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Abstract - ' - ' h

The normal mode solution of sound 4animia'sion has been used as

the basis of an approximate (WKB) calculation.. The attenuation of low

frequency signals in a surface duct is sho vn to be proportional to f/

where f is the frequency. The high frequency attenuation is based upon

experimental data and is proportional to. f / he leakage of sound

energy from the duct is used as a means to estimate the signal received

beneath the duct. The theoretical results have compared with theoretical

data. The surface duct attenuation formula fits the experimental data

within the spread of the data.

I<

I Introduction

The theories needed to describe sound propagation in the half

channel and surface duct are essentially the same, so we have combined

the discussions. The ray pechs for these cases are shown on Fig. 1. At

very Ihi frequencies when the surface duct is hundreds of wavelengths

deep, the ray theory gives a good description of signal transmission and

the formation of shadow zones. At loW frequencies when the duct (or ,V

half channel) is a few wavelengths thick, the wave diffraction effects are

-important. In a shallow duct, l6w frequency waves may not be trapped

and thus have very high attenuation while a high frequency signal would be

trapped and have low attenuation.
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Fig. 1 Half channel and surface duct. The shadow is crosshatched.

A considerable body of theory and experiment has shown that the

depth of the duct, the frequency and sound velocity gradients are needed =

to describe the sound transmission. Since we must consider frequencies

lower than have been studied to any extent, our theory should be extrap-

olatable.

The answers to the following questions are needed to describe

sound transmission in a half channel or surface duct.

1. When are signals trapped?

2. How much of the energy is trapped?

3. What is the attenuation?

4. Wht happens to the energy lost from the duct and can it

be received?

We have tried several approaches to the problem: First, ray

tracing procedures coupled with estimates of attenuation were tried;

however, the results were not good and too much empirical adjustment

was required. Wave theory in the form of an approximate normal mode

calculation was found to give agreement with the experimental data of
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Pederson and Gordon (1965). The development is given in Appendix A. The

description of the simplified surface duct model in the following sections is

an empirical adaptation of those results.

II Trapped Sound Energy

The model is sketched on Fig. 2. The duct is assumed to be many

acoustic wavelengths deep. More exact specification can be obtained from

the normal mode solution of the problem as given in Appendix A. A slight

rearrangement of equation A20 yields for the lowest mode the following:

3/2
f>(0 -1/2

c (z) c 0 + g z z< h

where f is the frequency in cps

h is the mixed-layer depth

c O is the sound velocity

Ig1 is the gradient of sound velocity in the mixed layer

On assuming that part of the sound energy is trapped, the mean

square pressure can be expressed as a cylindrically spreading wave. With

the aid of Fig. 2, it is the following:

= p A (rh) AO exp-Br (1)

where p0 is the acoustical pressure at a uinit distance. For convenience,

A and B are regarded as being empirical constants which can be determinod

as a function of frequency, h and sound velocity g:-adients. Actually an
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Fig. 2 Surface duct as a wave guide, x0 is the distance required for the
steepest turning ray to reach depth h. g, and 92 are the
sound velocity gradients above and below depth h. The effective
depth he is also shown.

Ie

approximate wave theory solution of the problem yields the functions for

both A and B.

If the primary interest is the surface duct propagation then the

wave equations in the summary of Appendix A should be used. For order of

magnitude estimates of surface duct transmission an empirical value of A is

satisfactory.

III Attenuation

The measured attenuation of signal transmission in the surface duct

has been shown to have large attenuations at low frequencies. These

losses are caused by poor trapping or leakage of sound energy from the
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duct. The attenuation also Increases at high frequencies and this loss is

assumed to be caused by the scattering of sound. On separating the

effects, B can be expressed as the following:

B 2(6' + 6") (2)

where 6' is the leakage attenuation (low frequency)

6" is the scattering attenuation (high frequency)

Experimental measurements of B have helped but theoretical

description of the functional t. m of 6' is needed. Diffraction or

leakage of energy can be estimated, with the aid of wave theory.

