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I Introduction

A. Integration of Single Rays

We are dealing with the ray approach to mapping sound propagation

in the sea.

We are considering the problem in which the speed of sound, ¢, is
variable over two dimensions, the depth, z, and a horizontal coordinate, x.
With no refraction normal to the x,z plane, a ray directed in the plane

remains in the plane.
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Fig. 1 A ray is the path of an element of wavefront

Each element of wavefront is instantaneously propagating along its
normal, in the positive direction denoted by unit vector t. A ray may be
defined as the path, or locus, of an element of wavefront. The path is

bent by refraction. The governing equation may be expressed by

r "




dy cos Y 1l 8¢ (1)

The notation is identified with reference to F'ig. 1: The direction t is
represented by the angle ¥ measured clockwise positive from the horizontal.
Linear distance measure along the ray is denoted by s . Linear measure
normal to the ray, and hence tangent to the wavefront, along unit vector n
is denoted by n. The unit vector n is clockwise normal to t by sign
convention.

The first term on the right hand side of Eq. (1) is due to coordinate
curvature of the reference horizontal; R is the radius of curvature of local
sea level. The second term expresses the refraction, caused by speed

gradient along the wavefront.
B. Elimination of the Curvature Term

Equation (1) may be transformed into

.d_y. = - _l.. _a._c_*. (z)
ds Oy an
where
X
Ce T Reg (3)

and % is an arbitrary constant. We choose to make x = R,

The factor R/(R - z) ranges from 1 at the surface to 1.001 at a depth
of about 6 km. Over this range of depth the factor increases the sound
speed almost linearly with depth by zero at the surface to about 1.5 meters

per second at 6 km. The significance for including the curvature effect




may be judged in the context of the variability of the sound-speed structure
and the accuracy with which it may be specified from available information.
In any case the curvature is a blas which may readily be included by
modifying the speed according to Eq. (3).

The linear argument, s, along a ray may be replaced by travel

time, t, according to

ds = cadt (1)

The use of ¢, in place of ¢ results in a pseudo travel time

ds = @ dt* (5)
R -2z 5
oL, = T dt (6)

The modification is slight.

In all that follows we shall consistently use the modified speed,
and, in the few places it appears, the modified travel time. Hence we

can omit the subscript asterisk without confusion. The ray tracing is

governed by

gy 4 3
T e (7

C. The Specific Wavefront Length

An individual ray may be identified at a reference potnt denoted by
S in Fig. 1, where the orientation of the particular wavefront element is

’

defined by ‘)'q . The wavefront element also has two dimensions associated




with its stretching (wavefront divergence) or shrinking (wavefront conver-
gence) and reversal (wavefront folding). We denote the specific wavefront
length in the x,z plane by L, and shall not concern ourselves, for present

purposes, with the lateral dimension of the wavefront.

The derivation of the governing equation for L along the ray is given
in Reference [1]. This governing equation may be expressed by
dzL L azc
ds2 in anz

(8)
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The specific wavefront length may be initialized (normalized) at the point S

by specification of

Initialization also requires specification of the curvature of the wavefront

at S, by specification of

(dL/ds) S
Equation (8) is for single-ray integration of wavefront spreading.

D. Depiction of Wavefront Propagation

The ray approach may be used to depict the propagation of wave-
fronts by integration of the traces of sufficient rays to adequately depict
the wavefront continuum at all positions in its propagation. Such complete
mapping of the wavefront propagation encompasses the wavefront spreading,

shrinking and foldings, and implicitly includes full determination of L.




Independent integration, along some ray, of L by a numerical
analogue of Eq. (8) thus yields another determination of L. Because of
differences in truncation errors between the two independent numerical
integrations~-rays by numerical analogue of Eq. (7) and L by numerical
analogue of Eq. (8)--the results may not be consistent. For complex

sound distributions or badly designed numerical analogues the results may

not even match in areas of interest. In any event, because truncation

errors compound with length of the independent integrations, the match

deteriorates with distance covered by the rays.

