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ABSTRACT

New expressions f or the wave resistance of a ship in steady rectilinear

motion in a calm sea are presented . Specifically , a sequence of iterative

approximations R0, R1, R2 , ... is defined . Of particular interest are the

zeroth approximation R0 and the first approximation R1. The zeroth approximation

• R0 provides a new simple explicit wave—resistance formula which may be regarded

as a generalization of the classical formulas proposed by Michell in 1898 and

Hogner in 1932. A noteworthy feature of the approximation R0 is that it involves

a line integral along the ship waterline, which causes a drastic reduction in the

wave resistance at low Froude number and is particularly significant for blunt

ship forms . Although the first approximation R1 is of course more complex than

the z~ Loth approximation R0, it provides a fairly simple explicit approximation

to the wave resistance which is more refined than the approximation R0 and may

be of greater usefulness for practical purposes. The first approximation R1 is

indeed regarded as the main result of this study . Comparison between the zeroth

approxlriation R0 and the classical Michell approximation for a wedge—like ship

bow form suggests that the present theory may remedy to some of the typical

discrepancies between experimental and theoretical wave—resistance curves.
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INTRODUCTION

The single most important goal of a theory of steady rectilinear motion of a

ship in a calm sea no doub t is the prediction of the drag , so—called wave resistance ,
experienced by a ship as a result of the surface gravity waves it creates . Exact

expressions (to be sure , within the limitations of potential—flow theory) and re-

lated explicit approximations for the wave resistance of a ship are presented in

this study, which corresponds to Part 3 of the theory of steady motion of ships

developed in Noblesse (11. Only the case of displacement shIps is considered here

for shortness ; however , modification of the analysis and of the final formulas
for the case of other types of ships, e.g. fully—submerged bodies, multihull vessels,

and surface—effect ships, is straightforward (problems associated with lift and

cavitation for hydrofoils , and planing e f fec t s  and spray formation for fast boats ,

are not considered in the present theory however).

The wave resistance is defined by a set of three equations, namely , (i) the

classical Havelock wave—resistance formula (9) expressing the wave resistance R in

terms of the Kochin free—wave spectrum function c2(e), which is directly related to the

free—wave pattern trailing far behind the ship , (ii) formula (7) defining the Kochin

spectrum function ~2(8) in terms of the velocity potential 4> of the disturbance flow
caused by the ship in its “near field” , and (iii) the integral equation (1) for deter—
mining the velocity potential 4> (this integral equation was derived in Part 2 of [11).
Ac tually , to these three equations one should add equations for determining the hydro—

dynamic lift and moment , and the resulting sinkage and trim, experienced by the ship ;

however , these additional equations are not considered explicitly in this study.

In practice , the integral equation (1) , and formulas (7) and (9) may be used for

defining a sequence of iterative approximations to the wave resistance . Specifically,

corresponding to the successive iterative approximations 0, 4>~ , 4>2’ ... to the
solution 4> of the integral equation (1) , we may readily associate the approximations

%‘ ~~~ ~2’ ~~~~~~ to the Kochin free—wave spectrum function ~2 ( e) ,  and the approximations
R0, R1, R2, ... to the wave resistance R, by using formulas (7 )  and (9) in which we
need only replace 4> by 4>k ’ ~ by 

~
2
K~ 

and R by R.
K~ 

with k — 0 , 1, 2 , ... ; the iterative
approximations 4>~ and 4> 2 to the solution of the integral equation (1) were obtained

previously in Part 2 of [1], and are given in this Part 3 by formulas (2) and (3) .

The approximations ~~~ ~~~ 
and 

~2 are derived explicitly, and discussed in some

• detail . The general recurrence relations defining the iterative approximations 4>k and

• are also given [specifically by formulas (30) and (31)]. Of main interest for

practical purposes , however , are the “zeroth approximation” ~~ and the first approxi-

mation 
~l 

corresponding to the approximations 4~ 0 and 4>
~’ respectively .
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The zeroth approximation %(O)~ given by formula (10), provides a new simple

explicit wave—resistance formula, which may be regarded as a generalization of the

classical formulas proposed by Michell in 1898 and Hogner in 1932. Indeed , these

classical approximations are obtained in the present study as particular limiting

cases of the zeroth approximation 
~o 

A noteworthy feature of the approximation 
~~

is that it involves a line integral along the ship waterline, as it may readily be

seen from formula (10). This line integral is shown to cause a drastic reduction in

the value of the wave resistance at low Froude number, and is particularly significant

for blunt ship forms.

The first approximation c21(e), def ined by formula (22 ) ,  is associated with the

approximation 4>
~ 

given by formula (2). Although this first approximation 
~l 

is ob-

viously more complex than the zeroth approximation 
~o’ 

it provides a fairly simple

explicit approximation to the Kochin spectrum function ~(O) which clearly is more

refined than the approximation ~~~ and may be of greater usefulness for practical

purposes. In particular, the first approximation 
~~. 

incorporates correction terms

associated with the hull boundary condition, including effects of sinkage and trim,

and corrections for free—surface nonlinearities. For practical purposes, the first

approximation is regarded as the main result of the present study . Various ways of

improving, and simplifying, this approximation are briefly discussed.

Finally, preliminary numerical results are presented. Specifically, a comparison
between the zeroth approximation R0 and the classical Michell approximation for a
wedge—like ship bow form is made. The results, shown in figure 2, indicate that —

compared with the Michell approximation (M) — the new approximation R
0 

yields a

significant overall reduction in the value of the wave resistance, a very appreciable

reduction in the magnitude of the oscillations (humps and hollows) in the wave

resistance curve, and a notable phase shift of these oscillations towards lower

values of the Froude number. These encouraging preliminary results suggest that

the present theory may thus remedy to some of the typical discrepancies between ex-

perimental and theoretical wave resistance curves.
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1. The integral equation for the velocity potential 4>, and the approximations 4>
~ ~~~

We consider a displacement ship in steady , rectilinear motion at the free

surface of an otherwise calm sea assumed to be of infinite depth and lateral

extent. Water is supposed to be homogeneous and incompressible. Surface tension

is neglected. Irrotational flow is assumed ; however, ad hoc corrections for the

viscous boundary layer and wake around and behind the ship are incorporated into

the present potential—flow model , in the manner explained in [1]. Ad hoc cor-

rections for effects of spray formation along the waterline, and for ef f ects of

wavebreaking are also included , as in [1].
A moving system of coordinates attached to the ship is chosen, so that the flow

is independent of time. The z axis is taken vertical, positive upwards, with the

undisturbed free surface taken as the plane z = 0. The x axis is parallel to the

direction of motion of the ship and positive towards the ship stern. Flow variables

are rendered dimensionless with respect to the speed of the ship U, the acceleration

of gravity g, and the fluid density p, as it is shown in equations (1.5) in [1].
The hydrodynamical problem amounts to determining the (dimensionless) velocity

potential 4> of the disturbance flow caused by the ship. This problem was formulated

in [1] as a “generalized Neumann—Kelvin problem” in a “solution domain ” (d) bounded

by some “fictitious hull surface” (h), which may (but need not) be taken as the

submerged hull of the ship in position of rest [in principle, the “fictitious hull
surface ” (Ii) may be chosen arbitrarily], and the undisturbed free surface (f) , which
is the portion of the plane z = 0 outside the intersection curve (c) of the surface

(h) with the plane z — 0. It is shown in [1] that the “generalized Neumann—Kelvin

problem” can be formulated in “integral form”, given by the integral equation (2.21).
This integral equation is given here for easy reference:

— J Gvda Gv2~jds + J (4>.-4>0
)G da +~~ [G(a4>5+T4>~

)_ (4>_4>
0

)C
~
]1ids +

+ 
J l ~~~

b + 
J
G(q~f+q~1

)da _~~~G[(q~f
+q~1

)w_q
5
]ds + JGq~dv , (1)

where the significance of the various undefined symbols will now be explained.