Normal mode descriptions of the wave field were used by Pederson A

and Gordon(1965) and more recently Bucker and Morris (1967). One could

use their methods, however, we felt that amount of computational effort W,

could be too large. A less accurate theory having simpler equations would

be sufficie.nt for our purpose. On the basis of these excellent comparisons

of theory and experiment, we have chosen to use the normal mode method

to develop the attenuation function B. In the development we will use

their results as a guide in making many of our approximations and simplifi-

cations. The development and equations are given in Appendix A.

The attenuation due to leakage through the bottom of the surface

duct is (Appendix Eq. A2 and A37)

-5/3 -3 -1/3 6 -1
6' f he g2  x tr m (3)

wnere f is frequency in cps

h is effectire layer depth in me

g2 is the sound velocity gradient beneath the duct

and h is much greater than X , and generally of the order of 1OX .

- - -- - - -- - --- -7
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In a duct having a positive sound gradient, h is approximately 2h, Fig. 2.
e

Both h and the mode number (here it is one) enter as somewhat arbitrary
e

factors in Eq. (2). Thus it is reasonable to add an adjustable factor to

Eq. (2) if necessary.

To this attenuation we should add the losses that have been

presumed to be caused by sound scattering at the surface. The high

frequency sound can also be scattered by the smaller inhomogenities that

are generally found in mixed layers. We use the following empirical

formulas given by Marsh and Shulkin (1967):

for sea state < 3

1/2a = 4.5 (f/h) db/kyd

for sea state > 3

1/2a 9 (f/h) db/kyd (4)
s

f in kcps

h inft

or for exponential function,

6 6 x 10 nepers/m

for f in cps and h in m (5)

In the appendix, we estimated the surface reflection loss,

Eq. (A39), and found it to be proportional to frequency squared. The role

of the various scattering mechanisms in the mixed layer are not understood
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and for the present, it is recommended that the empirical functions (4) or

(5) be used. The total attenuation is

~~B =216 + )-:

2[f-5/3 h- 3  / x10 6 + 13} 1/2 -5
53 (f/h) x 10-  ] (6)

Use 3 for sea state < 3 6 for sea state > 3

In normal use B is converted Lo db/kyd and the parameters are entered in

kH and ft. On replacing h by 2h, the attenuation isz e
Bdb 4 x 10 f'kcps) h(ft) g + 9 db/kyd (7)

for sea states < 3 and > 3

The dependence of B upon frequency is sketched on Fig. 3. The numerical

constants in Eq. (6) are approximate and can be adjusted empirically.

400-

5 cutoffJ
f

SEq. (A8)

" ,-

.0

S IAABSORPTION

FREG CPS.

Firo. 10. Attenuatioi rate rs frequcnc l for the lakage arrival

for one refraction cycle at Bear, shalk hydrophonc. Spectrum
levels ate given for a band nidth of 1 cps and a reference pressure
le'vel of I dftmO rms for I sec. The height of the crosses gives
the variation of the levels and the width of the crosses %ives the
band width of the filter. The theoretical attenuation rate rs
frequency was calculated for a channel depth of 290' and athcrmodline of 0.147 Smc.

Fig. 3 Surface duct attenuation, B. The data is from T. Arase, J. Acoust.
Soc. Am. 31, 588-595 (1959).
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IV Half Channel

The half channei condition generally refers to a deep ocean having

the sound velocity minimum near or at the surface. The sound trapping

condition applies as follows

3/2(Co)f >> 2- 1-g/l:

and the water is of the order of hundreds of wave lengths thick. The

simplest approximation is to assume that all sound energy that does not

interact with the bottom is trapped and spread cyclindrically. Since the

wave guide is very thick, leakage losses can be neglected and the signal

level is

jp21 I 0 21 A(rh) - l A exp - ar V

where at is the sound absorption loss in sea water. In this formula, the

vertical distribution of sound energy is approxirmated as being constant

whereas it actually decreases as a function of depth. For more accurate

calculations, the normal mode solutions, Eq. (A) and (A31), should be

used.

