
r . - - -

~ ~“ t.D.AOb1 932 MASSAC*~SETTS INST OF TECH CAMBRIDGE LAB FOR COWUTE—ETC FIG 912
LABORATORY FOR CO$ UTER SCIENCE (FORMERLY PROJECT MAC) PROGRESS—ETC CU)
OCT 78 H L D€RTOUZOS N0001I—7S—C—O66t

UNCLASSIFIED LCS—PR—1~ Pt

__ I

I

p

I

/

.

LABOR ATORY FOR
COMPUTER SCIENCE TECH NOLOGY

(formerl Pro ect MAC

Progre ss Report XIV
JANUARY - DECEMBER 1976

\ LJ J

D D C
U DEC 8 1978

L 6UUL 5
B

• ~
‘i~pro~sd for public relecis;

at~1b~Uo~ Unlimited

545 TECHNOLOGY SQUARE . CAMBRIDGE . MASSACHUSETT S 02 139

78 12 1 007

S EC U R I T Y C L A S S I F I C A T I O N OF THIS PAGE (*~,.n 0.1. Ent.r.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

REP ORT NUMBER 12. GOVT ACCESSION NO 3. REC I P I ENT ’ S C A T A L O G NUMBER
LCS Progress Report XIV

4 T I T L E (Wd Sub$IIl.) S. TYPE OF REPORT 6 PERIOD COVERED

ARPA-DODLabora tory for Compu ter Sc ience
(former l y Project MAC) Progress Report 1/76—12/76

6. PERFORMING ORG. REPORT NUMBERProgress Report XIV ~ LCS/PR—XIVJanuary—December 1976 _____________________________
7. A IJ T NO R(a) 6. CONTRACT OR GRANT NUMBER(.)

Laboratory for Computer Science Participants N00014—75—C—0661

~4.L. Dertouzous , Direc tor

6. PERFO RMING O R G A N I Z A T I O N NAME AND ADDRE SS 10. PROGRAM ELEMENT . PROJECT . TASK
LABORATORY FOR COMPUTER SCIENCE AR EA 6 WORK UNI T NUMBERS

(formerly Project MAC)
Massachusetts Institute of Technology
545 Technology Square, Cambridge, MA 02139 ____________________________

II . CONTROL LIN G OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency Oct. 16, 1978
Department of Defense 13. NUMBER O F PA GE S
1400 Wilson Blvd . 156L r1ir~~tc)r~ VA 22209

14 MOI4I 1 ORINc~ A GENCY NAME 6 ADORESS(I1 dlfl.r.n t from Controlllné OWc.) 15. SECURITY CLASS. (of 11th raport)
Off ice of Naval Research UnclassifiedDepartment of the Navy
Information Systems Program 15.. OECLASS I FICAT ION/DOWNORAD INO
Arl ing ton , VA 222 17 SCH EDULE

16. D ISTRIBUTION STATEMENT (of this R.po rt)

Approved for public release; distribution unlimited

7 DISTRIBUTION STATEMENT (of Ill . ab.tract .nt. r.d In Block 20, II dIff.r.nI from R.porl)

14 . S U P P L E M E N T A R Y NOTES

79 KEY WORDS (Conllnu. on rev er s e s Ide II nec..s.ry td Id•ntify by block numbor)
Real—time Computers Computer Languages Automata Theory
On-line Computers Computer Networks Morse—Code
Multi—access Computers Information Systems Knowledge— J~ased Systems
Dynamic Modelling Programming Languages Complexity
Computer Systems Computation Structures

20 A B S T R A CT (Contlnu. on reverse .Id. If necessary and Id.ntify by block numb.,)

Anntuil Summary Report of progress made at the Laboratory for Computer
Sc Ienc ’ under this contract during the period January—December 1976.

DD I 147 ’~ E DITION OF I NOV 65 IS OBSOLET EIA N 73 • I~ ,
S/ N 0 1 0 2 - 0 1 4 660 1 un c l a s si f i e d

SEC URITY C L A S S I F I C A T I O N OF THIS PAGE (WI,., , Data tnl.r.d)

I-’ ~~~~.~~) ~~~~
-

7;

..
•

•
, %J —

~~~iI~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __________ •••~~
. .

~~~~~~~~~~
-
~~~~~

- -— — • •• •• •
~~~~-


~ . - • . •_ _ _ _ _ _ _ _ _ _ _

-~~-..•-—-- —-—--.

Work reported herein was carried out within the Laboratory for Computer Science
(formerly Project MAC), a Massachusetts Institute of Technology interdepartmental
laboratory. Support was provided by the Advanced Research Projects Agency of the
Department of Defense, under Office of Naval Research Contract N00014—75-C-0661.

Reproduction of this report, in whole or in part, is permitted for any purpose of the
United States Government Distribution of this report is unlimited.

_ _ _ _ _ __________________ _ _ _ _ ~~~~~~~~~~~~

— •— , ,~~~ -• •••“—.•. -.• •~~ . - . . • —
~~

-—— •---.-——
~~ .----..- •—- — —-. -~~~~~~~~~

(
~‘/ LABORATORY FOR ~)MPUTER SCIENCE

(former ly F~Fóject ~~~~
~ROGRESS REPORT ~i~L’

-

~

JANUARY - DECEMB ____

~~~~~~~~~~~ f l f l~~~~j r r o  
~~s ept ~~~~~~ fl~~ ~~

/ ..-
-

~~~~
•

M 5 L~ ,‘Dertol.IZOS

LABORATORY FOR COMPUTER SCIENCE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 02139 _.

~~~~~~~

• 
. A • i-

a• ~s t N  .•
• •

~~~~
.

~~~~~~~~~ 

• •. I...- ’ .

~L1J
‘/~D/ ~~~



TABLE OF CONTENTS TABLE OF CONTENTS

TABLE OF CONTENTS

INTRODUCTION 1

LABORATORY FOR COMPUTER SCIENCE ADMINI STRATION 3

COMPUTER SYSTEMS RESEARCH GROUP 5

A. Introduction 7
B. The Information Sharing Kernal Design Project 7
C. Research Problems of Decentralized Systems With Largely Autonomous Nodes 9
0. A Local Network for LCS 16
E. ARPANET and NSW Support 19

DOMAIN SPECIFIC SYSTEMS RESEARCH GROUP 25

A. Introduction 27
B. Real Time Block Diagram Schemata 27
C. Semantics for Distributed Processing 28
0. Automatic Code Generation 29
E. Process Control 30
F. Microprocessor Simulation of Digital Logic 31
a Laboratory 33

KNOWLEDGE-BASED SYSTEMS GROUP 37

A. Summary of Work in Progress 39

PROGRAMMING METHODOLOGY GROUP 41

A. Introduction 43
B. Iterators 45
C. Access Control 47
D. Optimization 55
E. Specifications for Data Abstractions 61

PROGRAMMING TECHNOLOGY GROUP 73

A. Introduction 75
B. Morse Code 75
C. Interpersonal Communication 89
0. Other Projects 107

LABORATORY FOR COMPUTER SCIENCE PUBLICATIONS 115



INTRODUCTION 1 INTRODUCTION

INTRODUCTION

This annual progress report to the Advanced Research Projects Agency (ARPA) of
the Department of Defense describes research performed at the M.I.T. Laboratory for
Computer Science (formerly Project MAC), funded by that agency and monitored by the
Office of Naval Research during the period January 1-December 31, 1976.

The Laboratory was organized at M.I.T. in 1 963 to conduct research in Time-
Shared Computer Systems. Contributions of LC.S. include the Compatible Time-Sharing
System (CTSS), Mult ics, the mathematical-expert program MACSYMA, and a variety of
programming languages, systems and techniques. The research described in this report
reflects the current research directions of the Laboratory, oriented to promising areas as
well as pressing technological needs of the computer science field.

During the reporting period (January 1 976-December 1976), L.C.S. personnel
numbered approximately 251 people, including 34 faculty, 61 research and support staff
members, 101 graduate students, 50 undergraduate students, and 5 visiting researchers
and scientists.

The main focus of the research reported herein has been in the reduction of the
substantive and increasing costs associated with the generation, maintenance and
documentation of programs. In particular, work carried out by the Knowledge-Based
Systems group focused on the identification of a very high level language in which
inventory control programs are specified, and on the associated compiler that translates
such a program to PL/ 1 code. In the Domain Specific Systems Research group research
commenced on the programming of microcomputers from high-level languages for such
purposes as the automa tic control of physical processes , maintenance and
instrumentation.

The Programming Technology group concentrated its research on the development
of a Morse Code system. Through this system the group seeks to understand and
develop techniques for embedding a great deal of structural knowledge (In this case
about Morse Code) into computer programs.

The Computer Systems Research group focused its research on the analysis end
cer tification of large systems using the MULTICS systems as its principal model and
laboratory. In addition, work was inflated on a local-network that will link the
laboratory’s computational resources. The Programming Methodology group continued the
development of the structured programming language CLU which has a modular
construction that facilitates the representation of abstractions.



INTRODUCTION 2 INTRODUCTION

Acknowledgements

Assembly and compilation of this report was done by Paulyn Heinmiller. Illus trations
were done by Allison Platt Amended illustrations by Sara Geltz.



_________ .~~~-• —.~~~~~~~~~~~~ ---•- • .~~~ - •. •~ -~~~-~~~~~-~-~~~~~~~ • • ~•— ~~~• ._.- . 

“ I’

INTRODUCTION 3 INTRODUCTION

ADMINISTRATION

Academic Staff

M. L Dertouzos Director
J. Moses Associate Director

Administrative Staff

M. E. Baker Administrative Assistant
L G. Daniels Librarian
H. S. Hughes Administrative Services
C. P. Kent Assistant Fiscal Officer
T. L Lightburn Fiscal Consultant
a W. Oro Fiscal Officer
A. A. Platt Information Services
0. C. Scanlon Administrative Officer
C. L Wallace Purchasing Agent

Support Staff

C. W. Brown M. K. Martuccl
L S. Cavallaro E. M. Profirio
M. Cummings T. Sealy
P. a Heinmiller ft Varjebec~en
J. Jones L Withers
0. Kontrlmus

. • .• • . • .



C. S. R. GROUP 5 C. S. R. GROUP

COMPUTER SYSTEMS RESEARCH

Academic Staff

J. H. Saltzer, Group Leader D. 0. Redell
0. D. Clark M. D. Schroeder
F. J. Corbato’ L Svobodova

Research Staff

N. C. Federman K. T. Pogran
R. J. Kanodia D. M. Wells
R. F. Mabee

Graduate Students

A. J. Benjamin P. A. Karger
E C. Ciccarelli S. T. Kent
H. C. Forsdick A. W. Luniewskl
R. N. Frankston A. H. Mason
H. J. Goldberg W. A. Montgomery
A. R. Huber ft P. Reed
0. H. Hunt M. Shibuya
P. A. Janson K. ft Sollins

Undergraduate Students

• C. R. Davis R. P. Planalp
C. R. D’Oliveira H. Rodriguez, Jr.
E. S. Harriman S. A. Swernofsky

Support Staff

V. M. Newcomb N. F. Webber

_ _  .. •. • • . • ~~.. ~~~~~ • ••~~.•... 



- -
~~~~~~

. .

~~
- •--

~~
--- --— •

~~~~~~~
--- .- -•.•

~~

--• ..

~~~~

-

C. S. R. GROUP 7 C. S. R. GROUP

COMPUTER SYSTEMS RESEARCH

A. INTRODUCTION

During this year, the Computer Systems Research group completed one major
project, the information sharing kernel design project, and made significant progress on
two others, the study of distributed systems and implementation of a local network We
also continued support of the ARPANET and NSW on Multics. These activities are
described in the following sections.

B. THE INFORMATION SHARING KERNEL DESIGN PROJECT

This year we completed a three year project to carry out engineering studies
whose goal was to demonstrate the feasibility of producing a full function general
purpose operating system whose central supervisor code is simple enough that its
correct operation can be certified by some form of auditing. The term ~security kernel
is often used to describe this body of critical code, since the functions that must be
included in this code are precisely those that insure the correct operation of the system,
and insure the integrity of the information stored in the system. This engineering study
was part of a larger project , the Guardian project , to produce a prototype of a
certifiable operating system, based on the Multics system: The Guardian project included
development of models to characterize security in a computer system, development of
formal specification techniques for operating systems, and actual implementation of a
system matching the models.

The general strategy of this engineering study involved identifying all reasonable
sounding proposals for simplifying the Multics kernel , and selecting for trial
implementation those that could not be accepted as obviously straightforward or rejected
as obviously inappropriate. Three kinds of redesign proposals emerged:

a. Removing from the kernel those formerly protected supervisor functions that did
not really require that protection

b. Taking advantage whenever possible, of the natural separation afforded by
processes in distinct address spaces communicating at arm’s length to Implement
protection functions

c. Using more systematic program structuring techniques for implementing the
remaining kernel functions, so that the result might be easier to verify.

Probably the most interesting and important result of this work is the Invention of
a file system and processor multiplexing organization that eliminates the complicating
cycles of dependency normally found among the modules of an operating system kernel.
The organization is based on the discipline of type extension, a strategy that has been

•-~
--. ...-—•••. - - -~~~~-- . .

- - -~~~-.- . . • • - . . -

C. S. R. GROUP 8 C. S. R. GROUP

used previously to organize application programs, but has heretofore not been applied to
the structure of an operating system itself. Inside an operating system, careful analysis
is required to identify all intermodule dependencies. The opportunity exists, f or
example, for an operating sy~~ m module to produce dependency loops by participating in
the implementation of its own execution environment. Such opportunities are less of a
problem for application programs, which typically depend on the operating system to
provide their execution environment. Our study suggests that in a properly structured
system, all dependencies that cannot be eliminated will fall into one of five categories, as
follows. A module M is dependent on some other module If and only If:

a. The other module manages some object that is a component of the object defined
byM

b. That module provides a map used to relate names used by N to lower level
objects

c. That module provides the containers for the algorithms and temporary storage for
M

d. That module defines the address space in which M executes

e. That module implements the interpreter (the real or virtual processor) that
executes the algorithms of M.

Using the rationale just described, and with the five kinds of dependencies in mind, it was
possible to design a loop-free structure of object managers that implement the complete
functionality required in the Multics kernel.

We summarize our experience in applying the type extens ion rationale to
structuring the Multics kernel as follows. Most systems appear to have a loop—free
dependency structure if viewed from far enough away. The obvious component
relationships and the obvious operations follow loop-free paths among the modules. On
close inspection, however, map, program, address space, and interpreter dependencies
will almost certainly generate loops in the system designed without !oop avoidance as a
primary objective. The map, program and address space loops usually are easily broken
(at least during the design stage) by introducing new object types to store the maps,
programs, and address space definitions. The interpreter dependency loops appear to be
eliminated in most systems by using a two level implementation of processes. The most
difficult and subtle structural problems are caused by exception handling--especially
when the exceptions are par t of the mechanisms that control resource usage. The
difficulty is partly intrinsic--such exceptions tend to occur at low levels in the system
but are related to high level objects--and partly methodological--resource usage
controls and the paths followed to deal with exceptions tend to be added to a design
last.

~~~~~~~~~~~~~~~ • __  •~~~~• -•- ~~~~ . •



—--- •--• — • - • -~ —-,••--~ . —-—--- -. ~~~~~~•—~~~-.-, ,•—~~~—-~~~~ •~~~~~~— —•. •.

C. S. R. GROUP 9 C. S. R. GROUP

• It was our expectation that the structural sirnplifications to the kernel would be
accompanied by a reduction in the size of the kernel , as measured in lines of source
code. The size of the Multics kernel at the start of the project was 54,000 lines of
source code, a bulk sufficiently staggering to inhibit any serious thought of conclusive
auditing. Our application of the three design procedlires mentioned above produced a
version of the kernel approximately half the size of the original. We expect further size
reductions would be possible were our proposals carried through to all areas of the
kernel to which they would apply. An unresolved question is whether the kernel must
enforce ~JJ.. security requirements, or only those related to some external standard such
as the military model of non-discretionary levels and categories. Had our kernel enforced
only the latter, it would have been somewhat smaller, though considerable work seems
necessary to decide exactly how much smaller.

Experiments with components of the system that we rewrote indicate that the
structural modifications we proposed did not have a significant performance impac t on the
system, and we conclude that a secure system need have no performance penalty. The
most serious impact on performance in our work comes from the use of a high level
language, and presumably this difficulty could be minimized if a high level language were
used that is easier to compile efficiently than full PL/l.

The primary conclusion of this project is that the kernel of a gener~I purpose
operating system can be made significantly simpler by first imposing clear criteria as to
what should be in it--the kernel concept--and second, a design discipline based on type
extension. It is also apparent that minor adjustments of the underlying hardware
architecture can make a significant difference in operating system complexity, and
similarly that minor variations in the semantics of the user interface can make major
differences in the complexity of implementation of the kernel.

C. RE SEARCH PROBLEMS OF DECENTRALIZED SYSTEMS WITH LARGELY
AUTONOMOUS NODES

A currently popular systems research project is to explore the possibilities and
problems for computer system organization that arise from the rapidly falling cost of
computing hardware. Interconnecting fleets of mini- or micro-computers and putting
intelligence in terminals and concentrators to produce so-called “distributed systems ” has
recently become a booming development activity. While these efforts range from
ingenious to misguided, many seem to miss a most important aspect of the revolution in
hardware costs ; that more than any other factor , the entry cost of acquiring and
operating a free-standing, complete computer system has dropped and continues to drop
rapidly. Where a decade ago the capital outlay required to install a computer system
ranged from SI5O,000 up into the millions, today the low end of that range is below
S15,000 and dropping.

L _•-____• .,.** __ - -• -— -- . —---S — ..- . -



fl -_• -

~~~

..,•— -
_

-

~~~~~~~~~~~~~~~~~~~~~

••

~~~~~~~ 

.

C. S. R. GROUP 10 C. S. ft GROUP

The consequence of this particular observation for system structure comes from
the next level of analysis. In most organizations, decisions to make capital acquisitions
tend to be more centralized for larger capital amounts, and less centralized for smaller• capital amounts. On this basis we may conjecture that lower entry costs for computer
systems will lead naturally to computer acquisition decisions being made at lower points
in a management hierarchy. Further, because a lower level organization usually has a
smaller mission, those smaller priced computers will tend to span a smaller range of
app lications, and in the limit of the argument will be dedicated to a single application.
Finally, the organizational units that acquire these computers will by nature tend to
operate somewhat independently and autonomously from one another, each following its
own mission. From another viewpoint, administrative autonomy is really the driving force
that leads to acquisition of a computer system that spans a smaller application range.
According to this view, the large multiuser computer center is really an artifact of high
entry cost , and does not represent the “natural” way for an organization to do Its
computing.

A problem with this so~’iewhat oversimplified analysis is that these conjectured
autonomous, decentralized computer systems will need to communicate with one another.
For examp le: the production department ’ s output will be the inventory control
department ’s input, and computer-generated reports of both departments must be
submitted to higher management for computer analysis and exception display. Thus we
can anticipate that the autonomous computer systems must be at least loosely coupled
into a cooperating confederacy that represents the corporate information system. This
scenario describes the corporate computing environment, but a similar scenario can be
conjectured for the academic, government, military, or any other computing environment

The key consequence of this line of reasoning for computer system structure, then,
is a technical problem: to provide coherence in communication among what will Inevitably
be administratively autonomous nodes of a computer network. Technically, autonomy
appears as a force producing incoherence: one must assume that operating schedules,
loading policy, level of concern for security, availability, and reliability, update level of
hardware and software, and even choice of hardware and software systems will tend to
vary from node to node with a minimum of central control. Further, individual nodes may
for various reasons occasionally completely disconnect themselves from the confederacy,
and operate in isolation for a while before reconnecting. Yet to the extent that
agreement and cooperation are beneficial, there will be a need for communication of
signals, exchange of data, mutual assistance agreements, and a wide variety of other
internode interaction. We hypothesize that one-at-a- time ad hoc arrangements will be
inadequate, because of their potentially large number and the programming cost in dealing
with each node on a different basis.

_
-- - .-~~~~~~~~~ -~~~~~~~~~~~~~ ---- ~~ - • -

C. S. R. GROUP 11 C. S. R. GROUP

Coherence can be sought in many forms. At one extreme, one might 8et a
company-wide standard for the electrical levels used to drive point-to-point
communication lines that interconnect nodes or that attach any node to a local
communication network. At the opposite extreme, one might develop a data management
protocol that allows any user of any node to believe that there is a central , un i f i ed
database management system with no identifiable boundaries. The first extreme might
be described as a very low-level protocol, the second extreme as a very high-level
protocol, and there seem to be many levels in between, not all strictly ordered.

By now, considerable experience has been gained in devising and using relatively
low—level protocols, up to the point that one has an uninterpreted stream of bits flowing
from one node of a network to another. The ARPANET and TELENET are perhaps the
best—developed examples of protocols at this level, and local networks such as the
ETHERNET and the Irvine Ring network provide a similar level of protocol on a
geographically smaller scale. In each of those networks, standard protocols allow any two
autonomous nodes (of possibly different design) to set up a data stream from one to the
other; each node need implement only one protocol , no matter how many other
differently designed nodes are attached to the network. However , standardized
coherence stops there; generally each pair of communicating nodes must make some
(typically ad hoc) arrangement as to the interpretation of the stream of bits: does it
represent a stream of data, a set of instructions, a message to one individual, etc. For
several special cases, such as exchange of mail or remotely submitting batch jobs, there
have been developed higher-level protocols; there tends to be a distinct ad hoc higher-
level protocol invented for each application. A Master’s thesis by Paul Levine explored
some of the problems of protocols that interpret and translate data across machines of
different origin.

The image of a loose confederacy of cooperating autonomous nodes requires at a
minimum the level of coherence provided by these networks; it is not yet clear how
much more is appropriate , only that the opposite extreme in which the physically
separate nodes effectively lose their separate identity is excluded by the earlier
arguments for autonomy. Between lies a broad range of possibilities that need to be
explored.

1. Coherence and the Object Model

During the current year, members of the Computer Systems Research group held a
graduate-level seminar that explored this area of coherence among interconnected
systems, and developed a framework for discussion that allows one to pose much more
specific questions. The first conclusion of this work is that to put some structure on the
range of possibilities, it is appropriate to think first in terms of familiar semantic models
of computation, and then to inquire how the semantic model of the behavior of a single
node might be usefully extended to account for interaction with other, autonomous nodes.
To get a concrete starting point that is as developed as possible, we gave initial

~

•.~—~- ~~~~~~~~~~~~~~~~~~~~~ —. •• -,, .—•——.—. •— ~~~~~~~ -•-•—•— -.•— - - -- —•-- - — .- - - -

~ • Z~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C. S. R. GROUP 12 C. S. It GROUP

consideration to the object model. (Two other obvious candidates for starting points are
the data flow model and the actor model, both of which already contain the notion of
communications; since neither is developed quite as far as the object model we have
left them for future examination.) Under that view, each node is a self-contained system
with storage, a program interpreter that is programmed in a high-level object—oriented
language such as CLU or Alphard, and an attachment to a data communication network of
the kind previously discussed.

We immediately observed that several interesting problems are posed by the
interaction between the object model and the hypothesis of autonomy. There are two
basic alternative premises that one can start wit F4 in thinking about how to compute with
an object that is represented at another node; send instructions about what to do with
the object to the place it is stored, or send a copy of the representation of the object to
the place that wants to compute with it. (In between combinations are also possible, but
conceptually it is simpler to think about the extreme cases first.) An initial reaction
mi ght be to begin by considering the number of bits that must be moved from one node
to another to carry out the two alternatives, but that approach misses the most
interesting issues; reliability, integrity, responsibility for protection of the object, and
naming problems. Suppose the object stays in its original home. Semantics for
requesting operations, and reporting results and failures are needed. For some kinds of
objects , there may be operations that return references to other, related objects.
Semantics to properly interpret these references are required. Checking of authorization
to request operations is required. Some way must be found for the (autonomous) node
to gracefully defer, queue, or refuse requests, if it is overloaded or not in operation at
the moment.