The symbol 4>
~ 

is meant for 4 > (~~) where is an arbitrary point in the solu-

tion domain (d) including its boundary (h) + (f) + (c), while 4> is meant for
where ~ represents the “point of integration” (integration variable) in the above
integrals; the point thus is the “field point” where the potential is being
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evaluated , while represents the “dummy” variable of integration. The function

C E G(~0,~) is the fundamental solution (Green function) appropriate for the problem.

Specifically, the function G(~0,~) represents the (dimensionless) linearized velocity

potential of the disturbance flow caused at point ~0
(x0,y0,z~~O) by a unit “outflow”

at point ~ (x ,y, z<0) , associated with a submerged source if z < 0 or a flux across
the free surface if z = 0, in an oncoming uniform stream along the positive x axis.

Simplified new expressions for the fundamental function G and its gradient VG may

be found in Noblesse [2].

The symbol da in the three surface integrals over (h) represents the differ-

ential element of area of (h) , while ds in the three line integrals around the
“waterline” Cc) represents the differential element of arc length of (c), and dv

in the volume integral over the solution domain (d) is the differential element of
-~~ -1. 9. 9. 9.9.

volume. In the first integral, we have v ~(x) n(x).i, where n(x) is the unit

inward (that is, is pointing towards the interior of the ship) normal vector to (h)

at point ~ of (h) , and T is the unit positive vector along the x axis. In the line

integrals ar ound (c) , we have v V(s) ~ (s) .T where ~(s) is the normal to (h) at
point s of (c), while ii is defined as ~i si (s) ~~(s).t, where is the unit inward

normal vector to Cc) in the plane z = 0; in the (fairly common) case when the sur-

face (h) intersects the plane z = 0 orthogonally, we have a(s) E ~~Cs) and v(s) E

1(s). In the second line integral around (c), the symbols a and T are defined as
9. -I. 9. 9. 9 . 9 .

a = s•i and t = t.i, where s = s(s) is the unit tangent vector, at point s, to the

“waterline” (c) oriented in the counterclockwise direction in the (x,y) plane, and

tC5) is the unit vector tangent to (h), mutually orthogonal to (s) and the

normal a(s) to (h) at point s of Cc), and pointing downwards. In this line integral,

the notation 4> E 94> (s,t,n)fas , 4>~ E a4>(s,t,n)/at, and C 3G(~0,~ )/3x was used for
shortness. The usual notation G~ VGG~0,~ )’~ (x) was also used in the third integral.
It will be noted that the axes x, y, and z, the “fictitious hull surface” Ch), the

undisturbed free surface (f) , the “waterline” (c), the elements of area da and of
arc length ds, and the unit vectors, T, ~~~, ~~~~

‘
, ~~~, and t, are shown in figure 1.

It remains to define the terms q
~1, ~~~ 

q ,  ~~~ q~ ,, and q~ . The term q~~
in the integral over the undisturbed free surface Cf) represents the “NonLinear

free—surface correction flux”, which accounts for the nonlinear terms in the free—

surface boundary condition and for the difference in position between the actual

free surface and the plane z — 0 of the undisturbed free surface where the free—

surface condition is enforced for mathematical simplicity; the “nonlinear free—

surface flux” q
~1 

is given by 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

D

- [4> + 4> + + ~~4 > . V I V 4 >~ 2] 
= - 

- [4>~ 
+ 

- 

. ( l a )

The term 
~~~ 

is meant for the “Hull—Form correction flux” associated with the fact

that the “fictitious hull surface” (h) may be different from the actual ship hull
surface (H) ; the “hull—form correction flux” q~~ is given by

+ 9. -1. ( lb )
= 

~~ + V4>) }~ . N — (i + • U

where is the unit inward normal vector to (H), and the notation ~ 
)~ and ~ means

that the expression between the parentheses, namely V4>, is to be evaluated on (H)
and (h) , respectively. Finally, the terms ~~~ ~~ ‘ 

and q~ are ad hoc corrections

associated with the viscous Boundary Layer around the ship hull, Spray formation

along the waterline, WaveBreaking at the f ree surface, and the viscous Wake trailing
behind the ship, respectively.

It may be useful to emphasize that the integral equation (1) is valid for

in the solution domain Cd) including its boundary (h) + (f) + (c), as it was already
noted, so that this equation defines the disturbance velocity potential 4> everywhere

in Cd) + (h) + (f) + Cc). The solution 4> of the integral equation (1) may be deter-
mined in practice by using an iterative method of solution, as it is explained in [1].

Briefly, if we merely ignore all the unknown terms in the integral equation (1),

we obtain the initial approximation 4>I~~O~ ’ 
which is thus given by

= 

Jh
G 0,~~~~~~~~

a(
~

) -

~~~~~ 

G(~0, x ,y, O)v2(s)~~(s)ds (2)

A second approximation 4>2~~O~ 
can then be determined by evaluating the previously—

ignored unknown terms (however, the correction terms for “real—fluid effects”

q
5, 

C
~wh~ 

and are neglected in the following second approximation 4>2~ 
°~ the basis

of the initial approximation 4~ to 4 > . After some manipulations, we may obtain

= + Jh G~~~~~~Hda _tC ~\~ ds + JGq~1
dxdy ~ (3)

where the notation (v+$
~
)H is meant for (v)H+(4>~

)
H 

E Ti
~
+(V4>I)H~ 

E (T+V4>I
)
H

i
~

which represents the fluid flux across the actual ship hull (H) in the initial
approximation 1 + V4>1, and the nonlinear free—surface flux q~1 is given by

_ _ _ _  • • • - -•- - • • - .• --—- ••—--- -- - —•‘- - - - - 5 — ••,-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- —

I t 2’~ I I  I
— i.I V4>11 

~~ 
— + 4 > )  , (3a )

While higher iterative approximations 4>k’ k > 3, could readily be defined in

principle, numerical evaluation of these higher approximations would probab ly be

too considerable a task in practice. However, it seems reasonable to hope that

the second approximation 4>2’ or even perhaps the initial approximation 4>~ , may be

sufficiently accurate for most practical applications. Further discussion of the

above approximations 4>
~ 
and 4>2 may be found in [1], where variations about these

iterative approximations are also examined . • :  may finally be noted here that the

value of the potential 4> in any portion of the fluid domain (D) outside the solution
domain Cd), e.g. in the region between the actual free surface (F) and the plane

z — 0 wherever (F) lies above the plane z = 0, may be determined from the value of

4> in Cd) by means of analytical continuation.