If the water is too shallow for the trapping of sound, then the

problem should be treated as a shallow water wave guide. Here the

properties of the bottom are very important.

V Surface Duct Leakage

Sound energy carn be scattered into and out of the surface duct.

The only losses aside from the absorption are those caused by scattering

and diffraction. As shown on Fig. 4, the flow of energy is horizontal and

the losses flow downward.
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Fig. 4 Surface duct energy leakage

The energy flow per unit area is sound pressure times the particle

velocity. If the ray paths are in the direction of energy flow then the

energy flow per unit are proportional to pressure squared. For our approxi-

mation we will use the pressure squared.

The energy loss from the length of guide Ax is

p12 Ax [p2 (x) -p2 (x + Ax)] h (8)

The T ylor expansion for p- (x + Ax) is

2 2 b 2p (x+ Ax) = p (x) + x p () A x (9)

and

2 I X h (10)

" Pl -4



2 2The loss of p per unit length is proportional to p and is

2
P2 (1)Ax X

Thus the leakage pressure is

2 2
p1  = Bh p (12)

The transmission loss in going from a pressure in the duct to a

receiver beneath the duct is

TL for leakage -10 log Bh (13)

The leakage signal is large for large duct attenuation and small for

low duct attenuation. At large distances from the source the leakage

pressure is proportional to the signal in the surface duct. From Urick it

appears that the transmission losses in going from within the duct to

beneath the duct are of the order of 15 db. In the model that we have

i assumed, the leakage signal is essentially independent of the receiver

depth beneath the duct. The direction of the leakage arrival is approxi-

mately that of an initial!! horizontal ray just beneath the duct.

The leakage signals are traveling in the forward direction. Thus,

we can regard the leakage as being a set of directional sources just

beneath the sound duct. As suggested by Hersey and Officer, the sound

can follow the usual deep transmission paths and also be received at
refraction or convergence zone distances. The transmission paths are
shown on Fig. 5. Experiments have shown that the apparent broadening

of the convergence zone (or "bounce" n this paper) can be ascribed to

leakage signals, Fig. 6. The leakage signals following the convergence

zone were about 20 db less than the main signal.

10
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Appendix A

SOUND TRANSMISSION IN A HALF CHANNEL AND A SURFACE DUCT

The mathematical developments of the normal mode solution of the

half channel and surface duct are a bit involved so at the outset we will

state what we are after. In a wave guide the pressure field is

2A
21 O Po -6'

l~iXrh e m (Al)

We would like to calculate the constant of proportionality. But it is even

more important to derive the dependence of the attenuation on frequency,

layer depth etc. Ignoring the loss due to surface roughness, we will show

that the (rms pressure) attenuation is the following

6' 14 m2

m k05/3 h 3 (3a 2) 1/3

h-/3 3g2 1/3 10 in nepers m (A2)

where 
__ C

h = layer depthIg = sound velocity gradient beneath the mixed layer

m = mode number, 1, 2, 3,

The most optimistic estimate for attenuation is to assume m 1. The

essential behavior is that 6' is proportional to f-5/3 h-3
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The model that we used to estimate the surface duct attenuation is

that of Brekhovskikh. As shown on Fig. Al, the sound velocity is constant

in the mixed layer and has a sharp gradient beneath the layer. The sound

i partially reflected by the change of the sound velocity gradient. It may

be surprising, but comparison of the attenuations and transmission losses 4

computed by means of Eq. (A2) are nearly the same as those given by

Pedersen and Gordon (1965). This means that, except for very high frequencies,

the essential part of the trapping in the surface duct is the reflection at theB change of gradient.

C (z) r

zo

h

z zI
Fig. Al Surface duct, c (z) = constant in mixed layer

The acoustical pressure due to a continuous wave point source in

a wave guide has been discussed in much detail by Tolstoy and Clay (1966).