Suppose, on the other hand, that a copy of the object is moved to the node that
wants to do the computation. Privacy, protection of the contents, in tegrity of the
representation, and proper interpretation of names embedded in the object
representation are all problems. Yet, making copies of data seems an essential part of
achieving autonomy from nodes that contain needed information but aren’t always
accessible. Considering these two premises as alternatives seems to raise
simultaneously so many issues of performance, integrity of the object representation,
privacy of its content , what name is used for the object, and responsibility for the
object, that the question is probably not posed properly. However, it begins to illustrate
the range of considerations that should be thought about. We have identified the
following, more specific, problems that require solutions:

a. One would expect to achieve reliability and resporse speed by arranging that an
object have multiple representations stored at ci.aerent places. However, such
replication must be done in a systematic way. An example of non—systematic
multiple representation occurs whenever one user of a time-sharing system
confronts another with the complaint, “I thought you said you fixed that bug,” and
receives the response, “I did. You must have gotten an old copy of the program. 

-.-—--~~~~.- - -~~~~~~~ . :.. , • • - ~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~ 4



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..— ~~~~— .--~~—~~-—- —~~- - —--~~.--~- —~ --—- -.—---•---~~~.-.--- ~~------ - .

C. S. R. GROUP 13 C. S. R. GROUP

What you have to do is type...” Semantics are needed to express the notion that
for some purposes any of several representations are equally good, but for other
purposes they aren’t.

b. An object at one node needs to “contain” (for example, use as part of its
representation) objects from other nodes. This idea focuses on the semantics of
naming remote objects. It is not clear whether the names involved should be
relative’y high-level (e.g., character-string file names) or low-level (e.g., segment
numbers).

c. Related to the previous problem are issues of object motion: suppose object A,
which contains as a component object B, is either copied or moved from one node

F to another, either temporarily or permanently. Can object B be left behind or be
in yet another node? The answer may depend on the exact combination of the
attributes: copy or moved, temporary or permanent. Autonomy is deeply involved
here, since one cannot rely on availability of the original node to resolve the name
of B.

d. More generally, semantics are needed for gracefully coping with objects that aren’t
there when they are requested. (Information stored in autonomous nodes will
often f all in this category.) This idea seems closely related to the one of coping
with objects that have multiple versions and the most rec~~t version is
inaccessible. (Semantics for dealing systematically with errors and other surprises
have not really been devised for monolithic, centralized systems either. However,
it appears that in the decentralized case, the problem cannot so easily be avoided
by the ad hoc tricks or finesse as it was in the past)

F 
e. Algorithms are needed that allow atomic update of two (or more) objects stored at

different nodes, in the face of errors in communication and failures of individual
nodes. (Most published work on making atomic updates to several sites has
concentrated on algorithms that perform well despite communication delay or that
can be proven correct. Unfortunately, algorithms construc ted without consideration
of reliability and failure are not easily extended to cope with those additional
considerations, so there seems to be no way to build in that work.) There are
several forms of atomic update: there may be consistency constraints across two
or more different objects (e.g., the sum of all the balances in a bank should always
be zero) or there may be a requirement that several copies of an object be kept
identical. The semantic view that objects are immutable may provide a more
hospitable base for extension to interaction among autonomous nodes than the
view that objects ultimately are implemented by cells that can contain different
values at different times. (The more interesting algorithms for making coordinated
changes in the face of errors seem to implement something resembling Immutable
objects.) 

•
~~~~

-•---
~~~

“.--..— --~~- . , -~~- . ..-~~~ - -~~~~
• ——-———-- — - - • - - - -



• C. S. R. GROUP 14 C. S. ft GROUP

Constraining the range of errors that must be tolerated seems to be a promising
way to look at these last two problems. Not all failures are equally likely, and more

• important, some kinds of failures can perhaps be guarded against by specific remedies,
— rather than tolerated. For example, a common protocol problem in a network is that

some node both crashes and restores service again before anyone notices; outstanding
connections through the network sometime continue without realizing that the node’s
state has been reset. A change in the semantics of the host-net interface could locally
eliminate this kind of failure instead of leaving it as a problem for higher level protocols.

The following oversimplified world view, to be taken by each node, may offer a
systematic way to think about multiply represented objects and atomic operations: there
are two kinds of objects, mine and everyone else’s. My node acts as a cache memory
for objects belonging to others that I use, and everyone else acts as a backing store .
These roles are simply reversed for my own objects. (One can quickly invent situations
where this view breaks down, causing deadlocks or wrong answers, but the question Is
whether or not there are real world problems for which this view Is adequate.)

Finally, it is apparent that one can get carried away with ingenious algorithms that
handle all possible cases. An area requiring substantial investigation is real world
applications. It may turn out that only a few of these issues arise often enough in
practice to require systematic solutions. It may be possible, in many cases, to cope wi th
distant objects quite successfully as special cases to be programmed one at a time.

F 2. Other Problems in the Semantics of Coherence

Usual models of computation permit only “correct” results, with no provision for
tolerating “acceptably close” answers. Sometimes provision is made to report that 

~~result can be returned. In a loose confederacy of autonomous nodes, exactly correct
results may be unattainable, but no answer at all is too restricting. For example, one
might want a count of the current number of employees, and each department has that
number stored in its computer. At the moment the question is asked, one department’s
computer is down, and its count is inaccessible. But a copy of last month’s count for that
department is available elsewhere. An “almost right” answer utilizing last month’s count
for one department may well be close enough for the purpose the question was asked,
but we have no semantics available for requesting or returning such answers. A more
extreme example surrounds an attempt to determine the sum of all checking account
balances in the United States, by interrogating every bank’s computer. An exact result
seems both unnecessary and unrealistic to obtain. A general solution to this problem
seems to require a perspective from Artificial Intelligence, but particular solutions may
be programmable if there were available semantics for detecting that one object Is an
out-of-date version of another, or that a requested but unavailable object has an out-
of -date copy. It is not clear at what level these associations should be made.

_ _ _  A



C. S. R. GROUP 15 C. S. R. GROUP

Semantics are also needed to express constraints or partial contraints of time
sequence. (e.g. “reservations are to be made in the order they are requested, except
that two reservation requests arriving at different nodes within one minute may be
processed out of order.”) Note that the possibility of unreliable nodes or communications
severely complicates this problem.

The semantics of autonomy are not clear. When can I disconnect my node from the
network without disrupting my (or other) operations? How do I refuse to report
information that I have in my node in a way that is not disruptive? If my node is
overloaded, which requests coming from other nodes can be deferred without causing
deadlock?

3. Heterogeneous and Homogeneous Systems

A question that we have repeatedly encountered is whether or not one should
assume that the various autonomous nodes of a loosely coupled confederacy of systems
are identical either in hardware or in lower level software support. The assumption of
autonomy and observations of the way the real world behaves both lead to a strong
conclusion that one must be able to interconnect heterogeneous (that is, different)
systems. Yet, to be systematic, some level of homogeneity is essential, and in addition
the clarity that homogeneity provides in allowing one to see a single research problem at
a time is very appealing.

We now believe that the proper approach to this issue lies in careful definition of
node boundaries. We insist that every node present to every other node a common,
homogeneous interface, whose definition we hope to specify. That interface may be a
native interface , directly implemented by the node, or it may be simulated by
interpretation, using the (presumably differe it) native facilities of th~ node. This
approach allows one to work on the semantics of decentralized systems without the
confusion of heterogeneity, yet it permits at least some non-conforming systems to
participate in a confederacy. There is, of course, no guarantee that an arbitrary
previously existing computer system will be able to simulate the required interface
easily or efficiently.

4. Conclusion

The various problems uncovered in the course of this work are by no means
independent of one another, although each seems to have a flavor of its own. In addition,
they probably do not span the complete range of issues that should be explored in
establishing an appropriate semantics for expressing computations in a confederacy of
loosely coupled, autonomous computer systems. Further , some are recognizable as
problems of semantics of centralized systems that were never solved very well. But
they do seem to represent a starting point that we expect to lead to more carefully
framed questions and eventually some new conceptual insight 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _


_ _ _ - -

C. S. R. GROUP 16 C. S. ft GROUP

0. A LOCAL NETWORK FOR LCS

During the year, development of the Local Network for the Laboratory for
Computer Science progressed to the point where the first three nodes on the net are
expected to be operational within the next two months. As discussed in detail in the
sections below, the critical decisions concerning the hardware and protocols to be used
on our network have been made during the last twelve months, making it possible for a
variety of projects related to the network to proceed forward in parallel.

1. Hardware

Our last annual report related that our choices for the transmission technology to
be used in the network quickly narrowed to two architectures: the ethernet developed
by Boggs and Metcalfe at Xerox Palo Alto Research Center, and the ring network
developed by Farber at the University of California, Irvine. The architecture and
hardware of the ring network and the ethernet are very different, and, at first glance,
the functional capabilities of the two seem quite different as well. However, discussions
with Metcalfe and Farber, and with others in our laboratory, led to the conclusion that
there are few inherent differences in the functional capabilities of the basic ethernet and
ring network communications schemes. This made the choice between them a very
difficult one. ~t appeared, in fact , that the impor tant differences between the two
networks were operational differences such as reliability, cost, and convenience, which
could only be evaluated by comparing a running version of each network In a similar
environment.

A way out of this dilemma was suggested when we discovered that we could
design a network interface that, with minor modification, could operate either a ringnet or
an ethernet. Thus, without procuring two complete sets of interface hardware, we can
bring up both versions of the network and compare them operationally. Given this
observation, we determined that we would construct the LCS Net in two subcomponents,
one a ringnet and one an ethernet, and perform an operational comparison of the two.
We have done some preliminary comparative analysis of the two.

The primary hardware component of our network is the Local Net Interface (LNI),
which provides the means of connecting the various hosts to the network The LNIs that
we intend to use for the network have been designed by David Farber at the University
of California , Irvine; they are a second generation ring interface that Farber is
developing under contract with ARPA , based on the ring developed for the Irvine
Distributed Computing System. We have been assisting in the design of these interfaces,
so that we will be able to produce a version of this hardware that can drive an ethernet
as well as a ringnet.

- . -

~~~~~

-——

~~~~~~~~~~

—_ - . • • -

~~~~~~~~

--- . _ ,- •

~

_ 

~~~~~~~~~~~~~

—

~~~

. —-- - -
~~~~~

_-. - _ -
~

C. S. R. GROUP 17 C. S. R. GROUP

The LNI, as delivered by Farber, includes an interface to the POP/li Unibus. One
of the tasks yet to be completed is the fabrication of an interf ace to connect the LNI to
the POP- lOs in the building. It is possible that Farber will complete the design of a
POP- 10 interface to the LNI; as an interim interface it appears very easy to attach the
LNI to the TTL bus that is locally used for connection to the POP-i Os. Eventually, the
LNI will probably require a connection to the POP-i Os that runs at a higher speed than
the TTL bus will permit.

A hardware project that was partially completed during the year is the
interconnection of a microprocessor to the LNI. A microprocessor directly connectable to
the network can be used in a variety of ways, for example as a controller for a computer
terminal or other remote input/output device. The microprocessor selected for this first
implementation was the Motorola M6800. The first application for the microprocessor will
be as a terminal interface for the local network.

One of the important functions of our local network will be to provide a means of
access to the ARPANET from the various machines at the laboratory. The interconnection
between the local net and the ARPANET will be made using a POP 11/35 that was
provided for the project by ARPA. This machine will be used to perform the various
protocol translations that will be required as part of the interconnection of the local
network and the ARPA network. One project being performed at the laboratory is the
development of a hardware interface to connect this POP/il to the ARPANET. The DEC
interface is bulky, expensive, and not rapidly obtainable. We hope our local version will
perform better on these counts.

2. Protocols

As part of the development of our local network, it was necessary for us to
develop or select a low level protocol for end-to-end communication over the network
We chose as a starting point the Transmission Control Protocol , or TCP, but we
permitted ourselves the option of changing the protocol slightly to better conform to our
local needs as we saw them. The resulting protocol is called Data Stream Protocol, or
DSP. DSP provides functionality equivalent to TCP, but is simpler, primarily due to the
elimination of certain control functions and synchronizing algorithms.

We are currently involved in an effort to bring DSP and TCP together again, since
TCP is the ARPANET standard for end-to-end communication in the “Internet ”
environment. We have attended several meetings of the TCP working group, and have
met with some success in our attempt to include in TCP some of the features in DSP.

DSP must be implemented on all the machines which we propose to connect to the
local network Our initial effort has been devoted to an implementation of DSP for the
UNIX operating system on the POP/i 1. One of the first machines to be connected to our
local network will be the UNIX system in the Domain Specific Systems research group. In

_ _

r —
~~~~~~~~~~~~~~~~~~~~ 

— — _____________________________

C. S. R. GROUP 18 C. S. ft GROUP

addition, the POP/ I I gateway to the ARPANET will run the UNIX operating system. An
implementation of DSP (or perhaps TCP) is scheduled for the Multics system later in the
calendar year. Preliminary plans have been made for implementation of DSP on the ITS
machines, and we are considering how DSP might be implemented on the TENEX operating
system. As part of the microprocessor project mentioned above, we have also
implemented DSP for the M5800. The initial implementation on the M6800 required 1300
bytes of program, and although this size will undoubtedly increase as the implementation
is polished, the size of the algorithm suggests that we were somewhat successful in our
ambition that DSP be a fairly simple protocol.

Initially, the local net will use the same high level protocols that are now used in
the ARPANET. It appears that the ARPANET protocols for remote login (TELNET), file
transfer , and mail sending can be made to operate on top of DSP without major
modification. Therefore, for systems that currently have software f or connection to the
ARPANET , the only coding required as part of the interconnection to the local net is the
imp lementation of DSP, and minor modification of existing higher level protocols.
ARPANET software already exists for all the machines currently scheduled for connection
to the local network.

We have begun the design of higher level protocols to provide new service~ that
seem appropriate in the local net. In particular , we have proposed a rather flexible
scheme for naming and initiating connections to services in the local network Examples
of services that might be named using this mechanism are the delivery of a message to a
specified mailbox, the updating of a file, or the remote login to a system. The mechanism
uses decentralized active agents to provide an environment that is robust in the face of
system failures. The names used are tree structured in order to deal in the natural way
with name conflicts and to allow the easy definition of new services in a given context

All of the network architectures that we have considered are ccmpletely insecure,
since all messages being sent appear on all portionó of the network. While our
laboratory is a “benign” environment in which the needs for securi ty of data
communication are rather small, considerations of personal privacy continue to be
relevant in an environment such as ours, so our needs for security, while minimal, are not
zero. Also, we would like to design a network whose applicability extends to situations
with stronger protection requirements than we have. For these reasons, we have
studied the securing of information flowing through our local network by means of data
encryption. Data encryption is becoming a viable possibility for a network even as
simple as the one we contemplate here, because data encryption algorithms can now be
obtained on a single chip. We have proposed an end-to-end encryption strategy using
the NBS data encryption standard integrated into a modified version of DSP, which Is
essentially invisible to the higher level protocols. Its use in the local network could be
made automatic, invisible and inexpensive. We feel that the integration of some security
mechanism into our network will considerably enhance the Impact of our work in th.
outside world. 

— 



_________________ 
_—-

~~-- 
- .- -_ .—...-.~ .-.----- .-- .---- - _ -

C. S. R. GROUP 19 C. S. R. C ‘JP

E. ARPANET AND NSW SUPPORT

During the year, our group significantly reduced the level of effor t committed to
maintaining the ARPANET connection to the Multics system. Although Honeywell has not
officially accepted support for the ARPA NET software, it has agreed that it will attempt
to modify the ARPANET software when necessary as a result of changes to other parts
of the system. Therefore, we are somewhat relieved of the continued effort which has
been required just to maintain the ARPANET in a stable condition. The only modifications
to the software that we are performing at this point are changes required to support
other research activities of our group.

We continue to improve the implementation of the higher level protocols on
Multics, especially the programs for sending and receiving network mail. The Information
Processing Center is currently providing computer time on Multics in support of our
project to produce an installable program for reading and managing mail. We are also in
the process of transferring to IPC the cost of managing the system services related to
receiving and sending network mail.

A significant amount of effort has been invested in making Multics a participating
member of the National Software Works. At this point, Multics is a legitimate tool—
bearing host in the NSW. We are in the process of transferring continued support of
NSW on Multics to the Rome Air Development Center, Rome, NV. 

_ - - _ _ -_--



r ~~~~~~~
- -—- 

~~~~~~~
-
~~~~~~~~~~~~~~

--—-
~~

-
~~
--- -

~ 
- ---.- -._—--- - -- . --—. - - - 

—.-.-_.-._ _ _ -

20

Publications

1. Saltzer , Jerome. “Technical Possibilities and Problems in Protecting Data in
Computer Systems.” Oatenschutz und Oatensicherung. Edited by R Dieret&n, II
Fielder, and A. Schulz. Germany: J. P. Bachem Verlag, 1976.

2. Seltzer , Jerome. “Computer.” McGraw-Hill Encyclopedia of Science and
Technology. New York: McGraw-Hill 1976.

3. Svobodova, Liba. “Software Performance Monitors: Design Trade-Offs.” Seventh
CMG International Conference. Atlanta, Ga., November 1976.

4. Svobodova, Liba. Computer Performance Measurement and Evaluation Methods:
Analysis and Applications. New York: American Elsevier, 1976.

5. Svobodova, Liba. “Computer System Measureability.” Computer, Vol. 9 No. 6
(June 1976), 9-17.

6. Svobodova, Liba; Mattson, R. “The Role of Emulation in Performance Measurement
and Evaluation.” Proceedings of the International Symposium on Computer
Performance Modelling; Measurement and Evaluation. Cambridge, Ma. March
1976.

Theses Completed

1. Benjamin, Arthur. Improving Information Storage Reliability Using a Data Network
M.I.T., Laboratory for Computer Science, LCS/TM- 78. Cambridge, Ma., 1976.

2. Gifford , David. “Hardware Es timation of a Processes Primary Memory
Requirements.” unpublished B.S. Thesis, M.I.T., Department of Electrical Engineering
and Computer Science, 1976.

3. Huber, Andrew. A Multi-process Design of a Paging System. M.I.T., Laboratory for
Computer Science, LCS/TR- 1 71. Cambridge, Ma. 1976.

4. Hunt, Douglas. A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem. M.I.T., Laboratory for Computer Science, LCS/TR-1 74. Cambridge, Ma.,
1976.

5. Janson, Philippe. Using Type Extension to Organize Vir tual Memory Mechanisms.
M.I.T., Laboratory for Computer Science, LCS/TR- 167. Cambridge, Ma., 1976. 

--~~~~~~~~~---~~~ - -- - ---_ - __ _ - —.-~~ -._~~-_ ~~ 



r ~~~~~~~~~~ ~~

- -.-

~~ 

- - --.—_ ,.

~~~~~

-_ _ - .

C. S. R. GROUP 21 C. S. R. GROUP

6. Montgomery, Warren. A Secure and Flexible Model of Process Initiation for a
Computer Utility. M.I.T., Laboratory for Computer Science , LCS/TR- 163.
Cambridge, Ma, 1976.

7. Reed, David. Process Multiplexing in a Layered Operating System. M.I.T.,
Laboratory for Computer Science, LCS/TR- 164. Cambridge, Ma., 1976.

8. Shibuya, Masaoki. “Recovery for the Duplicate Database Problem.” unpublished
M.S. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
1976.

9. Smith, Anthony. “Implementation of a Network-Wide File System on Multics.”
unpublished B.S. Thesis, M.I.T., Department of Electrical Engineering and Computer
Science, 1976.

Theses in Progress

1. Ciccarelfi, Eugene. “Multiplexed Communication for Secure Operating Systems.”
MS. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, December 1 977.

2. d’Oliveira, Cecilia “A Conjecture About Computer Decentralization.” B.S. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expected date
of completion, August 1977.

3. Goldberg, Harold. “A Robust Environment for Program Development.” M.S. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expected date
of completion, February 1 977.

4. Harriman, Edward. “A Microprocessor Based Implementation of a Data Stream
Protocol Processor.” B.S. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, expected date of completion, February 1977.

5. Karger, Paul. “Non-Discretionary Access Control for Decentralized Computing
Systems.” M.S. Thesis, M.I.T., Department of Electrical Engineering and Computer
Science, expected date of completion, May 1977.

6. Luniewski, Allen. “A Simple and Flexible System Initialization Mechanism” MS.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, expected
date of completion, May 1977.

-

~

- -.

~

---- . ~~~~~~~~~ --—---— -. ~~~~~ - .

r
..

C. S. R. GROUP 22 C. S. ft GROUP

7. Mason, Andrew. “A Layered Virtual Memory Manager.” MS. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completion, May 1 977.

8. Rodriguez, Humberto. “Measuring User Characteristics on the Multics System”
B.S. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, May 1 977.

Talks and Presentations

1. Forsdick, Harry. “The Design of a Distributed Data Base Management System.”
Sperry Research Center, Sudbury, Ma, November 1 976.

2. Hunt, Douglas. “Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem.” Stanford Research Institute, Menlo Park, Ca., December 1976; C.S.
Draper Laboratory, Cambridge, Ma, April 1 976.

3. Janson, Philippe. “Validating the Protection Mechanism of a System.” IRIA
Workshop on Protection and Security in Data Networks, Le Chesnay, France, June
1 976.

4. Kanodia, Rajendra. “Network Measurements.” Panel member, AFIPS National
Computer Conference, New York, N.Y., June 1976.

5. Kanodia, Rajendra. “Eventcounts: A New Model of Process Synchronization.”
Xerox Palo Alto Research Center, Palo Alto, Ca., June 1976; IBM Watson Research
Center, Yorktown Heights, N.Y., June 1 976.

6. RedeIl, David. “Proprietary Subsystems and Personal Computers.” Xerox Palo Alto
Research Center, Palo Alto, Ca., February 1976.

7. Redell, David. “The Multics Kernel Design Project.” IBM San Jose Research
Center, San Jose, Ca., March 1 976.

8. Saltzer , Jerome. “Pragmatic Approaches to Obtaining Correct Operating Systems.”
IBM Research Laboratory, Zurich, Switzerland, September 1 976; Cambridge
University, Cambridge, England, September 1 976; Rutgers University, New
Brunswick, N.J., November 1 976.

9. Saltzer , Jerome. “The Mu~tics Kernel Design Project.” Honeywell Information
Systems Inc., Phoenix, Az., June 1976.

-.-—~~~—- -~~~--- ~~~~~ - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
..-~~~~—— -

~~~~~~~~~~~~~~~~~~~~~ ---~~~~~~~~~~~
-
~~~~~

C. S. R. GROUP 23 C. S. R. GROUP

10. Saltier, Jerome. “System Implications of Advancing Storage Technology.” IBM San
Jose Research Laboratory, San Jose, Ca, June 1976.

11. Schroeder, Michael. “The Multics Kernel Projec t.” Xerox Palo Alto Research
Center, Palo Alto, Ca., January 1976; Cambridge University, Cambridge, England,
April 1976.

12. Svobodova, Liba. “Computer Structures.” Session chairman, AFIPS National
Computer Conference, New York, N.Y., June 1 976.

13. Wells, Douglas. “Use of the ARPANET with Multics.” Rome Air Development
Center, Rome, N.Y., April 1 976.

14. Wells, Douglas. “Implementation of the National Software Works on Multics.” Rome
Air Development Center, Rome, N.Y., April 1 976.

Committee Memberships

Pogran, Kenneth. ARPA Message Service Committee

Pogran, Kenneth. ARPA Committee on Computer-Aided Human Communication

Saltzer, Jerome. ARPA IPTO Security Working Group

Wells, Douglas. ARPA IPTO NSW Working Group 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~-~~~~~~~~~~~~ - -~~~~~~~~ --—


- ~~ ~~~~~~~~~
- ..

