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The normal mode solution of sound t;ané’miSsion has been used as
the basis of an approximate (WKB) calculation. The attenuation of low
frequency signals in a surface duct is shown to be proportional to fts/3

where f{ is the frequency. The high frequency attenuation is based upon
experimental data and is proportional to. f 172 {le'he leakage of sound
energy fcom the duct is used as a means to estimate the signal received

beneath the duct. The theoretical results have compared with theoretical
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data. The surface duct attenuation formula fits the experimental data

within the spread of the data.
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I Introduction

The theories needed to describe sound prepagation in the half

e At g i ey

channel and surface duct are essentially the same, so we have combined
- the discussions. The ray pechs for these cases are shown on Fig. 1., At
- : “very Siigh frequencxes when the surface duct is hundreds of wavelengths
deep, the ray theory gives a good description of signal transmission and
the formation of shadow zones. At iow frequencies when the duct (or
half channel) is a few :A;evelengths thick the wave diffraction effects are
important. In a shallow duct, low'fr'equency waves may not be trapped
and thus have very high attermation while a high frequency signal would be

trapped and have low attenuation.
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Fig. 1 Half channe! and surface duct. The shadow is crosshatched.

A considerable body of theory and experiment has shown that the
depth of the duct, the frequency and sound velocity gradients are needed
to describe the sound transnmission. Since we must consider frequencies
lower than have been studied to any extent, our theory should be extrap-
olatable,

The answers to the fullowing questions are needed to describe
sound transmission in a half channel or surface duct.

1. When are signals trapped?
2. How much of the energy is trapped?
3. What is the attenuation?
4. Whaut happens to the energy lost from the duct and can it

be received?

We have tried several approaches to the problem: First, ray
tracing procedures coupled with estimates of attenuation were tried;
however, the results were not good and too much empirical adjustment
was required., Wave theory in the form of an approximate normal mode

calculation was found to give agreement with the experimental data of
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Pederson and Gordon (1965). The development is given in Appendix A. The
description of the simplified surface duct model in the following sections is

an empirical adaptation of those results.

1T Trapped Sound Enerqy

The model is sketched on Fig, 2. The duct is assumed to be many
acoustic wavelengths deep. More exact specification can be obtained from
the normal mode solution of the problem as given in Appendix A. A slight

rearrangement of equation A20 yields for the lowest mode the following:

3/2
C
0\ g -1/

clz) = ¢, + 9,2 z< h

where f is the frequency in cps
h is the mixed-layer depth

<, is the sound velocity

c_;1 is the gradient of sound velocity in the mixed layer

On assuming that part of the sound energy is trapped, the mean
square pressure can he expressed as a cylindrically spreading wave. With

the aid of Fig. 2, it is the following:
y) -
'p"l = pOZA (rh) Yae exp -~ Br (1)

where po is the acoustical pressure at a unit distance. For convenience,
A and B are regarded as being empirical constants which can be determined

as a function of frequency, h and sound velocity g:adients. Actually an
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Fig. 2 Surface duct as a wave guide; x_ is the distance required for the
steepest turning ray to reach depth h. 9 and gy are the
sound velocity gradients above and below depth h. The effective

depth he is also shown.

approximate wave theory solution of the problem yields the functions for
both A and B.

If the primary interest is the surface duct propagation then the

wave equations in the summary of Appendix A should be used. For order of

magnitude estimates of surface duct transmission an empirical value of A is

satisfactory.
II1 Attenuation

The measured attenuation of signal transmission in the surface duct

has been shown to have large attenuations at low frequencies. These

losses are caused by poor trapping or leakage of sound energy from the
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duct. The attenuation also increases at high frequencies and this loss is
assumed to be causea by the scattering of sound. On separating the

effects, B can be expressed as the following:

B~ 2(6' + 6") (2)

it w.l:lm-lm.ﬂ'ﬁ«’ﬁ:-h;&ﬁﬂ“{mﬂﬁnliﬁﬁmﬁu’m!M;ﬂvﬁﬂd’lwﬂﬁ:ﬂﬁ‘!ﬂlmleJEz‘.ﬁEMﬁmm'I{rnﬂxlfﬂzfﬁi!fmll{uﬂ:?&‘!m'ﬁﬂifﬁfw

where 6' is the leakage attenuation (low frequoncy)

6" is the scattering attenuation (high frequency)

Experimental measurements of B have helped but theoretical
description of the functional t. m of §' is needed. Diffraction or

leakage of energy can be estimated, with the aid of wave theory.