We will use their results and generally follow their notations. In the

stratified wave guide, c (z), the acoustical pressure at large range is

(with the aid of their Eq 2.5 and 3. 118) the following:
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M

= , , I P m -p (x r - W t - -7 - ( A )
=1/2 L m 'm 4 m

r m

P P (z0 (zM)s
S m 0 (A4)

p Pm 2I (pcs 1/2 Ps V x -1/2 (AS)T PS m S 0(AS)I

z and z are the source and receiver depths (Fig. Al)

r is range in cylindrical coordinates

z is depth, positive downward

W is angular frequency

x is horizontal component of wave numberm

x = w/c , c is phase velocity

= vertical component of wave number

2 2 1/2k = (Ym +x ) = w/c = 2TA

-IL is source power

p and p are the densities at source and receiver

6 i the mode attenuation and is an addition to them

origina) equation

m are the elgen functions and are solutions of the

separated wave equation:

__ 2
2 Pm + Ym P  =  (AO

Bz
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S m2V - p dz
m m

2w z
CO [7m m2 +(A7)

2w2, 1 Y 0:

2a) - 1/2'
where c = co (1 - Z)

The solutions of Eq. (A6) in a stratified wave guide (Y is a function of z)
m

generally require extensive numerical computations. Our purpose in the

following is to develop approximate solutions which can be used as a guide

in devising a simple approximation such as Eq. (Al). But first we take the

absolute square of Eq. (A3) and examine the result.

M
ii2 2-1 2 e 2 6 mr+ p p e- (6m+ 6 n) r
p ' = r Pm r m n

m m>n

Cos (Xm -Xn ) r (A8)

The first summation gives the average level as a function of range. The

second set of terms is oscillatory and these terms describe the maximums

and minimums often observed in experiments. These terms depend upon

(X - x ) and great accuracy in the computation of the eigen functions, Xm n
is required to theoretically duplicate the actual maximums and minimums of

experimental data. At very large range, the sound field is analyzed by

measuring the mean level and correspondingly, we ignore the second

summation or the fluctuations. Thus, approximate eigen values x willm
be adequate.

-4- H
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t We use the WKB approximation (Tolstoy and Clay, pp. 48-52) to

determine the eigen functions. As shown on Fig. A2, the following sound

velocity profiles are convenient to describe the surface duct and for

computation:

-1/2 -

.C c0 ( - 2alZ)-/ 0< z <h

c , ch 1 + 2a (z- h)-/2 z> h

2v-1/2

ch = co (1- 2a h) (A9)

To begin with, we are assuming a positive gradient in the mixed layer so

that we can also apply the theory to the half channel.

For small gradients, Eq. (A9) are the approximate linear functions

as follows:

c co (I+ az)I

c .h 1 - a2 (z- h)] (A10)

The approximate eigen functions are

-1/2
(z) Y sin [s (z) + s (All)

s (z) = Sz dz+ s. =miT
0

= , 2, 3, . . . M (A12)

[-5-
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c (z)

h ch

7j7

1N

z 
A
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Fig. A2 Surface duct

I
The condition for validity of the WKB method is (Tolstoy and Clay, 2.213)

I enz £Y << I (A13)lidz

1 The approximate eigen functions, Eq. (All), canrot be used at small Y, or

at the turring depths. The mathematical techniques used to connect the
:7 WKB eigen functions through turning points are discussed in many quantum

mechanics texts. We will not use p near the turning depths and not

calculate the connection functions.