~
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--— ---—.—- 

~~~~~~~~ 

~
‘
~1

O.S.S.R. GROUP 25 D.S.S.R GROUP

• DOMAIN SPECIFIC SYSTEMS RESEARCH

Academic Staff

S. A. Ward, Group Leader P. G. Jessel
M. L. Dertouzos J. Weizenbeum

Research Staff

C. Cesar P. Houpt

Graduate Students

S. V. Chiu B. Schunck
J. GuIa T. Teixeira
R. Halstead C. Terman
A. Mok L Tsien
J. Pershing J. Wahid
A. Reuveni

Undergraduate Students

V T. Hayes A. Wilding-White
D. Kahn E. Ziemba

$~pport Staff

N. MacKenzie J. Pinella

_ _ —-.
~~~-**-~~~~—.~~~~~..• ___ .



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -.

D.S.S.R. GROUP 27 D.S.S.R. GROUP

DOMAIN SPECIFIC SYSTEMS RESEARC H

A. INTRODUCTION

During the past year the D.S.S.R. group’s research activities have evolved along
the dual themes of real time and distributed computing. Each of these directions is a
natural consequence of the continuing effort to exploit microprocessor technology in
specific applications: real time because of characteristics of typical applications, and
distributed processing because of the scaling properties it affords.

B. REAL TIME BLOCK DIAGRAM SCHEMATA

This work is directed toward the implementation of a language system (compiler
and run-time support) which approximates continuous-time block diagram systems on
conventional general purpose digital computers. The language has been named
CONSORT, standing for CONtrol Structure Optimized for Real-Time. The source
language includes a description of the functional interconnection of the blocks in the
diagram, and various real-time constraints that must be satisfied by the implementation.
CONSORT represents a si gnificant improvement over conventional real-time
programming systems in that the user specifies an acceptable level of real-time
performance without having to specify how that level of performance must be achieved
i.e. a CONSORT program is a description of what to do, and not how (or more precisely,
when) to do it.

Restriction of the source language to time bounded computations interconnected
by fixed data paths allows scheduling strategies to be thoroughly explored at compile
time, yielding in many cases a simple static control structure which guarantees the
required real time performance of the object program. Such compilation Involves
interesting scheduling problems and, in the general case, is an NP—complete problem.
Thus our approach involves compile-time heuristics and the risk of missing possible
solutions to given problems.

An initial implementation (by T. Teixeira) is near completion, and generates static
control structures from block diagrams with continuously varying (in time) data values.
Current efforts are directed toward the automatic partitioning of schemata into
sections allocated to separate processors for cases where no single processor solution
can be found.

Continuing activity in this area will include further refinement of the underlying
scheduling algorithms, as well as extension of the system to discrete time (and
consequent production of interrupt-based control structures).

Research by P. Jessel is directed toward the development of a language which
includes most traditional control structures (e.g. do.... while and conditionals) and yet 

~—-•- .-.— • •-- ~~ - -



- . -~~ - - - . - .---.-. ~~- - - - -— - .--——-.---— . .-~ ~ - --- . . -~ —.—— - - --.—-—~ - - .- --..-.

O.S.S.R. GROUP 28 D.S.S.R. GROUP

t or which computation time can be oounded. The eUective computation of a program
module depends on the control ~~~~~~ of that module and on the values of its inputs.
The problems of calculating estimated execution time has a number of similarities to
problems in program verification. In order to est mate the execution time of a program
it is necessary to trace all possible sequences and determine the time associated with
each statement. The ease of this task clearly depends on the complexity of the control
structures. It is a relatively easy task for linear code. However, for various control
structures such as loops and corid~tionals the task becomes more difficult and depends
on the value of the inpu data.

C. SEMANTICS FOR DISTRIBUTED PROCESSING

One motivation for multiple processor systems is the potential they provide for
expansion witnout radicai reorgan ization of problem-dependent software and
techniques. Achieving this characteristic o~ gracefui scaling requires an underlying
semantics whose structure constrains as little as possible the physical locality of
computations and data; we further require , ot course , that this semantics be an
appropriate basis for the class of computations to be performed.

In the problem domain of process control , notions of monitoring and dispatching of
correct ive actions upon the occurrence of certain conditions are fundamental.
Abstractions of the semantics of this problem domain would suggest that parallelism is
a natural state of affairs and that a dominant activity in the domain is the signalling into
activity of one program module by another. In general, a program module may directly
activate in parallel, multi ple program modules. Symmetrically, the semantics of the
problem domain also allows that the activation of a program module be dependent upon
inputs from a multiplicity of program m odules.

Recent works of C. Hewitt & aI. [Hewitt 75] [Greif 74] [Greif 75], Kay [Xerox
PARC 76] and S. Ward and Halstead [Ward 77] on message passing as a semantic basis
for programming languages are esp~ciaIly ~ttractive vehicles for such computations.
The primitive activity in these systems is the sending of a message from one program
m odule to another. Communication and control n these systems are not separable so
that receipt of a message causes an activation of the target module with the message
providing parameters for that activation. Message passing necessarily implies the use
of continuations as an alternative to the implicit control return points of subexpression
evaluations as found in applicative languages.

The mu-calculus has been developed by Ward and Halstead to serve as a formal
semantic basis for the study of such computations in a dis tributed processor
environment. Recent extensions give capabiiities (such as the ability to produce side
effects ) which are desirable for modelling many practical systems. Of particular
interest is the specification of to~~~ a nove’ synchronization concept which may find
application independent of the use of the mu-calculus.

- -4



• 
_ _  

.

~~~~~~~~~~~~
— •—-- - - • - . - .

~~~~~~~~~~~~

—- .—-—- ----

~~~~~

- • - .

D.S.S.R. GROUP 29 D.S.S.R. GROUP

Current work by Haistead has led to preliminary specifications for a distributed
processor network which allows objects to move freely from one processor to another,
yet enables any processor desiring to reference an object to discover an appropriate
route for its request so that the request will eventually reach the object. This routing
information is kept in a distributed fashion and requires only local changes if an object
moves just a short distance. A distributed garbage collection algorithm allows
unreferenceable objects to be detected and removed, even if the objects were at
some time referenced from many different sites. A simulator for the system (running
on UNIX) has been constructed.

Current work by J. Gula has led to the definition of protocols for communication
between heterogeneous machines. The protocol assumes that each host machine on a
network supports a network interface which transforms objects from an internal
representation to a standard network representation. Interfaces support both data and
procedural objects and thus one machine can specify a computation to be performed on
a remote machine and supply arguments and receive results in a format consistent with
local conventions.

D. AUTOMATIC CODE GENERATION

During the past year this research by Terman has concentrated on the
development of a descriptive formalism to serve as the basis for the automatic
creation of an optimizing code generator.

The creation of a compiler for a specific language and target machine is an
arduous process. It is not uncommon to invest several years in the production of an
acceptible compiler; the excellent compilers for PL/l on MULTICS and BLISS 11 on the
POP-il evolved over a decade or more. With the rapid development of new
computing hardware and the proliferation of high-level languages, such an Investment is
no longer practical, especially if there is little carry-over from one implementation to
the next.

In an effort to automate compiler production, systems have been developed to
automatically generate those portions of the compiler which translate the initial
specification into an internal form suitable for code generation. These systems have
enhanced portability and extensibility of the resultant compiler without a significant
degradation of performance. The final phases of a compiler, those concerned with code
generation, are now coming under a similar scrutiny. The ultimate goal of this research
is to develop a system which can automatically construct a viable code generator.
Current efforts address the issue of providing a specification of a code generator. One
can envision several distinct uses for such a specification:

1. as a convenient way of replacing English descriptions of an algorithm (much the
same way a BNF documents syntactically legal programs)

____ ~~

r ~~~

—.-— -- •• -

~~~~~~

D.S.S.R. GROUP 30 D.S.S.R. GROUP

2. as a specification to a system which, along with a specific input string, can be
interpreted in order to produce an acceptible translation (e.g. syntax directed
translatiOn based on a parse of the input string) or

3. as an input specification to a system which automatically constructs a code
generator (similar to the various specifications fed to a compiler—compiler).

The extra level of interpretation (compilation in the case of a compiler-compiler)
provides an added measure of flexibility not found in other code generation schemes.

The specification itself is couched in a metalanguage based on a blend of
production systems, pattern matching, and attribute grammars. The basic element of
the metalanguage is the form and its attributes (each attribute is an indicator—value
pair). These attributes correspond to the “meaning” of their associated form; this
naturall y leads to two categories: inherited and synthesized attributes. Inherited
attributes describe the context in which the form appears; synthesized attributes
describe those properties of the form which derive from its component parts. The
relationship between the attributes of one form and another is specified by wsemantic
rules.” With sufficient care in designing the rules, it is possible to express complicated
interrelationships between sets of forms as relatively simple step-by—step syntactic
relationships between their components. A collection of rules can be used to describe
the translation performed by a code generator and, with the inclusion of cost
information, it is possible to define the optimal translation.

During the past year the syntax of the metalanguage has been finalized and a
formal description of the metalanguage has been generated. The formal properties of
production systems have been examined in order to determine a mechanism for
translating a specification based on the above mentioned rules Into an actual code
generator.

Research during the coming year will be directed towards developing a sample
description and compiler-compiler. Based on a survey of current optimizing code
generators the metalanguage will be “specialized” to include primitive attributes that
reflect common code generation techniques.

E. PROCESS CONTROL

Work in this area by P. Houpt, B. Schunck, and J. Wahid has been aimed at
translating traditional analog control algorithms to digital hardware. Although this
activity represents a si gnificant improvement over the current ad hoc approach to
computerized process control, restricting the domain to analog control algorithms and
conventional computer structures unduly limits the solution possibilities. Accordingly
one component of the group’s effor ts are directed at developing a more cOmprehensive
theory of computerized control. Some of the topics under study are:

- - - - - - -4



D.S.S.R. GROUP 31 D.S.S.R. GROUP

1. Timing problems: processes are most efficently utilized if they are allowed to
• interact asynchronously. Unfortunately, the current approach to sampled data

systems implies a fixed sampling rate. For example the derivation of the
equations for the LOG regulator is based on the assumption that the sampling
rate is fixed in advance and remains constant while the system is under control.
For a digital controller to satisfy this assumption it must be designed to
guarantee that the control signal will be updated at exactly the proper instant.
One solution currently being studied by Schunck is to utilize a variable sampling
rate, and redefine the control equations accordingly.

a Sampling skew: unlike analog controllers, the computation associated with the
feedback loop of a digital unit significantly skews the relationship between
observation and control , and in fact the observations used in one sampling period
are acquired during a previous period. This violates many of the assumptions
used to derive feedback gains and as a result we (Wahid ) are currently
attempting to incorporate this effect in the derivations.

3. The applicability of heuristic control; most control algorithms seem best suited
to analog implementation. However, in implementing these algorithms on a digital
processor, it seems advantageous to incorporate the inherent decision capability
in the control. Our goal is to define a framework for this extended approach to
control by developing a process control language with the appropriate semantic
structure.

F. MICROPROCESSOR SIMULATION OF DIGITAL LOGIC

Another application of Block Diagram Schemata currently under investigation by
C. Cesar is real-time simulation of conventional digital logic. The inputs to CONSORT,
named in this case HOME (for Hardware on Microprocessor Emulation), are a description
of the hardware and the specification of real time environmental constraints. These
are independent, and are linked only by the names of input and output variables. In
particular, the I/O variables are the “external variables” of the hardware description
and are the basis for all real-time environment relationships. The output of the
system, if emulation is possible, is the microprocessor code that simulates the
hardware in real-time.

Hardware is described by a hardware description language (HOL). Our HDL is a
non—procedural, single block (all variables are global), register-transfer level language.
The language syntax and interpretation is tailored to the problem of real-time
simulation. A “program” (i.e. a description) is composed of an unordered list of
statements , where each statement is composed of an assignment prefixed by a
condition. A true condition “activates ” (forces execution) the assignment.

The real-time environment constraints (RTEC) description has been limited to a 

~~-—-- --- --- •~~~ -.~~ ••~~~- - - -~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ ~~~~~~~~~~~~ - - -



D.S.S.R. GROUP 32 D.S.S.R. GROUP

set of few basic timing relations. The central idea involves defining when signal
transitions (positive, leading-edge, or negative, trailing-edge) can or should occur.
Transitions are located (in time) relative to other transitions, and accordingly a timing
relation is specified on two transitions. If the two transitions belong to two different
signals, one has an inter-signal relation. If the pair belongs to the same signal, one has
an intra-signal relation. Finally, if a transition is measured relative to itself then one is
defining a periodic event.

Both intra and inter-signal relations can be subdivided into two types: width and
interval. Width measures (time) distances between a positive and a negative transition
or between a negative and a positive transition. Interval measures distances between
either two positive or two negative transitions. Periodicity is viewed as a repetitive
intra-signal interval.

Absolute real-time constraints, as defined above, are too restrictive, ominously
pointing to an impossible emulation. In practice , bounds on acceptable rather than
absolute values are provided. These we name tolerances. Note that they are
“Iogical”--not electrical--tolerances, and act as a bound--a maximum and a minimum——
which delimits the range of possible values for a rela tion (width, interval, or
pen odici ty).

The initial phase of our work is not committed to the use of a particular
microprocessor architecture. The emphasis is on “proceduralization” of the
aforementioned non-procedural hardware constructs. For this purpose a procedural
version of the non-procedural HDL is used as the target architecture. It differs from
its non-procedural cousin in two respects. First, because it is procedural, it includes
extra computer control structures such as tests, jumps, and subroutine calls. Second,
each operator in the HOL has a pre-defined time duration, which forms the basis of the
“compilation al gori thm ” that derives the necessary ordering of the non—procedural
constructs.

The HOME system operates on its inputs to obtain code for the hardware
emulation via a three steps translation process:

1. Partial proceduralization of the non-procedural description. This involves looking
for function dependencies between statements. This dependency exists when
the execution of one statement can potentially cause the execution of another
statement. Such dependencies indicate a desirable (fas ter) order for the
execution of these statements. As a result of this step, a partial ordering on the
statements is achieved which is independent of the timing constraints.

- -

~ 

-. —--~~~~~~~~~- .“.--~~~~~~~~~~~~~~ ~~~~~ - -_--. - .- - - -—-~~• --—- —.—-“ 



- • ~~~~~~~~~~~~~~ ---

D.S.S.R. GROUP 33 D.S.S.R. GROUP

2. Superimposing RTEC on the partially proceduralized description. Real-time
constraints are “imposed” to the partial ordering to reveal impossible emulations,
to indicate further dependencies between statements , and to set up the
conditions for the final translation step.

3. Final proceduralization. Using RTEC, it is now necessary to schedule statements
which do not have any functional dependency and which appear, from the partial
ordering of step one, to require either concurrent or parallel execution.
Furthermore, RTEC helps in scheduling the acknowledgement of input changes.

G. LABORATORY

One of the first goals of our research was the development of an integrated
laboratory environment which would facilitate the design of software and system tools
f or target microprocessors. Although this development represents an ongoing process,
many of our initial goals have been achieved during the reporting period. The
laboratory utilizes a POP 11/70 running the UNIX timesharing system as the central host
facilit y. It includes a number of conventional tools such as assemblers, simulators and
downloaders for several microprocessors. In addition, during the reporting period, A.
Wilding-White developed a version of BCPL for the lntel-8080 based on our partial
compilation approach described in last year’s report.

The facility has become a central M.I.T. resource which is used by a number of
groups within the community for developing microprocessor applications. Examples
include a controller for solar energy panels and a microprocessor based regulator for
linear motors. In addition this facility serves as the host for all of the development
work described above.

The facility also includes a hardware laboratory, coupled to the host system.
We have used the laboratory primarily to demonstrate the feasibility of some of our
approaches. In particular , the lab has proved to be invaluable in providing target
microprocessor systems and control applications for the CONSORT project During the
period, a fourth-order inverted pendulum system was balanced.

- • - - -



D.S.S.R. GROUP 34 D.S.S.R. GROUP

Publications

1. Jessel, P. “Localized Microprocessor Based Networks.” Proceedings of the
National Telecommunications Conference. Dallas, Tx., November 28-29, 1976.

2. Jessel, P.; Chen, R.; and Patterson, R. “MININET - A Microprocessor Controlled
MINI NETWORK.” Proceedings of the ~~~ Special Issue on Microprocessors, Vol.
64 No. 6 (June 1976), 988-993.

3. Jessel , P., and Ward, S. “Oomain Specific Systems: A New Approach to
Microprocessor Based Design.” EUROMICRO Symposium. Amsterdam: North-
Holland, October 1976.

4. Mok, A. Task Scheduling in the Control Robotics Environment. M.I.T., Laboratory
for Computer Science, MIT/LCS/TM-77. Cambridge, Ma., Sept. 1976.

Theses Completed

1. Calabi, S. “Stack Depth Distributions as Characterizations of Program Reference
Strings.” unpublished SM. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, 1976.

3. Robinson, B. “A Programmable Microprocessor System Debugger.” unpublished
S.M. Thesls, M.I.T. Department of Electrical Engineering and Computer Science,
1976.

Theses in Progress

1. Cesar, C. “Real Time Simulation Random Logic.” Ph.D. Thesis, M.I.T., Department
of Electrical Engineering and Computer Science, expected date of completion
May 1978.

2. Gula, J. “A Distributed Operating System for an Object Based Network? S.M.
Thesis, M.I.T., Department of Elec trical Engineering and Computer Science,
expected date of completion September 1977.

3. Halstead, R. “Multiprocessor Implementations of Message-Passing Systems.N SM.
Thesis, MII.T., Department of Electrical Engineering and Computer Science,
expected date of completion September 1977.

L - •



- • • •  --.---—— —. — ~~~.-

D.S.S.R. GROUP 35 O.S.S.R. GROUP

4. Pershing, J. “Design of Domain Specific Mets Compiler for Systems Using
Graphical Input as a Source Language.” SM. Thesis, M.I.T., Department of
Electrical Engineering and Computer Science, expected date of completion
September 1977.

5. Schunck, B. “Analysis of the Effect of LOG Control on Computer Structures.” S.M.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion June 1978.

6. Teixeira, T. “Block Diagram Languages for Process Monitoring and Control.” S.M.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion September 1977.

7. Terman, C. “A Descrip tion-Driven Universal Translator.” SM. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completion September 1 977.

8. Wahid, J. “Microprocessors in Control Applications.” S.M. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completion January 1 977.

Talks

1. Jessel, P. “Second Annual Asilomar Workshop on Microprocessors.” Asilomar,
Ca., April 27, 1976

2. Jessel, P. “The Impact of Microprocessors on Engineering Education.” Fall ASEE
Middle Atlantic Section Meeting, Villanova, Pa., November 1, 1976.

3. Ward, S. “Microprocessor Software.” IEEE Seminar Series, Burlington, Ma.
January 1 976.

4. Ward, S. “Translating the User Problem ” IEEE Workshop on Microprocessors,
Waltham, Ma. February 1 976.

5. Ward, S. “Microprocessor Selection.” IEEE Workshop on Microprocessors,
Waltham, Ma. February 1976.

6. Ward, S. “Microprocessor Systems.” Guest Lecture at M.I.T. Seminar Program in
Artificial Intelligence, Machine Vision and Productivity, Cambridge, Ma. June
1976.

_ _  _ _ _  ~~~~~ - -~ 



KNOWLEDGE-BASED SYSTEMS GROUP 37 KNOWLEDGE-BASED SYSTEMS GROUP

KNOWLEDGE-BASED SYSTEMS

Academic Staff

W. A. Martin, Group Leader G. R. Ruth
1. B. Hawkirison P. Szolovlte

Research Staff

R. V. Baron D. Kapur
A. Boughton W. A. KornfeldG. P. Brown M. K. SrivasG. Burke 0. StefanescuR. Fisher A. SunguroffN. R. Greenfeld

Graduate Students

R. B. Krumland M. L MorgensternW. J. Long W. R. SwartoutW. S. Mark

Undergraduate Students

C. Kiselyak C. ‘Thomas

- 
Support Staff

B. J. Demps V. E. Lewis0. C. Foster



-- • .., ---- --- -~~~~~~----

KNOWLEDGE-BASED SYSTEMS GROUP 39 KNOWLEDGE-BASED SYSTEMS GROUP

KNOWLEDGE-BASED SYSTEMS

A. SUMMARY OF WORK IN PROGRESS

The research of our group may conveniently be divided into the high-level
business-oriented language HIBOL, the knowledge representation system OWL, and
individual knowled~e representation projects.

Beginning this report with HIBOL, the summer of 1976 saw an intensive effort to
get the HIBOL version of the A&T Supermarket case through the system and into
compiled PL/l code. This was successful , but involved a certain amount of system
handholding and did not include report formatting. In September, M. Morgenstern
finished his Ph.D. thesis on the file and program configuration optimizer, and R. Baron
returned to being a full-time student, doing an M.S. thesis evaluating the strengths and
weaknesses of the current system. G. Ruth continued to improve various modules of
the system. We are currently trying to run a version of the A&T case, including
reports, through the system and to check the accuracy of the running PL/l code. We
are also coding and running two other cases. From a practical point of view, the
optimizer and its data requirements are the only questionable elements. We are thus
developing a language for telling the system a proposed result of optimization. One
could then input the HIBOL specification separately. This should make a practical
language which would be fast to use and modify. The optimizer could also be used on
problems of the size of A&T if desired. In his thesis, Baron is subjecting HIBOL to a
careful analysis and his results should be of interest to anyone trying to design a very
high level business data processing language.

On the OW L front, L. Hawkinson continued to improve his Linguistic Memory
System, the module which supports the basic data structures of OWL. With the
departure of A. Sunguroff , G. Brown has taken over the maintenance of the OWL I
interpreter. Brown has also completed her work on the Susie Software dialogue. The
decision has been made to introduce a second version of OWL OWL II. During the past
year, W. A. Martin has been working on the “world model” for OWL II, and designing an
English grammar to go with it. The OWL II parser , grammar , and IMS have worked
together for selected sentences and it is anticipated that the components will work
well by the f all of 1977. To test these components we have sketched out a system
which will be an “interactive database dictionary.” This system acquires the
description of the contents of databases from users and then answers questions about
what data is available in the data bases with which it is familiar. Brown is
implementing this system. Once this system is working well, designing a second
interpreter is envisioned.

With respect to individual knowledge representation projects, W. Mark finished
his Ph.D. thesis; and R. Krumland and W. Long are expected to finish shortly.