Of pragmatic interest is the propagation from a point source. Let S

of Fig. 1 be the location of the point source. Then each ray is defined by

its emission angle, ¥, , and, for all rays,

L = 0 (9)

(dL/ds)S ) (10)

Any point in the medium may be traversed by one or more rays,

giving, in association, to that point one or more values of ')’S . Such

multivaluedness is produced by foldings of the wavefront. The wavefront
remains continuous if we include the foldings in our concept of continuity,
and, correspondingly, the field of 7, , while multivalued, is also

continuous. Thus multivalued areas are separable into superimposed

families of continuous ‘YS distributions. For each family the ascendent

of ‘ys is tangent to the wavefront in the direction of increasing source

emission angle.
or-oddness of the number of foldings the wavefront element has undergone

This direction is + n or - n depending on the even-

in its propagation from the source.




For a point source the specific wavefront length, L, may be

diagnosed from full ray depiction, throughout the insonified medium, by
n
— - v
Ve (11)

for each family. Accordingly, and alternately but consistent with our
earlier definition, L may be defined as the specific wavefront length per
unit radian of emission at the point source. This definition is restricted
to insonification by a point source, whereas the earlier definition is

general.

E. Preference for Consistency

In mapping the sound propagated from a point source we have
available two methods for determining the multi-valued field of L. The
first method involves the design and application of a numerical analogue
for the ray tracing equation, Eq. (7), and for diagnosis of the ray spacing
by Eq. (11). The second method involves the design and application of a
numerical analogue for Eq. (8) for integration along each ray obtained by
analogue of Eq. (7). Unless the numerical analogue for Eq. (8) can be,
and is, designed in a form consistent with the ray tracing, truncation
errors will manifest quite differently. The disparity will generally grow
with range and with the complexity of the sound-speed distribution and

the ocean-bottom topography.

Such independence in truncation error may be deemed useful as
indicator of the range limits imposed by truncation errors overwhelming
resolution. However we dismiss this use because the likelihood is that

the ray spacing would be more accurate, in general.

-
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We deem it desirable to compute specific wavefront length, L ,
rather than to rely on spacing between rays of finite separation and diverse
paths. And we deem it desirable that L be consistent with the distribution

of rays.

We consider the information to be complementary. Continuity in

L from ray to ray is an indicator of the adequacy of the resolution.

The ray to ray locus of L = 0 locates caustics. Caustics generally
do not lie at the intersection point of two rays of finite separation in )’S
but occur at the differential crossing or folding. Propagation loss by
diffraction depends on the geometry of the propagation with strong

dependence on the occurance and orientation of caustics.

F. Objective

Our objective is to develop a numerical scheme for ray-consistent
determination of the specific wavefront length distribution. This distribution
generally becomes more multivalued with range from the source, not only
by internal foldings in sound channels but also by reflections at sea surface

and bottom.
This endeavour involves considerations which include

— maximizing accuracy in ray tracing and ray spacing for the prescribed
sound speed distribution,

— simplifying the integrations for the purpose of reducing calculations
for the same resolution yield,

— exploiting simplifications which occur when sound speed, ¢ , is a
function only of depth, z , and

— realizing consistency as horizontal variability in ¢ vanishes.

We proceed by expanding on aspects of single-ray integrations and
simplifying the equations for when speed is a function of depth only. We

then return to designing the object scheme.

= =
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II Single Ray Spreading Integration

A. Transformations of the Governing Equation

Equation (8) is a form of the differential relationship which governs
the specific wavefront length, L , along a ray. The motivation for trans-
forming this equation into other forms includes revealing the character of
the equation, the significances in speed-of-sound distributions, and

insights for designing improved numerical analogues.

Special treatment of the equation is required for use in integrating
through discontinuities in speed distribution at interfaces and at surface

and bottom reflections. This development follows in Subsection B.

We begin the transformations by introducing K = {nc .
. ok oa _ o fa¥%k, (&Y s
2 ds ds 2 on
ds an

Keep in mind that s is along the curved path of the ray and n is along a

straight line normal to the ray. At a point along the ray we can write

vik = BZK/an2+82K/as*2 (13)

where s, is along a straight line tangent to the ray. We also require the

operator transformation

2

2 = g.v(@.V

5 (g.v)2+¢.vu.v
s

3
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In the last step we have used Eq. (7). Accordingly we have the trans-

, formation

|

& \2 3 K\ 2

‘ d°K 3°K R =

4 -5 = ) - (-\_-) (15)

2 2 dn

| ds ds,

?

| By using Egqs. (13) and (15) we transform Eq. (12) into

[ .

| ;‘
a’1 ®dl fon. - atkd

> 2% A oA lv K - X (16) ~

ds” o ds ™ ‘

L 2
This form is significant because the directional operator, (nn - ©)7, of

)
Eq. (8) has been replaced in favor of an isotropic operator, v, and

ditfferentials alonag the ray.

