


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 

-~~w--~~
. 

~~~~~~~~~~~~~~~

p
CrlU—CS-78- 131

Survey of Scope Issues

in Programming Lang uages

Bob Schwanke

June , 1978

• D D C
fl r~E~~?n~a11Efl

~~~~ DE~~~~~91B~~~~

• (
~Y~ T ’ ~’ ç~i,

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ (AFS C)

+ + -. :
• + • •

• - •

~
~~~~~~ i s

~ ~~~~ 1 L 
+ j  + t : ~ ~.

A. D. ~~~~~~
.. 

• . • d . -

rU~~~n1 I aa .I I uX
~ 1~’ii Orri~~~.

• This work was su pported in part by the Defense Adva nced Research Projects Agency

under contract no. F44620-73-C-0O74.

- U ~i5N sTATEr~~NT ~~~~
Approv d for public r.1.ai.a %

D~autb~tto~ Unl*mltsd ~~



r __... .....
~~~~
jj

~

‘

~~~~~

- 

~~~~
- -

~~
-.

~~~~~~~~~
- 

-~~~~~. ..

• ABSTRACT
•

in this paper we shalt ~tudy scope issues in programming languages,
fr om the standard binding tet h~ ques arid philosophies of early languages, to
the recent work in data encapsulation. First we w~ll study the fundamental
concep ts of binding, t hen see + how they appeared in early languages. The
scope problems in these languages made clear the need lot additional program
structuring toots , leading to the development of data encapsulation
mechanisms. We shalt study the scope properties of data capsules, and
compare the encapsulation philosophies of several modern languages. We shall
use the notion of abstract dat~ t ypos to study modern scope Issues , and t o

• • survey recent advances in several scope-related areas. Finally we shall
compare and contrast several languages, bo th old and new, by studying

• so lutions in each of them to a common programming problem.~~

I.

Accr~s~ 
•
. 

_________+ 

NT IS V i e Section ~
(
~. Section 0

0
• iu~

•; I . i • - + -*

~Y~~~• • 
—

~~~~~~~~~~~ t~l~s 
—

Dist. ‘\ + : +1t1CI,”O~~SPLCIAL

• _ _ _ _

I
.

~~~~~~~~~~ .j~~ u~~



I. Introduction 1

1.1. Terminology 1
1.1.1. Definition of Scope 1
1.1.2. Definition of Extent 2

• 1.1.3. Definition of Range 2
1.2. Overview 3
1.3. languages discussed in this survey 4

1.3.1. Early languages 4
1.3.2. Modern Languages 5

2. A Set of Simple Binding Mechanisms 6

2.1. Notation 6
2.2. Explicit Binding Mechanisms 6

2.2.1. NEW Var iables 7
2.2.2. VAL Variables 7
2.2.3. VAR variables 8
2.2.4. EXPR variables 8
2.2.5. LABEL variables 9

2.3. Free Name Binding 9
2.3.1. CLOSED ranges 9
2.3.2. OPEN ranges 10
2.3.3. DYNAMIC and STATIC ranges 10

2.4. Summary of Mechanisms 11

3. Scope Mechanisms in E arly Languages I 2

3.1. Free Name Mechanisms 12
3.2. Parameter mechanisms 13

3.2.1. Fortran: REFERENCE parameters 24
3.2.2. Algol: VALUE and NAME parameters 14
3.2.3. LiSP: VAL , VALUE, or REFERENCE? 15
3.2.4. Analysis 16

3.3. Side effects 19
3.3.1. The Alias Problem 19
3.3.2. Parameter Aliases 19
3.3.3. Free Name Aliases • 21
3.3.4. Pointer Aliases •

. 21
3.3.5. Evaluation side-effects . 22

4. Modern Language Designs 24

4.1. Overview 24
4.1.1. The Sof tware Crisis 24

• 4.1.2. Modern concerns of language designers 25
4.1.2.1. Programming Meth odologies 25
4.1.2.2. Overall Structure 25
4.1.2.3. Fulfilling Requirements 26
4.1.2.4. Robustness ol Programs and languages 26
4.1.2.5. Efficienc y 27
4.1.3. Goals of Modern Languages 27
4.1.4. Scope Control and Modern Concerns 27

4.2. Modern Binding Methanisms • 28
4.2.1. VAL mechanisms 28
4.2.2. VAR mechanisms 29
4.2.3. EXPR and PROC mechanisms 29
4.2.4. Free Name Mechanisms 30

4.3. Data Encapsulation 30

- ~~~- •~ -•+~~•‘



-
~

uI

4.3.1. Origins 30

4.3.2. A Data Capsule 31
4.3.3. Mechanisms in Modern Languages 34

4.4. Relationships among objec ts , t ypes, and ranges 37
4.4.1. Initialization • 

+ 37
4.4.2. Object-Object Relationships 39
4.4.2.1. The Problem of Pointers 39
4.4.2.2. VAR Parameters To Capsules 41

• 4.4.2.3. Binary Trees 43
• 4.4.2.4. Resource Problem 43

4.4.3. Generic Types 
. 44

• 4.4.4. Closely Related Types 46
• 4.5. Applying Data Abstract ion To Several Scope-re lated Problems 47

• 4.5.1. Loops as ranges 47
4.5.2. Aliases Revisited • 

48
4.5.3. Excep tion Handling 50
4.5.4. Type Breaching 51

• 4.5.5. Scope Aspects of Multiprogramming • 51

5. Programming Examp les 53

5.1. The Problem 
+ 53

5.2. Fortran 53
5.3. Algol 60 55 •

5.4. Pascal 56
5.5. Algol 68 

• 57
5.6. Euclid - 59
5.7. Alphard • 

60

• 5.8. Modula 
• 61

5.9. Simula 67 63

6. Summary 66
References 68



r - - _____

Sc ope issues in Programming Languages 1 Chapter 1

1. Introduction

The scope mechanisms of a programming language • are those features w hich describe and

control the use of name d ent ities , such as variables , procedures , and types. As such, they
.~

+ 
are the notation for describing the structure of programs. The particular scope mechanisms a

language provides , by dic tating what scope relationships a program may contain, profoundly

influenc e the structure , and thus the quality, of that program. The scope properties of a

program affect its understandabilit y, its efficiency, Its verifiabili ty, Its modifiability, and even

• the difficulty of finding its bugs. Thus studying scope can shed light both on programming

languages and on programming itself.

1.1. Terminology

• The term scope has been used to mean any of a large variety of loosely related concepts.

In order to use it meaningfully in this paper , I shall assign a single, narrow meaning to it , and

define two other terms, extent and range, to denote two other related concepts.

Before defining those terms , however , I need to make clear my f rame of reference. in
+ programming languages a vanable consists of a name, an objec t, and a value, though one or

more of these may be omitted. In the mainstream of language design, e.g. Fortran, Algol 60,

Pascal , and Aiphard, a variable is composed of all t hree. Specifically, a name is a program’s

way of denoting an object , which is a portion of memory containing one or more value.r

whic h may be integers , memory addresses , procedure bodies, or what have you. In languages

like LISP and Its descendants, howeve~, an identifier denotes a value directly, though some

values can be modifiedM (CLU calls tt~~m mutable (31]J In Algol 68, a name is a constant

equal to the address of an object . For the purposes of this paper , however , I use the terms

variable, name, objec t, and va lue in the sense of Algol 60, Pascal , and Alphard. That sense is

by far the most common one, and may be used to explain the phenomena of the LISP family

and Algol 68 faIrl y well.

1.1.1. Definition of Scope

We define scop. to be a property of names, The scope of a name Is the portion of the

— -~~~~~ ---- —•- p



- -- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- 
--

p

Scope Issues In Programming Languages 2 Chapter 1

program text In which all uses of that name have the same meaning. In particular , if the name

denotes an object , the scope of that name is I he portion of the text in which the name

denotes the same objec t. For examp le, in Al gol 60, when an identifier which has been

declared in an outer block i5 redeclared in an inner block, one says t hat the scope of the

outer name does not Include that inner block, and t hat a different name, spelled the same

way, has a scope which is the inner block. As another examp le, one would be temp ted to say

that a reference or pointer variable name denotes different objects during the execution of

the program. However , a pointer variable Is actually a name denoting a single object whose

value Is a reference to (or address of ) another object. -

1.1.2. Definition of Extent

This concept Is a property of objects. The extent of an object is Its lifetime , that is, the
• portion of the execution time of the program during which the value contained in the object

persis ts unless explicitly changed. For example, the extent of the object denoted by a

variable in Algol 60 is t he period between entry and exit of the block in which it is declared.

On the other hand, the extent of an ~~~ variable is the entire lifetime of the program, even

• . though its scope is the same as that of a local variable declared at the same place.

1.1.3. Definition of Range
• 

• This term, borrowed from Algol 68, denotes language constructs or delimiting scopes and

extents ’ . More precisely, a range is a portion of a program, delimited by some construct of

the language, such that the scopes of names defined inside the program portion do not

extend outside that portion unless expHcitly “exported (more on this later). Thus ranges can

be thought of as the building blocks out of which scopes are constructed.

• In Algol 60, procedures and blocks are the only range delimiters. In Algol 68, almos t any

sta tement sequence is a range, if It includes name declarations. In modern languages, a

cons truct which bundles up a group of declarations into an abstrac t data tip. or module,

delimits a range. • +

+ ‘The reader must not confuse this with the subrange concept of Pascal , which denotes an
Interval within the values of an enumerated t ype.

—



- — w - --r — 

~~~

-——

~~~~~
----- - •-- 

—

~~~~

—— “ +

Scope I’sues in Programming I .ingu.,ge 3 Chapter 1

For the purposes of this paper , ranges never overlap. When one range is nested inside

another , the outer range leaves of I where the inner range begins. When one range provides

L names, objects , or values to a rang e it declares or Invokes , we say only that the providing

r ange is pa r t of the con tcr t of the using range. Thus In Algol 60, when one block is nested

inside ar ,otte r block , the range defined by the outer block does not include the r ange defined

by the inner block, even though the scope of a variable declared in the outer block would

include the Inner block. The outer block is then part of the context of the inner block.
• Similarl y, in languages with “dynamic scope ”, the range defined by one procedure does not
• include the bodies of the procedures it calls even though the scope s of the v4ric&bl.s declared

in the calling procedure might ex tend into the called procedures.

1 1.2. Overview
+

The history of programming language design, at least that part of it where scope has been

an issue, can be divided into two major phases.

During the firs t phase , which ex tended from the inlroductiori of Fortran through the late -•

1960’s, languages plainly reflected the compiler technology and the machine archi tectures on

which they were founded. Language comparisons were based on considerations of power and

convenience. Usually they were done feature-by-feature. A language desi gner could

or dinarily justify the Inclusion of a particular feature simply by showing how conveniently it

solved some particular programming problem.

In Chapters 2 and 3, I present a means for categorizing scope control mechanisms , and use

it to describe and anat yze The mechanisms developed during this phase. One of the major

issues of the day was the choice of a parameter mechanism for permitting side ef fects on the

actual parameters. None of the various proposals were completely satisfactory, but the

debates served to clarify the nature of the alias problem, whic h Is still a major issue in

modern language designs.

Early language analysis was more c oherent than earl y language design. Criticism included

both analysis of Individual features arid discussion of medium-scale Issues like side-effects

and aliases. The more general analyses of the late 60s , combined wi th the programming

methodology research just then emerging, f ormed the bases for modern languages.

-~~ — _ _ _ _ _ _ _ _ _ _ _ _

•— -
~~~~~

-— _ :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- — ‘ -

~~~

•• - •• --- -

~~

------ --

~~~

• •

+ Scope Issues in Programming Languages 4 Chapter 1

The principal languages which have emerged since She JaSe 60’s have been designed based

on explicit theories of programming. With a wide variety of suitable scope constructs already

available, language designers have tried to choose features whose interaction harmonized
with the underlying theory. This concern with interaction also motivated the Introduction of

several new scope feat ures.

Chap ter 4 surveys the maj or concerns of modern language designers , and explores how

these ideas are supported and contradicted by the scope mechanisms of various modern

languages. For example, concern for modularity has caused most modern languages to

severe ly restrict the ways that data may be shared between various parts of a program.

Similarly, concern for verifica tion must be traded off against generalit y in the design of

• module cons tructs.

• The first four chapters of this survey focus primarily on language constructs , and only

secondarily on specific languages. However , the importanc e of the issues discussed cannot

be fully appreciated without concret~ examples. Therefore Chapter 5 presents a simp le

programming t ask, and solutions for~ it in several languages.These examples trace the
development of various scope mechanisms, and show the strengths and weaknesses of the

• languages displayed.

1.3. Languages discussed In this s~rvey

This paper is a survey of concepts , rat her than of languages. Consequently, we will discuss
specif ic languages only to illustrate concepts , and riot to list all the languages having that

concept. We will draw our examp les from a small se t of languages which together span the

import ant concepts. However , the two different historical phases of language design require

• distinctly differen t kinds of spanning sets. (The references listed In this section are language

manuals or language overviews.)

1.3.1. Early language,

+
During the first phase of language development , three well-known languages contained all

the major Ideas on scope control. rortran (36~ is important because it was conceived before
scope was an Issue, and because it Is so often the object of ridicule. The mechanisms it

_ _ _

+

_ _

~~~~~~~~~~~~~~~~~~
~ •



Scope Issues in Programmi ng l.anguages S Chapter 1

presents have only limited f lex’bility, but in their simp licit y they avoid many pitfalls of more

sophist icated consl ruc ts. Algol 60 [35) is the best known of a large group of similar

languages , and cap tures the best thinking of a major segment of the computer science

communit y of that period. LISP (55], designed around the mathemat ician ’s notion of a

function, has engendered another large famil y of languages. It has a distinctly different set of

powerful , general scope features , which have several unexpected properties.

1.3.2. Modern Languages

The modern languages reviewed in chapter 4 have more in common than the ones listed

above , because many of the classical desi gn problems of the earl y phase hav e been solved.

The superfici a l similarities among these languages make it easier to see the various stands

they have taken on a variety of unsolved modern problems. Consequently we will discuss

more languages than in the earl y phase , but only those fea tures of each language which are

distinctive.

Pascal (57, 19] is important for its pioneer work in type def inition and axiomatic

descri ption, as well as for being the basis for half a dozen recent languages. Algol 68 (56,

39) is a transition language, designed with lof t y goals, but completed too early to incorporate

several crucial modern ideas. Simula 67 (3, 4) Is noteworthy as the first language to

exp licitly at tach procedures to data t ypes, as well as the f i rst to provide a type -extension or

subt ype facility in a safe way. Euclid (26, 481 and Aiphard (15, 60] provide abstract data

type constructors within the Algol/ Pascal line of languages. CLU (49, 29] also provides

several modern abs traction mechanisms , wi thin a LISP-like framework. Modula (58) provides

module fac IlitIes tailored to concurrent programming.



—4

Scope Issues in Programming languages 6 Chapter 2

2. A Set of Simple Binding Mechanisms

It would be tem pting at this point to develop a formal basis for describing all possible

bindings belwee n names , object s , va lues, environments , et ce te ra .  (Mark rlson has developed

one such bas is (10).) However , because mos t of the theoreticall y possib le bindings are

imprac tical , a formal basis would be too cumbersome for this survey. Instead , we shall use an

informal basis. R. 0. Terinent [54) has recently formulated a simple set of mechanisms for

procedure parameters and local declarations , suc h that the same terms denote the same

• mechanisms in both co ntexts. The following sections expand his work into a set of

mechanisms sufficientl y rich to describe the wide variety of actual mechanisms found in

programming languages, but not necessaril y general enough to describe every conceivable

mechanism.

2.1. Notation

In order not to prejudice the reader by using ba-familiar delimiters in my examp les, I have

created a neutral syntax for examp le programs. Each examp le wilt consist of three columns.

The left column contains the range in which new bindings are being made. The right column

r lists the ranges which form the context from which the new range may obtain names , objects ,

or values for some of its new bindings. The keywords ins~~i, deci~~~ and invoke mark the

exac t points where the new range touches its contex t . Invoke marks the point where control

transfers from the context to the range , and returns when the range terminates. Declare

marks the point where the name of the range is declared. Insert simultaneously declares and

Invokes the range. The middle column defines the interface between the new range and its

context. Exp licit relationships use the symbol :: (double colon) to relate a var iable from the

new range, on the lef t , to some piece of the context , on the right. Names occurring f ree  in t he

lef t column, and bound by a context in the right column, are listed in the interface column,

between angle-brackets.

2.2. Explicit Binding Mechanisms

The mechanisms described in this section each present a way of defining the relationshi p

of an identifier being declared in one range to the objects and identifiers In the range ’s

1~~~ 

• 

•



Scope Icsues in Progr amming Languages 7 Chapter 2

ccuz fczt (as def ined in section 1.1 3), wt .ether that be a surrounding block (in the case of

• 
. declarat ions ) , or the calling co ntex t for a procedure (in the case of parameters ) .

2.2.1. NEW Variables

A NEW var iable is one whith has no exp licit relatio nship to the context  of its defining

range. It consists of a name bound t~ an object , possibl y init ialized t o a locall y computed

value. f3oth the name and lhe object ~r e  normall y only accessib le wi t hin the range in wh ich

they are declared. Thus executing range R below would print the value 3:

~~~ S — interface ran~~ R —

new A new A :: (nothing) new A
A~~~4 A : - 3

endrang~ S inser t ranRe S

~ j~jj Aendr~~g.~ P

2.2.2. VAL Variables

A VAt , variable brings into its defirnng range the value of an object found in the range ’s

context. A VA L variable may not he assi gned t o. Thus it cannot be used to modif y the object

from which it s value omes. I purposel y leave unspecified whether the name is bound to the

object or directly to the value. In simple cases (i.e. no aliases or parallelism), it doesn’t

matter. In earl y programming languages the VAL mechanism only shows up as a cop ied value,

used as a building block for other mechanisms. In later sections I discuss the perils of aliases

and parallelism in some detail . Executing range R In the following examp le also prints the

value 3:

ran~e S • interface range R—

~~j A ~~[A : : B
B : 3
insert range S

endrang.~ S ~ndrang~ R

No mat ter what the range S does, it can ’t tamper with the object named by B (at least not via

the interface mechanism).