Modes are trapped for those frequencies, or x , for which

Eq. (A12) is satisfied. Let us assume that the mth mode turns at depth

z m, has the wave number component X and phase velocity c . Y' ismm m m

2 k2 2 2 c-2 -2 A1
M m m

-6-
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With the aid of the preceding equation, the integration of Eq. (A12) [for

c given by Eq. (A9)] yields after manipulation

o 0 3/2 M f3

S (z) -3 (2alZ) +mT (A15)
i 3a IM4

where (A9) or A1O) have been used to express the parameters as follows:

k = (A)/C0 0
sin~) = m - I  r~ - I - /Zm3/2]

0(2alZ 1/2 (1- )i/2

xm = ko (1- 2 I m I 2
(2a /z

k = h 0 (-2a z)1/

0 i

zm  [3a1 (m-) Tr k0 -  [2a I

2 - C01) (A16)

1 m

(Note in Eq. (AI4), let Y = 0 to determine c)

In summary:

WKB is valid for (by application of Eq. (A13))

/2)3/2 A)
2k z (2az) 1/2 (1 - z/z m  >> 1 (A7)o m 1m i

-7-

~ ~- - - - -- - -- - - ; r .= - i i I I • i I I l



For trapped modes

k0 (2alh) > (M -1 (A18)
3a 1M- 41

M is an interger

For a given h, and a1 , k must satisfy (A18) for the waves to be trapped.
0

The WKB eigen function

Pm (z5oC (1 - F)/ 2 sin Es (z) (A19)M z m  m - 4 (A9

(Note that s = -IT/4 because cm vanishes at the free surface or z =0)

The first question: "When are signals trapped?" can be answered

by application of condition (A18). A rearrangement gives

1_1/21
k 0 h > 3 (M-41) (2alh)1/2 (A20)

An evaluation of (A19) for the surface duct of Pedersen and Gordon (1965)

follows:

S-2 -1
sound velocity gradient 10 sec

I h 1 00 m

-6 -1a1  7 x 10 m

and M 1 (A2 1)

-8-



Thus k h > 30
0

f = w/2f > 225 cps

To trap the first mode, this duct must be more than 15 X thick. A similar

calculation for second mode yields f > 530 cps. For 530 cps signals, they

show fair trapping of the second mode and large leakage for higher modes.

Recalling Eq. (A3) and (A4), it is evident that P is constant for a

fixed source and receiver depths, power and wave guide parameters. P m

depends upon the product p (z 0) m (z) and thus upon the source and

receiver depths. Since (p tends to zero as z tends to zero, the source and

receiver depth dependence should be included. Incidentally, the value of

(Pm(Z) for small z is the same as that given by the dipcle formula. To show

this, we let Ym be defined with the aid of the grazing angle e as follows:

= k0 sine (A22)

The substitution of Eq. (A22) in (A3) and (A7) yields
JE

Ip2 1  sin2 Y z (423)
rn

The evaluation of s (z) for small z gives

(z) csin Y z

for z/z <<

p 2 oc sin 2 ,1 Z (A24)m m

-9-



We observe that the dipole effect if included in the mode formulation and

has the same form as it would have in a ray trace solution. Since max Ymm

or sin 6 can be determined very easily for a simple surface duct, it Amax
is easy to include the surface reflection for very shallow sources. The

comments concerning deep dipoles and uncertain source depths would alsoIi apply to the eigen functions for deep source and receiver.

Eigen functions as a function of depth are sketched in Fig. A3. The

approximate functions and exact ones from Bucker and Morris are compared.

The limit of validity of the WKB approximation is indicated.

Exact I WKB 1P

C0(2)

Limit

NI
m= 1 2 3 1

connection

z (a) (b)

Fig. A3 Eigen functions

a) From Bucker and Morris (1967)
b) WKB b W I

Approximate evaluation of the excitation functions can be made by

using the WKB eigen functions (All) and ignoring the dependence of Vm

upon z. (Yim is slowly varying except near the turning depth.) In this,

the infinite value of (p (z) at the turning depth is eliminated. We alsoMI
-10-
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approximate Pm (z) by letting Om (z) be zero for depths larger than zm .

The approximate p and derivatives are

(z) Y -1/2 sin [s (z) + s 0 <z< z (A2 5)Imm m m

m constant

FX (z) = 0 z > z (A26)

,-1/2
Cos s (z) +sJm m 

by Eq. (A12)

d s (z)

dz m

In Eq. (A7), rn becomes after substitution of (A25) and (A26) the following

2 2 1 I

m c 0  ([ a1 ) (A27)

We can express the source function as either a source power .. _L

or as an rms pressure at unit distance R The relation is from Tolstoy and
0*

Clay (2.46) - (2.50).