In Reference (21 we have transformed the governing equation into

the form

.

) Y )
- SRR o (17)

)

dat”

where Q ¢ L/¢ and travel time, t , replaces s as measure along the ray
according to ds = cdt. This is the simplest torm we have been able to
deduce. [t enabled us in Reference (2] to determine that Q is reciprocal

between a point source and a receiver, for any ray path.

Initializations, at a point source, are given by Eqs. (9) and (10)

and their transforms:

" Qg 0: @Q/ds)g = Ve (@Q/dng = 1 (18)

S




B. Special Treatment at Discontinuities and Reflections

In describing the speed distribution in the sea it may be convenient
or suitable to include interfaces where the speed gradient abruptly changes,
For present purposes we shall treat such interfaces as horizontal. Ray
tracing by Eq. (7) requires only that the speed, ¢ , be single-valued and
continuous (zero-order continuity). It can be integrated through interfaces
of abrupt change in speed gradient (first-order discontinuity) . However
Eq. (8) cannot be integrated through such interfaces; the spreading rate,

dL/ds, abruptly changes.

Reflections at the sea surface or ocean bottom, where, in general,
we wish to allow dc/dz # 0, also involve effective passage through kinks
in the speed profile. At reflections we have the additional consideration
that L , in accordance with Eq. (11), flips sign.

The expressions required for carrying the integration of Eq. (8)
through interfaces and reflections have been derived in Reference JERe
This was done by applying Eq. (8) to a transition layer between levels of
differing specified gradient; letting the thickness ot the layer shrink to

zero in the analysis gave the desired expression.

dL dL] L cos”¥ f[ac] _ [ac s
ds ds ¢ sinY l dz dz )
¢ - t -

At reflections the sign of L is flipped.

L - L (20)

The subscript [ is used to denote incident value and the subscript R q

reflected value. The spreading rate changes according to
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2
2L, cos ¥
_[dL] LR I 2 1)
I

C sin 71 dz

Transformation of these equations in terms of Q is readily effected

by substitution of
L = Qc; dL/ds = cdQ/ds + Q dc/ds (22)
d¢/ds = cos?Y dc/dx + sin¥ dc/dz (23)

The transformation yields

ERICREESN I T

Qp = -9 (25)
d Q 2
ds ds c sin 7. oz
R I I
C. Numerical Analogue Design and Accuracy Demands
Consider the design of a numerical analogue for the spreading
integration along a single ray, without any regard for consistency with
ray spacing. The simplest design is suggested by the Eq. (17) form of
the governing differential equation. This design is
3 2 [ 2 i ]
Q.,.+1 o Q,,.__1 = ZQT = ot ¢ vV K r Q,r (27)
1]




which stmplittes to
(28)
whore
8 2 [ ) )
= 2=-0t jo" v K 2¢
AT { « l’\J r (29)

The congtant {ncrement, 0t , marks off successive time posttions, along
the ray, denoted by subsceipts, 0, 1, 2 .« « T=1, 7, T+l ., .. The

tnftialization ia

Q R 3 (O S -~ O (1)

Thiz analogue scores well (n categortes of analogy with the
differential ogquation, tn stabtlity and stmplictty tn uze. Por the puriast
it has the vittue of rectproctty t the same points--and hence the same
values ot Ar ~~are uned tn the reverased propagation.  Howoever in
applications it leavesr us wishing for something extra in the area ot
accuracy--accutacy, perhaps, beyond the call of duty of a direct

numeattcal analogue.

{n sound mapptng, at the Pleet Numertcal Weather Central, the
apeod profiles with depth are specttied by speed values at whatever depths
are telt required tor resolution, together with an intorpolation tormula.,

The (nterpolation currenily fn use t8 a cubice segment tor each depth
intorval, having gradient and value conttnutity with the adjoining cubtes,
Whtle profties are generally spectiied miles apari, depths may be specitied
at intervals in tons of meters, and ovon in meters, The result 18 that

profiles may have very sharp teatures in depth, We have soen in

"“;’."‘

.