_ _
_ _

~~~~~~~~~~~~~~~~~~

f

Scope Issues in Programming Languages 8 Chapter 2

2.2.3. VAR variables

A VAR variable brings into its defining range an entire object from the range’s context. It

• consis ts of a local name bound to that object. This means that any assi gnment to a VAR

var iable is also an assignment to t he variable (from the surrounding context ) which provided

the object the VAR name is bound to.

rangà S — interface range R—
var 8 :~A new A

p!j~j B  A : - 3
B :— B - 1 Insert range S
p.that B • A : - A - 1

endrang~, S •

endrange P

Executing range P above prints the sequence of values 3, 2, 1, because t he names A and B

are defined by the interface to denote the same object.

2.2.4. EXPR variables

An EXPR variable actuall y brings into its range a piece of text from the surrounding

context. It consists of a name bound to an expression , w hich can be any expression which

would be legal in the enclosing range. The value of a EXPR variable at any time is the value

which would be obtained by eva luating the corresponding expression in the enclosing range!

If the expression would also be legal as the destination of an assignment statement , an

assignment to the EXPR variable becomes an assi gnment to the object described by the

expression. Otherwise, ass ignment to an EXPR variable has no effect.

range S — interfac~ ran~~ R —

~~~~~ A ~~~ A ~: B new B •

~~ C~~B+3 • B :— 2
A :— A a 2 I insert range S

• C : - C s 3 p~j~~ B ‘1
~ri~ A,C endrange P

endrange S

When the code of range S multiplies~A by 2 and stores it back into A, It is manipulating the

same objec t that B is bound to. When it tries to triple B+3, via C, nothing happens. Then
when it pr int s A and C, It gets A’s value from that same object , and computes C’s value as the

current value of B, plus 3. So the program prints 4,7,4.

aI

Scope Issues in Programming languages 9 Chapter 2

PROC variables are very similar to EXPR variables , in t hat they both trans port a piece of

• program tex t into a range from f r.. context . The only difference Is that for an EXPR variable

the text is wr i t ten out ex p licit l y at the binding site , w hereas a PROC variable is bound to a

procedure previousl y declared in the surrounding con text . Tha t procedure can then be

invoked inside t h e PROC vari able ’s defining range. Mos t of what I will say about. EXPR or

r . PROC variables app lies equally to either.

2.2.5. LABEL variables

A LABEL variable brings into its defining range a statement label from the range’s con text .

The LABEL variable is t reated exact l y as if it were an ordinary label. For instance , GOTO

<label variable> causes control to transfer to the statement named when the variable was

bound. LABEL var iables , like EXPR and PROC variables , permit more com plicated interaction

between a range and its context. Unlike other mechanisms , however , LABEL var iables may be

used to af fec t the control flow , ra ther than the data , of the range’s con text.

2.3. Free Name Binding

In, mathemat ics , a variable occurring in a particular contex t without being defined in that

context is said to be !.r..c.~.
in that conte x t. Many programming languages permit a name to be

used in a range in which it is not explicitly defined. To provide a meaning for the name, the

language specifies a rule for searching through related ranges to find the declaration which

defines It. There are fo ur main concep ts involved in such searching:

2.3.1. CLOSED ranges

A CLOSED range Is one that cannot contain any free names. Such occurrences would be

flagged as errors. This means that ~~ of the interactions between a CLOSED range and its

environment will be through explicit bindings. A CLOSED range with no VAR, EXPR or LABEL

In its interface would have absolutel y no way to cause any ex ternal side ef fects when

execu ted. In the example use of the VAL mechanism in section 2.2.2, I qualified my assert ion

that the object paired with the VAL variable was safe. With CLOSED ranges , we can remove

that qualif ication. By adding the word CLOSED to the examp le in tha t section , we ge t a range

-— •

~ -

Scope Issues in Programming Language Chapter 2

guaranteed not to cause side effects:

cJ9~
.
~~ !~lnR~ S • inte rface rang~ R.

~~j A val A :: B
B : 3

p~j~~ B

~ndrang~ S ~fl~1!i”~& R

Executing range P above must pr.nt the value 3.

2.3.2. OPEN ranges

An OPEN range inherIts all of the names accessible in the range ’s context , excep t for any

names It redeclares.

~~~~ 
rarigg S — i~j ç~j~çj !ii ~

g
~ 

f~
• ne~~ B C A >

B : A
A : 8 t 2  ‘

endr anae S insert rpng~ S
p~j~j  A

endrange P

The expressions involving A in range S refer to the identifier declared it the beginning of

range P. Thus the program above prints 3, 6. In general, If the scope of a name N includes

• a range R, it also Incli,des any OPEN r anges found within R.

2.3.3. DYNAMIC and STATIC ranges

The context of a range actually consists of two parts. The stati c part Is the name

environment In which the range is declared. The dynanuc par t is the name environment In

whIch the range Is invoked. When a range is inserted (see section 1.1.3), the two parts of its

c ontext coincide. In the las t example, for instance , range R is both the stati c and dynamic

context for range S, because the lp~ett statement In range R both dec lares and Invokes range

S.

F ree name binding may be done in either the dynamic or static context of a range; we s~ alt

label an open range as either STATIC or DYNAMIC according to which context shalt be used

to bind free names . In the following program , if range S had been marked STATIC , it would

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 
_  — ... . • . - . .. . . • . . .. .- .. .. . - • . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  . - A



S ope Icsues In rrogr amming languages 1 Chapter 2

have p, Inted the value 3, f ound in the variable B in range P, where $ Is decMred. Bocause

range S is DYNAMiC, however , t ire name 13 n~.itlv it refers to the var iable declared in range T,

where r ange S is invoked; thus the prog ram prints the value 4.

L~~ f ~~ 
R-

d ç Iar~ rar~.g~ S
new B
B .3

dynamic r ang~. S — ir~t e ’ r f a .  e r’ndv .rnj..~r P
pnn.I B

encir an ~~ 5 range 1-
~~~ B
B : 4
invoke rang~, S

2.4. Summary of MechanIsms

The scope mechanisms defined in this chapter are tabu lated here for convenient reference:

.~~ hanisr~ ‘~iIh con tex t

NEW nothin~
VA L value

VAR object ,

EXPR part of the execution environment of the context

PROC procec~ure, and its t ree variables.

CLOSED nothing

OPEN all variables occurring f ree in inner range

STATIC variables In declaration context

DYNAMIC variables in invocation context

The mechanisms defined In this chapter represent the major concepts behind the scope

mechanisms found In early programming language;. In the following chapter 1 survey those

actual mechanisms in detail.

Scope Issues in Programming Languages 12 Chapter 3

3. Scope Mechanisms in Early Languages

The scope mechanisms in Chapter 2 were carefull y defined to be independent of whet her

the mechanisms were to be used (or procedure parameters or variable declarations

However , in the standard earl y languages , most of the variety in binding mechanisms showed

up in procedure parameters. Declarations were ordinarily similar to the NEW mechanism

(section 2.2. 1). it wasn ’t until later languages began to wo’-y about initialization that variety

in declaration binding mechanisms began to appear.

In this chapter , w hen I contrast LISP with Algol and Fortran, I will sometimes refer to

so-called “pure LISP”. LISP was built around the mathematician ’s notion of a function as a

s t rai ghtforwar d mapping from one set ol values to another , such that one only need think

about values and expressions , never about modifiable objects. However , LISP programmers

apparently found that the conventional notion of objects was a useful one, because most of

the languages in the LISP family have some sort of destructive operations , i.e. operations

which modif y existing “values” (in other words , objects) instea d of creating new ones. These

•
. operations form the “impure” part of LISP systems. Without them, the language is free of the

notion of objec t , and thus free from a number of problems.

In the following sections we shall sur vey and compare the parameter mechanisms and free
• name mec hanisms in Algol, Fortran, and LISP. Then we shall study the notion of a ride effect ,

Induding the Alias Problem, and its manifestation in those languages.

3.1. Free Name Mechanisms

Fortran has no free variables. Every name occurring in a procedure and not explicitly

declared in that procedure, is implicitly declared to be a var iable with attr ibutes derived from

its spelling and the number of subscripts occurring with it. Fortran procedures (main
• ‘

. programs and subprograms) are its only range delimiters. The names used in each procedure

are private to it. The only mechanism for statically sharing a set of objects among

- procedures is the COMMON mechanism, which permits sharing of storage areas , but does not

j

require that different procedures refer to the same location in the same way. Indeed, the

declarations which name the objects in a COMMON area must be repeated for each procedure ,

~ ‘ wi th no check for consistency between’procedures. Thus, what to one procedure looks like a

sequence of characters might look to ~another like integers. This quirk has It s uses, but is

i

~~~

i

•
.
.

~ 

j



Scope Issues in Programming Languages 13 Chapter 3

pr one to errors as well. The labelled common mechanism is powerful for a second reason: if

is the only mechanism in Algol, Fortran, or LISP which permits an arb itrary set of procedures

to share a set of objects without having to make those object s available to other procedures

as we ll. A colleague , on reading an early draft , pointed out to me that this permits one to

wri te Parnas modules (45) in Fortran.

• In LISP, all variables are either global variables or formal parameters , and all ranges are

DYNAMIC. Free names are handled in it the same way they are in mathematics: names free

in one expression are subject to bindings occurring in the next enclosing expression. If no

binding can be found in this manner , the name in ma thematics is left unbound, (imp licitly

• quantified “(Or aH ). Analogously, a name w hich is free in one LISP routine is left unbound

until the routine is invoked in some context ; then the names are bound to the definitions
• provided for them by the calling environment.

Al gol 60 ranges are STAT iC . Procedures are defined in terms of blocks , which can be

tex t ually nes ted in other blocks . A name free in one block derives its meaning from the
textuall y enclosing block. If it Is also free in that block, the one enclosing it is checked next ,

• and so on.

By avoiding free names altogether , For tran also avoided some of the pitfalls of Algol 60

and LISP. The named COMMON mechanism, although permit ting sharing of objects , provides

no ass istance In maint aining the Integrity of those objects. (To its credit , Fort ran was

designed before dividing up programs into lois of conceptual units was a serious concern.)

The LISP mechanism makes sense in a pure mathematical context , where the “meaning” of a

func tion is independent of the values put into it , whether they are put there exp licitly or
implicit ly. Furthermore, LISP programmers for the most part do not define functions inside

other functions, even thoug h they could, so STATIC free name resolution wouldn’t be very
useful. However , w hen a procedure can modify variables and not j ust obtain values from

t hem, the procedure can hardly be understood without knowing which variables Its free

names denote. Since the parameter mechanism provides a flexible means for obtaining
objects from the dynamic context , static inheritance of names, as in Al gol , seems to make

more sense.

3.2. Parameter mechanisms



Scope Issues in Programming Languages 14 Chapter 3

3.2.1. Fortran: REFERENCE parameters

The Fortran parameter mechanism was derived from assembl y language programming

practice: all parameters are passed by address. This has the interesting proper ty that labels

and procedure names can be passed as parameters as eas i l y as variables; since no safety

checks are made on parameters , no other informat ion need be passed. Thus the Fortran

mechanism, of ten called a REFEREN~~ parameter mechanism, corresponds to the VAR

mec hanism in section 2.2.3. (Of course , the power and speed obtained by omitting checking is

very unsafe. If a programmer should pass a constant , say 3, to a procedure which expected

• to store values into its formal parameter , many For tran systems would have that procedure

changing the va lue of the “constant ” 3.~

3.2.2. Algol: VALUE and NAME parameters

Most early languages had no facil ities for defining constants , so it isn’t surprising that most

didn’t have pure VAL parameters either. Algol’s VALUE parameter , however , is closely

related. A VALUE parameter may be thought of as a NEW variable which is initialized at

procedure entry with the value of the corresponding actual parameter. It may be assi gned

to, like any other variable , but because it is a NEW var iable , the assignment does not affect

the calling context.

Algol has a second kind of parameter , the NAME paramete r . It is very much like the EXPR

mechanism defined in section 2.2.4. The actual parameter can be any expression whic h would

• be legal in the caller ’s context , wi th the excep tion that if the format parameter occurs inside

the procedure as the destination of an assignment statement , the actual parame ter must be an

expression which would be a legal destination in the caller ’s contex t. Thus one could wri te a

procedure for zeroing vectors:

• -~~~~~~~~~~~~~~~~~~~~
..



~~1F

Scope Issues in Programming Languages 15 Chapter 3

beg in
procedur e ze ro (vece iem e nt , i ndex , lbound , hbound) ;

va l ue lbound , hhound;
begin
for i ndex :- Ibound step 1 until hbound do

vecelenent :- 0
end zero;

i nteger I;
• integer array a (1:101 , b (1:10 ,1:1W;

zero (a (i) , I , 1 , 10);
zero (b (i , I), I , 1, 18);
end

The first call to zero in the examp le above would put 0 in each element of array a. The

second ca ll would put 0 in each diagonal element of array b.

3.2.3. LISP: VAL , VALUE, or REFERENCE?

LISP 1.5 differs from pure LISP by including two sets of modif ying operato rs: the SET

group, and the RPLACA group. The SET operators change the name-value binding of a

• variable so that the name is bound fo a new value, abandoning the old value. The RPLACA

• operators modif y an exis ting value , instead of copy ing par ts of it and constructing a new one.

Consider the following program (the syntax is contrived):

SET ( A , 3 )
SET ( B. A
SET ( C, 4 )
SET ( 0 , C )
SET ( 6 , 5 )
RPLACA ( 0, 6)
PRINT ( A , B, C, 0

The second opera tion binds B to the s me “3” that A is bound to. The fourth operation binds

D to the same “4” that C is bound to. The fifth operation binds B to the value “5”, leaving A

bound to 3. But the RPLACA operation changes the “4” to “6”, so that both C and 0 are bound

to the value 6”. The print state ment prints 3, 5, 6, 6. Observe that the SET operators do not

Introduce the notion of objects into LIS~’. SETting one var iable will never change the value of

another. It is only the RPLACA group which makes the notion of object distinguishable f rom

that of value.

LISP programmers are well awa re of the implications of the SET and RPLACA groups, ard

will of ten refrain from using one or both groups in large sec tions of their programs.

~ I
• 

--



—

Scope Issues in Programming Languages 16 Chapter 3

Therefore , I will descr Ibe the LISP parameter mechanism as it behaves in each of three

versions of the language.

Parameters In pure LISP are VAL parameters. In fact , VAR or EXPR parameters in pure

LISP would behave denticalt y wit h VAL parameters , because only assignmen t distinguishes

VAR from VAL, and only var iables with changing va lues distinguish EXPR fro m VAL.

Add SET operators to pure LISP, and the parameters become VALUE parameters (sec 3.2.2).

That is , the name of the formal parameter is hound initiall y t o the value of the actual

parameter , but may later be re-bound (i.e. SET to a different value), without affecting the

call ing contex t . Note, however, that SETting a free variab le is more confusing in a DYNAMIC

range than in a STATIC one.

• Full LISP 1.5 makes the parameter mechanism behave somewhat like a REFERENCE

mechanism. The RPLACA operator makes it possible to modify the value of the actual

• parameter , unless SET rebinds It first. But what it really amounts to Is that all names are

bound to pointers to objects , and all parameters are pointe rs, passe d by VALUE.

What I have described above is the underlying mechanism. LISP values may actuall y be

express ions or f unct ions, w hich may or may not contain free variables. Ultimately, however ,

the programmer must always be aware that he Is dealing with pointers to objects.

3.2.4. Analysis

Larry Snyder’s thesis (53] contains an exhaustive analysis of the computational power of

var ious parameter mechanisms. It shows that VAL, VALUE, REFERENCE , and COPY mechanisms

are all equivalent in power , by giving simp le rewri te rules for implementing any one of them

• in terms of any other. The NAME parameter is the only mechanism in his study which could

not be rewritten in terms of the others , because of the repeated re-evaluation feature. So

the following analysis is based more on considerations such as convenience and efficiency,

rather than power.

Each of the parameter mechanisms in Algol, Fortran, and LISP Is well suited. for certain

kinds of computat ions, independent of (he language in which it occurs. As mentioned before,

the VALUE mechanism is side effect free , excep t when the value is a pointer. It also turns

out to be cheaper to execute than the others. The mechanisms of LISP are well suited to



Scope Issues in Programming Language 17 Chapter 3

symbol manipulation, especially list processing . In addition, by distinguishing between CONS,

SET , and RPLACA , the programmer can tell which “assi gnments ” can cause non-local

side-effects. The relative merits of REFERENC E and NAME are not as clear. The NAME
mechanism permits one to wri te procedures whose primary purpose is to ex press some

control structure , such as the array sequencing examp le above. The generalization to other

array operations , such as inner and outer products , should be obvious. It also has the delayed

evaluation propert y. That Is, the actual parameter will not be evaluated until it Is needed.

This permits one to pass as parameters expressions which would produce runtime errors if

evaluated (e .g. subscr ipt out of bounds), provided that the procedure receives enough
Informati on to deduce that it can avoid using t he potentiall y invalid expression. But the fact

that the name parameter imports a whole environment into the procedure range implies that
• the associated overhead must be somewhat high. The REFERENCE parameter is thus

appealing because It allows side effects on parameters in a simpler way , and gener alizes well

to passing procedures , arrays , and labels, although not expressions .

The NAME mechanism turned out to be more powerful than its designers thought. Indeed,

it is so powerful that there are some very simple things it cannot do. The most famous
examp le is the Exc hange procedure: it is impossible to write a procedure In Algol 60 which

exchanges its (integer) arguments , for all poss ible actual parame ters.

The obvious algorithm using a temporary variable will fail when one of the actual
parameters is an index to the other:

beçjin

~,roceclure EXCH ( A , B );
baU m
Inte ger temp;
temp ;- B;
B ;. A;
A . TEl?
end;

integer array A U:1BI ;
Inte ger I;
I :— 1;
AU ) * —  2;
EXCH ( A C t ) ,  I I
end

When the exchange routine puts the value of A(l) into I, A[I) is no longer A(1). If the routine

happens to do Its operations in the right order to handle the above case correctly, it wilt fail

I



F- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• . S ope Issues in Programming Languages 18 • Chapter 3

4~.
on EXCH(l,AtI]).

The simple array Index exc hange problem was solved in the late 60’s using a non-obvious

feature of the assi gnment statement , namely that the dest ination address Is computed before

the source expression is evaluated. Consider the following procedure:

‘
. procedure EXCH (A ,B):

beg i n
• inte ger procedure EX1 (F1 ,N);

beg i n
* EX1 :- Ii;

end EX it

A :- EX1 (B ,A)
end EXCH;

This procedure firs t computes the address of A, then invokes EX t which saves the value of B,

stores the value of A into B, and returns the value of B, which is then stored into A. The

critical property is tha t the addresses of both variables are computed before either is

assigned to. But even the above doesni wo rk, because it is legal to write an actual

par ameter in Algol 60 which evaluates o a different address every time it is accessed (11]:

beg in
• integer arra~j A Eh1B 3 ;

~nteger J: I

integer procedure I;
• begin

J s . J 4 1 ;
I ~ a

end I;

J : — B ;
EXCH (A (1 3 , A (I J) ;
end

If this last call were to the “clever ” solution above, it would have the effect of copying A[2]

into A(1], and A(4] into A(3]!

The problem with the NAME parameter , then, is precisely Its streng th: the actual

parameter must be recomputed on absolutely every examine and store operation. In contrast

to that , the address of a REFERENCE parameter is computed exactly once, which makes many

situations clearer and simpler.

S These difficulties with the NAME parameter are examples ol problems with “side effects ”,

which we examine next.