52.J-hc, 1
21= (-i-;- I (A28)

(1-l 1/2 1V 1/2(1c = 2 PO 0  (A29)

-11- i
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I?
The substitution of (A27), (A29) and (AI6) into (AS) yields

3/2 1/2
m = 12 1/2 0 R0  (A30)(2a I Z) (1 2a z

m 1 m)

3/2 -1 -1 -1/2 1/2m pR 4 p Z k (1 - 2a zm 00m 0 m

sin [s (z) -J sin s (Z0 ) - ] (A31)

Numerical values of P can be used in (A3) and (A8) for the calculation of
m

the acoustical press.u-e.

Before we estimate the attenuation, let us consider our results in

the context of Eq. (Al) and Fig. 2. Radiation into the M modes corres-

ponds to signals leaving the source at a succession of angles , 1
1' 2'

.... 0. 0 is approximately A0 in Fig. 2. The factor r- Pm2

M* M m
includes (rh) - I  As mentioned earlier, the dipole or surface reflection is

contained in sin Y [ .

The half channel can be evaluated by means of Eq. (A8) and (A3 1). A

The attenuation would be small and the measured attenuation of signals

in deep water can be used.

The attenuation in the surface duct is caused by leakage of waves

through the bottom of the duct. The amount of leakage depends upon

gradient of sound velocity beneath the duct in addition to the parameters

that describe the duct and the signal. The velocity gradient below the

duct is of the order of 40 times the gradient in the duct. For a rough

approximation to the form of the attenuation function, we will follow

Brekhovskikh (English ed 1960) and let the gradient in the duct be zero,

a,=0.

-12-



We give here, simplified results that are valid for trapped signals.

The actual computation is for the modes that are reflected by the change of

the velocity gradient. After considerable manipulation between pp 528 and

539, he gives the following. (Where we have used q for his s, m for his 1

and 6 for his 3 on pp 537-539):
M m

1 (3a)1/3

q - k h (A32)

for q >> 1 (trapped modes)

m q m It3- (1.57)/2 (A33)_

x = x' 1x" (A34)
m m m .

6' (9a 2
2 k0 )1/3 X' X" (A35)m2 0 m m

6' A 14m 2 [k0 5/3 h
3 (3a2 )1/3 (A36) 3

m 0

Brekhovskikh gives a table of x' and x" as function of q (or his s) for

high and low frequenc-, p. 540, and it is our Table 3. 1.

The attenuation of a 530 cps signal in a 100m duct above a negative

gradient (a2 = 3 x i0-4 m-1 ) is about 4 x 10-5 m- 1 or about 0.3 db/km.

These attenuations are somewhat higher than reported by Pedersen and

Gordon but it should be emphasized that we have assumed no trapping of

energy in the surface duct other than that reflected by the change of

gradient of c at z = h. -
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iti
A simple way to approximate the effect of a duct having a pon;itive

gradient is to replace h in Eq. (A36) by an effective he To estimate the

effective depth, let us assume that the ray leaving the surface at 0
m

travels straight, reflects at the depth he and returns to the surface at the

same distance as the actual curved ray. For very small 0r, the effective

depth is approximately 2h. Thus (A36) can be written as

2 m[k5/3 3 1/3 1
6' 14 1 k h (3a2 ) ] (A37)

The value of h should be regarded as adjustable.
e

We need to include a second form of attenuation, the loss at the

rough sea surface. On the basis of reflection of signals at a rough surface,

Tolstoy and Clay have estimated the attenuation in a wave guide having

irregular boundaries. Their equation (6. 120) is

3 2 -1

,6" = V or (heX ) (A38)
m e I

and with the aid of (AI6)

k6" 2 2 (2alz )3/2 h I (-2az -/2
6 1M e 1 Zm

In approximation, we can let z and h both be equal to h, so that 6" is

6" k 2  (2alh)3/2 h -1  (A39)

