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THE SUPERSONIC FLOW AROUND SYMMETRICAL TORSIOWED AND

CURVED DELTA WINGS , TAKING INTO CONSIDERATION THE

SEPARATION OF FLOW AT THE LEADING EDGES

by ELIE CARAFOLI and STEFAN STAICU

Institute of FLUID MECHANICS

Academy of the Socialist Republic of Hoasnia

In this work the supersonic flow around deformed thin delta

wings is studied , having the distribution of incidences

symmetrical and varying proportionally with x1 and x2.
Taking into consideration the separation of flow at the

subsonic leading edges, the distribution of pressure and

and aerodynamic characteristics of the wing are determined , f
through the intermediary of an imagthary wing, equivalent

from an aerodynamic point of view, with the real wing.

1. PRELIMINARY CO (SIDEBATIONS

In the present work we will study the super sonic flow with

the separation of flow at the leading edges of deformed thin

delta wings, in such a way that the incidence is symmetrical in

reference with the axis of symmetry and varies proportionally

with x1 and x2 (fig. 1).
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As with the plane thin delta wing, with constant incidence

(1), (9) ,  in this case the flow separates at the leading edges,
creating as well a vortex layer which winds itself approximately

in the form of two horns, which are then transformed for the

most part of the vortex generating intensities into two concentrated

vortex nuclei, situated symmetrically in reference with axis
Ox1 (fig. 1) and defined by the coordinates c and t. The system

of two concentrated vortexes considered will bring changes on

the flow.

The resulting *otion, which becomes more complicated now,

will be studied on the basis of the theory of motion of the

second order. Towards this goal,we will follow the road used

in previous papers (1), ( 3)  and (9), where solutions were given

for thin delta wings with constant incidence and with antisymmetrical

constant incidence respectively (forced antisymmetry) in reference

with Ox1, which led us to conical motion as a matter of tact.

In this manner, we will allow that the effect of the falling

off of flow at the leading edges of the wing and therefore of the

form of the vortex nuclei on the higher side of the wing is that

of changing the vertical velocities and axises of disturbance,

becoming finite at the edges. We can equate this complex effect

with that of a wing with a variation corresponding to the incidence

2.
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Fig. I

or with a variation of the vertical velocities of distwrbance.

Through this we substituted the horizontal velocities of

disturbance~~&~i~~ equivalent distribution of vertical velocities.

We will obtain a symmetrical die trthution of vertical

velocities ad the higher side of the wing, which will correspond

in this way to an imaginary thin delta wing, with variable

incidence, having at the same time a finite velocity at the

leading edges. It will be allowed that the real thin wing, which

has in a certain way finite velocities at the edges through the

effect of the separation of flow, is equivalent, from an aero-

dynamic point of view, with an imaginary wing, having the same

variation of incidences which we defined above.

Since the incidence is variable on the surface of the wing,

the axis on which the horn winds will be a curve, and the vortex

3.
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generating intensity of the nucleus is variable along the axis,

proportional with the aqtare of the span of the wing. For

simplification, in the following, the axis on which the vortex

nucleus is situated is considered a straight line.

Noting further
= — ~ U~ , w = — ~ U,, (w, = — 

~, U~ , to1 = — ~~ U ,) (1

)p~~the hi her de
the vertical velocities and the incidences w~,cX~ re ye y,

on the lower side, for the imaginary thin wing we can write

the relation

çw . dY + cw ; dY =2w 1 (w = — ~c U.) , 4~- - 

where the velocity w on the real wing, in conical motion of the

second order, is the homogenous function of the first order,
( x,\

— w10; ± w01J•, = ~v1(w ,0 ± w01y) = x1( ~~ ~F ~oiY) U1, 3 ’ — 

~ 
(3)

‘ 
Wi,

in which the term w10x1 correspon~Sto the incidence with natural

symmetry (the curved delta wing), and 
~ 
w01x2 corresponds to the

incidence with forced symmetry (the torsioned delta wing), the

sign (+) being considered for the right part and ( -)  for the left.

In the same way as in (1), (3) and (9) , we will split the
imaginary wing into three wing components corresponding to the

distribution of vertical. velocities above.

1) The thin wing with the variation of chosen corresponding

_ _ _ _ _ _  _:———~- - — ~~~~~~
.
~~——-——.—-.— ~~~

— .. — —.—-- ---.-. .————.. - ..- -—.
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incidence, in such a way as to respect somewhat the significance

of the phenomena of pressure changes at the leading edges. In

this way a thin imaginary wing with finite velocities at the

leading edges, and equal and opposed direction on the two sides,

higher and lower, is obtained.

2) The wing of symmetrical thickness, having the elope

variable in the same way as the incidence of the first wing. This

wing combined with that from 1) has different pressures on the

two sides, as happens in reality.

3) The third wing will have a symmetrical thickness, with

the slope also symmetrical, however in such a way that, combined
wIth~~~~~~1n~~from 21r an average nought slope will be obtained,
correepondin~ to a real thin wing.

2. DETERMINATION OF THE AXIS OF DISTURBM4CE VELOCITIES

In continuation we will determine, for the three imaginary

wing components, the axis of disturbance vè~ooities, being
necessary for the calculation of the distribution of pressures

and aerodynamic characteristics of the resulting imaginary wings,

which are presupposed to be the same as those of the real thin

delta wings, having the incidence defined by ( 3) .

5.
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However , the notion around the wing being conical of the

second order, we w ill utilize the sane methods used, considering

in this sense the section obtained in normal plane Oyz ~~~~~~~

‘ the

direction of undisturbed flow U~,and having the coordinates

Y~~~ — , Z — , (4)
‘V1

axes Oy and Oz being parallel with Ox2 and Ox, respectively. We

will further make a similar transformation with that given b)

Bueenann (fig. 2):

_ zY1~~ B’(y’+z’) —
~~~~~ ‘5)— 1— B’ z’ ‘ 

— (x— + ~
,,

obtaining a plane which has the property of keeping the track

of the wing (Y—y, z a 0) in the true aagnittñe.

As we know, in this plane the f irst derivatives of the

velocities of disturbance u, v, w are harmonic functions and the

conjugated functions can be associated respectively in such a

way as to obtain analytic functions of complex variables

x = ~~~+ i ~. (6,

We will study further each wing defined above in turn.

1) . The thin wing. As a result of the effect of the two

vortex nuclei, the vertical velocity on the real wing is modified,

as well as on the first wing component defined above. Thus, for

the points contained between ( _e<ycs ) from the track of the

wing from the plane x Y + i~~ ( 6) ,  the vertical velocity is the
sane as the form given by (3) :

6.
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.= ~~ ± w~°l’ y = —(
~~‘ f ,~~y) U•, (7

where parameters w~~cj and w~~ correspond to the absdissa y s,

and for the intervals (-Z,—s) and (s,t) we will write

= w~(y) ± w,~(y) y = — (~~o (y) F ac,(y) y) U ,,
WI

so that at the edges of the wing we will obtain
to”)
— = wj~,’ ± w ~~i. (~WI

The continuing variation of the vertical velocities ( or ,

more precisely, of the parameters w10(y) and w01(y) ) or the
ontinui

incidencee corresponds to t e istribution of elementary edges

situated on the wing in the interior of the interval considered,

which give in each point y - ~n. the elementary drop

(
~~~o±

dt 1
Y ) d  (I~

Keeping in mind previous papers (2), (~i), the contribution

in the expression of the axes of disturbance velocities, of

elementary edges situated in points y av ~ on the thin wing with
subsonic edges (14.1/B), through the application of similar

hydrodynanic methods, will be

d(l1~ = (qW + x q~ ) C08b 1 -~~~~ d~. 
(I~

In a similar way, for the contribution of elementary edges

situated on the left of the origin, y — .. Y% , we will have

d(11~’~ (q~ + x q~’) cosh~ j/~-~jt~ ~ ¶~
4)~~ di~. (12)

7 



These contributions of the edges in the express ions of

axes of disturbance and vertical velocities on the wing are

achieved placing some sing~iarities of the second order (in

this case — sources) on the track of the wing in plane x—Y+1~(6).

In this way we succeed in acquiring in the calculations

the effect of the vortex sheets which fall off from the

edges and of the considered concentrated vortex nuclei, through
tinui

out th istribution of sources.

Next we will allow a simpler form of division of sources,

which will satisfy conditions imposed by the problem, for obtaining

concommitant axes of disturbance and vertical velocities indicated

above on the basis of observations and conforming with experimental

results.

Thus, we will chose a itniar variation of intensities of

the sources
= (q.(.) + q’’ (i -_- _

~- ) *  (13)

where the constants q*(h1)and q’(i) correspond to natural symmetries

forced respectively, of the incidences. Since the flow is conical

of the second order, as seen in (11), (12) we will write

= q;o(i — 1-)’ ~~ = ~:a (1 — i..) ( s u ~~ fl 1). (14)

8.

L ~~~~~~~~~~~~~~~~.



- 
- -  ~ ‘T - 

:~~~~~..... - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~ -. ~~~~~~~~~~~

keeping in mind these divisions of sources, starting from

(ii) and (12), we will consider the contributions of all the

elementary distributed edges, as well as ~..n the subsonic edges

(2), in order to obtain the following expression of the axes of

disturbance vleocities of the-- first wing components:

= ~-~~--~~~~ + A 2~ + (q~, + q,.~ x) co~h~’ + )~ 
(1 w) 1 ~‘VI ~z’—~’ •

+ (q,— q~ tv) co~h ’  j/(i+ i~) (3 +_~ ) di~. (15)
it 2Z(~~+x)

Intr duoing (20 and q~1 in (he) and making the cal culations

we obtain
(il

’ = 
Ait~+A~ x’ i {( ~~ +~’x) (s_x)(1 .__ ~~~ 

j
±f) eoi~ti

_ 1 L

+ (q0 — q~ x) (a +x)  (i a+x) cO~lk ’ ~
_:_tf

’;
~ +

+ [q~o i (j / i ~~~~~ 
— 2  C08 1 + ~~~ 

~~2 
~~~~~~~ 

~~~~~ 

(16)

in which A2O~ 
A22, q20, q21 are some constants which will be

determined below.