~~~~~~~~~~~~~~~



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Scope Issues in Programming Languages 19 Chapter 3

3.3. Side effects

A side ef fect  is any non-obvious ef fec t  of executing a statement of a program. There are

ba~- icatly two categor ies of side effec ts: a) evaluating an ex pre ssion may modif y varia bles ,

and b) an explicit modification may also ef fect  changes ‘ variable s not named In the

sta tement.

The princi pal issue with side-effects is not whether they occur , but how unexpected they

are , and how welt they can be described. Evaluation side ef fects  permit compa~t code , but

raise serious semantic pr oblems and efficiency issues. Implicit consequences of explic rt

ef fec ts , on the other hand, can often be documented unambiguously.

3.3.1. The Alias Problem

The Alias Problem is the class of problems that comes up when one tries to explain a

program in which two names , occurring in the same range, may or may not be simultaneousl y
• bound to the same object. In such situations , modif y ing one variab le may affect the va ’ue of

another. We shall study the problem in the context of aliases c reated by parameter bInding,

then see how aliases can occur v ia free name binding or pointer variables.

3.3.2. Parameter Aliases

In the procedure call EXCH(A(I],I) in section 3.2.4, the ob;ect of the ac tual parameter I was

also referenced in the evaluation of A(1). Thus the exchange routine would unwittingly

“modify one of its parameters when assi gning to the other. The REFERENCE mechanism is

• free of these more sop histicated problems, but still exhibits the very basic problem intrinsic

to the notion of muff ipie names for an object. Consider the following procedure, which

divides each of Its twn parameters by their greatest common divisor , leaving the m in their
• “simplest ratio N: 

~~~~~~~~~~


.-1

Scope Issues In Programming lanp,uages 20 Chapter 3
S

procedure sini p ler a t iofA ,B);

• begin
Integer C,0;

C : — A ;
D :- B;
Uhl le C 0 rio I This t oot) reduces C arid 0 to

If C > 0 then C :. C - 0 Ithe ir greatest common
else 0 :~ 0 - C; I denom i nator

B : — B / C ;
A :- A / C ;
end

One would hope that a procedure computing the simp les t ratio of equal numbers would leave

them both equal to 1. But SIMPLERATIO (N, N) would set N equal to zero, assuming N was

greater than I beforehand. Once again, the reason is that the assignment to B would change

the value of A, because both would be bound to the same object.

Al gol W [52) has a procedure mechanism, called VALUE RESULT , which avoids the problem

of side ef fects during computation. The VALUE part of the mechanism is the same as in

standard Algol: a NEW variable named with the formal parameter name is initialized from the

actual parameter . The RESULT mechanism also mandates the creation of a NEW variable , and

in addition specifies that when the procedure terminates , the value of the RESULT variable

must be copied into the corresponding actual parameter. A VALUE RESULT parameter ,

• sometimes called a COPY parameter , would thus create a NEW variable , initialize it from the

ac tual parameter , execu te the procedure, and store its final value back into the actual

• parameter . Thus in the simplest ratio procedure, the assignment to B would not affect the

value of A ever , because A and B would denote separate , local objec ts. The final copy ing of A

and B back into the same actual parameter would be harmless , because they would have the

same va lue.
‘p

Unfortunately, the Algol W form of COPY has a serious flaw , namely that the address of the

• actua l parameter var iable is calculated twice: once before entering the routine , to obtain the

parameter ’s value, and again after leaving the routine, to store the resulting value. When an

actual parameter is an element selected from an array, side eff ects on the Index variable wilt

change the destination of the value cop ied out on routine exit. Thus that mechanism still does

not solve t he Exchange problem, even though the REFERENCE mechanism does so nicet y.

What ’s worse , if the same procedure has more than one VALUE RESULT parameter , the order

In whic h the final copies are done Is not specif ied, so that the effect of a problematic call

cannot be determined at all. Thus, although call by VALUE RESULT handles SIMPLERATIO(N,N)

I,

r

-

~~~~~~~~~~~

•

~~~ 

—a-.-— .
• _ _ _ _ _ _ _ _ _ _ _

_~ 1

Scope Issues In Programming languages 21 Chapter 3

correc tl y, It would fail on something like SIMPLERATIO(A(I),I).

None of the major languages of this period took the obvious step of defining a

reference-st y le COPY mechanism, which would save the address used to obtain the initial

value and use It as the dest ination for copy ing back the final value of the variable.

3.3.3. Free Name Aliases

Free name binding mec hanisms can~aIso create aliases. Consider the following Al gol 60

program skeleton:

beg in
• integer I;

procedur e P (A 1;
integer A ;

beg in

(...
end;

p (I);

end

During the invocation P(I), A and I would be bound to the same object , so that assignments to

I would change A. During the invocation P(3), assignments to I would not change A. Thus we

see that the meaning of procedure P depends heavily on how it is invoked.

• 3.3.4. Pointer Aliases
I

LISP 1.5 has fac ilities for building rather general graphs, using pointers. Grap h

manipulations ar e particularly susceptible to alias problems, because two pointers into a
•

. graph may point to the same node, or to a father-son pair , or to two nodes related in some

other important way. Several modern languages have attacked this problem; see section

4.4.2.1 for details. •

4 Scope Issues in Programming Languages 22 Chapter 3

3.3.5. Evaluation side-effects

These come about when one of the components of an express ion is a function call (Or an

•
EXPR var iable bound to an expression containing a function call). There are two problems

with such side-effec ts: a) the ef fec t of the function cal l on the value of the express ion can be

obscure , and b) i f that effect is precisel y defined , the defini tion forces the code generated to

be inefficient.

•
~

A function call causes a side effect whenever it modifies a variable whose extent is longer

than the function call. (This does not include the pseudo-variable , wi th the same name as the

function, used in some languages to contain the result of the function.) The variable modified

may be a parame ter to the function, a free variable, or an own variab le.

• tvlathematici ans often object to the whole idea of permitting a func tion to produce

• • side-effects , since this is contrary to the mathema tical notion of a function. They argue that

a function should always produce the same val&je for a given set of input values. (They

include the values of f ree variables as inputs). According ly, some languages distinguish

be tween procedures , which have side-effects , and functions , which do not. However , we are

interested here in functions which both produce side effects and return a value.

The effects of a function call on its parameters and free variables are not In themselves
• hard to specify. Specify ing effects on OWN variables is somewhat difficult , because the

effects are only manifested in the results of subsequent calls to the function. The real

difficu lty comes f rom the fact that the expression containing the function call may contain

other occurrences of the variables and functions involved. Consider the expression

A + F (A)

4 w here F is a function w ith a VAR p~arameter. The value of the expression depends on

whet her A is evaluated before or after F(A). This makes addition be non-commutative , as

well as preventing a number of useful optimizations. For examp le, con5ider the optimization of

•
Boolean expressions. It is well known that in many such expressions the value of one

subexpression can determine the vatu! of the entire expression. For examp le, (X
~ trj~.)

always evaluates to
~~~ 

If evaluating X will produce a side-effect , the compiler must

1 
produce code to evaluate it , even though the value of the main expression is known at

compile time.

A third kind of anomaly occurs when the side effect is a t ransfer of control , e.g. a GOTO to



Scope Issues in Programming Languages 23 Chapter 3

a sta tement outside the function. Which ol the et le c ts  of the statement containIng the

func tion call actual ly occur?

—

~ 

I •_
~

-
~ ,_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~- —



-p. .
~~~~~~~ -.-

• • _

upe t~. ,.tit,~. in }~r o~~i iinnlng I .ii~~ t I .l~~i’f. ~4 Chapter 4

4. Modcrn 1~tnguago Design.

4. 1. Overview

In pi t ’.. ot:~. chapters we have~ •.t i t l i i ’tI the h.,~.c elt ’’n~,nls of •.inpe ln~ ’~ h.iiii~.in~., ,,ntl how

• . I fi t ’ .. huw up in ea rly I ~ingtia~es. J p to this point , I .ii ii.i~,e itt’ ~. ign h4i~. mostl y hot’ n of an

ex po r l,nt’ntal and pr.it~niati(I’, pt ~i C. lCt S t r y t h i s ~iir~.t t (ii I ~ee if it works any be t t e r ,

mo re ef f it out , t’ tc .) Rot out de veloprne’nl s ~n pi o~
, .lnlnilng lht’or y, howeve r , havn N o~ it’d

muc h firmer foundations for co licient Iatigua~e design. The langua~1es diccusst ,d In this

chapter have each been hii~.ed on a for ma l ized theory of programming, w ith a kiarly

under slood sot of co iic inns ni~ t iv ,iting the design. We will ex p loi o the sco pe onsti ric t~ of

these l~mguagos in the light of the oncer us mot ivating them.

4.1.1. The Software Cris is

In the late 1 960 s, the coniprit ing c~ mmunlty became increasingly alarmed over the

regula r ity with wh ich ¶ .o t tw a r r pi oje c t~
; ra n past dead lines and ov.r budgets Contr ~i ry to

earlier expecta tions , debugging and modif icat ion had come to be an enormous, unpredictable

part of th. cost of a prol.ct (often ~O per ce nt or more ol th. to t al cost (13, i’]). Di~ks t r a (•

was one of the firs t to rcat i:e that this cas t came from the fa ct that programs we re gett ing

too complex to be fully understood, and that hett ~r methods for con trolling comp lexi ty were

needed. This idea s timulated research into “slruclt ,r nd progranimtng w, seeking melh~ds of
1 ‘ pr ogramni ing which pr cwide str uctur e strong enough to support th. weight of vet ‘~ ta r ge .

• complic aled programs. This work had two main themes. One w as oriented towai d coding,

looking at th. syntactic cha racle r ct ic p of clear prog rams. (~i j k s t r a s (
~~t (~ letter (!~1 wa s a

landmark In this area , lead ing to fru itf u l discuscions about discip lined control flow (.‘h) the

other theme , which emerged from work on prog ram design m~ttiods (6], sought oigaui:aticinal

tools for dividing up a large program into semi -ind ependent parts [dl , 42 , 44, 4~ , 46).

13y the end of the decade the combined matur ity of tangua~e analysis and programming

experience was enough to precipita te a new generation of languages rooted both in

theoretic a l Ideals and pract ical experience.

.1

P.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~t ope i’.’.tiv s in Pr i~~~ r •irriming I .tIr )~u.rRes .‘~r Cliapt or 4

4.1.2. Modern concerns of language desi gners

I lie r .rpid tlt’s’t’loprnonl of new do.i~ in pr o~ ,r .nininiir~ ha’ . pr LIdtSt t.d ,in .i~. ,ilaiic hit ’ ~f new

ter ms . In ou ter to make the r tn.I ol liii,. ~.Ir.uptor t iear , I pre ,t ’rit here a br ief glos~ar~ of t Ire

ma ior Oii~ or us vOlt od by r t” ,e at ( h OTS stud ying f lit ’ ~piaIi ty of pr ogr amming.
L

4 I 2.1 Programming M.thodolo~i.s

I he “ of 1w a, c cr i s is ” has pr ompted a var ‘ely of al t omp ts to (3e\ olep methods of

pu ogn .imiiiing Ii a’. od on for mal pi i n c  ip tes.

~ ! ~~~ t UI ~~ r ro~~r amm,ui~’~: Pt’~.igiung a pr ogr am so that the inte r r d a t  ionsliips
among it’; par I’; ma’~ be c lea r l y gr .icped (6 , 1 u) Note that th is is differ cut It oni a
s t r c i  lured program , which i s  one whose ct r iii tu ned dt’’.ign is embedded in the
ode (60 ) F~otIi of the above are d if ferent from ‘.11 iii t i i r  ed eihiIr ~ , w hich is a

pr ogramming -.1 andard r u’str icting the wa y s in which iCr  ta m language cons i r rid s
may be ie.pd , in order to produc e programs wi t h ‘.itrip ler pa t te rns  of cont t  of f low
[1 1.

- li~ r 0 nrt ’nt al Pb u’leprirenl Cons tr tic t lug a large program a piece at a time, such
that each new piece can be wr i t ten and test e d based only on the pieces that
have already been con s truc ted.

- Underct~ nd~ih iIj~j: When r e t o r t  in~~ to programs , the ext en t to which the program
author ’s intentions are made apparent to the read er. When refer r ing to
la irgiia~r.es , the extent to which the language provides constructs which permit
progr animers to expre ss t h e  s tru t lure of their programs directl y in the code , in
natur sl ways .

4 I 2 2 Overall Structure

The following te rms all relate to the ‘ ;tr t ic tur e cit progr ams;

- ~.Iethilant y: This te rm has been used in a var iet y of related senses. In general ,
modula rity ir. simply the qualit y of being divided up into coherent pieces. Of ten
this means that each module of a program must be compilable separately.  But
Parnas [~l~i) has proposed a slightly dif ferent notion of modulari ty ,  whic h is evCn
more des irable In a system of programs. He proposes that a modulari:ation of a
svsle n of programs be clone along conceptual lines , rather than by comp ilation
unit s In particular , he advoc a tes that eac h module make a . e ry  small number of
assumptions about other modules, and eac h hard design decision he contained by
a s ingle module, so that a des ign decision, and the cor responding mcidule, ma~ he
changed without af fec t ing other modules, co that major cfrsign changes cause a
minimum of program changes. Put ri tim terminology of graph theory . I’ ar  n a ’ .

w ould have us divide a s o f twa re  s~ ste m into a weakly connected set of strong ly
connected subsystems . Remember, howev e r , that the division is only at the
sourc e code level, not at the machine code level. An appropriate

— —,.- -.~~~~----~~—~-.-~ A’1



- -~~- .---~~~~~~~~~~~~ -.- -  -

Scope l’sucs in Programming lanp,uap,es 26 Chapter 4

macro-definition facil i ty can permit an ac tual machine code routine to he
composed of code from seve ral dif f erent modules. Parnas ’s concept implies tha t
in most cases a complex data structure will be acces sible within only one module,
contrary to the prior practice of spreading knowledge of the format of comp lex
data structures over several different modules. For the remainder of this paper
we wil l ordinarily use the term modulari ty in Parnas ’s sense.

- Modifiabili!y.: The ease w ith which a maintainer can locate the set of places
where the program text must be changed to accommodate an Intended
modification. fn a highly madutar program, most design changes will only affec t
one module, because the decision being changed per tains only to that module.

- 

~1nstra c ti2ii~ Representing a group of relate d things by a single term which
expresses t heir alikeness and suppresses their differences. ror instance , a
procedure wi th parameters actually describes a large set of possible
computa t ions, one for eac h different set of parameter values. Thus the
proce dure would be an abs lract ion denoting the common properties of all the
different computations. Abstraction is the principal means by which one can
contr ol the complexity of large programs. For instance , the procedural
abstrac tion j ust mentioned may be invoked in many different places in a
program. Each place It is used it will represent the same abstract computation
(e.g. binary search), but with different parameters to indicate exactly which
version of the computation is meant (e.g. which item is being sought).

I ,’
- Specification: Independent , concise , precise description of the exter nal

properties of a program or subprogram. U a module is to isolate a design
decision or concea l the implementation of an abs traction , it must be possible to
specify eicac tly what that module does, independently of how It does it [43, 30].

4.1.2.3. Fulfilling Requirements

A program Is correct if it completely sa tisfies its Lntended purpose [8). But since

intentions are hard to quantif y, several other concep ts have emerged.

— Verificat ion: proving that a program meets Its speeificattorts. Ordinarily such a
proof mus t be based solely on the program text , and not on test data [32).

- Validation: Proving properties of a program by executing it on test data , or by
embedding executable tests at various points in the program text.

4. 1.2 .4. Robustness of Programs and languages

The reliability of a program is the subjective confidence level of Its users. But several

fact ors contribute to this confidence.

— ~rotect io:~ Controlling the rights of differe nt programs to access various data
objects and other programs. This should not be confused with security, which is
concerned wi th controlling the II w of information, In the military sense,

- $afe~y: Invoking an operation w~ose semantics are not well-defined should not