Section II B that sharp changes in profile gradient cause pronounced changes
in the spreading rate. Unless such features are treated as Kinks, Eq. (28)
must be integrated in very small increments, through these features, in
order to contain truncation errors.

This sensitivity would be improved if the numerical analogue could

be expressed in terms of perfect differentials, at least in the depth

component of the argument. Reduction of the differential order of the speed

dependence acts in the same direction of reducing sensitivity.
Either success would also overcome the need tor spectal treatment
at internal profile kinks and at reflections (provided we flip the sign of 199 Y%

The consistent scheme that we outline in Section V has such advantages.

-13-
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[ Single-Profile Stmplitications

A. Ray Tracing
In the present section we treat the special case of negligible
The speed, ¢ , is prescribed as a

horizontal variation in sound speed.

function only ot depth, z .

Equation (7), for a ray, may be written

¥ 08 .
o sy (31)
da C dz

Snell's law may be obtained by considering differentials for an increment in

depth, 8z .

67 S )/ 6\."-\‘ -Q-;i
Oz
By substituting sin Y 62/6s we obtain
6o cos Y 6inc (32)
which means that
ig:b‘z is constant along a ray.
Referring its value to the reterence point S we may write,
cos Y o e yS (33)

(& Ca
N

-4
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This is Snell‘s law, and we have shown that it can include the horizontal

coordinate curvature factor by modification of the speed profile.

Snell's law may be useful in ray tracing. It fails to span extremal
depths (i.e. over ¥ = 0). This limitation arises because multiplication by

sin ¥ is implicit in its derivation from Eq. (31).

Let us denote successive values along a ray by subscripts . . . .

m-1, m, m+l . . . Equation (32) yields

c
m+1
cos ym+l = o cos ‘Ym (34)

A form of centered scheme is expressed by

6x ) 6s (35)

1
2 (cos )’m + cos ‘)’mﬂ

) ©6s (36)

Oz

¥ 4
z(sin‘)‘m + sin7m+1

If we choose 6s as increment then Eqs. (34), (35) and (36) are an implicit

set requiring iteration. If we choose 6z as increment their use is
explicit.
With 06z as increment the integration proceeds nicely until

>
cos ym+l 1

For such increments, m to m+1, we must allow 6z to be determined by

cos Y = 1, and the progression in z is reversed for the subsequent

m+1
step. At reflections we must also allow 6z to be suitably specified.

«]§=
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B. The Spreading Equation

We specify a point source. Snell's law, expressed by Eq. (393),
holds everywhere. The specific wavefront length and the spreading rate

at a point on any ray are given by

Y
R I
g dn 37)
ld. _ ¥
L ds  dn (38)

We perform the operation 3/3n on Snell's law at the arbitrary point, and

obtain

-sinyY 9Y _ cos¥ 3¢ _ -sin)’s a)‘S (39)
(o on c:2 on g dn

Substitution according to Egs. (37) and (38) leads to

a. sin )'S

= L cosz)' dc
ds sin ¥

sin ¥ dz

e
c

= (40)
S c

This is an order lower than the general form, Eq. (8). Equation (40) fails
to integrate through points at which ¥ = 0, but gives the result at these
points that

CZ sin YS

dc/dz (a1

C

This suggests that Eq. (40) may have more to offer.

=16=




Equation (40) may be cast into a simpler form by substitution of

L = X siny (42)

The new principal dependent variable, X, may be interpreted as the

horizontal component of the ray spacing. Substitution leads to

X . tany, 8% (43)
ds S 2
sin Y
which may also be written
ax i Cq sin ')'s c i
dg 4 = gt cos: ¥
“5 S

This reveals that dX/ds, along a ray, is a function of c(z) only. We shall
use this fact to prove recursion formulae along rays. We shall use the

schematic form of Eq. (44),

dx

i F(z) (45)

C. Recursion Formulae

We are still dealing with a single-profile speed distribution, c(z).
For a ray, defined by )‘S , Eq. (45) may be written

dax
dz sin Y

«]7=

- i (46)
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Fig. 2 A full ray cycle