2). The wing of symmetrical thickness, with the slope equal

with the incidence of the first thin wing. Through the introduction

of this wing of symmetrical thickness the accentuated peaks of

premsure on the lower side of the wing are removed, where the

distribution of pressure, obtained through the euperposittoning

with the thin wing 1)., is different from that on the higher

side. Following the general method of conical motion (2), ( 1i ) ,

corresponding to a wing of s.~mmetrtcal thickness, with the slope

9.
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defined by the same distributions of sources given by the

relations (13) and (1k), we will write for the axis of disturbance

velocity the following expression:

(Ui, = -~~ - Z = —
~~
- ~ (q0 + q1 x) 

(~OSb~~ 
+ ~~ ) ( 1 _ _

)
B ’V) di~ +

+ -
~

- 

~ 
(q~—q~x) 

eosh_1~/(’ 
~~~~~~~~~ 

di~ + L, (17)

which, in the course of the accomplishment of the calculations
becomes

= + q 1 x) f ( 1 —  x) (~ — 1±_I co8h-1 1 B ’l~
it I t 21 1

— (8 — x) (1 — ~~~~~~~~~ cosh 1 1— B ’ sx
~ +2 1 )  B (s — x) J

+ ( q 0 — q 1 x ) [ (l +s )  (1_ i
~~.!1eo8h_a 1 + .B’l.v

I 23 1 B (l + x)

— (a + x)(1
_
~
_-_.

~f1coah-ii+ 
B’aiJ

21 /

+ ~ j [2l (~in i Bl— sjn ’B, + ~~~~~~~~~~~ q~.—
— (sin ’ B3 — ~j11~i B.) x~ 

~] 
YiT: ii:~~} + L , (18)

where the term L is due to the slope of the leading edge:
~t)L_~~~~~ +y ~~

i. (19,

3) . The wing of symmetrical thickness compensating for slope.
Through the effect of the wing from point 2)., the resulting

wing became the wing of “symmetrical thickness”. In order to

compensate this work and to put us in accord with reality, we will

introduce a new distribution o,t source of a certain form, which

10.
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will bring the wing back to a mean nought thickness. The variation
11) (s’).. (I )

of vertical velocities ~~~ equal with _wj0 , respeottvely T90~~~~ ie

at the extremity of the wing (where the indices C i )  correspond to

the two marginal parts of the wing) will correspond with “the

w ing compensating for slope” of symmetrical thickness which will
C,)

cancel the slope and the effect L of the slope X—. from the

extremity of the wing 2). In this way the term which produces

a velocity tending towards infinity at the leading edge is

eliminated according to a logrithmic expression. The distribution

of sources q~ will be necess~~y to create, at the same time, on

the lower side of the wing, a distribution of pressure without

accentuated peaks, approximately constant with the exception of

the regions near the leading edges.

Then, for simplification, we will chose the following

functions for the distribution of sources:

q~~=k ,0~~(1 +k 10~~), (20a)
q,1 = k,1 ~ (1 + k11 i~) (0< ~ <3). (20b)

Thus, we got those two “thick wing” components, 2). and 3) .,
in order to be reduced to one with the slope variable, having

therefore the mean nought slope.

For the “compensating wing”, the function of the axes velocities

Ui0 will be, similar with (17), the following:

(M I • =* 
(U9 ~~~~~ + q~x) co~h 1~~(1 di~ +

11. 
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+ ~~~~~~~~~~~~~~~~ Qu x) cos)r1 
lj(1 

2B ( 
(1± BW) di~ — L. (21)

In the course of the calculations we are driven towards

the expression

= 
k~ {B *(i1 X1)(C08h 1 

~~~~~~~ + CO1h~~~~~ 
~~

)+
+ 2B’ £‘co8h 

~~~
— + 2(1_El

__Bus ) ~“1 — B’ ~*] +

+ ~~~ 
klo [B $ (j $ ~ I) CO8h~~~ — 

B ’ l~ + B ’(l ’ +x’)Co~h~ 
1+B ’ix +

3itB’j B (l —- x) B( i +x)

+ (2 81fl~~ Bi B2 x’ + 81fl 1 Bi — Bi Vi — B’i ’) VJ.~~ B ’ x*j +

+ xI—~~
_ [B’(i’—x’) (co8h_h

l_Bhi’V_ coah_h l + B’lx’~ +
L2~t B’ I t B (3 —x )  B (3 + z) J

+ 2sin 1Bi Bx ~i— BS x*] +

+ ~~~~~~~~~IB’(l3~~~~ x ’) co8h_h l B l’V B1(3$+z1)cosh 1’ + B ’ia 
+B ( l— x )  B ( i + a ’)

+ 2B1x1cosh 1_
~
._ + 2( 1 — ~1— B ’l ’) Bx }hl_B ’x’] j— L. (22)

Bx

Through the superpositioning of the three wing components,

the resulting imaginary wing is obtained, equivalent from an

aerodynamic point of view with the real wing, for which the

axis of disturbance vel ocity will be

(/6 = (16, + (U1, + (/4g. (23)

We observe that the velocity U1~ on the higher side of the

wing is equal and of opposed sign with that of the lower side,

corresponding to a thin wing.

12.
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THE SIMPLIFIED CASE OF CONCENTRATED SOURCES

If we will oonsid~r, for simplification, a brief variation

of vertical velocities in the abscissa point 5’ — c due to the

influence of the vortex from the right of this point, we will

have the case of a brief drop of incidence, corresponding to

an “edge” of separat ion of ver tical velocities ~w~L±~~~’c) x j and
(w~i,’+w~~(,)~ 1 [ 2] .  • The brief drop in the distribution of

incidences will correspond to a variation of vertical velocities

expressed analytically by the concentrated source in s~’c of

intensities Q
~o — ~~~ Q6~’~ , for the straight part of the wing,

where corresponds to natural symmetries, and Q~~to forced

incidencee.

Following in continuation the path presented above, as in

(1) and (3) ,  we will obtain for the three wing components the
following expressions of the axis of disturbance velocities;

— ~~~“ = _ _ _  
_ _ _ _ _ _ _

+ ~~
(Q,o — Q,1 x) coah 1~~~ 2 1 ( c + x)

C h g ’  ..._ ja1
x cosh 1_ i ,  

~‘J (24)

for the “lift wing “ ,

= ~_ (Q,• + Q,1 x ) o  h 1j f~~ ~
8
~~~~

) ( 1
~

_ B
~~~÷

13.
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+ ~~
(Q,o — Q51x) cosb + L

= -!-[~. 
CO~~h~ 1V 

B :  
± Q,1 x cosh ’ Bc~~~,~~~~~~ j+L

(25)
f or the “wing of symmetr ical thickness”, hav ing the slope

equal with the incidence~~7’ of’ the lift wing, which was deduced

from (17) considering the sources of intensities and

concentrated in y — o in place of liniar distributions, (2), and
(26)

for the “compensating wing” of slope, where U~~ has the express ion

given by (22).

We will ~~~~~~‘that Uj~ given as the sign of the axes

velocities is different on the two sides of the wing. The

expression of the total axis vleocities will be that given by

(23), which will give us the distribution of pressure on the

deformed wing.

3. THE DETERMINATI ON OF THE CONSTANTS

For the determination of the constants q 0 and q 1, which

appear hi the expression of U11(i6), will begin from the conditions

InI (5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (27a)
dx’ d~~j d fl

— im (5 
V1 __ B’x5

~~~~(d ’i .) d x !f ~i . (27b)

deduced from the theory of conical motion (k), the integration

being accomplished on a semicircle d of very small radius around

14.
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a certain point y — it o~ the wing, contained in the interval

(y — a , y a 1) (fig. 2).

_ _ _ _

Fig. 3

Proceeding in this w~y, we will obtain the relations

= [(2 — B’ ~‘) + ~1 4!..!]~ (28 a)
q~ (1—B’~’)” I d-fl

___________ f

~~~

o + B’ i~’~~-’1. (28b)
(1 — B’ n’)” I. d~ d~ J

which establishes the dependence frna the variation of sources

and the distribution of vertical velocities on the thin imaginary

wing

Starting from these relations and keeping in mind (lkt,

we place the conditions at the limit in the points it — s and

a a ~~~, for the vertical velocity w’a i40x1 + id~~x2, and we will

obtain 
— = ~~ ç1 ç!± i~) (1 — B’ 

~~
‘
~
“ d~, (29~1 3, ~(2— B’i~’)

•(R) I
= — .qAL ~ (1— ~) (1— B’ i’s’)” dii, (29h1

in the case of natural symmetries, for which a ci~3~, and

a 0. Here we find the first relatto$s among the constants

q~~ , q~”, w~tj ~i wW :

15.
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1 [V1

_
~.Bhi1__ V1_ B’i’— cosh ’..’.-+

+ coa h 3~~__( 1 _f)vi_ B’~ + iir’Bl— sigr’ B.)-

I—Bi~~ + ~~~~ ± B3Y~~~~ .~..,1— B.Vi
2 Y2—Bi V2+BZ p2—B.

± B. r21 + ~~~ (~~‘
I — Bi Y~ — ~~~~ 

+ B1Y~ -
Y2+Be 1 ~2Bl~, V 2—BI V~ +Bi

— ain ’ + ~in 1 ~~~~ ~
•
2) J = — wa’, (30

— ~~-~~~~ - fr(sin ~ BI — sin ’ B. + 133 Vi — B’ 3’— B. I’i — B’ a’) +

+ 2( Bl (1— B’ 1’) ”— Ba (l — B’a’) *”) + 
~~~~~~~~ 

(~i_

— (1 — B1.2)115)} = — w~°•’. (30

For the incidenoes with forced symmetry , making q~O
li,)

and wio — 0, from ( 28a) and (28b) we obta in

— = ~~~ (3— ~) (1— B’ i”)” (311

(3ft

from which we deduce the following relations:

i~ + !-)Yr~~B’ — 2 V i—  B’L’ — -~~- Bi (siif1 Bi — siu~ B.) —

__
~_ B h l’(VI — B’l’— --V l  — B5.5)

__ _
~

_ ((1 — B’i’)”—

— (~ — 10 a’) ”] + coslc’ —~
_- — cosh ’ = — (32a.)

16.
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____

— B’ 3’)” + [13$ 15 (2 
— + !(l_2 _ !)]Vi — B’.’ +

+ 3 Bi [Bl(cosh ’ ..~~~— cos-’ 

~
-) + sin ’ Bi __ sin I

B} }  —

= w~—w~1’. 
(32b)

On the other the mean vertical velocity or the incidence

of the real wing, given by (3), equal with that of the first

wing components as with that of the resulting imaginary wings,

is obtained starting from relation(2). In this way, keeping

in mind that the two thick wings 2). and 3). are compensated

reciprocally, the relation (2) is written simply

+ w~ i~) d~ = wjo + -~-w•, 1, •
(33)

corresponding only to thin wing component 1).

