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~ Formulas are developed for accurate evaluation of the normalized

LI_i Hallén-System mat r ix  that arises whi le  solving for the current distribu-
tion on a wire antenna or scatterer . The technique developed here may

I-i_. be generalized to other similar electromagnetic problems . The thin

~~~~ wire example is chosen for i l lustrat i ve purposes and also for comparison
~~~~ with previousl y known representations for the matrix elem ents. It is

observed that  the present method is app licable whenever the kernel func-
tions are analytically Fourier (or Lap lace) transformable.
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I . Introduction

The Pocklington form 3 of the integral equation for the current dis-

tribution on a straight thin wire (receiving or driven) is well known and

is given by

L 2ir -jk R

~ ~ k~) / f J(q~’, z ’) e ° 
ad~ t dz t - jw c 0E~~~ (z ,~ ) ( 1. 1)

With reference to figure 1, L and a are the length and radius of the

wire. If we assume that the current density is azirnuthally symmetric,

the total current across the antenna cross section at location z is given

by

1(z) = f  J(z)ad~ ’ = 2~ aJ (z )  (1. 2)

Using equation 1. 2 in equation 1. 1, we get

2 L

(_
~

_

~ 
+ k~) f  I(z t )K (z - z ’)d z t = - j ~ € 0E~~~(z) (1. 3)

where the kernel is givc’~1 by

2ir -jk R .

1 0 ~ CE Q I ~~~~~~
K(z - z ’) = f e adç~’ 
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:
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+ (2a sLn~ t / 2 ) 2I (1 44 )
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If we treat the integral in equation 1. 3 as a function of z and solve the
differentia l equation , J1all~ n ’s1 form of integral equation is obtained as

J I(z ’)K(z - z ’)dz ’ = A s in(k  z) + B cos(k z)
0 0

0

z
-3WE I

k 
0 J E C(z t) sin[k (z - z ’)Jdz ’ (1. 5)

0

Imp licit in equation 1. 5 is a harmonic time dependence of the type
exp(jwt ) which has been Fourier transformed . Quite often, e. g., tran-
sient analysis, it is useful to introduce complex frequency s , in which

case equations 1. 2 and 1. 5 become

(~ 
- ~2) 

J~~~(z t ) K (7 - z t ) d z t ~ 5 E E lflC (Z) ( 1. 6)

and

Lf T(z ’)~~(z - z ’)d z ’ A sinh eyz) + B

- 
1 f  E1

~~ (z ’) sinh[i’(z - z’)]dz’ (1. 7)

with

2,r -7R
i~(z - z ’) = 

1 f e ad~~ ( 1.8)

where

7 = sic = propagation constan t 
( 1.9)

= characteristic impedance of free space

-
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Implicit  in equations 1. 6 and 1. 7 is a time dependence of the form exp( st)
and the ti lda si gnifies a two-sided Lap lace tran sform . It can he easily
verified that equations 1. 3 and 1.5 are special cases of equations 1. 6 and

1. 7 by setting s j c~ . Hecause of the differential  operator in equation

1. 6. equation 1. 7 is more amenable for machine solution, which is
usually achieved by the method of moments, e. g. .  Barringto n . 2 This

method converts the integral  equation 1. 7 into a system of linear

equations

[Z I [I J = [f (z)] ; p. q = 1, 2, 3, • 
, (~ + 1)

p , q  p p

or Z[Z
N ][I J = [f (z)]  (1 .10)

p ,q

which is then solved for the unknown current distribution . We shall call

this Z matrix as the ITal l~ n-Systern (or simp ly Tl-S) matrix. This matrix

is to be distinguished from t h e  generalized inipedance n.iatrix 2 and as•~uci-
ated eigen impedances6, both of which have a more physical interpreta-

• tion. If we use pulse functions for expanding the unknown current and

delta funct ions as the test ing funct ions, th e elements of the norm alized
H-S matrix [Z N] are given by

z +(~~/2) 2ir - ‘yRpq I’ p
z = _L i dz ’ ~ e ad~ ’ ( 1. 11)N 2n a : j  4~ Rp ,q  •~q~ (~A/ 2) 0

2 2 1/2
where R = I(z - z ’) + (2a sin~~ /2) J and p, q = 1,2 ... , (n+ 1).

[ I i  In equation 1. 10 is a column matrix made up of zone currents

~1’ ‘2 ‘‘‘ ‘ 
1n+i~ 

The right han d side of equat ion 1. 10 is given by
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f (z) = Z A sinh (’Yz ) + Z B sinh (’Yz - J ~ E
’
~~ (z ’)

p o p 0 p z

sirth [‘y(z — z’)} dz ’ ( 1. 12)p

A and 13 are constants to be determined by imposing the end conditions
I(z = 0) = I~ 0 and I(z L)  = 

~( 1 )  = 0.

For purposes of this paper , we are concerned with the matrix

[Z N p q I whose element s are given by equation 1.11 , in which z~ and &

are respectively the observation and source points, and ~ is the cell

• width . It is observed that [Z N~ q1 is a Toep litz symmetric matrix.