_ _  .. -~~ ~~.•• —- • , .~~ • • ~~-.— • -.•~~~ • - j



r ~~

- - -

~~~~~~~ 

- - - - ——-— - ---- -

~~~~~

-

~~~~~~~~~~~~~~~~

- -

~~

—

~~~~~~~~~~~~~~~~~~~~~~~~ ~~

- .

~~~~~~

-- -

KNOWLEDGE-BASED SYSTEMS GROUP 40 KNOWLEDGE-BASED SYSTEMS GROUP

Publications

I. Mark, W. The Reformulation of Model Exper tise. Ph.D. Thesis. M.I.T., Laboratory
for Computer Science, LCS/TR- 1 72. Cambridge, Ma, September 1976.

2. Martin, W. A. “Comment following article by Schank and Lehnert.” Research
Directions in Software Technology. Edited by Peter Wagner. Cambridge, Ma.:
M.I.T. Press. To appear.

3. Ruth, G. R. “Automatic Design of Data Processing Systems.” Third ACM
Symposium on Principles of Programming Languages. Atlanta, Georgia, Jan. 19—21, —

1976.

4. Ruth, G. R. “Automatic Programming: Automating the Software System
Development Process.” Research Directions in Software Technology. Edited by
Peter Wegner. Cambridge, Ma.: M.I.T. Press. To appear.

Theses Completed

I. Morgenstern, M. “Automated Design and Optimizatk’n of Information Processing
Systems.” unpublished Ph.D. Thesis, M.I.T., Department of Electrical Engineering
and Computer Science, September 1976.

Theses in Progress

1. Baron, R. B. “Structural Analysis in a Very High Level Language.” M.S. Thesis,
M.I.T., Dept. of Electrical Engineering and Computer Science, expected date of
completion, September 1 977.

2. Krumland, R. B. “Base Concepts and Mechanisms in Knowledge-Based Model
Building for Managers.” unpublished Ph.D. thesis, M.I.T., Department of Electrical
Engineering and Computer Science, expected date of completion, June 1977.

3. Long, W. J. “A Program Writer.” Ph.D. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, expected date of completion, September
1977.

_ _ _ _ a- —~

PROGRAMMING METHODOLOGY GROUP 41 PROGRAMMING METHODOLOGY GROUP

PROGRAMMING METHODOLOGY

Academic Staff

B. H. Liskov, Group Leader

Graduate Students

R. R. Atkinson J. E. Moss
V. A. Berzins R. N. Principato
T. Bloom J. C. Schaffert
D. Kapur A. Snyder
M. S. Laventhal M. K. Srlvas

Undergraduate Students

C. L Fulton R. W. Scheifler
D. P. Gorgen K. V~rgile
E. J. McCabe

Support Staff

M. Nieuwkerk A. L Rubin

I

_____________ _______________________
— —~~~~ -.~~~~~--~—--

r ~~

PROGRAMMING METHODOLOGY GROUP 43 PROGRAMMING METHODOLOGY GROUP

PROGRAMMING METHODOLOGY

A. INTRODUCTION

The goal of the research of the Programming Methodology group is the
development of tools and techniques that ease the production of quality software ,
software that is reliable and relatively easy to understand, modify, and maintain. Our
work is based on a programming methodology in which the recognition of abstractions is
the key to problem decomposition. A program is constructed in many stages. At each
stage, the problem to be solved is how to implement some abstraction (the initial
problem is to implement the abstract behavior required of the entire program). This is
done by performing the following four steps:

1. Problem Decomposition. The programmer envisions a number of subsidiary
abstractions useful in the problem domain.

a Specification. The behavior of each abstraction is specified precisely.

3. Implementation. Once the behavior of the subsidiary abstractions is understood
and specified, they can be used in a program to implement the original
abstraction.

4. Verifica tion. The programmer verifies that the implementation is correct ,
assuming that the subsidiary abstractions are implemented correctly.

As soon as step (2) has been performed, new problems exist concerning how to
implement the abstractions defined in step (2). The programmer can choose to work
on one of these problems immediately, before steps (3) and (4) have been carried out
for the current stage. The process terminates when all abstractions generated during
design are realized either by programs or by the programming language in use.

To make effective use of this methodology, it is necessary to understand the
nature of the abstractions useful in constructing programs; this includes what is being
abstracted, and what form the abstraction takes. In studying this question, we
identified three kinds of useful abstractions: procedural, control and especially data
abstractions. While the procedural abstraction which performs a computation on a set
of input objects and produces a set of output objects , has long been recognized as
useful, control and data abstractions have been neglected in discussions of- programming
methodology.

A control abstraction defines a method of sequencing arbitrary actions. All
languages provide built-in control abstractions; examples are the if statement and the
while statement. In addition, however, it is helpful to allow user definitions of a simple
kind of control abstrac tion, which is a generalization of the repetition methods (in
particular, the for statement) available in many programming languages. Frequently the
programmer desires to perform the same action for all the objects in a collection, such

---- - ,-- - - - - ~~~~~~~~~~~~ -- ~~—

r —.

~~ ~~~

- -—

PROGRAMMING METHODOLOGY GROUP 44 PROGRAMMING METHODOLOGY GROUP

as all the characters in a string or all items in a set. The simple control abstraction
permits the action to be described separately from the method of obtaining the objects
in the collection.

A data abstraction is used to introduce a new type of data object that is
deemed useful in the domain of the problem being solved. At the level of use, the
programmer is concerned with the behavior of these data objects--what kinds of
information can be stored in them and obtained from them. The programmer is not
concerned with how the data objects are represented in storage, nor with the
algorithms used to store and access information in them. In fact, a data abstraction is
often introduced to delay such implementation decisions until a later stage of design.

The behavior of the data objects is expressed most naturally in terms of a set
of operations that are meaningful f or those objects. This set will include operations to
create objects , to obtain information from them, and possibly to modify them. For
example, push and pop are among the meaningful operations for stacks , while
meaningful operations for integers include the usual arithmetic operations.

Thus, a data abstraction consists of a set of objects and a set of operations that
characterize the behavior of the objects. Ip ensure that a data abstraction can be
understood at an abstract level , we require that the set of operations completely
determine the behavior of the data objects. This property can be achieved by making
the operations the only direct means of creating and manipulating the objects.

The Programming Methodology group is involved in two main areas of research
that support the above methodology:

1. We are developing the programming language, CLU, which provides linguistic
support for programming with abstractions. Data and control abstractions are
not well supported by conventional languages.

2. We are developing techniques for specifying the meaning of abstractions, and for
verifying the correctness of programs written in terms of abstractions.

In the following sections we discuss some of our accomplishments of the past
year. In the next section , we describe how CLU supports the use of control
abstractions. (A comprehensive treatment of the abstraction mechanisms in CLU can be
found in [1 7].) In Section C, we discuss how a language like CLU can be extended to
incorporate an access control facility. Section 0 contains a discussion of optimization
techniques for a CLU-~like language. In Section E, our work on specification of data
abstractions is described.

— ~~~~~. .—— —-—~~~~~~~~~~~~~~~~
—- —-- - - -

- .-- - - --~~~~~~~~~~~ — ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
- -- -—-,~~~----.“,——- —.—-

PROGRAMMING METHODOLOGY GROUP 45 PROGRAMMING METHODOLOGY GROUP

B. ITERATORS

The purpose of many loops is to perform some action on all of the objects in a
collection. For such loops, it is often useful to separate the selection of the next
object from the action performed on that object. CLU provides a control abstraction
mechanism that permits a complete decomposition of the two activities. The for
statement available in many programming languages provides a limited ability in this
direction: it allows iteration over ranges of integers. The CLU for statement allows
iteration over collections of any type of object. The selection of the next object in
the collection is done by a user-defined uera (or. The iterator produces the objects in
the collection one at a time (the entire collection need not physically exist); the
objects are then consumed by the for statement.

We illustrate the use of iterators by means of a simple example. Figure 1
shows an iterator called s tring ~~har s , which produces the characters in a string in the
order in which they appear. This iterator uses string operations size (s), which tells
how many characters are in the string s, and fetch(s , n), which returns the ~th character
in the string s (provided the integer n is greater than zero and does not exceed the
size of the string).

count_numeric = proc (s: string) returns (int);
count: m t := 0;
for c: char in string_chars (s) do

if char_ is _numeric (c)
then count ;~

- count + 1;
end;

end;
return count;
end count_numeric;

string_chars = iter (s: string) yields (char);
index: m t := 1;
limit: m t := stringSsize (s);
while index <= limit do

yield stringSfetch (s, index);
index := index + 1;
end;

end string_chars;

Figure 1. Use and Definition of a Simple Iterator.

_ _ —~~~~~~~~~ — -— -~~~~~ - -~~~~
. - - --~~-* ~~~~~~~~~ ——~~~ - -.,--

PROGRAMMING METHODOLOGY GROUP 46 PROGRAMMING METHODOLOGY GROUP

The general form of the CLU for statement is

for declarations in iterator-invocation
do body end;

An example of the use of the for statement occurs in the count numeric procedure (see
Fi gure 1) , which contains a loop that counts the number of numeric characters in a
string. Note that the details of how the characters are obtained from the string are
entirely contained in the definition of the iterator.

lterators work as follows: a for statement initially invokes an iterator, passing it
some arguments. Each time a yield statement is executed in the iterator, the objects
yielded are assi gned to the variables declared in the for statement (following the
reserved word for). (One or more objects may be yielded, but the number and types
of objects yielded each time by an iterator must agree with the number and types of
variables in a for statement using the iterator.) Then the loop body is executed. Next
the iterator is resumed at the statement following the y ield statement, in the same
environment as when the objects were yielded. When the iterator terminates, either
by an explicit return statement (which must not return any objects) or by completing
the execution of the body, then the invoking for statement terminates.

For example, suppose that Strin g chars is invoked by count .j zumerlc with the string
“a3”. The first character yielded is ‘a’. At this point within String_ c/t ars , index = I and
l imit = 2. Next the body of the for statement is performed. Since the character ‘a’ is
not numeric, count remains at 0. Next strin g_ chars is resumed at the statement after the
yield statement , and when resumed, index = 1 and limit = 2. Then index is assigned 2,
and the character ‘3’ is selected from the string and yielded. Since ‘3’ is numeric, count
becomes 1. Then s tr ing c/t ars is resumed, with Index = 2 and limit = 2, and Index is
incremented, which causes the while loop to terminate, and the iterator to terminate.
This terminates the for statement, with control resuming at the statement after the for
statement, and count = 1.

While iterators are useful in general, they are especially valuable in conjunction
with data abstractions that are collections of objects (such as sets and arrays).
lterators afford users of such abstractions access to all objects in the collection, while
exposing a minimum of detail. Several iterators may be included in a data abstraction.
Where the order of obtaining the objects is important, different iterators may provide
different orders.

- -

PROGRAMMING METHODOLOGY GROUP 47 PROGRAMMING METHODOLOGY GROUP

C. ACCESS CONTROL

One of the most important attributes of a program~ning language is the way the
scope rules of the language define how data is to be shared among the individual
program units (procedures, blocks, modules) out of which a program is constructed.
Ordinarily, access to data is provided on an all-or-nothing basis: if a module has
access to some data base, then every component of the data base is accessible, and
every possible type of access (usually just reading and writing) may be performed.
Experience in building large applications, or applications involving sensitive data, has
indicated that sharing of data is enhanced if finer control than all-or-nothing access is
provided. For example, manipulation of the information in a data base is much more
controlled if not every program that reads the data base is also permitted to write It.
In addition, if some of the information in a data base is sensitive, then control over
which programs can read which information is also desired.

Current programming languages are deficient in providing mechanisms for
controlling the sharing of information among program units. For example, passing a data
base “by value” ensures that the called procedure may not modify the data base.
However, this mechanism does not provide control over what parts of a data base may
be read; in addition, it is so expensive for large data bases that other parameter
passing mechanisms (for example, call by reference) are used instead. Proposals for
avoiding the overhead of call by value while retaining the benefit that the data base
cannot be modified (for examp le, call by reference, but permitting only read access to
the formal parameter) solve the efficiency problem, but still do not provide for
selective reading of the data base. In addition, such proposals do not provide for the
control of selective alteration of the data base.

B. Liskov and A. Jones (Computer Science Department , Carnegie-Mellon
University) have investigated a programming language extension that provides for
controlled sharing of data [12]. The approach taken borrows heavily from work in
operating systems, where access control mechanisms have long been one of the tools
useful f or realizing controlled sharing of data. In particular, our mechanism is modelled
after the capability protection mechanisms provided by some operating systems [24,
26].

To incorporate an access control mechanism in a programming language, we have
chosen an approach that permits programmers to express access control restrictions in
terms that are meaningful to their application domains. We assume that all data are
contained in obj ects for which there exists a set of accesses. Objects are those entities,
such as data bases, libraries, stacks or fi les, that are of interest to programmers.
Accesses are limited to those that are meaningful manipulations of the objects;
accesses are the only means for altering an object or extracting information from it. In
some cases, meaningful accesses are the familiar read, write, and, possibly, execute
access. In other cases , the accesses themselves are user-defined, tailored to the
abstract notion the user intends to capture. For example, a file system may distinguish
between write access and append access. In contrast to a write access, an append

_ _ _ _ _ _ _ _
-

_ _ -- ~~rn

-~~ ~~-—~~~~ - ~~~~~~~--—~~ _ - -~~~-_~~~~---~~—.- ---—--—-- —-

PROGRAMMING METHODOLOGY GROUP 48 PROGRAMMING METHODOLOGY GROUP

access is assumed to modify the file, but not to alter existing content This permits a
user to share a file with others, allowing them to augment the file by appending to it,
but not allowing them the ability to rewrite any portion of it.

Thus, to discuss access control we require a language that permits the writing of
programs in terms of data objects and the accesses that are meaningful for them. In
particular, languages in which a datum is Viewed as an aggregate of memory cells, are
not suitable, because of the difficulty of expressing access control on anything but a
cell basis. One class of languages, including the languages SIMULA 67 [3, 4], CLU [17],
and Alphard [28], provides a natural environment in which to embed an access control
facility. In these languages, a data type is viewed as a set of objects and a set of
operations. The operations of a data type correspond very closely (though not
identically, as we shall show) to our notion of access, and access control corresponds
to the ability to control the use of the operations.

To accommodate access control, we will add one more component to a type: in
addition to objects and operations, a type also specifies a set of rights. A ri ght is a
name that represents a meaningful manipulation of objects of the type often a right
corresponds to the use of one of the type’s operations. The basic idea behind rights
is: to legally apply one of the type’s operations, a user must hold appropriate rights to
the objects passed to that operation as parameters.

An example is given in Figure 2 for the type, Assoc iatlveMemory. Operations for
this t ype include an operation to create an empty Assoc tativeMemo ry object of a
particular size (makemem) , an operation to add a name-value pair to an AssoclativeMemor,
(inser t) , an operation to change the value associated with a given name (change) , an
operation to fetch the value associated with a given name (ge wal) , and an operation to
remove a name—value pair (delete). In order I or insert , change, getoal, or delete to be
invoked , the invoker must present a right to apply the opera tion to the
Associat iveMemory object passed in as a parameter; in this particular example, the name
of the required right is the same as the name of the operation. The makemem operation
returns all these rights for the As s oc i a ti veMe mory object it creates. The
Assoc ia t iv eMem ory operations also use objects of type integer; for simplicity we have
chosen to omit information about required rights for all integer objects. In general, we
can expect some rights to correspond to the use of a single operation, some to a group
of operations and some to a single parameter of an operation taking more than one
object of the type.

Embedding an access control facility in a programming language permits
expression of access restrictions as an integral part of a program. In addition, the
question of whether a program obeys access control restrictions, and is thus access-
correct , can be answered at compile time. This can lead to benefits similar to those
derived from compile-time type checking: confidence that the program is access—
correct, and enhanced efficiency over the dynamic mechanisms currently provided by
operating systems.

- -
—-

~
-

PROGRAMMING METHODOLOGY GROUP 49 PROGRAMMING METHODOLOGY GROUP

type: AssociativeMemory
rights: “insert”, “change”, “getval”, “delete”
operations:

makemem
input: integer; (desired Associati veMemory size)
output: AssociativeMemory; lnsert”,”change”,”getval”, “delete” rights are given

insert
input: AssociativeMemory; “insert” right required

integer; the name)
integer; the value)

effect: (insert modifies its AssociativeMemory parameter)

change
input: AssociativeMemory; “change” right required

integer; (the name)
integer; (the new value)

effect: (change modifies its AssociativeMemory parameter)

getval
input: AssociativeMemory; “getvel” right required

integer; (the name)
output: integer; (the value)

delete
input: AssociativeMemory; “delete” right required

integer; (the name)
effect: (delete modifies its AssociativeMemory parameter)

Figure 2. The AssociativeMemory Type.

1. Basic Model

Our approach to access control is based on a semantic model in which objec s are
shared among variables. Each object has a type, which determines the legal accesses to
the object. Our notation for access control involves a declaration for each variable of
the type of object that variable may refer to, and the rights that are available for that
object when it is used via the variable. These two pieces of information are captured
in the notion of a qualified type. A qualified type is written

T{rl,...,rn}

L - -

— .— _— ___Ij __ _ _. —- ----.._--.- -—----~
-

PROGRAMMING METHODOLOGY GROUP 50 PROGRAMMING METHODOLOGY GROUP

where T is the name of some type, and {r l ,.., rn} is a non-empty subset of the rights of
T. We refer to the two parts of a qualified type as the base type and the righte; If Q
is a qualified type, then base(Q) is the base type and rlg hts (Q) is the rights. For
example , the fo l lowing are some of the qualified types derived from
AssociativeMemory

AssociativeMemory {getval }
AssociativeMemory {insert, change}
A ssociativeMemory {insert, change, getval, delete}

The final example specifies all the AssociativeMemory rights; a special notation

T{all}

may be used instead of listing all the rights.

Qualified types are used in variable declarations and in formal parameter
specifications in procedure headings. An example of a variable declaration is:

v: Associati veMemory {insert, change}

The meaning of this declaration is: v is a variable that can be used to refer to
Associati veMemory objects , but only the “insert” and “change” rights may be exercised In
conjunction with v.

We view a variable as a pair

{object Id, qualified type}

The object id is a unique name that is interpreted by the underlying addressing
mechanism to select an object. When a variable is crea ted, its qualified type is
defined once and for all and can never be altered. However, the object named by a
variable (via the objec t id) can change by application of the binding operation. Binding
causes a variable to refer to an object by storing that object’s id in the variable. Note
that it is possible for sharing of objects to take place, because two variables may
contain the same object id. In this case, the qualified type in the two variables may
differ, but the binding rule (discussed in the next section) ensures that the base type
is necessarily the same.

A variable contains a capability in the operating system sense (5, 14]. The
capability provides the basis for restricting the kinds of manipulation that can be
performed on the object specified by the object id. Intuitively, the restrictions on how
an object can be used are expressed along the path to the object (the path through
the object id in the variable). Thus, using one path rather than another to name en
objec t changes the way the object can be manipulated. For example, suppose

_ _ _ - -- --~~~~~-


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

PROGRAMMING METHODOLOGY GROUP 51 PROGRAMMING METHODOLOGY GROUP

a: Associat iveMemory{getva l, insert}
b: AssociativeMemory{getva l}

both name the same object Using b it is impossible to modify this object, since only
the getval operation can be used; using a, the object may be modified by application of
the insert operation.

Our notions of variable, object and binding are different from the related notions 4
of value and assignments that underlie block-structured languages. This difference is
illustrated in Figure 3. Figure 3a shows the traditional view of variables and values, in
which the value resides in the variable and a new value can be copied into a variable
by means of assignment. Figure 3b illustrates our semantics: a variable is bound to an
object, and a value is contained in an object. This value . may be accessed or modified
onl y by means of one of the operations of the object ’s type. Our rule of binding
differs from assi gnment in that it causes shar ing of the object involved, rather than the
copying of the value in the object. Furthermore , this sharing is significant since, for
some types of objects, operations exist to change the value inside of the object. For
example, the Assoc iat i veMemor y operations insert , change and delete modify the value
inside of an Ass ocia ti veMemory object.

Our notion of binding corresponds to assignments involving variables holding
(typed) references to objects. Some programming languages are based on a semantic
model like ours. The most widely known of these languages is LISP [18] LISP lists are
objects (with operations car, cdr, and cons) and LISP setq is similar to our binding. Our
model is also used in SIMULA 67 and CLU.

variable

value

Figure 3a. Traditional view of variables and values.

variable objec t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 3b. Model used in this paper.

Figure 3. Comparison of Semantic Models.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- ---- - -
~~~~ 

- —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - -

PROGRAMMING METHODOLOGY GROUP 52 PROGRAMMI NG METHODOLOGY GROUP

We believe that our semantics models very well what is going on in systems
where controlled sharing is of interest. Note that sharing of objects is a fundamental
fac t in these systems; the sharing of actual objects (rather than just copies of the
values of objects) leads both to interesting behavior (e.g. many programs working with
the same data base), and the need to exercise some control over exactly how the
object should be shared. Protection schemes exist to provide this control.

2. Binding Rule

A single rule, governing the legality of binding of objects to var iables, is
sufficient to provide the required access control and is the basis for determining
whether a program is access-correct (obeys the access control restrictions). Binding is
the operation that causes a variable to refer to an object (by changing the object id).
The effect of binding is creation of a new access path for the object. Therefore, to
ensure that a program is access-correct , we must guarantee that no new access rights
to the object are obtained from this new access path. For example, suppose that r
and y are variables, and that x is to be bound to the object currently bound to y. This
new binding should be allowed only if the qualified types of x and y both arise from the
same base type, and if the rights obtainable by referring to the object via variable x
do not exceed the rights obtainable by referring to the object via y.

We can formalize this rule as follows. First, we define what it means for one
qualified type to be greater than or equal to another. if Qi and Q2 are qualified types,
then Ql is greater than or equal to Q2, written

01 >Q2

if base( Qj) = base(Q2) and rlg hts(Q1) rights(Q2). Now the rule of binding can be defined:

v4- e

where v is a variable and e is an expression and

T~ = qualified type of variable v
Te = qualified type of expression e

is legal provided that

Te > T v

Thus ~ binding is legal only if the new access path provides at most a subset of the
ri ghts obtainable via the original access path. Note that this rule ensures that a
variable will always refer to an object whose type is the base type of the qualified
type of the variable.

An expression is either a variable, in which case its qualified type is the same

_  j



- 1~~~

PROGRAMMING METHODOLOGY GROUP 53 PROGRAMMING METHODOLOGY GROUP

as the qualified type of the variable, or it is a procedure invocation. In the former
case, we have now defined the rule of binding (since Te is the qualified type of this
variable). For example, suppose

a. Associat iveMemory{getva l, insert}
b. Assoc iativeMemory{getva l}

Then b a is legal, but a ~- b is not. This is illustrated in Figure 4. In Figure 4a, an
initial configuration is shown in which a refers -to an AssociativeMemory object a, and b
refers to an AssociativeMemory object ~~~. Figure 4b shows the result of b .- a. Both b
and a now refer to a. A new access path (from b to a) has been created as a resul t of
this binding, but no new rights to a are obtained by it; in fact, the new access path via
1’ has fewer rights to a than the old access path. Figure 4c illustrates what would be
the result of a ~- b. If this binding were allowed, the new access path from a to fi
would allow more rights than the old one, and therefore the binding must not be
permitted.

In order to understand binding when the right-hand side is a procedure
invocation, we must examine the semantics of parameter passing. Our notion of
parameter passing is defined in terms of binding. A procedure definition has the form

procedure <procname’ (<formals specification>)
returns <result specification>
<body> 

-

end <procname>

where <formals specification> specifies the name and qualified type for each formal
parameter , and <result specification> specifies the qualified type returned by the
procedure. Each formal parameter is considered to be a local variable of the
procedure; this variable is created at invocation, and the actual parameter is bound to
it The procedure invocation is legal only if the bindings of actual to formal parameters
are legal. The qualified type of the invocation expression is then the type specified in
the <result specification>.

For example, suppose a procedure P has type requirements

procedure P (x: T1{f l,f2}) returns T2{gI}

and declarations

a: T1{f l ,f2,f4}
b: T2{gl} 



r ——-‘— _ _

PROGRAMMING METHODOLOGY GROUP 54 PROGRAMMING METHODOLOGY GROUP

a ~~ssociat iveMemory a
[{getva l , insert}

b [ ~~~~~~tiveMemor~~
4
~~~~~~

3
Fi gure 4a. The initial state.

a Associat iveMemory a
{getva l, insert}

b AssociativeMemory
{getval } 0
Figure 4b. Result of b 4- a.

a AssociativeMemory a
{getva l, insert}

b

Figure 4c. Result of a ~ b (disallowed).

Figure 4. Binding.

occur in the invoker of P. Then the statement b ~ P(a) is legal because the invocation
P(a) is legal (x ~- a is legal), and the object returned by P has qualified type T2{gI } and
theref ore may be legally bound to b. However , b ~ P(c), where C: TI ifI,fl), Is not legal
because the invocation P(c) is not legal (x 4- C is not legal).

The question of whether a procedure definition is access-correc t can be
answered independently of any invocation of that procedure. A procedure Is access-
correct provided that all bindings within it are legal, and that for every return
statement:

return <expr>

the qualified type of <expr> is greater than or equal to the qualified type In the
procedure <result specification>.