Normal mode descriptions of the wave field were used by Pederson
and Gordon{1965) and more recently Bucker and Morris (1967). One could
use their methods, however, we felt that amount of computational effort v
could be too large. A less accurate theory having simpler equations would
be sufficiont for our purpose. On the basis of these excellent comparisons
of theory and experiment, we have chosen to use the normal mode method
to develop the attenuation function B. In the development we will use
their results as a guide in making many of our approximations and simplifi~

cations. The development and equations are given in Appendix A.

The attenuation due to leakage through the bottom of the surface

duct is (Appendix Eq. A2 and A37)

Mg B S A O s B S A A A Wt Al

iy

5/3 he-3 g2-1/3 x 105 i m-l (3

6 ~ f
waere f 1is frequency in cps

he is effective layer depth in m

95 is the sound velocity gradient beneath the duct

and h is much greater than A , and generally of the order of 10X.




In a duct having a positive sound gradient, he is approximately 2h, Fig. 2.
Both he and the mode number (here it is one) enter as somewhat arbitrary
factors in Eq. (2). Thus it is reasonable to add an adjustable factor to

Eq. (2) if necessary.

To this attenuation we should add the losses that have been
presumed to be caused by sound scattering at the surface. The high
frequency sound can also be scattered by the smaller inhomogenities that
are generally found in mixed layers. We use the following empiricai

formulas given by Marsh and Shulkin {1967):

for sea state < 3

a, = 1.5 (/) 12 4b/kyd
for sea state > 3
! a, = 9 (/) 12 4b/kyd (4)
§ f inkcps
§ h in ft

or for exponential function,

6" {g} (f/h) 1/2 X 10-5 nepers/m

5

§

for f incps and h in m (S)
In the appendix, we estimated the surface reflection loss,

Eq. (A39), and found it to be proportional to frequency squared. The role

of the various scattering mechanisms in the mixed layer are not understood
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and for the present, it is recommended that the empirical functions (4) or

(5) be used., The total attenuation is

B = 2(6' + &)

B~ 2(f/3 h3"3 92'1/3 x 10% + {2} /02 x 1078 (€)
Use 3 for sea state < 3 6 for sea state > 3

In normal use B is converted 10 db/kyd and the parameters are entered in

kHz and ft. On replacing he by 2h, the attenuation is

1/2
B 5 .-5/3 -3 -1/3 {4.5 £ A
By = 4x10° (273wl gr 13 {4 }(h) ab/kyd 7

for sea states < 3 and > 3

The dependence of B upon frequency is sketched on Fig. 3. The numerical

constants in Eq. {6) are approximate and can be adjusted empirically.

100

/7 KYD

rl"t 1]

A?TE"_‘_UAYION
(=] .

I«ABSORPYION
7 .01k2 DB/ XYD

1000
FREQ CPS.

F1G. 10. Attenuation rate s frequency for the leakage arrival
for one refraction cycle at Bear, shallew hydrophone. Spectrum
levels are given for a band width of 1 cps and a reference pressure
level of 1 d/em® rms for 1 sec. The height of the crosses gives
the variation of the levels and the width of the crosses gives the
band width of the filter. The theoretical attenuation rate ts
frequency was calculated for a channel depth of 290° and a
thermocline of 0.147 sec.

Fig. 3 Surface duct attenuation, B. The data is from T. Arase, J. Acoust.
Soc. Am. 31, 588-595 (1959).
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v Half Channel

The half channel condition generally refers to a deep ocean having

the sound velocity minimum near or at the surface. The sound trapping

condition applies as follows

3/2

C
_o -1/2
f>> (Zh) 9

and the water is of the order of hundreds of wave iengths thick. The

simplest approximation is to assume that all sound energy that does not

interact with the bottom is trapped and spread cyclindrically. Since the

wave guide is very thick, leakage losses can be neglected and the signal

ievel is

A(rh)-]' AB exp - ar

) - ey
Po
where ¢« is the sound zbsorption loss in sea water. In this formula, the
vertical distribution of sound energy is approximated as being constant
whereas it actually decreases as a function of depth. For more accurate

calculations, the normal mode solutions, Eq. (A8) and (A31), should be
used.

