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Sound Propagation in the Sea -- Ray Tracing
CURVATURE CORRECTIONS FOR THE EARTH (SEA LEVEL) SHAPED AS AN
ELLIPSOID OF REVOLUTION ‘3

by: M. M. Holl

+

x L3

j The Problem

The three-dimensional tracing of a sound ray in the sea may be
referred to the surface coordinate system of latitude and longitude and to
the depth below the sea surface. This coordinate system involves curva-

ture terms. gt

be

-For the earth shaped as an ellipsoid of revolution we may, refer’ to
two definitions of latitude: the geocentric laultude; ¢ and the astronomical
latitude ¢ . These are illustrated in Fig. 2. There is a one-to-one
relationship between these definitions and the txansform?“t\i\qn“i‘s' §1mple as

will be shown. Wae -eheose to-use the geocentric latitude \tb[‘as principal

latitude coordinate. 1H<

Let the direction of propagation of a sound ray at an arbitrary
point in its progress -- latitude ¢ , longitude 8 and depth z -- be defined
by the unit vector(T . It makes the angle ¥ with the horizontal as shown
in Fig. 1. The horizontal component of the unit vector T defines the

direction of the unit vector ¥ .
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T = € cos¥ - k sin ¥

-—

N = & sin¥ - Wcos X

- -

N

Fig. 1 Definition of Parameters in the Vertical Plane of the Ray

In Fig. 2 we define and illustrate geometric parameters which are
relevant to the problem. These include the angle A which £ makes with

the unit vector & : t is directed 8 radians north of due east.

The coordinate-curvature terms arise in prescribing the ray

direction T by the angles ¥ and 8 . The angle ¥ is referred to the

horizontal which itself is turning in space trom location to location. The

angle 8 is referred to the east which itselt is turning from location to

location,

We may formulate the curvature terms directly. The reference
directions turn only by horizontal progress and the angles are defined

in specific planes. The terms are

(ax/ap.)c = + .9t A

(5/3/55)C & o t.vi.i

(0

(2)




Fig. 2 Definition of Parameters for the Surface

geocentric latitude

..

: astronomical latitude

“« = § -0

lk : unit vector, surface normal,
alligned with local gravity,
subtends angle with
equatorial plane as shown,

¢ : unit vector, surface tangent,
directed eastward.

/ -
'/ R g j ¢ unit vector, surface tangent, V
= P e S i directed northward.
i x j = Kk
A equatorial radius of earth A>B .
B polar radius of earth
B~ radius at geocentric latitude ¢ (astronomical latit e §)
m,h Cartesian coordinates in arbitrary meridional plane of longitude 8.
Solid lines lie in the meridional plane; dashed lines do not.
€ ¢ unit vector, tangent to surface trace.
n unit vector, surface tangent, normal to % .

R x &£ = in
t = cosg @ + sinﬁﬁ

m = -gsinf & + cosﬁ,i

e




2. Geometry of the Surface

The intersect of the arbitrary meridional plane and the surface is

an ellipse:

y 4 2
B A
We substitute
h = Esin ¢
m = Ecos¢ (4)
: and obtain
2 AZ B2
» oSS 2 g 3 (5)
{ A" sin"¢ + B cos ¢
We also note that
i
i h
% tan ¢ et~ (6)

:
;
B
,

An incremental northward displacement on the ellipse may be

expressed by

N ) S | . (7)




$m is negative. This displacement is

where 8h is positive and

directed along & Hence

2
s . & B
tan & g T R S
B
2
A
= —; tan ¢ (8)
B
This is the relationship between the astronomical latitude § and the '

