o
"3
5&

ﬁﬁ::::z.::....ﬁf.:":.%.;:::.. | EEVE

ADAQ6197Y

DDC FiLE copy

| COMPUTER SCIENCE

B

LD c
2 [P~ 12
DEC 11 1978 n

f ”i [CGLI UL
B

Carneqgie-Mellon University
A/a:s o84

ig release;
Approved for publ
dutrumuon unlimited,

CMu-CS-78-131

Survey of Scope Issues
in Programming Languages

|
\

lBob Schwanke

June, 1978

I tiVS))
DEC 11 1978

ATR PORCE Orv
) T ar
NOTICE I(¥ OF SCIENTIPIC RESEA
CE OF 7y MITTAL Tn | RESFARCH (AFSC)

This tooch

approved b} 3
Distrilb w ; : LAW AF] _ ~l'!d is
Ae De BLU:,‘};_ - od, A < (7b

lechnical luformat fon Ofrice
r

This work was supported in part by the Defense Advanced Research Projects Agency
under contract no. F44620-73-C-0074.

S —
DISTRIBUTION STA

Approved for public release
Distribution Unlimited

sl

oL

ABSTRACT

In this paper we shall qtudy scope issues in programming languages,
from the standard binding techpiques and philosophies of early {anguages, to
the recent work in data encapsulation. First we will study the fundamental
concepts of binding, then see how they appeared in early languages. The
scope problems in these fanguages made clear the need for addilional program
sfrucfuring fools, leading fo the development of data encapsulation
mechanisms. We shall sludy the scope properties of data capsules, and

compare the encapsulation philosophies of several modern languages. We shall

use the notion of abstract data types to study modern scope issues, and to
survey recenl advances in several scope-relaled areas. Finally we shall
compare and conlrast several languages, both old and new, by studying
solutions in each of them to a common programming problem.R

bgpat ACCESSIUN or
e NTIS Wivte Section
noe @it Section

UNANNO 207D

Bv

a
a

JUSTUC A TN -

DISTRIBU T4t/ AVATLABILITY CODES

(Dist. ALl and, ‘ot SPECIAL

#

R—— L _— VYRR ¢ |

SR ST

——e,

e ———

1. Introduction

{.1. Terminology
1.1.1. Definition of Scope
{.1.2. Definition of Extent
1.1.3. Definition of Range
1.2. Overview
1.3. Languages discussed in this survey
1.3.1. Early languages
1.3.2. Modern Languages ’
2. A Set of Simple Binding Mechanisms
2.1. Notalion
2.2. Explicit Binding Mechanisms
2.2.1. NEW Variables
2.2.2. VAL Variables
2.2.3. VAR variables
2.2.4. EXPR variables
2.2.5. LABEL variables
2.3. Free Name Binding
2.3.1. CLOSED ranges
2.3.2. OPEN ranges
2.3.3. DYNAMIC and STATIC ranges
2.4. Summary of Mechanisms

3. Scope Mechanisms in Early Languages

3.1. Free Name Mechanisms

3.2. Paramelter mechanisms
3.2.1. Fortran: REFERENCE parameters
3.2.2. Algol: VALUE and NAME parameters
3.2.3. LISP: VAL, VALUE, or REFERENCE?
3.2.4. Analysis

3.3. Side effects
3.3.1. The Alias Problem
3.3.2. Parameter Aliases
3.3.3. Free Name Aliases
3.3.4. Pointer Aliases
3.3.5. Evalualion side-effects

4. Modern Language Designs

4.]1. Overview
4.1.1. The Software Crisis
4.1.2. Modern concerns of language designers
4.1.2.1. Programming Methodologies
4.1.2.2. Overall Structure
4.1.2.3. Fulfilling Requiremenls
4.1.2.4. Robustness of Programs and Languages
4.1.2.5. Etficiency
4.1.3. Goals of Modern Languages
4.1.4. Scope Control and Modern Concerns
4.2. Modern Binding Mechanisms
4.2.1. VAL mechanisms
4.2.2. VAR mechanisms
4.2.3. EXPR and PROC mechanisms
4.2.4. Free Name Mechanisms
4.3. Data Encapsulalion

QWWRONNOOTGO O UL DWNRN=—»— -

o~

4.3.1. Origins
4.3.2. A Data Capsule
4.3.3. Mechanisms in Modern Languages

4.4. Relalionships among objecls, types, and ranges

4.4.1, Initialization

4.4.2. Object-Object Relationships
4.4.2.1. The Problem of Pointers
4.4.2.2. VAR Parameters To Capsules
4.4.2.3. Binary Trees

4.4.2.4. Resource Problem

4.4.3. Generic Types

4.4.4. Closely Related Types

45. Applying Data Abstraction To Several Scope-related Problems

45.1. Loops as ranges

45.2. Aliases Revisiled

4.5.3. Exception Handling

45.4. Type Breaching

455. Scope Aspects of Multiprogramming .

5. Programming Examples

6. Summary
References

. The Problem
. Fortran

. Algol 60

. Pascal

. Algol 68

. Euclid

. Alphard

. Modula

.9. Simula 67

e e Toton e SR

Scope lIssues in Programming Languages 1 Chapter 1

1. Introduction

The scope mechanisms of a programming language .are those features which describe and
control the use of named entities, such as variables, procedures, and types. As suci'm, they
are the notalion for describing the structure of programs. The particular scope mechanisms a
language provides, by dictating what scope relationships a program may contain, profoundly
influence the structure, and thus the quality, of that program. The scope properties of a
program affect its understandabilily, ils efficiency, its verifiability, its modifiability, and even
the difficulty of finding its bugs. Thus studying scope can shed light both on programming

languages and on programming itself.

1.1. Terminology

The term scope has been used to mean any of a large variety of loosely related concepts.
In order to use it meaningfully in this paper, | shall assign a single, narrow meaning to it, and

define two other terms, extent and range, to denote two other relaied concepls.

Before defining those terms, however, | need to make clear my frame of reference. In
programming {anguages a variable consists of a name, an object, and a value, though ane or
more of these may be omitted. In the mainstream of language design, e.g. Fortran, Algol 60,
Pascal, and Alphard, a variable is composed of all three. Specifically, a name is a program’s
way of denoting an object , which is a portion of memory containing one or more values ,
which may be integers, memory addresses, procedure bodies, or what have you. In languages
like LISP and its descendants, howevci, an identifier denotes a value directly, though some

values can be "modified" (CLU calls t

m mutable [31]) In Algol 68, a name is a constant
equal to the address of an object. For the purposes of this paper, however, | use the terms
variable, name, object, and value in lhe: sense of Algol 60, Pascal, and Alphard. That sense is
by far the most common one, and may:be used lo explain the phenomena of the LISP family
and Algol 68 fairly well.

1.1.1. Definition of Scope

We define scope to be a property of names, The scope of a name Is the portion of the

-4

|

Scope Issues in Programming Languages 2 Chaptler 1

program text in which all uses of that name have the same meaning. In particular, if the name

denotes an object, the scope of that name is the portion of the text in which the name
denotes the same object. For example, in Algol 60, when an identifier which has been
declared in an outer block is redeclared in an inner block, one says that the scope of the
outer name does not include thal inner block, and that a different name, spelled the same
way, has a scope which is the inner block. As another example, one would be tempted o say
that a reference or pointer variable name denoles different objects during the execution of
the program. However, a pointer variable Is actually a name denoting a single object whose

value Is a reference to (or address of) another object.

1.1.2. Definition of Extent

This concepl is a properly of objects. The extent of an object is its lifelime, that is, the
portion of the execution time of the program during which'the value contained in the object
persists unless explicitly changed. For example, the extent of the object denoted by a local
variable in Algol 60 is the period between entry and exit of the block in which it is declared.
On the other hand, the extent of an own variable is the entire lifetime of the program, even

though its scope is the same as thal of a local variable declared at the same place.

1.1.3. Definition of Range

This term, borrowed from Algol 68, denotes language constructs for delimiting scopes and
1

extents More precisely, a range is a portion of a program, delimited by some construct of
the language, such that the scopes of names defined inside the program portion do not
exiend outside that portion unless explicitly "exported” (more on this later). Thus ranges can

be thought of as the building blocks out of which scopes are constructed.

In Algol 60, procedures and blocks are the only range delimiters. In Algol 68, almost any
statement sequence is a range, if it includes name declarations. In modern languages, a
construct which bundles up a group of declarations info an abstract data type or module,

delimils a range.

IThe reader must not confuse this with the subrange concept of Pascal, which denotes an
interval within the values of an enumerated type.

-

Scope lzsues in Programming Language 3 Chapler |

For the purposes of this paper, ranges never overlap. When one range is nested inside
another, the ouler range leaves oft where the inner range begins. When one range provides
names, objec!s, or values 1o a range il declares or invokes, we say only that the providing
range is parl of the context of the using range. Thus in Algol 60, when one block is nested
inside anotter block, the range defined by the ouler block does not include the range defined
by the inner block, even though the scope of a variable declared in the outer block would
include the inner block. The outer black is then part of the context ot the inner block.
Similarly, in languages with "dynamic scope”, the range defined by one procedure does not
include the bodies of the procedures il calls even though the scopes of the variables declared

in the calling procedure might extend into the cailed procedures.

1.2. Overview

The history of programming language design, al least that part of it where scope has been

an issue, can be divided into two major phases.

During the first phase, which exlended from the inlroduction of Fortran through the late
1960's, languages plainly reflected the compiler technology and the machine architectures on
which they were founded. Language comparisons were based on considerations of power and
convenience. Usually they were done lealure-by-feature. A language designer could
ordinarily justify the inclusion of a parlicular feature simply by showing how conveniently it

solved some parlicular programming problem,

In Chapters 2 and 3, | present a means for calegorizing scope control mechanisms, and use
H.to describe and analyze The mechanisms developed during this phase. One of the major
issues of the day was the choice of a parameter mechanism for permitting side effects on the
actual parameters. None of the various proposals were complelely satisfactory, but the
debates served to clarify the nature of the alias problem, which Is still a major issue in

modern language designs.

Early language analysis was more coherent than early language design. Criticism included
both analysis of individual features and discussion of medium-scale issues like side-effecls
and aliases. The more general analyses of the late 60's, combined with the programming

methodology research Just then emerging, formed the bases for modern languages.

k'

Scope Issues in Programming Languages q Chapter 1|

The principal languages which have emerged since the lale 60's have been designed based
on explicit theories of programming. With 2 wide variety of suilable scope constructs already
available, language designers have tried to choose features whose interaction harmonized
with the underlying theory. This concern with interaction also molivated the inlroduction of

several new scope features.

Chapler 4 surveys the major concerns of modern language designers, and explores how
these ideas are supported and contradicted by the scope mechanisms of various modern
languages. For example, concern for modularily has caused most modern languages to
severely restrict the ways that data may be shared between various parts of a program.
Similarly, concern for verificalion must be traded off agains! generality in the design of

module constructs.

The first four chapters of this survey focus primarily on language constructs, and only
secondarily on specific languages. However, the importance of the issues discussed cannot

be fully appreciated without concrelq examples. Therefore Chapter 5 presents a simple
programming task, and solutions forw it in several languages.These examples trace the

development of various scope mechan*sms. and show the strengths and weaknesses of the

languages displayed. }

1.3. Languages discussed in this shrvey

This paper is a survey of concepts, rather than of languages. Consequently, we will discuss
specific languages only to illustrate concepts, and not to list all the languages having that
concepl. We will draw our examples from a small sel of languages which together span the
important concepts. However, the two different historical phases of language design require
distinctly different kinds of spanning sets. (The references listed in this section are language

manuals or language overviews.)

1.3.1. Early languages

During the first phase of language development, three well-known languages contained all
the major ideas on scope control. Fortran [36] is important because it was conceived before

scope was an issue, and because it is so often the object of ridicule. The mechanisms it

-~

Scope lssues in Programming Languages 5 Chapter |

presents have only limited flexibility, but in their simplicily they avoid many pitfalls of more
sophislicaled conslrucls. Algol 60 [35] is the best known of a large group of similar
languages, and captures the best thinking of a major segment of the computer science
communily of that period. LISP [55), designed around the mathemalician's notion of a
function, has engendered another large family of languages. It has a distinclly different se! of

powerful, general scope features, which have several unexpected properties.

1.3.2. Modern Languages

The modern ianguages reviewed in chapter 4 have more in common than the ones listed
above, because many of the classical design problems of the early phase have been solved.
The superficial similarities among these languages make it easier lo see the various stands
they have taken on a variety ol unsolved modern problems. Consequently we will discuss
more languages than in the early phase, bul only those fealures of each language which are

distinctive.

Pascal [57, 19] is important for its pionecer work in lype definition and axiomatic
description, as well as for being lhe basis for half a dozen recent languages. Algol 68 [56,
39] is a transilion language, designed with lofty goals, but completed too early to incorporate
several crucial modern ideas. Simula 67 [3, 4] is noteworthy as the first language to
explicitly attach procedures to data types, as well as the first lo provide a type-extension or
subtype facility in a safe way. Euclid (26, 48] and Alphard (15, 60] provide abstract data
type constructors within the Algol/Pascal line of languages. CLU [49, 29] also provides

several modern abstraction mechanisms, within a LISP-like framework. Modula [58] provides

module facilities tailored to concurrent programming.

v

o

Scope Issues in Programming Languages 6 Chapter 2

2. A Set of Simple Binding Mechanisms

It would be tempting at this point to develop a formal basis lor describing all possible
bindings b?lwren names, objects, values, environments, et cetera. (Mark Elson has developed
one such basis[10)) However, because most of the theorelically possible bindings are
impraclical, a formal basis would be too cumbersome for this survey. Instead, we shall use an
informal basis. R. D. Tennent [54) has recently formulated a simple set of mechanisms for
procedure parameters and local declarations, such that the same terms denote the same
mechanisms in both contexts. The following seclions expand his work into a set of
mechanisms sufficiently rich to describe the wide variely of actual mechanisms found in
programming languages, but not necessarily general enough to describe every conceivable

mechanism.

2.1. Notation

In order not lo prejudice the reader by using too-familiar delimiters in my examples, 1 have
created a neutral syntax for example programs. Each example will consist of three columns.
The left column contains the range in which new bindings are being made. The right column
lists the ranges which form the context from which the new range may obtain names, objects,

or values for some of its new bindings. The keywords insert, declare, and invoke mark the

exacl points where the new range louches its conlex!. Invoke marks the point where control

transfers from the context to the range, and returns when the range terminates. Declare

marks the point where the name of the range is declared. Insert simultaneously declares and
invokes the range. The middle column defines the interface between the new range and its
context. Explicit relationships use the symbol :: (double colon) to relale a variable from the
new range, on the left, to some piece of the context, on the right. Names occurring free in the
left column, and bound by a contex! in the right column, are listed in the interface column,

between angle-brackels.

2.2. Explicit Binding Mechanisms

The mechanisms described in this section each present a way of defining the relationship

of an identifier being declared in one range to the objects and identifiers In the range‘s'

"

Scope lssues in Programming Languages 7 Chapter 2

context (as defined in seclion 1.1.3), whether that be a surrounding block (in the case of

declarations), or the cailing context for a procedure (in the case of paramelers).

2.2.1. NEW Variables

A NEW variable is one which has no explicit relationship to the context of its defining
range. It consists of a name bound 10 an object, possibly initialized lo a locally computed
value. Both the name and the object Lre normally only accessible within the range in which

they are declared. Thus executing range R below would print the value 3:

range S = interface range R =
new A new A :: (nothing) new A
A:=4 | A:=3
endrange S ! insert range S
print A
endrange R

2.2.2. VAL Variables

A VAL variable brings into ils defining range the value of an object found in the range’s
context. A VAL variable may not be assigned to. Thus it cannot be used to modify the object
from which its value comes. | purposely leave unspecified whelher l'he name is bound to the
object or directly to the value. In simple cases (ie. no aliases or parallelism), it doesn'
matter. In eariy programming languages the VAL mechanism only shows up as a copied value,
used as a building block for other mechanisms. In later sections I discuss the perils of aliases

and parallelism in some delail. Executing range R in the following example also prints the

value 3:
range S = interface range R=
val A val A :: B new B
B:=3
insert range S
print B
endranpge S endrange R

No matler what the range S does, it can't tamper with the object named by B (at least not via

the interface mechanism).