Figure 1: Definition sketch

_  ‘-5-- - — - - - - --5— - • -~~~~~~~~~~~~ — --• - - -~~~~~~~~~-- — --- ~~~~~~ -- — - — ‘ - - - 5 - —
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2. The Kochin free—wave spectrum function ~CO) and the Havelock wave—resistance formula

A ship ’s wave resistance is related in a simple manner to the wave pattern

trailing behind the ship , as it is well known since Havelock [3]. The disturbance

velocity potential 4> in the “far field” , that is at a large distance away from the
ship, may be expressed in terms of the value of 4> in the “near field” , that is on
the hull surface (h) + (c) and on the free surface (f) in the vicinity of the ship,
by means of the equation

= 
Jh 

Gvda _

~~~~~ 

G~
2
~ds + J 4>G da +

~~~ 

[G(a4> +r4>
~
)4G 1~

ds + J G(q
1
+~~~) dxdy +

+ 
‘h 

G(q ~ f+q~ 1)da G [ ( q~ f+q~ 1)vu_ q~ ]ds + 
1d 

Gq~ dv , (4)

which may be derived from the integral equation (1) by replacing the term 4> — 4>0
in the third and fourth integrals by 4> since we have -~ 0 as + 

~ , and

therefore I4>o I << f 4 >~ for in the far field and in the near field . It is

interesting to note here in passing that while expression (4) for the disturbance

velocity potential 4 > (~c~
’I in the far field was obtained above as the “far—field

limit” of the integral equation (1) , it is actually valid also for in the near
f ield , provided only that is strictly outside the hull surface (h) + (c), that

is equation (4) holds for in the domain Cd) + (f)  — (h) — Cc); indeed , equation

(4) corresponds to equation (2.lla) in [1].

Far behind the ship, that is for x~ >> 1, the foregoing expression for

can actually be greatly simplified by replacing the Green function G(~0,~ ) by the
well—known asymptotic approximation

~. 
r~
’
~ ~(z0+z)+i((x0—x)cosO+(y0—y)sinO]}sec

2
O 2G “~ Re 

~ J e sec GdO as x
0 

(5)

which may be obtained , for instance, from equations (19), (23) and (lOc) in
Noblesse [4]; the above approximation differs from the exact expression for C by

terms associated with a near—field disturbance which “dies out” like l/x0 as

x
0 

-1. 
, and may be discarded inasmuch as we are only interested in the traili~~

wave pattern far behind the ship.
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By using the asymptotic approximation (5) into equation (4), we may express

the disturbance potential 4 > (~~) far behind the ship in the form

7ff” 2
-I. 

~ 

— 

2 [z
0
+i(x

0
cosO+y0sinO)]sec 0

‘~~ Re - j ~2(0)sec 0 e dO as x
0 
+ 

, (6)

-TT / 2

wher~ the function ~1(0) is given by

~7(0) jh ~~~~~~~~~~ 
+ 

Jh~~~ 

~~~~~~~~~~~~~~~~~~~~~~ +

+ J q fll cLV,b + 
Jh h f b

~ 

_~~~E0[(q~f+q
~
1)v

~j_q
5]ds + JEQ~dv , (7)

with the functions E E E(0;~) and E
0 

E E(O;x ,y,z=O) defined as

[z—i(xcos9+ysinO)]sec2O 
~ 

—i(xcos0+ysin8)sec2O (7 b)E = e  , E = e  • 
a,

The equation of the free surface far behind the ship is given by z0 
= _4>

x
(X
ü~
y0~

z
~
=O)

0
since the nonlinear terms in the free—surface boundary condition may be neglected

at a sufficiently large distance away from the ship. By using equation (6) we may

then obtain

rr/2 2
1 3 i(x0cos0+y0sinO)sec 0z0 ~~ Re 
~ J c~(O)sec 0 e dO as x

0 
-I. (8)

—iT / 2

Equations (6) and (8) express the potential 4 > (~~) and the equation of the free
surface z0

(x0,y0) far downstream from the ship in terms of a familiar superposition

of elementary plane waves with amplitude ~(8)sec
30. The function ~2(O) corresponds

to a particular case of the well—known function introduced by Kochin for determining

the drag, lift, and moment acting upon a ship, which is often referred to as the
“free—wave spectrum” in the literature on “wave analysis” (see for instance Eggers,
Sharma , and Ward [5]); the function ~2(0) defined by equation (7,a,b) will be referred
to as the “Kochjn free—wave spectrum function” in the present study.

The (dimensionless) wave resistance, R say (R R’ g2/pU6, where R is dimen-
sional) , may be directly determined from the “Kochin free—wave spectrum function”

~ (8) by means of the well—known “Havelock wave—resistance formula”

---- -~~-5-——--~~~~’---—~~-—- -~~~~~~
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ir/2

R = 
~~~~~

. J 1c2 (9) !
2sec 3GdO (9)

which is given for instance in [5 1 equation (12) p. 118. In the usual case of a

ship which is symmetric with respect to its centerplane y — 0, the function ~~ O)~
is even, so that the “Havelock wave—resistance formula ” (9) may be expressed in the
form

iT/2

R — ~~ - J I~~(O)~~
2sec 38d0 . (9a)

The “Havelock wave resistance formula” (9) for the wave resistance R, formula

(7) for the “Kochin free—wave spectrum function” ~(O) , and the integral equation (1)

for determining the disturbance velocity potential 4> in the “near field” of the ship,
form a set of three equations for determining the wave resistance of a ship in
steady motion. Actually, to these three equations we must also add equations for

determining the sinkage and trim experienced by the ship, which requires evaluation

of the hydrodynamic lift and moment acting upon the ship. However, the equations

for lift and moment and sinkage and trim will not be considered explicitly in the

present study , which is mainly concerned with the “hydrodynamical problem” defined

in Part 1 of [1], that is the problem of predicting the flow caused by a ship , and

in this Part 3 the wave resistance, assuming the shape, and position, of the ship

to be given.

The integral equation (1) and formulas (7) and (9) are essentially “exact”,

that is within the limitations of the present potential—flow model, and in principle

these equations thus provide a basis for obtaining an essentially “exact” value of
the wave resistance of a ship in steady motion. In practice, equations (1), (7),

and (9) may be used for determining a sequence of “iterative approximations” to the

wave resistance R: specifically, corresponding to the successive iterative approxi-

mations E 0, 4>i’ 4>
~’ ... to the solution 4> of the integral equation (1) , we may

• readily associate the approximations ~~ 
~~~ ~2’ to the Kochin free—wave

spectrum function ~)(e) , and the approximations R0, R1, R2 , ... to the wave resistance

R, by using formulas (7) and (9) in which we need only replace 4> by 4>k ’ ~l by 
~~~~ 

and

R by R.K, 
with k — 0, 1, 2 The approximations %, 

~
, and 

~2 
are given and

discussed in some detail in the following three sections; several particular limiting

cases of these approximations are also discussed .