geocentric latitude ¢ . Their difference angle

x = ¢ -¢ (9

is given by

tan § - tan¢

_@52 - BZ) tan & (10)
/s 2 2
B” + A" tan ¢

We also require the ratio of latitude increments: Differentiation

of Eq. (8) vields




fot
2 A% 2
sec’d € = =5 sec” ¢ Y
B
2 2
:I’ o ke cg§2 )
¢ B cos ¢
A2 82
4 2 4 4. 9 an
cos“ ¢ (B" + A" tan”¢)
3. Curvatures of the Coordinate Unit Vectors
We are now in position to express and develop the curvatures of
the coordinate unit vectors. These are expressed by an incremental
L‘ directed turning of the unit vector divided by the space increment, in the
' pertinent direction, over which this turning takes place:
. 36 &
H Ve = O e -
i i E cos ¢ 38 (asini’ kcos § ) (12)
| d ol } Aty € sin
Ll 1 E cos ¢ 50 (13)
i YR = § cosd 8 (14)
E cos¢ 88
§-vi = o (15)
|
) . . k S§
: t I | T Esecx §¢ e
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- ul.v‘j = k.-vR =0 (18)

In Eqs. (16) and (17) we substitute from Eq. (11):

R cos « .l\2 B2

d B (19)
E cosztb (B4 +a? tan2¢)
: 2 .2
joon - dgmenitd o
Ecos ¢ (B +A tan ¢ )
4. Development of the Curvature Terms
Equation (1) is developed as follows
(ék’/és)c = .ot -k
= (cosﬁi+sin,e,i)-v(cosﬁi+sinﬁi)- k
= coszﬁ i.vi-R+cosp sing i-v4-K
+ sin B cos B é-V iR +sin2/3 &Vé k
- z coszﬂ cos ® o sinzB cOS & A2 Bz @21)
E cos ¢ Ecosz¢ (B4+A4 tanz‘, )




Equation (2) is developed as follows

i
I

(38 /3 s) t-vi- 4

= -(cosBi+sinAé)-vi-i

= -cosﬁi-V‘-i-sinﬁ&-?t-i

cos B sin ® 22)

E cos ¢

i}

We now wish to eliminate E, § and « by substitution in terms of

$ according to Egs. (s), (8) and (10). For abbreviation, where convenient,

we adapt

AZ
K = tan ¢ F e = (23)

B

We may rewrite Eqs. (5), (8) and (10) as follows:

2 2
EZ = _A__Q_L!-;—) (24)
(1 + FK)
tan § = FK (25)
tan o - __(f_—__l)_K_ (26)

a + FK%




It follows that

cos § = (27)
1/2
(X -+ Fz Kz)
(L Fz Kz)
2
cos & = (1 + FK7) lc;)zs ® (29)
TS

With the appropriate substitutions, Egs. (21) and (22) become

1/2
3 1+ FK° cogoB8 + F sinh + gt
PR L L e 3 (30)
1+F K 1+F K
2 1/2
CapZaa e = R Y _1_:__?12___2_} (31)
10 S i

These are the coordinate~curvature terms, on 8 and B . as functions of

the geocentric latitude ¢ and the ray-direction angle A3 .

In the special limit of a sphere:
A =B = R ¢ = § : F =1

the curvature terms simplify to

bt




1
(3¥ /3 S)C,R = "R (32)
- _ cos @ tan ¢
(BB/BS)C'R R (33)
S The Ray Tracing Equations
The ray tracing equation, in vector form, may be expressed by
T:vT = T x (T x9InQ) (34)

where T is the unit-vector ray direction and C is the sound speed. We
take the components along N and m -~ unit vectors defined in Figs. (1)
and (2) respectively ~- and obtain
T.-vT-N = - N:-9v InC (35)
T:-¥97T . = = MV InGC (36)
The left-hand sides may be transformed by geometrical consideration:
T * 9T:N « ¥V /38 - cos § t.v ¢t -k (37)

T - 9T'n o cosY{bﬁ/BS + cos¥ t~Vi~§} (38)

where S is a linear measure along the ray trace:

s = 88 cos ¥ (39)




The coordinate-curvature terms are expressed by Egs. (1) and (2)

and the ray-tracing equations may be written

¥ (ax )

e i = - sec¥ IN:.¥InC (40)

ds ds s

8 (—2—8—) = seczb' n-v InC (41)
S S c

The curvature terms are given by Egs. (30) and (31).