1f the water 15 too shallow for the trapping of sound, then the
problem should be treated as a shallow water wave guid=, Here the

properties of the bottom are very important.

\Y) Surface Duct Leakage

Sound energy can be scatterad into and out of the surface duct.

The oniy losses aside from the absorption are those caused by scattering

and diffraction. As shown on Fig. 4, the flow of energy is horizontai and

the losses flow downward.
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Fig. 4 Surface duct energy leakage

The energy flow per unit area is sound pressure times the particie
velocity. If the ray paths are in the direction of energy flow then the
energy flow per unit are proportional to pressure squared. For our approxi-

mation we will use the pressure squared.

The energy loss from the length of guide Ax is

p, 8% = [p° () - p° (x+ Ax] & (8

9
The T- ylor expansion for p (x + Ax) is

P (x+ AX) = p> (¥ + —?3; p% () Ax 9)
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The loss of p2 per unit length is proportional to p2 and is

2
4p° _ .2
Ax - B P (11)

Thus the leakage pressure is

2 2 (12)

The transmission loss in going from a pressure in the duct to a

receiver beneath the duct is

TL for leakage = =10 log Bh (13)

The leakage signal is large for large duct attenuation and smail for

At large distances from the source the leakage
From Urick it

low duct attenuation.
pressure is proportional to the signal in the surface duct.

appears that the transmissicon losses in going from within the duct to

beneath the duct are of the order of 15 db. In the model that we have

assumed, the leakage signal is essentially independent of the receiver

depth beneath the duct. The direction of the leakage arrival is approxi-~

mately that of an initiai’; horizontal ray just beneath the duct.

The leakage signals are traveling in the forward direction. Thus,

we can regard the leakage as being a set of directional sources just
beneath the sound duct. As suggested by Hersey and Officer, the sound
can follow the usual deep transmission paths and also be received at
refraction or convergence zone distances. The transmission paths are
shown on Fig. 5. Experiments have shown that the apparent broadening

of the coavergence zone (or "bounce" in this paper) can be ascribed to

leakage signals, Fig. 6. The leakage signals following the convergence

zone were about 20 db less than the main signal.
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Fic. 2. Pussible ray paths for one refraction aacle
eakage propagation.

Fig. 5 Trom Arase (1959)
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Appendix A

SOUND TRANSMISSION IN A HALF CHANNEL AND A SURFACE DUCT

The mathematical developments of the normal mode solution of the
half channel and surface duct are a bit involved so at the outset we will

state what we are after. In a wave guide the pressure field is

2

P f
2 0 -6 r
o — m

We would like to calculate the constant of proportionality. But it is even
more important to derive the dependence of the attenuation on frequency,

layer depth etc. Ignoring the loss due to surface roughness, we will show

that the (rms pressure) attenuation is the following

61 o~ / 14 mz /
m 5/3 .3 1/3
kg h (3a,)
wf_S/s h-:*]gz_l/3 106 in nepers m-1 (A2)
- W
where k0 = <o
h = layer depth
g2 = sound velocity gradient beneath the mixed layer
m = mode number, 1, 2, 3, ...

The most optimistic estimate for attenuation is to assume m =1, The
-5/3 -3

essential behavior is that G;n is proportional to £
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The model that we used to estimate the surface duct attenuation is §

that of Brekhovskikh. As shown on lig. Al, the sound velocity is constant 5‘%
in the mixed layer and has a sharp gradient beneath the layer. The sound g
is partially reflected by the change of the sound velocity gradient. It may %
be surprising, but comparison of the attenuations and transmission losses §
computed by means of Eq. (A2) are nearly the same as those given by 3
3

Pedersen and Gordon (1965). This means that, except for very high frequencies, §
=

the essential part of the trapping in the surface duct is the reflection at the _%
2

change of gradient, §
§

C, C{2 r 2

0 =

e %

=

C§

4

G

'

Z

Fig. Al Surface duct, c (z) = constant in mixed layer

The acoustical pressure due to a continuous wave point source in

a wave guide has been discussed in much detail by Tolstoy and Clay (1966).