"

Scope lssues in Programming Languages 8 Chapter 2

2.2.3. VAR variables

A VAR variable brings into its defining range an entire object from the range’s context. It
consists of a local name bound to that object. This means that any assignment fo a VAR
variable is also an assignment o the variable (from the surrounding conlext) which provided

the object the VAR name is bound to.

range S = inferface range R=
var B var B A new A
print B A:=3
B:=B-1 Insert range S
print B - A:=A-1
endrange S : : print A
endrange R

Executing range R above prints the sequence of values 3, 2, l,'because the names A and B

are defined by the interface lo denote the same object.

2.2.4. EXPR variables

An EXPR variable actually brings into its range a piece of text from the surrounding
context. It consists of a name bound lo an expres's.ion, which can be any expression which
would be legal in the enclosing range. The value of a EXPR variable at any time is the value
which would be obtained by evaluating the corresponding expression in the enclosing range!
If the expression would also be legal as the destination of an assignment statement, an
assignment to the EXPR variable becomes an assignment to the object described by the

expression. Otherwise, assignment to an EXPR variable has no effect.

range S = inferfact range R =
expr A expr A i: B new B
expr C expr C : B+3 : B:=2
A:=Ax2 i insert range S
C:=C=*3 ! print B
print AC i endrange R
endrange S ;
|

When the code of range S multiplies{A by 2 and stores it back into A, it is manipulating the
same object that B is bound to. When it Iries to triple B+3, via C, nothing happens. Then
when it prints A and C, it gets A’s value from that same object, and computes C's value as the

current value of B, plus 3. So the program prints 4,7,4.

Scope lssues In Programming Languages 9 Chapter 2

PROC variables are very similar to EXPR variables, in that they both transport a piece of
program tex! Into a range from its context. The only dilference Is that for an EXPR variable
the tex! is wrilten out explicilly at the binding sile, whereas a PROC variable is bound to a
procedure previously declared in the surrounding context. That procedure can then be
invoked inside the PROC variable's defining range. Most of what 1 will say about. EXPR or
PROC variables applies equally o either.

2.2.5. LABEL variables

A LABEL variable brings into ils defining range a stalement label from the range’s context.
The LABEL variable is treated exactly as if it were an ordinary label. For instance, GOTO
<label variable> causes control to transfer to the slalement named when the variable was
bound. LABEL variables, like EXPR and PRQOC variables, permit more complicated interaction
between a range and its context. Unlike other mechanisms, however, LABEL variables may be

used to affect the control flow, rather than the data, of the range's context.

2.3. Free Name Binding

In, mathematics, a variable occurring in a particular context without being defined in that
context is said to be free in that context. Many programming languages permit a name o be
used in a range in which it is not explicilly defined. To provide a meaning for the name, the
Ianguagé specifies a rule for searching through relaled ranges to find the declaration which

defines It. There are four main concepls involved in such searching:

2.3.1. CLOSED ranges

A CLOSED range is one that cannot contain any free names. Such occurrences would be
flagged as errors. This means that all of the interactions between a CLOSED range and its
envlfonmen' will be through explicit bindings. A CLOSED range with no VAR, EXPR or LABEL
In its interface would have absolutely no way to cause any external side effects when
executed. In the example use of the VAL mechanism in section 2.2.2, | qualified my assertion
that the object paired with the VAL variable was sale. With CLOSED ranges, we can remove
that qualification. By adding the word CLOSED to the example in that section, we get a range

R —

Scope lssues in Programming LanmmgeT 10 Chapter 2

guaranteed nol to cause side effecls:

closed range S = interface range R=
val A valA =B new B
B:=3
| inser! range S
print B8
endrange S endrange R

Executing range R above must print the value 3.

2.3.2. OPEN ranges

An OPEN range inherils all of the names accessible in the range’s context, excep! for any

nhames i! redeclares.

open range S = inlerface range R=
new B CA> new A
B:= A A:=3
A:=B1e2 X print A
endrange S inser! range S
print A
endrange R

" The expressions involving A in range S refer o the identifier declared al the beginning of

range R. Thus the program above prints 3, 6. In general, if the scope of a name N includes

a range R, it also includes any OPEN ranges found within R.

2.3.3. DYNAMIC and STATIC ranges

The context of a range actually consists of two parts. The static part is the name
environment in which the range is declared. The dynamic part is the name environment in
which the range is invoked. When a range Is inserted (see section 1.1.3), the two parts of ils
conlext coincide. In the last example, for instance, range R is both the static and dynamic
context tor range S, because the incert statement in range R both declares and invokes range
S.

Free name binding may be done in either the dynamic or static context of a range; we shall
label an open range as either STATIC or DYNAMIC according to which context shail be used

fo bind free names. In the following program, if range S had been marked STATIC, it would

\'

Scope lssues in Programming Lanpuages 11 Chaptler 2

have printed the value 3, found in the variable B in range R, where S is declared. Because

range S is DYNAMIC, however, the name B inside il relers o the variable declared in range T,

where range S Is invoked; thus the program prints the value 4.

tange R=
declare range S
new B
B:=3
amic range S = interface endrange R
print B <8>
endrange S range T=
new B
B:=4
invoke range S
endrange T

2.4. Summary of Mechanisms

The scope mechanisms defined in this chapter are tabulated here for convenient reference:

Mechanism Sharea with context
NEW nothin ¥
VAL value i
VAR object
EXPR part of the execution environment of the context
PROC proceJure, and ils lree variables.
CLOSED nothing
OPEN all varlables occurring free in inner range
STATIC variables in declaration context
IE DYNAMIC variables in invocation context

The mechanisms defined in this chapler represent the major concepls behind the scope
mechanisms found In early programming languages. In the following chapler | survey those

actual mechanisms in delail.

R ———— ———

Scope Issues in Programming Languages 12 Chapter 3

3. Scope Mechanisms in Early Languages

The scope mechanisms in Chapler 2 were carelully defined lo be independent of whether
the mechanisms were !o be used for procedure paramelers or variable declarations
However, in the standard early languages, most of the variety in binding mechanisms showed
up in procedure paramelers. Declarations were ordinarily similar to the NEW mechanism
(section 2.2.1). It wasn't until later languages began to worry about initialization that variety

in declaration binding mechanisms began to appear.

In this chapter, when | contrast LISP with Algol and Fortran, | will sometimes refer to
so-called "pure LISP". LISP was built around the mathematician’s notion of a function as a
straightforward mapping from one set of values to another, such that one only need think
about values and expressions, never about madifiable objects. However, LISP programmers
apparently found that the conveniional notion of objects was a useful one, because most of
the languages in the LISP family have some sort of destructive operalions, i.e. operations
which modify existing “values” (in olher words, objects) instead of creating new ones. These
operations form the "impure"” part of LISP systems. Without them, the language is free of the

notion of object, and thus free from a number of probiems.

In the folloWing seclions we shall survey and compare the parameter mechanisms and free
name mechanisms in Algol, Foriran, and LISP. Then we shall study the nolion of a side effect,

including the Alias Problem, and its manifestation in those languages.

3.1. Free Name Mechanisms

Fortran has no free variables. Every name occurring in a procedure and not explicitly
declared in that procedure, is implicitly declared to be a variable with attributes derived from
its spelling and the number of subscripts 0ccu;ring with it. Fortran procedures (main
programs and subprograms) are its only range delimiters. The names used in each procedure
are private to it. The only mechanism for statically sharing a set of objects among
procedures is the COMMON mechanism, which permils sharing of storage areas, but does not
require that different procedures refer to the same location in the same way. Indeed, the
declarations which name the objects in a COMMON area mus! be repeated for each procedure,
with no check for consistency between procedures. Thus, what to one procedure looks like a

sequence of characters might look to |another like integers. This quirk has its uses, but is
[

|
1}

"

/.

Scope Issues in Programming Languages 13 Chapter 3

prone lo errors as well. The labelled common mechanism is powerful for a second reason: it
is the only mechanism in Algol, Fortran, or LISP which permils an arbitrary sel of procedures
to share a sel of objects withoul having to make those objects available to other procedures
as well. A colleague, on reading an early draft, pointed oul to me that this permits one to

write Parnas modules [45] in Fortran.

In LISP, all variables are either global variables or formal parameters, and all ranges are
DYNAMIC. Free names are handled in it the same way they are in mathemalics: names free
in one expression are subject to bindings occurring in the next enclosing expression. If no
binding can be found in this manner, the name in mathemalics is left unbound, (implicitly
quantified “for all®). Analogously, a name which is free in one LISP rouline is left unbound
until the rouline is invoked in some context; then the names are bound to the definitions

provided for them by the calling environment.

Algol 60 ranges are STATIC . Procedures are defined in terms of blocks, which can be
textually nested in other blocks. A name free in one biock derives ils meaning from the
textually enclosing block. If it is also free in that block, the one enclosing it is checked next,

and so on.

By avoiding free names allogether, Forlran also avoided some of the pitfalls of Algol 60
and LISP. The named COMMON mechanism, although permitting sharing of objects, provides
no assistance In maintaining the integrity of those objects. (To its credit, Fortran was
désigned before dividing up programs inlo lols of conceplual unils was a serious concern.)
The LISP mechanism makes sense in a pure mathemalical context, where the "meaning” of a
function is independent of the values put into it, whether they are put there explicitly or
implicitly. Furthermore, LISP programmers for the most part do not define functions inside
other functlions, even though they could, so STATIC free name resolution wouldn't be very
useful. However, when a procedure can modity variables and not just obtain values from
them, the procedure can hardly be understood withoul knowing which variables its free
names denote. Since the parameter mechanism provides a flexible means for obtaining
objects from the dynamic conlext, stalic inheritance of names, as in Algol, seems tq make

more sense.

3.2. Parameter mechanisms

TN

Scope lssues in Programming Languages 14 Chapter 3

3.2.1. Forlran: REFERENCE paramelers

The Foritran parameter mechanism was derived from assembly language programming
practice: all parameters are passed by address. This has the interesting property that labels
and procedure names can be passed as paramelers as easily as variables; since no safety
checks are made on paramefers, no other information need be passed. Thus the Fortran
mechanism, often called a REFERENC'E parameler mechanism, corresponds to ihe VAR
mechanism in section 2.2.3. (Of course.;lhe power and speed obtained by omitling checking is
very unsafe. If a programmer should i:ass a constant, say 3, fo a procedure which expected
to slore values into its formal parameter, many Fortran systems would have that procedure

changing the value of the "constant” 3.)

3.2.2. Algol: VALUE and NAME paramelers

Mos! early languages had no facilities for defining constants, so it isn't surprising that most
didn’t have pure VAL vparameters either. Algol's VALUE parameter, however, is closely
related. A VALUE parameler may be thought of as a NEW variable which is initialized at
procedure entry with the value of the corresponding actual parameter. It may be assigned

to, like any other variable, but because it is a NEW variable, the assignment does not affect

the calling context.

Algol has a second kind of parameler, the NAME parameter. It is very much like the EXPR
mechanism defined in section 2.2.4. The actual parameter can be any expression which would
be legal in the caller’s context, with the exception that if the formal parameter occurs inside
the procedure as the destination of an assignment statement, the actual parameter must be an
expression which would be a legal destination in the caller's context. Thus one could write a

procedure for zeroing veclors:

£

Scope lIssues in Programming Languapes!5 Chapter 3

begin
procedure zero(vecelement, index, lbound, hbound)}
value Ibound, hbound}
begin
for index := Ibound step 1 until hbound do
vecelement := B
end zero:

integer i;

integer array afl:10], »(1:18,1:18);
zerolalil, 1, 1, 18);
zeralbli,t),1, 1, 18);

end

The first call to zero in the example above would put O in each element of array a. The

second call would put O in each diagonal element of array b.

3.2.3. LISP: VAL, VALUE, or REFERENCE?

LISP 1.5 differs from pure LISP by including two sels of modifying operators: the SET
group, and the RPLACA group. The SET operators change the name-value binding of a
variable so that the name is bound {o a new value, abandoning the old value. The RPLACA
operators modify an existing value, instead of copyéng paris of it and constructing a new one.

Consider the following program (the syntax is contrived):

SET (A, 3)
SET (B8, A)
SET { C, 4)
SEYT (0, L)
SET (B, §)

RPLACA (D, B)
PRINT (A, B, C, D)

The second operation binds B to the same "3" that A is bound to. The fourth operation binds
D to the same "4" thal C is bound to. The fifth operation binds B to the value "5%, leaving A
bound to 3. But the RPLACA operation thanges the "4" to "6", so that both C and D are bound
to the value "6". The prinl statemen! ‘;rinls 3, 5, 6, 6. Observe that the SET operators do not
introduce the notion of objects into LISP. SETling one variable will never change the value of
another. It is only the RPLACA group which makes the notion of object distinguishable from

that of value.

LISP programmers are well aware of the implications of the SET and RPLACA groups, ard

will often refrain from using one or both groups in large sections of their programs.

i

™

T —————

Scope Issues in Programming Languages 16 Chapter 3

Therefore, 1 will describe the LISP péramcler mechanism as It behaves in each of three

versions of the language.

Parameters in pure LISP are VAL parameters. In facf, VAR or EXPR paramelers in pure
LISP would behave identically with VAL paramelers, because only assignment distinguishes

VAR from VAL, and only variables with changing values distinguish EXPR from VAL.

Add SET operators to pure LISP, and the parameters become VALUE paramelers (sec 3.2.2).
That Is, the name of the formal parameter is bound initially to the value of the actual
parameter, but may later be re-bound (i.e. SET to a different value), without affecting the
calling context. Note, however, that SETling a free variable is more confusing in a DYNAMIC

range than in a STATIC one.

Full LISP 15 makes the parameter mechanism behave somewhat like a REFERENCE
mechanism. The RPLACA operalor makes it possible to modify the value of the actual
parameter, unless SET rebinds it first. But what it really amounts lo Is that all names are

bound to pointers o objecls, and all paramelers are pointers, passed by VALUE.

What | have described above is the underlying mechanism. LISP values may actually be
expressions or funclions, which may or may not contain free variables, Ultimately, however,

the programmer must always be aware that he Is dealing with pointers to objects.

3.2.4. Analysis :

Larry Snyder’s thesis [53] contains an exhaustive analysis of the computational po.wer of
various parameter mechanisms. It shows that VAL, VALUE, REFERENCE, and COPY mechanisms
are all equivalent in power, by givi.ng simple rewrite rules for implementing any one of them
in terms of any other. The NAME parameler is the only mechanism in his study which could
not be rewriften in terms of the others, because of the repeated re-evaluation feature. So
the lollowing‘analysis is based more on considerations such as convenience and efficiency,

rather than power.

Each of the parameter mechanisms in Algol, Fortran, and LISP is well suiled. for certain
kinds of computations, independent of the language in which it occurs. As mentioned before,
the VALUE mechanism is side effect free, except when the value is a pointer. It also turns

out to be cheaper to execute than the others. The mechanisms of LISP are well suiled to

P |

»

-

Scope lssues in Programming Language 17 Chapter 3

symbol manipulalion, especially list processing. In addition, by distinguishing between CONS,
SET, and RPLACA, the programmer can tell which “assignments” can cause non-local

side-effects. The relalive merils of REFERENCE and NAME are nol as clear. The NAME

mechanism permils one lo wrile procedures whose primary purpose is to express some

g

El conlrol structure, such as the array sequencing example above. The generalizalion to other

4
.

array operations, such as inner and outer products, should be obvious. It also has the delayed

ot

evalualion property. That is, the actual parameler wiil not be evaluated until it is needed.
{ This permils one !0 pass as paramelers expressions which would produce runtime errors if
i evalualed (e.g. subscript out of bounds), provided thal the procedure receives enough

Information to deduce that it can avoid using the potentially invalid expression. But the fact

K' that the name parameter imports a whole environment into the procedure range implies that

appealing because It allows side effects on paramelers in a simpler way, and generalizes well

lo passing procedures, arrays, and labels, although not expressions.

i the associated overhead must be somewhat high. The REFERENCE parameter is thus
!
!‘
| The NAME mechanism turned out to be more powerful than ils designers thought. Indeed,

it is so powerful that there are some very simple things it cannot do. The most {famous

example is the Exchange procedure: it is impossible to write a procedure in Algol 60 which

r‘ exchanges its (integer) arguments, for all possible actual parameters.