However , if the current distribution is of interest , using = 1(n+1) =

and rearranging equation 1. 10 becomes

Z [ Z ~ ] [ I t ]  = [ V I  (1 .13)
p, q

where [Z~ I is [ZN I with its first and last columns rep laced byp,q p,q
Z~~, ~ 

- sinh (’Yz~ ) and Z N~ (n+ 1) - cosh (’Yz~ ) .  [I~ I is a column

matrix made up of A, ‘2’ 13 •“ 1r~’ 
B, and the elements of the column

matrix [ V I  are given by

V = -  ~~ Ei
~
W (z I ) sinh[ ’Y(z - z ’)J dz ’ (1 .14)

~ Z

Now, however, [Z~~ q 1 is not a Toep litz symmetric matrix .

Returning to equation 1.11, let us specialize it to the diagonal ele-

ment. With a change of var iable x (z ’ - Z q
)~ it is given by

A/2 2ir _ ‘Y~~ x2 + (2a sin~~’/ 2) 2
i f  I cZ Z =—  I I 

_ _ _ _ _ _ _ _ _ _ _ _  
adx d~ ’DN N 2ira i j  U-

~“ ~ ‘&~/2 0 ~~ V x 2 + (2a sinq~’/ 2) 2 
(1. 15)
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This integral is seeming ly singular (as x and ~~ ‘ approach 0) and the two

approximations used by iTarrington2 and Tesche
3 
will he reproduced below

and later compared with a more accurate evaluation used in this paper .

Z~~~(IIarrington
2) ~ ~j_- Cn (~) - ( 1.  16)

Z DN (Tesche 3) 

[
~~ r

2 
+ _-!-~~ 

J~~~ n 
(f 

+ + sin 2 
dç~’

- (1.17)

Equation 1. 16 is derived from 1.15 by approximating

2 2 1/2  2 1/2
= Ix + (2a sin .q! t/2 ) J ~ [x + a2J

and keeping the first two terms in the expansion of exp(- ‘YR), whereas

equation 1. 17 retains the 4” dependence and also keeps only the first two

term s.
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II . Matrix Elements by Tran sform iViethod

In this section we shall develop formulas for more accurate evalua-

tion of the general element in the normalized lI-S matrix and later

specialize it to the diagonal element and compare results with those of

equations 1.16 and 1.17.

Consider the 4” integral of equation 1. 11

2ir -‘YR
—

~ 1 p
Ic(z - z ’) = — 

e ad4”p 2ir a 4 irR
0

This has been shown by llallén1 to have a Fourier inverse transform

representation given by

~~(z -z ’) 2 f e
ZP~~~~ i (a~~~

2 
+ ~ 2

’) i~~ (a~~~
2 

~~~~~~~~

(2 .1)

Because of the symmetry property (z and z’ are interchangeable),

only the cosine part of the integral contributes so that

K(z - z ’) = —

~~ 

f  cos [~ (z - z ’)J I ( u ) K ( u ) d~
27r 0

12  2
with u = aV~ + y

Using this result in equation 1. 11 and perform ing the z ’ integral, a

general matrix elem ent is given by

ZN q 
~~ f I 0

(u) K0
(u) cos [~~(z~ - Z

q)I 
sin ~ i~/2) d~ (2. 2)
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If ~~ and Z
q 
are the mid points of pth and qth cells, respectivel y (see

figure 1), they are given by

z = (p — 1)~~ with p = 1,2,3, . • . (~ + 1)
I’ (2 . 3)

z q 
= (q - 1) .~ with q 1, 2, 3, .. . . (n + 1)

It is noted that the first and last cells are of width ~ /2 and not ~ which

makes the end points z = 0 and L to be the centers of imaginary cells of

width ~ which extend beyond the p hysical ends of the antenna . This fact ,

if and when necessary , is easily accounted by dividing the first  and last

column element s by a factor of 2. Substituting equation 2. 3 into equation

2. 2 and with a change of variable y =

ZN q 
= [2y(p - q)] Sifl y 10(v) I<0(v) dy = ZN q, p 

(2 .4)

where the argum ent v of the modified Bessel functions is given by

2 2 2 1/2
v = afr ~ + (4 y IA )J

For adequate representation of the current , if we choose the cell width

A >> a and ~x radian wavelength, then equation 2 . 4 is quite accurate. The

radian wavelength ~ may be computed via % = c/~ SI . Equation 2 .4 is

now ready for machine integr ation and may be performed for real y or

one can treat y as a comp lex variable and suitably deform the contour

on the real axis to a contour that wraps around the branch cut. The

branch points are at y ± j ’YA/2 . We shall now specialize equation 2. 4

for p = q and obtain the normalized diagonal elem ent as

ZDN = -
~~~~ 

f  ~~nhh I ( v ) K ( v ) dy (2 . 5)

2 2 2 1/ 2
with Z .~,,/ U fc and V a u ’  + (4y IA
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III . Numerical  Results

To perform machine integration of equation 2. 5, it is useful to

investi gate the singularitic~; and the anal ytical structure of the integran d.