- ~~~~~~~ - -



- - 
- - - - -

~~~~
-

~~
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

--

Scope Issues in Programming Languages 27 Chapter 4

vIola te the integrit y of user or run-t ime-system data s tructures (or programs!).

4. 1.2 .5. Efficiency

Ideally, a programming language should permit comp ilers for it to generate generall y

eff ic ient code, while also allowing the programmer to control code generation and space

allocation fair ly exp licitl y in porti ons of the program where time and space are critical.

4.1.3. Goals of Modern Langu ages

Al gol 68 and Simula 67 are trans ition languages between the earl y and modern phases of

language design. Algol 68 was designed to be a small , understandable language consist ing of

a small set of construc ts which meshed smoothl y to produce a powerful , expressive language

[56). II succeeded well at these goals, but several common combinations of its features

proved to be hard to understand, and prone to error. Simuta 67 introduced the c lass and

subclass concep ts , which were the forerunners of modern data abs traction mechanisms;

however , t he language appeared too soon to incorporate modern theories of programming.

Wirth brought out Pascat in 1969 with the stated purpose of providing a language which

was easy to exp lain, easily comp iled into efficien t code, and which encouraged “trans parent”

(i.e. understandable) programming [57). CLU, Mesa, and Gypsy were al l designed to support

structured programming, particularly through data abstraction. Modula and Concurrent Pascal

came out as languages which supported modular decomposition of programs , particularl y in

the realm of multiprogramming. Alphard and Euclid, along wit h some of the goats mentioned

above , were specificall y designed to support verification.

4.1.4. Scope Control and Modern Concerns

Modern programming theory has guided the development of scope in languages in a var iety

of ways. We observe four major areas of influence , w hich are the subject of the remainder

of this chapter .

1. ~ mple Binding ~~~j~~~srii~. Modern language designers have reached a
consensus on the appropriate uses of eac h of the standard binding mechanisms.
Much of this agreement grew out of skdies of side eff ect problems, as well as
out of modern concerns over understandability, verifiabili ty, and programming
sty le.

_ _ _ _ _ _

~

‘“ ‘ “ “ “ ‘ ‘ P t 4*

~ 

—



— 
-

Scope Issues in Programming Languages 28 Chapter 4

2. Data Abstractio n . Semi-incieperident resu tts in programming methodology,
modularit y, specifica tion, verif ication , and language ex tensibilit y have all pointed
to the need for a new kind of range which encap sulates a group of related
procedures , t ype dec larations , and data objects. Data abstract ion mechanisms
provide a more powerful , coherent means of descr ibing the structure of a
program, and simultaneousl y take pressure of I other scope control mechanisms
which would otherwise be used for descri ption pur poses for which they were
not designed.

3. Relatjonchip~ among objects , ~~~~~ and ranp~~. Previousl y, ranges coincided with
contr ol structures. However , data encapsulation ranges do not , and thus add a
new dimension of complexit y of possible relationshi ps.

4. Classic~ Prob~e~~~. Besides the well known scope problems , e.g. Aliases and
Dangling Reference , there are several well-known programming problems which
have become clearer and somet tmes easier when viewed as scope problems in
the f i ght of modern programming theory. Data encapsulation has been a powerful
tool f or tackling these problems.

4.2. Modern Binding Mechanisms

Early languages, we have seen, contained a variet y of interesting binding mechanisms for .

parameters and declarations. in modern languages we find a substantial degree of uniformity

in the select ion and use of these mechanisms. In this section we review the historical and

theoretica l bases for the use ... or disuse ... of the various base mechanisms.

• 4.2.1. VAL mechanisms

Earl y languages tended to treat a variable name as always denoting a memory location.

Thus when the language designer wante d a parameter mechanism which passed only the

value of the ac tual parameter , he provided a place to put that value, and made it available to

the programmer. Similarly, programmer-defined constants had to be stored in memory

locations anyway, so no specia l mechanisms were provided to distinguish constants from

variab les. But modern theory has recognized the usefulness of truly constant “var iables ”,

and at the same time unified the notions of constant declarations and constant parameters.

Named cons tants are a means of localizing design decisions, such as the size of tables and the

numeric representation of non-numeric information. Marking a param eter as constant makes

clear the point that  it will not be modified, thus simplify ing understanding. Optimi~’ng

compilers can use the constant property to great advantage (e.g. In cons tant folding, code

2 J



-— ~~~- -—- - ----- ~~~~~~~~~~~~~~~ —~~

Scope Issues in Programming languages 29 Chapter 4

m otion , and indexing). A con stant can be broadcast widel y withou t fear of sidc e f fe c t s .

~ Con~equcntl y, modern languages u’.uafl y provide a means f or declaring a variab le as h.ivirig a

constant value , and for dec laring a pa ra meter either as being a constant whose v~iiue is
• provided by the caller , or as being a rc.id-onl y reference to a caller-provided object . In

most languages only one of these Iwo al te r natives are provided; however , Euclid Is designed

in suc h a way that the two alternatives are exact l y equiva lent , so neither Is specif ied
• exclusivel y. Many modern languages permit free names for constants , while prohibiting f ree

names for variables , because the latter pract ice invites s ide-effects.

4.2.2. VAR mechanisms

We have already pointed out in sectio n 3.2.4 that the VAR parameter mechanism is of ten

cheaper to implement than other side-ef fect-permit t ing mechanisms. We also saw by studying

the exchange problem that VAR parameters were concep tuall y simpler than EXPR and

VA LUE-RESUlT par amete rs. This simp licity translates directl y into verifiabilit y. Consequently

VAR mechanisms are the dominant form of side- effect permitt ing par ameter mechanism in

modern languages. Once again Euclid, which has e liminated parameter-re lated alias problems ,

does not distinguish between VAR and VALUE-RESUL T, since the two are equivalent in the

absence of al iases. This non-specificat ion permits the comp iler to choose , on a case-by-case
• basis, whic h Implemen tation is most efficient.

4.2.3. EXPR and PROC mechanisms

EXPR mechanisms have largely disappeared from modern language designs. Al gol 68 was

the last major mainstream language to Include them (as a special sort of procedure constant ) .

Experiences with the NAME mecharisms in Algol 60 showed that it was d iff icult to

understand, as welt as being ex pensiv e to implement . We have already seen that the VAR

mechanism is both simpler and cheaper. EXPR~s chief enduring value is as a tool for

construct ing control abstractions , and research in Alphard and CLU (see sections 4.3 and 4.5.1

as we lt as elsewhere , is seeking to fill the gap there. Similarl y, PROC mechani~.ms have

bec ome an endangered species. Al gol 68’s version is muc h cleaner than Algol 60s , for it

requires that the parameter and result specifications for the PROC paran’cter be included in

the parameter specification for the procedure receiving the PROC parameter. Moses (343 has

- - -



- ~~— -  -~__ _ _ _ _ _ _ _ _ _ _ _ _

Scope Issues in Programming Languages 30 Chapter 4

unified the implementation problems of name parameters , functional param eters , and

func tional values into what lie calls the Environment Problem, which is the problem of keeping

track of the name binding environment in which the para meter or functional value ori ginated.

The cost of maintaining this information pervades the entire language system , slowing down

comp ilat ion and execution even in program s which never use it.  In addition, functional values

pose a (langling reference problem (see section 4.4.2.1) if the funct ion cc nta ’ns f ree va riables

whic h must be bound in its STATIC conte x t. Functional arg uments and values, like name

parameters , continue to have value as control abstr actions. However , to r~aca te control

from data , this writer believes that “funargs ” and “funvals ” should not be permitted to contain

free variables. Without free variables , there are no scope problems to argue aga inst them.

4.2.4. Free Name Mechanisms

DYNAMIC free name binding has been eliminated from the most recent languages , because

of Its limited utility. Some languages also eliminate free name binding altogether in ranges

whose DYNAMIC and STATIC conte x ts do not coincide, to enhance modularity and reduce

oppor tunities for s ide-effects.

4.3. Data Encapsulation

The ability to group together and isolate a data struc ture and the operations defined upon

it , has been the single mos t important recent development in programming languages. In this

section we wilt trace some of the origins of the idea, describe Its essential c omponents, and

survey its manifestation In modern programming languages.

• 4.3.1. Origins

Data encapsulation has emerged in response to a variety of modern programming concerns.

Each of the concerns has evoked a slightly different notion of what the construct should look

like; It is not yet clear whether a single construct can satisfy all the concerns.

One line of research has sought to generalize the notion of a data type to make It possible

or a programmer to define his own types. Early languages had only a few base types (e.g .

Integers , reals, booleans) and only one or two structuring methods (e.g. arrays , records ) .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•

~~~~~~~
_ _



- _ _

Scope Iscues in Programming Languages 31 Chapter 4

Pascal , Simula 67 , and Al gol 63 pursued da ta structu ring as a reacona ble notion of type , and

provided faci l i t ies for crea ting and nam ing data structur ing temp lates , so that the same

structure could be used for objects created in various places , especiall y as formal  par a meters

to procedures. This notion drew it~ theoretical basis from mathematics , which defines a type

as a set of values [18). Al gol 68 and Simula 67 both had faci l i t ies for associating procedures

directl y wi th their t ypes (dasscs in Simula). However , the full impac t of this notion was not

realized for several years. The last step in this line of development was the notion of

res tricting access to the representat ion of a t ype to the collection of procedures associated

wi th it. We shalt discuss this more in the next section.

Parnas , in his studies of large sof tware projects , discovered that decomposing a program

acc ording to comp ila tion units was not a concep tual l y natural method [45). That is, suc h

decompo ritions tend to spread across several modules the code imp lementing a sing le desi gn

decision. In particular , Pamnas realized that often times the main concepts in a syste m are

best characterized by data structures , rather than by algorithms atone. Therefore , he

proposed decomposing a system m b  modules which each include both data and procedures ,

taking special care to conceal all but the most basic design decisions inside modules. This

proposal implied that the interfaces be tween modules had to be as “narrow ” as possible , and

in particular would not include any elaborate data structu res , con trol blocks , or such things.

Parnas modules, If ien, can be thought of as data s tructures which can only be accessed via

operations define.d ri ght along wi th them in the same module. Note that Parnas intended that

his modules only be separa te in source form , and that the accessing proce dures could be

expanded in line when appropriate , rather than incurring the cost of a procedure call each

time

Research in program verification has shown data encapsulation to be a powerful tool (or

simplif y ing the verification of a program [60). When the data contained in a module may only

be modified by procedures defined in that module, many properties of that data may be

verif ied by regarding the procedures as pred icat. transform ers , and doing induction on the

number of procedures applied to the data [17). Verifica tion has brought into focus the

concept that the initiaf values of variables can be vital to the integrity of programs .

4.3.2. A Data Capsule

~1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

j



Scope Issues in Programming Languages 32 Chapter 4

I shall now define a simp le data abstra ction mechanism, showing the essential components
of such mechanisms , and wh y those components are useful. In the next section , I’ll compare
the actual mechanisms found in real languages.

A çj~.psuIe is a data structuring template , in many respects similar to any of the ’ Pascal
structured types , or Algol 68 modes, In particular , a capsule can be the temp ta te for creating
an unlimited number of objects , eac h of whose “type ” is the name of the capsule. Hereafter ,
when I use the term t ypc , I include capsules as well as other structured and primitive t ypes.
A capsule defines a range consisting of three major parts: a representation , a set of
operationj~ and supporting declarations. The representation section contains a set of
declarations of data structures which wilt contain the data of the capsule var iable. That is,
each variable created from the capsule will contain an instance of each of the data s tructures

declared in the representation. The operations are procedures which may be called by the
user of the capsule variable , to examine and modif y it. The capsule may define an operation
with the reserved name INIT, which Is to be automatically called whenever a variable is
created from the capsule definition. This routine can then initialize the representation if

struc tures so that they have reasonabl~ values in them the first time any operation is applied
to the variable. The supporting decla~ations include whatever procedures, data types , and
capsule detinitions the capsule creator requires to implement the representation and
operatiGns. The documentafion of a capsule will always include a set of specifications
suff iccent to let (f ~ capsule be used without inspecting its implementat ion, and to verif y that
the implementation satisfies the external specifications. For further introduction to abstract
data types , see (28].

