA RPLACD))
029 (EFFDEF CADADR NONE (RPLACA RPLACD))
030 (EFFDEF CADDAR NONE (RPLACA RPLACD))
031 (EFFOEF CADDDR NONE (RPLACA RPLACD))
032 (EFFDEF CDAAAR NONE (RPLACA RPLACD))
033 (EFFOEF CDAADR NONE (RPLACA RPLACO))
034 (EFEDEF CDADAR NONE (RPLACA RPLACD))
035 (EFFDEF CDADDR NONE (RPLACA RPLACD))
036 ((FFOEF CDDAAR NONE (RPLACA RPLACD))
037 ((FFDEF CDDADR NONE (RPLAC A RPLACD))
036 ((FFD(F C000AR NONE (RPLACA RPLACD))
039 ((FFDEF CDDDDR NONE (RPLACO))
040 ((EFOEF CXR NONE (RPLACA RPLACO))
041 (EFFOEF RPLACA (RPLACA) NONE)
042 (EFFDEF RPLACD (RPLAcA) NONE)
043 ((FFD(F RPLACX (RPLACA RPLACO) NONE )
044 (EFFDEF EQ NONE NONE )
045 (EFFD(F ATOM NONE NONE )
046 (EFFOEF NUMBERP NONE NONE )
047 (EFFD(F TYP(P NONE NONE )
048 ((FFD(F SYMBOLP NONE NONE )
049 (EFFDEF HUNKP NONE NONE )
050 (EFFDEF FIXP NONE NONE )
051 (EFFIIEF FLOATP NONE NONE)
052 ((FFDEF BIGP NONE NONE)
053 ((FFDEF NOT NONE NONE )
054 (EFFDEF NULL NONE NONE )
055 (EFFOEF CONS (CONS) NONE )
056 ((FFDEF LIST (CONS) NONE )
057 ((FFDEF APPEND (CONS) (RPLAcD))
056 ((FFDE F MEMQ NONE ( RPLACA RPLACD) T)
059 ((FFDEF ASSQ NONE (RPLACA RPLACD) T)
060 (EFFOEF PRINT (FILE) (FILE RPLACA RPLACO))
061 (EFFDEF PRIN1 (FILE) (FILE RPLACA RPLACO))
062 (EFFDEF PRINC (FILE) (FILE RPLACA RPLAC0))
063 ((FFO(F TERPRI (FILE) (FILE))
064 ((FFD(F TYO (FILE) (FILE))
065 (E FFDEF READ ANY (FILE))
066 (EFFOEF TYI ANY (FILE))
067 ‘SIDE.EFFECTS.PROP (RTIES)
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ERASE-NODE and ERASE-ALL-NODES are convenient mnemonic macros used to
invoke ERASE-NODES.

ERASE-NODES is used by the optimizer to destroy nodes which have been
removed from the program tree because of some optimization . If ALLP is NIL
(ERASE-NODE), then only the given node is erased ; if it is T ( ERASE-ALL-NODES),
then the given node and all descendants , direct and indirect , are erased .

Erasing a node may involve removing certain properties from property
lists. This is necessary to maintain the consistency of the properties. For
example , i f  a VARIABLE node is erased, then that node mI’st be removed from the
READ-REFS property of the variable name . The optimizer depends on this so that,
for example , it can determine whether all references to a var iable have been
erased.

I t shou ld be noted in pass ing that in pr inc ip le all occurrences of ASET
on a given variable could he erased , thereby reducing its WRITE-REFS property to
NIL . Because the EFFS-ANALYZE computation on VARIABLE nodes used the WR ITE-REFS
property , a VARIABLE node might have ASET in its AFFD set after the optimizer had
removed all the ASET nodes. Because of the tree-walking discipline of the
optimizer , the VARIABLE nodes will not be reanalyzed immediately. This cannot
hurt , however; it may just cause the optimizer later to be more cautious than
necessary when examining a VARIABLE node . (If this doesn ’t make sense , come back
after reading the description of the optimizer.)

The flag *TESTING* is used to determine whether or not to remove the node
from the NODE property on the node ’s name . When debugging , it is very useful to
keep this information around to trace the optimizer ’s actions; b-ut when
compiling a large function for “production ” purposes, the discarded nodes may
bloat memory , and so they must be removed from the NODE property in order that
they may be garbage-collected by LISP .



001 RABBIT 566 0 /15/75 Pge 16
002 THIS ROUTINE IS USED TO UNDO ANY PASS 1 ANALYSIS ON A NODE .
003
004 (DEFMAC ERASE-NODE (NODE ) “(ERASE-NODES .NODE NIL))
005 (D(FMAC ERASE-ALL-NODES (NODE ) “(ERASE-NODES ,NOD( T))
006
007 ( DEFINE ERASE-NODES
006 (LAMBDA (NODE ALLP)
009 (LET ((FM (NODE \FORM NODE)))
010 (OR (E Q ( TYPE NODE ) ‘ NODE )
011 (ERROR ‘ICannot era se a non-node I NODE ‘FAIL-ACT))
012 (EQCAS( ( TYPE FM)
013 (CONSTANT)
014 (VARIABLE
0 15 (DEIPROP (VAR IABLE\VAR FM) NODE ‘READ-R(FS))
016 (LAMBDA
017 (IF ALLP (ERASE-ALL-NODES (LAMBDA\BODY FM)))
016 (IF (NOT *IESTJNG* )
019 (AMAPC (LAMBDA (V) (REMPROP V ‘BINDING)) (LAMBDA\VARS FM))))
020 (IF (COND (ALLP (ERASE-ALL-NODES (IF\PR(0 FM))
021 (ERASE-ALL-NOD u (IF\CON FM))
022 ((RAS(-ALL.NODES (IF\ALT FM)))))
023 (ASET
024 (IF ALLP (ERAS(-ALL-NOO (S (AS(T\BODY FM)))
025 ( DEIPROP (A S ET ~VAR FM) NODE ‘WR ITE-R ( FS))
026 (CATCH
027 ( IF ALLP (ERASE-ALL-NODES (CATCH\BODY FM)))
028 (IF ( NOT *TE ST INCa )
029 (REMPROP (CATCH\VAR FM) ‘BINDING)))
030 (LABELS
031 (cOND (AILP ~AMAPC (LAMBDA (0) (ERASE-ALL-NODES 0))032 (LABELS\FNDEFS FM))
033 (ERASE-ALL-NODES (LABELS\BOOY FM))))
034 (IF (NOT *T (STING*)
035 (AMAPC (LAMBDA (V) (REMPROP V ‘BINDING)) (LABELS \FNVARS FM))) )
036 (COMBINATION
037 (IF ALIP (AMAPC (LAMBDA (A) (ERASE-ALL-NOOES A))
038 (COMBINATION\ARGS FM)))))
039 (IF (NOT *T (ST ING* )
040 (REMPROP (N0O(\NAME NOOt) ‘NODE)))))
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rIETA-EVALIJATE is the top-level function of the optimizer. It accepts a
node , and returns a node (not necessarily the same one) for an equivalent
program -

The METAP flags in the nodes are used to control re-analysis. PIETA—
EVALUATE checks this flag first thing, and returns the given node immediately if
its PIETAP flag is non-NIL , meaning the node has already been properly optimized .
Otherwise it examines the node more carefully.

Some rules about the organization of the optimizer:
[1] A node returned by a call to META-EVALUATE will always have its METAP flag
set.
[2]  The descendants of a node must be meta-evaluated before any information in
them is used .
[3]  If a node has its PIETAP flag set, so do all of its descendants. Moreover,
R E A N A L Y Z E L  has been applied to the node , so all of the information filled in by
pass-i analysis (ENV-ANALYZE , TRIV-ANALYZE , and EFFS-ANALYZE) is up-to-date .

When COMPILE calls PIETA-EVALUATE , all the METAP flags are NIL , and no
pass-i analysis has been performed . PIETA-EVALUATE , roughly speaking, calls
itself recursively , and meta-evaluates the node tree from the- bottom up. After
meta-evaluating all the descendants of a node , it applies REANALYZE1 to perform
pass- i  analysis on that node , sets the METAP flag, and returns the node.
Exceptions can be made to this discipline if a non-trivial optimization occurs.

If  the (meta-evaluated) predicate part of an IF node is itself an IF node
(and the debugging switch *FIJDGE* is set), then META - IF-FUDG E is called. If it
is a constant , then the value  of the con s tan t  is used to select e i ther  th e
consequent CON or the aiternative ALT. The other one is then erased , and the IF
node is itself erased . The selected component node is then returned (it has
already been meta-evaluated). The statistics counter *DEAD-COUNT* counts
occurrences of this “dead code elimination ” optimization .

The other two interesting cases are COMBINATION nodes whose function
position contains either a trivial function or a LAMBDA node. META-COMBINATION-
TRIVFN and META-COPIBINATION-LAPIBDA handle these respective cases.



001 RAB8IT 566 0 5 (~8~~P~agf_~~
002 ;;~ THE VALUE OF META-EVALUATE IS THE (POSSIBLY NEW) NODE RESULTING FROM THE GIVEN ONE .
003
004 (SET ’  *FUQG E* T)  ;SW ITCH TO CONTROL META-IF- FUDGE
005 (SET’ *DLAD~COUNT* 0) ;CO(JNT OF DEAD-CODE ELIMINATIONS
006
007 (DEFINE META-EVAL IJATE
008 (LAMBDA (NODE )
009 (IF (NODE\METAP NODE )
010 NODE
011 (LET ((FM (NODE\FORM NODE)))
012 (EQCASE (TYPE FM)
013 (CONSTANT
014 (R EANALYZE 1 NODE )
015 (ALTER-NODE NODE (METAP := 1)))
016 (VARIABLE
oil (REANALYZE1 NODE)
018 (AlTER-NODE NODE (METAP :— T)))
019 (LAMBDA
020 (ALTER-LAMBDA FM (BODY :- (NETA-EVALUATE (LAMBDA\BOO Y FM))))
021 (RIANALYZ(1 NODE)
022 (ALTER-NODE NODE (METAP :- T)))
023 (IF
024 (ALTER-IF FM
025 (PRED :— (ME TA-EVALIJATE (IF\PRED FM)))
026 (CON :— (META-EVA IUAT ( (IF\cON FM)))
027 (ALT :- (META-EVALUATE (IF\ALT FM))))
028 (IF (AND *FUbGE* (EQ (TYPE (NODE\FORM (IF\PREO FM))) ‘IF))
029 (META-IF-FUDGE NODE)
030 (IF (EQ (TYP E (NODE\FORM (IF\PRED FM))) ‘CONSTANT)
031 (LET ((CON (IF\CON FM))
032 (ALT (IF\ALT FM))
033 (VAL (CONSTANT\VALUE (NODE\FORM (IF\PREO FM)))))
034 (ERASE-NODE NODE )
035 - (ERASE-ALL-NOOCS (IF\ PREO F M ) )
036 (INCREMENT *DEAD-COUNT*)
037 (IF VAL
038 (BLOCK (ERASE-ALL-NODES ALT) CON)
039 - (BLOCK (ERASE-ALL-NODES CON) ALT)))
040 (BLOCK (REANALYZE1 NODE)
041 (ALTER-NODE NODE (METAP :=
042 (ASET
043 (ALTER.ASET FM (BODY :— (META-EVALUATE (ASET\BOOY FM))))
044 (R(ANALYZE1 NODE)
045 (ALTER-NODE NODE (M(TAP := 1)))
046 (CATCH
047 (ALTER-CATC H FM (BODY :- (NE TA-EVALUATE (CATCM\BODY FM))))
048 (REANALYZEL NODE)
049 (ALTER-NODE NODE (METAP := T)))
050 (LABELS
051 (DO ((0 (LABELS\FNDEFS FM) (COR 0)))
052 ((NULL 0))
053 (RPLACA D (META-EVALUATE (CAR 0))))
054 (ALTER-LABELS FM (BODY ;- (META-EVALUATE (LABELS\BOOY FM))))
055 (REANALYZEI NODE)
056 (ALTER-NODE NODE (METAP :— T)))
057 (COMBINATION
058 (LET ((EN (NODE\FORM (CAR (CONBINATION\ARGS FM)))))
059 (COND ((AND (EQ ( TYPE EN) ‘VARIABLE)
060 (TRIVE N (VARIABLE\VAR EN)))
061 (META-COMBINATION-TRIVE N NODE))
062 ((EQ (TYPE EN) ‘LAMBDA)
063 (META-COMBINATION-LAMBDA NODE))
064 (T (00 ((A (COMS INATZON\ARGS FM) (CON A)))
065 ((NULL A))
066 (RPLACA A (META-EVALUATE (CAR A))))
067 (REANALYZE I NODE)
068 (AlTER-NODE NODE (METAP : T)))))))))))
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For an IF nested within another IF , the transformation shown in the
comment is performed. This Involves constructing an S-expression of the
appropriate form and then calling ALPHATIZE to convert it into a node-tree. (The
node-tree could be constructed directly, but it is easier to call ALPHATIZE.
This is the reason why ALPHATIZE merely returns a NODE if it encounters one in
the S-expression ; META-IF-FIJDGE Inserts various nodes in the S-expression it
constructs .) The original two IF nodes are erased , a statistics counter *FUDGE—
COUNT * is incremented , and the new expression is meta-evaluated and returned in
place of the nested IF nodes.

(The statistics counter shows that this optimization is performed with
modest frequency , arising from cases such as ( I F  (AND .. .) . . .) .)

I1ETA-COP1BINATION-TRIVFPJ performs the standard recursive meta-evaluation
of all the arguments , and then checks to see whether the combination can be
“folded” . This is possible all the arguments are constants, and if the funct ion
has no side effects and cannot be affected by side-effects, or has an OKAY-TO—
FOLD property. If this is the case, the function is applied to the arguments,
the combination node and its descendants are erased , th e st a t i s t i c s  counter
*FOLD-COUNT* is bumped , and a new CONSTAN T node conta in ing  th e result is cr eated
and meta-evaluated . This might typically occur for (NOT NIL) > T, or (+ 3 4) >
7 , or (HEPI Q ‘BAR ‘(FOO BAR BAZ)) ~) ‘(BAR BAZ). If this optimization is not
permissible , then the usual reanalysis and setting of the METAP f la g is
performed .

(The statistics counter shows that even in a very large program such as
RABBIT this optimization is performed fewer than a dozen times. This may be due
to my programming style , or because there are very few macros in the code for
RABBIT which might expand into foldable code.)



001 RABBIT 56! _05~~S/l!~~~age 20002 • ; ;  TRANSFORM (IF (IF A B C) P E) INTO : 
-

003 ;;; ((LAMBDA (Dl El)
004 (IF A (IF B (Dl) (El)) (IF C (Dl) (El))))
005 ;;; (LAMBDA ( )  0)
006 (LAMBDA ( )  F))
007
008 (SET’ *FUDGE-COUNT* 0) 

- 
;COUNT OF IF-FUDGES

009
010 (DEFINE META-IF- FUDGE
011 (LAMBDA (NODE )
012 (LET ((FM (NODE\FORM NODE)))
013 (LET ((PFM (NODE\FORM (IF~PRE0 FM))))014 (LET ((N (AIPHATIZE (LET ((CONVAR (GENTEMP ‘META-CON))
015 (ALIVAR (GENTEMP ‘META-AIT)))
016 “((LAMBDA (,CONVAR .ALTVAR )
017 (IF .(IF\PRED PHI)
018 (IF ,(IF\CON PHI)
019 (.cONVAR)
020 (,ALTVAR))
021 - (IF ,(IF\AIT PFM)
022 - (,CONVAR)
023 (,ALTVAR))))
024 (LAMBDA ( )  .(IF\CON FM))
025 (LAMBDA ( )  .(IF~ALT FM))))026 (NODE\ENV NODE)))) ;DO€SN’T MATTER
027 (ERASE-NODE NODE)
028 (ERASE-NODE (IF\PRED FM))
029 (INCREMENT *FUDGE.CODNT*)
030 (I4ETA-EVALUATE N))))) )
031
032 ;;; REDUCE A COMBINATION WITH A SIDE-EFFECT-LESS TRIVIAL
033 ;;; FUNCTION AND CONSTANT ARGUMENTS TO A CONSTANT .
034
035 (SET’ *FOLO-COUf4T* 0 )  ;COUNT Of CONSTANT FOLDINGS
036 -
037 (DEFINE META-COtIBINAT ION-TRIVFN
038 (LAMBDA (NODE)
039 (LET ((FM (NODE\FORM NODE)))
040 (LET ((ARGS (COMBINATION\ARGS FM)))
041 (RPLACA ARGS (META-EVALUATE (CAR ARGS)))
042 (DO ((A (CDR ARGS) (CDR A))
043 - (CONSTP (LET ((FNNAME (VARIABLE\VAR (NOOE\FORM (CAR ARGS)))))
044 (OR (AND (EQ (GET FNNAME
045 ‘EN-SIDE-EFFECTS )
046 ‘NONE)
047 (EQ (GET FNNAME
048 ‘FR-SlOE-AFFECTED)
049 ‘NONE))
050 (GET FNNAME ‘OKAY-TO-FOLD)))
051 (AND CONSTP (EQ ( TYPE (NODE\FORM (CAR A))) ‘CONSTANT))))
052 ((NULL A)
053 (CONO (cONSTP
054 (LET ((VAL (APPLY (VARIABLE\VAR (NOOE\FORM (CAR ARGS)))
055 (AMAPCAR (LAMBDA (X)
056 (CONSTANT\VALUE
057 (NOOE\FORM X)))
058 (CON ARGS)))))
059 (ERASE-ALL-NODES NODE)
060 (INCREMENT eFOlO-COIJNT.)
061 (META-EVALUATE (AIPHATIZE (QUOTE •VAL) NIL))))
062 (T (REANALYZE1 NODE)
063 (ALTER-NODE NODE (ME TAP :“
064 (RPLACA A (ME TA-EVALUA TE (CAR A))))))))
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META-CONBINATION-LAMBDA performs several interesting optimizations on
combinations of the form ((LAMBDA . .. )  .. . ) .  I t  is controlled by several
debugging switches , and keeps several statistics counters , which we will no t
describe further.

First all the arguments , but not the LAMBDA-expression , are meta—
evaluated by the first DO loop. Next, the body of the LAMBDA node is meta—
evalua ted and kept in the variable B in the second DO loop . This loop iterates
over the LANBDA variables and the corresponding arguments. For each variable-
argument pair , SUBST-CANDIDATE determines whether the argument can “probably ” be
legally substituted for occurrences of the variable in the body . If so, META—
SUBSTITUTE is called to attempt such substitution . When the loop finishes , B has
the body with all possible substitutions performed. This body is then re-meta-
evaluated. (The reason for this is explained later in the discussion of META-
SUBSTITUTE .)

Next an attempt is made to eliminate LAMBDA variables. A variable and
its corresponding argument may be eliminated if the variable has no remaining
references , and the argument either has no side effects or has been successfully
subs tituted. (If an argum~nt has side effects, then SUBST-CANDIDATE will give
permission to attempt substitution only if no more than one reference to the
corresponding variable exists . If the substitution fails , then the argument may
no t be elim inated , because its side effects must not be lost. It the
subs titution succeeds , then the argument must be eliminated , because the side
effects must not be duplicated. ) A consistency check ensures that in fact the
variable is unreferenced within the body as determined by its REFS and ASETS
slots; then the argument and variable are deleted , and the nodes of the argument
are erased .

When all possible variable-argument pairs have been eliminated , then
there are two cases. If the LAMBDA has no variables left , then the combination
containing it can be replaced by the body of the LAMBDA node . In this case the
LAPI FIDA and CONRINATION nodes are erased. Otherwise the LAMBDA and COMBINATION
nodes are reanalyzed and their METAP flags are set.

(The statistics counters show that when RABBIT compiles itself these
three optimizations are performed hundreds of times. This occurs because many
standard macros make use of closures to ensure that variables local to the code
for the macro do not conflict with user variables. These closures often can be
substituted Into the code by the compiler and eliminated.)

- -~~~~



001 RABBIT 568 05/15/78 
- 

Page 2 1
002 (SET’ CFLUSH-ARGS* 1) ;SWITCI4 TO CONTROL VARIABLE ELIMINATION
003 (SET’ •FLUSH-COIJNTC 0) ;COUNT OF VARIABLES ELIMINATED
004 (SET •CONVERT-COUNTC 0) ;COIJNT OF FULL BETA-CONVERSIONS
005
006 (DEFINE
007 ME TA-COMBINAT ION-LAMBDA
008 (LAMBDA (NODE )
009 (LET ((FM (NODE\FORM NODE)))
010 (lET ((ARGS (COMBINATION\ARGS FM)))
011 (DO ((A (COR ARGS) (COR A)))
0 12 ((NULL A ) )
013 (RPLACA A (MITA- EVALUAT E (CAR A ) ) )
0 14 (ALTER-NODE (CAR A) (SUBSTP :“ NIL)))
015 (lET ((EN (NODE\FORM (CAR ARGS))))
016 (DO ((V (LAMBDA\VARS FR) (CDR V))
017 (A (COR ARGS) (cDR A ) )
018 (B (META-EVALUATE (LAMBDA \BOOY FN))
019 (IF ( SUBST-CANDIDATE (CAR A) (CAR V) B)
020 (META-SUBSTITIJTE (CAR A) (CAR V) B)
02 1 B) ) )
022 ((NULL V)
023 (ALTER-LAMBDA EN (BODY :“ (META-EVALUATE B)))
024 (DO ((V (LAMBDA\VARS IN) (CON V))
025 (A (CDR ARGS ) (CON A)))
026 ((NULL A))
027 (IF (AND *FLUSK-ARGS*
028 (NULL (GET (CAR V) READ-REFS))
029 (NULL (GET (CAR V) ‘WRITE-REES))
030 (OR (EFFECTLESS-EXCEPT-CONS (NODE\EFFS (CAR A)))
031 (NODE\SUBSTP (CAR A))))
032 (BLOcK (IF (OR (MEMO V (NOOE\REFS (LAMBDA\BODY FR) ) )
033 (MEMQ V (NOOE\ASETS (LAMBDA\BOOY FR))))
034 - (ERROR ‘(Reanalysis lost - META-COMBINATION-1AMBDA~035 NODE
036 ‘FAIL-ACT))
037 (DELO (CAR A) ARGS)
038 (ERASE-ALl-NODES (CAR A))
039 (INCREMENT CFLIJSH-C0 (JNTC)
040 (ALTER-LAMBOA FR
041 (VARS :“ (DELO (CAR v) (LAMBDA\VARS FR)))
042 (UVARS :- (DELQ (GET (CAR V) ‘USER-NAME )
043 (LAMBDA\UVARS FN)))))))
044 (cOND ((NULL (LAMBDA\VARS EN))
045 (OR (NULL (CON ARGS))
046 (ERROR ‘IToo many •rgs In META-COMBINATION-LAMBDAI
047 NODE
048 ‘FAIl-ACT))
049 (LET ((BOO (LAMBDA ¼BOOY FR)))
050 (ERASE-NODE (CAR ARGS))
051 (ERASE-NODE NODE)
052 (INCREMENT *CONVIRT-COIJNT*)
053 600))
054 (T (REANAIYZE1 (CAR AReS))
055 (ALTER-NODE (CAR AReS) (MITAP := T))
056 (REANALYZE1 NODE ) -057 (ALTER-NODE NODE (METAP :“ T)))))))))))
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(SLJBST-CANDIDATE AR& VAR BOIl) is a predicate which is true iff it is
appa rently legal to attempt to substitute the argument ARG for the var iable VAR
in the body HOE). This predicate is very conservative, because there is no
prov ision for backing out of a bad choice . The decision is made on this basis:
[ 1]  There must be no ASET references to the variable. (This is overly
res t r ic t i ve, but is complicated to check for correctly, and makes l i t t le
difference in practice.)
[2] One of three conditions must hold :

[2a } There is at most one reference to the variable. (Code with possible
side effects must not be duplicated. Exceptions occur , for example , if there
are two references , one in each branch of an IF, so that only one can be
execu ted. This is hard to detect, and relaxing this restriction is probably
not worthwhile. )
[Z b ] The argument is a constant or variable. (This is always safe because
the cos t of a constan t or var iable is no worse than the cost of referenc ing
the variable it replaces.)
(2c] The argument is a LAMBDA-expression , and either :

[2c1] There is no more than one reference. (This is tested again because
of the presence of debugging switches in SUBSI-CANDIDATE which can control
various tests independently to help localize bugs.)
[c2} The body of the LAMBDA-expression is a combination , all of whose
descendants are constants or variables , and the number of arguments of the
coml)Jnation (not counting the function ) does not exceed the number of
arguments taken by the LAMBDA-expression . (The idea here is that
substitution of the LAMBDA-expression into function position of some
combination will later allow reduction to a combination which is no worse
than the original one. This test is a poor heuristic if references to the
variable VAR occur in other than function position within BOD, because then
several closures will be made instead of one , but is very good for code
typically produced by the expansion of macros. In retrospect , perhaps EPJV—
ANALYZE should maintain a third property besides READ-REFS and WRI TE-R EFS
called , say, NON-FN-REFS. This would be the subset of READ-REFS which
occur in other than function position of a combination . SUBST-CANDIDATE
could then use this information . Alternatively, META-SUBSTITUTE could , as
it walked the node-tree of the body, keep track of whether a var iable was
encountered In funct ion pos it ion , and refuse to substitu te a LAMBDA—
expression for a variable not in such a position which had more than one
reference. This might in turn prevent other optimizations, however.)



001 RABBIT 568 05/15/78 Page 22
002 (SET’ C S U B S T I T U T E .  T )  ;SW I TCH TO CONTROL SUBSTIT UTI ON
003 (SET’ CSINGLE SUBSTC T) ;SWITCH TO CONTROL SUBSTITUTION OF EXPRESSIONS WITH SIDE EFFECTS
004 (SET’ *LA MBDA-SUBST* T) ;SWITCH 10 CONTROL SUBSTITUTION OF LAMBDA-EXPRESSIONS
005
006 ( DEFINE SUBST -CNN DIDATE
007 (LAMBDA (ARG VAR BOD )
008 ( AND *S UBSTITUTE I
009 (NOT (GET VAR ‘WRITE-REFS)) ;BE PARANOID FOR NOW
010 (OR (AND ASINGLE-SUBSTa
011 (NULL (CDR (GET VAR ‘READ-REFS))))
012 (MEMO (TYPE (NODE\FORM ARG)) ‘(CONSTANT VARIABLE))
013 (AND •IAMBDA-SU8STe
014 (EQ (TYPE (NOOE\FORM ARG)) ‘LAMBDA)
015 (OR (NULL (CON (GET VAR ‘REAO-REFS)))
016 (LET ((B (NOOE\FORN (LAMBDA\BODY (NODE\FORM ARG)))))
017 (OR (MEMO ( TYPE B) ‘(CONSTANT VARIABLE))
016 (AND (EQ (TYPE B) ‘COMBINATION)
019 (NOT () (LENGTH (COR (COIIBINATION\ARGS B)))
020 (LENGTH (LAMBDA\VARS (NOO(\FORM ARC)))))
02). (DO ((A (COMBINATION\ARGS B) (COR A))
022 (P T (AND P (MEMO (TYPE (NOOI\FORM (CAR A)))
023 ‘(CONSTANT VARIABLE) ) ) ) )
024 ((NULL A) P)))))))))))
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REANALYZE1 calls PASSI-ANALYZE on the given node . The argument I means
that optimizat ion is in effect , and so EFFS-ANALYZE must be invoked after ENV —
ANALYZE and TRIV-ANALYZE (EFFS-ANALYZE information is used only by the
optimizer). The argument *REANALYZE* specifies whether reanalysis should be
forced to all descendant nodes , or whether reanalysis of the current node will
suff ice. This variable normally contains the symbol ONCE , mean ing reanalyze only
the current node . META-EVALUATE normally ensures, before analyzing a node , that
all descendant nodes are analyzed . Thus the initial pass-i analysis occurs
incrementally , interleaved with the meta-evaluation process.

The switch *REANALYZE* may be set to the symbol ALL to force all
descendants of a node to he reanalyzed before analyzing the node itself. This
abili ty is provided to test for certain bugs in the optimizer. If the
incremental analysis should fail for some reason , then the descendan t nodes may
not contain correct information ( for  examp le , their information slots may be
empty!). The ALL setting ensures that a consistent analysis is obtained. If the
optimizer ’s behavior differs depending on whether *REANALYZE* contains ONCE or
ALL , then a problem with the incremental analysis is implicated . This switch has
been very useful for isolating such bugs.

The next group of functions are utilities for META-SUBSTITUTE which deal
with sets of side-effects.

EFFS-INTERSECT takes the intersection of two sets of side-effects. It is
just like iNTERSECT , except that it also knows about the two special sets ANY and
NONE .

EFFE CTLESS is a predicate which is true of an empty set of side-effects.

E FECTLESS-EXCEPT-CONS is a predicate true of a set of side-effects which
is empty except possibly for the CONS side-effect.

PASSABLE takes a node and two sets of side-effects, which should be the
EFFS and AFFD sets from some other node . PASSABLE is a predicate which is true
if the given node , which originally preceded the second in the standard
evaluation order, can legitimately be postponed until after the second is
evaluated . That is , it is true iff the first node can “pass ’ the second during
the substitution process.
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002 (DEFINE REANALYZEI
003 (LAMBDA ( NODE )
004 (PASSI-ANALYZE NODE *R(AWAIYZE* 1)))
005
006 (SET’ aREANAIYZEa ‘ONCE )
007
008
009
010 HERE WE DETERMINE , FOR EACH VARIABLE NODE WHOSE VAR IS THE ONE
011 ;~~; GIVEN , WHETHER IT IS POSSIBLE TO SUBSTITUTE IN FOR IT; THIS IS
012 ;;. DETERMINED ON THE BASIS OF SIDE EFFECTS . THIS IS DONE BY
013 ;;; WALK ING THE PROGRAM , STOPPING WHEN A SIDE-EFFECT BLOCKS IT.
014 ;;; A SUBSTITUTION IS MADE 1FF IS VARIABLE NODE IS REACHED IN THE WALK .
015 -
016 ;;; THERE IS A BUG IN THIS THEORY TO THE EFFECT THAT A. CATCH
017 ;;; WHICH RETURNS MULTIPLY CAN CAUSE AN EXPRESSION EXTERNAL
0 18 ; .;  TO THE CATCH TO BE EVALUATED TWICE. THIS IS A DYNAMIC PROBLEM
019 ;;; WHICH CANNOT BE RESOLVED AT COMPILE TIME. AND SO WE SHALL
020 ;;; IGNORE IT FOR NOW .
021
022 ;,; WE ALSO RESET THE METAP FLAG ON ALL NODES WHICH HAVE A
023 ;;; SUBSTITUTION AT OR BELOW THEM , SO THAT THE META-EVALUATOR WILL
024 ;;, RE-PENETRATE TO SUBSTITUTION POINTS , WHICH MAY ADMIT FURTHER
025 ;;; OPTIMIZATIONS .
026
027
028 (DEFINE EFFS-INTERSECT
029 (LAMBDA (A B)
030 (cORD ((EQ A ‘ANY) B)
031 ((EQ B ‘ANY) A)
032 ((EQ A ‘NONE) A)
033 ((EQ B ‘NONE) B)
034 (T (INTERSECT A B)))))
035
036 (DEFINE EFFECTIESS
037 (LAMBDA (X) (OR (NULL X) (EQ X ‘NONE))))
038
039 (DEFINE EFFECTIESS.EXCEPT-CONS
040 (LAMBDA (X) (OR (EFFECTIESS X) (IQtJAL X ‘(CONS)))))
041
042 (DEFINE PASSABLE
043 (LAMBDA (NODE EFFS AFFD)
044 (BLOcK (IF (EMPTY (NOOE\EFFS NODE))
045 (ERROR ‘(Pass I Analysis Missing - PASSABILI

046 NODE
047 ‘FAIL-ACT))
048 (AND (EFFECTLESS (EFFS-INTERSECT EFFS (NOOE\AFFD NODE)))
049 (EFFECTLESS (EFFS-INTERSECT AFFO (NOOE\EFFS NODE)))
050 (EFFECTLESS-LXCEPT-CONS (EElS-INTERSECT EElS (NOOE\EFFS NODE)))))))
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META-SUBSTITLJTE takes a node-tree ARG, a variable name VAR , and another
node-tree BOIl, and wherever possible substitutes copies of ARG for occurrences of
VAR within BOIl. The complexity of this process is due almost entirely to the
necessity of determining the extent of “wherever possible’.

META -SUBSTITUTE merely spreads out the EFFS and AFFD slots of ARG to make
them easy to refer to , makes an error check, and then passes the buck to the
internal LABELS routine SUBSTITUTE, which does the real work.