-5-  —- 
_ 
-~~~~~

• -—- —-5- -
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3. Elementary wave—resistance formulas: the zeroth approximation R
0 and particular

limiting cases

In this section, five elementary wave resistance approximations are derived

and discussed. These are the “zeroth approximation” R0, and its four particular
limiting cases the Hogner “fine—ship approximation” R.d, the Hogner “flat—ship
approximation ” R~ , the Michell “thin—ship approximation ” R.M, and the Maruo—Tuck—
Vossers “slender—ship approximation” 

~~~~
The simplest, and no doubt the crudest, possible approximation to the “Kochin

free—wave spectrum function” 11(0), and hence to the wave resistance R, is obtained

if one merely ignores the integral equation (1) for determining the disturbance

velocity potential 4> in the “near field”, and puts 4> = 0 in formula (7) for 11(0).

This approximation may perhaps be regarded as a “slender—ship approximation” since

it can be expected to be the better the smaller the disturbance potential 4 > , that
is the more “slender ” the ship; however, it will simply be referred to as the
“zeroth approximation” in the present study. This “zeroth approximation” thus is

given by

~ 
[z — i(xcosO + ysinO)]sec2E3 ÷ +

= J e \)(x)da(x)
1h 2

~ 
—i(xcos0 + ysin8)sec 0 2

~~~~~~~~ 
e v (s)~ (s)ds , (10)

as it may readily be obtained from formulas (7 ,a,b).

If the ship is sufficiently “fine”, that is if the angle between the “water-

line” Cc) and the x axis is sufficiently small, we have v21iz I << I vt<<l and the line
integral in formula (10) may be neglected in comparison with the surface integral.

It is interesting that the approximation, 1l,~(e) say , defined by this surface

integral, tha t is

~ 
[z — i(xcos0 + ysin0)]sec2O 

+ +
— e v(x)da(x) (11)

in fact corresponds to the approximation proposed by Hogner [6] in 19i2; indeed ,
the wave resistance app~oximation R.d obtained by replacing 11(0) by 11.~(e) in formula
(9) is identical to Hogner ’s wave resistance formula. The approximation fZ~(0), R~
will be referred to as the Hogner “fine—ship approximation”, or simply as the

Hogner approximation.

L~. 
_ _ _ _  ~~~~~~~~• -5 _ •~~~~ - -  

_ _ - _ • - - — - ~~~~~~~-— — — - - •• - -—  - —
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If the equation of the (fictitious) hull surface (h) may be written in the

form y = ± b(x ,z), where b(E gB/U2) is dimensionless like the other flow variables,

and the points (x,z) belong to the projection (h) of the surface (h) onto the ship

centerplane y 0, the surface integral in formula (11) may be transformed into the

following double integral

~ 
zsec2e — ixsecO

(0) = 2 Jj e cos[b(x,z)tanOsecO)b (x ,z)dxdz . (lla)
1-1
y

If the ship is “thin” , that is if b(x ,z) is sufficiently small that the term

cos[b(x ,z)tanOsecO ] may be approximated by 1, the Hogner “fine—ship approximation”

ad (0) given in equation Clla) becomes the famous Nichell “thin—ship approximation”
(0) say , first obtained by Michell in 1898 and given by

• 
~~~~ 

zsec2O — ixsec0
= 2 e B (x,z)dxdz . (12)

x

y

Several differences between the Hogner approximation 11’d’ RH and the Michell

approximation 
~
, RN are readily apparent and may be noted here. An interesting

difference between Q~(8) and 11~(0) is that while the Michell approximation 11~(8) is

proportional to the ship’s beam B, and R.E.~ 
therefore is proportional to B2 (as it is

very well known), the Hogner approximation 11
~d~
0
~ 

clearly is not proportional to B

(although ad becomes proportional to B in the limit B -1. 0). It can also readily be

seen that differences between R.d and R
N 
may be expected to be the larger the bigger

the beam and the smaller the Froude number; this is due to the fact that we have

b = gB/U2 = (B/L) (gL/U2) = ~ir
2, where B/L is the “geometrical thinness” ratio,

and F U/(gL)1~
’2 

is the Froude number based on the ship length L. It is interesting

to note that the “thin—ship assumption” b<<l used in deriving expression (12) for

the Nichell approximation ~~ from expression (lla) for the Hogner approximation fl~
implies not only “geometrical thinness”, characterized by c B/L<<1 , but also
“~roude thinness

”, that is c/F 2<<i. It may also be interesting to note that while

most ships would seem to be “geometrically thin”, in that C for most ships is fairly

small compared with 1, they are usually not “Proude thin” , in that the value of the

ratio ~ip
2 is commonly equal to 1 or 2, which hardly seems small enough to justify

approximating the term cos(b(x,z)tan0eec8] by 1. However, this approximation is

certainly justified for small values of 8, corresponding to the “transverse waves”

in the free—wave spectrum; on the other hand , the approximation btan0sec8<<l clearly 

—
~~~~~~— - - ~~~~~~~~~~~~~ -_ - - - • —~~~~- • - - -~~~~~~~ - -•-5--5•-- --~~~~~~~~~~~~~~~~ ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~ A



F1~
5- 

~~~~~ 
- —~~~~~~~~~~ .‘~~~~~ ‘ ‘  .• • • -‘~~~~~~~W

5- ‘
~~~~~~~~

‘ ‘  ‘ 5 - 5 -  
——.__

~~~.~~~~~~
‘-
~~~~

‘ -
~
--,--5-’-— •-—’ --

12

is not valid for values of ~~ close to ir/2 , that is for the “divergent waves” in

the wave spectrum. Two factors which contribute to reducing the differences between

RH and R.~ may finally be noted : these factors are that the term b(x,z)tan0sec8 is

small f or b(x ,z) small, that is at the ship bow and stern (which , however, are the

main contributors to the wave resistance), and for 8 small, that is for the part of

the wave resistance corresponding to the “transverse waves” (which are known, how-

ever , to account for a significant portion of the wave resistance).

If the equation of the (fictitious) hull surface (h) is expressed in the form

z = — d(x y) , where d(EgD/U2) is dimensionless, and the points (x,y) belong to the

projection, (h i) say , of the surface (h) onto the “waterplane” z — 0, the surface

integral (11) may be transformed into the following double integral

~ 
— [d(x,y) + i(xcos8 + ysine)]sec2o

— H e d (x,y)dxdy
X

z

If the ship is “flat” , that is if d(x,y) is sufficiently small that the term

exp [—d (x,y)sec
28] may be approximated by 1, we obtain the Hogner “flat—ship

“ 
f

approximation 11.~(8) say, given by

2
f ~~ ,

- —i(xcosO + ysin0)sec 8
%(8) — JJ e d (x ,y)dxd y . (13)

h X
z

The approximation 4 to the wave resistance associated with the above approximation
to the Kochin free—wave spectrum function is identical to the “flat—ship wave

resistance formula” proposed by Hogner (6] in 1932. The differences between the

Hogner “fine—ship approximation” Q
~ 
and the Michell “thin—ship approximation” Q.~

discussed previously may also be observed — with evident modifications — between
the Hogner approximations 11’d and . In particular, it will be noted that is

proportional to the draft D of the ship, and the wave resistance 4 therefore is
proportional to D

2
, vhich is not true for the approximation 11.~, RH It will also

be noted that the approximation d(x,y)sec20<<l must obviously break down as 181 ~
and as the Froude number F + 0.