Consider a full cycle of a ray which we segment as indicated in

Fig. 2. In segment 1 we have

z 0
F E
xl Ey S sin ¥, 08 o T S sin y o=
a8

1 > 1
S
In segment 2 we have
. F
XZ & xa 7 S sin ¥ S
2
0
z z
P E S F
X S dz - S dz
a sin Y sin ¥
2 2
0 z
- F & F
= d -
xa * S sin 71 » S sin 71 %
o 3

]
(3]
>

o
]
>
—

(47)
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] |
| X, = 2X, (48) |
In segment 3 we have 11
3 3 |
Ry may T < in e
i = 3
p S
i
z
b B
. ¢ b sin )’3 z
%s
In segment 4 we have
A
, o F
\4 - \c 3 S sin Y A
2 4
c
[ -
|
i
’ g 8 F
' = X + S : dz -~ S : dz
; c sin ‘)’4 sin 74 v
’ z, v
i
}» s z
| S xc i S sii 24 T S sinF)’ 4
3 3
‘ Zs 5
= Zxc - X 3 (49)
Xd = ZXC - Xb (50)

Subsequent cycles have the additive values: Xd i Zxd i 3Xd , etc.

These formulae were noted and exploited by E. Hesse of FNWC.

The present verification followed.
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v A Scheme for Ray Tracing

For the general case, in which ¢ varies over the x,z plane, we
would like a scheme that affords consistency with Snell's law as

3 dc/Adx > 0.

We are inclined to prefer 0z as the independent increment for the
ray integration, except for turning levels (¥ = 0) where 6z is determined
to the ¥ =0 level. Also the increment can be adjusted to accommodate
the z levels of interfaces and surface and bottom reflections. Another f
motivation in specifying 8z is that this increment can readily be geared
to the variability of the speed structure. For example consider making 6z

2 2
inversely proportional to 3 ¢/dz .

By noting that

v
- e, 9 - '
e cos ¥ I + sin? o (51)
e
k- TR S - :
o, sin ¥ e + cosY -y (52)

and K = ¢» ¢, we transform Eq. (7) as follows:

g 3K aK

- - sin 7 e cos Y 3z
_ slay &Y _ _ 1—c0527 3K 3K
cos?Y ds cos?Y Ax

+ sinyY —
z
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P T

We may develop the numerical analogue in terms of successive

points along theray, . . . . m=1, m, m+1l, . . . Exact application

yields
m+1
- J 1 ok ds
Cm+l - cos ¥ ox
- o THEE e
cos ¥ | . cos ')'m e (54)
which we approximate by
os Y = i‘y—l‘ 5 ¥ 1 - Ss 3k (55)
- mtl  c W cos ¥ dx

It remains to decide how to evaluate the term under the curly line. Since
it is generally acknowledged that the term is very much smaller than 1
a forward evaluation should be adequate. We substitute

0s = Oz/sin?

and obtain

(o
y m+ 1 3 0z dK
b m+1 C [cos ym sin ¥y X (56)
m m m

This analogue is, however, not suitable at turning levels Y =0). We

design a special operation for the turning increment.

«2]=
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Fig. 3 Integration through ¥ =0

For increments at the turning level, as shown in Fig. 3, we

propose a numerical analogue obtained from

SRR SRR |
- it (57)

-

That is, we approximate the trace by circle arcs with radius of curvature r,

and obtain

-1
3K ‘
Ax = (Bz) sin)’m (58 ®
r
3K o ‘\’
Az = (SZ) (l-cos‘)’m) (59)
7m+l = 0 (60)
7m+2 3 -ym (61)
=22-




It may also be strongly argued that the relative contribution of

3K/3x in Eq. (56) is negligible. If the purist does not agree then he must

admit to ranges for which lateral refraction is of comparable significance.

At large ranges, it should be realized, concepts of apertures and ducting
S replace dependence on exact ray positions.

In any case, we have realized consistency with Snell's law by our
numerical analogue, Eq. (56). The ray tracing may be performed as
follows:

(1) Specify 6z for the increment m to m+l, interpolate cm+1 and

(3K/3x) i

t

)E‘ (2) Compute cos 7m+1 from Eq. (56) .

{ (3) If cos 7m+1 > 1 abandon the value and use the turning operation

: defined by Egs. (58) through (61) to perform two increments to

|

j point m+2 .