SUBSTITUTE recurs over the structure of the node-tree. At each node it
first checks to see whether VAR is in the REFS set of that node. This is purely
an efficiency hack : if VAR is not in the set, then it cannot occur anywhere
below that node in the tree , and so SUBSTITUTE can save itself the work of a
complete recursive search of that portion of the node-tree .

SUBSTITUTE plays another efficiency trick in cahoots with META-EVALUATE
to save work . Whenever SUBSTITUTE actually replaces an occurrence of VAR with a
copy of ARG , the copy of ARG will have its METAP flag turned off (set to NIL).
Now SUBSTITUTE propagates the METAP flag back up the node-tree; when all sub—
nodes of a node have had SUBSTITUTE applied to them, then if the METAP flag of
the current node is still set, it is set to the AND of the flags of the submodes.
Thus any node below which a substitution has occurred will have its PIETAP flag
reset . More to the point , any node which after the substitution still has its
METAP f lag set has had no substitutions occur below it. META-EVALUATE can then
be applied to BOD after all substitutions have been tried (this occurs in META-
COMBINATION-LAJIBDA ), and liETh-EV tLUAIE will only have to re-examine those parts
of BOIl which have changed . In particular , if no substitutions were successful,
META-EVALUATE will not have to re-examine BOD at all.

If the variable is referenced at or below the node, it breaks down into
cases according to the type of the node.

For a CONSTANT , no action is necessary.

For a VARIABLE , no action is taken unless the variable matches VAR , in
which case the mode is erased and a copy of ARG is made and returned in its
place. The SUBSTP slot of the original ARG is set as a flag to PIETA-COMBINATION-
LAMBDA (q.v.), to let it know that at least one substitution succeeded.

For a LAMBDA , substituti-on can occur in the body only if MG has no side-
effects except possibly CONS. This is because evaluation of the LAMBDA-
expression (to produce a closure) will not necessarily cause evaluation of the
side-effect in ARG at the correct time. The special case of a LAMBDA occurring
as- the function in a COMBINATION is handled separately below.

For an IF , substitution is attempted in the predicate. It is attempted
in the other two sub-trees only if ARO can pass the predicate.

For an A SET ’ or a CATCH, substitution is attempted in the body. The same
is true of LABELS, but substitution is also attempted in the labelled function
definitions.



001
002 (SET’ *SUBST.COUNTa 0) ;COUNT OF SUBSTITUTIONS
003 (SET’ *LAMBOA BODY SUBSTa T) ;SWITCH TO CONTROL SUBSTITUTION IN LAMBDA BODIES
004 (SET’ a1AMBDA~ BOOy~.SUB5T .T RY..COUNTa 0) ;COUNT THEREOF - TRIES
005 (SET’ aLAM8DA BODy-SUBST..SUcCE55 .COU~ T* 0 ) ;COUNT THEREOF - SUCCESSES
006
007
008 (DEFINE
009 ME TA-SIJBSTITUTE
010 (LAMBDA
011 (ARG VAR BOO )
012 (LET ((EFFS (NODE\EFFS ARC))
013 (AFFO (NODE\AFFD ARC)))
014 (IF (EMPTY EFFS)
015 (ERROR ‘JPass 1 AnalysIs Screwed Up - META-SUBSTITUTE~ ARG ‘FAIL-ACT))
016 (LABELS
01 7 ( (SUBS T ITUTE
018 (LAMBDA (NODE )
019 (IF (OR (EMPTY (NODE\REFS NODE))
020 (NOT (MEMO VAR (NODE\REFS NODE)))) ;EFFICIENCY HACK
021 NODE
022 (LET ((FM (NOOE\FORM NODE)))
023 (EQCASE (TYPE FM)
024 (CONSTANT NODE)
025 (VARIABLE
026 - (IF (EQ (VARIABLE \VAR FM) VAR)
0 2 7  (BLOC K (ERASE-ALL-NODES NODE)
028 (INCREMENT aS(JBST-CO UNT* )
029 (ALTER-NODE ARC (SUBSTP :~ T))
030 (COPY-CODE ARC))
031 NODE))
032 (LAMBDA
033 (IF (AND (EFFECT LESS-EXCEPT-CO NS EFFS) (EFFECTLESS AFF O))
034 (ALTER-LAMBDA FM (BODY :- (SUBSTITUTE (LAMBOA\BOUY FM)))))
035 (IF (NODE\PIETAP NODE)
036 (AL TER-NODE NODE (METAP :~ (NODES,METAP (LAMBDA\BODY FM)))))
037 NODE )
038 (IF
039 (AlTER-IF FM (PRED :. (SUBSTITUTE ( IF\ PRED FM) ) ) )
040 (IF (PASSABLE (IF\PRED FM) EFFS AFFD)
041 (ALTER-IF FM
042 (CON :~ (SUBSTITUTE (IF\CON FM)))
043 (ALT :~ (SUBSTITUTE (IF\ALT FM)))))
044 (IF ( NODE \METAP NODE)
045 (ALTER-NODE NODE
046 (METAP : (AND (NODE\METAP (IF\PREO FM))
047 (NODE\METAP (IF\CON Eli))
048 (NOOE\METAP (IF~ALT FM))))))
049 NODE)
050 (ASET
051 (ALTER-ASET FM (BODY :~ (SUBSTITUTE (ASET\BODY FM))))
052 (IF (NODE\METAP NODE)
053 (ALTER-NODE NOOE (METAP := (NOOE\METAP (ASET~8ODY FM)))))
054 NODE )
055 (CATCH
056 (ALTER-CATCH FM (BODY :— (SUBSTITUTE (CATCH\BOOY FM))))
057 (IF (NODE\METAP NODE)
056 (ALTER-NODE NODE (ME TAP :- (NOOE\METAP (CATCN~BODY F M) ) ) ) )
059 NODE)
060 (LABELS -

061 (ALTER-LABELS Eli (BODY :- (SUBSTITUTE (LABELS\BO0Y FM))))
062 (DO ((0 ( LABELS \FNDEFS FM ) (CDR 0))
063 (NP (NOOE\METAP (LABELS\BODY FM))
064 (AND MP (NOOE\NETAP (CAR 0)))))
065 ((NULL 0)
066 (IF (NOOE\M(TAP NODE)
067 (ALTER-NODE NODE (METAP :• NP))))
068 (RPLACA D (SUBSTITUTE (CAR 0))))
069 NODE)

- - - - - - — -
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The most complicated case is the COMBINATION . First it is determined (in
the variable X) whether ARG can Correctly pass all of the arguments of the
combination . (It is not possible to substitute into ~~~ argument unless all can
be passed , because at this time it has not been decided in what order to evaluate
them . This decision is the free choice of CONVERT-COMBINATION below.) If it
can , then substitution is attempted in all of the arguments except the function
itself . Then two kinds of function are distinguished . If it is not a LAMBDA , a
straightforward recursive call to SUBSTITUTE is used. If it is, then
substitution is attempted in the 

~?Q~~ 
of the LAMBDA (not in the LAMBDA i tself ;

substitution in a LAMBDA requires that ARO be EFFECTLESS-EXCEPT-CONS, but in this
special case we know that the LAMBDA-expression will be invoked immediately, and
so it is all right if ARG has side-effects).
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070 (COMBINATION 

—

071 (LET ((ARCS (COMBINATION\ARGS FM)))
072 (DO ((A ARCS (CDR A))
073 (X T (AND X (PASSABLE (CAR A) EFFS AFFD))))
074 ((NULL A)
075 ( IF X (DO ((A (CDR ARCS ) (COR A)))
076 ((NULL A))
077 (RPLACA A (SUBSTITUTE (CAR A ) ) ) ) )
078 (II (AND *LAN BDA-BODY-SUBS Ta
079 (EQ (TYP E (NOOE\ FORM (CAR A RCS)))  ‘LAMBDA))
080 - (LET ((FM (NODE\FORM (CAR ARCS))))
061 (INCREMENT aLApjBDA-BODY-SUBST-TRY-COUNT*)
082 (CONO (X
083 (INCREMENT
084 aLAMBDA-BODY-SUBST-SUCcESS-COUNT* )
085 (ALTtR-LAMBDA
086 IN
087 (BODY :— (SUBSTITUTE
088 (LAMBDA\BODY EN))))))
089 (IF (NODE\METAP (CAR ARCS))
090 (ALTER-NODE
091 (CAR ARCS)
092 (METAP :~ (NODE\METAP093 (LAMBDA\BODY IN))))))
094 (IF X (RPLACA ARCS (SUBSTITUTE (CAR ARGS)))))))
095 (DO ((A ARCS (CDR A))
096 (NP T (AND NP (NOOE\METAP (CAR A)))))
097 ((NULL A)
098 (IF (NODE\METAP NODE)
099 (ALTER-NODE NODE (METAP :~ HP))))))
100 NODE)))))))
101 (SUBSTITUTE BOO) ) ) ) )
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COPY-CODE is used by META-SIJBSTITUTE to make copies of node-trees
representing code . It Invokes COPY-NODES with appropriate additional arguments.

COPY-NODES does the real work . The argument [NV is analogous to the
arq Ltrn (~nt [NV taken by ALPHATIZE. However , variables are not looked-up in [NV by
COPY-NODES; [NV is maintained only to install in the new nodes for debugging
purposes. The argument RNL is a “rename list’ for variables. When a node is
copied which binds variables , new variables are created for the copy . RNL
provides a mapping from generated names in the original code to generated names
in the copy (as opposed to ENV , which maps user names to generated names in the
copy). Thus , when a LAMBDA node is copied , new names are generated , and PAIRLIS
is used to pair new names with the LAMBDA\VAR S of the old node , adding the new
pairs to RNL.

A neat trick to aid debugging is that the new names are generated by
using the old names as the arguments to GENTEMP . In this way the name of a
generated variable contains a history of how it was created. For example , VAR—
34-73-156 was created by copying the LAMBDA node which bound VAR-34-73, wh ich in
turn was copied from the node which bound VAR-34. Copies of CATCH and LABELS
variables are generated in the same way.

The large EQCASE han d les the d if ferent  types of nodes. The resul t is
then given to NODIFY , the same rout ine wh ich creates no des for ALPH ATIZE. Recall
tha t NODIFY initializes the IIETAP slot to NIL; the next meta-evaluation which
comes along will cause pass-i analysis to be performed on the new copies.

Note particularly that the (WAR S list of a LAMBDA node is copied, for the
same reason that ALPHA-LAMBDA makes a copy : META-COMBINATION-LAMBDA may alter it
destructively.

~

- 
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002 (DEFINE COPY-CODE
003 (lAMBDA (NODE ) -

004 (REANALY ZE1 (COPY-NODES NODE (NODE\ENV NODE) NIL))))
005
006 (DEFINE
007 COPY-NODES
008 (LAMBDA (NODE ENV RNL )
009 (NODIFY
010 (LET ((FM (NODE\FORM NODE)))
011 (EQCASE ( TYPE IN)
012 (CONSTANT
013 (CONS-CONSTANT (VALU E — (CONSTANT\VA IUE FM)) ) )
014 (VARIABLE
015 (CONS-VARIABLE (VAR • (LET ((SLOT (ASSQ (VARIABLE\VAR FM) RNL)))
016 (IF SLOT (CADR SLOT) (VARIABLE\VA R FM))))
017 (GLOBALP - (VARIABLE\CLOBALP FM))))
018 (LAMBDA
019 (LET ((VARS (AMAPCAR GENTEMP (LAMBDA\VARS FM))))
020 (CONS-LAMBDA (UVARS - (APPEND (IAMBDA \UVARS FM) NIL))
021 (VARS VARS) -022 (BODY (COP~Y-NODES
023 (LAMBDA\BODY FM)
024 (PAIRLIS (LANBDA\ UVARS FM) VARS ENV)
025 (PAIRLIS (LAMBDA\VARS FM) VARS RNL))))))
026 (IF (CONS-IF (PRED (COPY-NODES (IF\PRED FM) (NV RNL))
027 (CON • (COPY-NODES (IF\CON FM) ENV RNL))
028 (ALT (COPY-NODES (D’ALT FM) (NV RNL))))
029 (ASET
030 (CONS-ASET (VAR - (LET ((SLOT ( ASSQ (ASET\VAR FM) RNL)))
031 (IF SLOT (CADR SLOT) (ASET\VAR FM))))
032 (GIOBALP • (ASET\,GLOBALP FM))
033 (BODY (COPY-NODES (ASET\BODY FM) (NV RNL))))
034 (CATCH
035 (LET ((VAR (6ENTEMP (CA7CH\VAR FM)))
036 (UVAR (CATCH\UVAR FM)))
037 (CONS-CATCH (UVAR (CATCH\UVAR FM))
038 (VAR • VAR )
039 (BODY (COPY-NODES
040 (CATCH\BOOY FM)
041 (CONS (LIST UVAR VAR ) (NV)
042 - (CONS (LIST (CATCH\VAR FM) VAR) RNL))))))
043 (~ABELS044 (LET ((FNVARS (AMAPCAR GENTEMP (LABELS\FNVARS FM))))
045 (LET ((LENV (PAIRLIS (LABELS\UFNVARS FM) FNVARS (NV))
046 (LRNL (PAIRLIS (LABELS\FNVARS FM) FNVARS RNL)))
047 (CONS-LABELS (UFNVARS (LABELS\UFNVARS FM))
048 (FNVARS - F NVARS )
049 (FNDEFS = (AMAPCAR
050 - (LAMBDA (N) (COPY-NODES N L(NV LRNL))
051 (LABELS\FNDEFS FM)))
052 ( BODY • (cOPY-NODES (LABELS\BOOY ~H)
053 LENV
054 LRNL))))))
055 (COMBINATION
056 (CONS-COMBINATION (ARCS — (AMAPCAR (LAMBDA (N) (COPY-NODES N (NV RNL))
057 (COMBINATION\ARGS FM)))
058 (WARNP • (COI4BINATION~WARN P FM))))))
059 (NOoE\SExPR NODE)
060 (NV)))

— — - - - - -
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The next several functions process the node-tree produced , analyzed, and
optimized by pass 1 , conver t ing it to another representation . This new
representation is a tree structure very similar to the node-tree , but has
different components for the pass-2 analysis. We will call this the “cnode—
tree ” . The ‘c” stands for “Continuation-passing style’: for the conversion
process transforms the node-tree into a form which uses continuation-passing to
represent the control and data flow within the program.

We define a new collection of data types used to construct cnode-trees.
The CNODE data type is analogous to the NODE data type ; one component CFORM
contains a variant structure which is specific to the programming construct
represented by the CNODE .

The types CVARIABLE , CLAMBDA , CIF , CASET , CLABELS , and CCOPIBIP.JATION
correspond roughly to their non-C counterparts in pass 1.

Type TRIVIAL is used to represent pieces of code which were designated
trivial in pass I (TRIVP slot = 1’) by TRW-ANALYZE; the NODE component is simply
the pass-i node-tree for the trivial code . This is the only case in which part
of the pass-i node-tree survives the conversion process to be used in pass 2.

A CONTINUATION is just like a CLAI’IBDA except that it has only one bound
variable VAR . This variable can never appear in a CASET , and so the CONTINUATION
type has no ASETVARS slot; all other slots are similar to those in a CLAMBDA
structure .

A RETURN structure is just like a CCOMBINATIOr~J, except that whereas a
CCOMBINATION may invoke a CLAMBDA which may take any number of arguments, a
RETURN may invoke only a CONTINUATION on a single value. Thus , in place of the
AR6S slot of a CCOMBINATION , which is a list of cnodes , a RETURN has two slots
CONT and VAL , each of which is a cnode .

(In retrospect , this was somewhat of a design error. The motivation was
that the world of closures could be dichotomized into LAMBDA-closures and
Continuation-closures , as a resul t of the fundamental semantics of the language:
one world is used to pass values “down ” into functions , and the other to pass
values “up ” from functions. Combinations can similarly be dichotimized , and I
thourjht it would be usefu l to reflect this distinction in the data types to
enforce and error-check this dichotomy . However, as it turned out, there is a
great deal of code in pass 2 which had to be written twice, once for each
“world” , because the data types involved were different. It would be better to
have a single structure for both CLAMBDA and CONTINUATION, with an add it ional
slot flagging which kind it was. Then most code in pass 2 could operate on this
struc ture without regard for wh ich ‘world’ it belonged to, and code which cared
could check the flag.)



001 RABBIT 568 05L15/78 Page 26
002 ;;; CONVERSION TO CONTINUATION-PASSING STYLE
003
004 ;; THIS INVOLVE S MAKING A COMPLETE COPY OP THE PROGRAM IN TERMS
005 ;;; OF THE FOLLOWING NEW DATA STRUCTURES:
006 -

00? (DEFTYPE CNODE (ENV REFS CLOVARS CFORM ))
008 ;ENV ENVIRONMENT (A LIST OF VARIABL ES , NOT A MAPPING ; DEBUGGING ONLY)
009 ;R E F S  VARIABLES BOUND ABOVE AND REFERENCED BELOW THIS CNODE
010 ;CLOVARS VARIABLES REFERRED TO AT OR BELOW THIS CNODE BY CLOSURES
011 ; (SHOULD BE A SUBSET OF REFS)
012 ;CFORM ONE OF THE BELOW TYPES
013 (DEFTYPE TRIVIAL (NODE))
014 ;NODE A PASS-i NODE TREE
015 (DEFTYPE CVAR IA BLE (VAR ))
016 ;VAR GENERATED VARIABLE NAME
017 (O LITYP E CIAMBDA (VARS BODY FlIP TVARS NAME DEP MAXD EP CONSENV CLOSEREFS ASETVARS))
018 ;FHP NON-NIL => NEEDN ’T  MAKE A FULl. CLOSURE OF THIS
019 ; CLAMBDA . MAY BE ‘NOCLOSE OR ‘EZCLOSE (THE FORMER
020 ; MEANING NO CLOSURE IS NECESSARY AT ALL . THE LATTER
021 ; THAT THE CLOSURE IS MERELY THE ENVIRONMENT ).
022 ;TVARS THE VARIABLES WHICH ARE PASSED THROUGH TEMP LOCATIONS
023 ON ENTRY. NON-NIL ONLY IF FNP= ’NOCLOSE; THEN IS
024 NORMALLY THE LAMBDA VARS , BUT MAY BE DECREASED
025 ; TO ACCOUNT FOR ARCS WHIC H ARE THEMSELVES KNOWN NOCLOSE’S.
026 ; OR WHOSE CORRESPONDING PARAMETERS ARE NEVER REFERENCED.
027 THE TEMP VARS INVOLVED START IN NUMBER AT DEP .
028 ;NAME THE PROC TAG USED TO LABEL THE FINAL OUTPUT CODE FOR THE CLAMBDA
029 :DEP DEPTH OF TEMPORARY REGISTER USAGE WHEN THE CLAMBDA IS INVOKED
030 ;MAXDEP MAXIMUM DEPTH OF REGISTER USAGE WITHIN CIAMODA BODY
031 ;CONSENV THE “CONSED ENVIRONMENT~ WHEN THE CLAMBOA IS EVALUATED
032 ;CLOSER (FS VARIABLES REFERENCED BY THE CLAMBDA WHICH ARE NOT IN
033 ; THE CONSED ENVIRONMENT AT EVALUATION TIME , AND SO MUST BE
034 ADDED TO CONSENV AT THAT POINT TO MAKE THE CLOSURE
035 ;AS (TVARS THE ELEMENTS OF VARS WHICH ARE EVER SEEN IN A CASET
036 (DEFTYPE CONIINUAIION (VAR BODY FNP IVARS NAME DEP NAXDEP CONSENV CLOS(REFS))
037 ;COMPONENTS ARE AS FOR CLAMBDA
038 (DEFTYPE CIF (PRED CON ALT) )
039 (DEF TYPE CASET (CONT VAR BODY))
040 (DEF TYPE CLABELS (FNVARS FNDEFS FNENV EASY CONSENV BODY))
041 ;FNENV A LIST OF VARIABLES TO CONS ONTO THE ENVIRONMENT BEFORE
042 ; CREAT ING THE CLOSURES AND EXECUTING THE BODY
043 ;EASY NON-NIL 1FF NO LABELED FUNCTION IS REFERRED TO
044 ; AS A VARIABL E . CAN BE ‘NOCLOSE OR ‘EZCLOS(
045 ; (REFLECTING THE STATUS OF ALL THE LABELLED FUNCTIONS)
046 ;CONS(NV AS FOR CLAMBDA
047 (DEFTYP E CCOMBINATION (ARCS))
048 ;ARCS LIST OF CNOOES REPRESENTING ARGUMENTS
049 (DEFTYPE RETURN (CONT VAL))
0 50 ;CONT CNODE FOR CONTINUATION
051 ;VAL CNODE FOR VALUE
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CNODIFY is for cnode-trees what NODIFY was for node-trees. It takes a
CFORPI and wraps a Cr~ODE structure around it.

CONVERT is the main function of the conversion process; it is invoked by
CONPILE on the result (META-VERSION) of pass 1. CONVERT dispatches on the type of
node to be converted , of ten ca l l ing some specialist which may call it back
recursively to convert subnodes. CONT may be a cnode, or NIL.  If it is a cnode ,
then that cnode is the code for a continuation which is to receive as value that
produced by the code to be converted. That is , when CONVERT f in ishes produc ing
code for the given node (the first argument to CONVERT), then in effect a RETURN
is created which causes the value of the generated code to be returned to the
code represented by CONT (the second argument to CONVERT). Sometimes this RETURN
cnocle is created explicitly (as for CONSTANT and VARIABLE nodes), and sometimes
only implicitly, by passing CONT down to a specialist converter.

NP is I if ortimization was performed by pass 1, and NIL otherwise . This
ar gumen t is for  debu ggin g purposes only: CONVERT compares this to the METAP slot
of the pass-i nodes in order to detect any failures of the incremental
optimization and analysis process. CONVERT also makes some other consistency
checks.



001 RABBIT 568 0~~~~LTh ge 27
002 (DEFINE CNODIFY
003 (LAMBDA (CFORM )
004 (CONS-CHODE (CFORM = CFORM))))
005
006 (DEFINE CONVERT
007 (LAMBDA (NODE CONT MP)
008 (LET ((Ill (NODE\FORM NODE)))
009 (IF (EMPTY (NODE\TRIVP NODE))
010 (ERROR ‘IPass 1 anal ysis missing ! NODE ‘FAIL-ACT))
011 (OR (EQ (NODE\ME TAP NODE) NP)
012 (ERROR ‘IM eta-eva luatlon Screwed Up METAP I NODE ‘FAIL-ACT))
013 ( EQCASE (T YPE F M )
01-4 (CONSTANT
015 (OR (NOOE\TRJVP NODE )
016 (ERROR ‘INon -trivia l Constanti NODE ‘FAIL-ACT))
017 (MAKE-RETURN (CONS-TRIVIAL (NODE NODE)) cONT))
018 (VARIABLE
019 (OR (NODE\TRIVP. NODE)
020 (ERROR ‘ INon- tr iv ia l  Va r iablej  ‘ F A I L - A C T ) )
021 (MAKE-RETURN (CONS-TRIVIAL (NODE — NODE)) CONT))
022 (LAMBDA (MAKE-RETURN (CONVERT-LAMBDA-FM NODE NIL NP) CONT))
023 (IF (OR CONT (ERROR ‘INufl Continuation to IF! NODE ‘FAIL-ACT))
024 (CONVERT-IF NODE FM CONT MP))
025 (ASET (OR CONT (ERROR ‘INu ll Continuation to ASETI NODE ‘FAIL-ACT))
026 (CONVERT-ASET NODE FM CONT NP))
027 (CATCH (OR CONT (ERROR ‘t Nul l  Continuation to CATCH I NODE ‘ FA IL -ACT) )
028 (CONVERT-CATCH NODE FM CONT MP))
029 (LABELS (OR CONT (ERROR ‘IN uJI Continuation to LABELSI NODE ‘FAIL-ACT))
030 (CONVERT-LABELS NODE FM CONT NP))
031 (COMBINATION (OR CONT (ERROR INull Continuation to Combinatlon i
032 NODE
033 ‘FAIL-ACT))
034 (CONVERT-COMBINATION NODE FM CONT NP))))) )
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MAKE-RETURN takes a CFORM (one of the types TRIVIAL , CVARIABLE , ...) and
a continuation, and construc ts an appropriate returning of the value of the CFORP%
to the continuation . First the CFORM is given to CNODIFY . If the continuation
is in fact NIL (meaning none), this new cnode is returned; otherwise a RETURN
cnndn is constructed.

CONVERT-LAMBDA-FM takes a LAMBDA node and converts it into a CLANBDA
cnode . The two are isomorphic , except that an extra variable is introduced as an
extra first parameter to the CLAMBDA . Conceptually, this variable will be bound
to a continuation when the CLAPIBDA is invoked at run time ; this continuation is
the one intended to receive the value of the body of the CLA1IBDA . Th is is
accomp l i s h e d  by cre a t in g a new variable name CONT-nnn , wh ich is added into the
lambda variables. A new CVARIABLE node is made from it, and given to CONVERT as
the continuation when the body of the LAMBDA node is to be recursively converted.

The CNAME argument is used for a special optimization trick by CONVERT-
COMBINATION , described below. -

CONVERT-IF distinguishes several cases, to simplify the converted code.
First , if the entire IF node is trivial , then a simple CTR I VIAL node may be
created for it. Otherwise , the general strategy is to generate code which will
bind the given continuation to a variable and evaluate the predicate . This
predicate receives a continuation which will examine the resulting value (with a
CIF), and then perform either the consequent or alternative , which are converted
using the bound variable as the continuation. The reason that the original
continuation is bound to a variable is because it would be duplicated by using it
for two separate calls to CONVERT , thereby caus ing duplicate code to be generated
for it. A schematic picture of the general strategy is:

NODE = (IF a b c) and CONT = k becomes

( (CLA M BDA ( q )
(RETURN (CONTINUATION (p)

(C IF p
(RETURN q b)
(RETURN q c) ) )

a ) )
k)

Now there are two special cases which allow simplification . First, if the given
continuation is already a cvariable , there is no point in creating a new one to
bind it to. This eliminates the outer CCOPIBINATION and CLAMBDA . Second, if the
predicate a is trivial (but the whole IF is not, because the consequent b or the
alternative c is non-trivial), then the CONTINUATION which binds p is
unnecessary.



001 RABBIT 568 05/15/78_ Page 28
002 (DEFINE MAKE-RETURN 

-

003 (LAMBDA (CFORM CONT)
004 (LET ( (C M (C N0DIFY CFORM)))
005 (IF CONT 

-

006 (CNODIFY (CONS-RETURN (CONT CONT) (VAL - CN) ) )
007 CN))))
008
009 (DEFINE CONVERT-LAMBDA -FM
010 (LAMBDA (NODE CNAME NP)
011 (LET ((CV (GENTEMP ‘CONT))
012 (FM (NOOE\FORM NODE)))
013 (CONS-CLAMBDA (VARS ~ (CONS CV (LANBDA\VARS FM)))
014 (BODY - (CONVERT (LAMBDA\BODY FM)
015 (CNODIFY
016 (CONS-CVARIABLE (VAR - (OR CNANE C V) ) ) )
017 NP))))))
018
019 ;;; ISSUES FOR CONVERTING IF:
020 ;;; (1)  IF WHOL E IF IS TRIVIAL . MA Y JUST CREATE A CTRIVZAL .
021 (2) IF CONTINUATION IS NON-CVARIABLE , MUST BIND A VARIABLE TO IT.
022 ( 3 )  IF PREDICATE IS TRIVIAL , MAY JUST STICK IT IN SIMPLE CIF.
023
024 (DEFINE CONVERT-IF
025 (LAMBDA (NODE FM CONT NP)
026 (IF (NOOE\TRIVP NODE )
027 (MAKE-RETURN (CONS-TRIVIAl. (NODE - NODE)) CONT)
028 (LET ((CVAR (IF (EQ (TYPE (CNODE\CFORM CONT)) CVARIABLE)
029 NIL
030 (GENTEMP ‘CONT)))
031 (PVAR (IF (NODE\TRIVP (IF\PRED FM))
032 NIL
033 (NODE\NAME (IF\PRED FM)))))
034 (LET ((ICONT (IF CVAR -
035 (CNODIFY (CONS-CVARIABLE (VAR - CVAR)))
036 CONY))
037 (IPRED (IF PVAR
038 (CNO0IFY (CONS-CVARIABLE (VAR - PVAR)))
039 (CNODIFY (CONS-TRIVIAL (NODE — (IF\PRED FN)))))))
040 (LET ((CIF (CNOOIFY
041 (CONS-CIF
042 (PRED - IPRED)
043 (CON • (CONVERT (IF\CON FM) ICONT MP))
044 (ALT - (CONVERT (IF\ALT FM)
045 (CNOOIFY
046 (C0NS-cVARIABLE
047 (VAR = (CVARIABLE~VAR
046 (~ NOOE\CFORM IcONT)))))
049 MP))))))
050 (LET ((F0O (IF PVAR
051 (CONVERT (IF\PRED FM)
052 (CNOOIFY (tONS-CONTINUATION (VAR - PVAR)
053 (BODY — CIF)))
054 NP)
055 CIF)))
056 (IF CVAR
057 (CNOOIFY
058 (CONS-CCOH6INATION
059 (AReS - (LIST (CROCIFY
060 (cONS-CLAMBDA
061 (VARS - (LIST CVAR))
062 (000Y — F0O)))
063 COUT))))
054

—_.__._____ - — — - — __ _ _ .. _ _ . _ _
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Th is is all done as follows . First CVAR and PVAR are bound to generated
nami~s if necessary, CVAR fo r  binding the continuation and PVAR for binding the
predicate value. Then ICONT and IPRED (the “I” is a mnemonic for “internal”) are
bound to the cnodes to be used for the two conversions of consequent and
alternative , and for the predicate of the CIF , respectively . CIF is then bound
to the cnode for the CIF code , including the conversions of consequent and
alternative . Finally, using FOO as an intermediary, CONVERT-IF first
conditionally arranges for conversion of a non-trivial predicate , and then
conditionally arranges for the binding of a non-cvariable continuation . The
result of all this is returned as the final conversion of the original IF node.

CONVERT-ASET is fairly straightforward , except that, as for IF nodes, a
special case is made of trivial nodes, as determined by the TRIVP slot.

The CATCH construct may be viewed as the user ’s one interface between the
“ LAMBDA worl d” and the “continuation world” . CONVERT-CATCH arranges its
conversion in such a way as to eliminate CATCH entirely. Because CONTINUATION
cnodes provide an explicit representation for the continuations involved , there
is no need at this level to have an explicit CCATCH sort of cnode . The general
idea is:

NODE = (CATCH a b) and COPJT k becomes

((CLA PIBDA (q)  -

((CLAPIBDA (a) (RETURN q b))
(CLAPIBDA (*IGNORE* V) (RETURN q V))))

k)

In the case where the given continuation k is already a cvariable, then it need
not be bound to a new one q. Note that the (renamed) user catch variable a is
bound to a CLA PI BDA which ignores its own cont inuat ion , and returns the argument V
to the continuation of the CATCH. Thus the user variable a is bound not to an
actual  CONTINUA TI ON , but to a l ittle CLAMBDA which interfaces properly between
the CLAPIBDA world and the CONTINUATION world. The uses of CVAR and ICONT are
analogous to their uses in CONVERT-IF.
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002 (DEFINE CONVERT-ASET -

003 (L AMBDA (NODE FM CONT NP)
004 (IF (NOD(\TRIVP NODE)
005 (MAKE-RETURN (CONS-TRIVIAL (NODE • NODE)) CONT)
006 (CONVERT (ASET\BODY FM)
007 (LET ((NM (NODE\NAME (ASET\BOOY FM))))
008 (CNOD IFY
009 (CONS-CONTINUATIoN
010 (VAR = NM)
011 (BODY • (CNODIFY
012 (CONS-CASET
013 (cONT = CONT)
014 (VAR — (ASETWAR FM))
015 (BODY • (CNOOIFY (CONS-CVARIABLE
016 (VAR • NM))))))))))
017 NP))))
016
019 ISSUES FOR CONVERTING CATCH:
020 (1) MUST BIND THE CATCH VAR IABLE TO A FUNNY FUNCTION WHICH IGNORES ITS CONTINUATION :
021 (2) IF CONTINUATION IS NON-CVARIABLE , MUST BIND A VARIABLE TO IT.
022
023 (DEFINE
024 CONVERT-CATCH
025 (lAMBDA (NODE FM CONT NP)
026 (lET ((cvAR (IF (EQ ( TYP E (CN0DE\CFORM cONT)) ‘CVARIABLE )
027 NIL
028 (GENTEMP ‘CONT))))
029 (LET ((ICONT (IF CVAR
030 (CNOOIFY (CONS-CVARIABLE (VAR • CVAR)))
031 CONT)))
032 (LET ((CP (CNODIFY
033 (CONS-CCOMBINATION
034 (ARGS = (LIST (CNOOIFY
035 (CONS-CLANBDA
036 (VARS • (LIST (CATCH\VAR FM))>
037 (BODY • (CONVERT (CATCH\BODY FM) ICONT NP))))
038 (CNOOIFY
039 (CONS-CLAMBDA
040 (VARS • ‘(CIGNOREa v))
041 (600Y = (MAKE-RETURN
042 (CONS:CVARIABLE (VAR • ‘V) )
043 (CNOOIFY
044 (CONS-CVARIABLE
045 (VAR = (cVARIASLE\VAR
046 (CNOOE\CFORM ICONT)))))))) )))))))
047 (IF CVAR (CNOOIFY
046 (CONS-CCOPIBINATION
049 (AReS = (LIST (CNOOIFY
050 (CORS-CLAMBDA (VARS • (LIST CVAR))
osi (80eV • CP)))
052 COaT))))
053 CP))))))
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CONVERT-LABELS simply converts all the labelled function definitions
using NIL as the continuation for each . This reflects the fact that no code
directly receives the results of closing the definitions; rather, they s imply
become part of the environment. The body of the LABELS is converted using the
given continuation .