: The obvious algorithm using a temporary variable will fail when one of the actual
parameters is an index to the other:

begin

procedure EXCH (A, B)3
begin
integer tempy
temp := B;

N B 1= A

A 1= TEMP

end;

o

integer array A[1:18];
integer 1;
| t= 13 '
All) 1= 24 ' ']
EXCH C ALII, 1) ‘
end

When the exchange rouline puts the value of A[l] into I, A(1] is no longer A[1] If the routine

happens to do its operalions in the right order to handle the above case correctly, it will fail

Scope Issues in Programming Languages 18 - Chapter 3

on EXCH(LA[I).

The simple array index exchange problem was solved in the late 60's using a non-obvious
feature of the assignment stalement, namely that the destination address is computed before
the source expression is evalualed. Consider the following procedure:

procedure EXCH(A,B):
begin
integer procedure EX1 (M,N); |
begin
EX1 1= My
M = Ng
end EX1;

A := EX1(B,A)
end EXCH:

This procedure first computes the address of A, then invokes EX1 which saves the value of B,
stores the value of A into B, and returns the value of B, which is then stored into A. The
critical properly is that the addresses of both variables are computed before either is
assigned to. But even the above doesn't work, because it is legal to write an actual
parameter in Algol 60 which evaluates Io a different address every time it is accessed [11]:

begin
integer array Al1:10];
integer J;
Integer procedure |
begin
Ji=J 4+ 1y '
1 1= Js
end I

J 1= B;
EXCH (ACI],A(I]);
end

If this last call were to the “clever” solution above, it would have the effect of copying A[2]
into A(1], and A(4] into A[3])!

The problem with the NAME parameler, then, is precisely its strength: the actual
parameter mus! be recompuled on absolutely every examine and store operation. In contrast
to that, the address of a REFERENCE parameler is compuled exactly once, which makes many

situations clearer and simpler.

These difficulties with the NAME parameter are examples of problems with "side effects”,

which we examine next.

E

|
|

Scope Issues in Programming Languages 19 Chapter 3

3.3. Side effects

A side effect is any non-obvious effect of execuling a statement of a program. There are
basically two categories of side effects: a) evalualing an expression may modify variables,
and b) an explicit modification may also effect changes (o variables not named in the

statement.

The principal issue with side-effects is not whether they occur, but how unexpected they
are, and how well they can be described. Evaluation side effecls permit compact code, but
raise serious semantic problems and efficiency issues. Implicit consequences of explicit

effecls, on the other hand, can often be documenled unambiguously.

3.3.1. The Alias Problem

The Alias Problem is the class of problems thal comes up when one tries to explain a
program in which two names, occurring in the same range, may or may not be simultaneously
bound to the same object. In such situations, modifying one variable may affect the value of
another. We shall study the problem in the context of aliases created by parameler binding,

then see how aliases can occur via free name binding or pointer variables.

3.3.2. Parameter Aliases

In the procedure call EXCH(A[I],]) in section 3.2.4, the object ot the actual paraﬁaeter I was
also referenced in the evaluation of A[l]} Thus the exchange routine would unwittingly
"modify” one of its parameters when assigning to the other. The REFERENCE mechanism is
free of these more sophisticated problems, but still exhibits the very basic problem intrinsic
to the notion of muitiple names for an object. Consider the following procedure, which
divides each of its two parameters by their greatest common divisor, leaving them in their

"simplest ratio™:

Scope lIssues in Programming Languages20 Chapter 3

procedure simpleratiolA,B);

begin

Integer C,0s

C = A;

D := B;

While C = D do | This loop reduces C and D to
i1fC >0 thenC :«C -0 ltheir greatest common
else 0 :« 0D - C; | denominator

B
A

=B/C
=A/C

oo we

end

One would hope that a procedure computing the simplest ratio of equal numbers would leave
them both equal to 1. But SIMPLERATIO(N, N) would set N equal to zero, assuming N was
greater than | beforehand. Once again, the reason is that the assignment to B would change

the value of A, because both would be bound to the same object.

Algol W [52] has a procedure mechanism, called VALUE RESULT , which avoids the problem
of side effects during computation. The VALUE part of the mechanism is the same as in
standard Algol: a NEW variable named with the formal parameter name is initialized from the
aclual parameter. The RESULT mechanism also mandales the creation of a NEW variable, and
in addition specities that when the procedure terminates, the value of the RESULT variable
must be copied into the corresponding actual parameter. A VALUE RESULT parameter,
sometimes called a COPY parameter, would thus create a NEW variable, initialize it from the
actual parameter, execule the procedure, and slore its final value back into the actual
parameler. Thus in the simplest ratio procedure, the assignment to B would not affect the
value of A ever, because A and B would denole separale, local objects. The final copying of A
and B back into the same actual parameter would be harmless, because they would have the

same value.

Unfortunately, the Algol W form of COPY has a serious flaw, namely that the address of the
actual parameter variable is calculated twice: once before entering the routine, to obtain the
parameter’s value, and again after |e§vlng the routine, lo store the resulting value. When an
actual parameter is an element selected from an array, side effects on the index variable will
change the destination of the value copied out on routine exil. Thus thal mechanism still does
not solve the Exchange problem, even though the REFERENCE mechanism does so nicely.
What's worse, if the same procedure has more than one VALUE RESULT parameter, the order
in which the final copies are done is not specified, so that the effect of a problematic call
cannot be determined at all. Thus, although call by VALUE RESULT handles SIMPLERATIO(N,N)

"

Scope lssues in Programming Languages 21 : Chapter 3

correctly, it would fail on something like SIMPLERATIO(A(D,]).

None of the major languages of this period look the obvious step of defining a
reference-style COPY mechanism, which would save the address used to obtain the initial

value and use It as the destinalion for copying back the final value of the variable.

3.3.3. Free Name Aliases

program skelelon:

begin
Integer 1;
procedure P (A)3
lnteger Aj;
begin]

)
Free name binding mechanisms canialso create aliases. Consider the following Algol 60

Dot v Ty

l = (bocAlcn);
ends

p (1)
P (3);

end

During the invocation P(l), A and | would be bound to the same object, so that assignments to
1 would change A. During the invocation P(3), assignments to ! would not change A. Thus we

see that the meaning of procedure P depends heavily on how it is invoked.

3.3.4. Pointer Aliases

LISP 15 has facilities for building rather general graphs, using pointers. Graph
manipulations are particularly susceptible to alias problems, because two pointers into a
graph may point to the same node, or to a father-son pair, or to two nodes related in some

other important way. Several modern languages have attacked this problem; see section
4.4.2.1 for details.

Scope Issues in Programming Languages 22 Chapter 3

3.3.5. Evaluation side-effects

These come about when one of the components of an expression is a function call (or an
EXPR variable bound to an expression containing a function call). There are two problems
wilh such side-effects: a) the effect of the function call on the value of the expression can be
obscure, and b) if that effect is precisely defined, the definition forces the code generated to

be inefficient.

A function call causes a side effect whenever it modifies a variable whose extent is longer
than the function call. (This does not include the pseudo-variable, with the same name as the
function, used in some languages to contain the result of the function.) The variable modified

may be a parameter to the function, a free variable, or an own variable.

Mathematicians often object to the whole idea of permitiing a function .to produce
side-effects, since this is contrary 1o the mathematical notion of a function. They argue that
a function should always produce the same value for a given sel of input values. (They
include the values of free variables as inpufs). Accordingly, some languages distinguish
between procedures, which have side-effects, and functions, which do not. However, we are

interested here in functions which both produce side effects and return a value.

The effects of a function call on its parameters and {ree variables are not In themselvés
hard to specify. Specifying effects on OWN variables is somewhat difficult, because the
effects are only manifested in the results of subsequent calls to the function. The real
difficulty comes from the fact that the expression containing the function call may contain
other occurrences of the variables and functions involved. Consider the expression

A + F(A) L

where F is a function with a VAR parameter. The value of the expression depends on
whether A is evalualed before or afler F(A). This makes addilion be non-commutative, as
well as preventing a number of useful c;ptimizalions. For example, consider the optimization of
Boolear‘w expressions. It is well known that in many such expressions the value of one
subexpression can determine the valué of the entire expression. For example, (X or true)
always evaluates to true. If evaluating X will produce a side-effect, the compiler must
produce code to evaluate it, even though the value of the main expression is known at

~ compile time.

A third kind of anomaly occurs when the side effect is a transfer of control, e.g. @ GOTO to

/"’

&'

Scope lssues in Programming Languages 23 Chaptler 3

a statement oulside the function. Which of the effects of the stalement containing the

function call actually occur?

Scope lasues in Programming Languages 24 Chapter 4

4. Modern Language Designs

4.1. Overview

In previous chaplers we have studied the basic elements of scope mechanisms, and how
they show up in early languages. Up o this point, language design has mostly been ot an
experimental and pragmatic type (ie. fot's try this consteuct and see it it works any beller, is
more efficient, alc.) Recent developmenls in programming theory, however, have provided
much firmer foundalions for coherent language desigh. The languages discussed In this
chapter have each been based on a formalized theory of programming, with a clearly
understood sel of concerns motivating the design. We will explore the scope conslructs of

these languages in the light of the concerns motivaling them.

4.1.1. The Software Crisis

In the lale 1960's, the compuling communily became increasingly alarmed over the
regularity with which software projects ran past deadlines and over budgets. Contrary to
earlier expectations, debugging and modification had come to be an enormous, unpredictable
part of the cost of a project (often 50 per cenl or more of the total cost [13, 2]). Dijkstra (7]
was one of the first to realize thal this cost came from the fact that programs were getling
too complex to be fully undersiood, and that better methods tor conlrolling complexily were
needed. This idea stimwlaled research into “slruclured programming®, seeking methods of
programming which provide structure strong enough to support the weight of very large,
complicaled programs. This work had two main themes. One was oriented loward coding,
looking at the syntactic characteristics of clear programs. Dijkstra’s GOTO letter (5] was a
landmark In this area, leading to fruitful discussions about disciplined control flow [25] The
other theme, which emerged from work on program design methods (6], sought organizational

tools for dividing up a large program into semi-independent parts [a1, 42, 44, 45, 46)

By the end of the decade the combined maturily of language analysis and programming
experience was enough to precipitale a new generalion ol languages rooted both in

theorelical ideals and practical experience.

v

Scope lssues in Programming Languages 25 Chapter 4

4.1.2. Modern concerns of language designers

The rapid development of new ideas in programming has produced an avalanche of new
terms. In order lo make the rest of this chapler clear, | present here a brief glossary of the

major concerns voiced by researchers studying the qualily of programming.

41 2.1 Programming Mathodologies

The “software crisis” has prompled a variety of attempls to develop methods of

programming based on formal principles.

- Structured Programming: Designing a program so that the inlerrelationships
among its parts may be clearly grasped (6, 16) Note that this is different from a
structured program, which is one whose structured design is embedded in the
code (60] Both of the above are ditferent lrom structyred coding, which is a
programming standard restricting the ways in which cerlain language conslructs
may be used, in order 10 produce programs with simpler patterns of control flow

(1}

- lncremental Development: Conslructing a large program a piece al a lime, such
that each new piece can be wrillen and tesled based only on lhe pieces that
have already been conslrucled. |

- Understandability: When referring to programs, the extent to which the program
author's intentions are made apparent to the reader. When referring to
languages, the extent to which the language provides constructs which permit
programmers fo express the structure of their programs direclly in the code, in
naltural ways.

4122 Overall Structure
The following terms all relate to the structure of programs:

e e S

modularity is simply the quality of being divided up into coherent pieces. Often
this means that each module of a program mus! be compilable separately. Bul
Parnas [45) has proposed a slightly different notion of modularity, which 1s even
more desirable in a system ol programs. He proposes that a modularization of a
syslem of programs be done along conceplual lines, rather than by compilation
units. In particular, he advocafes that each module make a very small number of
assumplions about other modules, and each hard design decision be contained by
a single module, so tha! a de<ign decision, and the corresponding module, may be
changed withoul allecling olher modules, so thal major design changes cause a
minimum of program changes. Pul in the terminology of graph theory, Parnas
would have us divide a software system inlo a weakly connected set of strongly
connected subsystems. Remember, however, that the division is only at the
source code fevel, nol at lthe machine code level. An appropriate

\O

Scope lesues in Programming Lanpuapes 26 Chapter 4

macro-definition facility can permit an actual machine code routine fo be
composed of code from several different modules. Parnas's concept implies that
in most cases a complex data structure will be accessible within only one module,
contrary {o the prior practice of spreading knowledge of the format of complex
data structures over several differenl modules. For the remainder of this paper
we will ordinarily use the term modularity in Parnas’s sense.

- Modifiability: The ease with which a maintainer can locate the set of places
where the program text must be changed to accommodate an intended
modification. [n a highly modular program, most design changes will only affect
one module, because the decision being changed pertains only to that module.

- Abstraclion: Represenling a group of related things by a single term which
expresses their alikeness and suppresses their differences. For instance, a
pracedure with paramelers actually describes a large set of possible
compulations, one for each different set of parameter values. Thus the
procedure would be an absiraction denoling the common properties of all the
different computalions. Abstraction is the principal means by which one can
control the complexity of large programs. For instance, the procedural
abstraction just menlioned may be invoked in many different places in a
program. Each place it is used it will represent the same abstract computation
(e.g. binary search), but with different paramelers to indicate exactly which
version of the computation is meant (e.g. which item is being sought).

- Specification: Independent, concise, precise description of the external
properties of a program or subprogram. If a madule is to isolate a design
decision or conceal the implementation of an abstraction, it must be possible to
specify exactly whal thal module does, independently of how it does it [43, 30].

4.1 .2.3. Fulfilling Requirements

A program is correct if it completely satisfies its intended purpose [8) - But since

intentions are hard to quantify, several other concepls have emerged.

- Verificalion: proving that a program meels its specifications. Ordinarily such a
proof must be based solely on the program text, and nof on test data [32].

F - Validalion: Proving properties of a program by executing it on test data, or by
embedding executable tesls at various points-in the program text.

3 4.1 2.4. Robustness of Programs and Languages
The reliability ot a program is the subjective confidence level of its users. But several
factors contribute to this confidence.

- Protection: Controlling the rights of different programs to access various data
objects and other programs. This should not be confused with security, which is
concerned with controlling the flTw of information, in the military sense.

- Safely: Invoking an operation whose semantics are not well-defined should not

1
']

Scope lssues in Programming Languages 27 Chapler 4
violate the integrily of user or run-time-system data structures (or programs!).

E | 4.1.25. Efficiency

ldeally, a programming language should permit compilers for it to generate generally
Y efficient code, while also allowing lthe programmer to conlrol code generation and space

allocation fairly explicitly in portions of the program where time and space are crifical.

1 4.1.3. Goals of Modern Languages

Algol 68 and Simula 67 are transition languages between the early and modern phases of

language design. Algol 68 was designed to be a small, understandable language consisting of

a small set of constructs which meshed smoothly to produce a powerful, expressive language
[56] 1t succeeded well at these goals, bul several common combinations of its features

proved to be hard to understand, and prone to error. Simula 67 introduced the class and

subclass concepts, which were the forerunners of modern data abstraction mechanisms;

however, the language appeared oo soon o incorporate modern theories of programming.

Wirth brought out Pascal in 1969 with the stated purpose ol providing a language which
was easy to explain, easily compiled inlo efficient code, and which encouraged "transparent”
(i.e. understandable) programming [57) CLU, Mesa, and Gypsy were all designed to support
structured programming, particularly through data abstraction. Modula and Concurrent Pascal

came out as languages which supported modular decomposition of programs, particularly in

the reaim of multiprogramming. Alphard and Euclid, along with some of the goals mentioned

* above, were specifically designed to support verification.

4.1.4. Scope Control and Modern Concerns

Modern programming theory has guided the development of scope in languages in a variely
of ways. We observe four major areas of influence, which are the subject of the remainder

of this chapter.

1. Simple Binding Mechanisms. Modern language designers have reached a

consensus on the appropriale uses of each of the standard binding mechanisms.
‘ Much of this agreement grew oul of siudies of side effect problems, as well as
out of modern concerns over understandabilily, verifiability, and programming
i slyle.