Next, the relation can be put in the form
w~%~s + •~ + w~, + w~1~) d~ = *01, 1 + -~--W Ol 3’, (34)

which, after accomplishing the integral, becomes

• — — 
g,1~ J-~~— [ B ( 6 1—  5 a) (1 — B’s’)” — Bl(1 — B’ 3’)”’] —.1 10 48B’OlS

— 2  [B l ( i  — B’i’)” — Ba (1 — B’ s’)’’]—

— 3 (Bi ’/l --- B’i’—Bi yi~~Bsa’
_ 8iJr’Bl + sin ’Ba)~. (35)

in the case of natural symmetries of the incidences and

•11)
= [sin~’ Bi— 8j~~~~1 Ba + B’ Vi B’i’ — B.~ i~~BQ] +

+ 2 [ 133(1 — B ’l ’) ”— Ba ( 1—/i ’s’)” ] + ~~~~[(l — B’ 11)uhl —

—( 1—— . B5 a1) ~11] }~ (36)

17.
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for the case of incidence with forced symmetry.

F*r the determination of the constants A20
and A22 wh ich

appear in expression (i6), we will take into consideration the

var iation of vertical vleooities — — w + w~1y, on the f irst
xi 10

wing component, from a point on the wing to one of nought vertical

velocity (for example on Mach cone), as is preceeded in the theory

of conical motion. As in (i) and (3), in order to avoid some

difficult calculations to determine these constants, we will

consider, through approximation, that the sources distributed

in a line in the interval (sj) are concentrated in y a s(of

intensities and 
~21’ 

such that we have

= s + Q,, = q. ~ 
— -

~-)“ 
Q21 = ~ (i — 1-)”

Proceeding in this way, we can write the relations

~~ ii-- B’ x!~ 
d’(~ dx = wa], (38s)

idol X £

“ 
~1 — B’x’ 

d ‘/~JJ dx = (38b)

S

where U11 represents the axis of disturbance velocity for the

simplified case of concentrated sources in y — s’ given by

expression (24).

Through the accomplishment of the integrals which appear

above, on a circle of very small radius around the origin for

( 3 8a) and on the axis of the abscissa 
~ô— 

0), between the limits

%and 1/B for (38b), results

18.
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-.

4. + 23’ A~ + -~~~- i’ {q4(i + i-) V 1— ~~- — cos ’ -
~

- — cosb~ +

+ ~;~:[2(cosh-a~~
_
jfi —

~
)+ ~~~fi_~~~

_ cos i
fJ}

=

(39i

Ll~~ ± A~~i ’) 
B*1* 

11~~
(k) — K ( k ) ]  + A,, E ( k )  —

612 1 1 K (k)
— ~ — -

~
-) ~12 + -f (-

~
- B’ 3’ :i q, + 3+ 2 ~ q:i l’~ = wj~,

(39b)

in which we noted
a’ B’.” 1

-~ .! ~~~~~~~~~~~~~~~ ~~~~~~~~ — fi ( 
p, k) + K (lc) ,2 ~(1 ’—s’2) (1 — B’s”) 1 — B’.” 1— B’.”

(40a)

= K ( k)  + 8~~~~~~,,,[j -
_ K ( k) E ( ~ o, k’) +

+ ( K ( k ) — E ( k) ) F ( ,0, k’) ] 1
(co~pleted elip~ios.iSand K ( k ) ,  E ( k )~4V fl (

~, ~ represent th~~[ntegral. of the
f irst, second and third instances respectively, having the
module k and parameter p given by the relations

= ~i — B’I’, p = B’ a” —1 B’(l + 2 .)’— 1, k’ = Bi, ~~, =

(41)

Due to the separation of flow at the edges of the wing

and resulting vortexes on the higher side of the wing, fintte

v,,looities in those points are realized. Imposing these conditions

we will be able to write the relation

A,, + l’A,, = 0. (49)

19.
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1
Next , it is observed that inthe expression of — U~ given

by (22) appears the constants k10, k20, k11 and k21,~~hich

follow to be determined. Taking into consideration the roll

of the third wing component, which will have the mean slope

-w10x1 ± w01x2, and keeping in mind relations (20a) and (20b),
we can write, similar with (33):

~~~~~~~~~~~~~ 
=—w ,,—-~-w 1 l, (43)

from where we deduce the relations

(w1, — w~))) 3 = — ~~ ~ (1 +k~ ‘~) (1—B’ -ti’)” d~, (414

1 1 B’ $)6 1
(w10 — w ~J ) i  = k~~ 0

f l ’(1 +k ~’ -f l) 
~(2— B’~ ’) 

d~, ~~

in the case of Incidence with natural symmetry, which, in the

course of accomplishing the integrals, become.

= ~~,{_~
_ i  — B’l’)511_ .!_(1 —

— -~- (vi 
— B’ i’ + 

sin 1 Bi) 
— 

~j 
[—

~
- (1 — (1 — B’ 3’)”’) —

— W~~ = 

~~~ ~ 
[BLV1_Buii(3 + 213’i’)—ll siir’ 133—

—-~Jsin-’ 1—Bl Y~~~~~..I 1±B1Y~ I I +
V2 t V2 —Bi ‘ V2+rn,j

+ ! [B ’i’~ 1— B’i’—.2(i—~1—B’l’)] +

+ 2n_4(sin 2 1 —Bz~~ +sixr1~~~~~~)}. ~~~~ ,

20.
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For the particular case of forced s~ametry, we will start

similarly from the relation (42), keeping in mind and wellknown

from (20a), (20b), (28a) and (28b), and obtain

(w,,—w~)l’ = k~ S
’ 
~ (1 + k~~ ) (1— B’~’)”d~,

(w,,—w~) i’= — 

~~ ç 
(1 + k~~) (1— B’~’)~ d~, 

1 -

which, after accomplishing the calculations, terminates in the

form

~~~ w01 = ~~~~~ ((1 —B ’l ’) ”— 1) + -
~~
- k~j l  [ _

~
_ (1— B’1’) ”~ — 

- 

-

— (1 — B ’l ’) ”— ! (Yr~~~ i ÷ sin’ Bl) ] } (47 )

= - .

~~~~

- { -

~~

- Bi[2(1 —B’i’) ” + 3 (Ill__ Bill + 

~~
-
~)J —

— !~_i!L ( (1— B2 12)6/2~
__ l)j. (47b)

5B

We will remark, in continuation, that equatIons (30a),
(30b), ( 3 5) ,  (39a), (39b) and (42) constitute the system for

the determination of the constants for the curved thin delta wing

(with natural symmetry). Thus, in (39a), in wh ich we replaced
4 •(r~)q for q and w01 — 0, and in (42) results

= ~~~~ j 2 
~
q
~
,”[(i + 

~) V’~~ 
— cos 1 — coish ’ !J ..~.

+q~ ’l [2(cosh l!__. V1~~ ) + .f ~~
_ .

~~__co8h_ 1
f]}1 (4$a)

(48b)

and from (35 and (39b) we reduce the relation

+ 
~~~~~~~~~~~~~~~~~~~~~~~~~ +

+ I B2 1’Y(i_~~.) V~+ ’~’} ÷
21.
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+ -~—q ;~ 1 {[9(cosb_ 1 
~ v ’—~) + ~

_ j f i_~~ _cos 1f} Euc +

8 618]f Y— K( k )
+ (l_T) V2 +— --

~1 + 2
— {

~ 
(B(61 — 5s) (1 —B ’,’) ” —Bl (1 _B’l’)’I’) —

— o(Bl (1—B’13)3/’—Ba(1_Ji’s’)’/2 ) —

B! ~i—j i’j ’ — Ba Vi B’s’ — sin~~’ 131 + sin ’ 138) ]} = — IOI Q I  (49)

then, together with the relat ion

4B~~’) {Y i_— B’11--_Yi i~~’_co~h 1~~_ +  coKh iJ_-_

_ (L_ -f ) !/i_ B$s~ + —~— (~in ’Bt —

— 
~~~~~~~~~~~~~~~~ 

i—Bl~~ + s1n 1 1+in }12 •
~~~~~

1 1— BaV 2  —2 j V2—ia Y2 + B1 ~2—B.

_.~~~~~l+B~i~] + 1 f81~_1 i_Bl Y~ ~~_, l ±Bl Y~
Y2+n.- I ~2iaj V2—Bi V2 +Bz

_ sjn _ 1 1
T~~~~~

2
+s n 11±~~~~V2 1 l+

V2 +B.JJ
+ q;~ {3 [sin lBi _ sin ’ B, + BI Vi — B’l’—Bs Vi_ B~1J +

+ 2[Bi (1— B’i’) ”— 88(1 — B’s’)”] +

+ !_ [(1 — B’i’) ”’ — (1 — B1.1)14]} = 0,

obtained in (30a) and (30b), is formed the system of the two
• equations which determine the constants AND

Proceeding in this way, we will find

— — 
1~ ~~,,, (5~— I~~J ~~—I ~~J ~

•1°) — — Wi0, (~1~q,, 
1~’J~—1~JJ~
22.
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where we made the notations

1W = 213 
{2[ 

V(1_B ’i ’_ (2_— -~-) ~1_ B’.’—co h~~~~ + cosh~~~}.

1 — 1—B 1V2 
______+ 

~j [2
8in 1Bi_sin IB. — (Bl—V2) 

(~ n i 
~~~~
— Bi ~~~

“ - 

— B.)