To make things much simpler for the pass-2 analysis and the code
generator , it is forbidden to use ASET ’ on a LABELS-bound variable. This iS an
arbitrary restriction imposed by RABBIT (out of laziness on my part and a desire
to concentrate on more important issues), and not one inherent in the SCHEME
language . This restriction is unnoticeable in practice , since one seldom uses
A~ ET’ at all , let alone on a LABELS variablo .

The conversion of COMBINATION nodes is the most complex of all cases.
First , a trivial combination becomes simply a TRIVIAL cnode. Otherwise, the
overall idea is that each argument is converted , and the continuation given to
the conversion is the conversion of all the following arguments. The conversion
of the last argument uses a continuation which performs the invocation of
function on arguments , using all the bound variables of the generated
continuations. The end result is a piece of code which evaluates one argument,
binds a variable to the result , evaluates the next, etc ., and finally uses -the
results to perform a function call.

To simplify the generated code, the arguments are divided into two
classes. One class consists of trivial arguments and LAMBDA-expressions (this
class is precisely the class of “trivially evaluable ” expressions defined in
[Imperative]), and the other class consists of the remaining arguments. The
successive conversion using successive continuations as in the general theory is
only performed on the latter class of arguments : The trivially evaluable
expressions are included along with the bound variables for non-trivial argument
values in the final function call. For example, one might have something like:

NODE = ( FOO ( CONS A B) (BAR A) B (BAZ B)) and CON T = k becomes

(RETURN (CONTINUATION (x)
(RETURN ( CONTINUATION (y)

(FOO k (CONS A B) x B y))
( BAZ B ) ) )

( BAR A))

where FOO , (CONS A B-)-, and B are trivial, but (BAR A) and (BAZ B) are not.



001 RABBIT 568 05/15/7! Pa9e 30
002 ;;; ISSUES FOR CONVERTING LABELS :
003 (1) MUST CONVERT ALL THE NAMED IAMBOA- (XPR(SSZONS , US ING A NULL CONTINUATiON .
004 ;; ; (2) TO MAKE THINGS EASIER LATER. WE FORBID ASET ON A LABELS VARIABLE .
005
006 (DEFINE CONVERT-LABE LS
007 (LAMBDA (NODE FM CONT NP )
008 (Do ( (F  (LABELS\F NDEFS FM) (CDR F ) )
009 (V (LABELS\FNVARS FM) (CDR V))
010 (CF NIL (CONS (CONVERT (CAR F) NIL NP) C r) ) )
011 ((NULL F)
012 (CNODIFY (CONS-CLABELS (FNVARS = (LABELS\FNVARS FM))
013 (FNDEFS — (NREVERSE CF))
014 (BODY (CONVERT (LABELS\BODY FM) CONT NP)))))
015 (AND (GET (CAR V) ‘WRITE-REFS)
016 (ERROR ‘ lA re  you crazy, using ASET on a LABELS variable?)
017 (CAR V)
018 ‘FAIL-ACT)))))

- - - -- - - - - - -
~~~~~~~ 

-
~ 
- 
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The separation into two classes is accomplished by the outer DO loop.
DELAY-FLAG S is a list of flags describing whether the code can be “delayed” (not
converted using strung-out continuations) because it is tr ivially evalua b le. The
inner DO loop of the three (which loops on variables A, .i, and Z , no t A, D, and
F! ) then constructs the final function call , using the “delayed” arguments and
generated continuation variables. The names used for the variables are the names
of the corresponding nodes, which were generated by NODIFY . Finally , the middle
DO loop (which executes last because the “inner” DO loop occurs in the
initialization, not  the body , of the “middle ” one) generates the strung—out
continuations , converting the non-delayable arguments in reverse order, so as to
generate the converted result from the inside out.

The net effect is that non-trivial arguments are evaluated from left—to—
righ t , and trivial ones are also (as it happens , because of MacLISP semantics),
but the two classes are intermixed. This is where RABBIT takes advantage of the
SCHEME semantics which decree that arguments to a combination may be evaluated in
any order. It is also why CHECK-COMBINATION-PEFF S tries to detect infractions of
this rule.

A special trick is that if the given continuation is a variable , and the
combination is of the form (( LAMBDA ...) ...), then it is arranged to use the
given con t inua t ion as the continuation for converting the body of the LAMBDA ,
rather than the extra variable which is introduced for a continuation in the
LAMBDA variables list (see CONVERT-LAMBDA-FM). This effectively constitutes the
optimization of substituting one continuation variable for another , much as META-
COPIBINATION-LAPIBDA may substitute one variable for another. (This turns out to
be the only optimization of importance to be done on pass-2 cnode code ; rather
than building a full-blown optimizer for pass-2 cnode-trees , or arranging to make
the optimizer usable on both kinds of data structures, it was eas ier to tweak the
conversion of combinations.) The substitution is effected by passing a non-NIL
CNAME argument to CONVERT-LAMBDA-FORM , as computed by the form (AND (NULL (CDR
A ) )  .. .) .



001 RABBIT 568 05/15/78 Page 31
002 ; ; ;  ISSUES FOR CONVERT ING COMBINATIONS: 

-

003 • ; ;  (1) TRIVIAL ARGUMENT EVALUATIONS ARE DELAYED AND ARE NOT BOUND TO THE VARIABLE OF
004 ;.; A CONTINUATION . WE ASSUME THEREBY THAT THE COMPILER IS PERMITTED TO EVALUATE
005 OPERANDS IN ANY ORDER.
008 (2) ALL NON-DELAYABLE COMPUTATIONS ARE ASSIGNED NAMES AND STRUNG OUT WITH CONTINUATIONS .
007 ;;; (3) iF CONT IS A CVARIABLE AND THE COMBINATION IS ((LAMBDA ...) ...) THEN WHEN CONVERTING
008 ;;; THE LAMBDA-EXPRESSION WE ARRANGE FOR ITS BODY TO REFER TO THE CVARIABL I CONT RATHER
009 THAN TO ITS OWN CONTINUATION . THIS CROCK EFFECTIVELY PERFORMS THE OPTIMIZATION OF
010 SUBSTITUTING ONE VARIABLE FOR ANOTHER . ONLY ON CONTINUATION VARIABLES (WHICH COULDN ’T
011 BE CAUGHT BY META- EVALUATE).
012
013 (DEFI NE
014 CONVERT-COMBINATION
015 (LAMBDA (NODE FM CONT NP)
016 (IF (NODE\TRIvP NODE )
01? (MAKE-RETURN (CONS-TRIVIAL (NODE • NODE)) CONT)
016 (DO ((A (COPIBINATION\ARGS FM) (COR A))
019 (0ELAY-FLAGS NIL -

020 (CONS (OR (NODE\TRIVP (CAR A))
021 (EQ (TYPE (NODE\FORN (CAR A))) ‘LAMBDA))
022 DELAY-FLAGS)))
023 ((NULL A )
024 (DO ((A (REVERSE (COIIBINATION\ARGS FM)) (CDR A))
025 (D DELA Y-FLAG S (COR 0))
026 (F (CNODIFY
027 (CONS-CCOMBINATION
028 (ARGS (DO ((A (REVERSE (COMBINATION\ARGS FM)) (CDR A))
029 (0 DElAY-FLAGS (COR D))
030 (Z NIL (CONS (IF (CAR 0)
031 (IF (EQ (TYPE (NO0E\FORM (CAR A)))
032 ‘LAMBDA)
033 (CNODIFY
034 (CONVERT-LAMBDA-FM
035 (CAR A)
036 (AND (NULL (COR A))
037 (EQ ( TYPE
038 (CNODE~CFORM COaT))039 ‘CVARIABLE)
040 (CVARIABLE\VAR
041 (CNODE~CFORM COaT)))042 NP))
043 (CNODIFY
044 (CONS-TRIVIAL
045 ( NODE • (CAR A ) ) ) ) )
046 (CNODIFY
047 (CONS-CVAR IABLE
046 (VAR = (NOOE\NAME (CAR A))))))
049 - 2)))
050 - ((NULL A) (COIlS (CAR 2) (CONS CONT (COR z))))))))
051 (IF (CAR D) F
052 (CONVERT (CAR A)
053 (CNOOIFY (CONS-CONTINUATION
054 (VAR - (NOOE\NAME (CAR A)))
055 - ( BODY = F ) ) )
056 NP))))
057 ((NULL A) F ) ) ) ) ) ) )  

S S ~~~—- -- - - - - - - -  -~~~~
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Once the pass-2 cnode-tree is constructed , a pass-2 analysis is performed
in a manner very similar to the pass-i analysis. As before, successive routines
are called which recursively process the code tree and pass information up and
down , filling in various slots and putting properties on the property lists of
variable names.

The first routine , CEPJV-ANALYZE, is similar to EPJV-ANALYZE, but dif fe rs
in some important respects. Two slots are fi l led in for each cnode . The slot
ENV is computed from the top down , while REFS is computed from the bottom up.

ENV is the environment , a list of bound variables visible to the cnode.
The ENV slot in the node-tree was a mapping (an alist), but this ENV is only a
list . The argument ENV is used in the analysis of CVARIABLE and CASET nodes.
The cnode slot ENV is included only for debugging purposes , and is never used by
RABBIT i tself.

REFS is analogous to the REFS slot of a node-tree: it is the set of
variables bound above and referenced below the cnode . It differs from the pass-i
analysis in that variables introduced to name continuations and variables bound
by continuations are also accounted for. In the case of a TRIVIAL cnode ,
however , the REFS are precisely those of the contained node .

The argument FNP to CENV-ANALYZE in non-NIL iff the given cnode occurs in
“functional position ” of a CCOPIBINATIOPJ or RETURN cnode. This is used when a
variable is encountered ; on the property list a VARIABLE-REFP property is placed
iff  FNP is NIL , indicating that the variable was referenced in “variable (non—
func tion) pos ition ”- . This information will, be used by the next phase, BIND—
ANALYZE.

S S~~~~~



001 RABBIT 568 s/15/7e Page 32
002 ;;. ENVIRONMENT ANALYSIS FOR CPS VERSION
003
004 WE WISH TO DETERMINE THE ENVIRONMENT AT EACH CNOOE .
005 ;,, AND DETERMINE WHAT VARIABLES ARE BOUND ABOVE AND
006 ;~~; REFERRED TO BELOW EACH CNODE .
007
008 FOR EACH CNODE WE FILL IN THESE SLOTS :
009 (NV THE ENVIRONMENT SEEN AT THAT CNODE (A LIST OF VARS)
010 REFS VARIABLES BOUND ABOVE AND REFERRED TO BELOW THAT CNO0E
011 FOR EACH VARIABLE REFERRED TO IN NON-FUNCTION POSITION
012 BY A CVAR IA BLE OR CTR IVIAL CNODE WE GIVE A NON-NIL VALUE TO THE PROPERTY:
013 ;;; VAR IABLE-REFP
014
015 FNP IS NON-NIL 1FF CNODE OCCURS IN FUNCTIONAL POSITION
016
017 (DEFINE
018 CENV-ANALYZE
019 (LAMBDA (CNODE ENV (NP)
020 (lET ((CFM (CNODE\CFORM CNOOE)))
021 (ALTER-CNOOE CNODE (ENV :~ ENV))
022 (EOCASE (TYPE CFM)
023 (TRIVIAL
024 (CENV-TRIV-ANALYZE (TRIVIAL\NODE CFM) FNP )
025 (ALTER-CNODE CNOOL
026 (REFS :— (NO0E\REFS (TRIVIAL\NODE CFM)))))
027 (CVAR IABLE
028 (LET ((V (CVARIABLE\VAR CFM)))
029 (ADDPROP V CNODE ‘R(AD-REFS)
030 (OR FNP (PUTPROP V T ‘VARIABLE-REFP))
031 (ALTER-CN0DE CNODE
032 (REFS := (AND (MEMQ V (NV)
033 (LIST (CVARIABLE\VAR CFM)))))))
034 (CLAMBDA
035 (LET ((B (CLAMBDA\BOOY CFN)))
036 (CE1IV-ANALYZE B (APPEND (CLAMBDA\VARS CFN) (NV) NIL)
037 (lET ((REFS (SETDIFF (CNODE\REFS B) (CLAMBDA\VARS cr14))))
038 (ALTER-CNOOE CNODE (REFS :- REFS)))))
039 ( CONTINUA T ION
040 (LET ((B (C0NTINUATION\BOOY CFM)))
041 (CENY-ANALYZE B (CONS (CONTINUATION\VAR CFM) (NV ) NIL)
042 (LET ((REFS (REMOVE (COIITINUATION\VAR CFM) (CNOOE\R(FS B))))
043 (A1TER-CNOOE CNODE (REFS :- REFS)))))
044 (CIF
045 (LET ((PRED (CIF\PREO Cr14))
046 (CON (CIF\CON cFM))
047 (ALT (CIF\ALT CFM)))
048 (C(NV-ANALYZE PRED £NV NIL)
049 (CENV-ANALYZE CON (NV NIL)
050 (CENV.ANALYZ E ALT (NV NIL)
051 (ALTER-CNOD E CNOOE
052 (REFS := (UNION (CNOOE\REFS PRED)
053 (UNION (CNOOE\REFS CON)
054 (CNOOE\REFS ALT)))))))

• 055 (CASET
056 (LET ((V (CASET\VAR CFM))
057 (CN (CAS(T\CON T Cr14))
058 (8 (CAS(T~BO0Y CFM)))059 (PUTPROP (CASET\VAR CFM) T ‘VARIABLE-REFP) S

060 (CENV-ANALYZ ( CN (NV T)
061 - (CENY-ANALYZE B [NV NIL)
062 (ALTER-CNOOE CNOO€
063 (REFS :‘ (LET ((R (UNION (CNOOE\REFS CII)
064 (CNOOE\R(FS B)) ) )
065 (IF (MEMO V ENV) (ADJOIN V R) R))))))
066 (CLABELS
067 (LET ((LENV (APPEND (CLAIELS\FNVARS CFM) (NV)))
066 (DO ((F (CLABELS\FNDEFS Cr14) (COR F))
069 (R NIL (UNION Il (CNOOE\REFS (CAR F)))))

S S -~
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RABBIT 568 L15/78~~Paae 32.1070 ((NULL F) 
-

071 (LET ((B (CLABELS\BODY C~~M)) I
072 (CE NV~ANALYZrS B LENV NIL)
073 (ALTER-CNODE CNODE
074 (RE FS := (SET OI FF (UNION R (CNODE \REFS B))
075 (CLABELS \FNV ARS C F M ) ) ) ) ) )
076 (CENV-ANALYZE (CAR F) LENV NIL))))
07? (CC0MBINATION
078 (LET ((ARCS (CCOMBINATION\ARGS CFM)))
079 (CENV-ANALYZE (CAR ARGS ) ENV T)
080 (COND ((AND (EQ (TYPE (CNODE\CFORM (CAR ARGS))) ‘TRIVIAL )
081 (EQ (TYPE (NOOE\F0RM (TRIVIAI\NO0(
082 (CNODE\CFORM (CAR ARGS)))))
083 ‘VARIABLE)
084 (TRIVFN (VARIABLE\VAR
085 (NODE\FORM
086 (TRIVIAL\NOOE
087 (CNDDE\CFORM
088 (CAR AR G S) ) ) ) ) ) )
089 (CENV-ANALYZE (CADR ARGS) (NV T)
090 (CENV-CCOMBINATION-ANALYZE CNOOE
091 ENV
092 (CDDR ARGS)
093 (UNION (CNODE\REFS (CAR ARGS))
094 (CNODE\REFS (CADR ARCS)))))
095 (1 (CENV-CCOMBINATION-ANALYZE CNODE
096 (NV
097 (CUR ARGS)
098 (CNODE\REFS (CAR ARGS ) ) ) ) ) ) )
099 (RETURN
100 (LET ((C (RETURN\CONT CFM))
101 (V (RETURN\VAL CFM)))
102 (CENV-ANALYZE C [NV T)
103 (CENV-ANALYZE V (NV NIL)
104 (ALTER-CNODE CNODE
105 (REFS := (UNION (CNODE~REFS C) (CNODE\REFS V))))))))))
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The only purpose of CENV-TRIV-ANALYZE is to go through the code for a
TRIVIAL cnode, looking for variables occurring in other than function position,
in order to put appropriate VARIABLE-REFP properties. Notice that the types
LANBDA and LABELS do not occur in the EQCASE expression, as nodes of those types
can never occur in trivial expressions.

CENV-CCOMBINATION-ANALYZE is a simple routine which analyzes CCOMBINATION
cnodes; it is a separate routine only because it is used in more than one place
in CENV-ANALYZE . It could have been made a local subroutine by using a LABELS in
CENV-ANALYZE , but I elected not to do so for purely typographical reasons.

4- . - -~~~ . - - - - - ~~~~~~~~~~~ 
- _____ — - -— — ,  —



001
002 ;;; THIS FUNCTION MUST GO THROUGH AND LOCATE VARIABLES APPEAR ING IN NON-FUNCTION POSITION.
003
004 (DEFINE CENV-TRIV -ANALYZE
005 (LAMBDA (NODE FNP )
006 (LET ((FM (NODE\FORM NODE)))
007 (EQCASE ( TYPE FM)
008 (CONSTANT NIL)
009 (VARIABLE
010 (OR FNP (PUTPROP (VARIABLE\VAR FM) T VARIABLE-REFP)))
011 (LAMBDA
012 (OR FNP
013 (ERROR ITrlv lal closure - CENV-TRIV-ANALYZE ) NODE FAIL-ACT))
014 (CENV-TRIV-ANALYZ( (LAMBDA\BODY FM) NIL))
015 (IF
016 (CENV-TRIV-ANALYZE (IF\PRED FM) NIL)
017 (CENV-TRIV-ANALYZE (IF \COM FM) NIL)
018 (CENV-TRIV-ANALYZE (IF\ALT FM) NIL))
oi~ (ASET
020 (PUTPROP (ASET\VAR FM) T ‘VARIABLE-REFP)
021 (CENV-TRIV-ANALYZ ( (ASET\BOOY FM) NIL))
022 (COMBINATION
023 (DO ((A (COMBINATION\ARGS FM) (COR A))
024 (F T NIL))
025 ((NULL A))
026 (CENV-TRIY-ANALYZE (CAR A) F)))))))
027
028 (DEFINE CENV-CCOMBINATION-ANALYZE
029 (LAMBDA (CNOOE ENV ARGS FREFS)
030 (DO ((A ARGS (COR A))
031 (R FREES (UNION R (CNOOE\REFS (CAR A)))))
032 ((NULL A)
033 (ALTER-CNOOE CNOOE (REFS :- R)))
034 (CENV-ANALYZ( (CAR A) ENV NIL))))
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The binding analysis is the most complicated phase of pass 2. It
determines for each function whether or not a closure structure will be needed
for it at run time (and if so , whether the closure structure must contain a
pointer to the code); it determines for each variable whether or not it can be
referred to by a run-time closure structure ; and it determines for each function
how arguments will be passed to it (because for internal functions not apparent
to the “outside world” , any arbitrary argument-passing convention may be adopted
by the compiler to optimize register usage ; in particular , arguments which are
never referred to need never even be actually passed). If flow analysis
determines that a given variable always denotes (a closure of) a given functional
(CLA N BDA ) expression , then a KNOWN-FUNCTION property is created to connect the
variable directly to the function for the benefit of the code generator.

BIND-ANALYZE is just a simple dispatch to one of many specialists, one
for each type of CNODE . TRIVIAL and CVARIABLE cnodes are handled directly
because they are simple.

The argument FN P is NIL , EZCLOSE, or NOCLOSE , depending respectively on
whether a full closure structure , a closure structure without a code pointer , or
no closure structure will be needed if in fact CNODE turns out to be of type
CLAP1BDA (or CONTINUATION).  Norma lly it is NIL , unless determined otherwise by a
paren t CLABELS or CCOPIB INAT ION cnode .

The ar gument NA flE is meaningful only if the CPJODE argument is of type
CLAMBDA or CONTINUATION . If non-NIL , it is a suggested name to use for the
cnode . This name will later be used by the code generator as a tag. The only
reason for using the suggestion rather than a generated name (and in fact one
will be generated if the suggested name is NIL) is to make it easier to trace
things while debugging.

REFD-VARS is a utility routine. Given a set of variables, it returns the
subset of them that are actually referenced (as determined by the READ-REFS and
WRITE-REFS properties which were set up by ENV-ANALYZE and CENV-ANALYZE).



001 RABBIT 568 05/15/78 P.9e 34
002 BINDING ANALYSIS.
003
004 FOR EACH CNODE WE FILL IN:
005 CIOVARS THE SET OF VARIABLES REFERRED TO BY CLOSURES
006 AT OR BELOW THIS NODE (SHOULD ALWAYS BE A
007 • ;.  SUBSET OF REF S)
008 FOR EACH CLAMBDA AND CONTINUATION WE FILL IN:
009 ;;; FNP NON-NIL 1FF REFERENCED ONLY AS A FUNCTION .
010 WILL BE ‘EZCIOSE IF REFERRED TO BY A CLOSURE .
011 AND OTHERWISE NOCIOSE .
012 TVARS VARIA8LES PASSED THROUGH TEMP LOCATIONS WHEN CALLING
013 ;;; THIS FUNCTION
014 NAME THE NAME OF THE FUNCTION (USED FOR THE PROG TAG)
015 ;;; FOR EACH CLABELS WE FILL IN:
016 EASY REFLECTS FNP STATUS OF ALL THE LABELLED FUNCTIONS
017 ;;; FOR EACH VARIABLE WHICH ALWAYS DENOTES A CERTAIN FUNCTION WE
018 PUT THE PROPERTIES :
019 ;;; KNOWN-FUNCTION 1FF THE VARIABLE IS NEVER ASET
020 THE VALUE OF THE KNOWN-FUNCTION PROPERTY IS THE CNODE FOR
021 THE FUNCTION DEFINITION .
022 FOR EACH LABELS VARIABLE IN A LABELS OF THE EZCLOSE VARIETY
023 WE PUT THE PROPERTY:
024 ;;; LABELS-FUNCTION
025 ;;; TO INDICATE THAT ITS “EASY” CLOSURE MUST BE CDR D TO GET THE
026 CORRECT ENVIRONMENT (SEE PRODUCE-LABELS).
027
028 NAME , IF NON-NIL , IS A SUGGESTED NAME FOR THE FUNCTION
029
030 (DEFINE BIND-ANALYZE
031 (LAMBDA (CNODE FNP NAME )
032 (LET ((CFM (CNODE\CFORM CNODE)))
033 (EQCASE (TYPE CFM)
034 (TRIVIAL
035 (ALT (R-CNODE CNODE (CLOVARS :~ NIL)))
036 (CVARIABLE
037 (ALTER-CNODE CNODE (CLOVARS :“ NIL)))
038 (CLAMBDA
039 (BIND-ANALYZE-CLAMBDA CNODE FNP NAME CFM))
040 (CONTINUATION
041 (B1ND-ANALYZE ,-CONTINUATION CNODE FNP NAME CFM))
042 (CIF
043 (BIND .ANALYZE-CIF CNODE CFM))
044 (CASET
045 (BIND-ANALYZE-CASET CNODE CFM))
046 (CLABELS
047 (8IND-ANALYU-CLABELS CNODE CFM))
048 (CCOMBINATION
049 (BIND-ANALYZE.CCOMBINATION CNOOE CFM))
050 (RETURN
051 (BIND-ANALYZE-RETURN CNOOE CFN))))))
052
053 (O(FINE REFO-VARS
054 (LAMBDA (VARS)
055 (Do ((V VARS (CDR V))
056 (W NIL (IF (OR (GET (CAR V) ‘READ-REFS)
057 (GET (CAR V) ‘WRITE-RFFS))
058 (CONS (CAR V) W)
059 W)))
060 ((NULL V) (NREVERSE W))))) 
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For a CLAMB DA cnode , BIND-ANALYZE-CLAMBDA first analyzes the body . The
CLOVARS component of the cnode is then calculated . If the CLAflBDA will have a
run-time closure structure created for it , then any variable it references is
obviously referred to by a closure . Otherwise, only the CLOVARS of its body are
included in the set.

The TVARS component is the set of parameters for which arguments will be
passed in a non-standard manner. Non-standard argument-passing is used only for
NOCLOSE-type functions (though in principle it could also be used for EZCLOSE-
type functions also). In this case, only referenced variables (as determined by
REFD-VARS) are actually passed. The code generator uses WARS for two purposes:
when compiling the CLAMBDA itself, WARS is used to determine which arguments are
in which registers; and when compiling calls to the function , WARS determines
which registers to load (see LAMBDACATE).

The FNP slot is just filled in using the FNP parameter. If a name was
not suggested for the NAME slot, an arbitrary name is generated .

BIND-ANALYZE-CONTINUATION is entirely analogous to BIND-ANALYZE-CLA?IBDA.

BIND-ANALYZE-CU straightforwardly analyzes recursively its sub-cnodes,
and then passes the union of their CLOVARS up as its own CLOVARS.

BIND-ANALYZE-CASET tries to be a little bit clever about the obscure case
produced by code such as :

(ASET ’ FOO ( LAMBDA . . . ) )

where the continuation is a CONTINUATION cnode (rather than a CVARIABLE). It is
then known that the variable bound by the CONTINUATION (not the variable set by
the CASET!!) will have as its value the (closure of the) CLAMBDA-expression .
This allows for the creation of a KNOWN-FUNCTION property, etc. This analysis is
very similar to that performed by BIND-ANALYZE-RETURN (see below). Aside from
this , the analysis of a CASET is simple; the CLOVARS component is merely the
union of the CLOVAR slots of the sub-cnodes.



001 RABBIT 568 05/15/78 Pag, 35
002 (DEFINE BIND-ANAIYZE-CLAM8OA 

-- - —

~~~~~
003 (LAMBDA (CNODE FNP NAME CFM )
004 (BLOCK (BIND-ANALYZE (C1AMBDA’~BO0Y CFM) N IL NIL)
005 (ALTER-CNODE CNOOE
006 (cLOVARS :— (IF (EQ FNP ‘NOCLOSE)
007 (CNOO E\CLOVARS (CLAMSDA\BOOY CFM))
008 (CNOOE\REFS CN0OE))))
009 (ALTER-cLAMBDA CFII
010 ( FNP :~ FNP)
011 ( TVARS :“ (IF (EQ FNP NOCLOSE)
012 (REFO-VARS (cLAMBDA\VARS CFM))
013 NIL))
014 (NAME :~ (OR NAME (GENTEMP ‘F ) ) ) ) ) ) )
015
016 (DEFINE BIND-ANALYZE-CO NTINUATION
017 (L AMBDA (CNOOE FNP NAME CFM)
018 (BLOCK (BIND-ANALYZE (CONTINUATION\SODY cFM) NIL NIL)
019 (ALT ER-CNOO E CNOOE
020 (CLOVARS :~ (IF (EQ FNP ‘NOCIOSE)
021 (CN00E~CLOVARS (CONTINUATION\BODY CFM))022 (CNOOE\REFS CNOOE))))
023 (ALTER-CONTINUATION CFM
024 (FNP :“ FNP)
025 ( TVARS :“ (IF (EQ FNP ‘NOCIOSE)
026 (REFD-VARS (LIST (CQNTINUATION\VAR cFM)))
027 NIL))
028 (NAME :— (OR NAME (GENTEMP ‘C)))))))
029
030 (DEFINE BIND-ANALYZE-CIF
031 (LAMBDA (CNOOE CFM)
032 (BLOCK (BIND-ANALYZE (cIF\PRED cFM) NIL NIL)
033 (BIND-ANALYZE (CIF\cON cFM) NIL NIL)
034 (BIND-ANALYZE (CIF~ALT CFH) NIL NIL)
035 (ALTER-CNODE CNOO(
036 (CLOVARS :- (UNION (CNODE\CLOVARS (CIF\PRED CFM))
037 (UNION (CNOOE\cLOVARS (cIF\CON CFM))
038 (CNOOE\CLOVARS (CIF\ALT CFN)))))))))
039
040 (DEFINE BIND-ANA LYZE-CASET
04 1 ( LAMBDA (CNOOE CFM )
042 (LET ((CN (CASET\CON T CFN))
043 (VAI. (CASET\BOOY CFM)))
044 (BIND-ANALYZE CR ‘NOCLOSE NIL)
045 (CORD ((AND (EQ (TYPE (CNOOE\CFORM CR)) ‘CONTINUATION)
046 (EQ (TYPE (CNOOE\CFORM VAL)) ‘CLAMB DA))
047 (LET ((VAR (CONTINUATION\VAR (CNOOE\CFORM CN))))
048 (PUTPROP VAR VAL ‘KNOWN-FUNCTIO N )
049 . (BIND-ANALYZE VAt.
050 (AND (NOT (GET VAR ‘VARIABLE.REFP))
051 (IF (MEMO VAR
052 (CNOOE\CLOVARS
053 (CONTINUATION\BOOY
054 (CNOOE\CFORM CR))))
055 ‘EZCLOSE
056 (BLOc K (ALTER-CONTINUATION (CNOOE\CFO*N cM)
057 ( TVARS :~~ NIL))
056 ‘NOCLOSE)))
059 NIL)))
060 (T (BIND-ANALYZE VAt NIL NIL)))
061 (ALTER-CRONE CR001
062 (CLOVAMS :- (UNION (CNOOE\CLOVARS CR)
063 - (CNOOE\CLOVARS VA L)))) ) ) )
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The b ind ing anal ysis of a CLABELS is very tricky because of the
possibility of mutually referent functions. For example , suppose a single
CLABELS binds two CLAMBDA expressions with names FOO and BAR . Suppose that the
body of FOO refers to BAR , and that of BAR to FOO. Should FOO and BAR be of FNP-
type N I L , EZCLOSE , or NOCLOSE? If either is of type EZCLOSE, then the other must
be also ; but the decision cannot be made sequentially. It is even more
complicated if one must be of type NIL.

An approximate solution is used here, to prevent having to solve
complicated simultaneous constraints. It is arbit raril y decreed that all
functions of a single CLABELS shall all have the same FNP type. If any one must
be of type NIL , then they all are. Otherwise, it is tentatively assumed that
they all may be of type NOCLOSE. If this assumption is disproved , then the
analysis is retroactively patched up.

The outer DO loop of BIND-ANALYZE-CLABELS creates KNOWN-FUNCTION
properties , and determines (in the variable EZ) whether any of the labelled
functions needs a full closure structure . (This can be done before analyzing the
func tions , because it is determined entirely by the VARIABLE-REFP properties
created in the previous phase.) The i,,ner DO loop then analyzes the functions.
When this is done , if EZ is NOCLOSE , and it turns out that it should have been
EZCLOSE after all , then the third DO loop forcibly patches the CLAJIBDA cnodes for
the labelled functions , and the AMAPC form creates LABELS-FUNCTION properties as
a flag for the code generator.

BIND-ANALYZE-RETURN simply analyzes the continuation and return value
recursively, and then merges to two CLOVARS sets to produce its own CLOVARS set.
A special case is when the two sub-cnodes are respectively a CONTINUATION and a
CLAMBDA ; then special work is done because it is known that the variable bound
by the CONTINUATION will always denote the (closure of the) CLAMBDA-expression .
A nasty trick is that if it turns out that the CLAMBDA can be of type NOCLOSE,
then the TVARS slot of the CONTINUATION is forcibly set to NIL (i.e. the empty
set). This is because no argument will really be passed. (This fact is also
known by the LAMBDACATE routine in the code generator.)