If the ship is both “thin” and “flat”, that is if the term exp(—iytan8sec8)

in formula (13) for the Hogner “flat—ship approximation” and the term exp(zsec28)

in formula (12) for the Michell “thin—ship approximation” 11~ can be approximated by

1, both approximations (12) and (13) yield the Maruo—Tuck—Vossers “slender—ship

approximation”

I 

— —-.5-5---~ _ -•- _- ---- --•-- • _ _ • - -—--5 ‘- _ • _—- —-5- ___
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stern• ç —ixsecO
= J e X(x)dx , (14)

bow

where X (x) is given by

• +b(x) 0

A(x) — J d(x ,y)dy — 2 
J 

b ( x ,z)dz , (14a )

—b (x) —d(x)

with d(x) and b(x) representing the local (at section x) draft and half beam of the

ship,  respectively. The above approximation 11M’~~ 
was obtained by Maruo (7], Tuck [8),

and Vossers (9] in the early 1960’s by using the method of “matched asymptotic
expansions”. It may readily be seen that the Maruo—Tuck—Vossers approximation ~~~~
is proportional to the product ED of the ship’s beam and draft, and the wave resistance

is proportional to B2D2. An appealing feature of the approximation R!,~~ 
def ined

by formulas (l4,a) and (9) resides in its remarkable simplicity. Unfortunately , this

wave resistance approximation is practically useless for realistic ship hull forms.

In particular, the source strength X (x) must vanish at the ship bow and stern for

the wave resistance integral (9) merely to exist; this “existence condition” is

extremely restrictive, and indeed is not satisfied by usual ship hull forms.

It may be interesting to note that the approximations RN, 4~ 
and ~~~~ which

were obtained in the foregoing as particular limiting cases of the Hogner approximation

RH’ can also be obtained as the first—order (linearized) approximations in asymptotic
• expansions corresponding to the assumptions that the ship is “thin”, “flat”, and

“slender”, respectively , by performing systematic perturbation analyses starting

from the usual differential formulation of the problem of steady motion of a ship,

as it is well known. In other words, the “perturbation approximations” RN’ 4~ 
and

are embodied into, indeed are particular limiting :ases of, the Hogner approxi—

tnation RH’ which itself corresponds to the “fine—ship limit” of the “zeroth approxi—
ination” R

0 
obtained in the present study.

While the neglect of the line integral in formula (10) for the zeroth approxi-

mation 11
o
(0) can be justified in the case of a “fine” ship , there is no a priori

reason for neglecting this line integral in the case of a ship with a blunt bow or/and

stern. The line integral is also particularly significant at low values of the Froude

number; specifically, the line integral causes a drastic reduction in the value of the

wave resistance at low Froude number, as it will now be shown. For this purpose, we

begin by considering the surface integral in formula (10), that is the Hogner “fine—

ship approximation” 11H~
9
~ 

given by formula (11). It is convenient here to introduce

~IIIISh,. - __________ 
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the coordinates ~~~~~~~ which are rendered dimensionless in terms of some character-

istic dimension of the ship, say its length L, i.e. we have E ~/L where is dimen—

sional. By using the relation E ~g/U 2 
E 
~/F

2
, where F U/ ( gL ) L’2 is the Froude

number, into equation (11), we obtain

—2 2P [C — i(~cos6 + flsinO)]sec 8
— F J e \(~)dct(t) , (15)

where da F4da is the differential element of area of the surface (h) in terms of

the dimensionless variables

The major contribution, as F + 0, to the surface integral (15) stems from the

immediate vicinity of the “waterline” (c), due to the rapid exponential decay of the

factor exp(F 2zsec2O) as P + 0. For simplicity, we will restrict our attention to

the particular, but fairly coimnon, case when the (fictitious) hull surface (h) inter-

sects the plane z = 0 orthogonally , that is when (h) is vertical sided in the vicinity

of the waterline. The differential element of area da of the surface (h) in the

immediate neighborhood of the waterline Cc) may then be expressed in the form da

~~~~ where da E F2ds is the differential element of arc length along Cc). In the

low—Froude—number limit, the surface integral (15) may then be approximated as follows

(
0 

F 2
~sec28 

~ 
—iF ’2(~cosO + r~sinO)sec

2
8

~ F J dC e e
Cl. c

where the undefined lower limit of integration ç,~ in the first integral may actually

be taken as (-~°) since the term exp(F
2
C~
sec2O) is “exponentially small” as F + 0.

We may f inally obtain

—2 2 ~ 
—iF

2(~cos8 + ~sin8)sec
2
8

“- F cos 0 e i.i(a)da as F 0 (16)

since we have v(cY) i (cY) in the present case when (h) intersects the plane z — 0

orthogonally.

By combining the line integral in formula (10) and the line integral (16), which

is a “low—Froude—number asymptotic approximation” to the surface integral in formula

(10), we may obtain the following low—Froude—number asymptotic approximation to the
“zeroth approximation” 11o(e) 

_ - - ~~-~~ -
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2 —iF
2(~cosO + risin8)sec

28 2 211o(o) F 

~ c 
e (cos 8 - 

~ )~
idy as F -~ 0 . (17)

In the low—Froude—number limit, the exponential factor in the above integral may be

seen to be rapidly osc illatory, so that the major contribution to this integral as
F -‘~ 0 stems from the “points of stationary phase”, which are defined by the equation

~~cosO + n sin8 — 0, where ~~ d~ /d~ and r~ d~ /d~ . At a point of stationary

phase we then have tanG = — 
~~~/fl~ = — d~ /d~ — — dx/dy , so that we may obtain

cos
2
O = 11(1 + tan2O) = dy2/(dx2 + dy2) — (dy/ds) 2, and the fac tor cos28 — ~2 in

the integral (17) vanishes, since we have i,i ~~~
‘ • —dy/ds. It may therefore

be seen that, in the low—Froude—number limit, the major contributions of the surface

integral and of the line integral in formula (10) for the “zeroth approximation”

cl
o
(8) exactly cancel out each other, which evidently results in a drastic reduction

in the value of the wave resistance R.

In summary, the main result presented in this section is the “zeroth approxi-

mation” c2
~
(O) to the “Kochin free—wave spectrum function” 11(8). This new approxi-

mation which is given by formula (10) , may be regarded as a generalization of
approximations obtained previously by Michell in 1898, Hogner in 1932 , and Naruo,
Tuck , and Vossers in the early 1960’s; more precisely, these known approximations
correspond to particular limiting cases of the “zeroth approximation” 11o, as it was
shown explicitly. In particular, the zeroth approximation 11o differs from the Hogner
“fine—ship approximation” fl.~ given by formula (11) by a line integral around the
ship “waterline”. While this line integral is small compared with the Hogner surface

integral in the “fine—ship limit”, that is as the angle c#. between the “waterline” (c)

and the x axis vanishes, and would indeed be ignored in a systematic “fine— (or thin—)

ship perturbation analysis”, the line integral is actually equal to the Bogner
surface integral, at least to first order, in the “low—Froude—number limit”, that is

as the Froude number F vanishes , as it was just shown. It may therefore be seen

that we have

lim R
0

(F, c g = 0 )  ~ lim R
0
(F=0 , ct) ,

F+ 0  a~~~0

that is the limit a + 0, F + 0 is not a uniform limit. This interesting property

clearly is related to, indeed is at the origin of , the “low—Proude—number non-
uniformity” of the classical “thin—ship perturbation theory”. 
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4. The first approximation K..1