The total attenuation number is

6m 6' + 6 m (A40)

m -15-
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Summary:

For waves to be traPPed

k h (M1/2

14 2 p 2  2 (A 19)ro

4~3/4

3/2/
Pill~~1/ (O0 -12S in Ck (2a 1/

k zP(-2a 1/00)A

siCk 0 (2a z /2 ](A3 1)

2 C k h / (3a 2)1 3 1 A 6

In which17

c -1/2
c0 0 Z) 0 )
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a rms sod sur¢aco roughness

h Offoctivo dopth of corroSPondln'i constant velocity

surfaco duct, 0  2h.

P0 is the source pressure (it distanCe R
0p 0

For one mode, the transmisSion loss in db is relative to P0 at R0

the following:

-10 log (1 Ie/P,0  10 o /O

+ 1.2 x 12 m2 5/3  (3 )1/3-1

0 2

2 2 3/2 ) 1/ r
+ 8.6 k a (2a ?) In [

+ Ar + 10 log (k0 z/R 0 )

- 20 log {s 0n 0  ( z M 1/2 z]

, /2 z

-20 log sn (2aI 0 1/

+ 10 log (- 2a1 z )10 log 16W (4 1)

and where A is the absorptiOn loss for sound propagation In sea water.

As a nunmrical examplo, we 
assume conditions that are approximately

those of Podorson and Gordon'

-17-



-6 -1f 530 cps, h 100m, a, 7 x 10 m22

-4 -1
a2 = 3 x 10 m , a = 0, z= z = 16m

and ignore A. The results of calculation are given on Table 1. Two values of

the effective depth are given to demonstrate the effect.

Table 1 Estimates of mode attenuation 6'
m

M = 2, k - 2m - 1 , (2a z 1/2 4 x 102,
0 1 m

(z m = 100), q 5

Pedersen
Mode Effective depth Estimated attenuation and Gordon

for m= 1 h = 100 m 8.6 6' s 0.3 db/km~m

-3
h = 200m 8.6 6 ' 0.04 db/km 7 x 10 db/kydhe m

form 2 h 100m 8.6 6' 1.2 db/kmfo e  m

h 200m 8.66' 0. 16 db/km 0.3 db/kydhe " m "

roughness

0 6" = 0
m

a = 2m h = 100m 8.6 6" 0.2 db/kme m

Pedersen and Gordon show data for a relatively short range of 10 kyds and

it is difficult to measure the attenuation coefficients of the low modes in

this distance. The estimated attenuation are probably with the right order

of magnitude.
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Evaluation of the rest of the constants in Eq. (A41) yields 'or m 1,

h = 100m, o = 0, and r in kin, i.e. R1 = 1 km
eM

-10 log ( 1 p1 /P0 ) 52 + 10 log (r/R 1 4 0.3r, R= 1 km (A42)

If more than one mode were contributing, Eq. (A8) should be used. A

comparison of Eq. (A42) an6 their data are shown on Fig. A4.

1 2 3 4 5 6 7 8 9 10

RECEIVER O[P1iH 5OFT
4C FREQUENCY b30 CPS

MODE:. THEORY R S PROFILE
S ' Eq. (A12) .' EXPERIMENTI - *P mode\ .. MODE: itIEORY S PROFILE "

Imod

RANGE IKYDS)

FIG. 5. Propagaition losses for 50-ft reccimr, 55.ft soUrce.

Fig. A4 From Pedersen and Gordon, 1965.

In conclusion, we suggest the next steps. At high frequencies, the

number of trapped modes is high and correspondingly, Eq. (A41) should not

be used. Brekhovskikh has studied this and has suggested the use of
2"average decay laws", pp. 415-421 (1960). He averaged p over the depth

and then replaced the summation of modes by an integration. For mode

attenuations proportional to m [Eq. (A36)] , the average decay of p is

proportional to r- 3/ 2 .
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