PR N

Scope lssues in Programming Languages 28 Chaptler 4

2. Data Abstraction. Semi-independent resulls in programming methodology,
modularily, specificalion, verificalion, and language cxtensibility have all pointed
to the need for a new kind of range which encapsulales a group of relaled
procedures, type declarations, and dala objects. Data abstraction mechanisms
provide a more powerful, coherent means of describing the structure of a
program, and simullaneously take pressure off other scope control mechanisms
which would otherwise be used for description purposes for which they were
not designed.

3. Relationships among objects, types, and ranpes. Previously, ranges coincided with
control structures. However, dala encapsulation ranges do nol, and thus add a
new dimension of complexily of possible relationships.

4. Classical Problems. Besides the' well known scope problems, e.g. Aliases and
Dangling Reference, there are several well-known programming problems which
have become clearer and somelimes easier when viewed as scope problems in
the light of modern programming theory. Data encapsulalion has been a powerful
lool for tackling these problems.

4.2. Modern Binding Mechanisms

Early languages, we have seen, conlained a variety of inleresting binding mechanisms for.
parameters and declarations. In modern languages we find a substantial degree of uniformity
in the selection and use of these mechanisms. In this section we review the historical and

theoretical bases for the use .. or disuse .. of the various base mechanisms.

4,2.1. VAL mechanisms

Early languages lended to lreat a variable name as always denoting a memory location.
Thus when the language designer wanled a parameter mechanism which passed only the
value of the actual parameter, he provided a place to put that value, and made it available to
the programmer. Similarly, programmer-delined constants had to be stored in memory
localions anyway, so no special mechanisms were provided to distinguish constants from
variables. But modern theory has recognized the usefulness of truly constant “variables”,
and at the same lime unified the notions of constant declarations and constant parameters.
Named constants are a means of localizing design decisions, such as the size of tables and the
numeric representation of non-numeric information. Marking a parameter as constant makes
clear the point that it will nol be modified, thus simplifying understanding. Optimizing

compilers can use the constanl properly to great advantage (e.g. in constant folding, code

Scope lssues in Programming Languages 29 Chapter 4

motion, and indexing). A constanl can be broadcast widely without fear of side-effects.
Consequently, modern languages usually provide a means for declaring a variable as having a
constant value, and for declaring a parameter either as being a constanl whose value is
provided by the caller, or as being a rcad-only reference to a caller-provided object. In
most languages only one of these two alternatives are provided; however, Euclid is designed
in such a way that the two alternatives are exactly equivalent, so neither Is specified
exclusively. Many modern languages permit free names for constants, while prohibiting free

names for variables, because the latter praclice invites side-effects.

4.2.2. VAR mechanisms

We have already poinled out in section 3.2.4 that the VAR parameler mechanism is often
cheaper to implement than other side-effect-permitting mechanisms. We also saw by studying
the exchange problem thal VAR parameters were conceptually simpler than EXPR and
VALUE-RESULT parameters. This simplicity translates directly into verifiability. Consequently
VAR mechanisms are the dominant form of side-effect permitting parameter mechanism in
modern languages. Once again Euclid, which has eliminaled parameler-related alias problems,
does nol distinguish between VAR and VALUE-RESULT, since the two are equivalent in the
absence of aliases. This non-specification permits the compiler to choose, on a case-by-case

basis, which implementation is most efficient.

4.2.3. EXPR and PRGC mechanisms

EXPR mechanisms have largely disappecared from modern language designs. Algol 68 was
the last major mainstream language to jnclude them (as a special sort of procedure constant).
Experiences with the NAME mecha’nisms in Algol 60 showed that it was difficult to
understand, as well as being expensive to implement. We have already seen that the VAR
mechanism is both simpler and cheaper. EXPR's chief enduring value is as a tool for
constructing control abstraclions, and research in Alphard and CLU (see sections 4.3 and 4.5.1
), as well as elsewhere, is seeking to fill the gap there. Similarly, PROC mechanizsms have
become an endangered species. Algol 68's version is much cleaner than Algol 60's, for it
requires that the parameter and result specifications for the PROC parameter be included in

the parameter specificalion for the procedure receiving the PROC parameter. Moses [34] has

Scope Issues in Programming Languapes 30 Chapter 4

unified the implementation problems of name paramelers, funclional paramelers, and
funclional values inlo what he calls the Environment Problem, which is the problem of keeping
track of the name binding environment in which the parameler or functional value originated.
The cost of maintaining this information pervades the enlire language system, slowing down
compilation and execulion even in programs which never use il. In addition, functional values
pose a dangling reference problem (see section 4.4.2.1) if the funclion cantains free variables
which must be bound in its STATIC conlext. Funclional arguments and values, like name
paramelers, continue to have value as conltrol abstractions. However, o sepzrale control
from dala, this writer believes thal "funargs” and "funvals® should not be permilted to conlain

free variables. Without free variables, there are no scope problems fo argue against them.

4.2.4. Free Name Mechanisms

DYNAMIC free name binding has been eliminated from the most recent languages, because
of its limited utility. Some languages also eliminate free name binding allogether in ranges
whose DYNAMIC and STATIC contexts do not coincide, to enhance modularity and reduce

opportunities for side-eflects.

4.3. Data Encapsulalion'

The ability to group together and isolate a data structure and the operations defined upon
it, has been the single most important recent development in programming languages. In this
section we will trace some of the origins of the idea, describe its essential components, and

survey ils manifestation in modern programming languages.

4.3.1. Origins

Data encapsulation has emerged in response to a variety of modern programming concerns.
Each of the concerns has evoked a slightly different notion of what the construct should look

like; it is not yel clear whether a single construct can satisty all the concerns.

One line of research has sought 10 generalize the notion of a data type to make il possible
for a programmer to define his own types. Early languages had only a few base types (e.g.

integers, reals, booleans) and only one or two structuring methods (eg. arrays, records).

|

Scope Issues in Programming Languages 31 Chapter 4
i

Pascal, Simula 67, and Algol 68 pursueél data structuring as a reasonable notion of type, and
provided facilities for crcating and naming data structuring templates, so that the same
structure could be used for objects created in various places, especially as formal paramelers
to procedures. This notion drew its theorelical basis from mathematics, which defines a type
as a set of values [18). Algol 68 and Simula 67 both had facilities for associating procedures
directly wilh their types (classes in Simula). However, the full impact of this notion was not
realized for several years. The last step in this line of development was the notion of
restricting access to the representation of a type to the collection of procedures associaled

with it. We shall discuss this more in {he next section.

Parnas, in his studies of large software projects, discovered that decomposing a program
according o compilalion units was nol a conceplually nalural method [45). That is, such
decompositions tend to spread across several modules the code implementing a single design
decision. In particular, Parnas realized that often times the main concepls in a system are
best characterized by data structures, rather than by algorithms alone. Therefore, he
proposed decomposing a syslem inlo modules which each include both data and procedures,
taking special care to conceal all but the most basic design decisions inside modules. This
proposal implied that the interfaces between modules had to be as "narrow” as possible, and
in particular would not include any elaborale data structures, control blocks, or such things.
Parnas modules, then, can be thought of as data structures which can only be accessed via
operations defined right along with them in the same module. Note that Parnas intended that
his modules only be separale in source form, and that the accessing procedures could be
expanded in line when appropriate, rather than incurring the cost ofl a procedure‘call each

time

Research in program verification has shown data encapsulation to be a powerful tool for
simplifying the verification of a program (60} When the data contained in a module may only
be modified by procedures defined in that module, many properties of that data may be
verified by regarding the procedures as predicate transformers, and doing induction on the
number of procedures applied to the data [17]) Verification has brought into focus the

concepl that the initial values of variables can be vital to the integrity of programs,

4.3.2. A Data Capsule

"

~d

Scope Issues in Programming Languapes 32 Chapter 4

1 shall now define a simple dala absiraclion mechanism, showing the essential components
of such mechanisms, and why those components are useful. In the next seclion, I'll compare

the actual mechanisms found in real languages.

A capsule is a data slructuring template, in many respects similar to any of the- Pascal
structured types, or Algol 68 modes. [n particular, a capsule can be the femplate for creating
an unlimited number of objecls, each of whose "lype” is the name of the capsule. Hereafter,
when 1 use the term type, | include capsules as well as other structured and primitive types.
A capsule defines a range consisling of three major parfs: a representalion, a set of
operations, and supporling declaralions. The representation section contains a set of
declarations of data structures which will contain the data of the capsule variable. That is,
each variable created from the capsule ‘will contain an instance of each of the data structures
declared in the representation. The operations are procedures which may be called by the
user of the capsule variable, to examine and modify it. The capsule may define an operation
with the reserved name INIT, which Is {o be automatically called whenever a variable is
crealed from the capsule definition. This routine can then initialize the representation
structures so that they have reasonablL values in them the first time any operation is applied
to the variable. The supporiing declarations include whatever procedures, data types, and
capsule detinitions the capsule crealor requires to implement lhe representation and
operations. The documentation of a capsule will always include a sel of specifications
sufficient to let tha capsule be used w‘ilhoul inspecting its implementation, and to verify that
the implementation satisfies the ex'err;al specifications. For further introduction to abstract

data types, see (28]

A capsule definition may appear anywhere a type definition may appear, and variables may
be declared to be of the type defined by the capsule, anywhere the capsule name is

accessible.

k'

Scope lssues in Programming Languapes33 Chapter 4

type queue = capsule
operations size, insert, remove, full, clrculate
representation
integer array all:109]
integer front, back
endrepresentation

procedure modincr (i:integer) =
i = (i mod 188) + 1

procedure initlqg:queue) = q.front := g.back t= 1

procedure sizel(q:queue) returns count:integer =
count := (g.back - q.front} mod 188

procesure insertl(qiqueue, item:integer) =
if sizelq) equals 99 then fail else
q.alg.back] := item
modincr (q.back)

procedure remove (q:queuel returns item:integer =
if sizelg) equals B then fail else
i 1= q.alq.front)
modincr {(q. front)

procedure full (q:queue) returns b:boolean =
q.size equals 39

procedure circulate (q:queue) returns i:integer =
insert(q,removel(qg))

I 1= q.alq. front]

endcapsule

In this example, the capsule .. endcapsule pair delimit a range, so that each of the

declarations in it may make use of each of the other declarations. The representation
variable names become field selectors for the queue variables passed to the operations. The
procedure circulate uses other procedure definifions as well. The operations clause lists the
procedures declared inside the capsule which may be used outside it. These operations
defined for the capsule are the only means by which a variable of that type may be
manipulated by code outside the capsule! Thus the writer or reader of a capsule may be
assured thal he has before him all of the code which is relevant to the data structures in the
representation. For example, a program using a queue named M could include the statement

if not full{m) then lnsert(m,3)

but that program could not conlain the expression

"

Scope Issues in Programming Languapes34 Chaptler 4

m.alm. front-3]

-

because “a" and “fron{” are not exported from the queue capsule. Conversely, the only
variables which may be manipulated by the code inside a capsule are the variables passed as
parameters to it, or declared in supporting declaralions. A capsule may not contain any
occurrences of free variables! Thus the programs which use capsule variables are immune to
changes in the implementation of the capsule, so long as the implementation satisfies the

capsule’s specificalions.

-

In summary, capsules have these imporfant properties:

- Modularity. Many times a design decision will only affect one data abstraction. A
capsule gathers into a single range all of the code pertaining to a particular data
abstraction.

- Modifiability. A capsule is' sufficiently isolated that changes in the design
decisions contained in it usually have no effect on any other code.

- Efficiency. Capsules need not be compiled separately. A compiler is free to
expand any operation in line at its call sites, if efficiency so dictates. '

- Understandability. A capsule variable may be used as if it really were a primitive
type in the language, without reference to ils implementation. Conversely, ils
implementation may be understood without reference to how it will be used.

Verifiability. A capsule correctly implements the abstract data type described in
its specification if a) the initial value of a capsule variable represents a
legitimate absiract value, b) every operation on a capsule variable lransforms
legitimale values into legitimate values, and c¢) the transformation on the concrete
representation coincides with the specified transformation on the abstract
variable. The two critical properties of capsules here are the concealment of the
dala structures to prohibit outside access, and the INIT routine to assure initial
consistency.

4.3.3. Mechanisms in Modern Languages

Simula 67 and Algol 68 both had mechanisms for associaling procedures with dala
structures (classes and modes, respectively). Algol 68's mechanism seems to have been an
accident of its generalily; the synlax required to use such a procedure seems exceedingly
awkward. Simula 67, however, plainly intended that programmers would ordinarily associate
procedures manipulaling a class objec! directly with the class. It also provided a convenient
initialization mechanism. Not until recently [40], however, has Simula 67 added a protection
facility o conceal some of the names declared in a class definition from code outside the

class.

“‘mm,, —

"

r-

f

Scope Issues in Programming Languages 35 Chapter 4

Modula, Euclid, and Alphard are typical of modern languages implementing capsules. Their
origins, and resulting mechanisms, however, are véry different. Modula modules are very
similar to Parnas's module concept, with primary emphasis on isolating a module from its
context. Alphard forms were designed lo support the design of abstract data types, based on
Hoare's verification methodology. Euclid's module facilily is a generalization of Modula's, with

support for verificalion.

The madule in Modula is not an abstract dala type; il is simply a collection of declarations,
plus a piece of inilializatlion code for the variables declared there. The interface between a
module and ils context is complelely {(excepl for an initialization problem, discussed later)
under the programmer’s control. A module is a CLOSED range. Any identifiers brought in
from its context must be lisled in ils uses clause. Any identifiers occurring within it which
are to bhe available outside, must be named in an exports clause. However, not all of the
atiributes of identifiers may be exporied. In particular, a type definition may be exported,
but its field selectors may not, so that objecls of that type may be declared outside the
module and passed around as parameters, but their contents may not be examined or
modified except within the module. Similariy, variable names may be exported; however, they
can only be read oulside the module, not modified. Thus a module is responsible for all of the
objecls it declares, and for the use of all the types it declar|es. It may release information via
exported variables, but need have no fear of side-effects on them. Modula has thus achieved
a great deal of flexibility for its mechanism while still maintaining sharply defined boundaries
between modules. In particular, although a Modula module is not a type, a module which
consists only of one type declaralion and associaled procedures, would correspond directly

to a capsule.

Modula types are not completely prolected by its modules. First of all, Modula type
definitions do no! provide for initialization. Consequently no procedure provided for an
exported type may be sure that the variable passed to it has been initialized. Secondly, the
language repor! [58]) is ambiguous about whether exported types are forgeable, i.e. whether
a procedure expecling a parameler of an exported type will accept a parameter of any type
having the same structure. However, Wirth [59] did not intend that Modula should prohibit
bad style, but only that it encourage good style, so he probably- doesn't care whether
exporied fypes are forgeable. He would simply say that the verification of a module assumes

faithful initialization for exported types, and no forgery of them. Given those programming

"

P |

1
1
|
|
|
1

e

e A————

e - e A S) B e

———————————

Scope lssues in Programming Lanpuages 36 Chapler 4

canvenlions, such an exported type is definitely a data abstraclion, and a module containing

only otie such type and ils procedures, would be a fully general capsule.

A Euclid module, though similar to a Modula module, may be used either as a simple
collection of declarations, or as a lemplate for a new dala type (i.e, as a capsule). When the
module is used as a type, the inilializalion code becomes the inilialization procedure for the
type, and the variables become the representalion of the type. Exporled names may 6e used
only in conjunction with the name of the module or the name of a variable whose type is the

module. This applies uniformly to exported constants, variables, types, and procedures.

Euclid aiso has a conventional type mechanism, with initialization based on paramelers to
the type. If such a lype is exported from a module, none of its field selectors are available
outside the module, unless exparted with . Even assignment and lesls for equality are

concealed untess explicitly exported.

Alphard forms are designed lo model data lypes directly. A form definition defines both
the representation and the operalions for the type being defined, and provides convenient
means for incorporating the specificalions for the lype, such that it may be understood
without reference to its implementation. The supporling declfarations in an Alphard form may

include aother form declaralions, which may also be exported.