I : N

i’" (4) If cos ym+1 < 1, compute sin 7m+1 from

| in Y = 5 RO
sin?¥ 4 (1 - cos ym+1) (62)

with positive sign for downward progress, 6z> 0, and negative

for upward progress, 6z < 0.

i (5) Compute

cos Y + cos?
m+ 1

ox = bz & (63)

sin ¥ + sin VY
m m+1

The angle, ¥, need not be evaluated.

The remaining details of the ray tracing integration should be

straight forward.




\'4 Adjunct, Consistent Spreading Integration

A. General Concept

The yoverning equation, Eq. (8), for the wavefront spreading was

derived, in Reference [1], by a combination of the refraction equation,

- ¢ 3
ds

(64)

o o/
218

and the spreading rate,

dL QY
ds an (65)

= =

The propagation of a finite segment of wavefront can be depicted by an
adequate density of rays each integrated by Eq. (64). The adjunct
integration of the spreading must, for consistency, be performed in complete
accord.

We propose that the adjunct spreading integration be performed in

terms of ambient segments of rays for each increment of the ray tracing.

The scheme is depicted in Fig. 4.

Fig. 4 Adjunct Ray Segments Along a Ray Tracing.
Normal Segmentation

«24-
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For each increment of the ray tracing the ambient ray segment is
initialized at a point one suitable length unit removed along the normal,

on the appropriate side. The side depends on the sign of L .
The initialization at adjunct point m , where Lm and (dL/ds)m
are known, is

i - -1
Y AU + Lm (dL/ds)m (66)

The ray segment is calculated by the identical scheme used for the ray.
Consider extending the segment to the next ray normal at point m#1; it

meets this normal at distance 6nm+1 from the point, with new angle
*

7m+ . . FProm these values compute
I’m+1 - Gnm+l Lm (67)
Yy -
& m+t1 m+1
(dL/dS) m+1 20 Lm+1 5n (68)
m+1

Note that L may change sign; the subsequent segment then switches
sides.
The scheme may be considered a refinement of using pairs of rays.

It is an improvement on pairs because pairs may diverge considerably and

become non-representative.

This scheme can be integrated through kinks in the speed profile

and at reflections, without special treatment except for flipping the sign

of L at reflections.




-

B. Particular Design

Particular design of the adjunct spreading integration must be tied
in with the scheme adapted for the ray tracing. We will now go along with
the scheme outlined in Section IV,

Depth increment, 6z , is used as the independent increment for the
ray integration, except for turning levels (¥ = 0). The scheme is depicted in

Fig. 5.

v |

Fig. 5 Adjunct Ray Segments Along a Ray Tracing.
Horizontal Segmentation

As principal dependent parameter in place of the specific wave- |

front length we will use
X = L/sinY (69)

We require one more transformation. Substitution of Eq. (69) into

Eq. (65) yields

ROV S—

«26=




1 dy cos ¥ Y Y

\— ds sinY ds an
sin Y dX e 4 Y 3 QY
"”‘\ o o - Cos Y e t sin Y e

Expansion of operators by Eqs. (51) and (52) leads to '
!

sin ¥ dX Y , |
\ ds OX (70)

A more convenient form is

dcosY _ sinzy dX (71)
Ax X ds

Each adjunct segment is performed as tollows. In Fig, 5, at point
3 }

m-2 for example let \m , and (dx /ds) me2 already have been computed.
bt -
The adjunct segment is placed one suitable length unit removed, along

minus x for X positive, The segment is directed according to

g {
sin™ Y
* m-2 dx .
(- e PO cos ¥, , S———————. (72)
m=2 m-2 = ds -
m=-2 m-2

The segment is extended over increment 8z , the same increment used
for the ray. Equation (5%), applied, yields
cos Y ¥ 4

m-1

and Eq. (63) yields x;‘_l and hence

%" X (73)




i
i
]

From these,

= Ax 7:
\m-l A \m-l \m—z (74)
, e AT SN
(d X /ds) S vmz " {«o_. )‘m_l cos ym-l} (75)
b m-1

At the turning levels (¥ = 0) the scheme differs tn that the adjunct segment
is taken over two increments=-i.e. around the extremal--according to

Eqs. (57) through (61) as used for the ray itselt.

We have probably overlooked some details and complications may
remain. However we trust that they can be ironed out in programming and

testing.
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