— (B3+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(6~

= 3(sin~ BE — sin ’ B~ + BE V1—B’i’—Bs V1-— 1~~’) +

+ 2 [Bl(1—B ’i ’) ”—B. (l—— B’.’) ” ] +

+ 
~~~~~~~~ 

[(1 — B’i’) ” — (1— B’s’) ”2] , (5~

~~~~ ~~{[(1 + J_) ~~~~~~~ — eush 1
~~!_] 13(k) +

bj 4

+ .~ — B212 Y (1~~~~-)  t/2+!}1 (52c)~

J4 ~~ l{[2(
cOsh_ i± V - )  + ! j /1

__!~__cos -3 -i.-] 
E(k) +

t 1 ~ 1 + 2 —

— —~~~ I !~ ( B(61 — 5.) (1— B’a’) ”— BI (l—B ’i ’) ”) —
96B’l’L. 5

— 2(Bl(1 — B’l ’) ” — Bs(1 — B’s’)”') —

—3( Bl I’l—B ’i ’— B.~~i-~—h ’.’— sln ’B1 + sfn _ 1Ba )]}.  (52d)’

Fro.i(35), (45a ) and (45b), considering for k10 and

suitabl e values,
10 11 —

(Ii)results, for the constants k20 and k21, the expressions:
[B(61 — 5.) (1— B’.’)” — Bi(1—B’l’)”) —

6Blt5

— 2(131(1 — B’l’)” — B.(l — B’.’) ” ] —

- - -~ --- -- - - — -- -- 



~ —,~ -~ -~ -- — -

- , 

n:’=-~—-—-’- 
~

- -
~~~~ 

-~~~-—--— .-~~-_-

— 3(B1~ l —B’T~ — Ba Vi~~i’~’— sin~’ BE + sin~1 B.)) x

~ {-
~

- [B~is Vi. — B’!’ — 2(1 — Il l—wi ’) +

+ 27v — 4 (biIl —t + ~~~~~~~~~ 

I +Bl P’
2)} —

— -
~~ -- (BE V1—B’l’ (3 -f- 213’!’) —11 sin~ BE] —

2 BE

— I V O Isin ’ 1_~~~Y~ —~iu~’ ~~~~~~
- -

~~
-
~~ t .  (54a)~V2 -~ - B!

~~~ 8= Q2i {_ - [B(6 1  — 5a) (1 — B2~ 2) 6 / 2 —.111(1 — 13212)5/2] —

—2 [B1(l — B’!’) ”— Ba(1 — li’a2)”1] —

—3(BlVi 73~’—B8 V1_w~~
_ 8in 1/a + sin _ 1

B1)} x

x (1 — B’(’j”— (I — B~18)Si 2_ ! (_1_ sin~~B1 + VI B ’I1j +

+ 
~~~~ 

(i — ( 1— B232)012) _-_ ~!_(i — (1 — B212)712)} (54b ,

Considering now the torsioned wing, having a forced

symmetry of inoidences in reference with plane Oxix, 
(figi 1),

the system which will determine the constants will be formed

from the equations (32a), (32b), (36), ( 39a), ( 39b) and (42),

in which q — q (~) and w~~ 0. We will obtain , successively,

from (39b) and from (42):

= — - 
23’ (i_ !. i”y;~+ 

-~~ (! B ’l ’Yq ”+ 
Y — K ( k)  q,S~”l) , (55a

ivE (k )~ 3 ; t3  1+2—
A (1)

(5M’
1’ 24. 
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and from the other equations result the values or the

constants q~~~~1D ~~~
1similar with (51a) and (Sib), in which

it is noted

I~ = 213’! {(i + 
V1_B,s*_2V1_ B3i1+co h_1

~~
_cosb_1

~~
_

— ! B! [Bi( Yr 
Bzll— ~ vr~~~’~) + 

3(8iu~’Bi—8in
1 B.)] —

— -~~- [(1 — B’!’) ” — (1 — B’s’)”] (56~

= (1— B’!’)”2 + !_ [1_2 -i-- + B2s2 (2_ ~~_)] ~i—B’a’ +

4- 3B1 Bi—s iTi 1 B. + Bi(cosh_t~~ — cosh ’ .2._)]
. (56h

(sin ’ ill — ain~ Ba + BE Vi~~~iii —Ba Vf .~~~’i*] +

-~- 
-
~~
- (B! (1 — B’!’)” — Ba (1 — B’s’) ”] +

+ -_ -
!_ [(1 — B’L’) ” — (1— B’s’)”] +

+ Bl [eos
_ 1-~- + cosh ’ -~ - _ (i + _~~

)
~~~i_ j - —

— :(1_f)”V2+f}Ii (56c)

~~~~~~~~~~~~~~~ 
+ ~~[1_2f + 13’.1(2 — 

f)]Y1
_B’.$ +

+ 3 B! [.in
_i B! — sin~ B. + B! (eosh_1 

~j  — coah ” L~)j} +
+ cos ’ — 2  coah l! + (2_

f) j [1_~ . —

— 
Y—K (k) 

(i_i)”'j/2 + (56d)
(1 +2 1)

E (k)

25.



The constants ~~~~ and ~~~~~~~~~~~ fr om (I 17a) and (47b),20 21
keeping In mind (53) .  We will have

=! Bq~’){3[sin _ 1 DI —sj n ’ B. + Bt V1~~~~ B’I’ — B. Vt—B’.’) +

+ 2[Bl(1—B ’I ’) ” — Ba (l — B’s’)”] +

+ —
~~
--- [(1.— B’l ’) ”— (1— B’s’) ” IL x5Bi I

~ {~
L (1— B’!’) ” + I (1—B’!’)” + -

+ ~~ (v~ — B’!’ + 
8111

8
* B!) — 4)  (57 )

= ! B3l ’) ~3L sãn ~z BI_ ~ j n z135 -f Bi Vi 1’~’—Bs YF—~’~’j + -

+ 2[BI(1 — B ’I ’) ”— B.(1 — B’u’) ’12J _f . 
-

÷ - [(1 —B’l ’) ”—(l  — B1sI) 51
~] }  x

1+ B’!’[2(1 — B’!’) ” + 3(111—_ B’!’ + 
8i11 1 

B!)] +

+ 1 ((1 — B’1’) ’I’ -~ 1) } ‘ . - (6Th

THE CASE OF CONCENTRATED SOURCES

Strating from equations (27a) and (27b), we will find, in

In the case of concentrated sources, for 
~20 

and the following

expressions:
((2—B’c’)(wW—w ~ ) + e(w~) — w~~) ] ,  (5~

= — 
— ~~~~~~~ 

(w~ — w~?j + B’c~(w~,’— wg~)), (58~

26.
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and from (38a) and (38b), in which we will introduce Uj
’
]. given

by (211), we will obtain

A,0 ~ 21’A,, -+ -~
- -

~
- Vi’ — c’( Q,, + 2cQ,,) ! w~l’, (5~*

(A,, + 4,, 
~~ 

~
E
B~,

(E (k)—E (k)) + A,, E(k)—

_________ 

(59~
[Q,, B’o’ I + cQ,, ( I — K  ( k ) ] =  wa’,

-
- where Y is given by the expression (11Oa) for s~

#
a c.

using relation (33), we obtain

+ !.ow~01~
) 
÷ (1 

_
~~-)(w ’~ii+ ~- 1  + c) w~ )  

= Wi. + -~~
- woii, (6L

which, together with equation ( 58a) ,  (58b), (59a), (59b) and

(112), forms the system of equations from which we deduce the

constants.

• In this way, we will obtain
W~

)

____ 

W I0

2 B ’ e’Vl ’— C’ [(1 — B’c’) II (p ,  k) + K (k) — E (k)]

~ B’c’ Vl’—c’[ l—B’c’) H ( p ,  k) -~-j c  (k) — E (k) ] —~t~ (i_i) (1—

(61a)

1010

iw -
~~ (1 ~~~ 131 c’)” s

Vi~~~~((1—B’ o’) f l (p ,  k) +K(k)—E(k)  ] —we (i_f’ (1_B’c’)!~
(61b)

27. 
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A ~ = 
2B ’ l’e :

~ .‘
~~ (w~°j — wW), 

- 

(Olo)

4(U) — 
2 B’o~ i’~~~c’ . (61d)— — 
ii (1— BI o~) hla (wi, —

= —

it c~ (2— B’ 0’) 1010

.u1’c’Vi’~? ((1—B ’c’) ll(p, k) +X (k) _ E (k) ] _ i r o  (i_ ~f )(i _wo$)’i.

(61e)
—vii —

it C 101,

~iøc’~ i~~? [ ( 1— B’c’) f l  (p , lc) +
(61f)

in the case of the curved delta wing, and
( l — 2_B’c’) E (k)  + B’c’K( k)

W~ (1— B’c’)”4f1—-~i- + (1—2 B’o’) E (k )  + B’c’K (k)
(62 a)

(1—B’ o’) ” + V1 — --~~~~ 
((1 — 2B’c’) E (k) + B’c’ K(k)]

— 

(i_ .~.)~~ — B’o’) ’. + j Ii — -
~~

- ((1—2B’c’)E(k) +B’o’K (kfl
- (62b)

= — -~~ 1’ [wI ~ 3— 1 
~~~~~ 1 Vi’ — C’ (w~,t’ — w~ )] .  (62o~

= .!_ 
~~— = ~~~‘“ Vi’—o’ (w~,%’ — w~)]. (624)

(1(1) — _________________________________
~(2o — W 01

(1_ .~j ) (1_B ’c1) ~’ + ~ i _ !~ ((1—2B’o’) E ( k)  + B’o’K (lc) ]
(62e~

B’c’

(1— -~ )(1_B~os)/ ~ + ~
i_ ç [(1 — 2B’c’) E( lc) + B’c’E(k)]

(621)

28.
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for the toreloned delta wing.

The constants k20, k21 is deduced iamediatölly from (45a),

(45b) (47*), (117b), tak 1~g into consideration (53),(61b), (62a)

(62b).

1. THE CALCULATION OF THE DISTRIBUTION OF PRESSURE

AND AERODYNAI’iIC CHARACTERISTICS

We have shown above that the axis of disturbance vt~ocity

on the real wing results through the superpositloning of the

three imaginary wing components, obtaint*g- formula (23).

For the oa].culatbon of the distribution of pressure, the

total axis veLocity given by (3) (fig~ 3) will be considered.