As in equation 2 . 4, the integrand in 2 . 5 also has a pair of branch points

at y ±j ’YAI2 . If we exclu de the DC frequency( ’Y 0) ,  the integration

may be carried out on the positive real axis of the complex y plane. The

infinite integral of equation 2 . 5 may be broken up as fo llows

= 
1 

(J

UL 
+ f  %_~~ I (v) K (v) dY} 

(3.1)

If we choose an upper limit UL which permit s a large argument approxi-

mation for the modified Bessel functions, e.g. , I v~ = 10 imp lies

UL 5A/a because of I ‘YA I ~< 1. One can now write

5Afa
ZDN 

I [f  ~~~ Y 1 (v) K (v) dy + 
Lia 

S1~~ ~ ~L dYJ 
(3 .2 )

For a suitable change of variable, it is possible to write the second inte-

gral over a finite range of integration . Both of these integrals were

carried out with a 40-point Gaussian quadrature routine. Car e was t aken

to ensure out going wave nature by choosing the proper Bessel function

product, depending on their arguments. The ranges of integration were

continually subdivided until a convergence criterion of the type, the mag-

nitude of the ratio of two successive answers was less than 10~~ was met .

With this type of convergence, it was seen that the second integral was

insi gnificant since it contributed values of the order of i0 6. Requiring

a 3-figure accuracy, the second integral was neglected. Numerical corn-

putations were made for cell sizes rang ing from I to 100 radii for the

case of 50 cells per wavelength. In order to be able to compare with

previous result s , the computation is done on the imag inary axis of the

-10-



complex s pla ne . The results are found in talde 1 and plotted in f i g u r e  2 .
The real part of ZDN from Harrington ’s

2 
approximate formula is a

straight line in this fi gure and is valid only for A � I Oa . The real par t

f rom Tesche ’s
3 formula is not p lo tted because of its closeness with the

values obtained by the t ransform method . This can be seen in table 1.
Furthermore, the imaginary parts of both I-I arrington 2 and Tesche3 

are

constw’t and equal to each other because of similar approximations in-

volved . It is seen that the imaginary part from the transform method , as

may be expected , is oscillatory and appears to have a mean value equal to

the constant value - ‘YA/(47r ) in the previous two methods . It must  how-

ever be pointed out that both of the previous results are excellent approxi-

mations within the ranges of their validity and the t ransform method,

although significantly more time consuming ( 10 times or more in several

cases), does lead to improved accuracy.

— 1 1 —
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Ilarr ington Tesche Transfori  i M ethod
A/ a

Heal Imag inary Real imag inary Heal Imaginary

1. 0 0 . 0000 0 - .01000 . 09529 - . 01000 . 09447 - . 00999

2 . 0 . 110 32 - . 01000 .1546 0 - . 01000 . 15472 - . 00982

3. 0 . 17485 - . 01000 . 20000 - . 01000 . 19974 - . 01004

4. 0 . 22064 - . 010 00 . 23661 - . 01000 . 23663 - . 00956

5. 0 . 25615 - . 01000 . 26709 - . 01000 . 26660 - . 00966

6. 0 . 28517 - . 01000 . 29309 — . 01 000 . 29267 - .01028

7. 0 . 30970 - . 01000 .31568 - . 01000 . 31568 - . 01051

8. 0 . 33095 - . 01 000 . 33561 - . 01000 . 33534 - .0104 0

9. 0 . 34970 - . 01000 . 35343 - . 01000 . 35281 - . 009 99

10.0 . 36647 - . 01000 . 36952 - . 01000 . 36946 - . 00931

20 , 0 . 47679 - .01000 . 47757  - .01000 . 47691 - . 00956

30 . 0 . 54132 - . 01000 . 54167 - .01000 . 54103 - . 01073

40 . 0 . 587 10 - . 01000 . 58730 - . 01000 . 58630 - . 01015

50 . 0 . 62262 - .01000 . 62274 
• 

- . 01000 . 62323 - . 00834

60 . 0 . 65 164 - . 01 000 .65172 - . 01000 . 65053 - . 01001

70 . 0 . 67617 - . 01000 . 67623 - . 01000 . 67598 — . 01168

80 . 0 . 69742 - . 01000 . 69747 - . 01000 . 69848 - . 00782

90 . 0 . 71617 - . 01000 . 71621 - . 01000 . 71526 - . 00879

100 . 0 . 73294 - . 01000 . 73297 - . 01000 . 73150 - . 00977

Table 1

Diagonal term of the normalized iTalli n- System matrix for a
thin wire as a function of normalized cell width; -

X IA = 50 . 00 or kA = . 125664 .
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IV . Conclusions

An accurate way of computing the impedance matrix elements for a

thin wire structure is outlined . This procedure is based on being able to

analytically Fourier or Laplace transform the kernel function . The thin

wire structure was only chosen for illustrative purposes, although the

method is app licable if and whenever the kernel is analytically transform-

able. Anotlier example where thi s method is usefully employed may be

found in the treatment of three dimensional EM scattering from a finitely

long circular cylinder by Kao .
4’ ~

Numerical results for a representative case of a thin wire structure

are compared with previously available results..
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