After the “zeroth approximation” 11~ (8) , K0 — which corresponds to merely
taking 4> as zero in formula (7) for the Kochin free—wave spectrum function 11(8) —
an evident next level of approximation to the Kochin spectrum function 11(8) is

obtained by using the initial potential 4>
~ 

given by formula (2) as approximation
to the disturbance velocity potential 4> in the ship “near field” in f ormula (7)
for 11(0). This yields the “first approximation” 11

1
(0) ,  which thus is given by

111(8) — 11o~
8
~ 
+ .1 4>

1
E da +~~~ (E

0
(a4>

1 
+ r4>~) 

— 4>
1
E0]~ ds +

J E0q~1 
dxdy + 

jh 
Eq~f da -

~~~~~~ 

E°q~f 
v~ds , (18)

where equation (10) was used , and the notation E was used for convenience;

the “nonlinear free—surface flux” q~1 is given by formula (3a) , and the “hull form
f lux” 

~~~ 
is defined by equation (lb) with 4> replaced by 

~~ 
It will be noted that

the various correction terms for “real—fluid effects” 
~~~ ~~b ’ q ,  and q~ in formula

(7) were ignored in formula (18) for the first approximation 11
1

(8) , although these
correction terms could in principle be included in this first approximation.

An interesting alternative expression for the first approximation 11i(e) may

be obtained by applying a common Green identity to the functions E and 4>1 
in the

domain (d
i) “inside the ship

”, that is the domain bounded by the fictitious hull

surface (h) and the portion (f
1

) of the plane z — 0 located inside the intersection
curve (c) of the surface (h) with the plane z — 0. We begin by deriving a pre-

liminary relation valid for an arbitrary function ~P (~) verifying the Laplace equa-
tion v2q, — 0 in the “interior domain” (d

i
) defined above and the Kelvin boundary

condition + ~j, — 0 on (f1). By applying a common Green identity to this function -
and the function E(~;8) defined by equation Cia) , which also verif ies the Laplace

equation V
2
E — 0 in the “interior domain” (d

i
) ,  we may obtain

J ~~En 
- 

~~~~~ J (*E~ 
— E~~)dxdy ,

h f~

where the usual notation E~ VE’~ and 
~
, was used. From the assumed condition

+ — 0 for on and the relation E + — 0, which may readily be verified

fr om equation (7a) , we have ~E~
_E 

~~~ ~~~~~~~~~~~ , so that we may obtain

• •
~~~~~~~~~~~~~~~~~~~~~~~~~~

• -• • • • , •
~~~~~~~~



17

Jh 
C~E~ — EiP~

)da — J~ 
(E~p~ — 

~
PE

~~
)
~~ 

dxdy

By virtue of a well—known Green identity, we may then obtain

Jh 
(~E — E~,)da 

~ c 
~~~ 

- i4E )dy - - *E hids

+ +
in which we used the relation dy = — ‘ids , where U E n i  as it was defined previously

+ 9 .  + 9 .  + 4
in connection with the integral equation (1). Now, we have ~ji — 

~~ s’i + 4~ t i  + ~ n i

~ iR~ O + + since a E , , and V ~.T by definition [the symbols

i , s , t , n , a , T , and V have been defined previously in connection with the

integral equation (1)], so that we may finally obtain

J i~,E da +

~~ 

~~~~~~ + c
~

1
~~

) — i~E°]pds = 
jh 

EP~da —
~~~~~~~ E0~~vtjds , (19)

where the notation E
0 

E E(x,y, z—0;G) was used in accordance with equation (7b), and

the superscript i in the symbol is meant to clearly indicate that the normal
derivative 

~ 
is (evidently) to be evaluated on the “interior side” of the surface

(h) , which is important in the case when the normal derivative is discontinuous

across the surface (h).

By using equation (19), with the function ~L’ taken as the initial potential 4>
~

[which clearly verifies the Laplace equation 7
2
4>1 

= 0 in (d
i
) and the Kelvin condi-

tion + ct~ = 0 on (f
t
) ] ,  into formula (18) , we may obtain the following alter-

native expression for the first approximation 11..~(e)

111(8) — 11o(o) + J E( 1
~4>~ + q~f)da —

~~~~~ 

E0(~4>~ + q~f)V11ds + J E0q~1 
dxdy , (20)

where the integrals over the fictitious hull surface (h) and the line integrals
along the “waterline” (c) have been grouped together. From equation (lb) — with

I Iand 4> replaced by q~~ and 4> , respectively — we have

14>1 + 
~hf — (V4> I

)
h

s
~~ 

+ Ct + 
~
4>I~H~~ 

- (T + 
~

4>I~h •
~~ ‘

where the symbols h1 and he refer to the interior and exterior sides of the surface
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(h) , respectively . However, we have the relation

+ + + 9.
— 

~~
4> I~ h ~ = • n (21)

i e

as a result of the fact that the initial potential 4>
~ 

involves a distribution of

sources of density V • on the surface (h) , as it may be seen from formula
(2). We may then obtain

1 1  I + 9._
4> + = (i + 74>I~H 

. N (v + 4>n H

and formula (20) may f inally be expressed in the form

11~ (0) 11~(o) + J E(v + 4>~)Hda 
~~c 

E
0(V + 4>~

)
HVuds 

+ J E0q~ldxdY
j 

. (22)

It is interesting to compare formulas (2) and (3) for the initial and second

approximations 4>
~ 

and 4>2 to the disturbance velocity potential 4> and formulas (10)
and (22) for the zeroth and first approximations 11o and to the Kochin free—wave

spectrum function 11; it may be seen that formulas (2) and (10) and formulas (3)
and (22) directly correspond to each other with the substitution G 4—~ E. Numerical

evaluation of the first approximation 11
1

(8) def ined by formula (22) may be divided
into five basic steps, as follows: (1) evaluate the zeroth approximation 11o(e) def ined

by formula (10) for some “fictitious” hull surface (h), which may — but need not — be
taken as the wetted hull of the ship in position of rest, Cii) evaluate the initial

potential 4>~ defined by formula (2), (iii) determine the sinkage and trim experienced
by the sh .p and the position of the “real” ship hull surface (H) corresponding to the

approximation 4>
~ ’ Civ) evaluate the fluid flux (V + ~~~~ 

[T + 
~
74>I~H

1 • N across

the ship hull (H) and the nonlinear free—surface correction flux q~1 
given by formula

(3a) , and finally (v) evaluate the three integrals shown in formula (22). The first

approximation K,1 to the wave resistance R may then be determined by evaluating the

Havelock wave resistance integral (9) with 11(0) replaced by the first approximation

The computational task involved in the practical implementation of the above-

described successive steps admittedly is rather considerable, but it ought however

to be well within present—day calculation capabilities.
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5. The second approximation R2

As it was noted previously , the zeroth and first approximations Qo
(0) and 11

1
(0)

may be regarded as the first two approximations in a sequence of iterative approxi-

mations 11k~
0
~ ’ 

k > 0, associated with the iterative approximations 4>~ E 0,4>1,4>2 ,
to the solution 4> of the integral equation (1) for the disturbance velocity potential
in the ship “near field”. The second approximation 11

2
(0) corresponding to the second

approximation 4>2 given by formula (3) will now be derived . By replacing 4> by 4>2 
—

which will be denoted by 4>
(2) 

for convenience — in formula (7) for the Kochin free—

wave spectrum function 11(0), we readily obtain the following expression for the second

approximation 112
(0).

112(0) = 11~(e) + J 4>~
2
~Eda +~~~ [E

0
(a4>~

2
~ + T4>~

2
~ ) — 4>~

2
~E
0
]iids +

+ J E°q~~~dxdy + J Eq~~~da _
~~~~ - E0q~~~vuds , (23)