We will use their results and generally follow their notations. In the
stratified wave guide, ¢ (z), the acoustical pressure at large range is

(with the aid of their Eq 2.5 and 3.118) the following:

S e - T e - _wa e 5 !
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M
p=iQ 2 P exp-i(n r-wt-lr—)—ﬁr (A3)
rl/?' m m 4 m
m=1
P = p o (z)o (2 p. " (a4)
m m m 0 "m [
- 1/2 -1. -1/2
2 v
P 2 (ps coﬂ.) ps vm xm (AS)
2, and z are the source and receiver Gepths (Fig. Al)
r is range in cylindrical coordinates
z is depth, positive downward
] is angular frequency
A is horizontal component of wave number
x = w/c_,c_ is phase velocity
m m m
‘ym = vertical component of wave number
2 2, 1,2
. = + = =
k (‘)’m X ) w/c 2m/\
JL is source power

P, and p are the densities at source and receiver

6
m

is> the mode attenuation and is an addition to the

original) egquation

are the eigen functions and are solutions of the

separated wave equation:

s a0 A
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[ B

2
Vo ™ Sp (pm dz
c 2 2 zn‘
- 02 {ymz me * (%:;Q m) ] (&7)
2w al 0
/2

_ -1
where ¢ = S, Q1 2alz)

The solutions of Eq. (A6) in a stratified wave guide ('}'m is a function of 2)
generaliy require extensive numerical computations. Our purpose in the
following is to develop approximate solutions which can be used as a guide
in devising a simple approximation such as Eq. (Al). But first we take the

absolute square of Eq. (A3) and examine the result.

M
Mz - p2 r-l z PmZ e-ZGmr+}2_ z Pmpn e-(bm + Gn) r
m m>n

cos (xm - nn) r (A8)

The first summation gives the average level as a function of range. The
second set of terms is oscillatory and these terms describe the maximums
and minimums often observed in experiments. These terms depend upon

(xm - xn) and great accuracy in the computation of the eigen functions, xm,
is required to theoretically duplicate the actual maximums and minimums of
experimental data. At very large range, the sound field is analyzed by
measuring the mean level and correspondingly, we ignore the second

summation or the fluctuations, Thus, approximate eigen values nm will

be adequate.
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We use the WKB approximation (Tolstoy and Clay, pp. 48~52) to
determine the eigen functions. As shown on 'ig. A2, the following sound

velocity profiles are convenient to describe the surface duct and fcr ;

computation:

c = ¢ \:li»Zzaz(z—h)]-l/2 z> h

T YRR DR AR

S = C a- Za\lh)"l/2 (A9)

‘w

e T

To begin with, we are assuming a positive gradient in the mixed layer so

that we can also apply the theory to the half channel.

AR y
s 5‘4\'-"{", L[Iﬂ\-“‘f'lﬂl i

T
ittt P,

For small gradients, Eq. (A9) are the approximate linear functions

' as follows:

et ey
r}

m
i

et

. —

c ® ¢, (1+alz)

Mt

c ch[l-—az(z—h)]

M ys'fv""""‘f'l‘ih"}ﬂ\v‘u!‘r ;;51‘:;"‘“.“

The approximate eigen functions are

-1/2
o (2 Y sin '[sm (2) + sl]

z —
sm(z) —g ‘ymdz+so-m1r
0
m=1,2,3,...M

it L
)
o
]




~= c (2)

hj—orer— — c

Fig. A2 Surface duct

The condition for validity of the WKB method is (Tolstoy and Clay, 2.213)

<<1 (A13)

1
Y

The approximate eigen functions, Eq. (All), canrot be used at small ¥, or
at the turning depths. The mathematical techniques used to connect the
WKB eigen functions through turning points are discussed in many quantum
mechanics texts. We will not use @ near the turning depths and not

calculate the connection functions.

Modes are trapped for those frequencies, or x o’ for which
Eq. (Al2) is satisfied. Let us assume that the mth mode turns at depth

z , has the wave number component xm and phase velocity Cm' '}'m is

2, -2 -2
= w (c -c ) (A14)
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With the aid of the preceding equation, the integration of Eq. (Al2) [for
c given by Eq. (A9)] yields after manipulation

/2 + mu (A15)

i

o |2

kK
_ 0 3
sm (zm) - 361 (2alzm)

where (A9) or (A10) have been used to express the parameters as follows:

sm(:a) = (m —%) m[1-(Q - Z/Zm)3/2]