~~~~~~~~~~~~~~~~ 

-

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~--~~~~~~~~~~ - --- - -


~ — ~~~~~~~~~~~~
-
~~~~~~~~~

-- -  - - -

PROGRAMMING METHODOLOGY GROUP 55 PROGRAMMING METHODOLOGY GROUP

Procedure invocation is the mechanism whereby objects are created in the first
place. There exist a number of primitive data types (for example integer , boolean , array).
The creation operations of these types provide objects of the type whenever they are
invoked, and these objects are returned with full rights. For the non-primitive, user-
defined types the situation is analogous. This has already been illustrated in the
Ass oci a t iveMe mory example shown in Figure 1; whenever the mak emern operation for
Associative Memory is invoked, it returns a new AssociatiueMemory object with full rights.
Thus the creator of an object obtains all rights to it. As the object is passed from one
access-correct procedure to another, certain rights may be removed, but rights are
never gained. This is true because binding is the only method provjded for sharing
objects between procedures.

3. Discussion

The access control mechanism described above is sufficient to control the
sharing of many of the kinds of objects of interest in programming. For example,
suppose we define a type employee -record , with operations (and rights) to read -jo b-category.
write-job-category, read-salar y, and write-salary, among others. Using the rules defined so
far, we can define a procedure

procedure P (x: empl oyee-record{read-job-category, write-sal ary})

which computes a new salary based on the employee’s job category, but is unable to
change the job category, or to read the old salary. -

The above discussion is intended to introduce the reader to the access control
facility. A complete description of this facility, which includes the following additional
topics, is given in [12]:

a. The use of amp lification [10] in the program module defining a new type.

b. An extension of the binding rule to control sharing of objects passed indirectly——
through the medium of another object.

c. A comparison of the access control facility with the dynamic mechanism present
in the Hydra system [ii, 16].

0. OPTIMIZATION

One objection raised to the adoption of structured programming methods is that
they produce inefficient programs. While we believe that the major cost of software
is its construction and verification, the cost of executing programs cannot be Ignored.
Both costs can be reduced by the use of program optimization techniques. The
rationale for program optimization is nicely stated by W. WuIf, et al. [27, p. 131],

_ 



_ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

PROGRAMMING METHODOLOGY GROUP 56 PROGRAMMING METHODOLOGY GROUP

The reason that compiler optimization is important is that programmer efficiency
and execution efficiency need not be a choice we must make. Optimization is a
technological device to let us have our cake and eat it, too--both to have convenient
and well-structured programming and efficient programs.

R. Atkinson has investigated an approach to optimization that is especially
applicable to languages like CLU [1]. First a program is transformed by a technique
known as inline substitution, which substitutes the bodies of procedures for certain
invocations of those procedures. This transformation tends to increase the size of the
transformed program, but tends to decrease the execution time by eliminating
procedure call overhead, and by enabling more global optimizations. Then the data and
control flow of the transform ed program is obtained using symbolic interpretation.
Finally, standard optimization techniques, such as constant propagation, are performed,
making use of the data and control flow information and, in addition, information about
properties of procedures and about the interaction among the operations of a data
abstraction.

1. Inline Substitution

ln~ine substitution reduces execution time by eliminating the overhead involved
in using the procedure call mechanism. The size change resulting from a substitution is
simp ly the difference between the size of the expanded invocation and the size of that
part of the call mechanism originally present in the code. Coupled with these “direct”
effects on space and time are corresponding “indirect” effects. Placing a procedure
body in a specific context can present new opportunities for optimization using other
techniques. These optimizations will generally reduce execution time even further, but
their effect on program size will depend on the technique.

When procedure bodies are small , as they are in CLU programs, many
optimization techniques are ineffective , simply because they require the presence of a
substantial context. Thus, performing inline substitution before using other techniques
may be the key to successful optimization of structured programs.

R. Scheifler has studied inline substitution as an independent optimization
technique [23]. This study involved the analysis of the following problem: given a
program and constraints on the final program size, find a ~equence of substitutions that
minimizes the expected execution time, considering only “direct” effects.

A key phrase in this problem statement is “expected execution time.” Some
method is needed to determine the number of times an invocation is expected to
execute. We believe a good method is to run the program using data selected by the
programmer , and to count the number of times each invocation executes. These
statistics can then be used as the initial expected numbers. They are “initial ” numbers
for two reasons: 

~~~~~— -~~~~~~~~~~~~~~~~~~~~~~~ - --~~~~ - - ~~~-~~~~~~~~~~ --~~~~~~~~~~~- - -~~~~~ _ _- --

~~

- --

~~

-- ~~---~~~~ ~~- -~~-

~ -

PROGRAMMING METHODOLOGY GROUP 57 PROGRAMMING METHODOLOGY GROUP

a. Inline substitution ca. . create new invocations, each of which must be assigned an
expected number.

b. When the body of a procedure P is substituted for an invocation, P is no longer
called as often, implying that new expected numbers must be assigned to
invocations contained in P.

To completely determine how expected numbers change, the control flow history
must be retained in the statistics , necessitating many counters for each invocation.
However, a single counter will suffice if a simplifying assumption is made about control
flow: for any procedure body and any invocation contained therein, the expected
number of executions of the invocation per execution of the body is constant. From
this assumption a set of equations has been developed for calculating new expected
numbers. The equations work when substituting for recursive as well as non-recursive
invocations.

Using these equations, an algorithm to perform inline substitution can be
formula ted. However , as a practical matter , the problem of finding a set of
substitutions that minimizes execution time is intractable. R. Scheifler has shown this
problem to be NP-hard, meaning there is no known algorithm that will always solve the
problem in polynomial time, and the existence of such an algorithm would imply
polynomial-time algorithms for many classic hard problems [23].

An approximate solution to the problem has been developed, and is implemented
for the current CLU system. The al gorithm is built on a very simple heuristic:
substitute for invocations that execute often but call small procedures. More
precisely, at each step choose the invocation that will yield the greates ’ time savings
per unit space increase. Continue until the maximum program size is reached. Lastl y,
while there is an invocation that is the sole remaining invocation of a non-recursive
procedure, substitute for the invocation. This allows the procedure itself to be
discarded, and so does not increase the program size.

Preliminary results using this algorithm indicate that , in programs with a low
degree of recursion, over 90 percent of all procedure calls can be eliminated with little
increase (-1 to 25 percent) in the size of compiled code, and with moderate savings
(10 to 30 percent) in execution time.

2. Program Analysis

Following inline substitution, two kir~ds of program analysis are carried out.
First, the program is analyzed to obtain informat ion about its control flow and data
flow. Then the flow information is analyzed to ‘~ ~ if y potential optimizations.

R. Atkinson has investigated a non-standard method for obtaining control and

L

data flow information [1]. He has adapted the technique of symbolic Interpre ation [13], in
which a program is executed using symbolic objects rather than actual objects.

- ~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~
— --

~~~~~~
—

~~~~~~~~~~~~

PROGRAMMING METHODOLOGY GROUP 58 PROGRAMMING METHODOLOGY GROUP

Symbolic interpretation can be used to obtain both data and control flow information.

As an example of obtaining data flow information, suppose we have the
pr ocedure:

square = proc (x: int) returns (int);
return x * x;
end square;

The symbolic interpretation would start by associating a symbolic object (*1) with the
variable x. Then the integer multiply operation would be interpreted to obtain another
symbolic object (*2 = int5mul(*1, *1)). The object returned by the procedure is *2.
The symbolic interpretation removes our dependence on variables, so that we are only
concerned with the symbolic objects.

After performing symbolic interpretation on the program, the optimizer searches
for transformation s that will make the program less costly to execute. One such
transformation is the replacement of redundant expressions by variables that hold
previously calculated objects. The method used is to search the set of symbolic
objects created by the symbolic interpretation for equivalent symbolic objects; then
the control flow information provided by the symbolic interpretation is used to discover
whether the calculation of one of the objects precedes the other. For example,

u := a[i]

v ;= a[i]

where a is an array[t] , for some type t, and i is an integer, can be transformed into

u := a[i]

v u

provided that in the intervening code there are no assignments to variables u, a and 1,
and there are no side-effects that affect the equivalence of the objects in variables u
and v. If u and v are found to contain equivalent symbolic objects, this guarantees that
none of u, a and have been assigned to in the intervening code. To determine
whether a side effect has occurred, the optimizer requires information about the
properties of the data and procedural abstractions used in the program being
optimized. For example , the only side effec t that could invalidate the substitution
shown above is to update the nth element of the array object referred to by a. Thus,
the information that use of the array update operations can affect the later use of the
array fetch operation a[i] constitutes a property of arrays that is of interest to the
optimizer. (In CLU, a[t] is not considered to be a variable, but rather syntactic sugar
f or an invocation of an array operation. If a[i) appears on the right hand side of the
assignment symbol, it stands for a call on the array fetch operation If It appears on

_ _ _ _ _
_____ -

PROGRAMMING METHODOLOGY GROUP 59 PROGRAMMING METHODOLOGY GROUP

the left hand side, it stands for a call on the array store operation. The reader is
referred to [1 7] for an explanation of CLU semantics.)

3. Determining Properties of Abstractions

Some properties of data and procedural abstractions that we have found useful
for optimization follow:

a. mutabilit y: an object is mutable if the information in it can change over time, and
immutable if all of its information is constant over time. A data abstraction is
immutable if all of its objects are; otherwise the data abstraction is mutable.
Integers and strings are immutable in CLU, while arrays and records are mutable.

b. iso lated representation ; a data abstraction has an isolated representation if the
objects of that data abstraction can only be modified through operations of the
abstraction.

C. obscurin g-, procedure P obscures procedure Q it the execution of P modifies an
object and Q uses the modified component.

d. side-effect free: a procedure P is side-effect free if executing P does not modify
any objects existing prior to its execution. All procedures that implement
mathematical functions are side-effect free, as well as many procedures that
examine mutable objects.

The optimizer design we have proposed can use properties about abstractions.
We assume these properties are computed prior to optimization and are stored in a
data base. In general, however, it is costly (and sometimes impossible) to determine
such properties. Therefore, R. Atkinson [1) has developed techniques that provide
conservative approximations to the desired properties. Where the properties cannot
be determined, worst-case assumptions are made (for example, If a data type cannot
be shown to have immutable objects, the optimizer must assume that the objects are
mutable).

In making these approximations, we depend on the notion of reachability for CLU
objects. The only objects reachable are those in some basis set (such as the
parameters passed to a procedure), or those objects that are reachable from other
reachable objects. We call the set of objects that are reachable from some object X
the reachabli ry closure of X.

Unfortunately, the reachability closures for mutable objects are dynamic, and
cannot generally be determined prior to execution. We can approximate reachability
closures, however , by noting that CLU data types partition the set of all CLU objects in
such a way that objects in ditferent partitions can never be reached from one another.
Furthermore, a static structure does exist for CLU data types (once implementations
have been selected for these types). We therefore define a type closure of an abstract

~~~ - - -————-~~- _~~- -_----- --- *- -- - - -



-
~~~~~ i~~~ .~~~~ .T 

-

~~~

PROGRAMMING METHODOLOGY GROUP 60 PROGRAMMING METHODOLOGY GROUP

type T to be the set containing T and all types in the type closure of the
representation type of T (the type chosen to represent objects of type T, and
referred to within a cluster implementing T as the rep--see [17] for more information).
The type closure of a basic type B (such as integer , boolean , strin g , array[ ...], and
recor d[. ..] ) is the union of the type closures of the type parameters to B and the set
containing only B. As an example, the type closure of array [integer] is {arrcy[ in:eger],
Inte ger}. As a second example, suppose that arra y[in:eger] is the representation type of
the abstract type stack [integerJ. Then the type closure of stack[tnteger ] is {stack[Lnzeger],
array [in teg er], integer }.

Given an object X of type T, then the type of every object in the reachability
closure of X is in the type closure of T. For example, from any object of type
arr ay [ in te ger] only objects of type intege r or arr ay[ in teger] can be reached, while from a
stack [in tege r] object, only objects of type stack[in teger], Integer or array(tnteger] can be
reached.

The use of type closures may be illustrated by returning to our earlier example.
Suppose the actual code segment was

u := a[iJ
p(x, y)
v := a[i]

where x: S and y : R. If the union of the type closures of S and R does not include
array [tJ, then we can be certain that a is not modified in p, since a cannot be reached
from either x or y.

Other closures can be constructed in much the same way as type closures. Two
closures defined on procedures are the mutabilit y closure and the access closure. The
mutability closure of procedure P is the set of all types with mutable objects that can
be changed during an execution of P. The access closure of procedure Q is the set of
all types examined during an execution of Q. As with the type closure, these closures
are ultimately derived from known properties of the basic CLU types. The mutability
and access closures can be used to approximate the obscuring property for P and Q.
We assume that P obscures Q if the intersection of the mutability closure of P with the
access closure of Q is not the empty set.

Use of the obscuring property may permit optimizations that would be forbidden
if only type closures were considered. In the example above, if the mutability closure
of procedure p does not contain arra y [e ] ,  then p does not obscure the first array fetch
operation and therefore the second array fetch operation can be eliminated. This may
occur even if arra y [ t ]  were contained in the union of the type closures of $ and R.

Not all properties useful to the optimizer can be approximated with closures.
For example, using the above methods, we may be able to determine that the data
abstraction, stack [ t ] ,  with operations push , pop, top, size and equal, has the following

—4



- - -  - -~~~~~~- - - - ---- - -
~~~ 

-

PROGRAMMING METHODOLOGY GROUP 61 PROGRAMMING METHODOLOGY GROUP

properties:

stack[t] objects are mutable
stack[t] has an isolated representation
top, size, and equal are side-effect free
push obscures top, size
pop obscures top, size

One additional property of interest would express the fac t that push (or pop) only
obscures top (or size) if the same stack object is given to both push and top. A
further property expresses information about equivalence of symbolic objects. For
example, after push(s , v), we know that v = top(s). Information of this sort could be
used during program transformation to avoid the top (s) computation, and use a
previously computed object.

Although closures cannot be used to approximate every property of interest, a
considerable amount of information can be obtained from their use. Such information Is
needed for optimizing languages, like CLU, that provide data abstractions. The
information would also be useful for optimizing programs with pointers.

E. SPECIFICATIONS FOR DATA ABSTRACTIONS

There are three methods for specifying data abstractions [15, 16]: axiomatic,
state machine, and abstract model.

The most promising form of axiomatic specification is the algebraic technique,
developed by ZilIes at M.I.T. [29], using some results in algebra [2]. The technique
was investigated further by Guttag at the University of Toronto [6], who worked out a
criterion f or recognizing a “sufficiently complete” axiomatization of a data type.
Further work on verification of data types using this technique is in progress at lSl [7,
8].

The state machine approach was first proposed by Parnas [20]. The approach
as originally proposed was informal. Work on formalization of this technique Is
underway [21, 22].

The abstract model approach has been used informally in [9]. During the past
year, we have been studying the formalization of this technique. Some work in this
area has also been done by WuIf et al. [28].

In [15], we developed some criteria for judging the desirability of a specification
technique for data abstractions. Among the criteria were the ease of construction and
understandability of the specifications. We believe that the abstract model
specification technique is best with respect to these criteria this is the motivation for
our work on this technique.

- -

- ~~~ ---.-—--—--- ~~ --~~ -—-

PROGRAMMING METHODOLOGY GROUP 61 PROGRAMMING METHODOLOGY GROUP

properties:

stack[tJ objects are mutable
stack[t] has an isolated representation
top, size, and equal are side-effect free
push obscures top, size
pop obscures top, size

One additional property of interest would express the fact that push (or pop) only
obscures top (or size) if the same stack object is given to both push and top. A
further property expresses information about equivalence of symbolic objects. For
example, af t e r pus h (s, v) , we know that v = cop (s). Information of this sort could be
used during program transformation to avoid the top (s) computation, and use a
previously computed object.

Although closures cannot be used to approximate every property of interest, a
considerable amount of information can be obtained from their use. Such information Is
needed for optimizing languages , l ike CLU , that provide data abstractions. The
information would also be useful for optimizing programs with pointers.

E. SPECIFICATIONS FOR DATA ABSTRACTIONS

There are three methods for specifying data abstractions [15, 16]: axiomatic,
state machine, and abstract model.

The most promising form of axiomatic specification is the algebraic technique,
developed by Zilles at M.I.T. [29], using some results in algebra [2]. The technique
was investigated further by Guttag at the University of Toronto [6], who worked out a
criterion for recognizing a “sufficiently complete ” axiomatization of a data type.
Further work on verification of data types using this technique is in progress at ISI [7,
8].

The state machine approach was first proposed by Parnas [20]. The approach
as originally proposed was informal. Work on formalization of this technique is
underway [21, 22].

The abstract model approach has been used informally in [9]. During the past
year, we have been studying the formalization of this technique. Some work in this
area has also been done by WuIf et al. [28].

In [15], we developed some criteria for judging the desirability of a specification
technique for data abstractions. Among the criteria were the ease of construction and
understandability of the specifi cations. We believe that the abstract model
specification technique is best with respect to these criteria this is the motivation for
our work on this technique.

L _ A

r
-- - -

PROGRAMMING METHODOLOGY GROUP 62 PROGRAMMING METHODOLOGY GROUP

In the remainder of this section, we discuss the work of V. Berzins on the
abstract model technique. He has worked out the theoretical justification for this
technique (which is also algebraic in nature). He has investigated the structure of the
specifications and has arrived at a form that, we believe, makes it easier to build
specifications. He has also developed criteria for establishing consistency and
completeness of abstract model specifications (analogous to those developed by Guttag
[6] for algebraic specifications) . These criteria are helpful in eva luating the
specification of an abstraction, since a specification that is not well formed cannot
define any behavior, let alone the intended behavior.

1. Abstract Model Specifications

A sample specification using the abstract model technique is shown in Figure 5.
A sequential file data type is defined, which can be written in a restricted way:
records can only be appended to a file, but no~ deleted or updated. The files are
sequential because they can only be scanned by -starting at the beginning and spacing
forward.

An abstract model specification has three major parts, describing the interface,
the abstract representation, and the operations of the data type.

The interface of a data type consists of the names, domains, and ranges of its
operations. This information is singled out because the operations provide the sole
access to the abstract objects of the type. Thus a program, a proof, or even the rest
of the specification can be checked for type correctness using only the information
contained in the interface specifications of the data types that are used. (This is
precisely the information that must be provided whenever abstractions are added to
the CLU system, and the CLU compiler checks all uses and implementations of an
abstraction for consistency with this information.)

The abstract rep resentation is introduced into the specification solely to provide a
framework in which to define the behavior of the operations of the type, and does not
constrain the class of representations that rray be used in the implementation. The
types used in the abstract representation are chosen for simplicity rather than for
efficiency. The primary use of specifications is for communication, and (perhaps) in
proofs of program properties; how well they run as programs is of secondary interest.
Therefore simplicity and clarity are important , while hypothetical time and space
requirements are not.

The abstract representation has three subcomponents in its specification: the
representation type, the abstract invariant , and the abstract equivalence relation. The
representation type must be composed from previously defined types. We favor using
finite sets , sequences, and tuples to put together known types into new ones.
(Although we have not included them in this report, formal, axiomatic definitions of
these families of types have been developed.)

--—

~

- - - - - . -

~

- — -- --~~~~- --- - - - . -~~~~~~~~-

PROGRAMMING METHODOLOGY GROUP 63 PROGRAMM ING METHODOLOGY GROUP

Type FILE[RECORD] is

Interface:
create() --> FILE,
append(FILE, RECORD) --> FILE U {error(append-in-middle)},
reset(FILE) ---> FILE U {error(file-empty)},
skip(FILE, int) --> FILE u {error(skip-past-eoU, error(reverse-skip)},
read(FILE) --> RECORD U {error(file-empty)},
eof(FILE) --> bool,

Represent ati on: tuple[ptr: int, s; sequence[RECORD]],

Invariant: For all f: FILE;
0 < f.ptr < Iength(f.s) & (length(f.s) ’ 0 ==> f.ptr > 0),

Equivalence: For all (f 1, f2): FILE;
ft = f2 <==> (fl.ptr = f2.ptr & u . s = f2.s),

Operations: For all (f , 11, f2): FILE, r; RECORD, n: int;
create() = tuple[ptr: 0, 5: emptyseqO],
append(f, r) if f.ptr = length(f.s) then tuple[ptr: f.ptr + 1, 8: addlast(r, f.s)]

else error(append-in-rniddie),
reset(f) = if length{f.s) > 0 then tuple[ptr: 1, s: f.s]

else error(file-empty),
skip(f, n) = if n < 0 then error(reverse-skip)

else if f.ptr + n> length(f.s) then error(skip—past—eof)
else tup e[ptr: f.ptr + n, 5: f.s],

read(f) = if f.ptr = 0 then error(file-empty)
else nth(f.ptr, f.s),

eof(f) = f.ptr = length(f.s),
end type.

Figure 5. Sample Abstract Model Specification.

Every meaningful abstract object should have a unique abstract representation,
and conversely. The invariant describes a restriction on the representation type which
excludes those elements that do not represent any meaningful abstract object. (It is
similar in this respect to the invariant of the concrete representation [9] used in
proving the correctness of an implementation of a data abstraction.) The equivalence is
a relation stating which pairs of the representation type represent the same abstract
object. If there are multiple meaningful representations -for each abstract objec t, we
can take the entire set (equivalence class) of elements representing an abstract object

L —* — - ~~- - - - - —-- -.* -‘, - -—--
~~~~

- - -



PROGRAMMING METHODOLOGY GROUP 64 PROGRAMMING METHODOLOGY GROUP

to be its unique abstract representation. The abstract equivalence Is Important
because it specifies precisely which properties of the representation are being used to
mode) the abstract type.

In the example, the state of a file is represented by a sequence of records, and
a pointer into that sequence to indicate which record is currently being scanned. Note
that the pointer is a natural number, which by definition cannot be negative, although it
can be zero. The invariant says that the pointer can never get past the end of the
sequence, and that provided the file is not empty, the pointer will always point at
some record of the sequence (the first record has index 1). The equivalence tells us
that each object of the representation type satisfying the invariant represents a
unique file object.

The operations are defined as functions on the representation type, in as simple
and clear a way as possible (efficiency does not matter). Any formal method for
defining functions is acceptable. We will use both McLirthy’s recursive conditional
expressions [19], and input/output constraints expressed n the predicate calculus, as
we find most convenient.

In the example, all of the operations except for eof are d~ ined using conditional
expressions, none of which need be recursive because of the simplicity of the data
abstraction. Eof is defined as a predicate on the representation type, which happens
not to require conditionals or quantifiers.

2. Consistency and Completeness of Abstract Model Specifications

A specification describes the behavior of some abstraction, and it is important
that it describe that behavior correctly. While it is clearly not possible to prove that
the specification is correct , it is possible, by analyzing properties of the specification,
to identif y problems, or alternatively to gain confidence in the correctness of the
specification. Guttag [6] has done some work along these lines for algebraic
specifications. We discuss below some criteria for abstract model specifications that
we have developed for this purpose.

A well formed abstract model specification must satisfy the following
requirements:

a. Type Correctness. The definitions of the operations must be consistent with the
interface specifications, and all expressions of previously defined types must be
consistent with the interface specifications of those types.

b. Representation consistency.