C, = —2 -~~~ = ~- 2 Re ~~~~ (63cia

Nov~ng along to the calculation of the ooe”~icient of lift

of the)Ilng w*ill make the observation that the wings of

symmetrical thickness do not give lif t  so that only the coeff icient

of lift of the “thin lift wing” will be taken into considerations

(61

Xeeping in .ind(16), we will obtain the following expression

of the coefficient of lift of the wing:

29. 
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ci = -~~~~~— { ~~~~~ + q. [con-i ~ — f (i — s)” 
+ 

(‘_ 

~
)‘
~ 1~~~~

- 
- + — 

~~~

.)_ 
I (i_s 

~~~
)) (i_ 

~~~

)“_ cos i (6;

in the case of distributed sources, and
8 [it A,0 j C

C. =
~~~

p
~_

—
~

--j --- + tQ:o +~~~ Q31)J/i_ ~~-J . (66)

in the hypothesis of concentrated sources in the point y — C

on the wing. 
__________-~~~~~~

41J .± a~.fr4~~~~ iU°/ ~~Nx
\~ __—_

~11O

~~~~ 

02

I
FIg. 3

In order to define the parameter , which enter, into the

expressions above and which determines the limits of the dis-

tribution of sources, we will remark first that the posittos

30.
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of the maximum distribution of pressures coincides with the

abscissa y — c of the center of the vortex aucleus, as is

ascertained in other ways from experience. But, making the

calculation on the basis of the distribution of sources (14),

it is ascertained that the peak of the depressions on the higher

side of the wing falls approximately at half the distance between

the center of gravity of the intensities of the sources and

the abscissa point e, on which we keep in view to determine them.

In this way we can deduce the relation between s and c:

= 8 +- ~—( L — s )  (-
~

_ = 1,2 ~___ O~2). (67~

Next, ror the determination of the positions of the vor~mx

nuclei centers, we will observe tha t, at curves and small

torsions of the wings, these can be considered perfectly plane

and parallel with the undisturbed flow Ud,, so that the vorte~~s

falling of f at the leading edges, in the form of horns, can be

considered as absent from the higher surface of the wing. This

work would set out, however small the intensity of the vortexes

would be, at very great local velocities, incompatible with the

real effects of the separation of flow at the edges. In order

to avoid this matter, we must allow that with curved and very

email torsion of the wings, accordingly for very small values

of the parameter (~~j~~ ~ t~oi~ 
(~ ) or more exactly, when~~10 +

£~ oi90, the position of the vortex nucleus will be c a

31.



For greater curves (torsion) on the wings we will allow

that the nature of vor texes, which start on the leading edges,

evolve proportionally with the incidence corresponding to

respective sections, as well as with the span of the wing (as

with the wing of constant incidence (1)), accordingly with the

square of the span of the wing, and winds itsel f on an axis

representing the line of the centers of gravity, which correspond

M an abscissa
~ 3
7=7•  (6~

We will remark however that the intensity of the vortex

nucleus is something smaller than the total vortex generating

intensity, the rest being in-. the thin layer which forms the

surface of the horn along the leading edge.

From this, directing ourselves according to experiments

accomplished on the delta wing with constant incidence, the

minimum position of the vortex center, corresponding to curves

(torsions) or large parametersO(io ~~~~~~ can be considered

o ~ 0,55 3 —i- 0,65 3. - 
- 

(69

%u~
, +4k

What makes this minimum position ,er, itab~e is the fact

that $t great incidence. interior vortex nuclei appear, of opposed

direction with the principal, situated between this and the

leading edge.

32.
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Between these limits, keeping in mind experimental results

obtained by diverse authors, on the plane delta wing with

constant incidence, we will allow for the position of the vortex

nucleus the following approximate formula of vartation with

the incidence:
1 (~9

- -

where~~represents the incidence of the curved wing in a suitable

section corresponding to the o~ iter of gravity of the aerodynamic

effects, namely
3 (7~

For the torsioned wing (with forced symmetry), due to the

variation of incidences in section x1 in function x2, we will

consider like the Incidence calonlated in the formula (70),

.-. point
x1 =÷, x, = - ~_ Z ~~i =--~-~ • (72)

We will remark that the whole rational which led to stability

formula (70) can be applied to each section of the wing, obtaining

in this way a curved line for the positions of the vortex nuclei.

However , deviations from a 8traight line are ascertained at small

incidenoes, towards the peak of the wing, where the contribution

of lift power of the wing and the distribution of pressures is

small due to small Curface and incidence, and in the back of the

33.
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wing, where the incidences grow, the vortexes are situated

rectiliniar. In this wa~ we have succeeded in planning systematically
which

a vor tex sheet in the form of a horn, on an axis — being

considered a straight line _‘ feots on the wing the

vor tex nuclei are found)introduced through distributed sources.

This work was necessary because only in this manner can we

apply the methods of conical flow of the higher order (2). In

ooposed cases, the nuclei being situated on a curved line, a

quasiconical vortex sheet results, and therefore motion becomes,

as such, more complicated.

Received by the Editor on Dec. 10, 1968
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THE THIN DELTA WINO , WITH VARIABLE GEOMETRY, OPTIMUM

FOR TWO SUPERSONIC CRUISING SPEEDS~)

by ADRIANA NASTASE

Inst itute of Fluid Mechanics

Academy of the Socialist Republic of Romania

In the present art icle, the form of thin component
~with variabl~~geometz~~,)surfaces of the heavy lift del’a~~ln~~ii4etera[ñ~ed,

which has the wing span 2 1 given when it is completely

folded (fig. 1) and which must be optimum when It I.

placed in the flow characterized through the MACH number

M, and when it is completely unfolded (fig. 2) it has

the wing span 2 L7 2 1 and must be optimum when it is

placed In the flow characterized through the Mach number

M1CM .

•) The following principals presented in this paper were

communicated at the Mtl itar~P~ohnioal Academy in Brno. Nov. 1968,

under the title “The Thin Delta Wing, with Variable Geometry,

Optimum for two Supersonic Cruising Speeds”.
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The designs for the thin delta wing with variable

geometry, the lift powers and moments of dive - in the

folded and unfolded position, as well as the form of

the central airfoil are given. In order to avoid the

falling of f of flow on the subsonic leading edges we

will cancel the axis of disturbance velocity u along

the subsonic leading edges of the wing in the folded

and unfolded position. Similarly, the wing in unfolded

position has to be continued at the traverse of the
nf ded

etges of the folded wing (becoming edges on the

wing). Through the t~pp1ication of variational methods,

the problem of the rorm of the surface of the thin del ta

wing optimum for two supersonic cruising speeds is reduced

to the resolving of an algebraic system of liniar equations.

1.. GENERAL CONSIDERATIONS. THE REDUCTION OF THE PROBLEM OF

EXTREMUM OF THE THIN DELTA WING WITH VARIABLE GEOMETRY, PROPOSF~)

B~! THE STUDY OF TWO VARIATIONAL PROBLEMS IN CASCADE REFER I~~G TO

THE FOLDED AND UNFOLDED WING

Frost investigations of specialized liturature we have never

found another theoretical paper refering to the determinition

of the form of the surface of’ wings with variable geometry,

optimum for two supersonic cruising speeds. On the other hand,

wings with variable geometry present a special interest In modern 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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av iat ion, since they have a ser ies of advantages over the wings

•f’ the invariable form, advantages among which we mention the

most important:

-— facilitates the landing reducing the length of the
runway and the landing velocity;

-- permits the increase of lift capacity of the wing at
great velocities;

-- permits the control of acelerat ion and thermic control

exit and entrance in the dense atmosphere.

We will study In this article the form of the surface of

thin delta wings, with variable geometry, optimum for two

supersonic cruising speeds. This type of wing can be found

being utilized especially in aerospace vessels which exit and

reenter in the dense atmosphere.

In the present work we begin the study of the heavy lift

delta wing with variable geometry, optimum for two supersonic

cruising speeds, eventually provided with an edge of central

separation for which are given: the layout, lif t  powers, the

moments of dive and volumes of the wing in the folded and unfolded

position, the form of the central airfoil, as well as a ser ies

of geometric conditions enclosing the wing along its leading and

back edges, continuity of height of the unfolded wing along the

37,
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leading edges of the folded wing C becoming edges on the

folded wing). Similarly, the axes of disturbance velocities

must be nought along the leading edges of the folded and unfolded

wings In order to avoid at the two cruising speeês the birth

of korn shaped vortexes, which have the tendency to form along

the subsonic leading edges.

Since as in the framework of liniar theory the effect of

lift power can be separated from the effect of weight in the

folded position as well as in the unfolded position, we will

have therefore to study the thin component and that of symmetrical

thickness separately.

The study of the thin delta wing with variable geometry is

reduced to resolving the following two problems of extremum in

cascade: first , in which the optimum form of the surface of the

folded wing (of wingspan 2 1) (fig. la,b) is determined at the

cruising speed characterized through the Mach number N, and the

second, in which the optimum form of the added surface S (which

is presented, in our case, under the form of wk rIc at the leading

edge) is determined, in such £1~~nner , that the whole unfolded

delta wing ( of wingspan 2 L) (fig. 2a,b,c) will be optimum at

the cruising speed characterized through the Mach number N1.

- 
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The first variat ional problem consists therefore in the

determiniatton of the form of the surface of a thin delta wing

which has the resistance at minimum advance at the flight speed

characterized through the Mach number N and for which are given

the projection in the plane of the wing (represented through

isoaclet triangle 0A1A2), the lift power C1, the moment of dive

C
~ 

and the central airfoil. In eddition, we will consider that

the axis of disturbance velocity u Is canceled along the subsonic

leading edges Ok1 and Oh2 in order to prevent, at the connidei~ed

cruising speed, the birth of vortexes In the form of horns. In

the calculation of the resistance at the advance we will also
suction

Include the forces of which appear on the subsonic leading

edges of folded thin wings.

Also, we will presuppose, for generality, that the wing is

provided with a central edge OC.

The seGond variatIonal problem consists in determining

the form of the added surface S (shown In fig. 2a,b,o), such

that the whole unfolded wing will have the minimum resistance

at the ad vance , at the cruising speed characterized through the

Mach number M1<M and for which are given: the design of the

wing (represented by isoselees triangle Oh’~k
’
2), lift power CL slid

the moment of dive CM. In addition, we will impose the condition

that, along line Oh1 and Oh2 (the edges of the folded wing which

3?.
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become edges on the unfolded 4ng), the height of the surfacs

of the wing will be continuows, and the axis of disturbance

velocity u will be canceled along the subsonic leading edges

Oh”1 and OA. Similarly, we will include the advance resistance

and the forces of suction that appear on the subsonic leading

edges 04 and OA~ or the unfolded thin wing.

Ftg *a
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As in previous works ( 1) - (6) ,  refering to the determination

of optimum forms of the surfaces of thin lift power systems,

we will, treat the two above mentioned variational problems in

the following two hyposthesis of calculation:

-- the first hypotkisis, somewhat classic, in which the
axis of disturbance velocity u is infinite on the subsonic

lead ing edges, suction appears and the effect of the falling

of f at the leading edges is omitted; this hypothesis ii valid

at small incidences;

-- the second hypothesis, which, at the chosen flight
speed, we avoid the falling of 1’ of flow on the subsonic leading

edges, through the cancelation of the axis of disturbance

velocity u along that edge. In this case, the effect of conturing

of the subsonic leading edges of the thin wing disappears and

once again, with the disappearance of this effect, the forces

of suction also disappear which grew ~reoise1y due to that effect.

As has been shown above in the introduction of the two

v~riationa1 problems, the advance resistances and the suction

are also included among the conditions of relation of the problems,

and the conditions of cancelation of the axis of disturbance

velocity u along the subsonic leading edges.

As a result, if inthe final systems, which give the solutions

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



.-~ —-—-.—-•,-. — —~~ - 
. _________________ 

_ - _-

~~
_.

~

of the two problems of extremum mentioned above, we exclude

the conditions of cancelation of the axes of disturbance

velocity on the subsonic leading edges, we place ourselves in

the position of the first hypothesis of calculation. If

however we exclude from the f inal systems or terms resulting

from suction, we will place ourselves in the second hypothesis

of calculation.

2. ThE EXPRESSIONS OF THE AXIS OF DISTURBANCE VELOCITY

u 014 THE FOLDED AND UNFOLDED WING

We will consider the wing referred to a triorthogonal

system of axes 0x1x2x3, which has axis Ox1 parallel with the
direction of flow from infinity U,, and the wing is considered

plotted in the plane 0x1x2. We will presuppose that the vertical

of disturbance w and w on the wing are expressed in

the form of superimposing homogeneous polinomiale w~~1 and

in x1 and x2,’ that is:

10 = W....1 = E x T 1
~~~~