The crucial difference between the types modeled by forms and those modeled by Euclid
modules is that form operations may operate on several instances of the form simultaneously,
whereas a module operalion may only operate on one ihstance of the module. This latter
view is perfectly adequale ior many purposes, e.g. stacks and queues. However, consider a
capsule implementing sorted lists, which must include an operation to merge two lists. A
Euclid module defining a sorted list couldn't do it, excepl by repeated remove and inserl
operations, which wouldn't be very ef/'t:ienl. An Alphard form for sorted lists, on the other
hand, could easily include an operation Which took two such lists as parameters, and accessed
the representations of bolh. This difference in mechanism might well be due to the view
taken by Modula, and parfially adoplec) by Euclid, that a module exisls to manage resources.
It would be strange indeed lo merge two lists of objects buill from different resource pools.
What has in fact happened in Euclid Lnd Modula is that the principal data type definition
facility has been separaled from the encapsulation mechanism. In Alphard, the usual
programming paradigm Is to define one type per form, giving abstract and concrete

specifications for {t. Any data shared among instances of the form Is declared specially.

o 5 el i sl s

Scope lssues in Programming Languages 37 Chapter 4

Procedures which access the common data must do so through an instance of the form. In
Modula, the normal case is to create a module which declares bolh variables and types, and
procedures which operate on both. Procedures which take paramelers of those types may be
thought of as operalions on them; those that don't are just operalions on the main variables
of the module. Euclid lried lo blend the two ideas, and only parlially succeeded. Since a
module’s variables represent a resource pool, of which there may be several instances. the
module definition may be used as the definilion for a type. If the module also defines and
exports conventional types, they must be accessed through the name of the parent module,
e.g.

SpaceManager.BlockType

If thal module is aclually a lype definition, the BlockType must be accessed through a
particular variable of type SpaceManager, so that the block is allocated from the right
storage pool. Unfortunately, this means that even types which are nol part of resource
managers, must still accessed through a module name every time, if they are to be protected.
The language report even gives an example of a module implementing floating point numbers,
which forces every operation on floating point numbers to give the hame of the floating point
module as well as the name of the rouline -- even though floating point numbers do not

share data!

4.4, Relationships among objects, types, and ranges

Scope, after all, is concerned not primarily with individual objects, names, and ranges, but
with the interactions between them. In this section we study the ways in which o-bjects.
types, and ranges can interact in modern languages. We explore the role of initialization in
data abstraction and data integrity. We study the problems of describing and verifying
relationships belween objecls. Finally, we study relalionships among types, both when the
types are almost urirelaled, as wilth generic types, and when they are closely related, as with

exported types.

4.4.1. Initialization

Initialization has become very important in language design, because of issues of safety

and verifiability. Uninitialized pointer variables are unsafe, because a dereference for

Scope lIssues in Programming Languages 38 Chapler 4

assignment via such a variable will mgdify some arbitrary slorage location. Initializalion is

important for verification, because the proof thal a data object faithfully repreccvats ils
abstraction ordinarily starts from the assumption that the object starts out with a legal value
[17]. (The alternative is to show thal it receives a legal value prior fo the first time it is
read.) i : '

Initialization facilities in early languages were fairly weak. Of the three studied earlier,
none had any facilities whatsoever. In particular, tack of initialization was one of the fatal
weaknesses of the OWN construct in Algol 60. An OWN variable is supposed to retain its
value between invocations of the block in which il is declared. To use this facilily, the code
of the block must assume that the variable already has a legal value when execution of the
block commences. But during the first invocation, this assumptiém will be false. So the

programmer using an OWN variable had to add a mechanism to check, on every invocation,

whether or not it was the first.

Three main strategies have been developed to handle initialization:

- Default Values. This scheme inserts a value in every variable when it is created.
It may be an ordinary value, like zero for integers, or it may be the special value
UNDEFINED, which causes the program to halt if it is ever examined. Both
schemes incur the initializalion cost for all variables. The former conceals many
of the bugs caused by omitted inilialization. The latter requires special
processing on every fetch operation, which requires special hardware support to
avoid being excessively expensive.

- Explicit initialization. Alphard, Euclid, and Algol 68 all provide explicit facilities for
specifying the initial value of a variable. Algol 68 permits the declaration to be
the left hand side of an assignment statement, and permits the intermingling of

- stalements and declarations, as long as each variable is declared before it is

" used. The initial operations in Euclid and Alphard can se! up the initial value at
the time the object is created. Both languages require the programmer to either
provide an initial value, or somehow prove that none is required.

- Virgin scopes. Dijkstra [9] has suggested that special syntactic support be
provided so that the programmer may separale the declaration of a variable
from its initialization, yet still have the compiler check that the variable is
initialized before it is used. This separation is importan! because the initial value
of a variable might not be known upon entry to the block in which it is declared.
Inserting a dummy value would be distracling. Instead he proposes that the
stalement sequence comprising the range in which a variable is declared be
partitioned into three subsequences: the inilial sequence of statements in which
the name does not appear, the statement in which the variable is initialized, and
the sequence of stalements in which the value of the variable may be used. If
the initializing statement happens to be a compound slalement, the variable must

| be imported into il as a virgin variable, and the slalemenis comprising the inner

‘ range must be partitioned in the same manner as the top level. Dijkstra then

v

Scope lssues In Programming Languapes 39 Chapter 4

applies the resiriction thal inilializing statements may not be repetitive
slatements, and thus guaranlees that the initialization is not performed more
than once. Furlhermqre, he requires that if the initializing stalement is an

alternalive statement!, that all alternatives be initializing statements. This
guarantees tha! the variable is inilialized exactly once. Algol 68's mechanism
corresponds somewhat to Dijkstra's proposal. Because it permils intermingling of
declaralions and statements, it overcomes the problem of meaningless initial
values. However, il provides no syntactic assistance for preventing multiple
initializalion, nor does it permit initialization inside alternative or compound
statements, since the scope of the variable would then be limiled to that
statement.

Euclid's approach to initialization relies on the assumption that programs will be verified
before {hey are run {48] From this assumplion -one may conclude thal the only time a
variable may be read before it has been assigned la, is when the value doesn't matter! More
precisely, the specifications for an operation may state that the variable must be in some
particular state when the operation is applied. Thus, if the capsule did not provide an explicit
initial value, it could simply provide some operations which did not examine the value of the
variable, but did set it, and specify that one of them must be applied lo the variable before

applying any of the operations which do make use of the current value of the variable.

Alphard’s approach to initialization i$ the same as Euclid's; thus both languages achieve by
verification what Dijkstra would do synlactically.

4.4.2. Object-Object Relationships
|

Most of the data structuring Iacili‘ies in modern languages, including data abstraction
mechanisms, have been oriented loward simple composition of related objects. That is, one
type is composed of objects of anolher lype, and one module may be composed of other
modules. Thus, the relationships among objects and among modules form trees. However,
many programs require more general, graph-like relalions among objecls. Here we describe

old and new mechanisms for such programming, and the perils therein.

4.42.]1. The Problem of Pointers

The general pointer variable was a direct descendanl from assembly language

‘e.g. if-then-else

R

Scope lssues in Programming Languages 40 Chapter 4

programming. When one dala objec! needed fo refer to another, it simply recorded the
address of the other. LISP and PL/l adopled the nolion unchanged. Programmers quickly
found it both powerful and dangerous, because of the possibility of trealing an uninitialized
pointer variable as if It contained a legitimale address, and because of the possibility of
undetected mistakes concerning the type of the object pointed to. The transition languages,
Algol W, Pascal and Algol 68, all required that a pointer variable be declared to only point to
one type of object. This solved the data misinterpretation problem, but not the initialization

problem.

A second problem wilh pointers involves those objects which can be crealed and deleted
independently from lhe block structure of program control. Because such objects provide the
potential for graph-like structures which grow and shrink arbitrarily, they introduce the
possibility that an object might be deleted while some variables are still pointing to it. This is
called the dangling reference problem . If the space formerly occupied by fhe delefed object
is now reused for some other object, one again has the potential for very obscure bugs.
Most language systems now handle this problem by relaining a count of all pointers to an

object (reference count), and not deleting the object until the reference count becomes zero.

However, the dangling reference problem recurs when some of the objects and pointer
variables are. allocaled from a stack. Then one has the possibility of the stack discipline
forcing the delefion of an object with outstanding references. Algol 68 comes very close to
running afoul of this problem. In that language, all variable names are pointer (ref) constants.,
Thus any stack object may be referred {o by ref variables of the appropriate type. To keep
the problem from being unmanageable, Algol 68 requires that the extent of a ref variable
must fall entirely within the extent of any object assigned to it. Since Algol 68's dynamically
allocated (heap) objects are reference counled, it is safe for a stack variable to refer lo a
heap object, and illegal for a heap object to refer lo a stack object. Furthermore, it is illegal

for a stack variable to refer to a more recently allo.caled stack object.

Algol 68, however, confuses the language user with two rules involving stacks anq scope.
First, If an expression could evaluate {o a reference o any of several stack objects, with
different scopes, and at leas! one of those objects has a scope which would be legal for the
conlext in which the expression occurs, the language permits the scope checking to be
deferred until run-time, on the chance that the legal object might be selected. Second, Algol

68 permils the programmer to allocafe objects from the stack without naming them, but

imene et e g > et e - -

B A oo T T TS —

Scope lssues in Programming Languages 4] } Chapter 4

defines the scope of such objects to be the smallest enclosing statement which includes
named stack-allocated objects. Thus the scope of the stack allocated objects depends on the

presence or absence of possibly unrelated declarations.

Graph-like structures have an intrinsic problem with aliases. If two pointer variables in a
particular range have the same type, it is in general impossible to prove that they don't refer
to the same object. But more importantly, graph-like structures are useful precisely because

they often do incorporate more than one way of referring to an object.

Euclid has tackled the first of these fwo problems directly, by introducing collection
variables , which parlition the space 61 objects of a given type. The type of a pointer in
Euclid includes both the type of the object it will point to, and the collection from which the
object will come. Thus two objects from different graphs will ordinarily also come from
differen! collections, and pointers to those objects may be shown syntactically not to be
aliases for one another. The second alias problem mentioned above, however, is intrinsic to
the dala structure being described, and is the source of the dilemma discussed in'the next

section.

4.4.2.2 VAR Parameters To Capsules

We have seen that general graphs provide little assistance in managing the complexity of a
data structure. On the other hand, there are several more restricted classes of graphs which
humans can understand well, such as lists and trees. Data capsules very naturally describe
tree-like relations among objects, where the relation is “is composed of". For instance, a
capsule might _define a symbol table entry to be composed of a string, an address, and a
value. Similarly (but not quite the same), a tree is composed of a left son, a right son, and a
value, where the sons are references lo trees. This second example is somewhat more
tenuous, because one could envision operations which could cause the left son of a tree to be
the tree itselt. However, if a tree can only acquire a son by "growing” one, and can only lose

a son by deleting it, such irregularities cannot occur.

Nonetheless, there are many cases where a programmer would like to construct graph
structures conlaining cycles, without permitting the full generality and unmanageability of
general graphs. The chief mechanism proposed for achieving this in modern languages is the

VAR parameler to capsule definitions. An object passed as a VAR parameter to a capsule

%

Scope lssues in Programming Lanpuages a2 Chapter 4

variable instantiation is accessible within any operation applied to that variable, throughout
the lifelime of the variable, in the same way that an inilial valve for a pointer field in a
record creales a graph edge. Nole thal the parameler object might well be stack allocated,
opening up opportunities for dangling references. Il also provides an alias of sorts for the
parameler variable, since any operation on the capsule variable may modify the original
parameter variable. (The alias could become more explicit if the parameler name were also
exporied by the capsule!) Conversely, the object passed as a parameter to the declaration
might also be a parameler to some operalion on the capsule variable, crealing an alias
problem inside the capsule range. Becpuse of the difficulties listed above, the designers of
Alphard have still not settled on the right set of restrictions to place upon VAR parameters to

capsules.

Euclid has a novel parameler mechanism which bears a superficial similarity to VAR capsule
paramelers, but serves a very different purpose, and thereby avoids some of the conceptual
difficulties. Instead of permitting VAR parameters to a capsule, Euclid provides an imports
clause, which lists a set of identifiers from the context of the capsule which are to be
available inside every instance of the capsule. A procedure body in Euclid may also have an
imports clause. The variables in an imports clause must be available at both the definition
site and the invocation site of the range (procedure or capsule) to which the clause is
attached. (A variable is considered available at an invocation site even if it is a concealed
field of a variable which is actually visible in the invocation context.) Thus those identifiers
are roughly equivalent to normal parameters, excepl thal the actual parameter is specified at
the definition site instead of the invocation site. The motivation for this construct is that
Euclid’s capsules and procedures are both closed ranges, and may nol conlain any free
variables. The Imporls clause provides most of the same functionality as inherited names, but
with two important differences: the inherited names are specified explicitly in the range
header, and the names are bound both statically and dynamically to the same variables. The
static-dynamic rule for imports gives imporled objects full status as candidales for
side-effects. That is, it guaranlees thal any object available within a capsule operation can
be trealed as if it were a parameler o thal operation. This Is in contrast to a VAR capsule
parameter, which might nol be available at the sile of every operalion invocation on the

capsule variable, and thus not considered when noting side-effects.

Despile the potential complexity of VAR paramelers to capsules, the following two

examples show lheir importance.

x'

|

§ Scope lssues in Programming Languages 43 Chapter 4

‘ ; 4.4.2.3. Binary Trees

Shaw et al |50] have written and verified a capsule which defines a binary tree. Their
tree definilion actually defines two dala abstraclions: a tree and a node. Every node belongs
to at most one tree; each tree may conlain many nodes. One means of modifying a lree is by
"arowing” a son for one of its nodes. Such a growing operation affects both the original

g node and the lree fo which it belongs The most natural way to express the relalionships
involved is lo permit a tree to refer to its nodes, and also to permit a node to refer to its

tree. Otherwise the "grow” operalion is hard {o define. Consider:

- Grow(lree, node): does the node really belong o the tree?

L §

1 - Grow(node): unless the node refers to the tree, how can this operation update

the node count for the {ree?
- Grow(tree, path): what if the path from the rool of the tree 1o the desired node

A isn't known? '

-

: Shaw et al use a VAR parameler to the node capsule to lel the node refer to its parent
i ' tree. The Alphard group is contemplating reslricling VAR paramelers to capsules to be of the

{ type of the smallest containing capsule. Euciid’s imports clause would permit this kind of
i\, relationship. The node capsule would be defined inside the tree capsule, and would import the

name of the tree, or of the appropriale components of the tree. Then any operation to
creale a node would have to select the "node capsule” field from a particular tree, and that

particular tree would be imported into the node being created.

4.4 2 4 Resourca Problem

Resource consumption is an aspect of program behavior which until fairly recently has not

1
been trealed with the tools of program|verification. In many high-level language systems it is
of no concern, because the language bystem conceals the finiteness of resources from the

user. However, in programs which implement operating systems, resource consumption is a

B vital concern. Nonetheless, il is usually separable from other correctness concerns, and often

should be treated separately, although with the same tools.
|
Consider a symbol table in a language translalor. The capsules which implement the types

symbaol table and symbol table enlry will ordinarily be considered correct if they faithfully

represent the information stored in them. Bul what if the symbol table overflows? Is the

e f

. - A

Scope Issues in Programming Languapes 44 Chapter 4

program still correct? In many conlexls it would be, because the user would simply
reconfigure the translalor wilth a larger symbol table, and try again. But if the symbol table
were sloring airplanes in an air traffic contral system, symbol table overflow (i.e. oo many
airplanes) would be a fatal error. So consumption of symbol fable resources must be

considered in the verification of such a system.

VAR parameters to capsules have been proposed as a vehicle for propagating access to
resources. We have already seen the side-effect problem inherent in such refationships. It
becomes particularly critical here, since capsules which aotherwise have nothing to do with
each olher might draw resources from the same pool, when neither is aware that he is

consuming resources al all, because the consumplion is hidden in the capsules it uses.

The Resource Problem is a topic of ongoing research.

4.4.3. Generic Types

VAL paramelers to variable declarations provide information for two forms of initialization:
initial values, and structure selection. In early languages, array declarations included
"parameters” which indicated size and index bounds of the array. In transition and modern
languages, a VAL declaralion parameter might also select one of a finite set of alternative
structures for objects of the specified type. Such alternative structures, usually called
variant records or variant types, are a powerful means of grm.:ping related types. For
instance, a factory inventory program might like to use the same procedures for processing
all requisilion forms, except for small pieces of the program which specialized 3n‘ oftice
requisitions or maintenance supplies. The programmer could declare a type “requisition™ to
be a record with a sel of tields for requisilioner, account number, date, etc,, and then a
different set of fields for each calegory of requisitions. The declaration of a variable would
then supply a parameter to Indicale whether it would handle all kinds of requisitions, or only

some particular kind.