where formula (10) was used , the ad—hoc :orrection terms 
~~~~~ ~~~~~ q ,  and q~ for

“real—fluid effects” were ignored for simplicity, and the terms q~~ and ~~~ are

defined by equations (la) and (ib) with 4> replaced by 4>
(2)

It may easily be seen that the potential 4>
(2) 

E 4>2 
def ined by f ormula (3)

verifies the Laplace equation 724>
(2) 

= 0 in the domain (d
1
) inside the fictitious

hull surface (h) and the Kelvin condition 4>~
2) 

+ 4>~~) 
— 0 on the portion (fr

) of the -
plane z = 0 located inside (h), so that equation (19) — with ~ replaced by 4>

(2) 
—

may be used. Expression (23) for the second approximation 112
(0) then becomes

112 (0) = 11~(e) + J ~~~~~~ + q~~~)da —

~~~~~ 

E°(~4>~
2
~ + q~~~)vuds + J E°q~~~dxdy , (24)

where the integrals over the fictitious hull surface (h) and the line integrals along
the “waterline” (c) have been grouped together , and the symbol i

4>
(2) is meant for the

normal derivative 4~~2) 
74> • evaluated on the interior side of the surface (h) .

From equation (lb) — with q~~ and 4> replaced by ~~~ and •
(2) 

~~~~ respec-
tively — we have

i4>
(2) + q~~~ - ~

74>2~~h 
• fl + (T + - + 74>2

)
h; ~
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where the symbcls h~ and h
e refer to the interior and exterior sides of the surface (h),

respectively, as it was defined in the previous section. However, we have the relation

— 

~
74>2~h ~ 

— T • + (v +

as a result of the fact that the potential 4>2 involves a distribution of sources ofI + ~+ + .4
density V + (v + - fl • i + (i + 74>t~H 

• N on the fictitious hull surface (h), as

it may be seen from formulas (3) and (2). We may then obtain

i
4>

(2) 
+ ~~~ — (v + 4>

~~H 
+ Cv + . (25)

(2) (2)We may express formula (la) — with q
1 
and 4> replaced by ~~~ 

and 4> — in
the form

(2) 
— ,~(2) 

— (4> (2) 
+q~1 z xx z 0

(2)
where the term it thus is defined as

~ (2) 
- [4>

(2) 
+ 4>

(2) ÷ (~74>
(2)

f 
2) + ~~4>

(2)
7I74>

(2)
l 2] , (26)z xx x 

- (2) 1 (2) 2
z — — 4 >  — 74>x 2

However, we have the relation

(4>
(2) 

+ 
- 0 

- - q~1 
for (x ,y) on (f)  (27)

as a result of the fact that the potential 4>2 
involves a “free—surface flux” distri-

bution of strength q~1 on (f) , as it may be seen from formula (3). We may then obtain

(2) I (2)
%l = q ~11 +11 . (28)

By substituting equations (25) and (28) into expression (24) for 11
2

(0) , and by
using expression (22) for 11i(e), we may finally obtain the following alternative ex-
pression for the second approximation 

~~~~

112 (0) - 111(8) + 
1h 

E(v + 4>~
2
~

) Hda 
~~~c 

E9 (v + 
~~~~~~~~~ 

+ J E01r~
2
~dxdy , (2 9)

which is identical in form to expression (22) for the first approximation fl
~

(e) .
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6. Discussion

Higher approximations R,~, k > 3, to the wave resistance R can easily be defined
in principle . Specifically, it can be shown that the approximations 4>

(1) 
and

• 4>2 
= 4>

(2) 
to the disturbance velocity potential 4> defined by formulas (2) and (3)

actually correspond to the f i rs t  two approximations in the sequence of iterative
approximations 4>

(1~ def ined by the “zeroth approximation”

4>
(0) 

0 (30a)

and the recurrence relation

= 4>
(k)

(~~~) + 
‘h 

G(V
~~~~~

)
Hda 

~~~ 

G(v
~~~

’
~~

)HVuds + J Git~~~dxdy , k>0, (30b)

where the nonlinear free—surface correction flux is given by

~
(k) 

= [4>
(k) 

+ 4>
(k) 

+ (174>
(k)

1
2) + 1~,4> (k) 7 174> (k)

1~~ . (30c)z xx x (k) 1 ( k ) ,2
—

x 2

The approximations 11o, Ili, and 11
2 to the Kochin free—wave spectrum function 11(0)

similarly correspond to the first three approximations in the sequence of iterative

appr ox imations 11
K~~
0
~ 

defined by the “zeroth approx imation”

11o(o) = Evda — ~~ E0u2~ds (3la)

associated with the “zeroth approximation” 4>
(0) 

0 to 4> , and the recurrence relation

= 11
K 1~

0
~ 
+ J E(v 4~~~~

)Hda —

~~~~~ 

E°(v.4>
~~~
)
Hvuds 

+ J E°Tr~~~dxdy, k>l . (3lb)

The Havelock wave—resistance formula (9) — with 11(8) and K replaced by aK(e) and
respectively — then readily defines the sequence of iterative approximations R,~, k>0 ,
to the wave resistance R. To the above equations, we should actually add equations for

determining the lift and moment and the resulting sinkage and trim experienced by the
ship. It may also be noted that although the ad—hoc correction terms for “real—fluid

effec ts” 
~~~ ~~b’ q5, and in the integral equation (1) and formula (7) were ignored

for simplicity in the iterative approximations and defined by equations (30)

and (31), these correction terms could be incorporated in principle. The iterative

-5—-- - -- 5- _•_a_--- _~#____ _-5__ —-5- --5- - —-5---- -5—- — - - - 5 —-- -----5— — - - -—-- ----- ---- --
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scheme defined by the recurrence relations (30b) and (3lb) can be pursued in principle

(assuming convergence) until the “hull flux” (v + 4>
~~~~H 

[T + (74> (k)
)] • and the

“nonlinear free—surface flux” are sufficiently small, that is until the boundary

conditIons at the ship hull surface and at the free surface — which may indeed be

expressed in the form + 

~
74>
~H~ 

. 0 and it = 0, respectively — are verified

within desired accuracy.

Whereas in principle the above—defined approximations 4>k’ 11k’ Rk can readily be
determined by using the recurrence relations (30b) and (3lb) and the Havelock wave

resistance formula (9), the enormous computational task Involved in the actual numer-

ical evaluation of these higher approximations drastically restrict the feasibility of

the approach in practice. As a matter of fact, evaluation of the second approximation

4>2 ’ 112 , R2 may already be too considerable a task in practice, and the first approxi-
mation 4>1’ 111, K.1 defined by formulas (2), (10), (22), and (9) may well be the point
up to which it is actually feasible to pursue the iterative scheme defined by the
recurrence relations (30b) and (31b) . For practical purposes, the first approximation

4>~~, 11k, ~~ may indeed be regarded as the main result of the present study .