_ _
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002 (DEFINE BIND-ANALY ZE-CLABEL S
003 (LAMBDA (CNODE CFM)
004 (BLOCK (BIND-ANALYZE (CIAB(LS\BODY CFM) NIL NIL)
005 (DO ((V (CLABELS\FNVARS CFPI) (CON V))
006 (0 (~LABE 1S\FN0EFS CFI4) (CON 0))
007 (Li ‘NOCIOSE (AND (NULL (GET (CAR V) ‘VANIABLE-REFP)) EZ)))
008 ((NULL V)
009 (AIT(R.cIABELS CFM (EASY :— E l ) )
010 (00 ((V (CLABE LS\F NVARS CFM) (CON V) )
011 (0 (CIABELS\FND(FS CFM) (CDR 0))
012 (CV (CNODE\CIOVARS (CLABELS\BOOY CFM))
013 (UNION CV (CNOOE\CLOVARS (CAR 0) ) ) ) )
014 ( ( NULL 0 )
015 (ALTER-CNOO( CPOOE (CLOVARS :~ CV ) )
016 (CORD ((AND El (INTERSECT CV (LABELS\F NVARS CFM)))
0 17 (00 ((0 (CLABEIS\FNDEFS CFM) (COR 0))
018 (CV (CKOOE \CLOVARS (CLABELS \BOOY CFM ))
019 (UNION CV (CNODE\CLOVARS (CAR 0)) ) ) )
020 ( (NULL 0 )
021 (ALTER-CRONE CNODE (CLOVARS := CV)))
022 (A LTER-CLAIIBDA (CNOOE\CFORM (CAR 0))
023 (FNP :~ LZCLOSE )
024 (TVARS := NIL))
025 (ALTER-CNOO E (CAR 0)
026 (CLOVARS := (CNOOflREFS (CAR 0)))))
027 (AMAPC (LAMBDA (V) (PUTPROP V T ‘LABELS-FUNCTION))
028 (CLABELS\INVARS cFM))
029 (ALTER-CLA BELS CFM (EASY :“ ‘EZCLOSE)))))
030 (BIND-ANALYZE (CAR 0) El (CAR V) ) ) )
031 (PUTPROP (CAR V) (CAR D) ‘KNOWN-FUNCTIO N)))))
032
033 (DEF INE BIND-ANALYZE-RETURN
034 (LAMBDA (eRODE cFM)
035 (LET ((CN (RETURN\CONT CFM))
036 (VAL (RETURN \VAL cFN)))
037 (BIND-ANALYZE CR NOCIOSE NIL)
036 (CORD ((AND (EQ ( TYPE (CNOOE\cFOQM CR)) ‘CONTINUATION)
039 (EQ (TYPE (CNOOE\CFORM VAt.)) ‘CLAJIBDA))
040 (LET ((VAR (CONTINUATION\VAR (CNOOE \CFONN CR))))
04 1 (PUTPROP VAR VAt. ‘KNOWN-FUNCTION )
042 (SINO.ANALYZ( VAt.
043 (AND (NOT (SET VAR ‘VAR IA BLE-R EFP))
044 (IF (MEMO VAR
045 (CNOOflCLOVARS
046 (COMTINUATIOM~BO0Y
047 (CN0O1 \CFO~~ CR))))048 ‘EZCLOSE
049 (BLOCK (AL TER.COMTINUATION (CNOOE\CFORM CM)
050 (TVARS :- NIL))
05 1 ‘NOCLOS~~))
052 NIL)))
053 (T (BIND-ANAL YZE VAt. NIL NIL)))
054 (ALTER -CRONE CR001
055 (CLOVARS :“ (UNION (CNOOE\CLOVARS CI)
056 (CNOOI\CLOV*RS V*L)))))))

-a
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B1ND-ANALYZE -CCOM BIPJATION f irst analyzes the function position of the
combination . It then distinguishes three cases: a trivial function , a CLAPIBDA-
expression function , and all  others.

In the case of a trivial function , the continuation (which is the second
item in ARGS) can be analyzed with FNP NOCLOSE, because the compilation will
essentially turn into Ncalculate all other arguments, apply the trivial function ,
and then give the result to the continuation . A CCOMBINATION which looks like:

(a-trivial-function (CONTINUATION (var) ...) argi ... argn)

is compiled almost as if it were :

((CONTINUATION (var) ...) (a-trivial-function argi ... argn))

and of course the continuation can be treated as of type NOCLOSE.

In the case of a CLAMBDA-expression, the arguments are all analyzed, and
then the AMAPC expression goes back over the TVARS list of the CLAMBDA , and
removes from the TVARS set each variable corresponding to an argument wh ich the
analysis has proved to be a NOCLOSE-type KNOWN-FUNCTION . This is because no
actual argument will be passed at run time for such a function , and so there is
no need to allocate a register through which to pass that argument.

In the th ird case , the arguments are analyzed straightforwardly by BIND-
CCOMEI I NATION-ANALYZE .

BIND-CCOMBINATION-ANALYZE does the dirty work of analyzing arguments of a
CCOMBINATION and updating the CLOVARS slot of the CCOMBINATION cnode . If VARS is
non-NIL , then it is the variables of the CLAflBDA-expression which was in the
function position of the CCOMBINATION . As the arguments are analyzed, KNOWN-
FUNCTION properties are put on the variables as appropriate, and the correct
value of FNP is determined for the recursive call to BiND-ANALYZE . If VMS is
NIL , then th is code depends on the fac t that (CDR N I L)~NIL in MacLISP.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



001 RABB IT 566 05/15/78 Ps Øe 37
002 (DEFINE BIND-ANALYZE-CCO MBINAT ION
003 (L AMBDA (CRODE CFM)
004 (LET ((ARGS (CCOM8INATION\ARGS CFM)))
005 (BIND-ANALYZE (CAR ARGS) ‘NOCLOSE NIL)
006 (LEt ((FR (CNOOE\CFORM (CAR ARGS))))
007 (CORD ((AND (EQ (TYPE FR) ‘TRIVIAL )
008 (EQ (TYPE (NODE\FORM (TRIVIAL\NOOE FR)))
009 ‘VARIABLE )
010 (TRIVFN (VARIABLE\,VAR (NODEVORM (TRIVIAL\NODE FR)))))
011 (BIND-ANALYZE (CADR ARGS) ‘NO CLOSE NIL)
012 (BIND-CCOMBINATION-ANALYZE CNODE
013 (CDDR ARGS)
014 NIL
015 (CNODL~CLOVARS (CADR A RGS ) )))
016 ((EQ (TYPE FR) ‘CLAMBDA)
017 (BIND-CCQMBINATION-ANALYZ [ CNOOE
018 (CON ARGS)
019 (CLAMBDA\VARS FR)
020 (CNOOI\CL0VARS (CAR ARGS ) ) )
021 (AMAPC (LAMBDA (V)
022 (IF (LET ((KFN (GET ~ ‘KNOWN-FUNCTION)))
023 (AND KFM
024 (EQ (EQCAS( (TYPE (cN0OE\CFORM KFN))
025 (CLAMBDA
026 (CLANBDA\FNP
027 (CNOOE\,CFORM KFN)))
028 (CONTINUATION
029 (CONTINUATION\FNP
030 (CNODE\CFORM KFN))))
031 ‘NOCLOS E)))
032 (ALTER-CLAMBDA
033 FR
034 (TVAR S :~ (DELO V (CLAMBDA\TVARS FR) ) ) )) )
035 (CIAMBDA\TVARS EN)))
036 (T (BIRD-CCOMB}NATION.ANALYZE CRONE
037 (COR ANGS)
036 NIl.
039 (CNODE\CLOVARS (CAR ARGS) ) ) ) ) ) ) ) )
040 -

041 VANS MAY BE NIL - WE DEPEND ON (CON NIL).NIL.
042
043 (DEF IRE 8 IND-CCOMB tHAT ION-ANALYZE
044 (LAMBDA (CNOO E ARGS VANS FCV)
045 (00 ((A ARGS (CON A))
046 (V VARS (CON V))
047 (CV FCV (UNION CV (CNOOE\CLOVARS (CAR A)))))
048 ((NULL A)
049 (ALTER-CN00E CRONE (CIOVARS :- CV)))
050 (CORD ((AND VARS
051 (MEMO (TYPE (CNODE\CFÔRM (CAR A))) (CLAMBDA CONTINUATION))
052 (NOT (GET (CAR V) ‘WRITE-REFS)))
053 (PUTPROP (CAR V) (CAR A) ‘KNOWN-FUNCTION )
054 (B END-ANALYZE (CAR A)
055 (AND ( NOT (G ET (CAR V) VA RIABLE.REFP))
056 (IF (MEMO (CAR V) FeY)
057 ‘EZCLOSE
058 ‘NOCLOS~~ )
059 NIL))
060 (T (BIND-ANALYZ E (CAR A) NIL NIL))))))
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DEPTH-ANALYZE allocates registers through which to pass arguments to
NOCLOSE functions , i.e. for arguments corresponding to elements of TVARS sets.
An unclever stack discipline is used for allocating registers. Each function is
assigned a “depth” , which is zero for a function whose FNP is NIL or EZCLOSE
(such functions take their arguments in the standard registers **ONE** through
**EIGHT**, assuming that **NLJPIBER-OF-ARG-REGS** is 8, as it is in the current
SCHEME implementation). For a NOCLOSE function the depth is essentially the
depth of the function in whose body the NOCLOSE function appears, plus the number
of TVARS belonging to that other function (if it is of type NOCLOSE) or the
number of standard argument registers used by it (if it is NIL or EZCLOSE). For
example , consider this code :

( CLAMBDA (C X Y )
((CLA PI BDA (K F Z)

(( CLA MBDA (Q W V)

CONT-57 ‘3 4))
( CONTINUATION (V) - - - )
(CLAPIBDA (H) ...)
‘FOO))

Suppose that the outer CLAPIBDA is of type EZCLOSE for some reason . Its depth is
0. The two CLAMBDA-expressions and CONTINUATION immediately within it have depth
3 (assuming the CONTINUATION and second CLAMBDA are of type PJOCLOSE -- the first
CLAM B DA def initel y is). The innermost CLAMBDA is then of depth 4 (for Z , which
will he in TVARS -- K and F will not be because they are names for NOCLOSE
functions , assuming K and F have no WRJTE-REFS properties).

To eac h funct ion is a lso at tached a PIAXDEP value , which is in effect the
number of registers used by that function , inclu ding all NOCLOSE funct ions with in
it. This is used in only one place in the code generator, to generate a SPECIAL
declaration for the benefit of the MacLISP compiler , which compiles the output of
RABBIT. For most constructs this is simply the numerical maximum over the depths
of all sub-cnodes. Toward this end the maximum depth of the cnode is returned as
the value of DEPTH-ANALYZE .



001 RABBIT 568 05/15/78 P.g. 38
002 DEPTH ANALYSIS FOR CPS VERSION .
003
004 FOR EACH CLAMBDA AND CONTINUATION WE FILL IN:
005 DEP DEPTH OF TEMP VAR USAGE AT THIS POINT
006 ;;; MAXOEP MAX DEPTH BELOW THIS POINT
007
008 ;;; VALUE OF DEPTH-ANALYZE IS THE MAX DEPTH
009
010 (DEFINE DEPTH-ANALYZE
011 (IAM8OA (CNOOE 0(P)
012 (LET ((CFM (CNOOE\CFORM CNODE)))
013 ( EQCASE ( TYPE CFM)
014 (TRIVIAL 0(P)
015 (CVARIABLE DEP)
016 (CIAMBDA
017 (LET ((MO (DEPTH-ANALYjE (CLAMBDA\BOO Y cFM)
018 (IF (EQ (CLAMBDA\FNP cFM) ‘NOCLOSE)
019 (+ DEP (LENGTH (CLAMBDA\TVARS CFM)))
020 (MIN (LENGTH (CLAMBD A\VARS CFM))
021 (+ 1 a*NUMBER-Of-AQG-REGS**))))))
022 (ALI(R.CLAMBDA
023 CFM
024 (DEP :~ (IF (EQ (cLAM 8OA\FNP cFM) ‘NOCLoSE) DEP 0))
025 (MAXDEP :- PlO))
026 MD ) )
027 (CONTINUATI ON
028 (LET ((MD (DEPTH-ANALYZE
029 (CONTINUATION\BODY CFM)
030 (IF (EQ (CONTINUATION\FNP CFM) ‘NOCIoSE )
031 (+ DEP (LENGTH (COMTINUATION\TVARS cFM)))
032 2))))
033 (ALTER-CONTINUATION
034 CFM
03 5 (DEP :- (IF (EQ (CONTINUATPON\FNP CFM) ‘NOCIOSE ) DEP 0))
036 (MAXOE P :~ NO) )
037 MD) )
038 (CU
039 (MAX (DEPTH-ANALYZE (CIF\PRED Cr11) 0(P)
040 (DEPTH-ANALYZE (CIF\CON CFM) 0(P)
041 (DEPTH-ANALYZE (CIF~A1T CFM) 0EP)))
04 2 (CASET
043 (MAX (DEPTH-ANALYZE (CASET\CONT cFM) 0(P)
044 (DEPTH-ANALYZ E (CASET\BOOY cFM) DEP)))
045 (CLABELS
046 (LET ((OP (IF (EQ (CLABEIS\ EASY CFM) ‘NOCIOSE )
047 DEP
048 (i DEP (LENGTH (CLABELS\FNVARS C FM))) ) ) )
049 (DO ((D (CLABELS\FNDEFS CEll) (CON 0))
050 (MD (DEPTH-ANALYZE (CLABELS\BOOY CFM) DP)
051 (MAX MD (DEPTH-ANALYZE (CAR 0) OP ) ) ) )
052 ( (NULL 0) MD)) ))
053 (CCONBINATION
054 (DO ( (A  (CCOMB INAT ION\ARGS CFM) (CON A ))
055 (MD 0 (MAX MO (DEPTH-ANALYZE (CAR A) 0(P))))
056 ((NULL A) MD)))
057 ( RETURN
058 (MAX (DEPTH-ANALYZE (RETURN\CONT CFM) 0(P)
059 (DEPTH-ANALYZE (RETURN\VAL Cr11) DEP)))) ) ) )
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Just as DEPTH-ANALYZE assigns locations in registers (“ stack locations”)
for variables , so CLOSE-ANALYZE assigns locations in consed (“heap-allocated” )
environment structures for variables. The general idea is that if the value of a
an accessible variable is not in a register , then it is in the structure which is
in the register **EPJV**. This structure can in principle be any structure
whatsoever , according to the whim of the compiler. RABBIT’s whim is to be very
unclever; the structure of **EPJV** is always a s imple list of variable values.
Thus a var iable in the **ENV** structure is always accessed by a series of CDR
operations and then one CAR operation .

(More clever would be to maintain the environment as a chained list of
vectors , each vector representing a non-null contour. Then a variable could be
accessed by a serie s of “CDR” operations equal to the number of contours (rather
than the number of variables) between the binding and the reference, followed by
a single indexing operation into the contour-vector. The number of “CDR
operations could be reduced by having a kind of “cache ” for the results of such
contour operations; such a Cache would in fact be equivalent to the “display”
used in many Algol implementations. If such a display were maintained, a
variable could be accessed simply by a two-level indexing operation.)

Within the compiler an environment structure is also represented as a
simple list , with the name of a variable occupying the position which its value
will occupy in the run-time environment.

For every CLAPI BDA , CONTINUATION , and CLABELS , a slot called CONSENV is
filled in , wh ich Es a list representing what the environment structure will look
like when the closure(s) for th.~t construct are to be constructed , if any. This
is done by walking over the ci~ode-tree and doing to the environment
representation precisely what will be done to the real environment at run time.

There is a problem with the possibility that a variable may initially be
in a register (because it was passed as an argument , for example), but must be
transferred to a consed environment structure because the variable is referred to
by the code of a closure to be constructed. There are two cases: either the
variable.has no WRITE-REFS property, or it does.

If it does not , then there is no problem with the value of the variable
being in two or more places, so it is simply copied and consed into the
env ironment as necessary. The CLOSEREFS slot of a function is a list of such
variables which must be added to the consed environment before constructing the
closure .

If the variable does have WRITE-REFS, then the value of the variable must
have a single “home ” , to prevent inconsistencies when it is altered . (This is
far easier than arr~~ qing for every ASET’ operation to update all extant copies
of a variable ’s value.) It is arranged that su~~ variables, if they are referred
to be closures (are in the CLOVARS set of the CLAPIBDA which binds them) will
exist 2~i~~ 

in the consed environment. Thus for each CLAMBDA the ASETVARS set is
that subset of the lambda variables which have WRITE-REFS and are in the CLOVARS
set. Before the body of the CLAMBDA is executed , a piece of code inserted by the
code generator will transfer the variables from their registers immediately into
the consed env ironment , and the values in the registers are thereafter never
referred to.

- _



001 RABB !T 568 78 Pu9e ~~
002 ;; ; CLOSURE ANAL YSIS FOR CPS VERS ION
003
004 ;;; FOR EACH CIAMBDA , CONTINUATION , AND CIABEIS WE C III. IN:
005 ; CONSENV THE CONS(O ENVIRONMENT OF T~E CL4MBOA .
006 ;;~ CONTINUATION , OR CIABELS (BEFORE ANY
007 ; ; ; C IOSE REFS HAVE BEE N CONSED ON)
008 ;;; FOR EACH CIAMBDA AND CONTINUATION WE FILL IN:
009 ;., CIOSEREFS A LIST OF VA R IABLES REFERENCED BY THE CIAMBDA
010 ;;; OR CONTINUATION WHICH ARE NOT IN THE CONSED
011 ~ ;; ENVIR ONMEN T A T THE PO INT OF THE CIA MBDA OR
012 ;;; CONTINUATION AND SO MUST BE CONSED ONTO THE
013 :;; ENVIRONMENT AT CLOSURE TIME ; HOWEVER . THESE
014 ;;. NEED NO T BE CONSED ON IF THE CIAMBOR OR
015 ;;; CONTINUATION IS IN FUNCTION POSITION OF
016 ;;; A FATHER WHICH IS A CCOMBINATION OR RETURN
017 ; FOR THE CIAMBOA ’S 1~ THE F NDIFS OF A CIABELS , THESE MAY BE
018 • ; ;  SLIGHTLY ARTIFICIAL FOR THE SAKE OF OPTIMIZATION (SEE BELOW).
01~ ;;; FOR EACH CIAMBDA WE FILL IN:
020 ;;; ASETVARS A LisT OF THE VARIABL($ BOUND IN THE CLAMBDA
021 ;;; WHICH ARE EVER ASET AND SO MUST BE CONSED
022 ; ; ONTO THE ENVIRONMENT IMMEDIATELY IF ANY
023 ;;; CLOSURES OCCUR IN THE BODY
024 ;;; FOR EACH CLABELS WE FILL IN:
025 ;;; FNENV VARIABLES TO BE CONSED ONTO THE CURRENT CONS(NV
026 ;;; BEFORE CLOSIN G THE LABELS FUNCTIO NS
027
028 ;;; CENV IS THE CONSED ENVIRONMENT (A LIST OF VARIABLES )
029
030 (DEFINE FIITER-CLOSEREFS
031 (LAMBDA (REFS CENV)
032 (DO ( (X REFS (CON X) )
033 (Y NIL
034 (IF (OR (MEMO (CAR X) CENV)
035 (LET ((KFN (GET (CAR X) ‘KNOWN-FUNCTION)))
036 (AND KEN
037 (EQ (EQC AS( (TYP E (CNOD(\CFORM KEN))
038 (CLAMBOA
039 (CLAMBDA\FNP (CNOOE\CFORM KEN)))
040 (CONTINUATION
041 (CONTINUATION\FNP (CNOOE\CFORM KEN))))
042 ‘NOCLOSE))))
043 Y
044 (CONS (CAR X) Y))))
045 ((NULL X) (NREVERS( Y)))))
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For each CLABELS a set called FNENV is Computed , This is strictly an
efficiency hack , which attempts to arrange it such that the several closures
constructed for a CLABELS share environment structure. The union over all the
variables needed is computed , and these variables are, at run t ime , all consed
Onto the environment before any of the closures is constructed. The hope is that
the intersec tion of these sets is large, so that the total environment consing is
less than if a separate environment were consed for each labelled closure.

FILTER-CLOSEREFS is a utility routine which , given a set of var iables and
an envi ronmen t representat ion , returns that subset of the variables which are not
already in the environment and so do not denote known NOCLOSE functions. (Those
variables which are already in the consed environment or which do denote PJOCLOSE
fun ctions of course need not be added to that consed env ironm ent.)

The argument CENV to CLOSE-ANALYZE is the representation of the consed
environment (in **ENV**) which will be present when the code for CNODE is
executed. The only processing of interest occurs for CLANBDA , CONTINUATION , and
CLABELS cnodes.

The CLOSEREFS of a CLAPIBDA are those wh ich are referred to by the CLAM BDA
and which are not already in CENV , provided the CLAPIBDA is not of type NOCLOSE.
The ASETVARS are precisely those VARS which have WRITE-REFS and are in CLOVARS.

The processing for a CONTINUATION is similar. As a consistency check, we
make sure the bound variable has no WRITE-REFS (it should be impossible for an
ASET ’ to refer to the bound variable of a CONTINUATION).

For a CLABELS , the FNENV set is first calculated and added to CENV. This
new CENV is then used to process the definitions and body of the CLABELS.
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002 (DEFINE CLOSE-ANALYZE
003 (LAMBDA (CNODE CENV)
004 (LET ((cEll (CNODE\CFORM CNODE)))
005 ( EQCASE (TYPE CFM)
006 (TRIVIAL NIL)
007 (CVARIABLE NIL)
008 (CLAM8DA
009 (LET ((CR (AND (NOT (EQ (CIAMBDA\F NP CEll) ‘NOC LOSE))
010 (FILTER-CLOSEREFS (CNOOE\R(FS CHODE ) C(NV)))
011 (AV (00 ((V (CLAMBDA\VARS (CNODE\CFORM CNODE)) (CDR V))
012 (A NIL (IF (AND (GET (CAR V) ‘WRITE-R (FS)
013 (MEMO (CAR V)
014 (CNOO(\CLOVARS
015 (CLAMBOA\BOOY cEll))))
016 (CONS (CAR V ) A)
017 A) ) )
018 ((NULL V) A ) ) ) )
019 (ALTER-CLAMBDA CFM
020 (CONSENV :- CENV)
021 (CLOSEREES :~ CR)
022 (ASETVARS :~ AV))
023 (CLOSE-ANALYZE (CLAMBDA\BOD Y CEll)
024 (APPEND AV CR CENV))))
025 (CONTINUATION
026 (AND (GET (CONTINUATION\VAR CFM) ‘WRIT (-REFS)
027 (ERROR ‘ IHow cou ld an AS ET refer to a cant~~nust1on varl.ble?I
028 CNOOE
029 ‘FAIL-ACT))
030 (LET ((CR (AND (NOT (EQ (CONTINUAT ION \FNP CFM) ‘NOCLOSE))
031 (FILTER-CLOSEREFS (CNOOE\REFS CNOOE ) cE$V))))
032 (ALTER-CONTINUATION CFM
033 (CONSENV :~ CENV)
034 (CLOSEREFS :~ CR))
035 (CLOSE-ANALYZE (CONTINUATION\BOOY CFM)
036 ( APPEND CR CINV))))
037 (CIF
038 (CLOSE-ANALYZE (CIF\PREO CEll) CENV)
039 (CLOSE-ANALYZE (CIF\CON CEll) CENV)
040 (CLOSE-ANALYZE (CIF\ALT CEll) CENV))
041 (CASET
042 (CIOSE-ANALYZI (CA5ET~CONT CEll) CENV )
043 (CLOSE-ANALYZE (CASET\BODY cEll) CENV))
044 (CLABELS
045 ((LA MBDA (CENV )
046 (BlOC K (AMAPC (LAMBDA (0) (ClOSE-ANALYZE 0 CENV))
047 (CLABELS\FNDEES cr11))
048 (CLOSE-ANALYZE (CLABELS\BODY CFM) CENY)))
049 (COND ((CLABELS\EASY cEll)
050 (Do ((0 (CLAB(LS\FNDEFS CEM) (CON 0))
051 (R NIL (UNION N (CNODE\REFS (CAR 0)))))
052 ((NULL 0)
053 (LET ((E (FILTER-CLOSEREFS P CLNV)))
054 (ALT ER-CIAB ELS CFM
055 (FNENV :— C)
056 (CONSENV := CENY))
057 (APPEND E CENV)))))
058 (T (ALT(R.CLABELS CFM
059 (FNENV :- NIL)
060 (CONSENV :- CENV))
061 CENV)) ))
062 (CCOPI BINATION
063 ( AMAPC (LAMBDA (A) (CLOSE-ANALYZE A CaY))
064 (CCOIIBINATION\ARGS CEM)))
065 (RETURN
066 (CLOSE-ANALYZE (RETURN\CONT CFM) C(NV)
067 (CLOSE-ANALYZE (RETURN\VAL CFII) CENV))))))
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We now come to the code generator , which is altogether about one-fourth
of al l  the code making up RABB IT. Par t of th is is because much code wh ich is
conceptually singular Is duplicated in several places (partly as a result of the
design error in which CCO IIBINAT ION and RETURN nodes , or CLAMBDA and CONTINUATION
nodes , are treated distinctly; and also because a powerful text editor made it
very easy to make copies of the code for various purposes!). The rest is just
because code generation is fairly tricky and requires checking for special cases.
A certain amount of peephole optimization is performed ; this is not so much to
improve the efficiency of the output code, as to make the output code easier to
read for a human debugging RABBIT. A large fraction of the output code (perhaps
ten to twenty percent) is merely comments of various kinds intended to help the
debugger of RABBIT figure out what happened.

One problem in the code generator is that most funct ions need to be able
to return two things: the code generated for a given cnode-tree, and a list of
funct]ons encountered in the cnode-tree , for which code is to generated
separately later. We solve this problem by a stylistic trick , namely the
exp l ic i t  u s e  of continuation-passing style. Many functions in the code generator
take an argument named “C” . This argument is itself a function of two arguments:
the generated code and the deferred-function list. The function which is given C
is expected to compute its two results and then invoke C, giving it the two
results as arguments. (In practice a function which gets an argument C also gets
an argument FNS , which is a deferred-functions list; the function is expected to
add its deferred functions onto this list FNS, and give the augmente d FNS l ist to
C along with the generated code.)

Other arguments which are frequently passed within the code generator are
CENV (a representation of the consed environment); BLOCKFN S , a list describing
external functions compiled together in this “block” or “module” (this is used to
compile a direct OOTO rather than a more expensive call to an external fur ction,
the theory being that several functions might be compiled together in a single
module as with the InterLISP “block compiler ” ; this theory is not presently
implemented , however , and so BLOCKFNS always has just one entry); PROGNAME . a
symbol which at run time will have as its value the MacLISP SIJBR pointer for the
cur rent module (this SUBR pointer is consed into closures of compiled functions,
and so any piece of code which constructs a closure will need to refer to the
value of this symbol); and RNL , the “rename list” , an alist pairing internal
var iab l e n ame s to pieces of code for access ing them (when code to reference a
variable is to be generated , the piece of code in RPJL Is used if the variable is
found in RNL . and otherwise a reference to the variable name itself (wh ich is
therefore global) is output).

COMPILATE is the topmost routine of the code generator . FN is the cnode—
tree for a function to be compiled. The topmost cnode should of course be of
type (:,.MRDA or CON TINUATI ON. For a CLAIIBDA, the call to REGSLIST sets up the
init ial RNI. ( rename list) for references to the arguments. Also, when COMP-BODY
has returned the code (the innernost LAMBDA-expression in COMPILATE is the
argument C given to COFIP-BODY), SET-UP-ASETVARS is called to take care of copying
the variables in the ASETVARS set into the consed environment. The code for a
CONTINUATION is similar , except that a CONTINUATION has no ASETVARS and only one
bound variable.
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002 CODE GENERAT ION ROUTINES
003
004 PROGNAME: NAME OF A VARIA BLE WHICH AT RUN TIME WILL HAVE
005 ;;; AS VALUE THE SUBR POINTER FOR THE PROD
006 ;;; EN: THE FUNCTION TO COMPILE (A CLAMBDA OR CONTINUATION CNODE)
007 ;;; EXTERNAIP: NON-NIL IF THE FUNCTION IS EXTERNAL
008 ;;, RNL : INITIAL RENAME LIST (NON.NIL ONLY FOR WOCLOSE ENS).
009 ;;; ENTRIES ARE : (VAR . CODE )
010 ;;; BLOCKFNS : AN AL IST OF FUNCTIONS IN THIS BLOCK.
011 ;;; ENTRIES ARE : (USERNAME CNODE )
012 ;;; ENS : A LIST OF TUPLES FOR FUNCTIONS YET TO BE COMPILED;
013 ;;; EACH TUPLE IS (PROGNAME EN RNL)
014 ;;; C: A CONTINUATION , TAKING :
015 ;;; CODE: THE PIECE OF MACLISP CODE FOR THE FUNCTION
016 ;;; ENS: AN AUGMENTED ENS LIST
017
018 (DEFINE COMPILATE
019 (LAMBDA (PROGNAME EN RNL BLOCKENS ENS C)
020 (LET ((cFM (CNODE\CFORM EN)))
021 (EQCASE ( TYPE CEll)
022 (CLAMSOA
023 (LET ((CENY (APPENO (CLAMBDA\ASETVARS CEll)
024 (CLAMBDA\CLOSEREFS CFM)
025 (CL*MBDA\CONSENV CEll))))
026 (caMP-BODY (CLAMBDA\BOOY CFM)
027 (REGSLIST CFM T ( ENYCARCOR C(NV RN1))
028 PROGNAME
029 BLOCKENS
030 CENV
031 ENS
032 (LAMBDA (CODE ENS)
033 (C (SET.UP -ASETVARS CODE
034 (CLAMBOA\ASETvARS CFM)
035 (RE6SLIST CFM NIL NIL))
036 ENS)))))
037 (CONTINUATION
038 (LET ((CENV (APPEND (CONTINUATION\CLOSEREFS cFM)
039 (CONTINUATION\CONSENV CEll))))
040 (cOMP-BOOY (CONTINUATION\BOOY cEll)
041 (IF (EQ (CONTINUATION\FNP CFM) ‘NOCLOSE)
042 (IF (NULL (CONTINUATION\TVARS CEll))
043 (ENYCARC0R CENY P111)
044 (CONS (CONS (CONTINUATION\VAR CEll)
045 (TEMPLOC (CONTINUATION\DEP Cr11)))
046 (ENVCARCDR CENY PNL)))
047 (CONS (CONS (CONTINUATION\VAR cFPI)
044 (CAR **ARGUMENT-REGISTERS**))
049 (ENYCARCOR CENY RNL)))
050 PROGNAME
051 BLOCKERS
052 CUV
053 ENS
054
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**ARGIJMENT-REGISiERS** is a list of the standard “registers” through
which arguments are passed. In the standard SCHEME implementation this list As:

(**ONE** **TWO** **THREE** **FOIJR**
**FIVE** **5~X** **SEVEN** **EIGHT**)

DEPRO6NIFY 1 is a peephole optimizer. It takes a MacLISP form and returns
a list of MacLISP forms . The idea is that if the given form is (PROGN ...), the
keyword PROGN is str ipped o f f ;  also , any irrelevant computations (references to
variables or constants other than in the final position ) are removed .
(ATOMFLUSIIP, when NIL , su pp res ses the removal of symbols , which in some cases may
be MacLISP PROCt tags). The purpose of this is to avoid multiple nesting of PROGN
forms :

( PRO6 N ( PROG N a b) ( PROGN ( PROGN c ( PROGN d e) f ) g))

Any code generation routine which constructs a PROGN with a component Q genera ted
by another routine generally says:

“(PROc~N (SETQ FOO 3) @(DEPROGPJIFY Q) (GO ,THE-TAG))

The “@“  means that the list of forms returned by the call to DEPROGNIFY (which is
actually a macro which expands into a call to DEPROGNIFY1) is to be substituted
into the list ( PROGN ...) being constructed by the ‘“‘ operator . Thus rather
than the nested PROGN code shown above, the code genera tor would ins tead produce:

( PROGN a b c d e f g)

which is much easier to read when debugging the output of RABBIT.

TEMPLOC is a little utility which given the number (in the DEP ordering
used by DEPTH-ANALYZE) of a register returns the name of that register.
**COWT+flR(j-REGS** is the same as **ARGUNENT-REGISTERS** except that the name
**CONT** is tacked onto the front. **CONT** is considered to be register 0. If N
is greater than the number or the highest standard argument register, then a new
register name of the form “-N-” is invented. Thus the additional temporary
registers are called -11- , -12-, -13-, etc.