W. k l ~~ Iy I’ - (~ =•
~:‘) ~

on 0A4&, and .
£ 

~~
‘ N N ui_ i

10 = 
~~~ ~~~ E 

xr 1 

~ ~~~~~~~~~ (2,
a~~i ui—i k— O

on OA
2
A~ and OA1A

’
1. In this formula, Wa_k...1.k ~~~~

Wst_k_1.k

are the cointants and N — I Isthe rank of the polinomial of

highest order taken into cQnsideration in the expressions w and w.

- _ - -— _ - - -“.._-_“---- --~---- —_.--•-— ________



If we integrate expressions (1) and (2) in reference with

we obtain heights Z(x1,x2) and ~
‘(x 1,x2) on 0k1A2 and

OA2A
’
2 respectively and 0A14 :

1

&i~~ ~~~~~~~ 
+ f( a~,) (~ 

=

N ui—i -

In the above for mulae, f ( x 2 ) and ?(x2) are some arbitrary

functions of x2 which we can eventually use in the placing

of supplementary geometric conditions on the surface of the wing.

Considering first the folded wing (closely) Cf 1g. 1) having
0A 1 and Oh2 

as leading edges and OC as central edges, the

expression of the axis of disturbance velocity u on the folded

wing will be (7)

N ~ A ,,~~” er- ,’)
~~~~~ 

~r; 
1 

~~~~~ 

+ ~ 
(‘

~~~, yIQ argch ~~ (5)

if the folded wing has subsonic leading edges and

qs~
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N S 
A ,,, y” ~~‘tj !)  i rT

u = x~~ 
~~~~~~~~~~~~~~~~~~~~~ 

+ ~ (7,,1,y”argch V Wy’

+
‘
~~O..~ ’[arecos ~~~~~~~~~~~~~~~ +

4- (— 1)’ arceoM (
~)

for the folded wing with both supersonic leading edges.

We will now consider the unfolded wing (f  1g. 2). Sinoe

the geometry of the central p rtton of the wing is invariable,

it results that w— ~~ will be invariable on portion 0A 1A2.

The former leading edges Oh1 and Oh2 become edges on the new

unfolded wing, and the new leading edges are now OA’~ and 0A2•

With these observations, the velocity of disturbance u on the

unfolded wing will be of the form

N 5 
A~ ,~y” a( ~j !~)

U = E i;—’ 

~~~~~~~ 
I + E ~~ ~ y”argch V ~~~~~ ±

ii-4 
, 11TL~- I) (L — y)) 

~ 
-

+ ~~~~~ ~i ~~~~~ v 2L(t ~r

+ (— 1)’ a.rgch ~~~~~~~~~ 
(7)

— —— •- .- _ _
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if the edges OA~ and o4 are subsonic or

1(j)
~~‘ 4 ’  $ u _ I

N L~ 
.. 2 ,Y  ‘(—~

-)
is = x 7 i  ___  - 1- ~ C~ ,,y”argch V ~~-i- +

+ 

~~ ~ [ar ~ cb j / ( 1 + B1~) ( 1 — B 1Y) +

+ (— 1)’ argch 
~~ 2B1( L + y )  ] ~

•1 1firT~11L) ( 1— B1y)
+ E l 1..Y 

[
~ FCOO8 V — 

2B1( L — y )  +

+ (—1)’ art,eo~ 
________________

if the leading edges OA’~ and OA~ are supersonic.

Observations:

a) In formulae (6) and (8) the first term has enlarged

itself with and (~~~~~2 respectively in order for the

radical to appear in the denominator and so that we can bs~*ble

to better systematize the calculation of the aerdynamic

characteristics of the wing.

b) If the edges of the folded wing, as well as those of

the unfolded wing are supersonic for the Mach number of flight

N
1
, then in terms which contain the coefficient G’~q of formula

(8) and which represent the contribution of the edges of the

folded wing in the expression u wargohA is replaced with 0argoos’.

lII~ ~~~__rn  - ~ .~-- -- - — - —.- —_ —_ -- —_-_--._----_. —--.-—--_--~ - — --_-- ——•.•_ __ . . ---.-- . _-- .



Coeff icients Afl •2q~ Cn.2g etc. of the axes 
of disturbance

velocities u are related to coefficients of the vertical

velocities of disturbance through the liniar relations deduced

from the compatibility conditions of P. Germain (8). Coefficients

of the axes of disturbance velocities u on the folded wing

will depend only on ceefficients W j 1~~ of w, since they are

functions only of the form of the surface of the folded wing.

Therefore we can write

~~~~~~~~~ ~~~~~~~~~ W._ ;_i.s u (9a)

~~~~~~ ~~~ 
w~~., 

(9b~

o~. =
0
~~g~ w, _ , _ 1. , . (

~

Instead, coefficients of the axis velocity of the unfolded

wing will depend on coefficients of w, as well as, . Therefore

we will have

A (a~~u, w,_,_~,, -t ~~~~~~~ ~~~~~~~~~~~ ( 1 Oa)

, i— 1
(‘

~~. ~, 5 
(r~~~’~ w,_, _ 1., 4 ~~~~~~~ 

ii3,_,_~ ,,), (1 Oh)
, .0

~~~~~~ ir ~ _ ,_ 1, ,  -~ 
- 

~~~ (1 Oc)

(F ~ ’” v’~_ ,_ 1 , J~~
Q

(
,
~~) 

~~~~~~~~~~~~~ (1 Od) 

-
~~~~~~~~~~~~~~~~~~~~~~
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Observations.

a) in this last expression, h’(rf ~ 0 since the constants

H~q obtained calculating a semiresidu. around point y a L, thus

only ‘depend on the drop of vertical velocity of disturbance

from this point, which is ..*. For homogenity we have written

therefore the expressions of the coefficients H~q under the

form Clod).

b) In formulae (9a), (9b ) and (9c), coefficients ~~~~, ,

depend only on the form in the plane of the folded wing (thus

of 1) and on the chosen flight velocity characterized by the

Mach number M at which the wing is folded (B— ’Ji~~iT.

c) Coeff icients a~ ’,, a~ , etc. depend on the form in the

plane of the folded wing, as well as the form in the plane •f

the unfolded wing, thus by ~ and L, as well as on the Mach

number of fl ight M1at which the wing is in the unfolded position

(B.~~4~~ij. Therefore, for s.tse designs given and for some

flight velocities given for the folded wing, as well as for the

unfolded wing, coef ficients &2* . i ,  ~~~~~~ 
‘; etc. are constants

in the study of the two problems of extremum proposed. As a

result , from the f irst var iat ional problem, refering to the

folded wing, we will determine the optimum values of the coefficients

of w, and from the second variational problem, refer ing

to the unfolded wing, we will determine the optimum values of

the coefficients n...j...1.j of the vertical velocity of disturbance

. In the second variational problem, coeff icients w~_j_ 1~ j

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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of the vertical velocity of disturbance w, determined by the

first variational problem, will be reckoned constant.

We will press on now to solve successively the tvo above

mentioned variational problems. We will consider the geometric

conditions of relation and aerodynamic characteristics only on

half the wing, due to the symmetry of the wings.

3. THE STUDY OF THE FIRST VARIATIONAL PROBLEMS REFERING

TO THE FOLDED WING

Before moving along to the solution of the first variational

problems, we will explain the geometric conditions of relation

and the aerodynamic characteristics that enter in the problem

of extremum of the folded delta wing. In this direction we will

use a ser ies of’ results obtained before for the thin delta wing

of minimum resistance provided with a central edge.

3.1 EXPLAINATION OF THE GEOMETRIC CONDITIONS OF RELATION

OP THE FOLDED WING

The geometric conditions of relation for the folded wIng are:

a) the condition that the central air foil of the wing

be imposed;

b) the condition that the axis of disturbance velocity be

f-c.

- -— -—~~~~- -— -- . *r- - ,Th-- tt~- ]rT - -’U~ -- ’- 



~~~ —~~~~~—-----—-.---

canceled along the subsonic leading edges of the thin wing.

a) From the condition that the central airfoil be Imposed

( Z ( x 1, O ) — ’~’(x 1
) )  through the development inthe Mac Laur in series

of ~f~(x1 ) and identification with Z (x 1,O) we obtain the relations

f(O) -
~ 

p(O), ( l l d ~
= 0, (Jib;

E, ~~~~~~~~~~~ ~ “(0) = 0, - -= 1 , 2,... N. (lit- )

The f irst  relation (h a) gives us the value of f(O), the

second CU b )  indicates that the central airfoil has to be given

in the form of a polynomial of rank N, and the relations ( l i e)

enter as relations of connection in the studied problem of

extremum.

Fr~ti the condition of canceling the axis of disturbance

velocity u along the subsonic leading edge 0A1(yat,u—0) we

obtain , similar with ( 6 ) ,  the relations

= 0, (l ~~)

¶~ 
l —” a~~,, t —— I , 2 , . . . , N. (1 2h)

Observations.