A capsule definition may appear anywhere a type definition may appear , and variables may
be declared to be of the type defined by the capsule, anywhere the capsule name Is
accessible.



~~~~~~~~~~~~~w~~~~~--- -w-
—

—--
~

- .

Scope Issues in Programming Languages33 Chapter 4

i~i~
queue - c~psul e

operatio ns size . Inser t , remove , ful l , c i rcu late
• r ef) r ese n ta t i nn

integer array a(1 :lOq)
integer front , back

er~dreprese ntat ion

p~ oceclur e mod i ncr Ii: in teger) —

I :— (i mod 1081 + 1

procedure m l t (C l : queue) q. front : - q. back : 1

p~ocedu~~ si ze(q:queue) returns count: integer
count : — (q.bactc - q. front i mod 168

~~pce~~re irisert f q:queue, item :inte cje r) -
i f~ sIze (q) equals 99 then f a i l e l s e

q.a (q.back] :- Item

• mod i ncr (q.back)

•
~,rocecfure renove (q:queue) returns item : integer -

• If s i ze q) equa Is B then f a i l e lse
I ‘— q.alq. f ront)
modincr(q. f ront) if

• ~~~cedure full (q:queue) returns b:boolean —

q .s i ze eq~iale 99

~~ocedure circulate
(q:queue) returns I:inteqer

inser t (q,remove (q))
I :— q.a(q.front3

ei,clcafj sule

In this example , the capsule ... endcapsule pair delimit a range , so that each of the
declarations in It may make use of each of the other declarations. The representation

variable names become field selectors for the queue variables passed to the operations. The

procedure circulate uses other procedure definitions as welt. The operations cfause lists the

procedures dec lared inside the capsule which may be used outside it. These operations

defined f or the capsule are the only nieans by which a varsabl. of that type may be

man~puloted by code outside the capsule! Thus the writer or reader of a capsule may be

assured that he has before him all of the code which is relevant to the data structures In the

representation. For example, a program using a queue named U could include the stateme nt

if not futl (ni) then ingert (m ,3)

but that program could not contain the expression

S

Scope Issues in Programming t anp,uages34 Chapter 4

m.a (m . lront- 3]

bec ause “a” and ‘(ronl are not expo rte d from the queue capsule. Conversel y, the only

v.iriabIc~ which may be mani pulated by the code inside a cap sule are the variables pa~ced as

parameters to it , or declared in supporting declarations. A capsule may rsot cont~itn arty

occurrences of free variabics! Thus the prograr~s whic h use capsule variables are immune to

changes in the imp lementation of the capsule , so tong as the implementation sati sf ies the

capsule ’s specifications.

In summary, capsules have these important properties:

- ~.4odulari ty . Many times a desi gn decision will only affec t one data abstraction. A
capsule gathers into a single range all of the code pertaining to a particular data
abstraction.

- Modifiability. A capsule Is sufficiently isolated that changes in the desi gn
decisions contained in it usuall y have no effect on any other code.

- Efficienc y . Capsules need not be compiled separately. A comp iler is free to
expand any operation in line at its call sites , if efficiency so dictates.

— Understandability. A capsule variable may be used as if it reall y were a pr imitive
t ype in the language, without reference to its implementation. Conversel y, i ts
implementation may be understood without reference to how it wilt be used.

— Verifiabi lity . A capsule correctl y implements the abstract data t ype described in
its specification if a) the initial value of a capsule variable represents a
legitimate abstract value, b) every operation on a capsule variable transforms
legit ima te values into legitimate values , and c) t he transformation on the concrete
representation coincides with the specified transformation on the abstract
varia ble. The two critical properties of capsules here are the concealment of the
data structures to prohibit outside access , and the INtl routine to assure initial
consistency.

4.3.3. Mechanisms in Modern Languages

Simula 67 arid Algol 63 both had mechanisms for associating procedures with data

structures (classes and modes, respectivel y). Algol 68’s mechanism seems to have been an

accident of its generality; the syntax required to use such a procedure seems exceeding ly

awkward. Simtila 67, however , plainly intended that programmers would ordinarily associate

procedures manipulating a class objec t directly with the class. It also provided a convenient

initialization mechanism. Not until recentl y (403, however , has Simula 67 added a protection

facili ty to conceal some of the names declared in a class definition from code outside the

class .

r .

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

Scope Issues in Programming Languages 35 Chapter 4

kiodula, Euclid, and Alphard are t ypical of modern languages imp lemen tIng capsules. Their

ori gins, and resulting mechanisms , however , are very d if ferent. Modula modules are very

• s imilar to Parnas ’s module concep t , with pr imary emp hasis on isolat i ng a module from i ts

contex t .  Atphard forms were desi gned to support the desi gn of abst rac t  data types , based on

Hoare ’s ver i f icat ion methodology. Euclid’ s module faci l i t y is a general ization of Modula ’s, wi th

support fo r ver i f icat ion.

• The module in Modula is not an abstract data t ype; it is simp ly a collection of declarations ,

• plus a piece of initialization code for he variables declared there. The interface between a

module and ifs con text is comp letel y except for an initialization problem, discussed later )

under the progra m mer ’s control . A module is a CLOSED range. Any identifiers brought in

from its context must be listed in its uses clause. Any identifiers occurring wi thin it which

are to he available outside , must be named in an exports clause. However , not all of the

attr ibutes of identifiers may be expor ted. In particular , a t ype definition may be ex por ted ,

but its field selectors may not , so that objects of that type may be declared outside the

module and passed around as parameters , but their contents may riot be examined or

modified except within the module. Simitar iy , variable names may be exported; however , they

can only be read outside the module, not modified. Thus a module is responsible for all of the

objects it declares , and for the use of all the t ypes it declares. It may release informat ion via

ex ported variables , but need have no fear of side -ef fects on them. Modula has thus achieved

a great deal of flexibilit y for its mechanism while stilt maintaining sharpl y defined bounda”c~.

between modules. In particular , although a Modula module is not a t ype, a module which

consists only of one type declaration and associated procedures , would correspond directl y

to a capsule.

Moduta types are not comp letely protec ted by its modules. First o f all , Modula type

• definitions do not provide for initialization. Consequentl y no procedure provided for an

exported type may be sure that the variable passed to it has been initialized. Secondl y, the

language report [58) is ambiguous about whether exported types are forgeabte , i.e. whether

a procedure expecting a parameter of an exported type will accept a parameter of any type

having the same structure. However , W irth (59) did not intend that Module should prohibit

bad style , but only that it encourage good sty le , so he probably doesn’t care whether

expor ted types are forgeabte. He would simply say tha t the verification of a module assumes

faithful Initialization for exported t ypes, and no forgery of them. Given those programming



Th—~~~~~ ---~ .

• Scope Issues in Programming Languages 36 Chapter 4

convention s , suc h an exported type is definitely a data abstraction , and a module containing

• only one s u h  type and Its procedures , would be a full y general capsule.

A Euclid module , thoug h similar to a Modula module , may be u’.ed either as a s imple

col lection of declarations , or as a template for a new data t ype (i.e., as a c~pcule). When the

module Is used as a t ype, the initialization c ode becomes the i n i t i a l i z a t i on  procedur e for the

type, and the variables become the re present a tion of the t ype. Expor ted names may be used
only In conjunction with the name of the module or the name of a variable whose type is the

module. This applies uniforml y to exported constants , variables , t ypes , and procedures.

EuclId aiso has a conventional type mechanism, with initialization based on parameters to

t he type. If such a type is exported from a module , none of its f ield selectors are available

outside the module, unless expor ted with it. Even assignment and tests for equality are

concealed unless explicitl y exported.

Alphard forms are designed to model data t ypes directl y. A form definition defines both

the representation and the operations for the type being defined, and provides convenien t

means for Incorporating the specifications for the type , such tha t It may be understood

without reference to Its Implementation. The supporting declara tions In an Alphard form may

include other form declarations, which may also be exported.

The crucial difference between the t ypes modeled by forms and those modeled by Euclid

modules Is that form operations may operate on several instances of the form simultaneousl y,
• whereas a module operation may only operate on one ihstance of the module. This latter

view is perfec tly adequate for many purposes , e.g. stacks and queues. However , consider a

capsule Implementing sorted lists , which must include an operation to merge two f ists . A

Euclid module defining a sorted list couldn’t do It , excep t by repeated remove and Insert

operations , which wouldn’t be very ef~icient. An Alphard form f or sorted lists , on the other

hand, could easily include an operation L,hich look two such lists as parameters , and accessed

the representa tions of both. This difference in mechanism might well be due to the view

taken by Moduf a, and partially adople~ by Euclid, that a module ex ists to manage resources .
It would he strange Indeed to merge two lists of objects built from different resource pools.

What has in fact happened In Euclid ~nd Modula Is tha t the principal data t ype defini tion

facit ity l~as been separated from the encapsulati on mechanism. In Alphar d, the usual

programming paradigm Is to define one type per form , giving abstract and concrete

specificat Ions for 11. Any data shared among instances of the form Is declared speciall y.



1’ - -

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ —

j

Scope t~.cues in Programtning Languages 37 Chapter ~

• Procedures which access the common data must do so through an Instance of the form. In

Module , the normal case Is to create a module which declares both varIables and types , and

procedur es whi h operate on both. Procedures which take parameters of those t ypes may be

thought of as operat ions on them; those that don’t are jus t operations on the maIn variab les

of the m odule. Euclid t r ied to blend the two ideas , and only partiall y succeede d. Since a

module ’s variables represen t a resource pool, of which there may be several instances , the

module definition may be used as I he definition for a type. If the module also defines and

expor ts conventional types , they mus t be accessed throug h the name of the paren t module,

e.g.
Sp~ cer1anager . B I ockT ype

If that module is actuall y a t ype definition, the BlockType must be accessed through a

particular variable of type Spacekianager, so that t he block is allocated from the right

storage pool. Unfortunately, this means that even types which are not par t of resource

mana~ers , r~iust stil l arcessed through a module name every time , If they are to be protected.

The language report even gives an examp le of a module imp lementing floating point numbers ,

which forces every operation on f loating point numbers to give the name of the ftoa t ing point
• 1 module as welt as the name of the routine -- even though floating point numbers do not

1
share data !

4.4. Relationships among objects , types, an d ranges

Scope, after all, Is concerned not primarily w ith individual objects , names, and ranges, but

4 with the interactions between them. In this section we study the ways in which objects ,

• types , and ranges can interact in modern languages. We exp lore the role of initialization in

data abstraction and data integrit y. We study the problems of describing and verifying

rela tionships between objects. Finally, we study relationships among types , both when the

types are almost unrelated, as wi th generic types, and w hen they are closel y rela ted , as with

• exporte d types.

4.4.1. Initialization

initialization has become very Important In language design, because of issues of safe t y

and verifiability. Uninitialized pointer variables are unsafe, because a dereferenc.. for

• • . • ~~~~ --~~~~~~~~~~~ •• ~~~~~~ .• .

Scope Issues in Programming Lan~uages 38 Chapter 4

assignmen t via such a variab le will mn dif y some arbi t rary storage location. Initializat ion is

important for verIfIcation , because the proof that a data object faithfull y repre~~ ils Its

abstraction ordinarily star ts from t h e assumption that the object starts out with a legal value

[17). (The alternative is to show thai it receives a legal value prior to the f i r s t time it is

reed.)

Initialization facil i t ies in earl y languages were fairl y weak . Of the three studied earlier ,

none had any facIlIties whatsoever . In particular , lack of initialization was one of the fata l

weaknesses of the OWN const ruct in Algol 60. An OWN variable is supposed to retain its

value be tween invocations of the block in which ii is declared. To use this facility, the code

of the block must assume that the variable already has a legal value when execution of the

block commences. But during the first invocation , this assumption will be fa lse. So the

programmer using an OWN variable had to add a mechanism to check, on every invoca tion,

whether or not it was the first.

Three main strateg ies have been developed to handle initialization:

- Default Values. This scheme inserts a value in every variable when it is created.
It may be an ordinary value, like zero for integers , or it may be the special value
UNDEFI NED, w hich causes the program to halt if it is ever examined. Both
sc h emes incur the initialization cost for all variables. The former conceals many
of t he bugs caused by omitted init ialization. The lat ter requires special
processing on every fetch opera tion, which requires spec ial hardware support to
avoid being excessivel y expensive.

— Explicit initialization. Aiphard, Euclid, and Algol 68 alt provide exp licit facilities for
specify ing the initial value of a variable. Algol 68 permits the declaration to be
the left hand side of an assignment statement , and permi ts the interming ling of
statemen ts and declarations, as long as eac h variable is declared before It is
used. The i, titial operations in Euclid and Aiphard can set up the Initial value at

• • the time the object is created. Both languages require the programmer to either
pr ovide an initial value, or somehow prove that none is required.

— V irgin scopes. Oijks tra [9) has suggested that special syntact ic support be
prov ided so that the programmer may separate the declarat ion of a variable
from its initialization , yet still have the compiler check that the variable is
initialized before it is used. This separation is important because the initial value
of a variable might not be known upon entry to the block in which it is declared.
Inserting a dummy value would be distracting. Instead he proposes that the

• statement sequence comprising the range in which a variable is declared be
partitioned into three subsequences: the initial sequence of statements in which
the name does not appear , the statemen t in which the variable is initialized, and
the sequence of statcments in which the value of the variable may be used. If
the Initializing statement happens to be a compound statement , the variable must
be imported into It as a virgtn variable , and the statements comprising the inner
range must be partitioned in the same manner as the top level. Dijkst ra then

- - fl - ——. ~~~~-- . .-- • - • • •- . •

Scope Is~.ues In Programming languages 39 Chapter 4

applies the restr ict ion that initializing sta tements may not be repet i t ive
statemen ts , and thus guarantees that the initialization is not performed more
than once. Furthe rm~re , tie requires that If the initializing statement Is an
alterna t ive statement , that all alterna tives be initializing statements. This
guarantees that the var iable is initialized exact l y once. Algol 68’s mechanism
corresponds somewhat to Dijkstra ’s proposal. Because it permits interming ling of
declarations and statemen t s , it overcomes t he problem of meaningless initial
values. However , it provides no syntac tic acs istance for preventing multi ple
Initializa t ion, nor does it permit initialization inside alternative or compound
statements , since the scope of the variable would then be limited to that
statemen t.

Euclid’s approac h to initializat ion relies on the assumption that programs wIll be verified

before they are run (48J From this assump t ion one may conclude that the only time a

variable may be read before it has been assi gned to , Is when the value doesn ’t nuitter! More

precisel y, t he specifications for an operation may state that the variable must be in some

particular s tate when the operat ion is app lied. Thus, if the capsule did not provide an exp lici t

initial value, it could simp ly provide some operatio ns w hich did not examine the value of the

variab le, but did set it , and specify that one of them must be applied to the variable before

apply ing any of the operations which do make use of the current value of the variable.

Aiphard’s approach to Initialization i the same as Euclid’s; thus both languages achieve by

verif ication what Dijkst ra would do syn act icat ly.

4.4.2. Object-Object Relationships

Most of the data structuring facili~ies in modern languages, including da ta abstract ion

mechanisms , have been oriented toward simple composition of related objec ts. That is , one

type Is composed of objects of another type , and one module may be composed of other

modules. Thus, the relationships among objects and among modules form trees . However ,

many programs require more general, graph-like relations among objects. Here we describe

old and new mechanisms for suc h programming, and the perils therein.

4.4.2.1. Th. Probl.m of Point.rs

The general pointer varIable was a direct descendant f rom assembly language

t e.g. If-then -else

1. • • •• . • . • ~~•-~~• •. • •. . .•.•.~~~~• • .• • • • • •••, . • • •~~~~~~~~~~.

Scope Issues in Programming Languages 40 Chapter 4

programming. When one data object needed to refer to another , It simply recorded the

• ad dress of the other. LISP and PL/ I adopted the notion unchanged. Programmers quickly

found it both powerful and dangerous , because of the possibility of treating an uninitialized

pointer variable as If It contained a leg itimate address , and because of the possibility of

und etected mistakes concerning the type of the object pointed to. The transition languages ,

Algol W, Pasca l and Algol 68, all required that a pointer variable be declared to only point to

one t ype of objec t. This solved the data misinterpretation problem, but not the initialization

problem.

A second problem with pointers involves those objects which can be created and deleted
• independently from the block structure of program control. Because such objects provide the

potential for graph-like structu res which grow and shrink arbitrarily, t hey introduce the

possibilit y that an object might be deleted while some variables are still pointing to It. This is

called the dangling reference problem . If the space former ly occupied by I he deleted object

is now reused for some other objec t , one again has the potential for very obscure bugs.

Most language systems now handle this problem by retaining a count of all pointers to an

objec t (reference count), and not deleting the object until the reference count becomes zero.

- However , the dangling reference problem recurs when some of the objects and pointer

var iables are allocated from a stack. Then one has the possibility of the stack disci pline

forcing the deletion of an object with outstanding references. Algol 68 comes very close to

• running afoul of this probtem. In that language, all variable names are pointer (ref) constants.

Thus any stack object may be referred to by ref variables of the appropriate type. To keep

t he problem from being unmanageable , Algol 68 requires that the extent of a ref variable

must fall entirel y within the extent of any object assigned to it. Since Algol 68’s dynamicall y

alloca ted (h.ap) objects are reference counted, it Is safe for a stack variable to refer to a

heap objec t , and illegal for a
~~~~ 

object to refer to a stack object. Furthermore , It is Illegal

for a s tack variable to refer to a more recentl y alloca ted stac k object.

Algol 68, however , confuses the language user with two rules Involving stacks and scope.

First , If an expression coutd evaluate to a reference to any of several stack objects , wi th

differen t scopes, and at least one of those objects has a scope which would be legal for the

context in which the expression occurs , the language permits the scope checking to be

deferred until run-time , on the chance that the legal object might be selected. Second, Algol

68 permi ts the programmer to afloca e objects from the stack without naming them, but

_ 
_ _ _ _ _ _ _ _ _  p



Scope Issues in Programming languages 41 . Chapter 4

defines the scope of such objects to be the smallest enclosing statement which includes

named stack-allocated objects. Thus t he scope of the stack allocated objects depends on tt ~e

presence or absence of possibl y unrelated declarations.

Graph-like struc tures h~sve an intrinsic pro blem with aliases. If two pointer variables in a

particu lar range have the same t ype, it is in general impossible to prove that they don’t refer

to the same object. But more importantl y, grap h-like structures are useful precisel y because

they often do incorporate more than one way of referring t o an object.

Euclid has tackled the first of these two problems directl y, by introducing collection

• variable s , whic h partition the space of objects of a given type. The type of a pointer in

Euclid Includes both the t ype of the object it will point to , and the collec tion from which the
• objec t will come. Thus two objects from different grap hs will ordinari ly also come from

different col lections , and pointers to those objects may be shown syntacticall y not to be

aliases for one another. The second alias problem mentioned above, however , is intrinsic to

the data structu re being described , arid is the source of the dilemma discussed in t h e  next

5ection. •

4.4.2.2. VAR Paramete rs To Capsules

We have seen that general graphs provide litt le assistance in managing the com plexity of a

data structure. On the other hand, there are several more restr icted classes of grap hs which

humans can understand well, such as lists and trees. Data capsules very naturally describe

tree-l ike relations among objects , where the relation is “is composed of” . For instance , a

capsule might define a symbol table entry to be composed of a s tring, an address , and a

value. Similarly (but not quite the same), a tree is composed of a left son, a right son, and a

va lue, where the sons are references to t rees. This second examp le is somewha t more

tenuous, because one could envision operat ions which could cause the left son of a tree to be

the tree itself . However , If a tree can only acquire a son by “growing” one, and can only lose

a son by delet ing It , suc h Irregularities cannot occur.

Nonetheless, there are many cases where a programmer would like to construct graph

struc tures containing cycles, wi thout permitting the full generality and unmanageabilit y of

general graphs. The chief mechanism proposed for achieving this In modern languages is the

VAR parameter to capsule definitions. An object passed as a VAR parameter to a capsule



Scope Issues in Programming languages 42 Chapter 4

variable instantiatIon Is accessible with in any operation applied to that variable , throughout

the lifet ime of the variable, in t h e same way that an init ia l value for a pointer f i e l d  in a

record creates a grap h edge. Note that the parameter object might well be s tack allocated ,
• opening up opportunities for dangling references. It also provides an alias of sorts for the

parameter variable , since any operation on the capsule variable may modif y the ori ginal
• . parameter variable. (The alias could become more exp licit if the parameter name were also

exported by the capsule!) Conversely, the object passed as a parameter to the declaration

might also be a parameter to some operation on the capsule variable , crea ting an alias

problem inside the capsule range. Be4use of the difficulties listed above, the designers of

Alphard have still not settled on the right set of restrictions to place upon VAR parameters to

capsules.

Euclid has a novel parameter mechanism which bears a superficial similarity to VAR capsule

parameters , but serves a very differen t purpose, and thereby avoids some of the conceptual

difficulties. Instead of permitting VAR parameters to a capsule , Euclid provides an import s

clause, which lists a set of identifiers from the context of the capsule which are to be

available inside every instance of the capsule. A procedure body in Euclid may also have an

imports clause. The variables in an impor ts clause must be available at both the definition

si te and the invocation site of the range (procedure or capsule) to which the clause is

attarhed. (A variable is considered available at an invocation site even if it is a concealed

field of a variable which is actually visible in the invocation context.) Thus those identifiers

are roughly equivalent to normal parameters , except that the actual parameter is specified at

the defini tion site instead of the invocation site. The motivation for this construct is that

Euclid’s capsules and procedures are both closed ranges, and may not contain any free

variables. The imports clause provides most of the same functionality as Inherited names , but

with two important differences: the inherited names are specified explicitl y in the range

header, and the names are bound both statica ll y and dynamically to the same variables. The

static-dynamic rute for Imports gives imported objects full status as candidates for

• side -effects. That is, it guarantees tha t any object available within a capsule operation can

be treated as if it were a parameter to that operation. This Is in contrast to a VAR capsule

parameter , which might not be available at the site of every oper~hion Invocation on the

• capsule variable, and thus not considered when noting side-effects.

Despite the potential comp lexity of VAR parameters to capsules, the following two

examp les show their importance.



~ 1

• Scope Issues in Programming Languages 43 Chapter 4

4.4.2 .3. Binary Trees

Shaw ci al 1501 have wr i t ten  and verif ied a capsu le which defines a binary tr ee.  Their

t r ee  definit ion actuall y defines two data abstract ions: a t ree and a node. Every node belongs

to at most one tree; each tree may contain many nodes. One means of modif y ing a t ree  is by

“growing ” a son for one of Its nodes. Such a growing opera tion a f fec ts  both the ori ginal

node and the t ree to which it belongs The most natural way to express the relationshi ps

Involved is to permit a tree to refe r to its nodes, and also to permi t a node to refer to its

tree. Otherwise the “grow ” operation is hard to define. Consider:

- Grow(tree , node): does the node realty belong to the tree?