001 RABBIT 568 05/15/75 P.ge_42
002 ;;; DEPROGNIFY IS USED ONLY TO MAKE THE OUTPUT PRETTY BY ELIMINATING 

—

003 ;~~; UNNECESSARY OCCURRENCES OF PROGN .
004
005 (DEFMAC DEPROGNIFY (FORM) ‘(DEPROGNIFYl .FORM NIL))
006
007 (SET’ •DEPR0GNIFY-COUNT* 0)
008
009 (DEFINE DEPROGNIFY1
010 (LAMBDA (FORM ATOMFLUSHP)
011 (IF (OR (ATOM FORM) (NOT (EQ (CAR FORM ) ‘PROGN)))
012 (LIST FORM)
013 (DO ( (X  (COP FORM) (COP x))
014 (Z NIL (COND ((NULL (COP X)) (CONS (CAR X) Z))
015 ((NUlL (CAR X))
016 (INCREMENT *0EPROGNIFY.COUNT*)
017 Z)
018 ((ATOM (CAR X))
019 (COND (ATOMFLUSHP
020 (INCREMENT aDEPROGNIFY-COUNTa )
021 1)
022 (T (CONS (CAR X) Z))))
023 ((EQ (CAAR X) ‘QUOTE)
024 (INCREMENT *DEPROGNIFY-COIJNT*)
025 1)
026 (T (CONS (CAR X) Z)))))
027 ((NULl X) (NREVERSE Z) ) ) ) ) )
028
029 (DEFINE TEMPLOC
030 (LAMBDA (N)
031 (LABELS ((LOOP
032 (LAMBDA (REGS J)
033 (IE ( NULL PEGS)
034 (IMPLODE (APPEND ‘ ( .)  (EXPLODER N) ‘ ( - ) ) )
035 (IF (— J 0)
036 (CAR PEGS)
037 (LOOP (COR PEGS) ~~- J 1 ) )) ))) )
035 (LOOP **CONT+ARG-REGS** N))))
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ENVCARC DR takes a set of variables VARS representing the consed
env ironmen t, an d an old rename list RNL , and adds to RPJL new entries for the
variables , supplying pieces of code to access the environment structure. For
example , suppose RNL were NIL , and VARS were (A B C). Then ENVCARCDR would
produce the list:

((C . (CAR (CDR (CDR **EPJV**))))
(B - (CAR (CDR **ENV**)))
(A - (CAR **ENV**)))

where each variable has been paired with a little piece of code which can be used
to access it at run time , This example is not quite correct, however, because
the peephole optimizer DECARCDRATE is called on the little pieces of code;
DECARCORATE collapses CAR-CDR chains to make them easier to read, and so the true
resul t of ENVCARCDR would be:

((C . (CADDR **ENV**))
(B - (CADR **EPJV**))
(A - (CAR **EPJV**)))



001 RABBIT 565 05/15/78 P.9. 43
002 (DEFI NE ENVCARCDR
003 (LAMBDA (VA NS RNI )
004 (DO ((X ‘**ENV** ‘(COP .X))
005 (V VANS (COP V))
006 (R RNL (CONS (CONS (CAR V) (OECAPCDRATE ‘(CAP .X ))) P )))
007 ((NULL V) P) ) ) )
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REGSLIST takes a CLAMBDA cnode , a switch AVP , and a rename list RNL. It
tacks onto RNL new entries which describe how to access the arguments of the
CLANADA . This is complicated because there are three cases. (1) A NOCLOSE
function takes its arguments in non-standard registers. (2) Other functions of
not more than **NIJMBER-OF-ARGUMENT-REGISTERS** (the length of the **ARGUIIENT-
REG ISTERS** list) arguments takes their arguments in the standard registers. (3)
All other functions takes a list of arguments in the first argument register
(**QNE**) , except for the continuation in **CONT**. The switch AVP tells whether
or not the elements of ASETVARS should be included (non-nil means do not
include ) -

As an example , suppose the CLAJIBDA is a NOCLOSE with DEP 12 and TVARS =

(A B C D) , and suppose that AVP I and RNL = NIL. Then the result would be:

((0 . — 15—) (C . — 14—) (B . — 13—) (A . —12—))

As another example , suppose the CLAMBDA is of type EZCLOSE with VARS = (K X V Z)
and ASETVARS = (V), and suppose that AVP = NIL and RNL = ( (A  - -12-)). Then the
result would be:

( (Z  - **T HREE**) (X . **ONE**) (K . **CONT**) (A - -12-))

SET-UP-ASETVARS takes a piece of code (the code for a CLAMBDA body) , an
ASETVARS set AV , and a rename list, If there are no ASETVARS, then just the code
is returned , but otherwise a PROGN-form is returned , which ahead of the code has
a SETQ which adds the ASETV ARS to the environment. (LOOKUPICATE takes a variable
and a RNL and returns a piece of code for referring to that variable.) For
example , suppose we had:

CODE = (GO FOG)
AV = (A C)
RNL ( (C  - -14-) (B - -13-) (A . -12-)) 

-

Then SET-UP-ASETVARS would return the code:

(PROGN (SETQ **EN’.j** (CONS -12- (CONS -14- **ENV**))) (GO FOG))

- -~



001 RABBIT 568 05/15/78 P.ge 44
002 ;;; AVP NON-NIL MEANS THAT ASETVAR S ARE TO BE EXCLUDED FROM THE CONSED LIST.
003
004 (DEFINE R (GSLIST
005 (LAMBDA (CLAM AVP RNL )
006 (LET ( (AV ( AND ~vp (CLAMBDA\ASETVARS CLAM))))
007 (IF (EQ (CIAMBDA \FNP CLAP!) NOCLOSE )
008 (DO ((J (CLAMBDA\OEP CLAM) (i .1 1))
009 (TV (CIAIIBDA\TVARS CLAM) (CUR TV))
010 (N RNL
011 (IF (MEMO (CAR TV) AV)
012 P
013 (CONS (CONS (CAR TV) (TEMPLOC J)) R))))
014 ((NUlL TV) R))
015 S (LET ((VARS (CLAMBDA ~VARS CLAM)))
016 (IF () (LENGTH (COP VANS)) **NUMBEP-cW-ARG.REGS**)
017 (DO ((X (CAR **ARGUMENT.REGISTERS**) (CDR ,X))
015 (V (CDR VARS) (CON Y))
019 (R (cowS (CONS (CAR VANS) ‘**cOfITae) RNL )
020 (IF (MEMO (CAR V) AV)
021 R
022 (CONS (CONS (CAP V) (DECARCDRATE ‘(CAN ,X))) R))))
023 ((NULL V) N))
024 (00 ((V VANS (COP V))
025 (x **CONT+ARG-REGS** (cDR X))
026 (P RNL
027 (IF (MEMO (CAR V) AV)
028 N
029 (CONS (CONS (CAR V) (CAR K)) R))))
030 ((NULL V) R))))))))
031
032 (DEFINE SET-UP-ASETVARS
033 (LAMBDA (COOL AV RNL )
034 IF (NULL AV)
035 ~00E
036 IPROGN (SETO a

~ ENV* a
037 ‘(00 ((A (REVE RSE AV) (CDI A))
035 (E ‘*.LNVa. “(CONS ,(LOOKUPICATE (CAR A) RUL) .E)))
039 ((NULL A) E)))
040 •(DIPROGNIFY CODE)))))
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In the continuation-passing style, functions do not return values;
instead , they apply a continuation to the value. Thus , the body of a CLANBDA-
expression is a form which is not expected to produce a value. On the other
han d , such a form will have subforms which do produce values, for example
references to variables.

Thus the forms to be dealt with in the code generator can be divided into
those which produce values and those which do not . Initially the latter will
always be attacked , as the body of a “function” ; later the former will be seen .
COMP-BODY takes a valueless form and compiles it. The routine ANALYZE , which we
will see later , handles valued forms.

COI’IP-BODY instantiates a by now familiar theme : it simply dispatches on
the type of BODY to some specialist routine . In the case of a CLABELS, it f irst
compiles the body of the CLABELS (which itself is valueless if the CLABELS is
valueless , and so a recursive call to COMP-BODY is used), and then goes to
PROE)UCE-LABELS. For a CCO MBINAT IOPJ or RETURN , it does a three-way (for RETURN,
two-way) sub-dispatch on whether the function is a TRIVFN , a CLAMBDA (or
CONTINUATION), or something else.

The PRODUCE series of routines produce code for valueless forms.
PRODUCE-IF calls ANALYZE on the predicate (which will produce a value), and COMP-
BODY on the consequent and alternative (which produce no value because the entire
CIF does not). The three pieces of resulting code are respectively called PRED,
CON , and ALT . These are then given to CONDICATE, which generates a MacLISP COND
form to be ou tput .



001 PASS 1 8 0 5  P.je
002 RHI. 15 THE ‘RENAME LIST’: AN ALIST DESCRIBING HOW TO REFER TO THE VARIABLES IN THE
003 ;:; ENVIRONMENT. CENV IS THE CONSID ENVIRONMENT SEEN BY THE BODY.
004
005 (DEFIN E
006 COMP-BODY
00/ (LAMBDA (BODY RNL PROGNAME BLOCKFNS CENV ENS C) S

008 (LET ((CEM (CNODE\CFORM BODY))) S

009 (EQCASE ( TYPE CU!)
010 (CIF
011 (PR oDUCE -IF BODY RNL PROGNAME BLOCKFNS CENV FNS C))
012 (CASET
013 (PRODUCE-ASET BODY RNL PROGNAME BLOCKFNS CENY ENS C))
014 (CLABE LS
015 (OR (EQUAL CENV (CLABEIS\CONSENV CFM))
016 (ERROR ‘ lEnvironment dis.greementl BODY ‘FAIL-ACT))
017 (LET ((LCENV (APPEND (CLABELS\FNENV CFM) cENV)))
018 (COMP-BODY
019 (CLA BELS \BODY CFM)
020 (ENVCARCOR LCENV PNL)
021 PROGNAME
022 BLOCKERS
023 LCENV
024 FRS
025 (LAMBDA (1500 ENS)
026 (PRODUCE-LABELS BODY LBOD RNL PROGNAME BLOCKFNS ENS c)))))
027 (CCO$IBINATION
028 (LET ((FN (CNODE\CFORM (CAR (CCOMBINATION\ARGS cFM)))))
029 (COND ((EQ (TYPE FN) ‘CLAMBDA)
030 (PRODuCE-LAMBDA-COMBINATION BODY RNL PROGNAME BLOCKFNS CEN~’ FNS C))031 ((AND (EQ ( TYP E FR) ‘TRIVIAL )
032 (EQ (TYPE (NODE\FORM (TRIVIAL\RODE FR))) VARIABLE )
033 (TRIVFN (VARIABLE\VAR (NODE\FORM (TRIVIAL\NOOE EN)))))
034 (PRODUCE-TRIVFN-COPIBINATION BODY RNL PROGNAME BLOCKFNS CENV ENS C))
035 (T (PRODUCE-COMBINATION BODY RNL PROGRAME BLOCKFNS CENV FRS C ) ) ) ) )
036 (RETURN
037 (LET ((FR (CNOOE\CFORM (RET!JRN\CONT CFM))))
038 (IT (EQ ( TYPE EN) CONT INUAT ION)
039 (PRODUCE-CONTINUATION-RETURN BODY RNL PROGNAPiE BLOCKERS CENV ENS ~)040 (PRODUCE -RETURN BODY RNL PROGNAME BLOCKERS CENV ENS c))))))))
04 1
042 (DEFINE PRODUCE-IF
043 (LAMBDA (CRODE RNL PROGNAJIE BLOCKFNS CENV ENS C)
044 (LET ((CFM (CNOOE\CF ORPI CNODE)))
045 (ANALYZE (CIF\PREO CFM)
046 RNL
047 PROGNAME
048 BLOCKERS
049 ENS
0 50 (L AMBDA (PREO ENS )
051 (COPIP-B0DY (CIF\COR CU!)
052 RRL
053 PROGNAME
054 BLOCKERS
055 CENV
056 ENS
05 7 ( LAMBDA (CON ENS )
058 (COMP-BOOY (C IF\ALT CFM)
059 RNL
060 PROGNAME
061 BLOCKERS
082 CENV
063 ENS
064 (LAMODA (ALT ENS)
065 (C ( CORDICAT E PRED
066 CON
06? AL T )
068
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PRODtJCE-ASET first c a lls ANALYZE on the body, which must produce a value
(to be assigned to the CASET variable). There are then two cases, depending on
whether the CASET\CONT is a CONTINUATION or not.

If it is , then the body of the continuation is compiled (using COMP-
BODY), and then LAIIBDACATE is called to generate the invocation of the
con tinuation . The routine OUTPUT-ASET generates the actual MacLISP SETQ (or
other construct) for the CASET variable , us ing the env ironment locat ion prov ided
by LOOKUPICATE . All in all this case is very much like a RETURN with an explicit
CONTINUAT iON , except that just before the continuation is invoked a SEIQ is stuck
in.

I f the CASET\CONT is no t a CONTINUATION , then ANALYZE is called on the
CASET\CONT , and then a piece of code is output which sets **FUN** to the
continuation , **ONE** (which is in the car of **ARGUMEPIT-REGISTERS**) to the
value of the body (after also setting the CASET variable, using OUTPIJT-ASET), and
does (RETURN NIL), which is the SCHEME run-time protocol for invoking a
con tinuation .

---- .-- .  - .- - - - —- * -—-5— - -----—-- - - - ~~~~-,-- —,-- - - ----



001 RABBIT 568 05/15/78 P.g. 46
002 (DEFINE —— --

003 PRODUCE-ASET
004 (LAMBDA (CNO0( RNL PROGNA/IL BLOCKFNS CENV ENS C)
005 (LET ((CFM (CNODE\C FORM CNODE)))
00~ (ANALYZE (CASET \BOOY CU!)
0D7 RNL
008 PROGNAME
009 BLOCKERS
010 ENS
011 (LAMBDA (BODY ENS)
012 (LET ((CONTCEM (CNODE\CFORM (CASET\CONT CFM))) )
013 (IF (EQ (TYPE CONTCFM) ‘CONTINUATION )
014 (COPIP-000Y (CONTINUATION\BOOY CONTCEM)
015 (IF (CONTINUATION\TVARS CONTCFN)
016 (CONS (CONS (CAP (CONTINUATION\TVAPS CONTcFM))
017 (TEMPLOC (CONTINUATION\OEP
018 COITCEM)))
019 (ENVCARCOR ~ENV RNL))
020 (ENYCARC OR CENV RNL))
021 PROGIAME
022 BLOCKE RS
023 CENV
024 ENS
025 (LAMBDA (COPE ENS )
026 (C (L AMBDACATE
027 (LIST (CONTINUATION\VAR CONTCFM))
028 (CONTINUATION\TVARS CONTCFM)
029 (C0WTINuATIOR\DEP CONTCFM)
030 (LIsT (OUTPUT-A SET
031 (LOOKUPICATE (CASLT\VAR CfM )
032 NIL)
033 BODY))
034 (REMARE.ON (CAsET~CONT cFM))035
036 Cccl)
037 ENS ) ))
038 (ANALYZE
039 (CASET\CON T CEM)
040 IRL
041 PROGNAME
64 2 ILOCUNS
043 ENS
044 (LAMBDA (COlT ENS )
045 (C (PRO6u (SETQ **FUN** ,cOlT)
046 (SE TQ ,(CM **AR6WI(IT-REGISTERS**)
047 ,(OUTPUT-ASE T
048 (LOOKUPIcATE (CAS [T\VAR CEN)
049 IlL)
OS. BODY))
051 (RETURN NIL))
052
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PRODUCE-LABELS takes an already-compiled body LBOD. FNENV-FIX is a
(possibly empty) list of pieces of code which will fix up the consed environment
by adding the variables common to all the closures to be made u p (this set was
computed by CLOSE-ANALYZE and put in the FNENV slot of the CLABELS). The code
for this addition is built from the list of variables by COPJS-CLOSEREFS.

There are then three cases, depending on the type of closures to be
constructed (NOCLOSE, EZCLOSE , or NIL). Suppose that the CLABELS is:

(CLABELS ((FOO (LAIIBDA . -( BAR ( LAMBDA - - . ) ) )

(body>)

Let us see roughly what code is produced for each case.

For a N I L  type ( f u l l  closures ) , the idea is merely to create all the
closures in standard form (but with a null environment), add them all to the
consed env i ronment , and then go back and clobber the environment portion of the
closures with the new resulting environment , plus any other variables needed .
Now a standard closure looks like (CBETA <value of progname) <tag) -

<en vironment)). (At run time the value of the progname will be a MacLISP SUBR
pointer for the module; the tag identifies the particular routine in the
module.) In the DO loop, FNS accumulates the function definitions (to be
com pi led separa tely later) , RP aCcumulates RPLACD forms for clobbering the
closures, and CR accumulates constructors of CBETA lists. For our example, the
generated co’ie looks li ke:

((LAMBDA ( FOO BAR )
(SETQ **ENV** (CONS ... (CONS X43 **ENV***).,.))
(RPLACD (CDDR BAR) (CONS .. (CONS X72 **ENV**),..))
(RPLACD (CDDR FOO) (CONS ... (CONS X69 **EPJV**). .))
<body>)

(LIST ‘CBETA ?-453 ‘FOO-TAG)
(LIST ‘CRETA ?-453 ‘BAR-TAG))

where ?-453 is the PROGNAME for the module containing the CLABELS, and FOO-TAG
and BAR-TAG are the tags (whose names will actually look like FNVAR-91) for FOO
and BAR . (Now in fact CLOSE-ANALYZE creates a null FNENV for type NIL CLABELS,
and so the first SETQ would in fact not appear. However, the decision as to the
form of the FNE NV is only a heur ist ic, and so PRODUCE-LABELS is written so as to
be pre pared for any possible choice of FNENV and CLOSEREFS of ind ividual labelled
func tions. In this way the heuristic in CLOSE-ANALYZE can be freely adjusted
without having to change PRODUCE-LABELS.)

For the EZCLO SE case the “closures” need only contain environments , not
also code pointers . A trick is needed here, however, to build the circular
environment. When adding the labelled functions to the environment , we must
somehow cons in an object; but we want this object to possibly be the
environmc?nt itself! What we do instead is to make up a list of the tag, and
later RPLACD this list cell with the environment. The tag is never used, but is
useful for debugging. This method also makes the code very similar to the NIL
case , the only difference being that the atom CBETA and the value of the PROGNAME
are not consod onto each closure .



001 RASSIT 568 05/15/76 P.gs 4 1
002 (DEFINE
003 PRODUCE-LABE LS
004 (LAMBDA (CNODE LBOD RNL PROGNAME BLOCKERS FNS C)
005 (lET ((CFM (CNOOE\CFORM CRODE)))
006 (LET ((VANS (CLABELS\ERVAPS CFH))
007 (DEES (CLABELS\FNDEES CFM))
008 (FIERy (CLABELS\FNENV CEM)))
009 (LET ((FIERY-FIX (IF FNENV •((SETQ a*ENV.a .(CONS-cLOSEREFS ENENV RNL))))))
010 (EQCAS E (CLA BELS\ EASY CFM)
011 (NIL
0 12 (00 ( (V VARS (CDI V ) )
013 (0 DEES (CDI 0))
014 (ENS ENS (CONS (LIST PROGNAME (CAR 0) NIL) ENS))
015 (NP NIL (CONS (RPL*CD (CDDR .(CAR V))
016 .(CONS-CLOSEREFS
017 (CLAMBOA\CLOSEPEFS
018 (CNOOE~CFOAM (CAR 0) ) )
019 IlL))
020 RE ))
021 (CS NIL (CONS (L IST ‘CIETA ,PNOGNAME ‘ ,(CAR V) )  CS)))
022 ((NULL .V)
d23 (C “ ((LAM BDA • VARS
024 BENENY-FIX
025 •RP
026 P(DEPROGNIFY 1600))
027 •(NPEVEISE CS)) -

028 FIS))))
029 (EZCLOSE
030 (DO ( (V VANS (CDI V))
031 (0 DEES (cOP D))
032 (FNS ENS (CONS (LIST PROGNAME (CAR D) NIL) FNS))
033 (PP NIL (CONS “(IPLACO ,(CAR V)
034 ,(CONS.CLOSEREES
035 5 (CLAMBDA\CLOSEREES
036 (CNO0E\CF0RM (CAR D)))
037 Rh ))
038 NP))
039 (CS NIL (CONS “(LIST .(CAR V)) ci)))
040 ((NULL V)
041 (C “((lAMBDA .YARS
042 OFIENY-FIX
043
044 •(DEPROGNIFY L000))
045 •(NREVEISL CS))
046 ENS))))
047 (NOCLOSI
046 (C “(PROGN •FIENV-FIX •(DEPROGNIEY 1600))
049 (00 ((V VANS (CDI V))
050 (0 DEES (CON D))
051 (ENS ENS (CONS (LIST PIOGNAME (CAR 0) IlL) ENS)))
052 ((NULL V) ENS))))))))))
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One problem is that these “closures” are not of the same form as ordinary
EZCLOSE closu res , which do not have the tag. This is the purpose of the LABELS—
FUNCTION properties which BIND-ANALYZE created; when a call to an EZCLOSE
funct ion is generated , the presence of a LABELS-FUNCTION property indicates that
the “closure ” itself is not the environment , but rather its cdr is. (It would be
possible to do without the cell containing the tag, by instead making up the
env ironment with values of NIL, then constructing the “closures” as simple
environments , and then going back and clobbering the environment structure with
the closure objects; rather than clobbering the closure objects themselves. The
decision not to do this was rather arbitrary.) The generated code for the
EZCLOSE case thus looks like :

((LAMBDA (FOO BAR )
(SETQ **ENV** (CONS ... (CONS X43 **EPJV***)...))
(RPLACD (CDDR BAR) (CONS ... (CONS X72 **EPJV**)...))
(RPLACD (CDDR FOO) (CONS ... (CONS X69 **ENV**)...))
<body>)

(LIST ‘FOO-TAG)
(LIST ‘BAR-TAG))

In the NOCLOSE case , no closures are made at run time for the labelled
functions , and so the code consists merely of the FNENV-FIX (which, again, using
the current heuristic in CLOSE-ANALYZE will always be null in the NOCLOSE case)
and the code for the body: -

(PROGN (SETQ **EW** (CONS ,.. (CONS X43 **EPJV**)...)) <body))

In any case , of course , the labelled functions are added to the FNS list which is
handed back to C for later compilation .

PRODUCE-LAMBDA-COMBINATZON generates code for the case of ((CLAIIBDA ...)
argi ... argn). First a number of consistency checks are performed , to make
sure the pass-2 analysis is not completely awry. Then code is generated for the
body of the CLAPIBDA , using COMP-BODY . Then all the arguments, wh ich are of
course expected to produce values, are given to MAPANALYZE , which will call
ANALYZE on each in turn and return a list of the pieces of generated code (here
called ARCiS in the continuation handed to MAPANALYZE). Finally, LAMBDACATE is
called to generate the code for entering the body after setting up the arguments
in an appropriate manner. Notice the use of SET-UP-ASETVARS to generate any
necessary additional code for adding ASETVARS to the consed environment on
entering the body. (A more complicated compiler would in this situation add the
argument values to the consed environment directly, rather than f irst put t ing
them in registers (which is done by LAPIBDACATE) and then moving the registers
into the consed environment (which is done by SET-UP-ASETVARS). To do this,
however , would involve destroying the modular distinction between LAMBDACATE and
SET-UP-ASETVARS. The extra complications were deemed not worthwhile because in
practice the ASETVARS set is almost always empty anyway.)



001 RABBIT 568 05/15/76 P•gs 46
002 (DEFINE
003 PRODUCE -LAMBDA-COMBINATION
004 (LAMBDA (CRODE Rh PROGNAME BIOCK ENS CENV ENS C)
005 (LET ((CFM (CNODE\CFORM CRODE)))
006 (LET ((FR (CRODE\CFORM (CAR (CCOMBINATIOR\ARGS CFM)))))
007 (AND (cLAMBOA \CLOSEPEFS EN)
008 (ERROR ‘IFunctional LAMBDA has CIOSEREFSI CNODE ‘FAIL-ACT))
009 (OR (EQUAL CIRV (CLAMBDA\CONSENV FR))
010 (ERROR ‘IEnv ~ronment dlsagre.ment( CNODE ‘FAIL-ACT))011 (OR (EQ (CLAMBDA\FNP FR) ‘NOCLOSE)
012 (ERROR ‘INon-NOCIOSE LAMBDA in function posi t lon i CRODE ‘FAIL-ACT))
013 (COMP-SOOY
014 (CLAMBDA\BOOY EN)
015 ((RYCARCOR (CLAMBOA\ASETVARS ER)
016 (NEGSLIST EN T (ENVCARCDR CENV PNL)))
017 PROGNAME

5 018 BLOCKERS
019 (APPEND (CLAMBDA\ASETVARS EN) CENV)
020 ENS
021 (LAMBDA (BODY ENS)
022 (MAPARA LYZE (CDI (CCOMBINATION\ARGS cEll ))
023 IlL
024 PROGNAIIE
025 BLOCKENS
026 ENS
027 (LAMBDA ( ANGS ENS)
028 (C (LAMBOACATE (CLAMSDAWARS EN)
029 (CLAM BDA\TVARS FM)

- 030 (CIAIISDA\DEP EN)
031 ARGS
032 (REMARK-ON
033 (CAN (CCOMBINATION\ARGS cEll )))
034
035 (SET.UP-ASETVAPS
036 BODY
037 (CLANSDA\ASETVARS EN)
038 (IEGSLIST EN NIL NIL)))
039
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PRODUCE-TRIVFN-COMBINATIOPJ handles a case like (CONS continuation argi
arg2), i.e. a CCOMBINATION whose function position contains a TRIVFN . First all
the arguments (excluding the continuation!) are given to MAPANALYZE; then a
dispatch is made on whether the continuation is a CONTINUATION or a CVARIABLE ,
and one of two specialists is called.

PRODUCE-TRIVFN-COPIBINATIOPJ-COPJTINUATION handles a case like ( CONS
(CONTINUATION (Z) <body>) argi arg2). The idea here is to compile it
approximately as if it were

((CONTINUATION (Z) <body>) (CONS argi argz))

That is, the arguments are evaluated, the trivial function is given them to
produce a value, and that value is then given to the continuation. Accordingly,
the body of the CONTINUATION is compiled using COMP-BODY, and them LAMBDACATE
takes care of setting up the argument (the fourth argument to LAMBDACATE is a
list of the MacLISP code for invoking the trivial function) and invoking the body
of the (necessarily PJOCLOSE) CONTINUATION.

5 -  -



001 RABBIT 568 05/15/78 Page 49
002 (DEFINE PRODUCE-TRIVEN-COIISINATION
003 (LA MBDA (CNOOE NIL PROGNAME BLOCKFNS CENY ENS C)
004 (lET ((CFM (CNOD(\CFORM CROD~~ ))
005 (LET ((FR (CNOo(\CF0RM (CAR (CCOMBINATION\ARGS cEll))))
006 (CONT (CNODE’,CEORM (cADR (CCOMBINATION \ARGS CEll)))))
007 (MAPANALYZE (COON (CC0MBIRATION\APGS CEll))
008 P11
009 PROGNAME
010 BLOCKENS
011 FRS
012 (LAMBDA (ARGS ENS )
013 (EQC ASE ( TYP E CONT)
014 (CONTINUATION
015 (PROOUCE-TRIVFN .COMB INAT ION-CONT INUAT ION
016 CNODE NIL PROGNAME BLOCKERS CENV
017 ENS C CEM EN CONT ARGS))
018 (CVARIABLE
019 5 

(PROOUCE-TRIVFN-COMBINATIGN-CVARIABLE
020 CNOOE NIL PRO6RAME BLOCKERS CENV
021 5 ENS C CEM EN COlT ARGS)))))))))
022
023 (DEFINE PRODUCE-TRIVFN-COMBINATION -CONTINUATJON
024 (LAMBDA (CNODE NIL PROGNAME BLOCKERS CENV ENS C CFM EN COlT ARGS)
025 (BLOCK (AND (CORTINUATION\CLOSEREES COlT)
026 (ERROR ‘JCONTINUAT ION f or TNIVFN has CLOSENEFSI CNOO( ‘FAIL-ACT))
027 (OR (EQ (CONTINUATIOR\ERP CONT) ‘NOCLOSE)
028 (ERROR ‘ IRon-NOCLOSE CONTINUATION for TRIVENI CNODE ‘EAIL.ACT))
029 (COMP-BODY (CONTINUAT ION\BODY COlT)
03~ (IF (CONTIRUATION\TVARS COlT)
031 (CONS (CONS (CAR (CONTIRUATION\TVARS COlT))
032 (TEMPLOC (CONTINUATION\DEP COlT)))
033 (ENVCARCDR CENV -RNL))
034 (ENVCARCDR CENV NNL))
035 PROGNAME
036
037 CENV
038 ENS
039 (LAMBDA (BODY ENS)
040 (C (LAMBOACATE
041 (LIST (CORTINUATION\VAR CORT))
042 (CONTINUATION\TVARS CONT)
043 (CONTIIUATIOR\DEP COlT)
044 (LIST “(,(VARIABLE\VAR (NODE\FORM (TNIVIAL\NO0( EN)))
045 . BANGS ))
046 (REMANK-ON (CAOR (CCOMBINATION\ANGS CEll)))
047 a*ENV**
048 BODY )
049 ENS)) ) ) ) )

—
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PRODUCE-TRIVF N-COMBINATION-CVARIABLE handles a case like ( CONS CONT-43
argi arg2), where the continuation for a tr ivial function call is a CVARIABL.E.
In this situation the continuation is given to ANALYZE to generate MacLISP code
for referring to it; there are then two cases, depending on whether the
CVARIABLE has a KNOWN-FUNCTION property . (Note that before the decision is made ,
VA L names the piece of MacLISP code for calling the trivial function on the
arguments.)

If the CVARIABLE denotes a KNOWN-FUNCTION, then it should be poss ible to
invoke it by adjusting the environment , setting up the arguments in registers,
and jumping to the code. First the environment adjustment is computed ; ADJUST-
KNOWPJFN-CENV generates a piece of MacLISP code which will at run time compute the
correct new environment in which the continuation will expect to run . There are
then two subcases, depending on whether the KNOWN-FUNCTION is of type NOCLOSE or
not. If it is , then LAMBDACATE is used to set up the ar gumen ts in the
appropriate registers (the last argument of NIL indicates that there is no
“body ” , but rather that the caller of LAMBDACATE takes the responsibility of
jumping to the code). If it is not , then PSETQIFY is used , because the value
will always go in **ONE** (which is the car of **ARGUMENT-REGISTERS**). In
either case, a 60 is generated to jump to the code (within the current module , of
course) for the continuation .

If the continuation is not a KNOWN-FUNCTION, then the standard function
linkage mech anism is used: the continuation is put into **FUN**, the value into
**ONE**, and then (RETURN NIL) exits the module to request the SCHEME run-t~ime
interface to invoke the continuation in whatever manner is appropriate .

-s



001 RABBIT 568 05/15/76 P.gs 50
002 (DEFINE PRODUCE-TRIVFR-COMBINAT IOR-CVANIABIE
003 (LAMBDA (CNODE Rh PROGNAME BLOCKERS C(NV ENS C CFM FR CONT ARGS)
004 ( ANA LYZE
005 (CADN (cCOMBINATION\ANGS CEll))
006 NIL
007 PROGNAM
008 BLOCKERS
009 ENS
010 (LAMBDA (CONT F ENS )
011 (LET ((KE (GET (CVANIABLE\VAR CONT) ‘KNOWN-FUNCTION))
012 (VAL (.(VARIABLE\VAR (NODE\FORM (TNIVIAL\NODE EN))) PANGS)) )
013 ( IF KF
014 (LET ((KCFM (CRODE\C FORM KE)))
015 (LET ((INVADJ
016 (ADJUST-KNOWNFN-CENV CENV
017 (CVARIABLE\VAR CONT)
018 CONTE
019 (CONIINUATION\FRP KCFN)
020 (APPEND
021 (COIITINUATION\CLOSEREFS KCFM)
022 (CONT INUATION \CONSENV KCFM) )) ) )
023 (C (PROGN
024 •(1F (EQ (CONTINUATION\FNP KCFM)
025 ‘ROCLOSE)
026 (OEPNOGNIFY
027 (LAMBDACATE (LIST (CONTKNUATION\VAR KCEM))
028 . (CONTI RUATION\TVARS KCEM)
029 (CONTINUATION\DEP KCFN)
030 (L IST VAL )
031 (REMARk-ON kF)
032 ENVADJ
033 NIL ) )
034 (PSETQI FY (LIST (WVA DJ VAL )
035 (LIST ‘**EMV**
036 (CAR **ARG (J VIENT.R ( 615T (l5 **) ) ) )
037 (GO ,(CONTINUATION\NAME KCFM)))
036 ENS)))
039 (C (PROGI (StTQ aaFUN~e ,cONTF )
040 (SETQ .(CAR **ARGIJMENT-REGISTERS**) ,VAL )
041 (RETuRN NIL))
042 FNS)))))))

_ _ _  ------ ,- -—
5 - -~~~~~~~
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PRODUCE-COMBINATION handles combinations whose function positions contain
ne ither TR I VFN s nor CLAM BUAs . All of the ar guments , including the function
position itself and the continuation , are given to PIAPANALYZE , result ing in a
list FORM of pieces of MacLISP code. There are then two cases. If the function
position is a VARIABLE (within a TRIVIAL - not a CVARIABLE!), then PRODUCE-
COMBINATION-VARIABLE is used . Otherwise code is generated to use the standard
SCHEME run-time interface : first set **FIJN** to the function, then set up the
argu ments in the standard argume nt registers (PSETQ-ARGS generates the code for
this), then set **NARGS** to the number of arguments (this does not include the
continuation), and exit the module with (RETURN NIL).