/2

Ec
<3
=
=1

=
=
=

Y = ko (Zalzm)l/2 Q- z/zm)1

1 ¢

_ ) 1/2
xm = ko Q1 2alzm)

. 1/2
k = ho (I—Zalz)
B 1, . . -142/3 -1
2z = [3al (m—q)‘n K, ] [2&1]
2

; c

% - L 1__25) (A16)
2a c

: 1 m

' (Note in Eq. (Al4), let ¥ = 0 to determine Cm)

In summary:

4 WKB is valid for (by application of Eq. (Al3) )

, 1/2 3/2
Zko 2z (Zalzm) (1 z/zm) >> 1
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For trapped modes

i

k

0 3
3a, (22, h)

nk

AT

/2 > (M -

M is an interger

e

i)

For a given h, and a1 . ko must satisfy (A18) for the waves to be trapped.

The WKB eigen function

o (o< (1-2 )71/

7 sin [sm (2) —% ] (A19)

(Note that s, = -m/4 because gom vanishes at the free surface or z = 0)

1

The first question: "When are signals trapped?" can be answered *

by application of condition (Al18). A rearrangement gives

K h >3 (M—%) n (2a1h)‘1/2/2

0 (A20)

An evaluation of (419) for the surface duct of Pedersen and Gordon (1965)

follows:
sound velocity gradient = 10 ~ sec
hs 100m

a, ~» 7 xlO—Gm—
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f = w/2m > 225 cos

o A )

=
inw »

To trap the first mode, this duct must be more than 15X thick. A similar
calculation for second mode vields f > 5390 cps. For 530 cps signals, they

show fair trapping of the second mode and large leakage for higher modes.

Recalling Eq. (A3) and (Ad4), it is evident that Pm is constant for a

25 fixed source and receiver depths, power and wave guide parameters. Pm

4 depends upon the product (pm (zO) (pm (z) and thus upon the source and

: receiver depths. Since gom tends to zero as z tends to zero, the source and
3 receiver depth dependence should be included. Incidentally, the value of
(pm(z) for small z is the same as that given by the dipcle formula. To show
% this, we let Vm be defined with the aid of the grazing angle 6 as follows:
§: ‘)/m = ko sin 6 (A22)
2 The substitution of Eq. {A22) in (A3) and (A7) vyields

=H

I
Ui

i
i

il

A

lpzl o¢ si.n2 '}’m z (A23)

A

1
i
f

Ll

The evaluation of sm (z) for small z gives

e (z) ec sin Ym 2

E ==
==
==

=
=4
=3
=3
=
=
=

for z/z << 1
m

2 oc sin2 ‘)’m z (A24)
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We observe that the dipole effect ic included in the mode formulation and
has the same form as it would have in a ray trace solution. Since max ‘)’m
or sin 6 max 30 be determined very easily for a simple surface duct, it
is easy to include the surface reflection for very shallow sources. The
comments concerning deep dipoles and uncertain source depths would also

apply to the eigen functions for deep source and receiver.

Eigen functions as a function of depth are sketched in Fig. A3. The
approximate functions and exact ones from Bucker and Morris are compared.

The limit of validity of the WKB approximation is indicated.

Exact |o] WKB |o|
—

C(2) \

Y ey

— —_ . Limit s
—_— L=
S
r 1 ' ! |
m=1 2 3

connection

’

M

z {a) (b)
IFig. A3 Eigen functions

a) From Bucker and Morris (1967)
b) WKB

e

by

Approximate evaluation of the excitation functions can be made by
using the WKB eigen functions (Al11l) and ignoring the dependence of Ym
upon 2. (‘}'m is slowly varying except near the turning depth.) In this,

the infinite value of (pm (z) at the turning depth is eliminated. We also

-10-
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approximate ¢_(z) by letting ¢ (z) be zero for depths larger than z_..
= m m m

The approximate “n and derivatives are

@ (2) = Ym-l/z sin [sm (2) + 31] 0<z=2z {(a23)

Ym = constant

z (A26)

3

G
~
o
il
o
N
v
il AR U RO D e AR AL LI Al N SR e b A K

L= .),m~l/2 cos [sm (2) + 51]

s

by Eq. (A12)

%
T U P

,(uz’t.)

dsm(z) _
dz m

In Eq. {A7), Y becomes after substitution of (A25) and (A26) the following

2 .. 2 -1
Rocy (wTa)) Tlvp Ly (n27)

"+

Um

)

We can express the scurce function as either a source power J L

or as an rms pressure at unit distance RO' The relation is from Tolstoy and

Clay (2.46) - (2.50).