To assure that the symmetry of. the surface of the folded

wing in reference with plane Ox1x3 
and as a result cont inuity

of the height of the surface at the traverse of the edge from 

_ .j i  
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the origin, it is enceasary here that the function f(x2),

which enters into expression (3) of the height of the surface,

be parried in reference with x2, in other words to have

f (— ~~~~ (13)

3.2. EXPAINATION OF THE AERODYNAMIC CHARACTERISTICS OF

THE FOLDED WING

The aerodynamic characteristics which enter in the problem

of extremum of the folded wing are:

a) the lift power C1;

b) the moment of dive C
~;

c) the wave resistance Cd;
ti) the coefficient of suction60.

a) The condition of the lift power of the wing to be given

C1 a oonst becomes

- = 

n
E
i,~~ , 

~~~~ u’,.,~~, ( f l f l S f .  ( 1 1 )

In this formula ~~ are constants in the studied problem

of extre.um and which are of the form

‘4
- ~~~~ ~~ 2q (°’ t )

~ 1) 1 q

r ( ”  ~
)

H’ ~~ ~~~~~~~~~ ~~2, (~~i 1) 1 ( I~~)
~~~
, 2 q 1 I  I

if the delta wing has subsonic leading edges and, respectively,

ca.
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~~~ 

- (i (— 1 )fl) s~ ~~~~~ g~’ (a . ._

~
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4 r4~ ~~~~ ~os 1/— R ( Ii ;)
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if the delta wing has supersonic leading edges.

b) the condition of the mement of dive of the wing to

be given becomes
N , i—1 N u — I  ~ ~ 1

s r,, ir ,_,_, ., —~ 5 5 ~~~~~~~ .\ ,, ir~__ , 
~ ., ~~~~~~~~ 

( 17 )
f l _ I  i~ 0 n -~~I ~~~~~ +

In this formula /l~~~ have meaning from (111).

c) The expression of the coefficient of wave resistance

becomes ,,, ~

= 5 5 5 5 __
~~

_j .  
~ 

~~
. 

- ,_ 
(IM)

u - -  I m ~~j .0 k 0

wherefl~~kj 
are the following constants:

8= 
~~~~~~~~~~~~~~~~~~~~~~~ 

%~ ~~~~ ~~~~ (0 , 1) +

£ ( “  1) 
~~~~~

-
~~

- 131 ),
~ 

___
~~!2_. _ g , 4 2 ~(0 , 1) (19

for the folded delta wing with subsonic leading edges and,

respectively,

1’~ l~~~
--

~- 
~~~~~~~~~~~~~ ~~~~~ ~) +

5.3, 
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for the folded delta wing with suoersonio edges.

In formulae (15), (16), (19) and (20) the integrals

3k and~~k have the following values

~~ (
1 !/~~Y - _. ~~~~~~~~~~ iientr u k = 21, (214

~~ ~~~ 
1) )

~ ~ ~1i T j~2) •~ .I  I (1 ~)2 13

~ —— c ’ ir ’~~~
(I
~/ 2~1 ( l !) 2 l ~

t
~~ pt nhiti k = 2 1 — f - lI , (214,

‘ ) 
3 ~l J ~~~(/ 2 __ i / 2 ) (21-f- i) ! B

•s( () 
t~ - -— = ~z(2t)! 1)elltrU k 21, (2 -s.•I. ‘n) 3~ 

I (1!)  !‘~~

-_ ( 1 ’ ç~ q
2

~~~~
I (I~~ 

2 . t ( , ! ) 2  
, 11t ’iitii ,k=21+1 (2:~~

~
‘‘‘1. ’ 11 ) ~~ V 1 1 ~ ’I ~ (21 -~ 1 ) !  I)’_ i _

d) in conclusion, similar with Ci), ( 9 ) ,  the expression of the
coefficient of suction will be of the form

G 
~~~ 

~~ lt’_ - ,• , i-V , ~ 
,

~ i ,n.. j i. ~0 ) — U

- B~12 a ’~ 1 a~ ,.k. (~J i)
1J ~ ( m- {- 2i ) q 0  g’ — U

3.3 DETERMINATION OF THE OPTIMUM VALUE OFTHE VERTICAL
VELOCITY OF DISTURBANCE w FOB THE FOLDED WING

We have accordingly found

Cd minim (25)

with the condition of connection
(~~=(! ,~, C,, =C. ,, E,— O , 1 ” V = O, t = 1 ,2...N ; (26)

_________ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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similar with (1) - (6), the calculation of this extremum

with connections is reduced to the calculation of the extremum

without connections of the expression

11 __ (( ‘i I ‘ )  - f  ) I I )  (‘
, I ~~~~~ (

,•• f ~ ( 1 , I-~ J- l1~I~ ’) .  (27)

Canceling, as in (1) - (6), coefficients of the variations

we obtain the following equations:
N n — I

5 (Un.o ,-~ I n , i 0 -I n I 1 , 0  -i .~in 4 ~~ J o . ,
n ’ lj  -0

+ ~~0 0 4  I,n.J,n) u~ - ,  - ~, I I  \n,  0 4  7 .0 ~~- A~ 1 1 1 1 0 I~I +

+ ?lfl I 8~ + 110 5+ I I 0 In  0.

— 0, ~~ = 0,1 . .  . ( N— -  I ) ,  I < 0 I .~~~ .\ . (2S)

These squations, together with the conditions of connection

(26), form a liniar algebraic syste. which determines in a

certain way the values of coef ficients w06 of w, as well as
I.. (~~~i4 U)~~~~~~~~

the values of e mu tiplicators and u~.

The f i rs t  variational problem refering to the folded wing

can therefore be considered solved.

‘TL4) ~Ii. THE STUDY OF THE VARIATIONAL PBOBLE)~~REFERING

TO THE UNFOLDED DELTA WING

As in the case of the first variational problem, we will

explain first the geometric conditions of connection and the

aerodynamic characteristics that enter in the formulation of

the problem of extremum for the unfolded wing. After that we

_ _ _ _ _ _ _ _  
- - - - - — - 
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\Ct~~t(bt /
will consider the~L~~ .—’~ portion of the wing, that is, the

folded delta wing A10A2 given by the first variational problem,

and we will determine the form of the added surface composed of

two L4~I~~ by the leading edge (formed from triangles A104 and

A204), in such a way that the whole unfolded wing will be at

minimum resistance at the second cruising speed characterized

by the Mach number N 1 .

Ll..l THE EXPLAINATION OF THE GEOMETRIC CONDITIONS OF CONNECTION

OF THE FOLDED WING

In the case of the unfolded delta wing, we will impose

the following conditions of connection of natural geometry:

a) the condition of continuity of height of the surface

of the wing at the traverse of the edges 0A1 and 0A2 (wh~.’~h

are the leading edges of the folded wing);

b) the conditions of cancelation of the axis of disturbance

velocity u alo$g the subsonic leading edges O~~ and OA~ of the

unfolded wing.

Because of the symmetry of the wing, the above mentioned

conditions will be put only on edge 0A1 and on the edge OA~.

a) From the condition of continuity of height of the surface
u folded -

of the w ng along edge 0A1 (y—1 ,Z”~) is obtained the relat&on
— s~4
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which is similar with that established earlier (10) (in which

we had to substitute s

If we presupp~ae, in a similar way, that f(x1J) and ?(x11)
are developed in the Mao Laurin series, we obtain the relations:

R~ (.r ~I) = k~ (.r11), (304

j (0) f(4J) - - r? (0) , (301,
I I  ~L- 11

1’ 
V - 

~~~~~~~~~~~~~~~~~ 
— —  Iö,_ _ 1• , ) = ~ I.f”’(0)~~~ f”(0)], I 1,2, . . . ,  N (3U~I ~~ 1 — A  1.

The relations (30a) show that the development in series of

the arbitrary functions f(x1Z) and ?(x1~
’) have to have the same

remainder as order N.

From ( 30b) results that these functions must have the free

term the same and equal with cp (0), as well as the results from
( 30b) and (h a), and the relations (30c) can be interpreted as

relations of conneotion .between arbitrRry functions f(x2
) and

and therefore can be eliminated among the conditions of

connect ion of~the studied problem of extremum.

b) The condition of canceling the axis of disturbance

velocity u along the subsonic leading edge OA~(y—L, uaO) leads

to the following relatione of connection:
Li.

~ 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _
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-~~ 0, ii — 1 ,2, . . ., N. (31

If we mark with and the expressions

(3’a ~ ,

=
~ 1 0  

L~ a~~ , -

then the relations (2k )  can be written under the form
i - I

= 
,
~~

,
(t—);, u~1 , 1 ,1 4— O ~, w i _ , _ ~,,) —-- 0 , 1 1,2, . . . ,  N. (3~i)

A ODYN M
k.2 . THE EXPLAINATION OF THE EXPRESSIONS OF THE H ABACTERISTICS

FOR TH E UNFOLDED WING

As in the case of the folded wing, we have for explaination

the following aerodynamic characterisitos:

a) the lift power CL;

b) the moment of dive CM ;
c) the advance resistance C

D
;

d) the suction 6~
’.

a) The condition of the lift power of the wing CL to be given

(C a CLO conet) becomes, in the case of the unfolded wing,

of the form

CL — 
~~~

-— c ~~ 
(l~T1 (il l =

U. L )OC A

N f l - I  - - 
-

5 5 (A~,w.,_ 1 ,, -l A ,,, ~“. — j — I .)) = CL, = ~nnc~I- . (31)
N — I  I .~0
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, have the values ~iveriJIn this formula , the constants n the -

-
~~ I are~ 

n j
and the constants /\ ‘ 

?~
E
~
ained from A’~j replacing the coefficients

c~~~~3 ~ 
c’~~’~ etc. 