PROUUCE-COIIBINATIQN-VARIABLE first determines whether the variable has a
KNOWN-FUNCTION property. If so , then the approach is very much as in TRIVFN-
COMBIPJATION-CVARIABLE: first the environment adjustment is computed , then either
LA MB DACATE or PSETQ-ARGS-ENV is used to adjust the environment and set up the
arguments , and finally a GO to the piece of code for the KNOWN-FUNCTION is
generated.

If the variable is not a KNOWN-FUNCTION, then it may still be in the list
BLOCKENS (which , recall, is a list of user functions included in this module).
If so , the effect on the code generation strategy is roughly as if it were a
KNOWN-FUNCTION . The environment adjustment is done differently, but a GO is
generated to the piece of code for the called function.

In any other case, the standard interface is used. **FLJPJ** is set to the
function , the arguments are set up, **N~~G5** is set to the number of arguments,
and (RETURN NIL) exits the module.



001 RASBtT 566 06/15/76 Psjs 51
002 (DEFINE PRODUCE-COMBINATIO N -

003 (LAMB DA (CNODE RNL PROGNAME BLOCKERS CENV ENS C)
004 (MAPARALYZE (CCOMBIRATION\ARG S (CNODE\CFOPM CNODE))
005 RNL
006 PNOGNAME
007 BLOCKENS
008 ENS
009 ( LAMBDA (FORM ENS )
010 (C (LET ((F (CNOOE \CEORM (CAR (CCOMBINATION\ARGS
011 (CNOD(\CFORM CNOOE))))))
012 (IF (AND (EQ (TYPE F) ‘TRIVIAL )
013 (EQ ( TYPE (NODE\FORM (TRIV IAL\NOOE F) ) )
014 ‘VARIAB LE))
015 (LET ((V (VARIAB IE’,VAR
016 (NODE\FORM (TRIVIAL\NODE F)))))
017 (PRODUCF-COMBINATIOR-VARIABLE
016 CNOOE Rh PROGNAIiE BLOCKFRS CENV
019 ENS C FORM V (GET V ‘KNOWN-FUNCTION)))
020 (PROGN (SETQ **EUN** .(cAR FORM))
021 •(PSETQ.ARGS (CON FORM))
022 (SETQ **RARGS** ‘,(LENGTH (COON FORM)))
023 (RETURN NIL))))
024 ENS)))))
025
026 (DEE INE PROOUCE-COMBINATIOR-VARIABLE
027 (LAMBDA (CNODE NIL PROGNAME BLOCKERS CENV FNS C FORM V KEN)
026 (IF KEN
029 (LET ((ENVADJ
030 (AOJUST-KNO WW FN-CENV CENV
031 V -

032 (CAR FORM)
033 (CLAMBDA\FNP (CNODE\CFORM KEN))
034 (APPEND (CLAMBDA \CLOSER EFS (CNODE\CEORM K EN))
035 (CLAMBOA\CONSENV (CNODE\CFORM KFN))))))
036 (OR (EQ (TYPE (CNOOE\C FORM KEN)) ‘CLAMIDA )
037 (ERROR ‘IKnown function not CLAMBDAI CNODE ‘FAIL-ACT))
038 “(PROGN P(IF (EQ (CLAMBDA\ENP (CNODE\CEOR$ KEN)) ‘NOCLOSE )
039 (DEPROGNIFY
040 (LAMBOACATE (CLAMB OA\VARS (CNOOE\CEORM KEN))
041 (CLA MBOA\TVARS (CNOOE\C FORM KEN))
042 (CLA MB DA\DEP (CNOOE\CFORM KEN))
043 (CON FORM)
044 

- (REMARK-OR KEN) -

045 ENVADJ
046 NIL))
04 7 (PSETQ-A RGS-ENV (CON FORM) ENVADJ))
048 (GO ,(CLAIIBDA\NAM( (CROOE\CFORM KEN)) ) ) )
049 (IF (ASSQ V BLOCKFNS)
050 “(PROGN •(PSET Q-A RGS (CON FORM))
051 p( jF (NOT (EQUAL (CLAMBDA ~CONSENV
052 (CNOOE\CFORM
053 (CAOR (ASSQ V BLOCKENS))))
054 CENV))
055 “ ((SETQ **(NVa * (C000R .(CA R FORM))) ) )
056 (60 .(CLAMBDA\NAM( (CNODE\CFORM (CADR (ASSQ V BLOCK ERS))))) )
057 “(PRO6N (SETQ a*FUN** ,(CAN FORM))
056 P(PSETQ-ARGS (CDI EOQM))
059 (SETO **NARGS** ‘,(L(NGTH (COON FORM)))
060 (RETURN NIL))))))
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ADJUST-KNOWNFN-CENV computes a piece of code for adjusting the
environment. CENV is the internal representation (as a list of variable names)
of the environment in which the generated code will be used . VAR is the name of
the variable which names the function to be invoked, and for whose sake the
env ironment is to be adjusted . VARREF is a piece of MacLISP code by which the
run-time value of VAR may be accessed . FNP is the FNP type of the KNOWN-FUNCTION
denoted by VAR . LCEP4V is the representation of the environment for the function .
Thus , the geperated code should compute LCEPJV given CENV .

The two easy cases are when LCENV=CENV , in which case the environment
does not change , and when LCENV~N I L , in which case the run-time environment will
also be NIL.. Otherwise it breaks down into three cases on FNP.

For FNP=NOCLOSE , it must be true that LCENV is some tail of CENV ; that
is , there is a stack-like discipline for NOCLOSE functions, and so CENV was
constructed by adding things to LCENV . The piece of code must therefore consist
of some number of CDR operations on **ENV** . If this operation does not in fact
produce LCENV , then there is an inconsistency in the compiler.

For FNP=EZCLOSE , then VARREF can be used to reference the run-time
“closure ” ; this may require a CDR operation if the function is an EZCLOSE
LABELS-FUNCTION (see PRODUCE-LABELS).

For FNP=NIL , then VARREF will refer to a full closure; the CDDDR of this
c losure is the environment.

PRODUCE-CONTINUATION-RETURN is, mutat is mutandis, identical to PRODUCE-
LAMBDA-COMBINATION . This is a good example of the fact that much code was
duplicated because of the early design decision to treat COMBINATION and RETURN
as distinct data types.



001 RABBIT 5 05/15/78 ~age 52
002 (DEFINE ADJU ST-KNOWNFN-CERV
003 (LAMBDA (CF:IV VAR VANREF FNP LCEIV)
004 (COND ((EQUAL LCENV CENV) ‘**ENV*.)
005 ((NULL LCENV) ‘NIL)
006 (T (EQCASE FIP
007 (ROCLOSE
008 (00 ((x CENV (CON X))
009 (Y ‘ ** ERV** “(CON ,Y))
010 (I (-  (LENGT H CENV) (LENGTH LCEIV )) (- 1 1)) )
011 ((( 1 1)
012 (IF (EQUAL X LCENV)
013 (DECA RCORAT E Y)
014 (ERROR ‘ IC.nnot recover environment for known function I
015 VAR
016 ‘ FAIL-ACT))) ) )
017 (EZCL0SE
018 (IF (GET VAR ‘LABELS-FUNCTION )
019 “(CON .VANREF )
020 VARR EF))
021 (NIL “(C000R .VARR E F)) ) ) ) ) )
022
023 (DEE IRE PRODUCE-CONTINUATION-RETURN
024 (LAMBDA (CNODE NIL PROGRAME BLOCKERS CENV ENS C)
025 (LET ((CEll (CNODE\CFORM CNODE)))
026 (LET ((EN (CP400E\CFORM (RETUNN\CORT CFM))))
.027 (AND (CONT1NUATION\CLOSc~REFS EN)
026 (ERROR ‘IFunction.1 CONTINUATION has CLOSEREF SI CRODE ‘FAIL-ACT))
029 (OR (EQUAL CENV (CONTIRUATIOR\CONSENV EN))
030 (ERROR ‘lEnvironment d1s.greement~ CRODE ‘FAIL-ACT))
031 (OR (EQ (CONT IRLJATI ON~FNP FR) ‘IOCLOSE )
032 (ERROR ‘ INon .NOCIOSE CONTINUATION in function positionJ
033 CRODE
034 ‘FAIL-ACT))
035 (COMP-BODY (CONTINUATION\BOOY EN)
036 (IF (CONTINUATION\TVANS FR)
037 (CONS (CONS (CAN (CONTINUATION\TVARS EN))
036 ( IEMPL0c (CONTINUATION\OEP FR)))
039 . 

(ENYCARCOR CLIV NIL))
040 (ENVCARC0R CENY NIL))
041 PNOGNAME
042 BLOCKERS
043 CENV
044 ENS
045 (LAMBDA (BOGY ENS)
046 tA%M.YZE (RETURW~VM. CEll)
047 NIL
048 PROGNAME
049 BLOCKERS
050 FNS
051 (LAMBDA (VAL ENS )
052 (C (L*MBDACATE
053 (LIST (CONTINUATIOR\VAR EN))
054 (CONT IRUATION\TVARS FR)
055 (CONTINUATION\OEP EN)
056 

- (LIST VAL )
057 (REMARK-ON (~ETURN\CONT CEll))058
059 BOGY)
060
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PRODUCE-RETURN and PRODUCE-RETURN-i together are almost identical to
PRODUCE-COMBINATION and PRODUCE-COMBINATION-VARIABLE , except that the division
between the two parts is different , and the BLOCKFNS trick is not applicable to
RETURN -

PRODUCE-RETURN merely calls ANALYZE on each of the continuation and the
value, and calls PRODUCE-RETURN-i.

PRODUCE-RETURt~-1 checks to see whether the continuation is a KNOWN-
FUNCTION . If so , the environment adjustment is computed , and code is genera ted
in a way similar to previous routines. If not, the standard interface (involving
(RETURN NIL)) is used . Notice the check to see if VAL is in fact **ONE** (the
car of **ARGIJMENT-REGISTERS**); if so, the redundant code (SETQ **ONE** **ONE**)
is suppressed .



001 RABBIT 568 O5/15/7B Page 53
002 (DEFINE PRODUCE-RETURN
003 (L AMBDA (CNODL NIL PROGNAME BLOCKERS CLIV ENS C)
004 (LET ((CEll (CNOOE\CFORM CIODE)))
00 5 ( ANALYZ E (RETUNN \VAL CEll)
006 NIL
007 PROGNAM(
008 BIOCKFNS
009 FNS
010 (LAMBDA (VAL ENS)
011 (ANALYZE (NETURI\CON T CFM)
012 Rh
013 PROGRAME
014 BLOCKERS
015 ENS
016 (LAMBDA (CONT ENS)
017 (PROOUCE-RETURN-1
0 16 CNOOE NIL PROGNAME BLOCKFNS
019 CLIV ENS C CEll VAL CONT))))))))
020
021 (DEFINE PRODUCE-RETURN-i
022 ~~41MBDA (CNODE NIL PROGNAME BLOCKERS CENV ENS C CEll VAL COlT)
023 (IF (AND (EQ ( TYPE (CNODE~CEORM (RETUR R~CONT CFM )) ) ‘CVARIABLE )
024 (GET (CVARIABLE\VAN (CNO0E~CF0RM (NETURN\COMT CEll)))025 . ‘KROWR.FURCTIOR))
026 (LET ((KcFll (CNOOE\CFORll
027 (GET (CVARIABLE\YAR
028 (CROOE\CFORM (RETURN\CONT CEll)))
029 ‘KNOWN .FURCTION))))
030 (ON (EQ (TYPE KCFM) ‘CONTINUATION)
03 1 (ERROR ‘IKnown function not CONTINUATION I CROOL ‘FAIL-ACT))
03 2 (LET (KIVAOJ
033 - (AOJUST-KIoWR~N-CEWV CLIV
034 (CVARIABLE\VAR (cNOOE\c FORM (RETV RN~CONT CEll)))
035 COlT
036 (CO$ITINUATIOR\ERP KCEM)
037 (APPEND
038 (cONTINUATION\CLOSEREFS KCFll)
039 (CONTINUATION\CONS(WV KCFM)))))
040 (C “(PROGN •(IF (EQ (CO$ITINUATIOR\FIP KCFM) ‘NOCLOSE)
041 (DEPROGNIFY
042 (LAMBOACATE (LIST (CONTINUATION\VAR KCFM))
043 (CONTINUATION\TVARS KCFM)
044 (CONTI$UATION\DEP KCEM)
045 (LIST VAL )
046 (REMARk-OR
047 (GET (CVARIABLE\YAR
048 (CNOOE\CFONM (RETURN\CON T cFM)))
049 ‘KNOWN-FUNCTIO N))
050 ENVADJ
051 NIL))
052 (PSETQIFY (LIST ENVADJ VAL )
053 (LIsT ‘*CENV**
054 (cAR aaAR GUMENT-NEGISTERS.a))))
055 (GO .(CONTINUATION\NAME KcEM)))
056 ENS)))
057 (C “ (PROGN (SETQ **FUN** ,CONT)
058 •( IF (ROT (EQ VAL (CAR a*ARGUMENT-REGISTERS*a)))
059 ((SETQ •(CAR a*ARSUll (NT.!EG1STEN5**) .VAL)))
060 (RETURM NIL))
061 ENS))))
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LAP1BDACATE generates code for invoking a NOCLO$~ KNOWN-FUNCTION . It
arranges for the arguments to be evaluated and put in the proper registers, and
also performs some optimizations.

VARS is a list of the var iables wh ich are to be bound. TVARS is a list
of those variables (a subset of VARS) which will actually be passed through
registers , as spec if ied by the WARS slot of the CLAJIBDA or CONTINUATION ; th is
is used for a consistency check on the optimizations of LAMBDACATE . PEP is the
reqister depth of the function (the DEP slot). ARGS is a list of pieces of
MacLISP code which have been generated for the arguments to the function . REM is
a comment (usually one generated by REMARK-ON) to be included in the generated
code f or debu gging pur poses; th is convnent typically details the state of the
environment and what variables are being passed through registers at this point .
ENVADJ is a piece of MacLISP code (usually generated by ADJUST-KNOWNFN-CENV) to
whose value **ENV** is to be set, to adjust the environment. BODY may be a list
of pieces of MacLISP code which constitute the body of the known function , to be
executed after the arguments are set up (typically because of a combination like
( ( LAMBDA ...) ...)), or it nay be NIL , implying that the caller of LAJIBDACATE
intends to generate a GO to the code .

LAMBDACATE divides ARGS into three classes: (1) arguments which are
themselves NOCLOSE KNOWN-FUNCTIONs -- such arguments actually have no actual run-
time representation as a MacLISP data object, and so are not passed at all; (2)
arguments whose corresponding variables are never referenced -- these are
accumulated in EFFARCIS, a list of arguments to be evaluated for effect only
(presumably the optimizer eliminated those unreferenced arguments which had no
side effects); and (3) arguments whose values are needed and are to be passed
through the registers - - these are accumulated in REALARGS, and the corresponding
variables in REALVARS.

When this loop is done, (the reverse of) REALVARS should equal WARS, for
it is the set of actually passed arguments.

The generated code first evaluates all the EFFARGS (if any), then sets
all the proper registers to the REALARGS (this code is generated by PSETQ-TEMPS),
then (after the remark REM) executed the BODY (which, if NIL , is empty).

For example , consider generating code for:

((LAMBDA (F A B) .. (F A) ...)

( LAMBD A ( X )  - . - )
(CONS X Y)
(PRINT Z))

where F denotes a NOCLOSE KNOWN-FUNCTION, and B is never referred to. Then the
call to LAMBDACATE might look like th is:



001 RABBIT 568 O / 7 P•9e 54
002 HANDLE CASE OF INVOKING A KNOWN NOCLOSE FUNCTION OR CONTINUATION .
003 FOR AN EXPLICIT ((LAMBDA ... BODY) ...). BODY IS THE BODY.
004 OTHERWISE . IT IS NIL , AND SOMEONE WILL 00 AN APPROPRIATE GO LATER.
005
006 (DEFINE LAMBDACATL
007 (L AMBDA ( VAR S TVAR S DEP ARGS REM ENVAOJ BODY)
008 (LABELS (( LOOP
009 (LAMBDA (V A REALVARS REALARGS EFFARGS)
010 ;;REALVANS IS COMPUTED PURELY FOR ERROR-CHECKING
011 (IF (NULL A)
012 (LET ((B “(PROGI e(PSETQ-TEMPS (IREVENSE NEALARGS ) DEP ENVADJ )
013 ,REM
014 •(DEPROGNIEY BODY)) )
015 (NV (IREVENSE REALVARS)))
016 (IF (NOT (EQUAL NV WARS))
017 (ENROl ‘ITVARS screwup in LAMBDACATE I
018 ((VAR S • ,VARS )
019 (TVARS .TVARS)
020 ( REALVARS • ,RV))
021 ‘FAIL-ACT))
022 (IF EFEARGS
023 “(PROGN PEFEANGS •(OEPROGNIFY B))
024 B))
025 (CORD ((LET ((KEN (GET (CAR V) ‘KNOWN-FUNCTION)))
026 (AND KEN
027 (EQ (EQcASE (TYPE (cNOOE\CFORM KEN))
028 (CLAMBDA
029 (CLAMBDA\FNP
030 (CIOOL\CFORM KEN)))
031 (CONTINUATION
032 (CONT INUAT ION\FIP
033 (CNOOE\C FORM KEN))))
034 ‘ROCLOSE)))
035 (LOOP (CON V) (CDI A) REALVARS REALARSS EFFARGS))
036 ((01 (GE T (CAR V) ‘READ-lEES)
037 (GET (CAR V) ‘WRITE.REFS))
038 (LOOP (CON V)
039 (CON A)
040 (CONS (CAR V) NEALVARS)
041 (CoNS (CAR A) NEALARGS)
042 (FFARGS ))
043 (T (LOOP (CDI V)
044 - (CDI A)
04 5 REALVARS
046 REALARGS
047 (cONS (CAR A) EFFANGS))))))))
048 (LOOP VANS ARGS NIL NIL NIL))))
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( LAPIB DACAT E ‘(F  A B)
‘(A)
12
‘(<illegal> (CONS X43 Y69) (PRINT Z91))
<remark)

<body>)

where <illegal ) is an object that should never be looked at (see ANALYZE—
CLANBDA ); X43, Y69, an d Z91 are pieces of code wh ich refer to the var iables X,
Y, and Z; <remark> is some remark ; the environment adjustment is assumed to be
trivial; and <body) is the code for the body of the LAMBDA. The generated code
would look someth ing like this:

(PROGN (PRINT Z91)
(SETQ -12- (CONS X43 Y69))
<remark>
(body))

Notice that LAMBDACATE explicitly takes advantage of the fact that the execution
of arguments for a combination may be arbitrarily reordered.

The various PSETQ... routines generate code to perform Parallel SETQs,
i.e. the simultaneous assignment of several values to several values. The
parallel nature is important , because some of the values may refer to other
registers being assigned to, and a sequential series of assignments might not
work .

The main routine here is PSETQIFY , which takes a list of arguments
(pieces of MacLISP code which will generate values when executed at run-time) and
a list of corresponding registers . One of two different methods is used
depending on the number of values involved. Method 2 produces better code (this
is obvious only when one understands the properties of the MacLISP compiler which
will compile the MacLISP code into PDP-10 machine language). Unfortunately, it
happened that when RABBIT was written there was a bug in the MacLISP compiler
such that it often found itself unable to compile the code generated by Method 2.
Moreover , the primary maintainer of the MacLISP compiler was on leave for a year.
For th is reason Method 3 was invented , which always works, but is cons iderably
more expensive in terns of the PDP-10 code produced. (I concerned myself with
this low level of detail only for this routine , because the code it produces is
central to the whole code generator , and so its efficiency is of the greatest
importance .) In order to achieve the best code , I determined empirically that
Method 2 never failed as tong as fewer than five values were involved . I might
also add that a Method 1 was once used , which happened to provoke a different bug
in the MacLISP compiler; Method 2 was invented in an attempt to circumvent that
f i rs t  hug ’ Now that the maintainer of the MacLISP compiler (Jon L White) has
returned , it may soon be possible to remove Method 3 from RABBIT; but I think
th is story serves as an excellent example of pragmatic engineering to get around
immediate obstacles (also known as a “kludge ).



001 RABBI!. ~~
__os/1s/?e..~!fgf

_ 55
002 ;;; GENERATE PARALLEL SETQ INS OF REGISTERS TO ARGS . 

-

~~ 

_____

003 ;;; RE TURNS A LIST OF THINGS ; ONE WRITES I(PS(TQIFY ...) WITHIN “ .

004
005 (DEFINE PSETQIFY
006 (LAMBDA (ARGS REGISTERS )
007 (IF (< (LENGTH ARGS ) 5)
006 (PSETQIEY-METHOD.2 ANGS REGISTERS)
D09 (PSETQIFY-METH0O-3 AR6S REGISTERS))))
010
011
012 (DEFINE PSETQIEY-METHOD-2
013 (LAMBDA (ARGS REGISTERS)
014 (LABELs ((PSITQ 1
015 (LAMBDA (A lEGS QVARS SETQS USED)
016 (IF (NULL A)
017 (IF (NULL SETQS)
018 NIL
019 (IF (NULL (CON SETOS))
020 “((SETQ ,(CADAR SETQS) •(CAR USED)))
021 ;;IMPONTANT: DO NOT NREVERSE THE SETQSI
022 ;;MAKES MACLISP COMPILER WIN BETTER.
023 “(((LAMBDA .(NREVERSE QVARS) PSETQS )
024 P(IREVERSI USED)))))
025 (IF (EQ (CAR A) (CAR PEGS)) ;AVOIO USELESS SETQ’S
026 (PSETQ1 (CDI A)
027 (CON NESS)
028 QVARS
029 SETQS
030 USED)
031 ((LAMBDA (QV )
032 (Ps TQ1 (CDI A)
033 (CDI NESS)
034 (CONS QY OVAlS)
035 (CONS “ (SETQ ,(CAR lEGS) .QV ) SLTQS )
036 (CAR A) USED)))
037 (GERTEMP ‘Q)))))))
038 (PSETQ1 ARGS REGISTERS NIL NIL NIL))))



236

Method 2 essentially uses local MacLISP LAMBDA variables to temporarily
name the values before assignment to the registers, while Method 3 uses global
var iab l es. (M ethod 2 produces better code because the MacLISP compiler can
allocate the local variables on a stack, one by one , and then pop them off in
reverse order into the N registers .) Both methods perform two peephole
opt imizat ions: (1) If a value-register pair calls for setting the register to
its own contents , that SETQ is eliminated . (2) If this elimination reduces the
number of SETQs to zero or one , then NIL or a single SETQ is produced, rather
than the more complicated and general piece of code.

As examp les , (PSETQIFY ‘(-12- -12- (CDR -13-)) ‘(-11- -12- -13-)) would
produce:

((LAMBDA (Q-43 Q-44)
(SETQ -13- Q-44)
(SETQ -11- Q-43))

-12-
(CDR -13-))

(note that (SETQ -12- -12-) was eliminated), and

(P5ETQIFY ‘(-23 22-) ‘(-21 25-))

wou ld produce : -

(PROG ( )  (DECLARE (SPECIAL -21--TEMP -22--TEMP -23--TEMP -24--TEMP -25--TEMP)
(SETQ -25--TEMP -22-)
(SETQ -24--TEMP -25-)
(SETQ -23--TEMP -24-)
(SETQ -22--TEMP -21-)
(SETQ -21--TEMP -23-)
(SETQ -25- -25--TEMP)
(SETQ -24- -24--TEP1P)
(SETQ -23- -23--TEMP)
(SETQ -22- -22--TEPIP)
(SETQ -21- -21--TEIIP))

The only reason for using PROG is so that the DECLARE form could be included for
the benefit of the MacLISP compiler. -

The examples here are slightly incorrect; PSETQIFY actually produces a
l ist of MacLISP forms , so that when no SETQ5 are produced the resulting NIL is

• interpreted as no code at all.

In principle the elimination of redundant SETQs should be performed
before choosing which method to use, so that there will be a maximal chance of
using the more efficient Method 2. I chose not to only so that the two methods
would remain distinct pieces of code and thus easily replaceable.



001 RABBIT ~~~~~~~~~~~~~~~~~~~~00 2 (DEFINE PSET QIFY- M ETHOD-3
003 (LAMBDA (ARGs REGISTERS )
004 (LABELS ((PSETQ1
005 (LAMBDA (A NESS QVARS SETQS USED)
006 (IF (NULL A)
007 (IF (NULL SETQS)
008 NIL
009 (IF (NULL (CDN SETQS))
010 ~((SETQ ,(CADAN SETQS) ,(CADDN (CAR USED))))
0 11 “ ((PROS () (DECLARE (SPECIAL PQVA RS)) BUSED ISETQS ) )))
012 (IF (EQ (CAR A) (CAR PEGS)) ;AVO ID USELESS S(T Q’S
013 (PSETQ1 (CDI A)
014 (CDI NESS )
015 QVARS
016 SETQS
017 USED)
018 ((LAMBDA (Qv)
Dig (PSETQ1 (COP A)
020 (CDI PEGS )
021 (CONS QY QVARS )
022 (CONS “ (SETQ ,(CAR NESS) ,QV ) SETOS)
023 (CONS “ (S(TQ ,QV ,(cAR A))  USED)))
024 (CATENATE (CAR NESS) ‘~~.TEMP~ ) ) ) ) ) ))
025 (PSETQ1 ARGS REGISTERS NIL NIL NIL))))
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PSETQ-ARGS is a handy routine which calls PSETQ-ARGS-EPJV with an EPJVADJ
of **ENV**, knowing that later the redundant (SETQ **ENV** **EPJV**) will be
eliminated.

PSETQ-ARGS-ENV takes a set of arguments and an environment adjustment ,
and arranges to call PSETQIFY so as to set up the standard argument registers.
Recall that how this is done depends on whether the number of arguments exceeds
**NUMBER-OF-ARG-REGS**; if it does , then a list of the arguments (except the
continuation ) is passed in **ONE**. **ENV+CONT+ARG-REGS** is the same as
**ARGtJMENT-REG ISTERS** except that both the names **ENV** and **CONT** are
adjoined to the front. It can be quite critical that **ENV** and the argument
registers be assigned to in parallel , because the computation of the argument
values may well refer to variables in the environment , whereas the environmemt
adjustment may be taken from a closure residing in one of the argument registers .

PSETQ-TEP)PS is similar to PSETQ-ARGS-EPJV, but is used on registers other
than the standard argument-passing registers. It takes ARGS and ENVADJ as
before , but also a depth DEP which is the number of the first register to be
assigned to. TEMPLOC is used to generate the register names, then **ENV** is
tacked on and PSETQIFY does the real work.

MAPANALYZE is a simple loop which maps over a list of cnode-trees and
calls ANALYZE on each . A list of the results returned by ANALYZE is given to C.
Also , FPJS is chained through the calls to ANALYZE, so that all functions to be
compiled later will have been accumulated properly.



001 RABBIT 56~~ _O ~~~~~~~~~~ 57
00? (DEFINE PSETQ-ARGS
003 (LAMBDA (ARGS)
004 (PSEIQ-ARGS-ENV ARGS ‘*aENV**)))
005
006 (DEFINE P5(TQ-ARGS-ENV
007 (LAMBDA (ARGS ENVADJ)
008 (IF (> (LENGTH ARGS) (4  **NUMBER .OF-ARG-NEGS** 1))
009 (PSETQ I FY (LIS T ENVADJ (C AR ARGS) (CONS ‘LIST (CDI ARGS ) ) )
010 **Ij$V#CONT+Ag6.REGS**)
011 (PSETQIFY (CONS ENVADJ ARGS) **ENV+CONT+ARG-REGSa*))))
012
013 (DEFINE PSETQ-TEMPS
014 (LAMBDA (ARGS DEP ENVADJ )
015 (00 ((A ARGS (CON A))
016 (J DEP (+ J 1))
017 (N NIL (CONS (TEMPLOC .1) R)))
018 ((NULL A)
019 (PSET Q IFY (CONS ENVADJ ARGS)
020 (CoNS ‘**ENVe* (NREVERSE N)))))))
021 -

022
023 (DEFINE MAPANAL.YLE
024 (LAMBDA (FL 1ST NIL PROGNAME BLOCKENS ENS C)
025 (LABELS ((looP
026 (LAMBDA (F Z ENS )
027 (IF (NULL F)
028 (C (NREVERSE 7) ENS)
029 (ANALYZE (CAR F)
030 NNL
031 PROGNAME
032 BLOCKFNS
033 ENS
034 (LAMBDA (STUFF ENS)
035 ( LOOP (CON F )
036 (CONS STUFF 1)
037 FNS)) ) ) ) ) )
038 (LOOP FLIST NIL ENS))))
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ANALYZE is the routine called to compile a piece of code which is
expected to produce a value. ANALYZE itself is primarily a dispatch to
specialists. For the “simple~ case of a trivial form, TRIVIALIZE is used to
generate the code . For the simple case of a CVARIABLE , ANALYZE simply uses
LOOKUPICATE to get the code for the variable reference.

ANALYZE-CLAMBDA has three cases based on FNP . For type NIL , code is
generated to create a full closure of the form (CBETA <value of progname> <tag>
<environment>). CONS-CLOSEREFS generates the code to add the CLOSEREFS to the
existing consed environment for making this closure. For type EZCLOSE, just the
environment part is created , again using CONS-CLOSEREFS. For type NOCLOSE, the
generated “code” should never be referenced at all -- it is not even passed as an
ar gument as such -- and so a little message to the debugger is returned as the
“code ” , which of course must not appear in the final code for the module. For
all three cases , the code for the function is added to the ENS list for later
compilation.

ANALYZE-CONTINUATION is essentially identical to ANALYZE-CLAMBDA .



001 RABBIT 568 05/15/78
__

Page 53
002 (DEFINE ANALYZE
003 (LAMBDA (CIODE NIL PROGNAME BLOCKFNS ENS C)
004 (LET ((CEll (CNOO E~CFORM CNOOE)))
005 (EQCASL ( TYP E CEll)
006 (TRIVIAL
007 (C (TRIVIALI ZE (TNIV IA I\N0DE CEll) NIL ) ENS))
008 (CVARIABLE
009 (C (LOOKUPICATE (CVARIABLE\VAR CEll) NIL) ENS))
010 (CL AMBDA
011 (ANALYZE-CLAMBDA CNODE PIlL PROGNAME BLOCKFNS ENS C CFM))
012 (CONTINUATION
013 (ANALYZE-CONTINUATION CNOOE NIL PROGNAME BLOCKFNS ENS C cFM))
014 (dr
015 (ANALYZE-CIF CNODE RNL PROGNAME BLOCKENS ENS C CFM))
016 (CIABEIS
017 (A NALYZ E-CLA BELS CNODE RNL PROGNAME BLOCKENS ENS C cEll))
018 (CCOMBINATION
019 (ANALYZE.CCOMBINATION CNOOE RNI. PROGNAME BLOCKERS ENS C cEll))
020 (RETURN
021 (ANALYZE-RETURN CNOOE NIL PROGNAME BLOCKFNS ENS C cEll))))))
022
023 (DEFINE A NAIYZE -CLA MB DA
024 ( ‘A MODA (CIODE NIL PROGNAME BLOCKERS ENS C CEll)
025 (EQCASE (CLAMBDA’¼FNP cFM)
026 (NIL
027 (C “(CONS ‘CBETA
028 (CONS •PROGNAME
029 (CONS ‘.(CLAMBDA\NAPIE CEll)
030 .(CONS-CLOSEREFS (cLAMBDA\CLOSEREES cEll)
031 IlL))) )
032 (CONS (LIST PROGNAME CNODE NIL) ENS)))
033 (EZCLOS E
034 (C (CONS-CLOSEREES (CLAMBDA\CLOSENEFS CEll) RNL )
035 (CONS (LIST PNOGNAME CNODE N IL) ENS)))
036 (NOCLOSE
037 (C ‘IShauldn ’t ever be seen - NOCIOSE CLAMBDA I
038 (CONS (LIST PROGNAME CNOOE NIL) ENS))))))
039
040 ( DEFINE ANALYZE-CONTINUATION
041 (LAMBDA (CNODE RNL PROGNAME BLOCKENS ENS C CFM)
04? (EQCASE (CONTINuATION\ENP CFM)
043 ( NIL
044 (C “(CONS ‘CB ETA
045 (COIlS ,PROGNAME
046 (CONS ‘ ,(CONTINUATION\NAME CEll)
047 ,(CONS-CLOSEREES (CONTINUATION ~CLOSEREFS cEll)048 RNL))))
049 (CONS (LIST PROGNAME CNODE NIL) ENS)))
050 (EZCLOSE
051 (C (cONS.CLOSEREFS (CONTINUATION\CLOSEREES CFM) NIL)
052 (CONS (LIST PROGNAME CNOO( NIL) FF15)))
053 (NOCLOSE
054 (C ‘JShouldn ’t ever be seen - NOCLOSE CONTINUATION J
055 (CONS (LIST PNOGNAN( CNOOE RNL) ENS)) ) ) ) )
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ANALYZE-CIF merely calls ANALYZE recursively on the predicate,
consequent, and alternative , and then uses CONDICATE to construct a MacLISP COND
form .