- Grow(node): unless the node refers to the tree , how can this operation update
the node count for the tree?

- Grow(tree , path): what if the path from the root of the tree to the desired node
isn’t known?

Shaw et at use a VA R parameter to the node capsule to let the node refer to Its parent

tree. The Alphard group is contemp lating restr ict ing VA R parameters to capsules to be of the

type of the smallest containing capsule. Euclid’s impor ts clause would permit this kind of

4 relationshi p. The node capsule would be defined inside the tree capsule , and would impor t the

name of the t ree , or of the appropriate componen ts of the tree. Then any operation to

crea te a node would have to se lect the “node capsule ” fie ld from a particular tree , and that

par tIcular tree would be imported into the node being created.

4.4.2.4. Resource Problem

Resource consumption is an aspec t of program behavior which until fairl y recentl y has not

been treated with the toots of program verif ication. In many high-level language systems it is

of no concern , because the language ystem conceals the finiteness of resources from the

user. However , In programs which implement operating systems , resource consump tion Is a

• vital c oncern. Nonetheless , it is usually separable from other correctness concerns , and often

should be treated separately, although with the same tools.

Consider a symbol tab le in a language translator. The capsules which implement the types

symbol table arid symbol table entry will ordinarily be considered correct if they fai thfully

represent the Information stored in t hem. But what if the symbol table overflows? Is the



r~
. . . .• - • .

~ ~T~~I.EiI .

~~ 
~~

— •-——._— •

Scope Issues in Programming languages 44 Chapter 4

program still correct? In many contexts it would be, because the user would simp ly

reconf igure the translator wi th a larger symbol table , and try again. But If the symbol table

were storing airp lanes in an air t ra f f ic  control system , symbol table overf low (I.e. too many

airp lanes) would be a fatal error . So consump tion of symbol table resources mus t be

considered in the verif ication of such a syste m.

VAR parameters to capsules have been proposed as a vehicle for propagating access to

resources. We have already seen the side-effect problem inherent In such relationships. It

becomes particularl y critical here, since capsules which otherwise have nothing to do wit h

each other might draw resources from the same pool, when neither is aware that he is

consu m ing resources at all, because the consump tion is hidden In the capsules It uses.

The Resource Problem is a top ic of ongoing research.

4.4,3. Generic Types

VA L parameters to variable declarations provide information (or Iwo forms of initialization:

initial values , and structure selection. In earl y languages, array declarations inctuded

“parameters ” which indicated size and index bounds of the array. In transition and modern

languages, a VAL declaration parameter might also select one of a fini te set of alternative

structures for oi,jec ts of the specified type. Such alternative structu res , usually called

variant records or variant types, are a powerfu l means of grouping related types. For

Instance , a factory inventory program might like to use the same procedures for processing

all requisition forms , excep t for small pieces of the program whIch specialized in off ice

requisitions or maintenance supplies. The programmer could declare a type “requisition” to

be a record with a set of fields for requisi tioner , accoun t number , date , etc., and then a

different set of fields for each category of requisitions. The declaration of a variab le would

then supply a parameter to indicate whether It would handle alt kinds of requisitions , or only

some par ticular kind.

A generic type is a data capsu le in which some of the component types of the

representation are provided by the user of the capsule. Similarly, a generic procedure is one

for which the t ypes of some of the parameters are likewise provided by t he caller of the

procedure. Thus a generic type defines a whole set of capsules , one for each possible set of

user-provided types, and a generic procedure defines a set of actual procedures , one for



Scope Issues in Programm ing Languages 45 Chapter 4

each possible set of parameter types.

That ubiquitous examp le, the stac k, is also suitable fo r illust rating generics . A stack

capsule might welt he defined inciopenclenll y from the t ype of object being stacked. Such a

definition might look something like the following:

c~psute s t a c k t T : t q p e )  operat ions push ,pop, top, emp t q —

j2~~~ 
push(s:stocktT),item:T )—

I~ 2c 
top (s:stack (T)) returns it em i T

end stack

The s tack defined above can ‘ ta ck any sort of object , provided that (a) all objects are of

the same type as specif ied at stack declaration time via the parameter T, and (b) the type of

the actual parameter provided for T must have an assi gnment operation defined for it. The

procedures for the stack might or might not be considered generic procedures. At the site of

the procedure definition, the t ype I is a boria fide type. However , since I is defined

parametrica lly at 1 lie capsule head, tfie procedure~ defined will have many di f ferent  versions ,

depending on what parameters are provided for various stack variable decla rations. Here is

a simp ler version of a generIc procedure:

~~~~~~~~~~ 
equa l (I:jyp.~ , a, b: (1. .1~

) arraq of 1) —

beç~~
j~~ I — 1 .. lB cia jj a f t) notectua l b i t) j2!~~retut-n f a l s e :
r~ turn ir.~~

;
end

This procedure can test for the equalit y of the values of any two ar rays with indices

between 1 and 10, provided that both ar rays contain the same t ype ~f value, and that type

has a “notequal” operator defined on it.

Generics are a logical generalization of the abstrac t o n method introduced by capsules.

They represent the notion that a particular body of code may be wri t ten based only on the

specifications of t he data t ypes used in it , without reference to the implementation , or even

the true identit y, of those t ypes. Generic types are particularl y useful for describing t ypes

whose principal purpose Is organizat i on. In the stack examp le, t here Is no reason why the

code Implementing stacks should have access t o the representation of the objects being

stacked . Conversely, operatIons on an element of a set should riot necessarily have access to

• ——-~~~~~..“ ~~~-~~~-• •~~~~~~~~• . ~~-.— . .


~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Scope Issues in Programming Languages 47 Chapter 4

We have alread y seen In previous sections two kinds of close relationships between types.

We have seen that the relation is composed of” is central to the methodology of data

abstraction. We saw in the binary tr ee example that a t ype might want to expor t one of the

t ypes of which it is composed , because that t ype provided a differen t view of the same

object. From that notion we may generalize to the possibilit y of defining two types which

are intimatel y related by common design decisions , share d data , or mixed-mode operators

(e.g. “compute the area covered by this square and this circle , even if they overlap ”). To

handle suc h situations one would like to be able to access the representatio n of two types

simultaneously. Such access is quite convenient in Euclid and Modula, since a module deflning

more than one t ype provides access to the representation of each type to all procedures in

the module. Alphard provides even finer control over such overlapping~ by permitting the

specifica tions exported wit h a form to be more abstract than the specifications used inside

the parent form.

4.5. Applying Data Abstraction To Several Scope-related Problems “

The notion of data abstraction has revolutionized the entire field of language design. It

has produced new insights into a variet y of problem domains. New implications continue to

emerge. The following problem areas have received significant benefi ts.

4.5.1. Loops as ranges -

One of the more famous shortcomings of Algol 60 was its iteratIon statement definition.

The rewrite rule used to define it implied that the quantities used to compute the steps of an

iteration would be computed as many as three times for each iteration. Knuth t23] has

described the debate over what was reall y intended, in great detail.

Algol 60’s problems arose from the fact that the iterat ion variable, step-control

expressions , and loop body were all considered to be in the same range as the surrounding

st ate ments. Thus it was perfectl y permissible , II not altogether reasonable , to Include
statements in the procedure body which would change the step size of the iteration , or even

change the value of the contro l variable. Languages like Pascal , Al gol 68, and Bliss have

taken some variant of the position that the iteration variable Is a NEW variable, implicit ly

_ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

- A



L 
~~~~~~~~~~~~~~ •1I I:: ~:~~.I_~iu

I_
~~~

_ 

~~~~~~~~~~~~~~~~~~~~

- . Scope Issues in Programming Languages 48 Chapter 4

imported as a VAL var iable into the loop body, and changed only by the stepp ing code.

Similarl y, they view the control expre ssions as values computed at loop entry and constant

therea t ter . (Of course , many comp ilers do not enforce these rules.)

• The above co nstraints make it trivial to prove that a for-loo p statement terminates ,

Independen t of what the loop body does. I4owever , they also res tr ic ts the kinds of iterations

which the counted toop may describe. Those which have been exc luded must be described

by the w hile-loop.

Comp lex data s tructures o f ten require corresponding ly comp lex iteration sequences over

• their elements. One common operation on trees, for instance , Is printing them in order.

Searching for an element with a particular property is another common opera ti on on large

data structures. For this reason, languages which permit definition of large structures also

define iteration methods for them. Arrays, for instance, may be easily traversed in subscrip t

• order. Euclid has a special variant of its iteration const ruct for iterating over the elements of

a set. Al phard , Euclid, and CLU are all developing mechanisms by which the author of an

abstract data type may specif y, and conceal s a set of procedures which w ilt generate the

elements of the type one by one ~51, 31). All of the constructs define a closed range which
- takes an object of the t ype as a parameter , creates a concealed object to maintain the st ate

of the iteration , expor ts a variable containing the current element of the generated sequence ,

and provides a means to “pulse” the state to produce the next item in the sequence.

The unsolved problem in this line of research is the question of how to describe the ways

In which t he object which is the parameter to the iteration module may be modified, both

within the module and in the loop body. Notice that this is the same problem that Afgot and

Fortran had with their step-control expressions. One earl y solution proposed for At phard

was to prohibit the loop body from modif ying the parameter objects. This was finally rejected

because it excluded the common operation of examining the elements of a set and removing

some of them. Another proposal provides syntac tic means for specif ying precisel y which

operat ions on the parameter objects are permissible within the loop body. None of the

solutions proposed so far makes it possible in general to specify an Iteration module which

will terminate regardless of what the loop body does. .

4.5.2. Aliases RevIsited

A

•- •~~--~~~~~ -,-. ~.—~~—--- - _

Scope issues in Programming Languages 49 Chapter 1

• Concern over aliases and side-effec ts has been a recurrent theme throug hout this paper .

It has been a primary cr i ter ion for judging binding mechanisms , for desi gning pointer

• mechanisms , and for anal ysing relationshi ps among objects , t ypes , and ranges. Indeed, one

language in particular , Euclid, has set the removal of aliases as one of its most important

goals [48) It has done extremel y well. -

Euclid’s rule regarding aliases is the foltowing~
“The language guarantees that two identifiers in the same scope can never refer

to the same or overlapping variab~es.”[26]

To do this, Euclid introduced a number ~ f innovations. First , any range which can be entered

other than via the textuall y preceding statemen t is a CLOSED range. This eliminates the

possibilit y of aliases or side-effects through free names, in the place of this , Euclid provides
- the imports clause , which permits a range to name and use identifiers declared outside it ,

provided they are available in both the static and dynamic contex ts of the range. Thus every

object used in such a range must be available in the dynamically enc losing range , or crea t ed

locally. If a given range contains no aliases , and alt of the parameters and imports to each

range it invokes are distinct , then it has not introduced any aliases into the ranges it calls. By

induction, all Euclid programs are alias-free. (The variables listed in the imports clause are

considered to be parameters , and thus eligible for modification.)

•
- The other major cause of aliases is pointers. We have already mentioned that Euclid’s

- collection variables were designed to alleviate pointer alias problems. This requires further
• explanation. A co llection variable is considered to be an unbounded vecto r of objects of the

type for which il ls a collection. Then a pointer variable is considered to be an index into the

col lection vector. if two pointer variables point into the same col lection, one cannc..t

determine statically that they do not contain the same index. However , this is no worse than

prov ing that two indices into an array are not equal, and Euclid relegates that task to the

verifier , or inserts runtime checks if so instructed.

The two innovations above indeed make alias free programs achievable. One might wonder

wha t flexibility Euclid sacrificed to do this. Reviewing all of the comparisons given so far in

this paper , the only major expressive techniques unavailable in Euclid are generic types, VAR

parameters to t ypes, and simultaneous access to the represe ntations of related capsules. Of

these three , we have shown tha t the first can be partiall y simulated by variant recârds. The

second mechanism can be partially simulated by imports , and those uses which cannot be

- -

a

- .
- S ape ~~~~~ in Progr.imming I an~iiages 50 Chapter 4

slmulM ed ~.t’c rn perilous. T he t h ird tnt hnique .annot be imit a ted In Euclid, but the issues

Involved don’t seem to include ali.ir.ns . Ultimatel y, only experience and further resea rch wilt

tell whether Euclid has sa~ rif iced too much to avoid a liases.

The des i gners of Al phard , while skeptical of aliases , are less militant than Euclid. They

permit .aliasing when It Is careful l y documented. -

4.5.3. Exception Handling

One of the chief comp laints voiced about excep tion handling mechan lsms~ In standard

programming languages is that they either don’t permi t the handling routine to access the

objects it needs , or don’t preserve the integrity of the data structur es wh ich were being

modified when t he excep tion occurred.

Levin [273 has used the concepts of object s , ranges , and capsules to c larif y , the issues ,

survey existing facil it ies , and present a new mechanism. He describes excep tion handling in

term s of the signalling environment , the entity to which the exception applies , and the

environments whic h may process the exception. A condition may be associated either with an

instance of a control construct , as when a procedure call receives unusual pa rameters , or

with an instanc e of an object , such as when a file Is found to contain parity errors. A handler
• is always associated with a “user ” of the instance on which the condition is defined, whether

that be the cal ler of a function , or a range in which an object Is accessible. The si gnaller of a

condition Is the program segment which detects the condition.

An excep tion handling mechanism , then, may be characterized by the ways in which

handters may be assoc iated with instances , and by the ways In w hich control and data may

flow between the range signalling a crdition on an instance , and the ranges with handlers

attached to that instance. Prior to dat 1a abstraction , most mechanisms associated conditions

only wi th control Instances. Handlers or conditions we re generally either stat ic a l l y defined,

or provided by the callers of the procedure raising the condition. Little provision was made

f or passing d a ta between the signaller and the handling range. Algol 68 introduced , with Its

file exception mechanism, t he Idea of a- .coc iat lng conditions and handlers wIth objects. In

data abstraction languages , a handler could be associated with a variab le at Its declaration

site , or for the duration of a part icular control construct , or could even be defIned in a type

• defini tion to hold for all Instances of that t ype. Refer to Levin ’s thesis for more detail .

L
- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~



Scope issues In Programming Lanp.iiage s 51 Chapter 4

4.5.4. Type Breaching

Most systems programmers sooner or later f ind themselves faced with a programming

prohiem for which the most d irect solution is to t rea t  a sing le object in the tas k domain as

having two di f ferent types. in most cases it Is Impossible to prove anything about objec ts

t rea ted  that way, because the inte rpretation must include information about the ex act

bit- level rep resentation of both t ypes; this information is often not available. Consequentl y

modern programming theory f rowns upon suc h pract f te s .  However , modern theory has not

provided an adequate set of a lternative techni ques, so for the time being most languages , at

lr~ ‘-‘ose intended for systems programming, provide some mec hanism for it. Pascal didn’t

intend to provide such a mechanism , but programmers quickly discovered that the variant

record construct permitted it by not forcing a varian t field to be treated as having the t ype

implied by the tag field. Indeed, several Pascal compile rs , writ ten in Pascal , make heavy use

of this feature. Euclid attem pts to provide a caret u lty conf rolled feature of this nature ,

namely an explicit conversion operator . To suppor t that operator , Euclid insists that it occur

in a “machine dependent” module , and tha t it only map between t ypes whose -standard

representations are defined in the language. Euclid provides one other mechanism, for

conversion In cases w here one of the types has no meaningful values, lIke mac hine words , in

all ot her cases , uninterpreted t ype conversion is illegal.

4.5.5. Scope Aspects of Multiprogramm ing

Modern scope mechanisms also make programming of cooperating processes a little eas ier.

The underlying scope problem in this area is very much like t he Alias Problem: a program

cannot be verifie d If the values of variables it relies upon may change unexpectedl y.

}-loare [20) has produced a language construct , calle d a monitor , for controlling data sharing

among processes. In Its simplest form , it is a general module, accessible by any process , but

with the restriction that only one process may be executing In It at a time. If a process

attempts to enter a monitor while another is executing in It, the entering process Is

suspended until the other is done with the monitor . Modula Interf ace modules and device

modules are extensions of that construct , providing certain ways that a process may suspend

itself in the middle of the module, permitting other processes to execu te In the module white

It’s suspended.



_ _ _  
--

• Scope issues in Programming Langua~cs 52 Chapter 4

The monitor is useful for veri f icat ion~because when verify ing the code of a module, one can

assume that no other process w ilt change the variables declared In the module , except

possib ly during wait and s~grta1 ope rat~ons , thus making verif ica tion nearl y as simp le as with

serial programs. Unfortunatel y, the monitor is now being pushed beyond the limits of its

usefulness (47). Many are now try ing to use it to implement elaborate synchron ization

pro tocol s , not just simp le mutual exclusion.

Owicki (38] has take n the technique a step farthe r and shown that pre- and

post-conditions of the abstrac t specif ications for monitor procedures must be phrased in

terms only of variables private to the calling process , and not in terms of the shared

variables. Only the invariant properties of the module specification may mention its parallel

nature. The reason for this is that any non-private , non-invariant propert y occurrIng in t he

post -condition of a procedure might Immediatel y be made false by another process.