1. The invariant must be a well formed unary predicate on the representation
type. 

-~~~~



- 
-

~~~~~~

_---

~~

-

~~

PROGRAMMING METHODOLOGY GROUP 65 PROGRAMMING METHODOLOGY GROUP

2. The equivalence must be a well formed binary predicate on the
representation type, and it must define an equivalence relation (It must be
reflexive, symmetric, and transitive).

c. Totality. Every operation mentioned in the interface specification must be
uniquely defined for all elements of the representation type satisfying the
invariant relation.

d. Closure. Every element in the intersection of the range of an operation with the
representation type must satisfy the invariant relation.

e. Congruence. Every operation must be consistent with the representation
equivalence, which means that equivalent inputs must result in equivalent
outputs.

Some of these requirements are easier to check than others. The bulk of the type
correctness check can be performed by a fairly simple algorithm, such as the one used
by the CLU compiler. (Showing that no error values are produced, except for those
described in the interface specifications, may require some program analysis.) At the
other extreme, deciding whether a recursive function is total is undecidable in the
general case, although there are well known techniques for proving termination, which
apply to most programs that are designed to terminate [25]. A moderately powerful
theorem proving facility is needed to demonstrate that all the requirements are met,
comparable to the facility required for verifying that programs meet their
specifications.

_ _ _

- - - -

~

~~

-

PROGRAMMING METHODOLOGY GROUP 66 PROGRAMMING METHODOLOGY GROUP

REFERENCES

1. Atkinson, Russell R. “Optimization Techniques for a Structured Programming
Language.” unpublished S.M. Thesis, M.I.T., Department of Electrical Engineering
and Computer Science, June 1 976.

2. Birkhoff , Garrett, and Lipson, John D. “Heterogeneous Algebras.” Journal of
Combinatorial Theory, Vol. 8 No. 1 (January 1970), 115-133.

3. DahI, Ole-Johan, Myhrhaug, B.; and Nygaard, Kristen. The SIMULA 67 Common
Base Language. Norwegian Computing Center, Publication S-22, Oslo, Norway
1970.

4. DahI, Ole-Johan, and Hoare, C. A. R. “Hierarchical Program Structures.”
Structured Prpgramming. Edited by 0. J. Dahl, E. W. Dijkstra, C. A. R. Hoare.
New York: Academic Press, 1972.

5. Dennis , Jac k B., and van Horn , Earl C. “Programming Semantics for
Multiprogrammed Computations.” Communications of the ACM, Vol. 9 No. 3
(March 1966), 143- 155.

6. Guttag, John V. The Specification and Application to Programming of Abstract
Data Types. Ph.D. Thesis, University of Toronto, Computer Systems Research
Group, CSRG-59. Toronto, Canada, 1975.

7. Guttag, John V. “Abstract Data Types and the Development of Data Structures.”
Communications of the ACM, Vol. 20 No. 6 (June 1 977), 3 96-404.

8. Guttag, John V.; Horowitz, Ellis; and Musser, David R. Abstract Data Types and
Software Validation. University of Southern California, Informetion Sciences
Institute, Report ISI/RR-76-48, Los Angeles, Ca., 1976.

9. Hoare, C. A. R. “Proof of Correctness of Data Representations.” Acta
lnformatica, Vol. 1 No. 4(1972), 271-281.

10. Jones, Anita K. Protection in Programming Systems. Ph.D. Thesis, Carnegie-
Mellon University, Department of Computer Science, Technical Report 1973.

11. Jones, Anita K., and WuIf, William A. “Towards the Design of Secure Systems.”
Software Practice and Experience, Vol. 5 No. 4 (October-December 1 975),
32 1-336.

12. Jones , Anita K., and Liskov , Barbara H. An Access Control Facility f or
Programming Languages. M.I.T., Laboratory for Computer Science, Computation
Structures Group, Memo 137. Cambridge, Ma., April 1976.

A
—-~ -~~~~ - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
~~

-

PROGRAMMING METHODOLOGY GROUP 67 PROGRAMMING METHODOLOGY GROUP —

13. King, James C. Symbolic Execution and Program Testing. IBM Thomas J. Watson
Research Center, RC 5082. Yorktown Heights, N. Y., October 1973.

14. Lampson, Butler W. “Protection.” Proceedings of the Fifth Annual Princeton
Conference on Information Sciences and Systems. Princeton University, 1971 ,
437-443.

15. Liskov, Barbara H., and Zilles, Stephen N. “Specification Techniques for Data
Abstractions. ” IEEE Transactions on Software Engineering, Vol. SE-I No. I
(March 1975), 7- 19.

16. Liskov, Barbara H., and Berzins, Valdis. An Appraisal of Program Specifications.
M.I.T., Laboratory for Computer Science, Computation Structures Group, Memo
141-1. Cambridge, Ma., July 1976.

1 7. Liskov, Barbara H.; Snyder, Alan; Atkinson, Russell R.; and Schaffert , J. Craig.
“Abstraction Mechanisms in CLU.” Communications of the ACM, Vol. 20 No. 8
(August 1977), 564-576.

18. McCarthy, John, et al. LISP 1.5 Programmer’s Manual. Cambridge, Ma.: M.I.T.
Press, 1962. -

1 9. McCarthy, John. “A Basis for a Mathematical Theory of Computation.” Computer
Programming and Formal Systems. Edited by Braffort and Hirschberg.
Amsterdam: North-Holland Publishing Co., 1 963.

20. Parnas, David L “A Technique for Software Module Specification with Examples.”
Communications of the ACM, Vol. 15 No. 5 (May 1972), 330-336.

21. Parnas, David L., and Handzel, G. More on Specification Techniques for Software
Modules. Fachbereich Informatik , Technische Hochschule Darmstadt, Darmstadt ,
West Germany, 1975.

22. Robinson, Lawrence; Levitt, Karl; Neumann, Peter; and Saxena, Ashok R. “On
Attaining Reliable Software for a Secure Operating System.” SIGPLAN Notices,
Vol. 10 No. 6 (June 1975), 267-284.

23. Scheifler , Robert W. An Analysis of Inline Substitution for the CLU Programming
Language. M.I.T., Laboratory for Computer Science, Computation Structures
Group, Memo 139-1. Cambridge, Ma., April 1977.

24. Sturgis, Howard E. A Postmortem for a Time-Sharing System. Xerox Research
Center, CSL 74-1. Palo Alto, Ca., 1974.

25. Sites, Richard L. Proving That Computer Programs Terminate Cleanly. Stanford
University, Computer Science Department, CS- 74-418. Stanford, Ca., 1 974.

-~~ ~~~~~~~~~~~~~~~~~ --- ~~~~~~~~~~ S -~~~~~~~~~~—-- -~~~“ -~~~ - — ~~ - , _ - - - - --.~~
- -

PROGRAMMING METHODOLOGY GROUP 68 PROGRAMMING METHODOLOGY GROUP

26. WuIf , William A.; Cohen, Ellis; Corwin, W.; Jones, Anita K.; Levin, Roy; Pierson,
C.; and Pollack, R. “HYDRA: The Kernel of a Multiprocessing Operating System.”
Communications of the ACM, Vol. 17 No. 6 (June 1974), 337-345.

27. WuIf , William A.; Johnsson, Richard K.; Weinstock, Charles B.; Hobbs, Steven 0.;
and Geschke, Charles M. The Design of an Optimizing Compiler. New York:
American Elsevier Publishing Co., 1975.

28. WuIf , William A.; London, Ralph; and Shaw, Mary. “An Introduction to the
Construction and Verification of Alphard Programs. IEEE Transactions on
Software Engineerj~g, Vol. SE-2 No. 4 (December 1976), 253-265.

29. Zilles, Stephen N. “Algebraic Specification of Data Types.” Progress Report XI. 4
M.I.T., Laboratory for Computer Science. LCS/PR-Xl. Cambridge, Ma., 1974.

. — . ~~—

PROGRAMMING METHODOLOGY GROUP 69 PROGRAMMING METHODOLOGY GROUP

Publications

1. Liskov, Barbara H. An Introduction to CLU. M.I.T., Laboratory for Computer
Science, Computation Structures Group, Memo 136. Cambridge, Ma., February
1976. Also New Directions in Algorithmic Languages. Edited by S. A. Schuman.
Rocquencourt, France; IRIA , 1976.

2. Jones , Anita K, and Liskov , Barbara H. An Access Control Facility for
Programming Languages. M.I.T., Laboratory for Computer Science, Computation
Structures Group, Memo 137. Cambridge, Ma., April 1 976.

3. Jones, Anita K., and Liskov, Barbara H “A Language Extension for Controlling
Access to Shared Data.” IEEE Transactions on Software Engineering, Vol. SE—2
No. 4 (December 1 976), 277-285.

4. Scheif ler , Robert W. An Analysis of Inline Substitu tion for a Structured
Programming Language. M.I.T., Laboratory for Computer Science, Computation
Structures Group, Memo 139. Cambridge, Ma, June 1976.

Accepted for Publication

1. Liskov, Barbara H., and Berzins, Valdis. “An Appraisal of Program Specifications.”
The Impact of Research on Sof tware Technology. Edited by Peter Wegner.
Cambridge, Ma.: MIT Press, to appear.

a Liskov , Barbara H., and Zilles, Stephen N. “An Introduction to Formal
Specifications of Data Abstr actions. ” Current Trends in Programming
Methodology. Vol. 1. Edited by Raymond Yeh. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., to appear.

Theses Oompleted

1. Atkinson, Russell R. “Optimization Techniques for a Structured Programming
Language.” unpublished S. M. Thesis, M.I.T., Department of Electrical Engineering
and Computer Science, May 1976.

2. Fulton , Gordon L. “A Microprogrammed Instruction Set for a 32-bit
Minicomputer.” unpublished S. B. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, May 1976.

3. Gorgen, David P. “An Algorithm to Determine Mutability of Data Types in CLU.”
unpublished S. B. Thesis, M.I.T., Department of E’ectrical Engineering and
Computer Science, May 1 976.

_ _ _ _ _ _

- :~~i
__

~~~~~
‘
~~~~ -~~—— -~~~~~ - - - 

- -

PROGRAMMING METHODOLOGY GROUP 70 PROGRAMMING METHODOLOGY GROUP

4. McCabe, Edward j . “A Compactifying Garbage Collection Algorithm for a Typed
Programming Language.” unpublished S. B. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, May 1 976.

5. Scheifler , Robert W. “An Analysis of Inline Substitution for the CLU Programming
Language.” unpublished S. B. Thesis, M.I.T., Department of Electrical Engineering
and Computer Science, May 1976.

6. Virgile , Kenneth. “MEIL; A Macro Expandable Intermediate Language.”
unpublished S. B. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, May 1 976.

Theses in Progress

1. Berzins, Valdis. “Abstract Model Specification for Data Abstrac tions.” Ph.D.
Thesis , M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, September 1978.

2. Gugenheim, Michael R. “An Inline Substitution Package for the CLU Language.”
S.B. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, May 1 977.

3. Kapur, Deepak. “Towards a Theory of Data Abstractions.” Ph.D. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
comp letion, September 1 978.

4. Moss, J. Eliot. “An Abstract Data Type Facility for a Programming Language.”
SM. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, January 1 978.

5. Principato , Robert. “A Formalization of the Parnas Module Specification
Technique.” E.E. Thesis , M.I.T., Department of Electrical Engineering and
Compi. ~r Science, expected date of completion, May 1978.

6. Schaffert , J. Craig. “A Formal Definition of the Programming Language CLU.” SM.
Thesis , M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, January 1 978.

7. ZiIles, Stephen N. “Data Algebra: A Specification Technique for Data Structures.”
Ph.D. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, June 1 978.

____________________________________ ____________________________________
~~~~~~~~~~~~~~



“l- -

PROGRAMMING METHODOLOGY GROUP 71 PROGRA MMING METHODOLOGY GROUP

Talks

1. Berzins, Valdis. “An Appraisal of Program Specifications.” Symposium on the
Impact of Research on Software Technology, Durham, North Carolina, July 1 976.

a Liskov , Barbara H. “Data Abstractions.” Industrial Liaison Office Seminar, M.I.T.,
Cambridge, Mass., March 1976.

3. Liskov, Barbara H. “Data Bases and Data Abstraction.” Conference on Data, Salt
Lake City, Utah, March 1 976.

4. Liskov, Barbara H. “Data Abstractions in CLU.” Italian Computer Society Meeting,
Pisa, Italy, May 1 976.

5. Liskov, Barbara H “Abstract Model Specifications of Data Abstractions.” IFIP
Working Group 5.2, France, May 1976; Italian Computer Society Meeting, Pisa,
Italy, May 1976.

6. Liskov, Barbara H. “Reliable Software. ” Panel Member, National Computer
Conference, New York, N. Y., June 1 976.

7. Liskov, Barbara H. “Data Abstractions.” Discussant, Tinman Workshop, Cornell
- 

University, Ithaca, N. Y., September 1976.

8. Liskov, Barbara H. “A Language Extension for Controlling Access to Shared Data.”
2nd Annual Conference on Software Engineering, San Francisco, Ca , October
1976.

9. Liskov, Barbara H. Session Chairman, 2nd Annual Conference on Software
Engineering, San Francisco, Ca., October 1976.

10. Liskov, Barbara H. “Data Abstraction and Software Reliability.” Control Data
Corp., St. Paul, Minn., October 1 976; Codex Corp., Watertown, Mass., December
1 976; Sylvania - GTE, Needham, Mass., December 1976.

11. Liskov, Barbara H. “An Introduction to CLU.” Tufts University, November 1 976.



~ - .

PROGRAMMING TECHNOLOGY GROUP 73 PROGRAMMING TECHNOLOGY GROUP

PROGRAMMING TECHNOLOGY

Academic Staff

A. Vezza, Group Leader J. C. R. Licklider

Research Staff

E. R. Banks M. S. BroosJ. M. Berez S. w. GalleyE. H. Black J. F. HavertyM. S. Blank P. D. LeblingM. F. Brescia C. L Reeve

Graduate Students

T. A. Anderson B. K. DanielsS. E. Cutler G. 0. McGath

Undergraduate Students

B. 1. Berkowitz 0. Sherry0. L. Dill S. H. SotoA. G. Jaffer W. W. St. ClairT. J. Platt T. To

$~pport Staff

S. P. Briggs

--4



-- . --~~- - - --.

PROGRAMMING TECHNOLOGY GROUP 75 PROG RAMMING TECHNOLOGY GROUP

PROGRAMMING TECHNOLOGY

A. INTRODUCTION

The Programming Technology group is engaged in two distinct research and
development programs. (1) The program in Morse code has as its main goals the
development of the conceptual insight necessary to develop a computerized Morse-
code operator and the design and implementation of a prototype of such a computer
system (COMCO-l). The Morse-code program covers four areas [1]: signal processing,
Morse-code transcription, sender recognition, and understanding of the network
conversations among operators that are carried on in a special language consisting of
“0—signs ” and “Pro-signs ”. (2) The other research program is concerned with the
facilitation of interpersonal communication through the use of computer message
systems. The work on interpersonal communication has involved the design and
implementation of a computer message system that embodies in it a model, as yet very
simple, of an organization. The model is used to track action status and to aid the
communication process.

B. MORSE CODE

At first glance, designing an automated system capable of transcribing a hand-
sent Morse-code signal appears too simple to be interesting. For a person, the most
difficult aspect of learning Morse code is remembering the pattern of dots and dashes
associated with each letter of the alphabet. This type of recall is a simple task for
current computer systems. However, experience has shown that human Morse-code
operators perform several tasks beyond this mapping of dots and dashes to letters.
These tasks are considerably more difficult, and human Morse-code operators perform
them far better than current automated systems can.

One such task is locating the signal. In practice Morse-code signals are
broadcast over radio waves. A Morse-code operator must be able to tune the
receiver dynamically during a session. Should the signal drift, the receiver may need to
be tuned to follow it. When signal strength becomes too low for reliable reception and
translation, a human operator will recognize this and act appropriately--and so must an
automated system. Interference affects reception in a similar manner.

Another difficult task for automated systems is to convert a manual Morse-code
si gnal, consisting of patterns of the five Morse-code elements, into characters and
words that the sender sent (or intended to send). Two of the elements , dots and
dashes, are called marks. The remaining three are the spaces that separate the marks.
Mark spaces separate adjacent marks within a character; character spaces separate
adjacent marks belonging to adjacent characters and word spaces separate adjacent
marks belonging to adjacent words. Ideally, a dot and a mark space are of equal
duration, a dash and a character space three times longer than a dot, and a word space

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


p..- - - ——- _:. ~~~~~~~~~~~~
_
~_ _ - - - -

~~~~~~~~~~~~~~~~~~~~~~~~ 
--- .-—- -- - -

PROGRAMMING TECHNOLOGY GROUP 76 PROGRAMMING TECHNOLOGY GROUP

seven times longer than a dot. Unfortunately, real dashes can be even shorter than a
particular dot in the same transmission. The length of a space tends to be even less
predictable than the length of a mark. It is interesting that human operators have so
little trouble understanding each other’s code.

An important observation is that operators tend to have considerably more
difficulty transcribing a message in a foreign language than one in their native tongue.
In addition, both the sending and receiving operators must be more attentive to their
respective tasks if the message is composed of code groups, because the coded
message has little syntactic and semantic structure to aid the transcription process.
This fac t leads to the obvious conclusion that receiving Morse code requires some
knowledge about the message. If the message is in English, then each token in the
message must be an English word. In addition, the words must follow, in some broad
sense, syntactic and semantic English rules. This understanding of the domain, English
in this case , is considerably more difficult for current automated systems than for
human operators.

During the past year , progress in all of the above four areas has been made with
major accomp lishments achieved in the signal processing and transcription areas. An
event of significance in the signal processing area has been the identification of the
need for and the implementatio n of what traditionally would be considered an
unrealizable filter (Black, Haverty, St. Clair, Vezza). Equally important have been the

improvements to the transcription module COMOEC that provide for the recognition and
proper handling of the Morse-code error signs and numbers in clear text (Lebling).
Experiments in understanding Morse-code network conversations have led to the
realization that the linguistic semantic context alone is not sufficient to understand
Morse-code network conversations (Church, Vezza) [2]. In order to understand a
Morse-code network conversation, an operator takes into account not only what is
being said but who is saying it, even in the circumstance in which the operators on the
network do not explicitly identify themselves each time they transmit. Along this line,
Anderson [3] has developed a model of Morse-code sender characteristics. He has
also pointed out that developing an efficient computer version of the model that would
provide for sender fist recognition in real time will be a challenging task.

1. ~jg~al Processing

The most impor tant development in the signal processing area of the Morse—code
program was the implementation of a novel tandem phase-lock-loop filter that utilizes
time reversal of the input signal; however, the output can be obtained in real time,
albeit with a constant delay. The nature of Morse-code signals--the fact that they are
on—of f key ing or frequency-shift keying--and the fact that initial experiments indicated
that the transient response of the receiving filter interfered with the measurement of
important parameters of the desired signal, led to the need for and the subsequent
development of the novel filter. (A software signal-processing module described In

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~ 
—

~~~~
-.—

— -

PROGRAMMING TECHNOLOGY GROUP 77 PROGRAMMING TECHNOLOGY GROUP

last year’s report [1] proved to be unwieldy.)

There is a great deal of information contained in the audio sound of a Morse-
code signal--the signal characteristics per se--besides the timing information of the
marks and spaces [4] (for a more detailed explanation of the Morse-code project see
references 1, 2, 3, 5). It became clear while running some experiments in
understanding Morse-code network conversations that the signa’ characteristics
contained information that was an important part of the context of the situation; it was
necessary to extract this information in order to understand the network conversations
(q.v.).

A small digression is required to explain the kinds of things a human operator
hears in the sound quality of the signal a~i what one must be able to extract from the
signal in a computer version. Briefly, a human operator is a very efficient detector,
capable of detecting and tracking desirable signals in a crowded spectrum of similar
competing but undesirable signa’s, in a manner almost analogous to the way people
follow a particular conversation at a crowded cocktail party. (We say a lmos t
analogous, because there is no binaural effect in the Morse-code domain.) This
discriminating ability of humans is acute and knowledge-based. To discriminate signals,
an operator uses information about how the si gnal sounds: (a) its frequency; (b) its
anticipated frequency drift; (c) its amplitude and rate of chirp, if any; (d) the amount
of envelope distortion such as hum, clicks, yoop and whatever other characteristics of
the waveform can be characterized. A good signal-processing front end should be
capable of measuring some, if not all, of the above signal characteristics and of using
the measured characteristics for signal discrimination.

a. A Tandem Phase-lock-loop Filter

The above general requirements can be translated into specific requirements of
a receiving filter process for the Morse-code application. (The specific filter design is
for an on-off keyed signal, and experiments were conducted only with such a signal.
Therefore, the discussion that follows is in the context of an on-off keyed signal.
However, it should be pointed out that similar arguments could be made and results
obtained for a frequency-shift keyed signal.) Extracting the on-off timing information
for marks and spaces as well as signal quality information requires determination of the
transitions of the signal as well as continuous estimation of the amplitude and
frequency of the signal. The latter information serves a duaI purpose. First, it is used
to characterize transmitter signals for use in transmitter recognition. In addition, the
frequency on which a station is transmitt tng is part of the situation model, and an
uncharacteristic frequency shift of ten or several tens of hertz often indicates a change
of “sender” during network conversation. This type of cue is extremely useful,
because, af ter contact has been well established, opera tors often do not identify
themselves.

- - - -
~~~

- 
4



-

PROGRAMMING TECHNOLOGY GROUP 78 PROGRAMMING TECHNOLOGY GROUP

The tracking-filter model of the phase-locked loop (PLL), Figure 1 [6, 7], is well
suited to extracting the information indicated above from a signal In that It gives
continuous frequency and amplitude estimates, and presents a relatively narrow—bend
filter to a frequency-modulated carrier.

________________ 

Frequency
Signa l X ( t )  E r ro r

[_

L ow Pass I gna I 

~~ 
J

Quadrature
Outpu t

E~~
ion

Figure 1. Phase Lock Loop Detector

However, before a PLL can give accurate demodulation, it must achieve lock.
(Lock is the state of the PLI when the voltage controlled oscillator (VfL O) tracks the
incoming signal with a constant phase lag.) The time to achieve lock is inversely
proportional to the natural frequency of the loop, and is affected by such factors as
the initial frequency error (difference in frequency between the VCO and the input)
and noise in the loop.

Chirp is frequency modulation which frequently occurs in low quality transmitter.
and is often caused by inadequate filtering of the power supply which causes the
oscillator to change frequency when the power stage is turned on. Thus, the
frequency modulation, or chirp, exists where the signal makes a transition from off to
on, or vice versa. Most often, it exists only at the beginning of the “on period or
“mark” of the Morse-code signal. Unfortunately, in a traditional PIL arrangement, or for

_ _ _  _ _ _



PROGRAMMING TECHNOLOGY GROUP 79 PROGRAMMING TECHNOLOGY GROUP

that matter any type of traditional filtering, the transient response of the filter is
superimposed on the signal and is largest at the signal transition points. The situation
is exacerbated when the problem of interference is considered; as one tries to narrow
the bandwidth of the filter to eliminate the interfering signals, the period for which the
filter transient response is a significant factor in the output is lengthened. In the case
of the PLL, the transient between acquisition and lock at the beginning of the signal is
the major one, because a PLL will track the signal during the on-to-off transition until
it reaches a signal-to-noise ratio at which the signal is lost. Thus, because the
frequency and amplitude estimate of the signal prior to lock contains important
information, it is desirable to reconstruct that portion of the signal.

A number of ways of recovering the pre-lock information can be conceived. The
method settled upon is simple, and we think it is somewhat elegant. It involves
sampling and storing the input to the PLL, and then, after the PLL has completed
processing the mark in the forward direction, sending the stored samples in reverse
order through the loop. The loop then demodulates a time-reversed replica of the
original signal , and the original leading-edge information is reliably obtained from the
trailing edge of the reversed signal.

Because it was desirable to run the process in real time, only the beginning
portion of the signal is reversed and a second PLL is used to demodulate it so that the
first PLL can continue to demodulate the forward signal. In addition, the reversed
signal can be compressed in time by sending the reverse-order samples through the
secondary PLL at a rate faster than they were collected. Of course, the secondary PLL
needs to run at a higher frequency. Thus, it is possible to have reconstructed the
mark before the next mark begins.

The PLLs are connected as shown in Figure 2.

The input is sampled and stored in a last-in-first-out (LIFO) memory. This portion is
currently implemented digitally, in the absence of a cost-effective charge-coupled-
device (CCD) solution. Meanwhile the input to the secondary PLL is taken from the
quadrature phase of the primary PLL. When lock is indicated (by the quadrature, or
correlation output of the primary PLL) the input of the secondary PLL is switched to
the digital-to-analog converter (DAC), and the stored samples are read out in reverse
order. The outputs of the secondary PLL are taken as the demodulated signal for the
time prior to lock.

2. Receiver Control and Signal Acquisition

Using the PLL hardware, a program was written (Haverty) to simulate some of
the activity of an operator in searching a segment of the radio spectrum for a
particular known signal. Generally, this would correspond to an operator looking I or
another station with which there is a prearranged schedule to communicate, with the

— --— --

~

-

~

-- -

~

—--. .
~~~~~~

, - -- -—-~~~- - - ~~~~~~~ - --~~ - - -~~~~--~~~~~~~ - ~ - ---- -- ~~~~--~~~-


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PROGRAMMING TECHNOLOGY GROUP 80 PROGRAMMING TECHNOLOGY GROUP

- Troilmg Ed gi

Ed9 e
~~~~~~~~~~~~~~ W~~d I

- qual Pr~ mory~~~~~~~~ Freq uen~~
0 I m e I2 13

- _ -~~ PLL
De lec lo r Fo r w a r d Mark OeI~~t on I

~~~~~~~~~~~~~~~~~~~~~~~ dng

~ nabie lane

________ 4000 BIT LIFO1” Clock  fl

r 

~~~~~~~ Peq s rer 
~~~~~~~~ Cloc k ~~, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~

[D/A ~~~~ IQ +13 1
12 + 1 3

—4Secondo ry —m- F re q u e n c y I

I PLL — —- — -

L0e~
c bO r Re~~ rs rd Mark t e t e c f l o f l

13

Figure 2. Tandom Phase Lock Loop Detection System
with Wave Form Reconstruction

frequency approximately known. The task is to examine the various signals which may
be present near that frequency and to find the desired station, at which point the
signal detector described above would assume control.