6. Linearization as to Oblateness of Earth

If we define € by

A w fA*e} B (42)

where A is the equatorial radius and B is the polar radius of the earth,

then

g & X&l, (43)

and we may linearize Eqs. (30) and (3 1) by dismissing squares and higher

powers of € as negligible. In this linearization

a2 = (1+2¢)8° (44)
F i (L 26 ) (45)
41 1=




F = (1+4¢) (46)

We also define as the earth's mean radius

el
m

2 @+ (47)
It follows that

o (1+§e)R (48)

With these substitutions we linearize Eqs. (30) and (31) and

obtain

P i
cvl(V
0 o
N
"
1
20 |

{ 1+ € (2 sinzﬁ cosz<b = sin2¢ - El)} (49)

(38) & _cosﬂRtan‘b {1 y’ e(-% ¥ cosz(b)} (50)

We note that as € —» 0 we arrive at Eqs. (32) and (33) respectively, for

the sphere; this, however, is not a check on the linear terms.

It is convenient, at this point, to note that the effect of the depth
of the ray on the curvature terms can be taken into account by replacing R
by R - z. This is equivalent to replacing A and B by A~z and B - z in

all earlier expressions of the curvature terms; the effect on € is negligible.

In general the depth correction is smaller than the oblateness correction.
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For convenience we also exhibit Eqs. (49) and (50) in terms of the

astronomical latitude, & :

(el s

C

2

= |

{1 + e(Zsinzﬂ coszq; - sin” & -%)} (51)

P
o |o
m|m
e

. cos B tan P {1 - & (5 + smzqn} (52)

R

By linearization of Eq. (26) we find that the difference between the

astronomical latitude @ and the geocentric latitude ¢ is
« = & - ® = € sin2¢
We note that
®x = sine« = tanox = € sin2¢ = € sin2® (53)
cos & = sec o = 1 (54)

The angle « is a maximum at about ¢ = + 45°,

y 4 Magnitude of Corrections for Oblateness

The oblateness factor does not enter in sea-surface or sea-bottom
reflections. These reflections are treated in the same way as in the
spherical case; no oblateness correction enters; this is because the angle

¥ is defined relative to the local vertical (see Fig. 1).

«l8«




The values

A = 6.378 x 106 meters

B = 6.357 x 106 meters (55)

have been quoted; perhaps better values are now available. These values

give
A = vt T
€ B 1= 0.0033 = 300 (56)
The oblateness corrections have the following ranges in the curva-
ture terms:

(Al‘-) - - }-i { 1 + {(-0.005 to + o.oos)} (57)

for both, Eqs. (49) and (51).

QQ_) _ _cos B tan ® }
(bs : - —-—§—————-—R { 1 + (0.0017 to 0.0095) (58)

(E_':"-) . _SosB tan® {1 + (- 0.005 to -0.0017)} (59)

for Eqs. (50) and (52), respectively.

In moving northward at the equator, we have

(/38 = -2 (1 + 0.009) (60)

-]l




In a northward displacement of
%s = 0.1 R= 637,000 meters (61)

the oblateness correction amounts to 0.0005 radians. Spreading this

correction linearly over the displacement results in a depth correction of
637,000 x 0.00025 =~ 160 meters (62)

This is an upper-limit approximation to the displacement errors made in

neglecting the earth's oblateness.

We also note from Eq. (53) that maximum o« (at ¢ = + 45°) is

0.0033 radians = 11 minutes (63)

8. The Geodesic: Surface Ray with no Refraction

Consider a ray which is trapped in the sea surface by continuous
glancing reflection, but undergoing no refraction, Its trace describes a
geodesic:

¢t - vt = t.vt . kik (64)
[ts geodesic curvature (i.e. curvature in the surface) is zero:
t.9¢ .m =0 (65)

We have seen that Eq, (65) transforms into

dB/ds = (Bﬂ/bs)c (66)

«1§=




We choose Eq. (22) to write

Y3 L cos B sin &
d s E cos ¢

for the governing equation for a geodesic.