‘I,



• . —- -.-~~~~~ 

r - . • . • . ~~~~ •,• • •~~ •~~• • •~• • . ~~~~~~ 

-- - --
~
-----

~
- • • -

~~~~
.

Scope Issues In Programming Languages 53 Chapter 5

5. Programming Examples

In this chap ter we shall samp le the scope philosophies of several of the languages used in

this stud y, by study ing how a particular programming exercise would be wri t ten in each of

them. The languages we have studied cover an extremely broad range of expressive power

and intended usage , so it would be inappropriate to try to solve exactly the same problem in

- eac h language. Instead , for eac h language I shall state and solve a slightly differen t version

of the problem, designed to show the streng ths and weaknesses of that language.

5.1. The Problem
•

-

Each of the programming examp les in this chapter shalt implement a a queue. For our

purposes we define a queue to be a sequence of objec ts with the following restrictions:

- Objects may only be added to the sequence by appending them to the left-hand
end. For this purpose each program will include the operation uisert.

- Objects may only be removed from the sequence by dele ting them from the
left-hand end, via the operation remove, w hich also returns the value of the
object removed.

- The sequence is initially emp ty

- The length of the sequence may never exceed a specified maximum. Inserting an
object In a queue of maximum kngth is not permitted. (Similarly, removing an
objec t from an empty queue is not allowed).

- The current length of the queue ~ust be available to the user.

5.2. Fortran

Fortran was Invented before scope was considered an Issue; nonetheless it is possible to

wri te a collection of programs to implement a queue In a reasonably straightfo rward way. The

• princIpal Issue here is the sharing of the representation of the queue among several

subprograms , without forcing the user to be aware of too much detail. If the items to be

que~Jed are integers then a solution could encode the “front” and “back” pointers into the

array holding the data , and pass It as a parameter. However , I prefer a version which would

app ly to real numbers as well. Therefore the queue is ~tored In a named COMMON area.

Examples for other languages will build queues of characte rsi in Fortran characters may be

• -~~ -- - ~~~~~~ . . •
~~ ~~~~~~

• • --
-- - . - -

~~~ • - •~~~~~~~~~~- •-~~~~~ 
-
~~~~

--
~~

Scope Issues in Programming Languages 54 Chapter 5

convenientl y represented as Integers.

Subroutine Om it
I nteger 0(100)
Integer front, bi~ck
Common /Oueue/ fron t , hack , 0
front = 1

• back - i
return
end

Integer Function Qa iz e
I,. Integer Qf lOO)

Integer front, back
Common /flueue/ front, back , 0
Osize - Mod ((bock-front) ,180)
return
en (I

Subroutine Qinsr t I I
intege r 01100)
Integer fron t, back
Common /Oueue/ front , back , 0
i f Qsize .eq. 99 STOP
o (back) - I
back - Mod (back , 100) ~ 1
return
end

Integer Function Orentov
Integer 0(100)
Integer front , back
Common /Oueuef front , back , 0

- If Usize .eq. 8 STOP
Oremov • 0 1 fron t
fron t - Mod I fron t , 188 1 .‘ 1
retur n
end

Integer FunctIon Of i ret
Intege r 0(109)
Integer fron t , back
Common /Queue/ fron t , back , 0
I f Osize .eq. 0 STOP
Of iret — 0 (front
r e t u r n
end

Scope Issues in Programming Languages 55 Chapter 5

The principa l shortcomings of this technique are the weaknesses of the named COMMON

cons truct : discrepanc ies in the vari able lisl~ for a given area be tween different subprogra ms

are not checked , and any subprogram declaring a common area with the same name, has

access to the data.

5.3. Algol 60

Algol 60 permits one to implement a queue whose size is a parameter (of sorts), by the

trick of declaring and initIalizing a variable holding the queue size, in an outer block. The

user of the stack need not be aware bf the representation of it , except that he must avoid

using the names of variables used to imp lement the queue. (This may be erforced by the

clever use of blocks, too.)

he dljfl
intedler q l i m i t :
q l i m i t • 108; -

begin -

strin g ar~~~ q(1:q I i m i t ~ ;
intedler front ,back;

integer procedure qeize ;
• qeize : — (hack - front) rem q l I m i t ~;

procedure modl i rlcr I I I t
• integer I;

- I : — (I ~~~ q l i m i t) + 1;

pr ocedure qinser t 1 s it
s t r ing s; va lue s;
i f Iqeize = q l l m i t — 1) 1i2!fl &LL
else begin

q fbackl :- et
mocfincr (back I

strin g procedure qremove:
II qeize - 8 ii2~!2 !.~.Lielse begin

qremove i- q(f ron t l ;
mod lncr I fron t

Scope Issues in Programming Languages56
Chapter 5

~idn~ l2~Oceci~r~
q fir st ;

.Li q si z e = 0 ~fl~n fa i l

~~~ 
q f i rs t  :— q lfi r s t i;

Comment queue I n i t l a l iz a t io nt
f i r s t  : —  1;
last :— 1$

end
end

Rather than define a separate proce~ture to initialize the queue, I have writte n out its

Initializat ion as the first executable statements of the block. This Is reasonable when the

scope of t he queue and the scope of its implementation are the same. In the next sect ion we

will examine a different technique.

• Observe that Algol 60 has no provision for constructing complex objects which are not

arrays, so that the representation of a queue must span several variables.

5.4. Pascal

One of the chief contributions of Pascal was its generalization of data structuring

mechanisms, wi thin the framewor k of a language committed to minimal runtime overhead. In

the following program we define the type queue, enabling the user to declare as many queues

as he needs.

q ii m i t  — 109;
qmax - 99
queue - record

front: 1.. q ll m i t ;
back: 1.. q ll m i t ;
dat a: arrag 11 ..q l im i t ] of ~~~~~~~~~

end

procedure q i nit ( var q:queue)t
begin

• q .f ron t :—  ii
q.back :- i .



-~~

Scope Issues in Programming Languages5l Chapter 5

- function qeize I q:queue ):inteqer;
qsize :— fq.back - q.front) mod q Il m I t ;

• procedure mod i ncr I var i : in teqe r  1;
I : —  (I 

~2.cj q l i m it )  + 1;

~j pceclure qinser t ~~~~ q:queue , c:th );

~~ 
qe i ze  I q I - qeax then f a l l

else beg in -
•

q.data lq.back) :. c;
mod incr tq.backi

• function qremove ~~~ q:queue):char;
II qs I ze ( q I - 0 iti~n Lii~.i.. -

e lse begin
qremove :- q.cfota (q.front]; -

mod incr I q. front )

func t ion q f i rs t  I q:queue } :~~~~ ;qfir st :— q.data (q. front] ;

This implementation once again includes an initialization routine, but this time it is because
- there may be many queues declared in different places. Observe that this implementa tion

does not cisc any global variab les , and only two global constants , qlimit and qmax. Thus the

user of queues may be sure that his operations are not affecting any varIables except the 
4

queues on which they operate. -

Pascal Is notorious [143 for its decision to include array bounds as part of the t ype of a
variable , leading to the requirement hat array bounds be compile time constants. If a
program had to have queues of two di ferent sizes , it would have to have two complete sets
of defini tions of the type queue and its routines, wi th the only difference between the two
being the value of qlimit.

5.5. Algol 68 -

Algol 68 does not include the dimensions of arrays in the type of a structured object.
There fore , In the following program the size of the queue is stored as a field of its

• ~~~~~~~~~~ - ] -_ •_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



— ——-.- — 
- 

- 
~~~~~~- • -- --

— I
4

Scope Issues in Programming Languages 58 Chapter 5

representation. The initialization routine is wri t ten so that it may be used as part of the

statement in which the queue is declared , i.e. so that the declaration may be followed by a

collat eral assi gnment to its fields.

j~~j q l i m i t :— 100; -

mode queue - struc t
t i n t front ,hack , li m l t , mx ,

-
.

(q t m l ti char da ta) ;
12!iLc. q i ni t = queue: (1, l ,c~l Im i t ,ql m l t— 1 , ~~j~

) -

proc qs?ze — (queue q)j~~:((back 21 q - fron t 21 q) ~~~ li m i t
~
j qi s

comod i ncr would need too many parameters to be worthwhile c~

proc q i nser t - If~ J.. (luetle q, cfl.~
c)~~J~~: I

-

- if q size (q I - mx of q then f a i l
-

e lse be~ijn(data 21 q) (back gj q3 :- c;
back gj queue :- (back of q mod li m i t 21 qI + 1

proc qremove - (ref queue q)~~~~: I
j.! qs I z e I q) = 0

~~~ 
j~fl

e l s e  t2ecljfl
ç~~~~c :- (data ~j q ) E f r o n t ~j .q):
fron t of q :— (fron t of q mod lim i t  ~j q) + 1

proc qfir st • (queue q)~~~~~
; (da ta - o f  q) (front 2.!. qI; 

-

. . .
end

Unfor tunatel y, both the array dimensions and the initial values for the limit and mx f ields had

to be computed from global variables, since Algol 68 has no means for parameterizing a type

definition. Furthermore, neit her Algol 68 nor Pascal provide a means to restrict the scope of

the representation of a type, so that any part of the program text which has access to the -

name of a queue variable may also modify its fields Individually. 
-

— •

~

“ 
- -=-

~~~-


~-1

Scope Issues in Programming Languages 59 Chapter 5

5.6. Euclid

The following Euclid module both implements and protects the type queue. Furthermore ,

the leng th of the queue is a parameter to t he t ype definition , so that each queue declaratio n

• may specify concise ly what its size will be. Even better , all of the initia lization is taken care

of by the module at declaration time , based on the same parameter , so that the declarer need

not be concerned about initial values.
•

fljpe queuel pervas i t i m i t : i n t e q e r) module -

• exports I inser t , remove , size , front
var front, back: 1 . . I i m i t
pervasIve mx = l I m i t - 1
var data arrau l . . l im it of char

in l ine function size returns s:Integer —

• i mports (fron t , back I
s : — (back — f ront) ~~.çj l i m i t

in line procedure mod incr ~~~ i : in teqer) —

I :— I 1 ~~~ l i m i t) + 1

procedure Insert (c:çj~.~~ I -

i mports (var data , ~~~ bock, front, s i ze
pre size < mx

be~ i n
data (backJ :- c •

mod lncr I back

procedure remove returns c:char -

impor ts (~~~ fron t , data , back , s ize

~~~ size > 0
, • .

begin
c : —  data (frontl
mod i ncr I fron t 1

end

J



_ _ _ _ _  - 

~~~~~~~~~~~~~~~~~~~~~

Scope Issues in Programming Languages6O Chapter 5

I n l i ne function fi r st retur is c:chir —

j~ por ts (front, bac k, d a t a , size)
c :- data t f r on t]

i n i t i a l t g

fron t :— I
• back :- 1

end
end

The imports clauses in this examp le seem rather long. This is primarily due to the Euclid rule

• that imports must come from both the static and dynamic contexts of a range. Notice how the

pervasive designation permitted the use of onstants without importing them.

Both Pascal and Al gol 68 specified the fields of a queue by using the field names as

se lectors on the queue variable. Euclld’s syntax is such that the module variable to be used in

a module operat ion is a pre fix par Qineter of the call. Then any field name im ported into the

operation implicitl y refers to that field of the prefix parameter , rather than having to

explicitly attach It to a module variab le name. Hcwever , this makes It impossible to refer to

fields of two module variables in the same procedure , because the field variable would be

• ambiguous.

5.7. Alphard

in this example , even the type of object being queued is a parameter to the form

definition. At phard uses the name qualification syntax of Pascal and Algol 68 to refer to the
fields of form instances , making possible the function ~trans fer N which moves a -specified

number of objects from the head of one queue to the bach of another.

Due to the index computations in the transfer function, the data array In this program is

based at zer o rather than one.

• • ----•--- • • •

~1

Scope issues in Programming Languages6l Chapter 5

Form OtJEUE(T; form <:= , l i m l t : INT) =

I l i m i t > 0)

SPeC

~~~~~~~~~~ 
s i z e  (q :QtJEUE ) : INT

t2E2~ 
Insert (q:QLJEUE , x : T I

~proc remove (q:QUEUE):T
func first (q:OUEUEhT
proc transfer (q,r:OUEUE , m INT )

imp i
var dota:VECTOR IT ,0, l im it —1 ) , front , back:INT B
i nvar i ant I 0 ~ fron t � l i mit—i ,

~ B ~ back s l i m i t — i  I

func size is (q.back — q .front ) ~~~ q. Iim it

proc Inser t is If size Ic;) > q .l im i t — 2  then j~jj ~jj~
q.data (q.backl := x;
q.back :— (q.back + 1) ~~~ q. Ii mit fl

vproc remove = I f size (ci) - 0 i!i?n !~Ji ~~~var x :INT := q.data (q. front]
q.front :— (q. front + 1) !!~~i 

q . l i m i t
x f l

func f i r s t  j
~. 

if size (q) — 0 ~~~~ L~Li. ~~~q. data (q. front] if

proc transfer i5
I f (s ize (q ) < n) or Isize (r) > (r. l im it —n —1 ) jj~~~ jjjj.. ~~~~

!2t. i:upto (1,n) do
r.data ((r.back + I) mod r. lim i t ]  :—

q.dataU q.fron t + i ) mod q .I im l t ] ~~
r.back — (r.Liack.+ ni mod r. li m l t;
q.front : —  Iq. front + n) 

~~~~ 
q .llt ni t fl

end QUEUE

5.8. Modula

Queues are the basis f or a set of synchronization problems called producer/consumer

problems. The simplest such problem Is composed of two processes. One process is
producing objects and placing them in a queue; the other is removing them from the queue

and consuming them. The problem is to synchronize the insertions and deletions so th at

simultaneous act ivity doesn’t destroy the consistency of the data , and so tha t instead of
halting the program when the queue overflows or runs out , the code for the queue wilt

suspend the process attem pting an insertion or deletion until the size of the queue Is

rr ~~

.-1

Scope Issues in Programming languages 62 ~

.

Chapter 5

app ropriate for the operation.

The following ir ~tcrface rnodidc solves the simp le producer/consume r probtem. An

interface module may only be entered by one process at a time , excep t for processes

suspended in the middle by execut ing wait or si gnal statements. Thus the consistency of the

queue data may be assured by simp ly making sure that it is correct at procedure entry,

• procedure exit , and at each wait and si gnal statement.

- • interf ace module queue;
define clsize, qinser t , qrefliove, qfirst ;

~~~ (q t i niit] ;
front , back: inteflen

y•~~~ fu l l , empty:~ j~jn..~L;
~~~ data:arra~A 1:q l i m l t  21

procedure modincr I i : inteqer I;
use (qlim it) ;
heqi~I :— (I ~~~~ q l l m i t) + 1;

procedure qinser t (c:~~~~. I :
use (data , back , s i ze , l i m i t , mod i ncr 1;

-
beqjn
jj qs ize — q t i m i t — 1
then !:L~fl

(full)
• else begin

doto lbock) := ~~• mod incr I back);
• i f size — 1 then sicinal (empty)

end ;
• end;

p~Q~!_~ure qremove:chor ;
!L~~

(data , front , size, mod i ncr , q llm i t]
begin
fl qsize - B
j !~~~~

~j~jj .
I empty I

e~~ebe~~~
- •

qremove := dataffront i ;
mod i ncr (front);
If qe iz e = q l i m i t — 2 ~~~

signa l (f u l l) ;
end -

end;

—-~~~~~
- J

Scope Issues in Programming Languages63 Chapter 5

l~rocedure qfir st:char ;
use (data , front , size] ;
if size — 0 then fa i t
e l s e q f l r st : — d a t o f f r o n t]

end queue;

Urfortunate ly, interface modules do not adequatel y suppor t queues of more comp lex objects .

If the objects being queued were buffers of, say, 256 characters each , it would be important

for efficiency reasons not to copy the buffers into and out of the queue. Furthermore , one

would like to permit the producer and the consumer to fill and empty their respective buffers

simultaneous ly. Theref ore each buffer would have to reside in a different interface module,

or in no interface module at all. The former solution is ridiculous; the latter gives up the very

protec tion the Interface module wa s supposed to provide, in either case, due to the fact that

-
Modula has no pointers , t he interface module could only be used to protect the computation

of a buffer index , and not to protect the buffer itseff. Even so there would be no protection

against either the producer or consumer using buffers for whic h it had not received ~indices.

5.9. Simula 67

I have saved Simula 67 for last because , though in many respects it is not an elegant

language, It permits a degree of flexibility in queues not available in other languages. By

caref ul use of the subckss facility it ~s poss ible, indeed reasonable , to implement queues

• which contain objects of any type, indeed of types not known at the declaration site of the

queue.

In the following program, the Queue class knows nothing about the buffer class. The

buffer class is actuall y a dummy class; it takes no parameters , and has no att ributes.

However , users of the Queue class can construct subclasses of the buffer class , wi t hout

changing e,iher the buffer or queue classes. Since a queue contains references to buffers ,

ari d t hose buffers may be any subclass of the buffer class , a queue may contain any arbitra ry

mixture of elements. Indeed, the INSPECT statement is sufficiently flexible that a program

removing elements from the queue can pick out exactl y those elements It knows how to
process , and skip those whose class it does not recognize. -

_ _ _ _ _ _- - -~——~~ --• ~~ •-•- ,•••-•- • •~~•- .~~ -~~~- — •• •

— - V . , -~---~--- —

Scope issues in Programming Languages64 Chapter 5

c lass bu f fe r ;

c.L~ia~ clueue
(l i m i t) ; inte ger l i m i t ;

hidden ~~j~ c tecl l i m i t , fron t , back , data , mod lncr ;

~~siln
integer f ront , back;
ref (buffer) arra~ data (1 : t i i n l t) ;

procedure mod lncr (I It
integer 1;
I := (I mod l I m i t) + 1;

procedure inser t (hI:
ref (buf fer) b;
if size — l i m i t — 1 then f a i l

L~~~~~iL~data I back 1 :- b;
modlncr (back

ref (buffer) procedure remove;
if size — B then f a i l
~~~~ beqi~ -

remove := data I fr ont 1;
mod lncr (f ront )

ref  (buffer)  procedure c i f ) rs t ;
if  s i z e  - B then f a l l

~~~~ 
qf lr st :— data I front 1;

front :— 1;
back :— 1
~~~ ~** queue *~(*