ANALYZE-CLABELS calls ANALYZE recursively on the body of the CLABELS, and
then calls PRODUCE-LABELS to do the rest. (Unlike the other PRODUCE- functions,
PRODUCE-LABELS does not depend on generating code which does not produce a value.
It accepts an already-compiled body, and builds around that the framework for
constructing the mutually referent functions. If the body was compiled using
COMP-BODY , then the code generated by PRODUCE-LABELS will produce no value; but
if the body was compiled using ANALYZE, then it will produce a value.)

- -- ~~~~~~~~~~~~ — -



001 RABBIT 568 ~~5L~ L78 ?~
g
~ 

59
002 (DEFINE ANALYZE-C IF
003 (LAMBDA (CHODE RNL PROGNAME BLOCKFNS ENS C CEll)
004 (ANALYZE (CIF\PRED CEll )
005 RNI
006 PROGNAME
007 BLOCKENS
008 FN S
009 (LAMBDA (PRED ENS)
010 (ANALYZE (CIF\CON CEM)
011 NIL
012 PROGNAME
013 BLOCKFNS
014 ENS
015 (LAMBDA (CON FNS )
016 (ANALYZE (CIF\ALT CEll)
017 RNL
018 PROGNAME
019 BLOCKERS
020 ENS
021 (LAMBDA (ALT FF45)
022 (C (COFIDICATE PRE0 CON ALT)
023
024
025 (DEFINE ANALYZE-C LABEIS
026 (LAMBDA (CNODE NIL PROGNAME BLOCKFNS ENS C Cr11)
027 (ANALYZE (CLABEIS\BODY CEll)
028 (ENV CARCDR (APPEND (CLABELS\FNENV CFM)
029 (CLABELS\CONSENV CFM))
030 RNL )
031 PROGNAME 

-
032 BLOCKFNS
033 ENS
034 (LAMBDA (LBOD ENS)
035 (PRODUCE-LABELS CNODE 1800 RIL PROGNAME BLOCKENS ENS C)))))

—----. -~~~~~~~~~ - - ._ _
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ANALYZE-CCOMB1NATION requires the function to be a CLANBDA (for if it
were not , then something too complicated for continuation-passing style is goimg
on) .  ANALYZE is called on the body of the CLAJIBDA , and then on all the arguments
(using MAPANALYZE); finally LAI’IBDACATE is used to generate the code.
(LAMBDACATE is much like PRODUCE-LABELS, in that it is handed a body, and whether
the generated code produces a value depends only on whether the body does.)

ANALYZE-RETURN is essentially just like ANALYZE-CCOMBIPJATION.

_ _  -,- -~~~~~~~ ~-- - -



001 RABBIT 568 05/15/78 P.ge 60
002 (DEFINE 

- -

003 ANA LYZE -CCOMB INAT ION
004 (LAMBDA (CNODE RNL PROGNAME BIOCKENS INS C CEll )
005 (LET ((EN (CNO0E\CFORM (CAR (CCONBZNATION\ARGS CFM)))))
006 (IF (EQ (TYPE EN) ‘CLAMBOA)
007 (ANALYZE (CIAMBDA\BODY EN)
008 (ENV CARCOR (CIAMBDA\AS ETVAR S EN)
009 (REGSIIST EN I (ENVCARCDR (CLAMBDA\CONSENV EN) NIL)))
010 PROGNAME
011 BLOCKENS
012 ENS
013 (LAMBDA (BODY FNS)
014 (MAPAN ALYZE
015 (CON (CCOM8INATION\ANGS CEll))
016 RNL
017 PROGNAME
018 BLOCKENS
019 FNS
020 (LAMBDA (ARGS ENS)
021 (C ( LAIIBOACATE (CLAMBDA \VARS EN)
022 (CIAMBOA\TVARS EN)
023 (CIAMBDA\DEP EN)
024 ARGS
025 (NEMARK-ON (cAN (CCOMBINATION\ARGS CFM)))
026
027 (SET -UP-ASETVANS BODY
028 (CLAMBDA\ASETVARS EN)
029 (REGSIIST EN NIL NIL)))
030 ENS))) ) )
031 (ERROR ‘Ilon-trivi.) Function in ANALYZE-CCOMBINATION J CNODE ‘FAIL-ACT)))))
032
033 (DEFINE ANALYZE -RETURN
034 (LAMBDA (CNODE RNL PROGNAME BLOCKERS ENS C CFM)
035 (LET ((EN (CNODE\CFORM (RETUNN\CONT CEM))))
036 (IF (EQ (TYPE EN) ‘CONTI NUATION )
037 (ANALYZE (CONTINUATION\BOOY EN)
038 (IF (CONTINUATION\TVANS EN)
039 (CONS (CONS (CAR (CONTINUATION\TVARS EN))
040 (TEMPLOC (CONTINUATION\OEP EN)))
041 (ENVCARCDR (CONTINUATION \CONS(NV EN) NIL))
042 (ENVCARCDR (CONTINUATION\cONSENV EN) RNL))
043 PROGNAME
044 BLOCKFNS
045 ENS
046 (lAMBDA (BODY ENS)
047 (ANALYZE (RETURN\VAL cFM)
048 NIL
049 PROGNAME
050 BLOCKENS
051 ENS
052 (LAMBDA (ANG FNS)
053 (C (LAMBDAcATE
054 (LIST (CONT INUATION \VAR EN))
055 (CONTINUATION\TVA RS EN)
056 (cONTINUAT ION\DEP EN)
057 (LIST ARG)
058 (REMARK-ON (NETUNN\CONT CFM))
059 ‘*CENV**
060 BOOY )
061 ENS)))))
062 (ERROR ‘~ Mon-tr1vfa1 Function in ANALYZE-RETURNI CIODE ‘FAIL-ACT)))))
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LOOKLJPICATE (I make no apology for the choice of the name of this or any
other function ; suffice it to say that a function named LOOKUP already existed
in the SCHEME interpreter) takes a variable name VAR and a rename list RNL . and
returns a piece of MacLISP code for referring to that variable. If an entry is
in RNL for the variable , that entry contains the desired code. Otherwise a
global variable reference must be constructed. This will simply be a reference
to the MacLISP variable , unless it is the name of a TRIVFN. In this case a GETL 

-

form is constructed. (This is a big kludge which does not always work, and is
done this way as a result of a rather unclean hack in the SCHEME interpreter
which interfaces MacLISP functions with SCHEME functions.)

CONS-CLOSEREFS constructs a piece of MacLISP code which will cons onto
the value of **ENV** all the variables in the set CLOSEREFS. This is a simple
loop which uses LOOKUPICATE to generate code, and constructs a chain of calls to
CONS. For example, (CONS-CLOSEREFS ‘(A B C) NIL) would produce:

(CONS A (CONS B (CONS C **ENV**)))

Notice the use of REVERSE to preserve an order assumed by other routines.

OUTPUT-ASET takes two pieces of code: VARREF , which refers to a
variable, and BODY , which produces a value to be assigned to the variable. From
the form of VARREF a means of assigning to the variable is deduced. (This
implies that OUTPUT-ASET knows about all forms of code which might possibly be
returned by LOOKLJPICATE and , a fortiori, which might appear in a RNL.) For
example , if the reference is (CADR (CDDDDR **ENV**)), OUTPUT-ASET would generate
(RPLACA (CDR (CDDDDR **E)JV**)) <body>).



001 RABB IT 568 05/15L ?L!!9 ~ !~002 (DEFINE LOOKUPICATE — — -

003 (LAMBDA (VAR RNL )
004 ((LAMBDA (SLOT)
005 (IF SLOT (CDR SLOT)
006 (IF (TRIVFN VAR)
007 “(GETI ‘ ,VAR ‘(ExPR SUBR LSUBR))
008 VAR)))
009 (ASSQ VAR NIL))))
010
011 (DEFINE CONS-CLOSEREES
012 (LAMBDA (CIOSEREES RNL )
013 (DO ((CR (REVERSE CLOSEREFS) (CON CR))
014 (X ‘**ENV** “( CONS ,(LOOKUPICATE (CAR CR) NNL) .1)))
015 ((NULL CR) X ) ) ) )
016
017 (DEFINE OUTPUT -ASET
018 (LAMBDA (VARREF BODY)
019 (COND ((ATOM VARREF )
020 “(SETQ .VARREF .B0DY))
021 ((EQ (CAR VARREE) ‘CAR)
022 ~‘(CAR (RPLACA .(CADR VARREE) ,BOOY)))
023 ((EQ (CAR VARREF) ‘CADR) -

024 “(CAR (NPLACA (COP .(cADR YARREF)) ,BOOY)))
025 .((EQ (CAR VARIEr ) ‘CADOR)
026 “(CAN (RPLACA (COON .(CADR VARREE)) .BOOY)) )
027 ((EQ (CAR VARREE) CA000R)
028 “(CAN (RPLAC A (CDDDR .(cADR VARREF)) .BOOY)))
029 (1 ((PlOP ‘IUnknown ASET discipline - OUTPUT-ASET~ VANREF ‘FAIL-ACT)))))
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CONDICATE takes the three conponents of an IF conditional, and constructs
a MacLISP COND form. It also performs a simple peephole optimization:

(COND (a b)
(1 ( COND (c d) . . . ) ) )

becomes :

(COND (a b) (c d) ...)

Also , DEPROGNIFY is used to take advantage of the fact that MacLiSP COND clauses
are implicitly PROGN forms. Thus:

(CONDICATE ‘(NULL X) ‘(PROG N (PRINT X) Y) ‘(COND ((NULL Y) X) (1 100)))

would produce:

(COND ((NULL X) (PRINT X) Y) ((NULL Y) X) (T 100))

DECARCDRATE is a peephole optimizer which attempts to collapse CARfCDR
chains in a piece of MacLISP code to make it more readable. For example:

(CAR (CDR (CDR (CAR (CDR (CAR (COR (CDR (CDR (CDR X))))))))))

would become :

(CADDR (CADR (CADDDR (CDR X))))

The arbitrary heuristic is that A~ should appear only initially in a 0C. - .R
composi tion . DECARC DRATE also knows that MacLISP ordinarily has defined CARICDR
compos itions u p to four lon g .



001 RABBIT 568 05/15/76 Page 62
002 ;; CONDICATE TURNS AN IF INTO A COND ; IN SO DOING IT TRIES TO MAKE THE NESULT PRETTY.
003
004 (DEFINE CONDICATE
005 (LAMBDA ( PRED CON ALT)
006 (IF (OR (ATOM ALT ) (NOT (EQ (CAR ALT) ‘COND)))
007 “(COND ( ,PRED P(DEPROGNIEY CON))
008 (1 •(DEPROGNIFY ALT)))
009 “(COND (.PRED P(OEPROGNIEY CON))
010 •(CDR ALT)))))
Oil
012
013 ;;; DECARCDRATE MAKES CAR-CDR CHAINS PRETTIER.
014
015 (DEFINE DECARCDRATE
016 (LAMBDA (X)
017 (COND ((ATOM X) X)
018 ((EQ (CAR X) ‘cAR)
019 (IF (ATOM (CADR X))
020 X
021 (LET ((Y (DECARCONATE (CADN X ) ) ) )
022 (COND ((EQ (CAR Y) ‘CAR ) “ (CAAR .(CADR Y)))
023 ((EQ (CAR Y) ‘CON) “(CADR .(CADR Y)))
024 ((EQ (CAR Y) ‘COON) “(CADDR .(CADR Y)))
025 ((EQ (CAR Y) ‘CODeR) “(CA000R .(CADN Y)))
026 (T “(cAN ,Y))))))
027 ((EQ (CAR X) ‘CON)
028 (IF (ATOM (CAOR X))
029 X
.030 (LET ((Y (OECARCORATE (CADR X))))
031 (COND ((EQ (CAR Y) ‘CON) “(CODR .(CAON Y)))
032 ((EQ (CAR Y) ‘COON) “ (C000R ,(CA DR Y) ) )
033 ((EQ (CAR Y) ‘CODD R) “(C 0000R ,(CADR Y) ) )
034 (1 “(COP ,Y ) ) ) ) ) )
035 (1 X ) ) ) )
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TRIVIALIZE is the version of ANALYZE which handles trivial forms. Recall
that these are represented as pass-i node-trees rather than as pass-2 cnode-
trees . The task of TRIVIALIZE is to take such a node-tree and generate value-
producing code . Recall that the subforms of a trivial form must themselves be
trivial -

For a CONSTANT , a quoted copy of the value of the constant is generated.

For a VARIABLE , a reference to the variable is generated using
LOOKIJPICATE.

For an IF , the components are recursively given to TRIVIALIZE and then
CONDICATE is used to generate a MacLISP COND form.

For an ASET, a reference to the ASET variable is generated using
LOOKUPICATE , and code for the body is generated by calling TRIVIALIZE
recursively; then OIJTPUT-ASET generates the code for the ASET.

For a COMBINATION , the function must be either a TRIVFN or a LAMBDA-
ex press ion. For the former , a simple MacLISP function call is generated , after
genera t in g  code for all the ar gumen ts. For the latter , TRIV-LAMBDACATE is
invoked after generating code for the arguments and the LAMBDA body.

TRIV-LA PIB[)ACATE is, so to speak , a tr ivial vers ion of LAPIBDACATE . The
arguments are divided into t wo classes , those which are referenced and those
which are not (the possibility of a referenced argument which is a KNOWN-FUNCTION
cannot arise). When th is is done , a MacLISP ( (LAMBDA ...) ...) form is
generated , preceded by any unreferenced arguments (which presumably have side-
effects). For example:

(TRIV-LAMBDACATE ‘(V i V2 V3)
‘((CAR X) (PRINT Y) (CDR Z))
‘(PROGN (PRINT Vi) (LIST Vi V3)))

ought to produce:

( PROCIN (PRINT Y )
((LAMBDA (Vi V3)

(COMMENT (VARS (A C)))
(PR INT V i )
(LIST V i V3))

( CAR X)
(C D R Z ) ) )

Note that a MacLISP LAMBDA body is an implicit PROGN . TRIV—LAMBDACATE also takes
advan tage of the ability to arbitrarily reorder the execution of arguments to a
combination .

-4



001 RABBIT 566 os/15p6...i,9e 63
002 (DEFINE TRIVIALIZE
003 (LAMBDA (NODE NIL)
004 (LET ((FM (NODE\FORM NODE))) -
005 (EQCAS( (TYPE FM)
006 (CONSTANT “‘.(CONSTANT \VALUE FM))
007 (VARIABLE (LOOKUPICATE (VARIABLE\VAR FM) NIL))
008 (IF (CONDICATE (TRIVIAL IZE (IF\PREO FM) RNL)
009 (TRIVIALIZE (IF\CON FM) NIL)
010 (TR IV IAL I~( (IE~ALT FM) NIL)))oil (ASET
012 (OUTPUT-ASET (LOOKUPICATE (ASET\VAR EM) NIL)
013 (TRIVIALIZE (ASLT\BOO Y FM) NIL)))
014 (COMBINATION
015 (LET ((ARGS (COMBINATION\ARGS EM)))
016 (LET ((EN (NODEV0RM (CAR ARGS))))
017 (IF (AND (EQ (TYPE EN) ‘VARIABLE)
016 (VARIABLE\GLOBALP EN)
019 (TRIVFN (VARIABL ’,VAN EN)))
020 (CONS ( VAR IABLE \VAR EN)
021 (AMAPCAR (LAMBDA (A) (TNIVIAIIZE A RNL))
022 (COP ANGS)))
023 (IF (EQ (TYPE EN) ‘LAMBDA )
024 (TRIV .LANBDACATE
025 (LAMBDA\VARS EN)
026 (*$APCAR (LAMBDA (A) (TRIVIALIZE A NIL))
027 (COR ARGS))
028 (TRIVIALIZE (LAMBDA\BODY EN) RNL))
029 (ERROR ‘IStr.nge Trivial Function - TRIVIALIZE I
030 NODE
031 ‘FAIL-ACT))))))))))
032
033 (DEFINE TNIV-LAMBDACATE
034 (LAMBDA (VANS ARGS BODY)
035 (LABELS ((LOOP
036 (LAMBDA (V A REALVARS REALAR6S EFFARGS)
037 (IF (NULL A)
038 (LET ((lv (NREVERSE REALVARS)))
039 (OR (NULL V)
040 (ERROR ‘jle blew it in TRIV-LAMBDACATE I V ‘FAIL-ACT))
041 (LET ((e (IF NV
042 “((LAMBDA ,RV
043 - (COf9I(NT
044 (VARS - ,(MAP-U5(R-NAMES lv)))
045 •(DEPROGNIFY BODY))
046 •(NR(VERSE REALARGS))
047 BODY)))
048 (IF LEFANGS
049 “(PNOGN BEFFARGS I(DEPROGNIEY B))
050 B)))
051 (IF (OR (GET (CAR V) ‘NEAD-REFS)
052 (GET (CAN V) ‘WRITE.REFS))
053 (LOOP (CDR V)
054 (CDI A)

(CONS (CAP v) REALVANS )
056 (CONS (CAR A) REALAROS )
057 EEFARGS )
058 (LOOP (CON V)
059 (CON A)
060 REALVARS
06! REALANGS
062 (CONS (CAR A) EFFARGS)))))))
063 (LOOP VARS ANGS NIL NIL NIL))))

- -~
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We have examined the entire code generator , and now turn to high-level
control rout ines. COMPILATE-ONE-FUNCTION is the highest- level entry to the code
generator, called by COMPILE. It takes a code-tree and the user-name for the
function , and returns a complete piece of MacLISP code cons titu ting a module for
the user funct ion . I t genera t es a global name for use as the module name
(PROC~NAr’jE), and invokes COIIPILATE-LOOP (which really ought to have been a LABELS
function, but was too big to fit on the paper that way). The last argument is a
list of two MacLISP forms ; one causes a SCHEME compiled closure form (a CBETA
list) to be put in the value cell of the user-name, so that it will be a globally
defined SCHEME f unc t ion , and t he other creates a property linkin g the PROGNAME
with the USERNAME for debugging purposes. -

COP1PILATE-LOOP repeatedly calls COMPILATE , giving it the next function on
the FNS list. Of course , the invocation of COMPILATE may cause new entries to
appear on the FNS list. COMPILATE-LOOP iterates until the FNS list converges to
emptiness . As it does so it takes each piece of generated code and strings it
together as PROGBODY . It also calculates in TMAX the maximum over all MAXDEP
slots; this is the only place where the MAXDEP slot is ever used.

When FNS is exhauste d, a module is constructed. This contains a comment ,
a MacLISP DEFIJN form for defining a MacLISP function, a SETQ form to put the SUBR
pointer in the value cell of the PROGNAPIE (for the benefit of code which creates
CBETA forms ) , and extra “stuff” . TMAX is used to generate a list of all
temporary variables used in the module; a MacLISP SPECIAL declaration is created
to adv ise the MacLISP compi ler.

USED-TEPIPLOCS takes a TMAX value and generates the names of all temporary
registers (whose names are of the form -nfl-; standard argument registers are not
included) up to that number.



001 RABBIT 568 05/15/78__P•9• 64
002 (DEE lIE COMPILATL-ONE-FUNCTION ;COMPLICATE-ONE-FUNCTION?
003 (LAMBDA (CIODE USERNAME)
004 (LET ((PROGNAME (GEN-GLOBAL-NAME)))
005 (COMPILATE-LOOP USERNAME
006 PROGNAME
007 (LIST (LIST USERNAME CNOOE))
008 (LIST (LIST PNOGNAME CNODE NIL))
009 NIL
010 0
O il (LIST “(SLTQ •USERNAME
012 (LIST ‘CBETA
013 •PROGNAME
014 ‘ ,(CLAMBDA\NAME (CNOOE\CFORM CNODE))))
015 “ (DEEPROP .PROGNAME ,USERNAML USER-FUNCTION))))))
016
017 (DEFINE COMPILATE-LOOP
018 (LAMBDA (USERNAME PROGNAME BLOCKFNS ENS PROGBODY TMAX STUFF )
019 (IF (NULL ENS )
020 “(PROGN ‘COMPILE
021 (COMMENT MODULE FOR FUNCTION ,USERNAME )
022 - (DEFUN .PROGNAME ()
023 (PR0G ()
024 (DECLARE (SPECIAL .PROGNAME I(USED-TEMPLOC S TMAX )))
025 (GO (PROG 2 NIL
026 (CAN **ENVCC )
027 (S(TQ CIENVCC (COP e.ENV.*))))
028 P(NREVERSE PROGBOOY)))
029 (SETO ,PROGNAM ( (GET ‘,PROGNAME ‘SUeR))
030 PSTUFF)
031 (COMPILATE (CAR (CAR ENS))
032 (CADR (CAR ENS))
033 (CADDR (CAN ENS))
034 BLOCKFNS
035 - (CON ENS)
036 (LAMBDA (CODE NEVFNS)
037 (LET ((CFM (CNOOE\CFORM (CADR (CAR ENS)) ) ) )
038 (COMPILATE-LOOP
039 USENNANE
040 PROGNAME
041 BLOCKFNS
042 NEWFNS
043 (NcONC (REVERSE (DEPROGIJEY! CODE T))
044 (CONS (REMARK-ON (CADR (CAR ENS)))
045 (CONS (EQCASE ( TYPE CFM)
046 (CLAMBDA
047 (CLAMBOA\NAME CEM))
048 (CONT INUATION
049 (CONTINUATION\NAME CFM)))
050 PNOGBOOY)))
051 (MAX THAX
052 (LQCASE (TYPE cEll)
053 (CLAMBDA
054 (CLAMBDA\MAXDEP CEll ))
055 (CONTINUATION
056 (COMTINUATIO N’~MAXDEP CEll ))))
057 STUEE)))))))
058
059 (DEFINE USED-TEMPLOCS
060 (LAMBDA (I)
061 (00 ((J (+ .aN(JMBER.~ç.AR6~R(65** 1) (+ J 1))
062 (X NIL (CONS ( TEMPLOC J) X )))
063 (C> J N) (NREVENS( X)))))



254

REMARK-ON takes a cnode for a CLAJIBDA or CONTINUATION and generates a
comment containing pertinent information about invoking that function . This
comment will presumably be inserted in the output code to guide the debugging
process.

MAP-USER-NAMES takes a list of internal variable names and returns a list
of the corresponding user names for the variables, as determined by the USER-NAME
property. (If a variable is an internally generated one, e.g. for a
continuation , then it will have no USER-NAME property, and the internal name
itself is used.) 

- - - _ _ _ _  - -_ _  ___- - s—- - -



001 RABB1T 568__05/1S/76 !,9 e 65
002 (DEFINE REMARK-ON
003 (LAMBDA ( CNODE)
004 (LET ((CEll (CNOO(\CFONM CIODE)))
005 (LABELS ((REMARK !
006 (LAMBDA (DEP FNP VANS ENV)
007 “(COMMENT (DEPTH •DEP)
008 (FNP “ ,FNP )
009 P(IF VANS “((VANS • ,(MAP-USER-N AMES VARS))))
010 I(IF (NV “(((NV “ .(MAP-USER-NAMES E N V ) ) ) ) ) ) ) )
Oil (EQCASE (TYP E CFM)
012 (CLAMBDA
013 (REMARK! (CLAMBDA\DEP CFM)
014 (CLAMBDA\FNP CFM)
015 (IF (EQ (CLAIIBDA\FNP CFM) ‘NOCLoSE)
016 (CLAMBDA\TVARS CFM)
017 (CLAMBDA\VANS CFM))
018 (APPEND (CLAMBDA\CLOSENEFS CEll)
019 (CLAMBOA\CONSENV CFM))))
020 (CONTINUATION
021 (REMARK1 (CONTINUATION\DEP CEll)
022 (CONTINUATION\FNP CEll)
023 NIL ;NEVER INTERESTING ANYWAY
024 (APPEND (COIITINUATION\CLOSEREES cFM)
025 (CONTINUATION\CONSENV cFM)))))))))
026
027
028 (DEFINE MAP-USER -NAMES
029 (LAMBDA (VARS)
030 (AMAPCAR (LAMBDA (X) (OR (GET X ‘USER-NAME ) X))  VARS)))
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The next few pages contain routines which deal with files. COMFILE takes
a file name , and compi les all the code in that f ile, producing an output file of
MacLISP code suitable for giving to the MacLISP compiler. It also computes the
CPU time required to compile the file.

FN gets the given file name , processed and defaulted according to
ITS/MacLISP standard conventions. RI and GCT save runtime and gc-runtime
information .

I F I L E  and OFILE get MacLISP “file objects” created by the OPEN function,
which opens the file specified by its first argument. (The output file names are
initially “ RABB OUTPUT” , conforming to an ITS standard . These will la ter be
renamed .)

*GLOBAL-6EN-PREFIX* is initialized as a function of the file name , to
“directory=firstname ” . This is to guarantee that the global symbols generated
for two different compiled files of SCHEME code will not conf l ict shoul d the two
files be loaded into the sane SCHEME together. (Notice the use of SYPIEVAL. This
is necessary because MacLISP allows names to be used in two differen t k inds of
contexts , one meaning the “functional” value, and the other mean ing the
“variable ” value. SCHEME does not make this distinction , and tries to make the
functional value available , but does not do this consistently . Th is is a problem
which results from a fundamental difference in semantics between SCHEME and
MacLISP. For such variables as DEFAULIF and TYO, wh ich in MacLISP are used for
both purposes , it is necessary to use SYMEVAL to specify that the variable,
rather than the function , is desired.)

(S YME VAL ‘ TYO) refers to the file object for the terminal; this is used
to print out messages to the user while the file is being Compiled . Various
information is also printed to the file , including identification and a
t imes t amp . Th e DE CLARE form printed to the out pu t f ile con tains the names of the
standard ar gument registers , and also **ENV**, **FUN**, and **PJARGS**. (Th is is
why USED-TEMPLOCS need not generate names of standard argument registers —- this
single global declaration covers them .,) The second DECLARE form def ines to the
MacLISP compiler  a func t ion  called DISPLACE for obscure reasons havin g to do with
the implementation of SCHEME macros.

TRANSDUCF does the primary work of processing the inçut file . When it is
done , another timestamp is printed to the output file , so th at the real time
consumed can be determined; then the runtime statistics are calculated and
printed , along with the number of errors if any cccurred. The output file is
then rena med as “firstname LISP” and closed. The st~tistics message is returned
so that it will be printed as the last message on the ~er.inal.



001 RABBIT 560 05/16/78_~~~~!~~~002 (DEFINE COMFILE
003 (LAMBDA (FNAME )
004 (LET ((EN (OEFAULTE (MERGEr FNAME ‘ (a  >))))
005 (NT (RUNTIME))
006 (GCT (STATUS GCTIME)))
007 (LET ((IFILE (OPEN El ‘IN))
008 (OF ILl (OPEN (MINGlE ‘LRABB_ OUTPUT) EN) ‘OUT)))
009 (SET’ aGLOBAL.6EN~pREFIXa
010 (CATENATE (CADAR (SYME VAL ‘DEFAULTF))
Oil ‘I~ I
012 (CADN (SYNEVAL ‘DEFAUL TE) ) ) )
013 (LET ( (TN ( NAMESTR ING (TRUENAME IFILE))))
014 (PRINT “(COMMENT THIS IS THE RABBIT LISP CODE FOR ,TN ) OFILE)
015 (TIMESTAMP OF ILl)
016 (TERPRI OFILE)
017 (TERPRI (SYP4EVAL ‘TYO))
018 (PRINC ‘$;Oeginning RABBIT conupflation on (SYMEVAL ‘TYO))
019 (PRINC TN (SYT4EVAL ‘TYO)) )
020 (PRINT “(DECLARE (SPECIAL PACCONT+ARG-REGSa* aa(NVaa *AF UNa* *aNARGS** ))
021 OFILE)
022 (PRINT ‘(DECLARE (DEFUN DISPLACE (X Y) Y)) OFILE )
023 (ASET’ *TESTING* NIL)
024 (ASET’ aERROR-COUNT. 0)
025 (ASET’ aERROR-LISTe NIL)
026 (TRANSDUCE IFILE
027 OFILE
028 (LIST NIL )
029 (CATENATE ‘u NIT - I  (CADR (TRUENAME IFILE))))
030 (TIMESTAMP OFILE)
031 (LET ((X (*QUO (. (RUNTIIIE ) PT) 1.0(6))
032 (Y (*QUO (-  (STATUS GCTIME) GCT) i.OEG)))
033 (LET ((MSG “(COMPILE TIME : ,X SECONDS
034 (GC TIME ,Y SECONDS)
035 (NET ,(-$ X Y ) SECONDS )
036 •(IF (NOT (ZEROP aER~~~-COtJNT*))037 “ ( ( . .ERROR-cOIJNT* ERRORS)))) ) )
038 (PRINT “(COMMENT .1156) 0FILE)
039 (RENAMEF Of lEE
040 (MERGEF (LIST (CROP FM) ‘LISP)
041 EN))
042 (CLOSE Of ILL)
043 MSG))))))

- -- -  - - —-~ _
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TRANSDUCE processes forms from IFILE, one by one , calling PROCESS-FORM to
do the real work on each one. PROCESS-FORM may print results on OFILE, and may
also return a list of “random forms ” to be saved. 

-

The business of “random forms” has to do with the fact that the file
being compiled may contains forms which are not function definitions. The
expectation is that when the file is loaded these forms will be evaluated during
the loading process, and this is indeed true if the interpreter loads the
original file of source forms.

Now MacLISP provides a facility for evaluating random forms within a
compiled file , but they are evaluated as MacLISP forms, not SCHEME forms. To get
around this whole problem , I chose another solution . All the random forms in the
file are accumulated , and then compiled as the body of a function named “It’JIT—
firstname ” . In this way, once the compiled code is loaded , the user is expected
to say (INIT-firstname ) to cause the random forms to be evaluated .

This idea would have worked pe;fectly except that files typically have a
large number of random forms in them (macro definitions create one or two random
forms as well as the definition of the macro-function). Putting all the random
forms together in a s.~ngle function often creates a function too big for RABBIT
to compile , given PDP-1O memory limitiattons . The four lines of code in
TRANSDUCE for this have therefore been commented out with a “ ;“ at the beginning
of each line.

The final solution was to compile each random form as its own function ,
and arrange for all these little functions to be chained ; each one executes one
random form and then calls the next. A call to INIT-firstname starts the chain
going.

This , then , is the purpose of the big DO loop in TRAN SDUCE : to construct
all the little functions for the random forms . The third argument to PROCESS-
FORM may be NIL , which suppresses the printing of any messages on the term inal;
this spares the user having to see tens or hundreds of uninteresting messages
concerning the compilation of these initialization functions. However, so that
the user will not be dismayed at the long pause , a message saying how many random
forms there were is printed first.

READ I FY implements the MacLISP convention that if the value of the
var iable READ is non-nil , then that value is the read-in function to use; while
if it is NIL , then the function READ is the read-in function . (This “hook” is
the method by which CGOL works, for example.)