The governing equation can be integrated once and obtains that,

for a geodesic, B is a function of latitude only. We achieve this by

substituting

sin@ 8s = E secx 8¢

as seen from Fig. 2, into Eq. (67) to eliminate $s. We obtain

sin @ Sé

coS ¢ COS o

tanB3 88

We transform Eq. (28) to obtain

. i . P
sin = siné 172

{1 + (FZ -1) sin2¢}

We transform Eq. (29) to obtain

14 (F-1) sin> o

cos & = . : 72
{1+(F ~ 1) sin 0}
Introduction of Eqs. (70) and (71) in (69) yields
F
tanf 88 = - tan¢

1+(F=-1) sm2¢

16~

3¢

(67)

(68)

(69)

(70)

(71)

(72)




We integrate Eq. (72) from the equator, ¢ =0, where A = Ro,

to an arbitrary latitude ¢ . The result is

2

2 £
cos 8 = cos ﬁo (1+Ftan" ¢ ) 1 (73)
The maximum latitude which this ray can attain is reached when B = 0:
2 tan2 A
R < - S [ T
tan ¢)m T (79)
The analytical equation for the geodesic requires one more inte-
gration. We first transform Eq. (73) to obtain
2 A 1/2
tan 8 = {—ESLJZ—— -1} (75)
1+Ftan" ¢
]
From the geometry of Fig. 2 we obtain
E sec 8¢ .
It follows that, for the geodesic,
2 g 1/2
® L
gd—e- = cosé¢ Ccosx sec 5 - 1} (77)
1+Ftan” ¢

Equation (77) may also be expressed by




-

’ ¢ . |
S e S sec ® sec & (1 +Ftan" & ) d b (78) }
i
o, !

1/2
(tam2 /30 - PtanZO)

The geodesic trace is obtained by ¢ cycling back and forth between 4>m

and - ¢m , the range given by Eq. (74).

In the linearization of Eq. (78), as to oblateness, we must concern
ourselves with the range of ¢ . We may immediately set sec « equal to
one; its departure is second order in € . Again using K = tan ¢ we

transform Eq. (78) into

2. ) 1/2
9..90_ S (1 + I' K) dK (79)

1/2 1/2
1+ Kz) (tan2 ,90 - FKZ)

We change the variable of integration once more to

r » Y%k (80)
and obtain
p
1/2
AN, R SRt 1 53 dp @1
© S Vi
(1.% ¥ " P} (tan Bo - P7)

Linearization, following F = 1+ 2 € , yields

=18~




g B d P

6~0 = S - € (82)
o 1/2 1/2
bant B, - p%) [+ P9 fan? B, -

where the range of P is + tan ﬁo .

We introduce w by

sin w = P cot BO
2 2.~ 1/2
tan w = P (tan Bo - P9 (83)
Equation (82) transforms into
arcsin (P cot BO) arcsin (P cot /30)
8-0, = dw . € dz‘" - (84)
1 + tan 80 sin” w
o) o

The first integral is solved; the second is transformed once more:

/2
2 2
P{tan BO-P

}—1
-8 = arcsin (Pcot 8 )~ € dy (85)
o o 2

(o]

where y replaces the dummy variable, tan w .

2
+
1 + sec Bo y
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The linearized solution for the geodisic is

e~ 90 = arcsin (P cot BO)

2 2 -1/2
- € cos ﬁo arctan {sec r30 P (tan /30 - P%) } (86)

where
P = (1+e¢) tan ¢ (87)

has the range + tan Bo . The longitude at the maximum latitude is
L 90 = T/2 (1 - €cos ﬁo) (88)

For € =0 the surface becomes a sphere, and the geodesic is a

great circle: Equation (86) reduces to

sin (8 - 90) = tan ¢ cot Bo (89)
This result could have been obtained directly from the spherical trigo-
nometry of a right spherical triangle.
in Fig. 3 we show the extent to which orbits of the geodisic
precess. For
€ = L and AR _ = 45 degrees (90)
300 o
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Fig. 3 Schematic of the Geodesic

i the latitude maximum attained in Fig. 3 is located at

———

%] - 89.79 degrees
[ = 44.9, degrees

$ = 45.1; degrees

; limitations in sound-ray tracing in the sea.

The oblateness correction appears to be negligible within the practical

(91)