A generic type is a data capsule in which some of the component types of the
representation are provided by the user of the capsule. Similarly, a generic procedure is one
for which the types of some of the parameters are likewise provided by the caller of the
procedure. Thus a generic type defines a whole set of capsules, one for each possible set of

user-provided types, and a generic procedure defines a set of actual procedures, one for

k’

T —————

Scope Issues in Programming Languages 45 Chapter 4

each possible set of parameter types. |

That ubiquitlous example, the stack, is also suilable for illustrating generics. A stack
capsule might well be defined independently from the lype of object being stacked. Such a

definition might look something like the following:

capsule stack(T: type) operations push,pop, top, empty =
beqin
proc push(s:stack(T),item:T)=

proc topls:stack(T)) returns item7T «

end stack

The stack defined above can stack any sort of object, provided that (a) all objects are of
the same type as specified at stack declaralion lime via the parameler T, and (b) the type of
the actual parameter provided for T must have an assignment operation defined for it. The
procedures for the stack might or might not be considered generic procedures. At the site of
the procedure definition, the type T is a bona fide lype. However, since T is defined
parametrically at the capsule head, the procedures defined witl have many different versions,
depending on what parameters are provided for various stack variable declarations. Here is
a simpler version of a generic procedure:

proc equal (T: type, a,b:[1..18) array of T) =
beqgin
for i =1 .. 18 do }f all) potequal bl}) then return false;
return true; 5
end

This procedure can test for the equalily of the values of any two arrays with indices
between | and 10, provided that both arrays contain the same type of value, and that type

has a "nolequal” operalor defined on it.

Generics are a logical generalization of the abstraction method introduced by capsules.
They represent the notion thal a particular body of code may be written based only on the
specifications of the data types used in it, without reference to the implementation, or even
the true identily, of those types. Generic types are particularly useful for describing types
whose principal purpose is organization. In the stack example, there is no reason why the
code implementing stacks should have access to the representation of the objects being

stacked. Conversely, operations on an element of a se! should nol necessarily have access to

"

- .Scope Issues in-Programming Languages 46 Chapter &> = -

the link or tag fields which connect it wilh other elemenls of a sel.

Generic types and procedures take over one of the functions previously provided by PROC
parameters. Procedures which otherwise might be passed explicitly as separate parameters
may somelimes be passed implicitly as one of the operalions defined on the type of some
parameter. In particular, the chief complaint about procedures as parameters was the cost
and confusion involved in free name binding; with generic types the dala involved is passed
explicitly, with procedure altached. There is no opportunity for side-effecls other than on the
actual paramelers, or via whalever other side-effect mechanisms are present in the
parameter type. (The free name argument against procedures as arguments applies equally
well to returning a procedure as the vaiue of another procedure. The chief complaint against
them is the complexily of free name binding; in such cases an abstract data object as the
procedure value, with the appropriate operalion defined on it, makes the data passing explicit

and well controlled.)

Simuia 67 had a simple generic lype facility which was a generalization of the notion of
variant records. Its subclass mechanism. made it possible to extend a class with another class,
producing an object which was eligible|for operations defined on either class, with operations
on the base class ignorant of the existence of the extension. The base class could be
extended by different class in the same program; each extending class is called a subclass of
the base class (class). When Simula l67 added facilities for concealing representations, it
included facilities for permitting a base class to conceal parts of its representation from any
subclasses defined on it. Note that |hefbase class (corresponding to a generic type) need not

make any assumptions aboul properties of the subclasses (parameter types).

CLU has always included types as parameters to capsules, requiring only that the
parameler lype have operations with specilied names and parameler types. Euclid omitted
generic types primarily due to skepticism about the cost of implementation. Alphard’s work
in generic types is one of ils major conlribulions to language design; it provides very
convenient mechanisms for specifying a wide variely of properties of a type passed as a
parameler, without lying down the implementation of those properties. For an example, see

(33}

4.4.4. Closely Related Types

Scope lssues in Programming Languages 47 Chapter 4

We have already seen in previous seclions two kinds of close relationships between types.
We have seen that the relation "is composed of" is central to the methodology of data
abstraction. We saw in the binary Iree example that a type might want to export one of the
types of which it is compased, because that type provided a different view of the same
object. From that notion we may generalize to the possibility of defining two types which
are intimalely related by common design decisions, shared data, or mixed-mode operators
(e.g. "compule the area covered by this square and this circle, even if they overlap™. To
handle such situations one would like to be able to access the representation of two types
simultaneously. Such access is quite convenient in Euclid and Modula, since a module defining
more than one type provides access to the representation of each type to all procedures in
the module. Alphard provides even finer control over such overlapping, by permitting the
specifications exported with a form to be more abstract than the specifications used inside

the parent form.

4.5. Applying Data Abstraction To Several Scope-related Problems

The notion of data abstraction has revolutionized the entire field of language design. It
has produced new insights into a variety of problem domains. New implications continue to

emerge. The following problem areas have received significant benefits.

4.5.1. Loops as ranges

One of the more famous shortcomings of Algol 60 was its iteration stalement definition.
The rewrile rule used to define it implied that the quantities used to compute the steps of an
iteration would be computed as many as three times for each iteration. Knuth [23] has

described the debate over what was really intended, in great detail.

Algol 60's problems arose from the fact that the iteration variable, step-control
expressions, and loop body were all considered to be in the same range as the surrounding
statements. Thus it was perfectly permissible, if not altogether reasonable, to include
statemenls in the procedure body which would change the step size of the iteration, or even
change the value of the conlrol variable. Languages like Pascal, Algol 68, and Bliss have

taken some variant of the position that the iteration variable is a NEW variable, implicitly

"

i
[

Scope Issues in Programming Languages 48 Chapler 4

imported as a VAL variable into the loop body, and changed only by the stepping code.
Similarly, they view the control expressions as values computed at loop entry and constant

thereaiter. (Of course, many compilers do not enforce these rules.)

The above constraints make it trivial o prove that a for-loop statement terminates,
independent of what the loop body does. However, they also restricts the kinds of iterations
which the counlted loop may describe. Those which have been excluded must be described

by the while-loop.

Complex data structures often require correspondingly complex iteration sequences over
their elements. One common operalion on trees, for instance, is printing them in order.
Searching for an element with a particular property is another common operation on large
data structures. For this reason, languages which permit definition of large structures also
define iteration methads for them. Arrays, for instance, may be easily traversed in subscript
order. Euclid has a special variant of its iteration construct for iterating over the elements of
a sel. Alphard, Euclid, and CLU are all developing mechanisms by which the author of an
abstract data type may specify, and conceal, a set of procedures which will generate the
elements of the lype one by one (51, 31). All of the constructs define a closed range which
takes an object of the type as a parameler, creates a concealed object to maintéin the state
of the iteration, exports a variable containing the current element of the generaled sequence,

and provides a means to "pulse” the state to produce the next item in the sequence.

The unsolved problem in this line of research is the question of how to describe the ways
in which the object which is the paraméter to the iteration module may be modified, both
within the module and in the loop body. Notice that this is the same problem that Algol and
Fortran had with their step-control expressions. One early solution proposed for Alphard
was to prohibit the loop hody from moditying the parameter objects. This was finally rejected
because it excluded the common operation of examining the elements of a set and removing
some of them. Another proposal provides syntactic means for specifying precisely which
operalions on the parameter objects are permissible within the loop body. None of the
solutions proposed so far makes it possible in general to specify an iteration module which

will terminate regardless of what the loop body does.

4.5.2. Aliases Revisited

L'-'n-—‘—‘_:“'“ f

bl

Scope Issues in Programming Languages 49 Chapler 4

Concern over aliases and sidc-effects has been a recurrent theme throughout this paper.
It has been a primary criterion for judging binding mechanisms, for designing pointer
mechanisms, and for analysing relationships among objects, types, and ranges. Indeed, one
language in particular, Euclid, has set the removal of aliases as one of its most important

goals [48] It has done extremely well.

Euclid’s rule regarding aliases is the following:

"The language guarantees that two identifiers in the same scope can never refer
to the same or overlapping variabts."[ZG]

To do this, Euclid introduced a number of innovations. First, any rahge which can be entered
other than via the textually precediné stalement is a CLOSED range. This eliminales the
possibility of aliases or side-effects through free names. In the place of this, Euclid provides
the imports clause, which permits a range fo name and use identifiers declared outside it,
provided they are available in both the static and dynamic contexts of the range. Thus every
object used in such a range must be available in the dynarﬁically enclosing range, or created

locally. If a given range contains no aliases, and all of the parameters and imports to each

range it invokes are distinct, then it has not introduced any‘aliases into the ranges it calls. By

induction, all Euclid programs are alias-free. (The variables listed in the imports clause are.

considered to be parametfers, and thus eligible for moditication.)

The other major cause of aliases is pointers. We have already mentioned that Euclid's
collection variables were designed to alleviate pointer alias problems. This requires further
explanation. A collection variable is considered to be an unbounded vector of objects of the
type for which it is a collection. Then a pointer variable is considered to be an index into the
collection vector. If two pointer variables point into the #ame collection, one cannct
determine statically that they do not conlain the same index. However, this is no worse than
proving that two indices into an arra); are not equal, and Euclid relegates that task to the

verifier, or inserts runtime checks if so instructed.

The two innovalions above indeed make alias free programs achievable. One might wonder
what flexibility Euclid sacrificed to do this. Reviewing all of the comparisons given so far in
this paper, the only major expressive techniques unavailable in Euclid are generic types, VAR
parameters to types, and simultaneous access to the represenlations of related capsules. Of
these 'hree, we have shown that the first can be partially simulated by variant records. The

second mechanism can be partially simulated by imports, and those uses which cannot be

.

v

Lidl

Scope lssues in Programming Languapes 50 Chapler 4

simulated seem perilous. The third technique cannot be imitated in Euclid, but the issues
involved dont seem lo include aliases. Ultimately, only experience and further rescarch will

k. tell whether Euclid has sacrificed too much to avoid aliases.

The designers of Alphard, while cskeptical of aliases, are less militant than Euclid. They

permit aliasing when it Is carefully documented.

4.5.3. Exceplion Handling

One of the chief complaints voiced about exceplion handling mechanismsiin standard

programming languages is that they either don't permit the handling routine to access the

R il b s o

objecls it needs, or don't preserve the integrity of the dala siructures which were being

modified when the exception occurred.

Levin [27] has used fhe concepls of objects, ranges, and capsules to clarify the issues,

survey existing facilities, and presenl a new mechanism. He describes exceplion handling in

terms of the signalling environmenl, the entity o which the exception applies, and the
environments which may process the exception. A condilion may be associated either with an
inatance of a control construct, as when a procedure call receives unusual paramelers, or
with an instance of an object, such as when a file is found to contain paritly errors. A handler
is always associated wilh a "user” of the instance on which the condition is defined, whether
that be the caller of a function, or a range in which an object is accessible. The signaller of a

condition is the program segment which detects the condition.

An exception handling mechanism, then, may be characterized by the ways in which
handlers may be associaled with instances, and by the ways in which control and dala may
flow between the range signalling a cTndiHon on an instance, and the ranges with handlers

attached to that instance. Prior to dala absiraction, most mechanisms associaled conditions

only with conltrol instances. Handlers lor condilions were generally either statically defined,

or provided by the callers of the procedure raising the condition. Little provision was made
for passing data between the signaller and the handling range. Algol 68 introduced, with its
file exceplion mechanism, the idea of :,a:.sociating conditions and handlers with objects. In
data absiraction languages, a handler could be associated with a variable at Its declaration
site, or for the duralion of a particular conlrol construct, or could even be defined in a type

definition to hold for all instances of that lype. Refer to Levin's thesis for more detail.

Scope Issues in Programming Languages 51 ' Chapter 4

4.5.4. Type Breaching

Most systems programmers sooner or laler find themselves faced with a programming
problem for which the most direct solution is lo treal a single object in the task domain as
having two different lypes. In most cases it Is impossible to prove anylhing aboul objects
treated that way, because lhe interpretalion mus! include informalion about the exact
bit-level representalion of both types; this information is often not available. Consequently
modern programming {heory frowns upon such praclices. However, modern theory has not
provided an adequale sel of allernative techniques, so for the lime being most languages, at
leas! 'hose intended for systems programming, provide some mechanism for it. Pascal didn’t
intend to provide such a mechanism, but programmers quickly discovered that the variant
record construct permitted it by not forcing a variant field to be trealed as having the type
implied by the tag field. Indeed, several Pascal compilers, wrilten in Pascal, make heavy use
of. this feature. Euclid attempls to provide a carefully controlled feature of this nature,
namely an explicit conversion operator. To support thal operator, Euclid insists that it occur
in a "machine dependent"” module, and that it only map between types whose ‘standard
representations are defined in the language. Euclid provides one other mechanism, for
conversion In cases where one of the types has no meaningful values, like machine words. In

all other cases, uninterpreled type conversion is illegal.

4.5.5. Scope Aspects of Mulliprogramming

Modern scope mechanisms also make programming.of cooperating processes a liltle easier.
The underlying scope problem in this area is very much like the Alias Problem: a program

cannot be verified If the values of variables it relies upon may change unexpectedly.

Hoare[20] has produced a language construct, called a monitor, for controlling data sharing
among processes. In its simplest form, it is a general module, accessible by any process, but
with the restriction that only one process may be execuling in it at a time. If a process
attempls to enter a monitor while another is executing in it, the enlering process is
suspended until the other is done with the monitor. Modula interface modules and device
modules are extensions of that construct, providing certain ways that a process may suspend
itself in the middle of the module, permilling other processes to execute in the module while

it's suspended,

"

Scope Issues in Programming Languapes 52 Chapter 4

]

The monitor is useful for verification/because when verifying the code of a module, one can
assume that no other process will change the variables declared in the module'. except
possibly during wait and signal operaﬂons. thus making verification nearly as simple as with
serial programs. Unfortunalely, the mqnilor is now being pushed beyond the limils of its
usefulness [47] Many are now lrying lo use it lo implement elaborate synchronization

protocols, not just simple mutual exclusion.

Owicki [38] has laken the technique a step farther and shown that pre- and
post-conditions of the abstract specifications for monilor procedures must be phrased in
terms only of variables private to the calling process, and not in lerms of the shared
variables. Only the invariant properties of the module specification may mention its parailel
nature. The reason for this is that any non-private, non-invariant property occurring in the

post-condition of a procedure might immediately be made false by another process.

Scope lssues in Programming Languages 53 Chapter 5

S. Programming Examples

In this chapler we shall sample the scope philosophies of several of the languages used in
this study, by studying how a parlicular programming exercise would be writlen in each of
them. The languages we have studied cover an extremely broad range of expressive power
and intended usage, so it would be inappropriate to try to solve exactly the same problem in
each language. Instead, for each language | shall state and solve a slightly ditferent version

of the problem, designed to show the strengths and weaknesses of that language.

S.1. The Problem

Each of the programming examples in this chapter shall implement a a queue. For our

purposes we define a queue to be a sequence of objects with the following restrictions:

- Objects may only be added to the sequence by appending them to the left-hand
end. For this purpose each program will include the operation insert.

- Objects may only be removed from the sequence by deleting them from the
left-hand end, via the operation remove, which also returns the value of the
object removed.

- The sequence is initially emply

- The length of the sequence may never exceed a specified maximum. Inserting an
object In a queue of maximum |ength is not permitted. (Similarly, removing an
object from an empty queue is not allowed).

- The current length of the queue 'rnust be available to the user.

5.2. Fortran

Fortran was invented before scope was considered an issue; nonetheless it is possible to
wrile a collection of programs to implement a queue in a reasonably straightforward way. The
principal issue here is the sharing of the representation of the queue among several
subprograms, without forcing the user to be aware of too much detail. If the items to be
queued are integers then a solution could encode the "front" and "back" pointers into the
array holding the dala, and pass it as a parameler. However, | prefer a version which would
apply to real numbers as well. Therefore the queue is stored in a named COMMON area.