Operators generally use many varied aspects of the signals to assist in
identification. The program uses only two of these, which are produced by the PLL
namel y the chirp parameters and the signal level. Other parameters--such as the
individual senders’ code speed and rhythm, radio environment effects such as flutter,
language characteristics such as Q-signs used, and so on--are not used, but they could
be added as desired to improve the performance of the identification procedure in en
integrated transcribing system.

Chirp, if present, is generally a reliable indicator of a particular transmitter, since

_ _

—

PROGRAMMING TECHNOLOGY GROUP 81 PROGRAMMING TECHNOLOGY GROUP

it does not change significantly with time, and it is easily measured by the PLL facility.
Signal strength, however, is another important clue normally used by operators. It does
vary from day to day, but an operator’s knowledge of “band conditions” enables one to
compensate for these ef fects to a large extent. The program was therefore
constructed to use both of these measures, and compare different samples using a
best—fit type of algorithm, to decide whether a signal is “definitely,” “possibl y,” or
“definitely not” some particular previously heard transmitter.

The program has been tested using the in-house cable network of transmitters,
driven by a standard test tape to simulate several stations simultaneously in operation
on sli ghtly different frequencies. The program scans the band segment as directed,
determines the number of stations transmitting, and records their frequencies. It is
then possible to perform a measurement pass, in which each signal is tuned in and
measured in turn, assigned a name, and its characteristic parameter values saved. It is
also possible to ask the program to find a particular station by name, in which case it
measures each signal present in the segment, compares its parameters to those of the
desired signal, and determines which, if any, of the signals match the desired station.
Alternatively, a particular signal may be selected for identification by measuring its
parameters and determining which, if any, of the signals in the data base it matches.

3. Morse-code Transcription

The capabilities of COMDEC, the Morse-code transcription module, were
expanded and improved during the past year (Lebling). The major thrust of its
development during the year has been to augment its abilities in translating Morse
code into printed text sent in an environment more closely approximating conditions of
a live communication between operators. There were several areas in which this
effort concentrated, each of which will be discussed in turn:

a. recognition and proper handling of error signs

b. translation of numbers appearing in text

c. English word recognition

d. multiple dictionaries

a. Error signs

Until this year , the transcriber was always run under the assumption that a
sender transmits the text straight through, ignoring any known errors. Real Morse—
code senders do not in fac t behave in this manner.

~~~ --~~ -- -~~~~--  ~~~- - - -- -~~~~~~~~-~~~~~~~ --rn--—— — - - -- ~~~~~~~~~ - - -



p.. — — -~~~~~~~~Ifl~~T --~~ ~~~~~~~~~~~~~~~~ _ _ _ _ _~~~~~ 

-

~~ .“

PROGRAMMING TECHNOLOGY GROUP 82 PROGRAMMING TECHNOLOGY GROUP

If a sender makes an error (and notices it!) he or she will resend the erroneous
word, phrase, or sentence, signalling with an error sign that this is about to occur. This
behavior is somewhat analogous to a typist who spaces back over an error and
overstrikes it with X’s. An error sign is a sequence of dots sent rapidly, rarely fewer
than six, and rarely more than twenty. The number of dots sent varies even within a
single transmission, as does the separation of the dot-sequence from the erroneous
code preceding it and the “correct” code following it. More importantly, the semantics
of an error sign vary even more widely. An error sign may mean to ignore the
previous word or it may mean that the previous word or phrase will be resent, end so
on. Some examples from actual code (the symbol “e” is used to represent an error
sign) follow;

ANY B O’~’ OR GIRL 13 TO 10 ~ 19 WHO...

The correct translation;

ANY BOY OR GIRL 13 TO 19 WHO.. .

This is the most typical use of an error sign. It signals that the previous word or
object was in error, and the sender resends the word correctly. The error sign In this
example contained thirteen dots.

PAGE B 23 OF TODAYS PE TPER S ~ TODAYS PAPER...

This is similar to the previous example, but two words are erased and resent The
error sign contained eleven dots.

THE CORNER OF WASHINGTON BLVD ~ AND SCHOOL STREETS...

In this example, the word “BLVD” is erased--it should not have been sent at all. The
error sign contained seventeen dots.

The problem of error signs therefore is in two parts: recognizing the error sign
itself , and finding the area it is intended to erase.

COMOEC finds error signs using a module that is the first to run after the initial
Maude-like [4] transcription of the code. This module looks for sequences of five or
more dots. When it finds such a sequence, it estimates how likely It is that the
sequence is an error sign. Specifically, an ideal error sign should be:

1. composed of nothing but dots and spaces

2. six or more dots long



-- ~ — ---- -~~~~~~~ - -- ~~~~~~~ - - ---- - --- 

PROGRAMMING TECHNOLOGY GROUP 83 PROGRAMMING TECHNOLOGY GROUP

3. composed of spaces all of the same type, and

4. set off from the surrounding code by word-spaces.

If a dot—sequenc e satisfies these criteria it is an error sign. If it does not, it may still
be an error sign. The most important decision factor in the latter case is how long the
sequence is, and how uniform the spaces are. This technique succeeds because few
English words (or Morse-code signs) have long sequences of continuous dots in them.
For example, the word “THESIS” has thirteen contiguous dots but also has an initial
dash and very irregular spacing.

Once COMOEC finds a suspected error sign, it attempts to find the area the
error sign erases. This is done by going back in the message, stopping at word (and
some letter) spaces. The area of code between the stopping place and the error sign
is compared to the code following the error sign. If the code sequences are
sufficiently alike, then COMDEC has found the area that needs to be erased. Of course,
the area being erased might not be too much like what follows, because it was sent
incorrectly. This fact causes COMOEC to give more weight to a correct match with the
spacing of the following code, a technique that is similar to a letter-by-letter
comparison. A simple example illustrates this problem;

UNDER THE EHEADING ~ HEADING...

If the “closest match” to the following code were selected as the correct error sign
and erasure , then the transcription of this sequence would be “UNDER THE E
HEADING.” Taking spacing into account, and recognizing that the erased code should
contain an error, the correct transcription of “UNDER THE HEADING” is produced.

The message containing the previous examples, and COMDEC’s transcription of it,
will be given later.

b. Numbers

COMOEC recognizes arbitrarily long sequences of digits as “numbers” (Lebling).

The problem of transcrib ing numbers is analogous in some ways to that of
transcribing error signs , and it arises out of the fact that most of COMOEC’ s
transcribing is vocabulary-based. Since it is theoretically possible to send any number
from zero up to numbers containing any number of digits, it is impractical to include
them in a “dictionary” of numbers. Instead, COMDEC utilizes the properties of the
Morse code used to represent the digits: 

~~ - -“---~~~~ ~- -   ~~~- - - A



r

PROGRAMMING TECHNOLOG Y GROUP 84 PROGRAMMING TECHNOLOGY GROUP

1. All digits consist of five marks.

- 2. All digits contain a sequence of dots foliowed by a sequence of dashes, or vice
versa.

3. A number very often appears in context , that is, as a part of a date, time,
address, page number, age specification , and so forth. This context is used to
reinforce the possibility of a number. A number appearing out of context must
be allowed, as all possible contexts have not been or cannot practically be
implemented. If a number appears out of the contexts in which a number is
expected, it is looked upon by COMOEC with great suspicion, and it will be
allowed to remain a number only if it is we ll sent compared to other
interpretations of what it might be.

COMDEC searches for mark sequences that fit these criteria and then attempts
to “expand” them on either side (to produce complete numbers). The only limitation on
this algorithm is that at least one digit of an n-digit number must be sent correctly.

c. English Word Recognition

One of the potential problems with a vocabulary-based transcriber such as
COMDEC is that it is impossible to have a complete vocabulary. The frequency graph
of English is such that after the first few thousand words almost all words are equally
frequent (or infrequent) . The practical consequence for COMOEC is that any
sufficiently long message is likely to contain at least one English word that is not in
COMDEC’s vocabulary. If a legitimate word is not recognized as such, it can lead to
COMDEC’s believing that it is a word it knows (or several such words), but one made
unrecognizable by a mark error. In the worst case , an unknown wor d may be
“corrected” and split up into several known words.

We have investi gated including in COMOEC a module which is able to estimate
the likelihood that a given sequence of letters appearing in a message is an unknown
word (Sherry, Lebling, Broos). This module is based on the observation that some
sequences of vowels or consonants occur in English and others do not For example,
“EA” is a very common vowel sequence, whereas “AA” is very rare. Similarly, some
letter sequences occur in the middle of words fairly commonly, but are rare or
impossible at the beginning or end. For example, “00” is common in the middle of
words, but rare-to-impossible at the beginning of words.

This word-recognizer is able to recognize over 98% of all nonsense character
sequences given it as non-English. It is to be installed In COMDEC during the coming
year.

_ _  - .
- - -  -~~~~-~~~~~~~~~~ - --— - -

~~~~~- - —-- —- - - - - - - - .-—--— - - - -.
~~

PROGRAMMING TECHNOLOGY GROUP 85 PROGRAMMING TECHNOLOGY GROUP

d. Multiple Dictionaries

COMDEC’s run-length-sequence (RLS) lookup functions have been improved to
allow more than one dictionary to be searched (Lebling). This improvement enables
dictionaries for special applications (such as transcribing Morse-code network chatter)
to be switched in and out as needed. Eventually such dictionary switching will be
signalled by “event markers” (which see) placed in the code.

e. An Example

A major spur to this year’s effort was provided by a tape of senders made by
several instructors at the Army’s Morse-code school at Fort Devens, Massachusetts.
The tape contained many different types of code, as sent by trained (but sloppy!)
senders.

One section of this tape illustrates many of the problems worked on this year.
This section is one of several “messages” being transmitted by the senders on the
tape. The message is a transcription of an article which appeared in the Boston Globe
at about the time the tape was made.

The correct text, as it appeared in the article, is as follows:

“In an attempt to alleviate youth unemployment in the city, the Sunday Globe
on May 30 will publish free advertisements for Boston teenagers seeking
summer jobs. Any boy or girl 13 to 19 who lives in Boston can place a job
wanted ad without charge by filling out the coupon on page B 23 of today’s
paper and mailing it to Summer Jobs , The Boston Globe , Boston ,
Massachusetts 02107. Teenagers may also take the coupons to the Globe’s
downtown office , at the corner of Washington and School Streets , or at its
main office , 135 Morrissey BIvd, Dorchester. Coupons must be received by
5 pm, Wednesday, May 26. Job seekers may be as specific as they like in
mentioning the hours or days they are available for employment, the type of
work they desire or can do or what wages they expect. The ads will
appear in the May 30 classified section under the heading Hire a Boston
Teenager for the Summer.”

COMDEC’s Maude-like first pass transcribed it as follows (curly brackets indicate
uninterpretable mark sequences);

IN ANATT E MPT TOALLEVE EE~ HALLE4lATE YOUTV UN E MPLOYMENT I N THE CI TY
MIM T ~~~5 CI TY, 15E SUNDAYGLOBE ON MAY30 WILL PUBLIS5 FRE E ADVERTIS E
MENTS FOR 6OSTON T E E NAGERS S E E KING SUMMER JOBS. ANY B OYORGIRL
13T0 10 ~~ E19 W5OLIVES IN BOSTONCANP LACE AJO6 WANTED AD WI THOUT
CAAEEEEEEEEEEEEEEE CH*GE 6YFILLING OU T THE C{---..-}PON ON PAGE B 23 OF

PROGRAMMING TECHNOLOGY GROUP 86 PROGRAMMING TECHNOLOGY GROUP

TODAYS PETPER~ H~ E TODAYSPAPER ANOMAILING I T TO SUMMER JOBS {--..-} T5E
&OS~----}N GLOBE, BOSTON, MAS S AC 5 EEEEEEEEEEE MAS SAC5USE T TS 02107.
TE E N{. --- . }ERS MAY ALSO TAKE T5 E COUPONS T 0 T5E GLOBES DOWNTOWN
OFFICE , A T T5E C ORNER OF WASHINGTON 6LVD EEEEEEEEEEEEEEEEE AND SCH OOL
STRE E TS,ORATIT S MAI N OF FICE, 13 ~E MORRISS E Y BLVD, DORC4 E STER A{.-.- }
COUPTANS {-- ..-}S T B E RE CEIVED {- }Y EEEI P M,WEDNESDAY M{..--} MAY{..--} T
EEEEEEEEEEE , MAY2T5.JOBSE E Kl EEEEEEEEEEE JOBSEEKERS MAY BE &SPECIFICAS
TH E V L IKE I N ME NTIONING T5E 50{..-.-.}S OR DAYS T5EY AR E AVAILABTIIE~ l
AVAILABLE FOR E MPLOVMENT , THE TYPE OF WTMRK 6 E YDES IRE {---.-.}CANDO{---

}WV AT W{. --- .} E S TH E Y E XPECT. THE {.-- ..}SWILLAPPE*INT5E MAY3OCLASS
IFII EEEEEEEEEEEEEEEET CL&SISE I E 0 SECTION UNDER EH E EHE {.--..}ING 51
EEEEEEEEE HEADING 5 IRE ABOSTON T E E NAGE RFOR TH E SUMMER.

This is the COMDEC transcription (“
~~

“ in square brackets indicates an error sign;
“xxxxx” indicates that a portion of the message in error was suppressed from the
~itput; and “ <>“ indicates a word obtained from the dictionary, assuming the sender
made a mark error).

IN AN ATTEMPT TO [xxxxx ~] <ALLEVIATE> <YOUTH> UNEMPLOYMENT IN THE [xxxxx
t~~] CITY , <THE> SUNDAY GLOBE ON MAY 30 WILL <PUBLISH> FREE ADVERTISEMENTS
FOR <BOSTON> TEENAGERS SEEKING SUMMER JOBS. ANY BOY OR GIRL 13 TO [xxxxx

~] 1 9 <WHO> LIVES iN BOSTON CAN PLACE A <JOB> WANTED AD WITHOUT fxxxxx

~
] CHARGE <BY> FILLING OUT THE COUPON ON PAGE B 23 OF [xxxxx ~

] TODAY S
PAPER AND MAILING IT TO SUMMER JOBS <,> <THE> BOSTON GLOBE, BOSTON, [xxxxx
t~J <MASSACHUSETTS> 02107. TEENAG ERS MAY ALSO TAKE <THE> COUPONS TO
<THE> GLOBES DOWNTOWN OFFICE, AT <THE> CORNER OF WASHINGTON <BLVD> [~ J
AND SCHOOL STREETS , OR AT ITS M A I N OFFICE , 135 M O R R I S S E Y BLVD ,
<DORCHESTER>. <COUPONS> MUST BE RECEIVED <BY> 5 PM, WEDNESDAY [xxxxx ~

],
MAY <26> . [xxxxx c~] JOB SEEKERS MAY BE AS SPECIFIC AS THEY LIK E IN
MENTIONING THE <HOURS> OR DAYS ~THEV> ARE [xxxxx

~
] AV A ILABLE FOR

EMPLOYMENT , THE TYPE OF WORK <BE> {Y} DESIRE OR CAN 00 OR <WHAT> WAGES
THEY EXPECT. THE ADS WILL APPEAR IN <THE> MAY 30 [xxxxx ~

] <CLASSIFIED>
SECTION UNDER <SHE> [xxxxx ~] HEADING 5 IRE A BOSTON TEENAG ER FOR THE
SUMMER.

Jnders t andini~ lorse-code Senders

• i ~~ r~t Morse code is like speech and handwriting in that the characteristics
-. -

- .on depend on the sender, in such a way that the sender can often be
.•-i “am t’~. transmission. Although Morse-code transcription systems have

i-’~,’d,d t~ e problems caused by sender differences , a study of the
- i ~~j 4 ? Morse-code system--one which obtains its input from radio

~~~~~~~~ ~~~~ informat ion regarding sender differences can be extremely
- . .i. ‘r~~~4r Ipt Ion systems have attempted to fit all senders into one

— 
~~~~

- -
~~~~

-
~~



— -_. -._

PROGRAMMING TECHNOLOGY GROUP 87 PROGRAMMING TECHNOLOGY GROUP

badly-fitting description.

A model of individual Morse-code senders has been proposed (Anderson) [3]
and structured to allow its use in a system which attempts to recognize individual
senders. The model is based partially on information obtained by averaging over an
entire transmission; principally, though, it attemp ts to describe those structures in a
sender ’s transmissions , such as letters and words , which are sent with consistency.
This aspect of the model, although similar in some respects to models used by some
transcription systems , removes many res trictions imposed by those earlier models; the
structures used are not limited to letters , and data regarding any particular structure
may be excluded from a sender’s model if it is sent inconsistentl y. The description of
Morse—code senders is seen to include far more than just a description of their “fists;”
the model must also contain information useful to the rest of the Morse-code system.

5. Understanding Morse-code Networks

A set of programs for understanding Morse-code networks was implemented and
interfaced to COMDEC (Church) [2]. A set of experiments was designed, whic h
hypothesized the existence (or lack thereof) of certain context information from other
modules in the system (Church, Vezza). Experiments run on a number of actual Morse-
code network conversations produced several interesting results. (1) The syntax of
Morse-code conversatio rs , although rather loose, can and does provide useful feedback
to the transcri ption process in order to correct translation of poorly sent Morse-code
sequences. (2) Sender transmissions are extremel y important as context information.
(3) Semantic feedback to the transcription process is currently limited to flagg ing that
which obviously doesn’t make sense , but there is no mechanism for correcting the
Morse-code sequence. (4) The couphng between COMDEC and the understanding
module needs to be ti ghter and integrated into a more consistent whole.

Morse-code opera tors have mental models of how people send, wha t their
transmitters sound like, who the members of a particular network are, which members
are currentl y active in the network and where they are in the spectrum. All but the
last two models require long-term memory, that is, they are remembered from one
session to the next ; the last two require short-term memory, as they change from
session to session and even during a session. (Even in a simplex network, the various
members are likely to be separa ted by 10 or 20 hertz , and this is enough of a
separation at audio frequencies to determine when a sender changes.) These models
are ex t reme ly impor tant in aiding a person or a system in setting the network
contexts , that is , helping identify senders and determining when a sender changes. This
context information is necessary, as the linguistic context of a particular Morse-code
sequence is often ambiguous.

Consider the example shown below. In italics at the left of each line of text Is
the speaker, ei ther the network controller ( N CS , w hose call sign is W IHVW), or a 

- - --~~~~~~~~~ . - . ~~~~~~~~~~~~~~~~ . -



~ 
~~~

--—--.--- -
~

PROGRAMMING TECHNOLOGY GROUP 38 PROGRAMMING TECHNOLOGY GROUP

member of the network (WG ; , whose ciiIi sign is WA 1W GI). Each line from the
conversation is followed by a free transiat ion of the iine into English. All call signs are
fictitious.

NCS.- RN RN DE Wi HVW QNI K
The network controller gives his call sign, and asks stations to log in to
the net.

wol. DE WA I WGI QNI QTC 3 SOS
WGI logs in to the net, and reports that he has hree messages to be
transmittea to Boston.

NCS: QSP SPFD
The net controller , by way of arknow~edgement, asks if WGI can relay
messages to Springri’Jd.

WGI: C
WGI answers affirmativel y.

NCS: DN 5 K1JRW
The net controller asks WGI to go down five kilohertz in frequency, where
he should exchange traffic with KIJRW.

WOl: C
WGI acknowledges the transmission and says that he is indeed going down
five kilohertz.

The preceding dialogue can ~e interpreted differently, i we assume that WGI’s
first transmission ends slightly Iate~ ~n t ie message.

NCS.- RN RN DE W 1HVW QNI K
Th is line is exactly as in the first dialogue.

wo!: DE WA 1 WGI QNI QTC 3 BOS QSP SPFD
The ambiguity is in roduced a~ this point; WGI again logs in to the net and
reports that he nas traffic for Boston; this time, though, he also asks
whether the net can relay traffic to Springfield. The meaning of QSP SPFD
has not changed; rather, the object of the question it asks has changed.
A transcript of the dialogue without speaker transitions would not show
any difference between the first and second dialogues.

NGS: C DN 5 K I J R W
The network controller answers that the net can relay messages to

PROGRAMMING TECHNOLOGY GROUP 89 PROGRAMMI NG TECHNOLOGY GROUP

Springfield; he then dispatches WGI off frequency to exchange traffic
with KIJRW , as before.

WGI: C
As before, WGI acknowledges.

Thus there are at least two acceptable interpretations of the dialogue ,
depending on the locations of speaker transitions. There is still another interpretation
of the second dialogue, depending on the global context: if the net controller had been
looking for someone to relay messages to Springfield, WGI’s QSP SPFO might mean
“Yes, I can relay messages there.” Thus, in addition to the speaker transitions , a
program attempting to understand this dialogue would have to know what had gone
before.

C. INTERPERSONAL COMMUNICATION

The program in interpersonal communication has centered about the design and
implementation of a Data-based Message Service (OMS) (Broos, Berez, Blank, Brescia,
Galley, McGath , Platt , Vezza) [8, 9]. It is “data-based” because the messages it
manages are data in a relational data base.

The central design principle in DMS is that a message service is (or should be)
data-base intensive. By that we mean that an on-line data base may contain thousands
or even tens or hundreds of thousands of messages. The data base must be capable
of being updated frequently as new messages arrive and as users annotate existing
messages or specify their own idiosyncratic filing keywords. Further, the user needs
the capability for finding and retrieving a message or group of messages in an easy,
natural, and computationally efficient manner. In addition, data-base intensive systems
like OMS can be naturally integrated with management information systems. For
storage efficiency, parts of the data base may be shared among many users while other
parts remain private to the individual. For example, all of the recipients of a message
may share the text of that message, but annotations they may make to it can remain
private.

The general model on which DMS is designed is that of a typical off ice.
Superimposed on this off ice model is a simp le but specific model of a Naval
organization. The interface at an intelligent terminal between OMS and a user is
designed to be comfortable and familiar to people not used to working with computers.
Concepts and terminology from typical office methods of managing paper-based
messages (letters , memos, and so on) are used wherever possible, rather than
computer terminology. The interfac e is also designed to be robust and resilient , in the
sense that there should be nothing that a user can do that will cause the system to
take an irreversible action that the user will regret , without giving the user an

PROGRAMMING TECHNOLOGY GROUP 90 PROGRAMMING TECHNOLOGY GROUP

opportunity to reject the action. It is important that this opportunity to reject actions
not hinder the user’s intended ac tions. For instance, asking a user to confirm an action
unnecessarily, such as a deletion, is a hindrance of his or her intended action.