A B AL i i

'Pz' = p (-%'f;') iz

1/2
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The substitution of (A27), {A29) and (Al6) into (AS) yields

ALK

2
4372 kol/" (2a))
Pm © 7, 1/2 172 P %o (A30)
(za,z ) (1-2a.z )
17m 1™ m

3/2 -1 _ -1, -1/2 -1/2
= 1 -
Pm Py R0 4n p Tz Tk (1 Za1 zm)

ey

sin [sm(z) —f‘.} sin [sm(zo) - % ] (A31)

Numerical values of Pm can be used in (A3) and (A8) for the calculaticn of e

the acoustical pressure.

Before we estimate the attenuation, let us consider our results in b

the context of Eq. (Al) and Fig. 2. Radiation into the M modes corres-

ponds to signals leaving the source at a succession of angles 61, 92,
. " A in -1 p 2
“ e . GM. OM is approximately A8 in Fig. 2. The factor r Pm
includes (rh)"l. As mentioned earlier, the dipole or surface reflection is

contained in sin Y[ J.

The half channel can be evaluated by means of Eq. (A8) and (A31).

L S MMMMMMMMMWMfﬂmmE‘rmWE‘Mmmmrammm‘mmmmammm«;m».mﬁmmm«w.’nm_r.waum.mm.M:n. Wedes b

The attenuation would be small and the measured attenuaticn of signals =

in deep water can be used.

The attenuation in the surface duct is caused by leakage of waves
throucgh the bottom of the duct. The amount of leakage depends upon
gradient of sound velocity beneath the duct in addition to the parameters
that describe the duct and the signal. The velocity gradient below the
duct is of the order of 40 times the gradient in the duct. For a rough
approximation to the form of the attenuation function, we will follow

Brakhovskikh (English ed 1960) and let the gradient in the duct be zero,

a1=0.

-12-
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We give here, simplified results that are valid for trapped signals.
The actual computation is for the modes that are reflected by the change of

the velocity gradient. After considerable manipulation between pp 528 and

539, he gives the following. (Where we have used q for his s, m for his 1

and 6::1 for his Bm on pp 537~539):

_ lkhsazl/s
a 3 00\ kg

(trapped modes)

mu

3g+ iv3 (1.57)/2

5 1am? (x5 13 (3a
m 0 2

)1/3 ]-1

Brekhovskikh gives a table of x' and x" as function of g {or his s) for
high and low frequency, p. 540, and it is our Table 3.1.

The attenuation of a 530 cps signal in a 100m duct above a negative

gradient (az =3x1074 m’l) is about 4 x 10~° m~! or about 0.3 db/km.

These attenuations are somewhat higher than reported by Pedersen and
Gordon but it should be emphasized that we have assumed no trapping of

energy in the surface duct other than that reflected by the change of

gradient of ¢ at z = h.
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A simple way to approximate the effect of a duct having a positive

gradient is to replace h in Eq. {A36) by an effective he . To estimate the

affective depth, let us assume that the ray leaving the suriace at Om
travels straight, reflects at the depth he and returns to the surface at the
same distance as the actual curved ray. For very small 6m, the effective

depth is approximately 2h. Thus (A3€) can be written as

2 5/3. 3
! £ [k
) " 14 m ‘}\0 he (362)

The value of he should be regarded as adjustable.

We need to include a second form of attenuation, the loss at the

rough sea surface. On the basis of reflection of signals at a rough surface,

Tolstoy and Clav have estimated the attenuation in a wave guide having

irregular boundaries. Their equation (5.120) is

0" mo YmS 02 (he X m)“1 (A38)
and with the aid of (A16)
6"m = koz 02 (2a1 zm)3/2 he-1 (}--?.a1 zm)“l/2
In approximation, we can let z, and he both be equal to h, so that 6"m is
ot~ kPol (?.alh)3"'2 h! (A39)
The total attenuation number is
bm = 6'm + 6"m (A40)
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Summary:

For waves to be trapped

1 0. am1/2
kgh > -§~(M -3 T @a, 1) (A19)

TR
;;;'é
=
=z
3
=
=
E
k]
=
%
=
£
=
2
2
E
£
E
3
]