LAI I *4 their correapondencedharrr4leifrrJ.

b) in a similar way, the condition of the moment of dive

to be given. CM = CMO 
a conet , beeomes, in the case of the unfolded

wing, of the form
S r

C = I U3’~(I.T ~ (It,N U.,L )OC.I~

N N — i

= ~~~ ~ 
( r~, Wn_ ~ _ I ,j + I ,,, W, 1_ , j )  C0,, (O f l~~ . (35)

N— I j - ~0

In this expression, the constants and are connected

by the constants fl~j and from formula (27) through the

relations :
— 

n —I-- 1 A’ ‘‘ it 1 ,
— 

n + 2 n -f -- 2 
A ,1. (36)

c) The expression of the coeff icient of wave res istance

becomes, in the case of the unfolded wing, of the form
— 

2 
,rii ,r 1 d r 1 Ii i, 4 ii5u.r~ d r 1 di,

- .O .4,C

t N r n - I N — I
= s s ~~~ ir ._ , _ ~ . , ~~~~~~~~ + L ,~ , ~~~~~~~~ U’,. , - i.,

fl~~I ~~~~ *- -0 j O

+ ~~~~~ 1
~~S —  ~~ t.* ~~ o — f_ i l + ~~n.ok~ W~ _ 1 — ~~~ ~~ — ,  — ~~ (3 7 )

(-)(I)

The oonstants,3 L and ,~L are given in - 
, and the

constant 
~~~~~ ~~~~~~~~~ ,~ 

are deduced froI~2~,k 3, fromt?
~~~k ,,

respectively, replactng the coefficient~~
’
~? ~~~~eto. 

wit~i

their barred correspondences.

‘
- ‘
.- - ,

~ ~~~~~~~~~~~~~~~~~ 
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~ 
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d) The coeffictent of suction C~ is, similar with (9), (1),

a’ — 
t1~~L ,~~ i~~~~I U 1 I ,1 U J  

y ) u , , 1 -u , 1  (38)

and can be written under the form (1)

= 
~ 

~~ 1n
5

1 
~~~~~~~~ ~~~ 

14’ , - — Li ~~ ~~~~~~~ ~~~~~~~~~~ W ,_ 1 I.i

o — I  j _ _ II L U

I (39)
&.Ski 1~’ ,., - ,. 1.0 ‘ - I I - j  - 

~ , 
a ,, ~ — I .~ - j  i.~ ~~

,.Jlr4~.e ,‘ “I

~~
— ‘ I ~~~~~~~~~~ , , , ,‘) ‘ ~~f l I  ‘i f l I  (-to

I) 
— ‘‘~~~~ —-----

-

~

--- 

5 
I-~ ~1-.q~~41~~ k i

(1~~ ( in a)  ~— o ~‘ —

and the constants 
~~~~~~~~~ 

are obta 4 -~ I replacing

in 
~~~~~~ , in turn , one of the coefficients -~~~~~~~ ~~~~~ or

respectively, both coefficients ~~~~~~ -~ - their - correspondences.

4.3 SOLUTION OF THE TWO VARIATIONAL PROBLEMS FOR THE UNFOLDED

WING

We have now explained all the teraB which enter into the

problem of extremum of the unfolded wing. ~~~~~~~~~~~~~~~~~~~~

etc. are functions of the design of the folded and unfolded wings,

that is 1 and L, as well as Mach number N1 of the second cruising

speed. Thus, these terms are constants in the studied problem

of extremum.

Similarly, coefficients wf l j h j 
of w , which have been

determined from the f irst  variational problem x’efering to the

folded wing, are constants in the second problem of extremum.

~0. 

- --~~~~~~~~~~~~~~~~~~ - - - -- -.. ~~~~~~~~~~~ _ J _  i~
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Therefore , it results that we have to determine the

coefficients wn..j...1.j of i in such a way that, for the unfolded

wing, the expression
E L, r~

’ — ILIIflIHI, (4 !)

at the cruising speed defined by Mach number N1, with the

conditions of connection

eul Ist., I ’ ,, ~~~- eoIIi4t , ~~ 0, 1 = 1 , 2, . . .,  N. (42)

This problem of extreaum with connections is reduced *0 the

calculation of the extremum without connections of expression

II ((‘ a ~‘ -~~ ),I I )( ’
, ?,‘~>( ‘ ,, + ?~I l”~’ . (43)

We have explained all the terms which enter into the

hamiltonian expression. Calculating its first variation and

cabcellng it , we obtain the extraum of H. If we then keep in

mind that the coefficients ~~~~, are independent, we will obtain,

through the cancêlation of the variations S~~6~,., equations of

the f orm
c f l —I  — — I I )  I )  ,

5 
[(L ~~~~ -~~ I .O .I 4~ 

j~~)
1 ,, I. n.~ .n + A ,,0 ~ 1.0.1 -1- A~,0, l .ii.g . n) u~~ _ ,_

~~ ,, 
-

4 ~~~~ ~ i.o ,, + ~~ 0-~-i, -,- i.•.j .~ 
f .  ‘~n1.ii 0 1  1. ,’.) + A0 ,  o - i 1.n.j .L) ~~~p, j  ~~~ ~

+ )~~~ A O,o-,-1.~, + A’~
1 

~~~~~~~~~ 
4- A0 4  ~~~~~~~~~~~~~~ 

= 0, (II)

(0 , ~) = 0, 1 , . . . , ( N—  1),

1~~~0+ a + l< N.

These equations, together with the relations of connection (35),

make up a liniar system of algebraic equattons, which determine

in a certain way the optimum values of the coefficients 
~n-j— 1.J

of , as well as the values of the multipltcators ~~~~~ )~~~.tvJ ~~~~

-j



The problem of dete~mtning the form of the surface of the

unfolded delta wing) optimum at the craising speed, characterized

by Mach aumber N , can be thus considered solved.

5.4 Calculation Appendix

We will mark with ‘k the following indefinite integral :
- 

-- L 
dy 

= — ~~~~~~~~ VIi ~ L~ — y 2) ± ~~— L2 1 , 2 =

) Vi~~L~~~i~ 
A

— 

1 
~~~~~~~~~~~~~~~~~~~~~~ f I-

- 

~~~~, (j ! ) ~ ( k —j ) ! B i ~f,, 2 )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘

~‘ 
Uj __ v)! 12

~~~~ (f , __, ,) 1 01 (IS)
- - - - - -ii;---- .,‘~12~(2j—2’ + 1)!

and respectively with ~~~~~ and g~”(0~~) the following

definite integrals of type Ik:
B ,,k (It, (-t~V)

B i~dy ( 1 7 )
~~~~~
‘ (~, ~

These definite integrals can be obtained taking the

indefinite integral given in (45 ) between the limits O(~~w~~ ~~~

and making, for the the integral~J (Q(, ,~~) the substitution

L a !  •
Bi

With these notations, the expressions/p from formula (34)
n j

of the coefficient of l i f t  power CL will be of the form

A:,, — -  -- — ~ a~~~ g~.,, (0, 14 ) B1 L 
g~~~~ ~~~~~~~~~~~~~~ 

~~ (0~ L) ~~-

~~~~ o
(~~~2 j 2)

h I ~~~ F! -

~~ ~~
-))‘l” .’~~ (o,L)} (48)

2 g~~I) 4 - U  q - f

‘2;



- --_.—_-——-- - - ~
-- 

~~~~~~~~~~~ 
- — -

~~~
.. - - ‘ :~~~~~~~~~ .~~~~~~~~~

-—---- .— -—-—-.- - —- —

if the unfolded wing has both supersonic leading edges and,
respectively,

‘0 I

- 

U,, L ~ii —4 1) 
(I~~”J g~’ (o, 

~ 
+ 

~~~ ~~ (o~ ~
) +

~~
. ~~~ :~ ~~~~~~~~~~~~~~~ ~ 

-
~ 

(
~~ ~~~~~~~~~~~~ - ,;~:~)} (49)

if the unfolded wing has both supersonic leading edges and the

edges (provided from the edges of the folded wing) are subsonic.

If the edges OA and 0A
2 
become supersonic, then In the

expression (46)~1_B~i~~is substituted with ~B~l
2—1 in terms

which contain coefficients and which represent only the
q j  F..

contribution of these edges in the expression of

In a similar way, the expressions
~~nmkj 

and from

fo~’mula (37) of the coefficient of wave resistance of the unfolded

wing will be, respectively, of the for m

- :. — - - 
5 

, (0 , 1) -1-
I J ; L (m  f - u )

f l - i

-F ~~~ k -f - 2 q - 1- 1 [ B 1 L~~ I ~ (0 , 1) ~ I’ ‘~~‘ ~Lrge1I 1,/,~ ] ~ -

— - -  n — i L - I N  ‘ ,,
~

+ 
VB I (Ill 

~!J E 
~~0 k + q -f -  ~ + ~~~~~~~~~~~~~~ (50i

- -——~~~~~~~~~~~—~~~~~
-
~~~~~~~~~
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= 
1J~,, L (in f - n) { U.~U 

(I~~N~ ~~ - ~, (I , 14

+ 
~~
_ , I. f 2 q f  I [B 1 L~~~~ 0 ( I , L)_ 10

~~ aIgc h j / %-J + 
(r,1,

+ 

/•j
~~~~T~~i. 

‘ — I L - ’ 

- 
- I (— 1)L-’’ ]1~~’ 

- 1 g~(1, 14}4- q — j -  I

for the thin unfolded delta wing with both subsonic leading

edges.

If the unfolded wing has supersonic leading edges and the

subsonic edges , we will have the expreesions~l ’  andcl 1)
nakj

respectively, of the form

4 - 2 (— 1)0 I 1 1  
— ( f ~ If  ~Ire os I )  ~ I)

~wict

t~~::,’, f T~~L (f l i ~~~H )  
~~~ (i . 1 )  ±

+ ~~ ~ U1 ) 
2 81-g(’ II 

1 1Y2 )

‘—I  ‘(“) / i- -, I
+ 5 

~~~~~~~~~~~~~~~~~~~~~~~~~ I V i  — r~ 
i -

~ [ I  -
~
- (_ 1) 1 

~~ 
0 0 p:’’ ~,_02 (k 4- q 1- 1)!~, -~~ ~

2(—1 )’’’~~i (_ l ) ’ 1 0 1 1 1 e ’ I  aIg Ihj / ( I  
~~ 

1)2
)

ti::0, = -- 

~~ 
- - - 

5 ‘-“ 1~~ io (0 . 1) I
( - ; L ( n ~ - 1?) 

~~~

n - - I

+ 

~ 
j . ~~~ (~:~0 (0 . I) 1~ 

2’ a rg ( ’II ,~! , 2 )  +

64’.
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-~ + [I (— f ) k~~~ l f f k

— 2  (f ~~0 i (F~~ 0 I  1) U I’C(’I)S ~/ ( I  i;~~i 
I )  

H , 11

+ 
g~ o 2 (k ~~~~~~ ~~~ 

(~
-
~~

v__ 
I --I- - (_ 1)k h 1 L 0~~~~*(1, 

~~

‘

)~~

— 
-~~~ 2 ( L ’ ’ — l L - ’ ’) a I ’ ’ )  2l i 1 ( L — 1 )  +

2 ( _ _ _ _ 1 ) N h I  ~ I
k o . 1 _ _ _(_  L) L - 0 h J a I c c o s

’

~
/ 

- + 1 1 L ) (  f~ _iJ
1}. (53)

If the edges and the leading edges of the unfolded wing

are supersonic , we will have, respectively, the expressions :
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~ 
a~’~ 

g” 

~ ~~~
)+

(~‘II ’I  f  I \

- I-’ 5 
- - -~~~~ - g;’ ,, f o, - 1 +
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