001 RABBIT 568 05/15/76 Pigs 67
002 (DEFINE TRANSOUCE
003 (LAMBDA (IF lIE OFILE (OF INITNANE)
004 (LABELS ((LOOP
005 (LAMBDA (FORM RANDOM-FORMS)
006 (IF (EQ FORM (OF )
007 (DO ((x (GENTEMP INITNAME ) (GENTEMP IIITNAME))
008 (Y NIL X)
009 (Z RANDOM-FORMS (CON Z)))
010 ((NULL Z)
011 (IF RANDOM-FORMS
012 (PRINT “(,(LENGTH RANDOM-FORMS)
013 RANDOM FORMS IN FILE TO COMPILE)
014 (SYNEVAL ‘TYO)))
015 (IF Y (PROCESS-FORM “(DECLARE (SPECIAL •Y))016 OFILE
017 T))
018 . (PROCESS-FORM “(DEFINE ,INITNAME
019 (LAMBDA ( )  ,(IF Y (LIST Y) NIL)))
020 OFILE
021 T)) -
022 (IF Y (PROCESS-FORM “(DECLARE (SPECIAL ,Y))
023 OFILE
024 NIL))
025 (PROCESS-FORM “(DEFINE ,X
026 ( LAMBOA ()
027 - 

(BLOCK .(CAR Z)
028 ,(IF Y
029 (LIST Y)
030 NIL))))
031 OFILE
032 NIL))
033 ; (PROCESS-FORM
034 ; “(DEFINE ,INITNAME
035 (LAMBDA C) (BLOCK BRANDOM-FORMS NIL NIL)))
036 Of ILL )
037 (LET ((X (PROCESS-FORM FOR~ OF ILE T)) )
038 (LOOP (READIFY IFILE LOP) (NcofSc x RANDOM-FORM5)))))))
039 (LOOP (READIE r IFILE LOP ) NIL))))
040
041
042 (DEFINE READIFY ;FUNNY MACLISP CONVENTION - RLADZFY LL 00 THE JOB!

- 043 ( LAMBDA .(IFILE (Of )
044 (IF (SYMEVAL ‘READ)
045 (APPLY (SYMEVAL ‘READ) IF ILL (01 )
046 (READ IFILL [OF))))
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PROCESS-FORM takes a form, an output file, and a switch saying whether to
be “noisy” . The form is broken down into one of many special cases and processed
accordingly . The returned value is a list of “random forms” for TRANSDUCE to
save for later handling .

An atom , while pretty useless, is transduced directly to the output file.

A DEFINE-form , which defined a function to be compiled , is given to
PROCESS-DEFINE-FORM . This is the interesting case, which we will discuss on the
next page .

A special hack handed down from MacLISP is that a form (PROGN ‘COMPILE
.) (and , for SCHEME , the analogous (BLOCK ‘COMPILE . . . ) )  should be treated as

if all the subforms of the PROGN (or BLOCK) after the first should be processed
as if they had been read as “top-level” forms from the file. This allows a macro
call to generate more than one form to be compiled , for example. It is necessary
to accumulate all the results of the calls to PROCESS-FORM so that they may be
collec tively returned.

A PROCLAIM form contains a set of forms to be evaluated by RABBIT at
compile time . The evaluation is accomplished by constructing a LAMBDA form and
using the SCHEME primitive ENCLOSE to create a closure , and then invok ing the
closure . As a special service, the variable OFILE is made apparent to the
evaluated form so that it can print information to the output file if desired .

A DECLARE form is meant to be seen by the MacLISP compiler, and so it is
passed on direc tly.

A COMMENT form is simply eliminated. (It could be passed through
directly with no harm.)

A DEFUN form is passed directly, for compilation by the MacLISP compiler.

A form which is a macro call is expanded and re-processed . As a special
hack , those which are calls to DEFMAC , SCHMAC , or MACRO are also evaluated
(MacLISP evaluation serves), so that the defined macro will be available for
compiling calls to it later in the file.

Any other form is considered “random”, and is returned to TRANSDUCE
provided *BUFFER-RANf~CJM-FORMS* is non-NIL. This switch is provided in case it is
necessary to force a random form (e.g. an ALLOC form) to be output early in the
file . Im this case any random forms must be MacLISP-evaluable as well as SCHEME-
evaltuable. (This requirement is the reason RABBIT has random forms like “(SET’
FOO . - . )“ ; SETQ is unacceptable to SCHEME, while ASET’ is unacceptable to
MacLI SP , but SET’ happens to work in both languages for setting a global
variable.) RABBIT itself sets *8UFFER-RANg~fl-FORM5* to NIL on page 1 im a
PROCLAIM form .



001 RABBIT 566 05/15/?8 _?.g!6!
002 (SET’ *OPTIMIZE* T)
003
004 (SET’ ~~~~~~~~~~~~~~~~~~~ T)
005
006 (DEFINE PROCESS-FORM
007 (LAMBDA (FORM OFILE NOISYP)
008 (CONO ((ATOM FORM)
009 (PRINT FORM OF ILl)
010 NIL)
011 ((EQ (CAR FORM ) ‘DEFINE )
012 (PROCESS-DEFINE-FORM FORM OF ILL NOISYP)
013 NIL)
014 ((AND (MEMO (CAR FORM) ‘(BLOCK PROGN))
015 (EQUAL (CADR FORM) ‘‘COMPILE))
016 (DO ((F (CDDR FORM) (CON F))
017 (2 NIL (NCONC 2 (PROCESS-FORM (CAN F) OFILE NOISYP))))
016 ((NULL F) 2)))
019 ((EQ (CAR FORM) ‘PROCLAIM)
020 (AMAPC (LAMBDA (X) ((ENCLOSE “(LAN8DA (OFILL ) ,X)) OFILE))
021 (CON FORM))
022 NIL)
023 - ((EQ (CAR FORM) ‘DECLARE )
024 (PRINT FORM OF ILL )
025 NIL)
026 ((EQ (CAR FORM) ‘COMMENT)
027 NIL)
028 ((EQ (CAR FORM) ‘DEFUN)
029 (PRINT FORM OFILE )
030 tIlL)
031 - ((AND ( ATOM (CAR FORM))
032 (EQ (GET (CAR FORM) ‘Al IT) ‘MACRO )
033 (NOT (EQ (GET (CAR FORM) ‘MACRO ) ‘AFSUBR)))
034 (IF (MEMO (CAR FORM) (OEFMAC SCHMAC MACRO) )
035 - (EVAL FORM))
036 (PROCESS-FORM (MACRO-EXPAND FORM ) OFILE NOISYP))
037 (T (COND (*BIJEFER-RANDOM-EORMS* (LIST FORM))
038 (T (PRINT FORM OFILE) NIL))))))

_ _ _  —
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PROCESS-DEFINE-FORM disambiguates the three DEFINE formats permitted in
SCHEME:

(DEFINE FOO (LAMBDA (X Y) . . . ) )

( DEFIN E FOO (X Y)  . . . )
(DEFINE (FOO X Y) .. . )

and constructs an appropriate LAMBDA-expression in standard form.

PROCESS-DEFINITION takes this LAMBDA-expression and compiles it, after
some error checks . It then cleans up, and if desired prints a message on the
console to the effect that the function was compiled successfully.

CLEANUP is used to clear out garbage left around by the compilation
process which is no longer needed (but is useful during the compilation , whether
for compilation proper or only for debugging should the compilation process
fail).

REPLACE has to do with macros which displace calls to them with the
expanded forms , but retain enough information to undo this. REPLACE undoes this
and throws away the saved information . (The DISPLACE facility is normally turned
off anyway, and is used only to make the compiler run faster when it itself is
being run tinder the SCHEME interpreter. This was of great use when RABBIT wasn ’t
running well enough to compile itself!)

CIENF[.USH removes from the MacLISP OBARRAY all the temporary generated
symbols created by CiENTEMP.

The PIAPATOMS form removes from every atom on the OBARRAY the properties
shown . This takes more time but less space than recording exactly which atoms
had such properties created for them~



001 RABBIT 566 05/15/76 ~~~e69002 (DEFINE PROCESS-DEFINE.FORM 
-

003 (LAMBDA (FORM OF ILL NOISYP)
004 (COND ((ATOM (CAOR FORM))
005 (PROCESS-OEFINIT ION FORM
006 OF III
007 NOISYP
008 (CADR FORM)
009 (IF (NULL (C000R FORM))
010 (CADDR FORM)
011 “(LAMBDA ,(CADDR FORM)
012 (BLOCK . ,(C000R FORM))))))
013 (T (PROCESS-DEFINITION FORM
014 OFILE
015 NOZSYP
016 (CAADR FORM)
017 - “(LAMBDA ,(CDADN FORM)
018 (BLOCK . .(CDDR FORM))))))))
019
020 (DEFINE PROCESS-DEFINITION
021 (LAMBDA (FORM OF ILL NOISYP NAME LAMBDA-EXP )
022 (COND ((NOT (EQ (TYPEP NAME ) ‘SYMBOL))
023 (WARN IFunction Name Not SYNBOLI NAME FORM))
024 ((OR (NOT (LO (CAR LAMODA- FXP) ‘LAMBDA))
025 (AND (ATOM (CADR LAMBDA-EXP))
026 (NOT (NULL (CADR LAMBDA-EXP)))))
027 (WARN ~Ma1formed LAMBOA-expresslonl LAMBDA-EXP FORM))028 (T (PRINT (COMPILE NAME
029 LAMBDA-EXP
030 NIL
031 COPTIMIZEC)
032 OFILE)
033 (CLEANUP)
034 (IF NOISYP
035 (PRINT (LIST NAME ‘COMPILED)
036 (SYMEVAL ‘TYO)))))))
037
038 (DEFINE CLEANUP
039 (LAMBDA ()
040 (BLOCK (REPLACE)
041 (GENFIUSH)
042 (MAPATOMS ‘(LANBOA (IC)
043 (RENPROP X ‘READ-REFS)
044 (REMPROP X ‘WRITE-REFS)
045 (RENPROP IC ‘NODE)
046 (REMPROP X ‘BINDING)
047 - (REMPROP X ‘USER-NAME )
048 (REMPROP X ‘KNOWN-FUNCTION)
049 (REMPROP IC ‘EASY-LAIELS.FUNCTION))))))



264 -

SEXPRFY and CSEXPRFY are debugging aids which take a node-tree or cnode—
tree and produce a fairly readable S-expression version of the code it
represents. They are used by the SX and CSX macros defined earlier. The IJSERP
switch for SEXPRFY specifies whether internal variables names or user variable
names should be used in the construction.

_ _ _ _ _ _ _  _ _ _ _ _  _ _ _ _  

4
- - - . -~ - _ _  - _ _  

_ _ _ _ _ _ _ _ _  



001 RABBIT 568 05/15/78 Page 70
002 INVERSE OF AIPHATIZE . USED BY SIC, E.G., FOR DLBUGGING .
003
004 (DEFINE SEXPRFY
005 (LAMBDA (NODE USERP)
006 (LET ((FM (NODE\FORM NODE)))
007 ( EQCASE ( TYPE FM)
008 (CONSTANT “(QUOTE .(CONSTANT\VALUE FM)))
009 (VARIABLE (IF (AND USERP (NOT (VARIABLL\GLOBALP FM)))
010 (GET (VARIABLE\VAN FM) ‘USER-NAME )
011 (VARIABLE \VAR FM)))
012 (LAMBDA “(LAMBDA ,(IF USERP (LAMBDA\UVANS FM) (LAMBDA \VARS FM))
013 .(SEXPRFY (LAMBDA\BODY FM) USERP)))
014 (IF “(IF •(SEXPRFY (IF \PNED FM) USERP)
015 ,(S(XPRFY (IF \CON FM) USERP)
016 . ,(SEXPRFY (IF\ALT FM) USERP)))
017 (ASET (ASET’ ,(IF (AND USERP (NOT (ASET \GLOBAL P FM)))
018 (GET (ASET\VAR FM) ‘USER-NAME )
019 (ASET\VAR FM))
020 •(SEXPNFY (ASET\BOOY FM) USERP)))
021 (CATCH “(CATCH ,(IF USERP
022 (GET (CATCH\VAR FM) ‘USER-NAME )
023 (CATCH\VAR FM))
024 .(SEXPRFY (CATCH\BOOY FM) USERP)))
025 (LABELS “(LABELS .(MAPCAR (LAMBDA (V 0) “(.(IF USERP
026 (GET V ‘USER-NAME )
027 V)
028 ,(SEXPRFY 0 USERP)))
029 (LABELS\FNVARS FM)
030 (IABELSVNDEFS FM))
031 ,(SEXPRFY ( IAB ELS\BOOY FM) USERP)))
032 (COMBINATION
033 (AMAPCAR (LAMBDA (A) (SEXPRFY A USERP))
034 (COMBINATION\ARGS Fpq)))))))
035
036 (DEFINE CSEXPRFY
037 (LAMBOC (CNODE )
038 (LET ((CFM (CNOD(\CFORM CNOOE)))
039 ( EQCASE ( TYPE cFM)
040 (TRIVIAL “(TRIVIAL .(SEXPRFY (TNIVIAL’tNODE CFM) NIL)))
041 (CVARIABLE (CVARIABLE\VAR CFN))
042 (CLAMBOA “(CLAMBDA .(CLAMBDA\VARS CFM)
043 .(CSEXPRFY (CLAMBOA\BOOY CFM))))
044 (CONTINUATION
045 “(CONTINUATION (.(CONTINUATI0N’,VAR CFM))
046 .(CSEXPRFY (CONTINUATION\BOOY CFM))))
047 (CIF “(CIF •(CSEXPRFY (CIF\PRED CFI~))048 .(CSEXPRFY (CIF\CON CFM))
049 ,(C5EXi’~’Y (CIF\ALT CFM))) )
050 (CASET “(CASET’ ,(CSEXP RFY (CASET\cONT CFM))
051 .(CASLT\VAR CFN)
052 ,(CSLXPRFY (CASET\BOOY CFM))))
053 (CLA IELS “(CLA BELS ,( AMAPCAR (LAMBDA (V D) ( , V
054 ,(CS[XPRFY D) ) )
055 (CLAB(LS\FNVARS CFM)
056 (CLABELS’tFNDEFS CFM))
057 .(CSEXPRFY (CLASELS\BOOY CFM))))
058 (cCOMBINATION
059 ( AMAPCAR CSEXPRFY (CCONBINATION\ARGS CFM)))
060 (RETURN
061 “(RETURN ,(CSLXPRFY (RLTURN\CONT CfM))
062 ,(CSEXPRFY (RETUIN\VAL CFM))))))))
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CHECK-NUMBER-OF-ARGS is used by COMPILE and ALPHA-COMBINATION to make
sure that function calls and definitions agree on the number of arguments taken
by a function . If a mismatch is detacted , a warning is issued. This check
frequently catches various typographical errors. The argument DEFP is NIL unless
this call is on behalf of a definition rather than a call. The DEFINED property
is used only so that a more comprehensive warning may be given.

*EXPR and *LEXPR are two special forms suitable for use in a PROCLAIM
form for declaring that certain names refer to MacLISP functions rather than
SCHEME f unc tions.  An exam ple , for PRINT-SHORT, occurs on page 1 of RABBIT.

DUP1PIT establishes a simple user interface for RABBIT. After loading a
compiled RABBIT into a SCHEME run-time system, the call (DUMPIT) initializes the
RABBIT , then suspends the MacLISP environment , with an argument which is an ITS
command for dumping the core image . When this core image is later loaded and
resumed , DUMP I T prints “FILE NAME: ” and reads a line. All the user need do is
typoe a file name and a carriage return to compile the file. When this is done,
the call to QUIT kills the RABBIT job.

STATS prints out statistics accumulated in .the counters listed in *STAT—
VARS*. RESET-STATS resets all the counters.

-



001 RABBIT 568 05/15/78 Page 71
002 (DEFINE CHECK-NUMBER-OF-ARGS 

--  - -

003 (lAMBDA (NAME NARGS DEFP)
004 (OR (GETL NAME ‘(*LEXPN LSUBR))
005 (LET ((N (GET NAME ‘NUMBER-OF.ARGS)))
006 (IF N
007 (IF (NOT (. N NARGS))
008 (IF DEFP
009 (WARN Idef inition disagrees with earlier use on number of •rgs~
010 NAME
011 NARGS
012 N)
013 (IF (GET NAME ‘DEFINED)
014 (WARN use disagrees with definition on number of c roc i
015 NAME
016 NARGS
017 N)
018 (WARN Itwo use s disagree before definition on number of arga t
019 NAME
020 NAR6S
021 N))))
022 (PUTPROP NAME NANGS ‘NUMBER-OF-ARGS))
023 (IF DEFP (PUTPROP NAME ‘T ‘DEFINED))))))
024
025
026 (DEFUN *EXPR FEICPR (IC)
027 (MAPCAR ‘(LAMBDA (Y) (PUTPNOP Y ‘T ‘*EXPR)) IC))
028
029 (DEFPROP *EXPR AFSUBR AMACRO) (DEFPROP *EXPR MACRO AINT)
030
031 (DEFUN •LEXPR FEXPR (IC)
032 (M APCAR ‘(LAMBDA (Y) (PUTPROP Y T ‘*LEXPR)) IC))
033
034 (DEFPROP *LEXPR AFSU8R MACRO) (DEFPROP CL(XPR AMACRO AINT)
035
036
037 (DEFINE OUtWIT
038 (LAMBDA ()
039 (BLOCK (lIlT-RABBIT)
040 (SUSPEND ‘t:POUMP DSK:SCNEME;TS RABBITI)
041 (TERPRI)
042 (PNINC ‘IFile name : I)
043 (CONFIIE (READLINE))
044 (QUIT))))
045
046 (DEFINE STATS
047 (LAMBDA ()
048 (AMAPC (LAMBDA (VAR)
049 (BLOCK (TENPRI)
oso (PRIN1 VAR )
051 (PRINC ‘

~~ 
• I)

052 (PRIN1 (SYMEVAL VAR ))))
053 *STAT .VA RS* ) ) )
054
055 (DEFINE RESET-STATS
056 (LAMBDA () (AMAPC (LAMBDA (VAR ) (SET VAR 0) )  eSTA T -VARS A )))



Symbo l Tsb~e for: QUUX;RABBIT 568 05/15/78 Page 1 

SIDE EFFECTS 017 005
*EX PR FEXPR 071 026
*EX PR PROPERTY 071 027
*EXPR AMACRO 071 029
*EXP R AlIT 071 029
•LEXPN FEXPR 071 031
•LEXPR PROPERTY 071 032
•LEXPR AMACRO 071 034
*L(XPR AINT 071 034 

SIDE EFFECTS 017 003
- SIDE EFFECTS 017 004
/ SIDE EFFECTS 017 006 

SIDE EFFECTS 017 006
• SIDE EFFECTS 017 007
) SIDE EFFECTS 017 009
ACCES SFN PDEFINE 004 002
ACCESSFN MACLISP MACRO 004 004
ADDPROP SCHEME FUNCTION 006 004
ADJOIN SCHEME FUNCTION 006 029
ADJUST-KNOWNFN-CENV SCHEME FUNCTION 052 002
A INT PROPERTY 071 029
AINT PROPERTY 071 034
AIPHA-ASET SCHEME FUNCTION 010 010
ALPHA-ATOM SCHEME FUNCTION 009 032
ALPHA-BLOC K SCHEME FUNCTION Oil 011
ALPHA -CATCH SCHEME FUNCTION 010 029
AL PHA-COMBINATION SCHEME FUNCTION 011 037
ALPHA-IF SCHEME FUNCTION 010 002
ALPHA-LABELS SCHEME FUNCTION 010 040
ALPHA-LAB ELS-DEFN SCHEME FUNCTION 011 002
ALPHA-LAMBDA SCHEME FUNCTION 009 042
ALPHATIZ E SCHEME FUNCTION 009 005
AMACRO PROPERTY 071 029
AMACRO PROPERTY 071 034
ANALYZE SCHEME FUNCTION 056 002
ANALY ZE-CCOMBINATION SCHEME FUNCTION 060 003
ANALYZE-C IF SCHEME FUNCTION 059 002
ANALY ZE-cLABELS SCHEME FUNCTION 059 025
ANALY ZE-CLA MBDA SCHEME. FUNCTION 058 023
ANALYZE -CONTINUATION SCHEME FUNCTION 058 040
ANALYZE-RETURN SCHEME FUNCTION 060 033
APPEND SIDE EFFECTS 017 057
ASET DATA TYPE 006 042
ASK POP-b SCHEME MACRO 003 024
ASSO SiDE EFFECT S 017 059
ATOM SIDE EFFECTS 017 045
BIGP SIDE EFFECTS 017 052
BIND - ANALYZE SCHEME FUNCTION 034 030
BIND-ANALY ZE-CASET SCHEME FUNCTION 035 040
BIND-ANALYZE-CCOMBINATION SCHEME FUNCTION 037 002
BIND- ANALYZE-CIF SCHEME FUNCTION 035 030
BIND-ANA LYZE-CLABELS SCHEME FUNCTION 036 002
BI NO-ANALY ZE -CLA MB DA SCHEME FUNCTION 035 002
BIND-ANALYZE-CONTINUATION SCHEME FUNCTION 035 016
BIND-ANALYZE-RETURN SCHEME FUNCTION 036 033
BIND-CCCMBINATION .ANAIYZE SCHEME FUNCTION 037 043
CAAAAR SIDE EFFECTS 017 024
CAAADN SIDE EFFECTS 017 025
CAAAR SIDE EFFECTS 017 016
CAADAR SIDE EFFECTS 017 026
CAADDR SIDE EFFECTS 017 021
CAADR SIDE EFFECTS •17 017
CAAR  SIDE EFFECTS 017 012
CADAAR SIDE EFFECTS 017 028
CADADR SIDE EFFECTS 017 029
CADAR SIDE EFFECTS 017 018
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CADD AR SIDE EFFECT S 017 030
CA000R SIDE EFFECTS 017 031
CADDR SIDE EFFECTS 017 019
CADR SIDE EFFECTS 017 013
CAR SIDE EFFECTS 017 010
CASET DATA TYP E 026 039
CATCH DATA TYPE 008 046
CATENATE MACLISP MACNO 002 016
CCOMBINAT ION DATA TYPE 026 047
CDAAAR SIDE EFFECTS 017 032
CDAADR SIDE EFFECTS 017 033
CDAAR SIDE EFFECTS 017 020
CDADAR SIDE EFFECTS 017 034
COA DOR SIDE EFFECTS 017 035
COA DR SIDE EFFECTS 017 021
COAR SIDE EFFECTS 017 014
CDDAAR SIDE EFFECTS 017 036
CODAOR SIDE EFFECTS 017 037
CODAN SIDE EFFECTS 017 022
CODDAR SIDE EFFECTS 017 038
CDDODR SIDE EFFECTS 017 039
c000R SIDE EFFECTS 017 023
CDDR S IDE EFFECTS 017 015
CON SIDE EFFECTS 017 011
C(NV-ANALYZE SCHEME FUNCTION 032 016
CENV-CCOMBINATION-ANALYZE SCHEME FUNCTION 033 028
CENV-TRIV-ANALYZE SCHEME FUNCTION 033 004
CHECK-COMB INATION-PEFFS SCHEME FUNCTION 016 002
CHECK-NUMBER-OF -ANGS SCHEME FUNCTION 011 002
CIF DATA TYPE 026 038
CL POP-b SCHEME MACRO 007 049
CLABELS DATA TYPE 026 040
CLAMBDA DATA TYPE 026 017
CLEANUP SCHEME FUNCTION 069 038
CLOBBER MACL ISP MACRO 004 025
CLOSE-ANALYZE SCHEME FUNCTION 040 002
CNAME MACLISP MACRO 004 015
CNODE DATA TYPE 026 007
CNODIFY SCHEME FUNCTION 027 002
COMBINATION DATA TYPE 008 055
COMF lIE SCHEME FUNCTION 066 002
COMP-BODY SCHEME FUNCTION 045 006
COMPILATE SCHEME FUNCTION 041 018
COMPILATE-LOOP SCHEME FUNCTION 064 017
COMPILATE-ONE-FUNCTION SCHEME FUNCTION 064 002
COMPILE SCHEME FUNCTION 007 010
COMPONENT-NAMES PROPERTY 005 060
CONDICATE SCHEME FUNCTION 062 004
CONS SIDE EFFECTS 017 055
CONS-CLOSEREFS SCHEME FUNCTION 061 011
CONSTANT DATA TYPE 008 028
CONTINUATION DATA TYPE 026 036
CONVERT SCHEME FUNCTION 027 006
CONVERT-ASET SCHEME FUNCTION 029 002
CONVERT-CATCH SCHEME FUNCTION 029 024
CONVERT-COMBINATION SCHEME FUNCTION 031 014
CONVERT-IF SCHEME FUNCTION 026 024
CONVERT-LABELS SCHEME FUNCTION 030 006
CONVERT-LAMBDA-FM SCHEME FUNCTION 028 009
COPY-COOL SCHEME FUNCTION 025 002
COPY-NODES SCHEME FUNCTION 025 007
CSEXPNFY SCHEME FUNCTION 070 036
CSX MACLISP MACRO 003 029
CVARIABL ( DATA TYPE 026 015
CXR SIDE EFFECTS 017 040
DECARCORATE SCHEME FUNCTION 062 015
DEFINE •OEFINE 001 062

- -~~~~
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DEEMAC IDEFINE 001 063
DEFTYPE IDEFINE 005 002
DEFTYPE MACLISP MACRO 005 008
DELPROP SCHEME FUNCTION 006 012
DEPROGNIFY MACLISP MACRO 042 005
DEPROGNIFY1 SCHEME FUNCTION 042 009
DEPTH-ANALYZE SCHEME FUNCTION 038 010
DISPLACE EXPR 001 006
DUMPIT SCHEME FUNCTION 071 037
EFFOEF PDEFINE 016 039
(FFDEF MACLISP MACRO 016 034
EF F EC TLESS SCHEME FUNCTI ON 023 036
EFFECTLESS-EXCEPT-CONS SCHEME FUNCTION 023 039
(FF5-ANALYZE SCHEME FUNCTION 014 006
EFFS-ANALYZE-COMBINATION SCHEME FUNCTION 015 031
(FF5-ANALYZE-IF SCHEME FUNCTION 015 010
(FF5-INTERSECT SCHEME FUNCTION 023 028
EFFS-UN ION SCHEME FUNCTION 015 002
EMPTY SCHEME FUNCTION 002 005
(NV-ANALYZE SCHEME FUNCTION 012 018
ENVCARCDR SCHEME FUNCTION 043 002
EQ SIDE EFFECTS 017 044
EQCASE MACLISP MACRO 003 032
ERASE-ALL-NODES MACLISP MACRO 016 005
ERASE-NODE MACLISP MACRO . 016 004
ERASE-NODES SCHEME FUNCTION 016 007
FILTER-CLOSEREF 5 SCHEME FUNCTION 039 030
FIXP SIDE EFFECTS 017 050
FLOATP SIDE EFFECTS 017 051
Fl FN-SIOE-EFFECTS 016 035
Fl Fl-SIDE-AFFECTED 016 036
Fl OKAY-TO-FOL D 016 037
FN-SIDE-AFFECTEO PROPERTY 016 036
Fl-SlOE-EFFECTS PROPERTY 016 035
GEN-GLOBAL-NAME SCHEME FUNCTION 002 041
GENF LUSH SCHEME FUNCTION 002 036
GE NTEMP SCHEME FUNCTION 002 030
HUNKFN PDEFINE 004 028
HUNK FN MACLISP MACRO 004 030
HUNKP SlOE EFFECTS 017 049
IF DATA TYPE 008 038
INC REMENT MACLISP MACRO 002 014
INTERSECT SCHEME FUNCTION 006 039
LABELS DATA TYPE 008 050
LAMBDA DATA TYPE 008 034
LAMBOACATE SCHEME FUNCTION 054 006
LIST ‘SIDE EFFECTG 017 056
LOOKUPICATE SCHEME FUNCTION 061 002
MACRO ODEFINE 001 065
MACRO-EXPA ND SCHEME FUNCTION 011 026
MAKE-RETURN SCHEME FUNCTION 026 002
MAP-USER-NAMES SCHEME FUNCTION 065 028
MAPANALYZE SCHEME FUNCTION 057 023
M (MQ SIDE EFFECTS 017 056
ME TA-COMBINATION-LAMBDA SCHEME FUNCTION 021 007
META-COMBINAT ION-TRIV FN SCHEME FUNCTION 020 037
META-EVALUATE SCHEME FUNCTION 019 007
ME TA-IF-FLJDGE SCHEME FUNCTION 020 010
META-SU BST IT IJTE SCHEME FUNCTION 024 009
NAME MACLISP MACRO 004 011
NAME ACCESS MACRO 004 031
NAME COMPONENT-NAMES 005 060
NAME SUPPRESSED-COMPONENT-NAME S 005 061
NODE DATA TYPE 006 012
NODIFY SCHEME FUNCTION 008 059
NOT SIDE EFFECTS 017 053
NULL SIDE EFFECTS 017 054
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NUMBERP SIDE EFFECTS 017 046
OKAY-TO-FOLD PROPERTY 016 037
OUTPUT-A SFT SCHEME FUNCTION 061 017
PAI RLIS SCHEME FUNCTION 007 002
PASS1-ANA I t  SCHEME FUNCTION 007 041
PASSABLE SCHEME FUNCTION 023 042
PRIN1 SIDE EFFECTS 017 061
PRINC SIDE EFFECTS 017 062
PRINT SIDE EFFECTS 017 060
PRINT-SHORT EXPR 003 016
PRINT-WARNING SCHEME FUNCTION 003 005
PROCESS-DEFINE -FORM SCHEME FUNCTION 069 002
PROCESS-DEFINITIO N SCHEME FUNCTION 069 020
PROCESS-FORM SCHEME FUNCTION 068 006
PRODUCE- ASET SCHEME FUNCTION 046 003
PRODUCE-COMB I NATION SCHEME FUNCTION 051 002
PRODUCE-COMBINATION -VARIABLE SCHEME FUNCTION 051 026
PRODUCE-CONTINUAT ION-RETURN SCHEME FUNCTION 052 023
PRODUCE-IF SCHEME FUNCTION 045 042
PRODUCI-LABELS SCHEME FUNCTION 047 003
PRODUCE-LAMBDA-COMBINATION SCHEME FUNCTION 048 003
PRODUCE-RETURN SCHEME FUNCTION 053 002
PRODUCE-RETURN-i SCHEME FUNCTION 053 021
PRODUCE-TRIV FN-COMBINAT ION SCHEME FUNCTION 049 002
PRODUCE-TRIV FN-CO IIBINAT ION-CON TINUATION SCHEME FUNCTION 049 023
PRODUCE-TRIVFN-COMBINATION-CVARIABL(  SCHEME FUNCTION 050 002
PSETQ-ARGS SCHEME FUNCTION 057 002
PSETQ-ARGS-ENV SCHEME FUNCTION 057 006
PSETQ-TEMPS SCHEME FUNCTION 057 013
PSETQIFY SCHEME FUNCTION 055 005
PSETQIFY-METHOD-2 SCHEME FUNCTION 055 012
PSETQIFY-METHOD-3 SCHEME FUNCTION 056 002
READ SIDE EFFECTS 017 065
READIFY SCHEME FUNCTION 067 042
REANALYZE1 SCHEME FUNCTION 023 002
REFO-VARS SCHEME FUNCTION 034 053
NEGSLIST SCHEME FUNCTION 044 004
REMARK-ON SCHEME FUNCTION 065 002
REMOVE SCHEME FUNCTION 006 047
RESET-STATS SCHEME FUNCTION 071 055
RETUR N DATA TYPE 026 049
RPLACA SIDE EFFECTS 017 041
RPLACD SIDE EFFECTS 017 042
RPLACX SIDE EFFECTS 017 043
SCHMAC POEFINE 001 064
SET-UP-ASETVAR 5 SCHEME FUNCTION 044 032
SETOIFF SCHEME FUNCTION 006 058
SETPROP SCHEME FUNCTION 006 018
SEXPRFY SCHEME FUNCTION 070 004
STATS SCHEME FUNCTION 071 046
SUBST-CANDIDATE SCHEME FUNCTION 022 006
SUPPRESSED-COMPONENT-NAMES PROPERTY 005 061
SX MACLISP MACRO 003 026
SYMBOIP SIDE EFFECTS 017 046
TEMPIOC SCHEME FUNCTION 042 029
TERPRI SIDE EFFECTS 017 063
TEST-COMPILE SCHEME FUNCTION 007 051
TRANSDUC ( SCHEME FUNCTION 067 002
TR IV-ANALYZE SCHEME FUNCTION 013 012
TR IV -A NA LYZ E- FN-P SCHEME FUNCTION 013 056
TRIV .LAMBDACATE SCHEME FUNCTION 063 033
TRIVFN SCHEME FUNCTI ON 002 009
TRIVIAL DATA TYPE 026 013
TRIVIALIZE SCHEME FUNCTION 063 002
FYI SIDE EFFECTS 017 066
TYO SIDE EFFECTS 011 064
TYPE HUNK ACCESS MACRO 005 006
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TYPEP SIDE EFFECTS 017 047
UNION SCHEME FUNCTION 006 033
USED-TEMPLOC S SCHEME FUNCTION 064 059
VARIABLE DATA TYPE 006 030
WARN MACLISP MACRO 003 002