Examples for other languages will build queues of characlers; in Fortran characters may be

7

A

*!l!'llll!FII-l-l-..'.!..'.l...l...l.Il.lIllllllIllIIIIllIll-.--..-..-.-....!.-..

R

Scope Issues in Programming Languages 54 Chapter 5

conveniently represented as inlegers.

Subroutine Qinit

Integer Q(188)

Integer front, back

Common /Queue/ front, back, Q
front = 1

back = 1

return

end

Integer Function Qsize
Integyer Q(188)

Integer front, back

Common /(lueue/ front, back, Q
Qsize = Mod ((back-front},188)
return

end

Subroutine Qinsrt (1)

Integer Q(1080)

Integer front, back

Common /Queue/ frant, back, Q v
1f Qsize .eq. 39 STOP

Q (back) = |

back = Mod (back, 188) + 1

return

end

Integer Function Qremov -

Integer Q(108))

Integer front, back . |
Common /Queue/ front, back, Q

1f Qsize .eq. B STOP

Qremov = Q (front)

front = Mod (front, 1880) + 1

return

end

Integer Function Qfirst
Integer Q(100)

Integer front, back
Common /Queue/ front, back, Q
[f Qsize .eq. @ STOP

Qfirst = Q (front)

return

end

Scope lssues in Programming Languages 55 Chapter 5

The principal shortcomings of this technique are the weaknesses of the named COMMON
construct: discrepancies in the variable lists for a given area between different subprograms

are not checked, and any subprogram declaring a common area with the same name, has

access to the data.

5.3. Algol 60

Algol 60 permils one to implement a queue whase size is a parameler (of sorts), by the
trick of declaring and initializing a variable holding the queue size, in an outer block. The
user of the stack need not be aware bf the representalion of it, except that he must avoid

using the names of variables used to implement the queue. (This may be erforced by the
clever use of blocks, 100.)

beqgin

integer qlimit;

qlimit « 108;
hegin
string array qll:qlimitly
Integer front,back;

inteqer procedure gsize;
qsize t= (back - front) rem qlimit;

procedure modincr (i)3

integer 1;
i t= (i rem qlimit) + 1y

procedure qinsert (s)i
string s; value si
if (qsize = qlimit - 1) then fail
else begin
qlback] := s
modincr (back)

{

H

string procedure qremove;
if qsize = B then fall
else beqin

qremove t= qlfrontl

modincr (front)

H

-

i s e e e s o

————a

b e 08 Bt et 5 e

|

Scope Issues in Programming Languages56 Chapter 5

string procedure gfirst;
if gsize = @ then fail
else gqfirst 1= qlfirstly

Comment queue initlallizations
first := 13
. last = 1%

end
end
Rather than define a separate prOceaure to initialize the queue, 1 have wrilten out its

Initialization as the first execulable statements of the block. This Is reasonable when the

scope of the queue and the scope of its implementation are the same. In the next section we
. '!
will examine a different technique. |

Observe that Algol 60 has no provision for constructing complex objects which are not

arrays, so that the representation of a queue mus! span several variables.

5.4. Pascal

One of the chief contributions of Pascal was its generalization of data structuring

mechanisms, within the framework of a language committed to minimal runtime overhead. In

the following program we define the type queue, enabling the user to declare as many queues

as he needs.

qlimit = 180;
gqmax = 33;
queue = record
front: 1.. qlimit;
back: 1l.. qlimit; j
data: array [l..qlimit] of char
end

procedure qinit (var q: queue) ;

begin

q. front 1= 13
q.back t= 1
end;

Scope lssues in Programming Languapes57 Chapter 5

function qsize (g:queue):integer;
qsize := (q.back - q.front) mod gfimits

procedure modincr [var i:integer);
I := (i mod qlimit) + 13

procedure ginsert (var q:queue, c:char);
if qsize (q) = gmax then fail
else beqin
q.datalg.back] := ¢
modincr [gq.back]
end;

function gremove (var q:queue):char;
if qsize (q) = B then fail
else beqgin
qremove := q.datalq. frontl;
modincr (q.front)
end;

function qfirst [q:queue):char;
qfirst := q.datalq. frontl;

This implementation once again includes an initialization routine, but this time it is because
there may be many queues declared in different places. Observe that this implementation
does not use any global variables, and only two global éonsfants, glimit and qmax. Thus the
user of queues may be sure that his operations are not affecting any variables except the

queues on which they operale.

Pascal Is notorious [14] for its decision lo include array bounds as part of the type of a
variable, leading to the requirement [hat array bounds be compile time constants. If a
program had to have queues of two different sizes, it would have to have two complete sets
of definitions of the type queue and iI; routines, with the only difference between the two
being the value of qglimit, ;
|
5.5. Algol 68 !

I - Algol 68 does not include the dimensions of arrays in the type of a structured object.

Theretore, In the following program the size of the queue Is stored as a field of its

A

Scope Issues in Programming Languages 58 Chapter 5

representation. The initialization rouline is writlten so that it may be used as part of the
statement in which the queue is declared, i.e. so that the declaration may be followed by a

collateral assignment Yo ils fields.

heqin
int glimit := 188

mocde queue = struct
(int front,back,limit,mx,
[qlimit] char datal;
proc qinit = gueue:(l,1,qlimit,qlimit-1, skip);

roc gsize = (queue qlint:
({(back of q - front of q) mod limit of qls

comodincr would need too many parameters to be worthuhile co

t proc qinsert = l(ref gueue q, char c)void: |
5 if gsize (q) = mx of q then fail

r else beqin

(data of q) [back of ql := ¢

back of queue := (back of q mod limit of q) + 1

end) ;

proc gremove = (ref gueue qglc =(
1f gsize (q) = 8 then fail
else beqin

char ¢ := (data of q) [front of ql:
front of q := (front of q mod limit of q) + 1
end)

proc gfirst = (queue g)lchar: (data-of q) [front of ql:

end
Unfortunately, both the array dimensions and the initial values for the limit and mx fields had
to be computed from Aglobal variables, since Algol 68 has no means for parameterizing a type
definition. Furthermore, neither Algol 68 nor Pascal provide a means to restrict the scope of

the representation of a type, so that any part of the program fext which has access to the

name of a queue variable may also modily its fields individually.

-

T T e

Scope Issues in Programming Languages 59 Chapter 5

5.6. Euclid

The following Euclid module both implemenls and protecls the type queue. Furthermore,

the length of the queue is a parameter to the type definition, so that each queue declaration
may specify concisely what its size will be. Even betler, all of the initialization is taken care

of by the module at declaration lime, based on the same parameter, so that the declarer need
not be concerned about initial values. ;

type queuel pervasive limit:integer) = module
exports (insert, remove, size, front)
var front,back:1l..limit

pervasive mx = [imit - 1
var data = array l..limit of char

inline function size returns s:inteqger =

imports (front, back)
g 1= (back - front) mod limit

inline procedure modincr (var i:integer) =
i t= (i mod limit) + 1

procedure insert (cichar) =
imports (var data, var back, front, size)
pre size < mx
post ...
begin
datalback] := ¢
modincr (back)
end

procedure remove returns c:char =
imports (var front, data, back, size)
pre size > 3
post ...
heqin
c := datalfront]
modincr { front)

Q.

en

4

Scope Jsaues in Programming Languapes60 Chapler 5

|

inline function first returhs c:char =
imports (front, back, data, size)
c := datalfront]

initially
beqgin |
front := 1 |
back = 1
end
end

The imporls clauses in this example seem rather long. This is primarily due to the Euclid rule
that imporfs must come from both the static and dynamic contexts of a range. Notice how the

pervasive designation permilted the use of constants without importing them.

Both Pascal and Algol 68 specified the fields of a queue by using the field names as
selectors on the queue variable. Euclid’s syntax is such that the module variable to be used in
a‘ module operation is a prefix parameter of the call. Then any field name imported into the
operation implicilly refers to thal field of the prefix parameler, rather than having to
explicitly attach it to a module variable name. However, this makes it impossible to refer to
fields of two module variables in the same procedure, because the field variable would be

ambiguous.

5.7. Alphard

In this example, even the type of object being queued is a parameter to the form
definition. Alphard uses the name qualification syntax of Pascal and Algol 68 to refer to the
fields of form instances, making possible the function “transfer™ which moves aspecified

number of objects from the head of one queue to the back of another.

Due to the index computations in the transfer function, the data array In this program is

based at zero rather than one.

P |
Scope lssues in Programming Languapes61 Chapler 5
Form QUEUE(T: form <te>, [imit:INT) =
pre { limit > 8)
heqin
spec
func size (q:QUEUE): INT
proc insert (y:QUEUE, x:T)
vproc remove (q:QUEUEI]:T
func first (q:QUEUE):T
proc transfer (q,r:QUEUE, n:INT)
impl
i var data:VECTOR(T,B8,!imit-1), front, back:INT = B
r invariant | B s front < limit-1 A B < back < limit-1]}
func size is (q.back - q.front) mod q.limit
proc insert is if size (gq) 2 q.!limit -~ 2 then fall else |
q.datalq.back] := x; i
g.back := (g.back + 1) mod q.limit fi
vproc remove = if size (q) = B then fail else i
var x:INT := g.datalq. frontl
q. front := (q.front + 1) mod q.limit
x fti v 4
3 func first is if size (q) = 8 then fail else
! q.datalq. front]l f
proc transfer is
E 1f (sizelg) < n) or (sizelr) > (r.limit-n-1) then fail else
E for i:uptoll,n) do
i r.datallr.back + i) mod r.limit] :=
I q.datal(q. front + i) mod q.limit] od j
f r.back t= (r.back + n) mod r.limit; ‘~
| q. front := (q.front + n) mod q.limit fi
end QUEUE 1
5.
L 5.8. Modula
: Queues are the basis for a set of synchronization problems called producer/consumer
problems. The simplest such problem is composed of two processes. One process Is
producing objects and placing them in a queue; the other is remaving them from the queue
and consuming them. The problem is to synchronize the insertions and deletions so that
simultaneous activity doesn't destroy the consistency of the data, and so that instead of
haiting the program when the queue overflows or runs out, the code for the queue will
suspend the process attempling an insertion or deletion until the size of the queue is

Scope lssues in Programming Languages 62 : Chapter 5

appropriate for the operation.

The following interface module solves the simple producer /consumer problem. An
interface module may only be enlered by one process al a time, except !or processes
suspended in the middle by execuling wail or signal statements. Thus the consistency of the
queue data may be assured by simply making sure that it is correct at procedure entry,
procedure exit, and at each wait and signal statement.

inter face module queue;
define gsize, ginsert, qgremove, qfirsts
use [qlimitl;
var front, back:inteqger;

var full, empty:signaly
var datatarray l:qlimit of char;

procedure modincr (i:integer)s
use [qlimit);
beqgin
i t= (i mod qlimit) + 1
end;

procedure ginsert (cichar)

use [data, back, size, limit, modincr I;

begin

if qsize = qlimit-1

then wait (full)

else begin

" datalback) := c:
modincr (back);
if size = 1 then signal (empty)
ends;

end;

procedure qremove: char;
use [data, front, size, modincr, glimit]
begin
if qsize = B
then wait (empty)

else beqin
qremove t= datalfrontl;
modincr (front);
1f qsize = glimit - 2 then signal (fullly
end ’
end;

"

Jr—

I

Scope lssues in Programming Languages63 Chapler 5

procedure qfirst:charg
use [data, front, size 1
if size = 8 then fail
else qfirst := datalfrontl
end;

end queue;

Urfortunately, interface modules do not adequalely support queues of more complex objects.
If the objects being queued were buffers of, say, 256 characlers each, it would be important
for efficiency reasons not to copy the buffers into and out of the queue. Furthermore, one
would like to permit the producer and the consumer to fill and empty their respective buffers
simultaneously. Therefore each buffer. would have to reside in a different interface module,
or in no interface module at all. The former solulion is ridiculous; the latter gives up the very
protection the interface module was supposed to provide. In either case, due to the fact that
Modula has no pointers, the interface module could only be used to protect the computation
of a buffer index, and not o protect the buffer ilself. Even so there would be no protection

agains! either the producer or consumer using buffers for which it had not received indices.

5.9. Simula 67

I have saved Simula 67 for last because, though in many respects it is not an elegant
language, it permits a degree oi flexibility in queues not available in other languages. By
careful use of the subclass facility it s possible, indeed reasonable, to implement queues
which contain objects of any type, indeed of types not known at the declaration site of the

queue.

In the following program, the Queue class knows nothing about the buffer class. The
buffer class is actually a dummy class; it takes no parameters, and has no aitributes.
However, users of the Queue class can construct subclasses of the buffer class, without
changing eiher the buffer or queue classes. Since a queue contains references to buffers,
and those buflfers may be any subclass of the buffer class, a queue may contain any arbitrary
mixture of elements. Indeed, the INSPECT stalement is sufficiently flexible that a program
removing elements from the queue can pick out exactly those elements It knows how to

process, and skip those whose class it does not recognize.

R R T P T S U TR
B = .

Scope Issues in Programming Languages64

class buffer;
beqgin
end;

class queue (limitl; integer limit;
hidden protected limit, front, back,
bedin

integer front, back;

ref (buffer) array data (1:limitly

procedure modincr (i)3

integer 1;
I t= (I mod limit) + 13

procedure insert (b);
ref (buffer) bs !

if gize = limit -1 then fail

else begin '
data [back] := by
modincr (back) |
end;

ref (buffer) procedure remove;

—_—

if size = @ then fail
else beqgin A

remove := data [front 1}
modincr (front)
end;

ref (buffer) procedure qfirst;
if size = B then fail

else gfirst := data [front 1;

front := 1}
back := 1
end Yot (UEUE Yoo §

buffer class a (b)}
begin

o

end

data, modincr;

Chapter 5

Scope Issues in Programming Languapes65 ' Chapter 5

buffer class c (d);
begin

end

£ _ ref (queue) q3
ref (huffer) x;
x t= remove (q)3
inspect x wuhen a do ...
uhen c do ... |

e

Scope lssues in Programming Languages 66 Chapfer 6

6. Summary

We have seen that scope is a strong element of program structure. The set of rahge
definition facilities provided by a language determine the class of permissible program
structures. Languages which have a sufficiently rich set of range facilities have been able to
simplify their parameter and binding mechanisms. Many of the problems formerly associated
with the exlent of variables are also simplified in a richer range'.environment. Modern
understanding and implementation of data abstraction concepts has contribute;i tc the

solution of a number of important program and system structuring problems.

The first major innovalion in scope structure was Algol 60’s nested black concept. It
p}ovided a lool for building programs in a hierarchical scope structure, where both the
control structure of the algorithm and the scope and exitent structure of the data had to fit
info the same hierarchy. The resulting structure turned out to be better suited for
expressing algorithmic structure than for expressing the structure of data, as evidenced by

the Alias and Hole-in-Scope problems.

Data encapsulation mechanisms, the single most important development in modern language
design, provide the means to express the structure of data in a way which distinguishes it
from the structﬁre of algorithms. A data abstraction is often a natural tool for describing a
design decision, or group of decisions, making it possible to concentrate ail of the parts of a
program which are affected by such a decision into a concise package. This improves the

modularity of programs, thus enhancing understandability and verifiability.

Languages supporting data abstraclion have been able to simplify their parameter
mechanisms and reduce their overhead due lo free variables. The NAME, PROC, and LABEL
mechanisms are disappearing from modern languages because they embody both data and
control information, which can now be belter expressed with range definition mechanisms.
Many of the control absiractions necessitating EXPR or PROC paramelers can be implemented
as well or better using data abstraction facilities. Data abstraction languages also provide a
firmer foundalion for exception h;ndling mechanisms, reducing the need for PROC and LABEL

parameters in this capacity.

Free variable binding, highly desirable in an Algol-like scope environment, has receded in
importance in modern languages because of the distinction between the structure of

algorithms and of data. Such binding is no longer necessary lo provide common data to

V

L

=

Scope Issues in Programming Languages 67 Chapter 6

mulliple procedures, nor is there a lendency to need a large number of global variables in
any one environment. Furthermore, bree name binding was a major source of alias and
side-effect problems. Consequently, most data abstraction languages do not permit free
variable binding across procedure or capsule baundaries. Note, however, that constants, field

selectors, and procedures are oflen inherited in the conventional Algol way.