I

buf fer  c l a s s  a I;
begin

end

ii



_ _ _ _  - _
r 

• - - -  — - - 

~~~~~~~

- — - - - - . -

Scope Issues in Programming Languages65 • Chapter 5

• buffer c lage c l d) ;
• beg in

end

re f (queue) q;
ref (buffer) x;

• -
- x := remove (q I;

inspect x ~~~~ a do
when c do

•

~

•

~

_

~

• __ A

~

-•

~

--- • -~~~ -

Scope issues in Programming Languages 66 Chap.ter 6

6. Summary
•

- We have seen that scope is a strong element of program structure. The se t of range

definiflon facilities provided by a language determine the class of permissible program

structures. Languages which have a sufficientl y rich set of range facilities have been able to

simplify their parameter and binding mechanisms. Many of the problems formerly assoc iated

with t he extent of variables are also simplified in a richer range environment. Modern

• understanding and implemen tation of data abstraction conce pts has contributed to the

• solution of a number of important program and system structuring problems.

The first major innovation in scope structure was Algol 60’s nested block concept. It

provided a tool for building programs in a hierarchical scope structure , where both the

control structure of the algorithm and the scope and extent structure of the data had to fit

into the same hierarchy. The resulting structure turned out to be better suited for

express ing algor ithmic structure than for expressing the structu re of data , as evidenced by

the Alias and Hole-in-Scope problems.

• Data encapsulation mechanisms , the single mos t important development in modern language

• design, provide the means to express the structure of data In a way which distinguishes it

-
from the structure of algorithms. A data abstraction is often a natural tool for describing a

design decision, or group of decisions, making it possible to concentrate all of the parts of a

program w hich are affected by such a decision into a concise package. This improves the

modulari ty of programs , thus enhancing understandability and verifiabi lity.

• Languages supporting data abstraction have been able to simplif y their parameter

mechanisms and reduce their overhead due to free variables. The NAME, PROC, and LABEL

mechanisms are disappearing from modern languages because they embody both data and

contro l information, which can now be better expressed with range definition mechanisms.

Many of the control abstractions necessitating EXPR or PROC parameters can be implemented

as well or bet ter using data abstraction facilities. Data abstraction languages also provide a

f Irmer foundation for exception handling mechanisms, reducing the need for PROC and LABEL

parame ters In this capac ity.

Free var iable binding, highly desirable in an Algol-like scope environment , has recede d in

Importance in modern languages because of the distinction between the structure of

algorithms and of data. Such binding is no longer necessary to provide common data to

h.-

~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ —-

- J

Scope Issues in Programming Languages 67 Chapter 6

multi ple procedures , nor is there a tendency to need a large number of global variables in

any one environment. Furthermore , ~ree name binding was a major source of alias and

side-effec t problems. Consequently, I~nost data abstraction languages do not permit free

varia ble binding across procedure or c~psuIe boundaries. Note , however , that constants , field

selectors, and procedures are often inherited in the conventional Algol way.

The OWN concept , considered innova tive and promising when introduced in Algol 60, has

been disp laced somewha t by data abstraction. The OWN concept separated the extent of a

variable fr om the duration of the control construct delimiting its scope; data abstraction has

done that and more by separating the scope of the name of a variable from the scope of its

objec t. •

Data abstract ion, we have seen, has shed light on a number of long-standing systems

programming problems. It has provided the basis for a sound exception handling proposal

which generalizes to multi programming. It has shown the way to reasonably controlled
• type-breaching. it has suggested useful methodologies for parallel programming. Mqst

importantl y, however , It has provided the means for decomposing a system into coherent

modules while retaining meaningful structu re and discip lined scope rela tions between
• modules.

By study ing implementations of queues in various languages, we find that indeed the

modern languages provide a grea t deal more structure to program s. We find the data

s t ruc t uring tools of Pascal and Algol 68 to fit naturally in to good programming sty le. We fin d

the modules and of Euclid and Modula to be convenient encapsulation tools. We find Aiphard

f orms to be excellent tools for constructing data abstract ions. Surprisingly, though, we find

that Simula 67 , w hich was the first language to permit grouping of procedures around a data

type, still exce ls In the flexibility of Its generic types, ten years after its crea tion.

- Scope Issues in Programming Languages 58

References

(1] F.T. Baker , Structured Programming in a Production Programming Environment.
Proceedings of the Internat ional Conference on Reliable Software , SIGPLAN Notices
10,6 (1975).

Presents management toots for implementing the Chief Programmer Team concept,
Including the notion of structured coding as distinct from structured programming.

(2] Frederick P. Brooks, ~yth ical Man-Mon~j~, Addison Wesley, 1975.
- -

• An entertaining set of essays on the management of large software projects.

(3] Ole-Johan Dahi et al , Simula 67 Common Base Language, Norwegian Computing Center ,
Oslo.

• Reference manual.

(43 Ole-Johan Dahi and. C.A.R. Hoare, Hierarchical Data Structures. In Structured
Programm~ g, Dahi, Dijkstra and Hoare, Academic Press, London, 1972. -

Presents the class and subclass mechanisms of Simula 67.

(5] Edsger W. Dijlcslra, GOTO Statement Considered Harmful. Communications of the ACM
(March 1968).
An ear ly example of the influence of language on the quality of software.

[6] Edsger W. Dijkstra, Notes on Structured Programming. In Structured Programming, Dahl,
- Dijkstra and Hoare , Academic Press, London, 1972.

-
-

A landmark work on structured Programming.

(73 Edsger W. Dijk stra , 197 2 ACt~4 Turing Award Lecture: The Humble Programmer .
Communications of the ACM (October 197 2).
Describes the human limitations which make structured programming impera tive.

(8] Edsger W. Dijkstra , Correctness ’ Concerns and, Among Other Things, Why They Are
Resented. Proceedings of the International Conference on Relia ble Software , SIGPLA N
Notices 10,6 (June 1975), 546-550.
Motivates program verification.

[93 Edsger W. Dij kstra , ~ Discipline of Programming, Prentice Hall, 1976.
Presen ts a programming and verification methodology which places heavy emp hasis on
proving termination and controlling the scope of names. Also introduces a novel
approac h to initialization.

(10] Mark Elson, Concepts of Programming Languages. SRA, 1973, 67-84.
Uses an elaborate formal basis for classify ing binding mechanisms in programming
languages.

[113 A.C. Fleck, On The Impossibility of Content Exchange Through The By-Name Parameter
Transmission Mechanism. S)GPLA N Notice s (1976), November . - -

Scope Issues In Programming Languages 69 •
-

illustrates the problem of repeated evaluation in the NAME parameter mechanism.

[12] Lawrence Flon, On the Design and Verification of Operating Systems , Computer Science
Depar t ment, Carnegie -Mellon University.

(13] Jack Goldberg (ed.), Proceedings of a Symposium on the High Cost of Software , SRI.
An example of the literature of the “sof tware cr isis ”, including analysis of the
components of the cost of software.

(14] A. Nico Habermann, Critical Comments on the Programming Language Pascal , Computer
Science Department , Carneg ie-Mellon Universi ty.
Criticizes t he concept of t ype underlying Pascal.

• (15] Paul N. Hilfinger et al, An Informal Definition of Alphard, Computer Science Department ,
Carnegie-Mellon University (in preparation). -

Reference manual. -
-

(16] C.A.R. Hoare, Notes on Data Structuring. In Structured Programmjpg, Dahl, Dijkst ra and
• l4oare , Academic Press , London , 1972.

(17] C.A.R. Hoare , Proof of Correctness of Data Representations. Ada Informatica 1 (1972).
Presents the verification methodology eventual’y adopted by Aiphard, Clu, and Eucfid.

(18] C.A.R. Hoare, Data Reliability. Proceedings of the Intern~Iional Conference on Reliable
• Software , SIGPLAN Notices 10,6 (1975), 528-533. - -

Presents the ma thematical notion of type.

(19] C.A.R. i4oare and Niklaus Wirth, An Axiomalit Definition of the Programming Language
Pascal. Ada lnformatica2,4 (April 1973). -

The axioms for variant records are internally inconsistent , precisely where variant
records in Pascal are type-unsafe.

(20] C.A.R. I-b are, Monitors: An Operating System Structuring Concep t. Communications of
the ACM 17,10 (Octobe r 1974), 549-557. -

The synchronization concept behind interface modules in Module.

(21] John 8. Johnston, The Contour Model Of Block Structured Processes. SIGPLAN Notices
• February 1971, 55-82.

(22] Anita K. Jones and Barbara Liskov, An Access Control Facility For Programming
Languages, Computer Scierce Department , Carnegie-Mellon University.
A refinement of binding mechanisms in data abstraction languages, permitting the
programmer to specify precisely which of the operations defined on an object are
permissible. -

(231 Donald E. Knuth, Remaining Trouble Spots in Algol 60. Communication, of th. ACM
(October 1967).

One of the last papers analyzing Algol 60, describIng among other things the binding
Issues surrounding the loop construct.

-

• • • • • • • • • • -

~

- - - • •

~

• •-- ••- • --- -• .•-

~

•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

__ • ~~j • *_• _ _ 
~~~~~~~~

.

j

- -- -- -- - - - --
~~~---— •

• 
- ----• --~~~~~ -- 

Scope. lssues in Programming Larguages 70

• (24) Donald E. Knuth, The Art of Con~puter Programming: Fundamental Alg~ori~~~~VoI. 1, 2nd
Edition , Addison—Wesley, 1973.

(25] Donald E. Knuth, Struc tured Programming Wi th GOTO Statements. Computing Surveys
(December 1974).

Shows proper and improper uses for the GOTO statement , eventuall y arguing that the
GOTO is necessary for certain cases of multiple exi t points from a compound statement.
Points out that improper use of the GOTO is harmful , but the GOTO itself is not.

• (26] Butler W. Lampson et at , Report On The Programming Language Euclid. SIGPIAN Notices

t 
• (February 1977).

- Reference manual.

[27] Roy Levin, Program Structures For Exceptional Condition Handling, Ph. D. Thesis ,
Computer Science Department , Carneg ie-Mellon University.
Representative of the stat e of the art in exception handling, presenting the scope

- 
- issues and a promising solution.

(28] Barbara Liskov and S. Zilles, Programming With Abstract Data Types. SIGPL.AN Notices
(A pril 1974), 50-59. 

- 
-

A reasonable tutorial on the concept of an abstract data type, and a basic introduction
to CLU.

(29] Barbara Liskov, An Introduction To CLU. in New Directions in Algorithmic Languages
197,~ S. Schuman, ed., IRIA, Paris, 1975.

• (30] Barbara Liskov and S. Zilles, Specification Techniques 
- 

for Data Abstractions.
- Proceedings of the International Conference on Reliable Software , S1GPLAN Notices

- 10,6 (June 1976), 72-87.
- A survey of specification techniques, hi ghli ghting those properties of an abstract data
1 type which are visible outside it, and must therefor e be precisely specified.

[313 Barbara Liskov , Alan Snyder, Russell Atkinson, and Craig Schaffert , Abstraction
Mechanisms in CLU. Proceedings of the ACM Conference on Language Design for

- Reliable Software , SIGPLAN Notices 12,3 (March 1977).
An introduction to abstraction in CLU, including its iteration construct.

[32] Ralph L. London, A View of Program Verifi cation. Proceedings of the International
Conference on Reliable Software , SIGPLAN Notices 10,6 (19 75), 534-545.
A gentle introduction to verification.

(33] Ralph 1. London, Mary Shaw, and William A. Wulf , Abstraction and Verification in
- Aiphard: A Symbol Table Example, Computer Science Department , Carnegie-Mellon

- Universit y.
A non-trivial examp le of a generic type.

[34] Joel Moses, The Function of FUNCT ION i n LISP , or, Why the FUNARG Problem Should be
Called the Environment Problem, Project MAC, Massachusetts Institute of Technology

• -



~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -—-—-~~~~~~~- • ~~

~~~~~~~
-
~
- • ~~

Scope Issues in Programming Languages 71 -

MAC-M-428 AI-199.
Describes how certain deceptivel y simple binding mechanisms can cause enormous
implementa tion and conceptualization difficulties.

(35] Peter Naur (ed.) , Rev i sed Repor t on t he A l gorithmic Language Algol 60. Communications
of the ACM (January 1963), 1-17.
Reference manual. -

[36) Eliot I. Organicic and Loren P. Meissner , Fortran IV, Addison Wesley, 1974.
Reference manual.

(37] Susan Owicki and 0. Gries , Verif y ing Properties of Parallel Programs: An Axiomatic
Approac h. Communications of the ACM 19,5 (May 1976), 279-285.

(38) Susan Owicki , Specifications a.~id Proofs for Abstract Data Types In Concurrent
Programs, Digital Systems Labora1tory, Stanfo rd University TR No. 133.
Data abstraction combined with monitors permits natural extension of l oare’s
methodology to parallel programs.

(39) Frank G. Pagan, A Practical Guide to Algol 68, John Wiley & Sons, 1976.
Provides plenty of examp les, and enough conventional prose to explain the Algol 68
terminology.

(40] Jacob Palme, New Feature for Module Protection In Simula. SIGPLAN Notices (May
1976).
Turns classes into protected capsules , and permits fine control over sharing with
subclasses. These features are now part of standard Simula. 

- 

-

(41] David L. Parnas, Information Distribution Aspects of Design Methodology. Proceedings
of the IFIPS Congress 71, Vol. 1(1972).
The effect of design information changes on system construction.

(42] David L. Parnas , Some Conclusions From an Experiment in Software Engineering
Techniques. Proc. AFIPS FJCC vol. 41 , AFIPS Press , Mont vale, N. J. (1972), 325-329.

• How a methodology based on modules facilitated construction of a toy system.

(43] David L. Parnas , A Technique for Software Module Specificat ion W i th Examp les.
Communications of the ACM 15,5 (May 1972), 330-336.

• Specif ying a module as a black box with lights and buttons.

(44] David L. Parnas and D.P. Siewiorek, Use of the.Concept of Transparency in the Design
of Hierarchically Structured Systems, Computer Science Department, Carnegie-Me))on
University. -

More methodology based on modules.

(45] DavId L. Parnas, On the Criteria to be Used in Decomposing Systems Into Modules.
Communications of the ACM 15,12 (December 1972), 2053-1058.
Parnas ’s concept of what a module should comprise.



— -~~~ — — 
~~
-

~~~~~~
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

—

- Scope iscucs in Programming Languages 72

[16) David L. Parnas , On a ‘Buzzword’: Hierarchical Structure. Proceedings of the IFIPS
Congress 74 (1974).

It is necessary Ia specif y exactl y which relation among modules is hierarchical.

[47] David L. Parnas , The Non-problem of Nested Monitor Calls. Operating Systems Review
12,1 (January 1978).

- Points out the difference between the monitor as a synchronization construct , and the
monitor as a resource manager.

(48) G.J. Popek et at , Notes on the Design of Euclid. Proceedings of the ACM Conference on
Language Design for Reliable Software , SJGPLAN Notices 12,3, SIGPLA N Notices 12 ,3
(March 1977), 11- 18.
Discussion of, among other t hings, the scope issues in the design of EUclid.

[49] Craig Schaffert , Alan Snyder , and Russell Atkinson, The CLU Ref&ence Manual, Project
MAC, Massachusetts institute of Technology.

[50] Mary Shaw, Abstrac tion and Ver ification in Alphard: Design and Verifica tion of a Tree
Handler, Computer Science Department , Carnegie-Mellon Universi ty.
An example of a comp lex relationship between two abstract data types.

(51] Mary Shaw ,W illiam A. Wu If and Ralph 1. London, Abstraction and Verifica tion in Alphard:
Iteration and Generators , Computer Science Department , Carnegie-Mellon Universit y.
Uses data capsules to solve a control abstraction problem.

- • • (52) Richard Sites , Algol W Reference Manual, Computer Science Department , Stanford
University STAN-CS-7 1-230.

- - (53) Lawrence Snyder , An Analysis of Parameter Evaluation For Recursive Procedures, -

Computer Science Department , Carnegie-Mellon University.
Comparing the power of parameter mechanisms using program schemata.

(54) R.0. Tennent , PASQUAL: A Proposed Generalization of PASCAL, Department of
• Computing and Information Science, Queens University.

Advocates using a uniform binding mechanism for declarations and parameters.

(55) Clark We issman, Lisp 1.5 Primer , Dickenson, 196 7.
Introduction to LISP

(56] A. van Wijngaarden (ed), Revis~d Report on the Algorithmic Language ALGOL 68.
SIGPLAN Notices (May 19 77), 1_)1O.
Reference manual. -

(57] Niklaus Wirth, The Programming Language PASCAL (Revised Report), Berichte der
Fachgruppe Computer -Wissenschaften, Eidgenossische Technische Hochschule, Zurich.
Reference manual

_ J_ _

- -• •

~~

-

- ~~~~
Sco pe Issues In Prog ramming Languages 73

[58) Niklaus Wirth, Modula: A language for modular multipr ogramming, Institut fur
Informat ik, Eidgcnossische Tec hnisc he Hoc hsc hule, Zurich.

Reference manual.

[59] Niklaus Wirth , Toward a Disci pline of Real-Time Programming. Proceedings of the ACM
Confere nce on Language Design f or Reliable Software , SIGPLAN Notices 12,3 (May
1977), Communications of the ACM.
The met hodology behind Modula.

(60] William A. Wu if , Ralph L London, and Mary Shaw , Abstraction and Verif ication In
ALPHARD: Introduction to Language and Methodology, Computer Science Department ,
Carnegie-Mellon University. .