9 M
2 ' 2 - u
Ip‘ “ N %— Pm“ o~ bt + cross terms {A8)

m=1

3/2

4w < 1/2,_

P (0 Ry) 172 172 stn Uky@apz )4 )
0

zmp (1~ 2:\1 am)

- L /2 .
sin “‘0 (2alzm) 2] (A31) ,

wmwmﬁmmmwnsmmmmm;m,mmmwmmm

= _l. . . 1/3 2
qQ = 3 }‘0 ha (Saszo) (A32)

, sl 5783 /3. o \
Gm & 14 m [ko ho (sag) ] (A36)

. 2 2 372 1/2. <1
" - 2 o ’ - [od 1
) r kg (..al..m) (h o (1 2:),1 “m) ] (A39)

in which

£h

wmm:mmlmmwﬂmawwmmmmrmmmﬁg\mmwmmwmwfr

o - -1/2
c = o Q1 261 2) 0

s
(&
)

¢ = ch[l+232 (:c--h)]“l'/2 z > h (A9)

=
.
3
=
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1y o =1.2/3 -1
z, = [361 (:)1-4)7r ko ] [2013
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g w rms 804 sutrface roughness

he « offoctive depth of corresponding constant velocity

gurfaceo duct, ho ~ 2h,

p0 {g the source pressure at distance RO.

For one mode, the transmission loss In db is relative to Pg at RO
the following:

-10 log (\p‘z/l’oz) = 10 log (x‘/Ro)
2 2 §/3, 3 1/34 -1
. L TR 0 ~
1.2 x 107 m “‘0 he (3a2) 1 s
22 3/2 ) 1/24 -1
+ 8.6 Lo ] (2@«I zm) [he(l 2a, zm) 1 'r
2 /R

+ Av + 10 log (LO 2 0)

g 1/2 }
- 20 log {sh\ ko (2.&\1 zm) I

- 20 109 {smk (2a, = )1/2 z‘} .
0 1 ™m

+ 10 log (} - 2&\1 'z.m) - 10 log 16 ﬂ'3 (A41)

and where A is the absorption loss for sound propagation in sea water,

As a numerical example, we assume conditions that are app\‘oxlmately
those of Pedersen and Gordon:




= 530 cps,

a, = 3x 10_4 m'-1

2 ] 16m

and ignore A. The results of calculation are given on Table 1. Two values of

the effective depth are given to demonstrate the effect.

Table 1 Estimates of mode attenuation 6'm
= ~ 2m—1 1/2 -2
M-—Z,k0 2m™ ", (Za1 zm) 4 x 107°,
= ~ &
(zm 100), g=~¢&

Pedersen
Mode Effective depth Estimated attenuation and Gordon

form=1 h =100 m 8.6 6'm~ 0.3 db/km

200m 8.6 G'mz 0.04 db/km 7 x 10“3 db/kyd

100m 8.6 G'm ~ 1.2 db/km
200m 8.66'm ~ 0,16 db/km 0.3 db/kyd

roughness

o=0

o =2m 8.6 6'{n ~ 0.2 db/km

Pedersen and Gordon show data for a relatively short range of 10 kyds and
it is difficult to measure the attenuation coefficients of the low modes in
this distance. The estimated attenuation are probably with the right order

of magnitude.




Evaluation of the rest of the constants in Eq. (A41) yields ‘or m = 1,

he = 100m, 0 =0, and rin km, i.e. R1 =1km

-10 log ('p'z/l’oz) ~ 52 + 10 log (r/Rl) 4+ 0.3r, R1 =1 km (A42)

If more than one mode were contributing, Eq. (A8) should be used. A

comparison of Eq. (A42) anc¢ their data are shown on Fig. A4.
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¥1c, 5. Propagation losses for 50-{t receiver, 33-{t source.

Fig. A4 From Pedersen and Gordon, 1Y65.

In conclusion, we suggest the next steps. At high frequencies, the
number of trapped modes is high and correspondingly, Eq. (A41) should not
be used. Brekhovskikh has studied this and has suggested the use of
"average decay laws", pp. 415-421 (1960). He averaged p2 over the depth
and then replaced the summation of modes by an integration. For mode

2
attenuations proportional to m~ [Eq.{(A36)] , the average decay of p2 is

proportional to 173/2'