Alternative methods of refining the first approximation 4>~~, 
Q~~, K,

1 
that are

simpler to implement numerically than the continuation of the above—described iterative
scheme beyond the first approximation may however be envisioned . Two such methods

may indeed be mentioned here briefly (as they will be described in detail in Parts 4

and 5 of the present potential theory of steady motion of ships). A very simple modi—

fic’tion of the first approximation 4>~ which seems likely to improve somewhat this

approx.~mation is given by the “modified initial potential” 4>~ 
E k4>1, where k is a

constant which can be determined from a straightforward consideration of potential

flow about a triaxial ellipsoid , with main dimensions equal to that of the given ship ,

in the “zero—Froude—number approximation” (in which the free surface is replaced by a

rigid wall) , as it will now be explained . The “zero—Froude—n umber integral equation” ,
that is the integral equation for the disturbance velocity potential, i~ say, in the

“zero—Froude—number approximation”, takes the form

— 
~i~~o

) + 
‘h 

~~~~ 
— 
~~~~~~~~~~~~~~~~~ , (32)

where the function ~1(~0) is the “zero—Froude—n umber initial potential” defined as

4. 1 0~~ + + ~~411(x0) = j C (x0,x)v(x)da(x) , (32a)
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.4. + ,~ ,, 0 + + + +and G (x0,x) is the zero—Froude—number Green function given by 4rrC (x0,x)=—l /~x—x0 I

—1 /I —~~ {, with x1 
representing the mirror image of the point with respect to the

plane z—0. Clearly, the integral equation (32) corresponds to the integral equation

(1) , with the various ad—hoc correction terms for “real—fluid effects” being ignored,

while the initial approximation ~~ given by formula (32a) corresponds to the approxi-

mation 4>
~ 

given by formula (2). It is interesting that in the case of a triaxial

ellipsoid , say with semiaxes of length a, b , and c, the “modified initial potential”

defined as = kiD1 
— where k is some given function of a, b , and c, or more

precisely of the ratios b/a and c/b — actually is the exact potential iD . This re-
markable result suggests that the “modified initial potential” 4>~ — k4>1, where k is

the above—mentioned function of the ratios ~/a and c/b (that is the beam/length and

draft/beam ratios), may provide some improvement of the original initial potential 4>
~

given by formula (2). The “modified initial potential” 4>~~ and the associated modified

approximations 11~ and RI will be examined in some detail in Part 5 of this study. One

may also seek to improve the initial potential 
~~~ 

and consequently the approximations

11
1 
and R1, by taking advantage of the fact that the “fictitious” hull surface (h) in

formula (2) may be chosen at will , at least to a certain extent. An obvious way of

exploiting this arbitrariness in the choice of the surface (h) is provided by the

“method of coordinates straining”, which was indeed used previously for a quite

analogous purpose by Noblesse and Dagan (101. This modification of the analysis
developed in [10) will also be presented in Part 5.

Besides seeking to refine the first approximation 4>~~, 
11k, R1 

we may also seek to

simplify this first approximation, particularly from the point of view of numerical

implementation. Two such simplifications may also be briefly mentioned here. A

notable simplification of the above—defined first approximation may be achieved in

the case of ships operating at fairly low values of the Froude number, for which the
“zero—Froude—number initial potential” i~1 

given by formula (32a) , or better yet the
modified potential iP~ kiD1, may be used as an approximation to the potential 4> in the

ship “near field” in formula (7) for the Kochin free—wave spectrum function 11(0),
thereby defining a “low—Froude—number slender—ship approximation”. This approximation

will be examined in detail in Part 4 of this study, which will be concerned with “low—
Froude—number approx imations” . A diff erent sort of simplification of the first
approximation 4>~~, 

11k, R1 can be achieved by again exploiting the fact that the
“fictitious” hull surface (h) may, to a certain extent , be chosen at will. Specifically ,
important simplifications can be achieved by assuming the framelines of the fictitious
hull (h) to be trapezoidal in shape , as it will be shown explicitly in Part 5.
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7. Comparison between the zeroth approximation R0 and the Michell approximation RN
for a wedge—like ship—bow form

A comparison between the classical Michell “thin—ship approximation” R.~ and the

new “zeroth approximation” K0 obtained in the previous section is shown in figure 2

for the case of the wedge—like ship—bow form defined by the equations y = ± xtana for

0 < x < £. and 0 > z > — ~~~~, and y — ± Ltancx for £ < x < ~ and 0 > z > — ~~~~. This ship—

bow form thus is of infinite draft, and consists of an “entrance wedge” of angle 2a

and (dimensionless) length ~t(~Lg/U2 
where L is dimensional) continued by two parallel

vertical walls extending to infinity downstream. Specifically , figure 2 shows the
function R

0
(~ ;ct) for 0 < £ < 20 and for a = 0°, 100, 200, 300 , 400 , 50°, and 60°,

* * 2 2 6where R
0 is defined as R0 

R
0
/tan a, with R

0 
dimensionless (we have K K g /pU

where R is dimensional). As it was discussed previously, the “zeroth approximation”

reduces to the Michell approximation RN in the “thin—ship limit”, that is as
a + 0. This may indeed be verified from figure 2 where the curve corresponding to

a = 0° is actually identical to the Michell approximation R (L) RN/tan
2
a E

R0
(~ ;a — 0°), and both the symbols 0° and M (for Michell) are indeed attached to this

curve. It will be noted that the Michell approximation RN(~
,a) is proportional to

tan
2
a, that is we have RN(~

,a) — R
!~
(t)tan2a, and the curves R (e;a) therefore collapse

• into one single curve R,~~&) in the Michell approximation , while we do have a family

of different curves in the “zeroth approximation” K0
• It may be seen from figure 2 that the curves R~(e;a) generally lie below the

Michell curve L~(~
) E R0(L;a — 0°) and that the differences between the “zeroth appro-

ximation” R0 and the Michell approximation RN are quite significant even for such
relatively small entrance angles as a — 10° and a = 20°, and are in fact rather

spectacular for larger entrance angles, say for a > 30° . In particular, the amplitude

of the oscillations in the Michell wave—resistance curve are notably reduced in the

“zeroth—approximation” even for such relatively small angles as cx — 10° and a — 200,

while for larger angles, say for a > 30°, these oscillations are drastically reduced .

One may also observe a notable phase shif t of the curves R
0
(t;a) with respect to the

Michell curve R~(e). This phase shift is directed towards the higher values of the
“entrance length” L, that is towards the lower values of the Froude number F C
and it may be seen to increase with both a and t.

The trend of the above results for the “zeroth approximation” R0 is encouraging ,

and suggests that the present new theory may help explain, and remedy to, some of the
typical discrepancies between theoretical and experimental wave—resistance curves.

Confirmation of this hope must however await further numerical calculations, and

comparisons with experimental results. To this end , numerical calculations for the
case of a parabolic strut are currently being undertaken. 
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Figure 2: Comparison between the zeroth approximation R
0 and the Michellapproximation RN for a wedge—like ship—bow form.
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