The OWN concepl, considered innov'alive and promising when introduced in Algol 60, has
been displaced somewhat by dala abstraction. The OWN concept separated the extent of a
variable from the duration of the control construct delimiting its scope; data abstraction has
done thal and more by separating the scope of the name of a variable from the scope of its

object. : ' !

Data abstraction, we have seen, has shed light on a number of long-standing systems
programming problems. It has provided the basis for a sound exception handling proposal
which generalizes to multiprogramming. It has shown the way to reasonably controiled
type-breaching. It has suggested useful methodologies for parallel programming. Mgqst
importantly, however, it has provided the means for decomposing a system into coherent
modules while retaining meaningful structure and disciplined scope relations between

modules.

By studying implementations of queues in various languages, we find that indeed the
modern languages provide a greal déal more structure to programs. We find the data
structuring fools of Pascal and Algol 68 to fit naturally inlo good programming style. We find
the modules and of Euclid and Modula to be convenient encapsulation tools. We find Alphard
forms to be excellent tools for constructing data abstractions. Surprisingly, though, we find
that Simula 67, which was the first language fo permit grouping of procedures around a data

type, still excels in the flexibility of its generic lypes, ten years after ils creation.

/

"

=

3

. Scope lIssues in Programming Languages 68

References

(1]

(2]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

[10]

[y

F.T. Baker, Structured Programming in a Production Programming Environment.
Proceedings of the International Conference on Reliable Software, SIGPLAN Notices
10,6 (1975).

Presents management tools for implementing the Chief Programmer Team concept,
including the notion of structured coding as distinct from structured programming.

Frederick P. Brooks, The Mythical Man-Month, Addison Wesley, 1975.

An entertaining set of essays on the management of large software projects.

Ole-Johan Dahl et al, Simula 67 Common Base Language, Norwegian Computing Center,
Oslo.

Reference manual.
Ole-Johan Dahl and C.AR. Hoare, Hierarchical Data Structures. In Structured
Programming, Dahl, Dijkstra and Hoare, Academic Press, London, 1972. -
Presents the class and subclass mechanisms of Simula 67.
Edsger W. Dijksira, GOTO Statement Considered Harmful. Communications of the ACM
{March 1968). :
An early example of the influence of language on the quality of software.
Edsger W. Dijkstra, Notes on Structured Programming. In Structured Programming, Dahl,
Dijkstra and Hoare, Academic Press, London, 1972.
A landmark work on structured programming.
Edsger W. Dijkstra, 1972 ACJ Turing Award Lecture: The Humble Programmer.
Communications of the ACM (October 1972).
|
Describes the human limitations which make structured programming imperative.
Edsger W. Dijkstra, Correctnessf Concerns and, Among Other Things, Why They Are

Resented. Proceedings of the International Conference on Reliable Software, SIGPLAN
Notices 10,6 (June 1975), 546-550.

Motivates program verification.

Edsger W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

Presents a programming and verification methodology which places heavy emphasis on
proving termination and controlling the scope of names. Also introduces a novel
approach to initialization.

Mark Elson, Concepts of Programming Languages, SRA, 1973, 67-84.

Uses an elaborate formal basis for classifying binding mechanisms in programming
Ianguages.

A.C. Fleck, On The Impossibility of Content Exchange Through The By-Name Parameter
Transmission Mechanism. SIGPLAN Notices (1976), November. '

&7

Scope Issues in Programming Languages 69

(12]

(13]

[14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

Mustrates the problem of repeated evalualion in the NAME parameter mechanism.

Lawrence Flon, On the Design and Verification of Operating Systems, Computer Science
Department, Carnegie-Mellon Universily.

Jack Goldberg (ed.), Proceedings of a Symposium on the High Cost of Software, SRI.

An example of the literature of the "software crisis”, including analysis of the
components of the cost of software.

A. Nico Habermann, Critical Comments on the Programming Language Pascal, Computer
Science Department, Carnegie-Mellon University.

Criticizes the concept of type underlying Pascal.

Paul N. Hilfinger et al, An Informal Definition of Alphard, Computer Sclence Department,
Carnegie-Mellon University (in preparation).

Reference manual.

C.AR. Hoare, Notes on Data Structuring. In Structured Programming,'Dahl, Dijkstra and
Hoare, Academic Press, London, 1972.

C.AR. Hoare, Proof of Correctness of Data Representations. Acta Informatica 1 (1972).
Presents the verification methodology eventually adopted by Alphard, Clu, and Euclid.

C.A.R. Hoare, Data Reliability. Proceedings of the International Conference on Reliable
Software, SIGPLAN Notices 10,6 (1975), 528-533. .

Presents the mathematical notion of type.

C.AR. Hoare and Niklaus Wirth, An Axiomatic Dehmlion of the Programmmg Language
Pascal. Acta Informatica2,4 (April 1973).

The axioms for variant records are internally inconsistent, precisely where variant
records in Pascal are type-unsafe.

C.AR. Hoare, Monitors: An Operating System Structuring Concepl. Communications of
the ACM 17,10 (October 1974), 549-557. :

The synchroniialion concept behind interface modules in Modula.

John B. Johnston, The Contour Model Of Block Structured Processes. SIGPLAN Nofices

-February 1971, 55-82.

Anita K. Jones and Barbara Liskov, An Access Control Facility For Programming
Languages, Computer Scierce Department, Carnegie-Melion University.

A refinement of binding mechanisms in data abstraction languages, permitting the
programmer to specify precisely which of the Operahons defined on an ob;ect are
permissible.

Donald E. Knuth, Remaining Troluble Spots in Algol 60. Communications of the ACM
(October 1967).

One of the last papers analyzing Algol 60, describing among other things the binding
Issues surrounding the loop construct.

-~

v .

[24]

(25]

(26]

(27]

(28]

[29]

(30]

[31)

(32]

(33]

[34]

|

Scope. lssues in Programming Languages 70

Donald E. Knuth, The Art of Compuler Programming: Fundamental Algorithms,Vol. 1, 2nd
Edition, Addison-Wesley, 1973, ; ®

Donald E. Knuth, Structured Programming With GOTO Stalements. Compuhng Surveys
(December 1974).

Shows proper and improper uses for the GOTO statement, eventually arguing that the
GOTO is necessary for cerfain cases of muitiple exit points from a compound statement.
Points out that improper use of the GOTO is harmful, but the GOTO itself is not.

Butler W. Lampson et al, Report On The Programming Language Euclid. SIGPLAN Notices
(February 1977).

Reference manual.

Roy Llevin, Program Structures For Exceptional Condition Handling, Ph. D. Thesis,
Computer Science Department, Carnegie-Mellon University.

Represen!aﬁve of the stale of the art in exception handling, presenting the scope

sues and a promising solution.

Barbara Liskov and S. Zilles, Programmmg With Abstract Data Types. SIGPLAN Notices
(April 1974), 50-59,

A reasonable tulorlal on the concept of an abstract data type, and a basic introduction
to CLU.

Barbara Liskov, An Introduction To CLU. In New Directions m Algorithmic Lanpuages
1975, S. Schuman, ed,, IRIA, Paris, 1975.

Barbara Liskov and S. Zilles, Specificalion Techniques for Data Abstractions.
Proceedings of the International Conference on Reliable Software, SIGPLAN Notices
10,6 (June 1976), 72-87.

A survey of specilication techniques, highlighting those properties of an abstract data
type which are visible outside it, and mus! therefore be precisely specified.

Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert, Abstraction
Mechanisms in CLU Proceedings of the ACM Conference on Language Design for
Reliable Software, SIGPLAN Notices 12,3 (March 1977).

An introduction to abstraction in CLU, including its iteration construct.

Ralph L. London, A View of Program Verification. Proceedings of the International
Conference on Reliable Software, SIGPLAN Notices 10,6 (1975), 534-545.

A gentle introduction o verification.

Ralph L. London, Mary Shaw, and William A. Wulf, Abstraction and Verification in

Alphard: A Symbol Table Example, Computer Science Depariment, Carnegie-Mellon
University. .

A non-trivial example of a generic type.

Joel Moses, The Function of FUNCTION in LISP, or, Why the FUNARG Problem Should be
Called the Environment Problem, Project MAC, Massachusetts Institute of Technology

&'

w

Scope Issues in Programming Languages 71 ' -

(35]

[36]

(37]

[38)

(39]

(40]

[a1]

(42]

[43]

[44)

[45]

MAC-M-428 Al-199.

Describes how cerlain deccplively simple binding mechanisms can' cause enormous’

implementation and conceptualization difficulties.

Peter Naur (ed.) , Revised Report on the Algdrilhmic Language Algol 60. Communications
of the ACM (January 1963), 1-17.

Reference manual.

Eliot L. Organick and Loren P. Meissner, Fortran IV, Addison Wesley, 1974.
Reference manual.

Susan Owicki and D. Gries, Verifying Properties of Parallel Programs: An Axiomatic
Approach. Communications of the ACM 19,5 (May 1976), 279-285.

Susan Owicki, Specifications au‘d Proofs for Abstract Data Types in Cancurrent
Programs, Digital Systems Laborqiory, Stanford University TR No. 133.

Data abstraction combined with monitlors permils nalural extension of Hoare’s

methodology to parallel programs.
: |

Frank G. Pagan, A Practical Guide to Algol 68, John Wiley & Sons, 1376.

Provides plenty of examples, and enough conventional prose fo explain the Algol 68
terminology. |

Jacob Palme, New Feature for Module Protection in Simula. SIGPLAN Notices (May
1976).

Turns classes into prolected capsules, and permits fine control over sharmg with
subclasses. These features are now part of standard Slmula

David L. Parnas, Information Distribution Aspects of Design Methodology. Proceedings
of the IFIPS Congress 71, Vol. 1 (1972).

The effect of design information changes on system construction.

David L. Parnas, Some Conclusions From an Experiment in Software Engineering

' Techniques. Proc. AFIPS FJCC vol. 4], AFIPS Press, Montvale, N. J. (1972), 325-329.

How a methodology based on modules facilitated construction of a tay system.

David L. Parnas, A Technique for Software Module Specification With Examples.
Communications of the ACM 15,5 (May 1972), 330-336.

Specifying a module as a black box with lights and buttons.

David L. Parnas and D.P. Suewuorek Use of the.Concept of Transparency in the Design

of Hierarchically Structured Systems, Computer Science Department, Carnegie-Mellon
University.

More methodology based on modules.

David L. Parnas, On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM 15,12 (December 1972), 1053- 1058

Parnas’s concept of what a module should comprise.

-

[46]

(47}

[a8]

(a9]

(501]

(51]

(52]

[53]

(54]

(55]

(56]

(57]

- Scope lssues in Programming Languages 72

David L. Parnas, On a 'Buzzword': Hierarchical Slruclure. Proceedings of the IFIPS
Congress 74 (1974).

It is necessary lo specify exactly which relation among modules is hierarchical.

David L. Parnas, The Non-problem of Nested Monmitor Calls. Operating Systems Review
12,1 (January 1978).

Points oul the difference between the monitor as a synchronization construct, and the
monilor as a resource manager.

G.J. Popek et al, Notes on the Design of Euclid. Proceedings of the ACM Conference on
Language Design for Reliable Software, SIGPLAN Nolices 12,3, SIGPLAN Nofices 12,3
(March 1977), 11-18.

Discussion of, among other things, the scope issues in the design of Euclid.

Craig Schaffert, Alan Snyder, and Russell Atkinson, The CLU Reference Manual, Project
MAC, Massachuselts Institute of Technology.

Mary Shaw, Abstraction and Verification.in Aiphard: Design and Verification of a Tree
Handler, Computer Science Department, Carnegie-Mellon University.

An example of a compiex relationship between two abstract data types.

Mary Shaw,William A. Wuif and Ralph L. London, Abstraction and Verification in Alphard:
lferation and Generators, Computer Science Department, Carnegie-Mellon University.
Uses dala capsules to solve a control abstraction problem.

Richard Sites, Algol W Reference Manual, Computer Science Department, Stanford
University STAN-CS-71-230.

Lawrence Snyder, An Analysis of Parameter Evaluation For Recursive Procedures,
Computer Science Department, Carnegie-Mellon University.

Comparing the power of parameler mechanisms using program schemata.

R.D. Tennent, PASQUAL: A Proposed Generalization of PASCAL, Department of
Computing and Information Science, Queens University.

Advocales using a uniform binding mechanism for declarations and parametlers.

Clark Weissman, Lisp 1.5 Primer, Dickenson, 1967.
Introduction to LISP
A. van Wijngaarden (ed.), Reviced Report on the Algorithmic Language ALGOL 68.
SIGPLAN Notices (May 1977), 1-10.
Reference manual. }

I
Niklaus Wirth, The Programming Language PASCAL (Revised Report), Berichte der
Fachgruppe Computer-Wissenschaften, Eidgenossische Technische Hochschule, Zurich.
Reference manual |

t

Scope Issues in Programming Languages 73

(58]

[59]

(60]

Niklaus Wirth, Modula: A language for modular mulliprogramming, Institut fur
Informalik, Eidgenossische Technische Hochschule, Zurich.

Reference manual.
Niklaus Wirth, Toward a Discipline of Real-Time Programming. Proceedings of the ACM

Conference on Language Design for Reliable Software, SIGPLAN Nolices 12,3 (May
1977), Communications of the ACM.

The methodology behind Modula.
William A. Wulf, Ralph L. London, and Mary Shaw, Abstraction and Verification in

ALPHARD: Introduction to Language and Methodology, Computer Science Department,
Carnegie-Mellon Universily. .

|

P N Py P
SECURITY CLASSIFICATION AF THIS,MAGE /When Dara Entered)

b REPORT DOCUMENTATION PAGE : SR TR e
1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG‘NUMBER
AFOSR-TR- 7 8 - 14 932
4. TITLE (md Subtitle) : S. .TYPE OF REPORT & PERIOD COVERED
SURVEY OE‘SCOPE ISSUES 'IN PRQGRAMMING-LANGUAGES Interim g
g g , * 2 6. PERFORMING ORG. REPORT NUMBER
‘ CMU-CS-78-131 ™~
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
. , Bob Schwanke ' i Tl - F44620-73-C-0074
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Carnegie-Mellon University] AnEA"ORKUMT“u"aERS
Department of Computer Science T ‘ 61101E = . :
Pittsburgh, PA 15213 - — X A02466/7 . P %
11. CONTROLLING OFFICE NAME AND ADDRESS _ +] 12. REPORT DATE %
Defense Advanced Research Projects Agency ; June 1978 - =
1400 Wilson Blvd. 3 13. NUMBER OF PAGES
Arlipgton, VA 22209 73

14. MONITORING AGENCY NAME & ADDRESS(if ditlerent lrom Controlling Office) 15. SECURITY CLASS. (of this report)

. Air Force Offxce of Scientific Research (NM) i UNCLASSIFIED
Bolling AFB DC'. 20332 - [e ST ICATION/ DOWNGRADING

-

16. DISTRIBUTION STATEMENT (of th!s Report)

. Approved for public :eleése; distribution unli_mitec.l'f . . s

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

oo
-

18. SUPPLEMENTARY NOTES . i i

19. KEY WORDS (Continue on reverse side il necessary and ldentity by block number)

20. ABSTRACT (Continue on reverae side Il necessary and identity by block nusmber)

In this paper we shall study scope issues in programming languages,
from the standard binding tﬂchnlques and philosophies of early langqueb, to
the. recent work in data encapsulatlon. Firgt we will stldy the ﬁundameht&l
concepts of blndlng, then’ see how they appedred in early languages. The
scope- problems in these languages made clear the need for.-additibnal’ program
strucdturing tools, leadlng to .the developmcnt of data encapsulation
mechanisms. We shall study the scope properties of data capsules, and

compare the encapsulation philosophies of several modern languages. We shal

DD, 2"'" 1473 £3:TION OF | NOV §3 13 OOSOLETE UNCLASSIFIED
- o ; Aoy ' TFICATION OF THIS FAGE (When Dare Bntered)

™

g

R T T

SR T

T - i

e

UNCLASSIFIED ;

20. Abstract continued.

use the notion of abstract data types to study modern scope issues, and to -
survey recent advances in several scope-related areas. Finally, we shall
compare and contrast several languages, both old and new, by studying
solutions in each of them tc a common programming problem.