Message systems like the one described here are really the beginning of “office
automation systems,” because they are more than just simple message creation and
delivery systems. Such systems must possess user interfaces which are reasonable
and easy for people to use, and that give a user the feeling that she or he is definitely
in control of the machine, rather than vice versa. For example, DMS is largely “form—
driven,” in the sense that the user creates and changes messages and other objects by
filling in forms, rather than answering a sequence of questions or, worse yet, having to
remember the order and meaning of parameters in a command. Another OMS design
principle is that the computer should sound like a mechanical servant rather than some
sor t of person; sentences directed at the user should be phrased “That can’t be done”
rather than “I can’t do that.”

1. Configuration

OMS operates on a hardware configuration that includes:

a. a central POP- 10 computer that contains the data base and serves all DMS users
at the installation

b. a number of intelligent terminals connected to the central computer, each with a
cathode-ray-tube display and both a typewriter-like keyboard and special
function keys, designed to make DMS easily and naturally accessible to users

c. a smaller number of high-speed printers connected to the central computer ,
preferably located so that every terminal is reasonably close to a printer, to
provide users with paper copies of messages when that is required; and

d. a telecommunications facility that interfaces the central computer with
communications lines or a computer network, so that OMS can receive messages
from and transmit them to computer-based message services at other sites.

OMS currentl y supports Hewlett-Packard 2649A terminals , which contain a micro-
processor and video display. OMS makes extensive use of this terminal and of a
program for the terminal’s micro-processor developed at the Information Sciences
Institute of the University of Southern California [10].

A OMS installation consists of the following software , operatIng under the
ausp ices of a general-purpose operating system (currently Tenex only) and
programmed almost entirely in the structured Lisp-like language MDL [Ii] and the file
system ASYLUM;

---“ - ----~~~~.- - -------- - - - - —— --- -- ---—~~~~~~~~~ —-,-—.- - - - - - - ~~ -~~~~~~~ -- - - - - - . - - - - - - . - - - - - - . -

- - . - ~ —- --.-~~~—.--.—~~~~ -.----..------ - —- --,-- --—-.,—.——. - - - -

PROGRAMMING TECHNOLOGY GROUP 91 PROGRAMMING TECHNOLOGY GROUP

a. a central relational data base for information shared by all users

b. a smaller relational data base for each user’s individual information

c. a process for each user, containing components including a command parser that
interprets the user’s command s, a “message vault” that provides access to the
data base, a “virtual terminal” that interfaces to and complements the
capabilities of the user’s terminal, and programs to perform each kind of
command; and

d. a number of processes that may run in the background, performing computation—
intensive tasks such as local message distribution, remote message transmission
and reception, index updating, message forma tting, etc.

Because MDL is a structured programming language, new capabilities for any of these
processes are fairly easy to im plement and install , if and when they are needed.
Background processes are especiall y flexible, because there is no need to ensure that
each user is using the newer program. The “virtual terminal” concept of OMS ensures
that all the necessary functions can be provided, by either the terminal itself or the
central computer. The parts of the central-computer program that support the virtual
terminal make a separate module, so that potentially several different kinds of
hardware terminals can be used with OMS.

2. The Data Base

The major characteristic of DM5 that distinguishes it from other message
systems currently under development [12, 13] is that it is built on top of a data-base
system rather than a text-processing system. OMS was designed this way so that it
can be used as effectively with large numbers of messages (say, tens or hundreds of
thousands) as with the relatively few messages used in testing environments.

A OMS data base is organized on the relational model [14], in which the
information is stored conceptually as a two-dimensional array. All messages are stored
by DM9 at a central computer installation as rows (“tuples”) in a single, potentially
large relation. The relation is “un-normalized,” in the sense that a field (“column”) of a
message can contain more than one value (data element). The messages in the relation
are not ordered, except by identification number; access to the relation is through
indexes.

The word index is used here in a sense much like an index in a book: an index
Is an ordered list of all values occurring in a particular field of the relation (analogous
to a list of important words in a book), and associated with each value in the index is a
list of message numbers in which that value occurs (analogous to a list of page
numbers in a book’s index). Actually the field values are organized not In a list but in

r - - __________________________

PROGRAMM ING TECHNOLOGY GROUP 92 PROGRAMM 1NG TECHNOlOGY GROUP

a tree , so that the OMS command parser can locute them quickly. Similarly, the
message numbers are organized not in a list but in a combination of lists and bit—masks,
for storage and update efficiency [8] Thus there is a nearly constant cost for
retrieving messages from the relation according to selection cri teria that involve
indexed fields. The manager of a OMS installation can designate (for each user) which
fields are to have indexes. Non-inaexed fields must be searched linearly; that is, the
field values in each message must be individually examined, making the cost of
searching rise iinearly with the number of messages involved. But the cost is
minimized for retrieving messages according to conjunctive (“ANDed”) criteria that
involve both indexed and non-indexed fields , because a search-optimizing module
causes indexed searches to be performed first , so that linear searches are performed
on only those messages meeting the indexed-field criteria.

The basic trade-off in an indexed (or , more typically, partially-indexed) data
base is between the amount of time spent maintaining the indexes and the decrease in
retrieval time that such indexes make possible. Fortunately, the data base used by
DMS is organized in such a way that updates do not require complete reorganization of
the data base. Even in a large data base, insertion of a single new message, along with
maintenance of the associated indexes, will result in the modification of only a small
fraction of that data base’s disk pages. The two main reasons why this is true have
been mentioned before: namely, the relation of messages is not ordered, and the
indexes are data structures, not simple ordered lists of message numbers.

There are three kinds of message fields in DMS: external, organizational, and
personal. External fields are those that are received from o transmitted to outside
the organization, for example, address, subject, and text. Organizational fields are
accessible only within DMS, by any user that has access to the message; for example,
notes, retrieval keywords, approval lists, responsibility lists, and other information that
is to be seen only within the organization. Personal fields have personal values, that
is, each user has values that are accessible only to himself or herself, for example,
private notes and keywords.

Corresponding to these three kinds of fields are three areas of storage for field
values . The cen tral storage area contains values for external fields. An organizational
storage area contains values for organizational fields. (Potentially, more than one
organization could share use of a single OMS installation without conflict or
compromising privacy. In this case there would be an organizational storage area for
each organization using the installation.) Finally, each user has a personal storage area
containing her or his values for personal fields.

In a sense, this division of storage is invisible to users, because each user sees
a message as a whole, with field values taken from the appropriate storage area and
merged for the terminal or printer. The storage method means that only one physscal
copy of a field value needs to be kept, no matter how many users have access to it.

- - ~~~~~~~~~~~~~~~~~~~ - -~~- - - ~~~~~~ - --~~~~~~~ --~~~~— - -
~~~~~~ 

- -

PROGRAMMING TECHNOtOGY GROUP 93 PROGRAMMING TECHNOLOGY GROUP

However if organizational policy dictates that users must pay for using OMS, then users
would typically pay more for a larger amount of information in their personal storage
areas. If a special administrative program were run to expunge old messages from the
central data base, then typically users to whom those messages were still accessible
would find the messages moved to their personal storage areas, where those users
would have to bear the cost of retaining the messages on-line.

To illustrate use of secondary storage: an experimental DMS data base
contained 207 messages , with an average length of 855 computer words or about
4200 characters. On a proportional scale, the secondary-storage space used by an
average message and its adjunct data was as follows:

1.00 original bare message
1.52 parsed and structured message
1.65 formatted message
0.73 formatted message header
0.11 formatted message summary

5.00 total storage used

The formatted versions are designed f or display on a user’s terminal. If space were at
a premium, the original bare message could be erased after it is parsed and structured,
and the forma tted versions could be erased at the expense of the time needed to
format the message each time it is displayed.

Another aspect of the three kinds of fields is to what extent their values can be
changed. The following rules achieve concurrency control and the assurance that
external messages (transmitted or received) cannot be altered. An “unshared”
message, that is, one that was created by a OMS user and never sent, released, or
added to a shared folder (see below), can have its values changed any way the creator
desires. All other messages can have their values changed only in accordance with
what kind of field is involved. The values of external fields are inviolate in the sense
that no user can change their values. This rule means that, once a draft message has
been coordinated with colleagues for suggested changes or approval, the desired
changes in external fields are not made in the selfsame message; rather a new
message is created (by OMS), and the desired changes are made before the new
message is seen by anyone other than the drafter. The values of organizational fields
can be changed only by appending new values, so that no problem occurs if more than
one user chan ges the same field of the same message concurrently. Values of personal
fields can be changed freely.

To meet the demands of DMS data management, two packages of functions were
created (Blank), as generalizations of previous software [1], to:

L ~—.—- ~~~~~~ -~~- -- .--. ---. 



-
~~~ -- 7~- ~~= - 

- -
T _______ -.-~ -~~~~ —~~ ._. - - —.~~~~.

PROGRAMMiNG TECHNOLOGY GROUP 94 PROGRAMMING TECHNOLOGY GROUP

a. allow MDL objects to be created and destroyed outside the normal heap area in
primary storage, so that the MDL garbage collector can save time by ignoring
them (each such object incurs six computer words of overhead)

b. allow these special MDL objects to be written to and read from secondary
storage directly, without modifying addresses or using temporary storage

c. or ,~anize secondary storage in a way that avoids the limitations typically set by
available PDP-10 operating systems and encountered by builders of data-base
systems.

This fas t facility (named ASYLUM) is in effect the logical-organization part of a
file system, vv th physical—storage management left to the operating system. The file—
system is designed f or data bases, and it provides:

a. an escape from directory-size limits, since up to 14 million files can be stored in
one file directory, rather than the two hundred or fewer allowed by ITS or
Tenex

b. an escape rrom page-size waste, since space for files is allocated in units of
sin~ e storage words, rather than pages that are hundreds of words in size (the
directory overhead for a file is slightly more than four computer words)

c. any ru ib~r of locks for reading and one lock for updating a file, all concurrently;
and

d. identification of files by either name or number: file numbers are used
throughout DMS for faster execution.

All four of these features together, in one file system, make it extremely useful for
data-base management.

3. The Usc~’s V e w

A DM9 terminal has a display screen, typewriter keyboard, function keys, and
local processor and storage. The display screen is divided by DM5 into three
independent ~~~~~~ in which the user respectively enters commands, examines
information generated from command execution, and drafts new messages. What the
user sees in each window is a few contiguous lines in a potentially large “page” full of
lines. The user can “scroll” a window to bring different lines into viaw, one at a time.
The user can copy information from one window to another, for example, to copy an
address from an old message either into a new message being drafted or into a
command to search for other messages with that address.

FuIF~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—‘~~~~~~~--~
--. - —

~~
—------ - — - - . -

~~
- - - - - - -- -.-—-—- - --— -—- - —

~
- - —-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - - .-

~~~
-- -

PROGRAMMING TECHNOLOGY GROUP 95 PROGRAMMING TECHNOLOGY GROUP

The user creates and edits messages by filling out a form that has a label and
blank space for each field of interest. Pro forma messages can be stored for later use,
when they can be edited (if necessary) and sent. The user enters commands to DMS in
statements that resemble restricted English, for examp le , “Show messages from Smith.”
The command parser (Brescia) is “friendly” in that it allows abbreviations; if an
abbreviation is so short as to be ambiguous, the parser repeats the command back to
the user , expanding abbreviations as best it can, and places the terminal ’s editing
cursor at the exact point of difficulty. In most cases, the user can fix the command
with one or two keystrokes and re-enter it. Or the user may not know how to fix the
ambigui ty. For instance, if one is searching for a message for which the author’s name
is not prec i sely known, a request to obtain all author names in the data base that begin
with “Stein” is easily fulfilled. Thus, an operation analogous to scanning down index
tabs in a file cabinet is provided.

The three windows on the terminal screen are named: (1) the Command
Window , where commands to OMS are entered (2) the Information Window , where
messages and other informati on that is only to be viewed is displayed (3) the
Draft/Edit Window, where new messages and other objects are created or edited. (In
addition , the re i s a “flash window,” where one-line terse comments from DMS are
flashed to the user; it has none of the flexibility of the other windows.) The user or
OMS can increase the size of any one of the three windows at the expense of the
other two windows. Thus the display is always composed of two windows, each
displaying two lines of text , and one window displaying 16 lines of text. (The flash
window and a “name line” for each of the three windows complete the total of 24
lines.)

There are three kinds of text that can appear on the terminal. The first kind is
called editab ,~~ because the user can edit or modify it by placing the cursor at the
point where a modification is to be made. Most of the text in the Draft/Edit Window
and the last line in the Command Window is of this kind. A second kind, called
enterab le , is not editable , but the cursor can be moved into it for purposes of
indicat ing to OMS the object(s) on which action is to be taken. All of the text in the
Information Window is of this kind. The third kind is called non-enterable, since the
cursor wiil jump over it. This kind of text is used whenever labels like those in a form
are displayed.

Not only do the function keys provide a means for directly entering certain
fr equentl y-used unvarying commands, but also they provide means for controlling
window size, what is displayed in each window, and deletion and copying of information
within and between windows.

A user’s view of the data base is closely analogous to the way messages
(letters, memos, and so on) on paper are stored in a typical office. All of the following
properties of messages (bins, tags, and folders) are implemented in the same way that

~

--

~

- --

~

-- -—--

~

—— -- -—.- -~~~~~~~~~—-- - ~~~--- ~~rn4


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - -

PROGRAMMING TEC~-~NOLOGY GROUP 96 PROGRAMM ~~ TLChNOLOGY GROUP

indexes for f~~~s ~c , Lid they pro’. ide “handles ” kr specifjirig ~et of r~ -ssages in
the same way. T~e u.er can apply any DMS command to any set of messages
specifiable t~~ a fL u/value condition, or by one of the follo’~ ig ~n~ies,” or by an
arbitrary f 3uc 3ar com~ination of these. If the user is unsuF e ~ w to specify the set
exactl y, ~~ruws~~g~ cummands can be used to “home in” on the set it steps.

Each n ess.. ~ ~ccessi~.e to ti’e user has a conceptual location, eith ar in one’s
file cabinet c on ~- , - e’... desk ‘ca IIe.~ the workspace). The works~.iace tS further divided
into four part 3: 

~~ ~~~~ 
where OMS puts new messages ad~res~ed to the user;

the p~ndin~ t. n, ‘~,‘here the user can put messages that need f irt; er actioi~ the draft
bin , wher€ auw r~ie~s~Fes being drafted are kept; and th~ J c:arw~d bin or
wastebas k-~ , -. .

~~
- ncssagos can be put to be destroyed by ~~~~~ or by a janitor

process. Tht.. ~;e- cor.eptual ~o-:ations are not inherent in the da~.a ~~ ~, rather they aid
the user ’s r - ~rit~ ~~~~ j f  the data base. They also pro-’iLe oc 1.e computational
efficiency. r .~ , ~~~~ pie, just as an office worker might look Oh h~s ~ h~r desk for an
object of ir1~erest , ~he DMS user can direct the system to look the Workspace for a
message at in..e a’~t , ather than having DM5 always search the eru~r — . data base.

Any rn~ss~~e can have one or more ~~~ conceptually a~~ 3C~IC-J to it, analogous
to the littie c- ..ar~d metal tags (called “signals” in the trade) that c&~ oe attached to
the edLe f - .., rc o ’ paper. Di~1S tags are automatically aadei tu or removed from
DMS nes~~, -s , ~-nd each indicates to the user some notable ~~~~~~ for example,
“you have rc ’ y.~t ~~~er, .he text of this message,” “you have not yet .~ecn any part of
thi s messa~ ‘~. -~i m~-ssage was delivered to you since you a~~a .J~~S session,” “this
message re~ds act on by you,” and so on. Tags are, of course, ‘on ~t~tely independent
of the messa~e’,s c ceptual locatioi.

Anot r e , r~..t~ endeni. way the user can organize message~ ia ‘:a~ data base is to
group them - : 3  ~o der:, anaio~ous to the manila folders typic~iIy j be~ to group paper
messages ~I’i .e ‘ ie ~..abinet, However:

a. A me; 
~~

;- ‘
~ 

n- ;e~ iot be in the file cabinet to be in a folJe~. In tact a folder can
conta1r 5cr. .e messages in Lhe file cabinet, some in the i~~ c~ux, ~:.ome in the draft
bin, 8(1~l so on .

b. A (c itaticn ~u ~
‘ mussage can be in any number of foIde~s cot~cj rre idl’ .

c. Th - ~ ow ier or a tolder can grant three kinds of access t c1 other DMS users:
seei~~ rr. ~ s~ges in it , adcing messa~.,.~s to it, and removing messdges from it.

In combinF,t i )Ii , ~~~~ properties of folders allow great pc~ er and flexibility in
organizing n,e~.sa~~s ir me anirgfu l w~ys. For example, a folder ~~ contain a draft
message pl~ t~it rne~ ,age to which it is a reply (and other ;~~~.ages for background
inforrnat icr) , th? io~Uer can be shared with the users th~t need to approve the

___ ___ ________ .-~~~~~~-~~~~~ - -—-~~



PROGRAMMING TECHNOLOGY GR OUP 97 PROGRAMMING TECHNOLOGY GROUP

message, and suggested revisions can be added to the folder as they arise.

Each message in the data base is uniquely identified by its control numb,~~ a
positi ve integer that is assi gned to the message when it is first stored in the data
base. All messages have control numbers, both informal messages that go from one
DMS user to another and never leave the data base, and formal messages that are
received from or transmitted to outside DM9 and which represent off icial
communications for which the organization is responsible or accountable. Control
numbers can range up to 14 million, limited only by the ASYLUM f le  directory. A
message can always be specified by its control number, should the preceding “handles”
seem to be inadequate.

A user can see a message in a number of formats1 which specify which fields are
to appear on the terminal display screen or printer paper , and where (McGath).
Formats are specified in an English-like language by the OMS installation manager. For
example, the “full” format typically shows the entire message; the “summary” format
shows a few fields of the message on one or two lines, to give a quick idea of the
content of the message; and the “action” format shows the action status of the

F message on one line.

4. Office Model

A person is registered as a DMS user in a special table in the data base
containing a unique name for the person and a unique password, known only to the
person and to OMS. As part of its simple model of an office, OMS recognizes that a
person can “wear different hats ,” that is, assume different organizational roles, at
different times. Thus roles are also registered in the data base, along with a list of
which people are allowed to assume each role. A person can assume a role (if
desired) at the beginning of an operating session with OMS, and OMS will refer to that
role’s data base instead of her or his personal data base.

One example of a role is that of shift supervisor in a plant whfch operates
around the clock. During each shift, a different person is expected to assume the role
of shift supervisor. Messages concerning the operation of the plant are normally sent
to the shift supervisor, to be acted upon by whoever is currently assuming that role.
If , ins tead , a message were sent, by name, to the actual person expected to be
assuming the role, it might not be acted upon if that person is absent and replaced by
an alternate, or if the shift terminates before the message reaches him or her.

A distinction is carefully kept between the parts of messages that are used only
within DM9 and those that go “out the door” through the telecommunications facility.
Provision is made for the typical office procedure of allowing one user to draft a
message, circulating it among colleagues for suggested changes or approval, and
requiring a different user, such as a superior, to actually release it as an official

~ 

--- -~~ --. ~~~~~~~~ -~~~~~~~~~--~~~-----



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PROGRAMMING TECHNOLOGY GROUP 98 PROGRAMMING TECHNOLOGY GROUP

organizational communique (this is analogous to signatory power). While a message
circulates loca IIy,~ the organizational fields are used to pass information about the
message (for example, annotations and approvals) among OMS users. A message can
be sent to local users freely, but only certain users working at certain terminals are
authorized to release a message for transmission outside DMS, and even then a user
must confirm the command if the message has not been given all the approvals It
needs.

Another concep t built into DMS is that of action. According to this model, a
message received from - outside may put an obligation on the organization to act or
respond in some way. The obligation is given to a particular user, either automatically
by the reception process or manually by an “incoming-message distributor,” who is
another user (or both, in that order). This obligated user is the action assignee of the
message. The action assignee can “pass the buck” to another user (typically a
subordinate) by assigning action again, and so on, until some user declares that action
has been completed, that is, the obligation has been fulfilled. OMS helps users keep
abreast of these obligations using tags on the messages and special ways of formatting
messages to see the action status. (By design, DMS has no way to check up on a user
who claims that ac tion on a message is complete; that task is left up to management
policy.)

5. Security

Access to the data base is governed by strict security rules. Each value of each
field of each message in the data base has an associated security level, one of four
possible security levels. This security model is the one used for general military
messages. The granularity for security classification is as small as practicable, much
smaller than that currently available in computer systems , and it allows separate
security levels to be assigned to small units like individual paragraphs in the text. In
addition each message has an overall security classification. While this is a military
model of security, the same security scheme can also be useful in a civilian installation,
where the security levels can be “proprietary,” “company confidential,” etc.

The security level of fiel d values is indicated in the terminal’s Information
Window by off-screen lights and in the other windows by highlighted security tokens.
Each token is one or two letters, and it indicates the security level of all information
following it, up to the next token. The user can change a token or insert a new one,
using function keys, to change the security level of any desired information. (Lowering
the level requires the user to view all the information and then confirm the change.)
Overall , security levels are sufficiently prominent without being obtrusive or hindering
to the user.

Each user’s view of the data base of messages is first of all limited by the
operating security level, declared at the beginning of a session. (Each user and each

~

_ _ ~~~~~~~~~~~~~~~

- -
~
-- ..-

~~~~

-_‘—.- - -

PROGRAMMING TECHNOLOGY GROUP 99 PROGRAMMING TECHNOLOGY GROUP

terminal has a maximum security level, and OMS will not allow a higher level to be
used.) The user can only see field values that have a security level at or below the
operating security level, in messages whose overall security level is also at or below
the operating security level. Within that restriction, a user’s visible data base consists
of all messages that are addressed to or created by him or her, plus all messages in
folders that are accessible to him or her. To provide a security audit trail , each

— message includes a list of all users that have ever had access to the message.

One of the goals of the DMS project has been the identification of the security-
related primit ives which are required to support true multi-level security in
transaction-based systems , with a view towards the incorporation of such primitives in
future operating systems destined for installation in secure sites. The rationale behind
such a “kernel” approach is that, by localizing the security tests in one small area of
the operating system (the “security kernel”), one facilitates the necessary task of
system verification. Moreover , once verified, the operating system provides an
environment in which any number of application programs, which do not themselves
need to be verified, can be developed, tested and run. Such application programs can
be modified as the user requirements change, without having to undergo the expensive
and time-consuming verification process before release of each revision.

The underlying principle of the security kernel is the maintenance of security in
programs through control of those programs ’ input and output (I/O). Application
programs on time-sharing systems typically do not manipulate I/O devices directly;
rather they rely on the operating system to mediate for them. The operating system
thus manages a scarce resource, facilitating its use and protecting users from one
another. In a secure operating system, the management of I/O is contained within the
security kernel. An active process in the operating system has an associated security
level. If a process attempts to read data from an I/O device, the kernel will allow it to
read only date which is at or below that process’s security level. Data being written
to an I/O device is always treated by the kernel as being at the same security level as
the process which is writing it.

In the DMS implementation, the security kernel is simulated by a kernel in the
app lication program itself. The kernel is divided into two parts, containing primitives to
handle the two I/O devices used by OMS, namely, secondary storage (disk and printer
queues) and an intelligent display terminal. The secondary storage kernel, called the
“message vault ,” allows the application program to create and access two—dimensional
arrays (messages). Each row (message field) of an array may contain any number of
columns (field values), each value (paragraph, word, etc.) having its own security level.
The vault primitives allow processes to access data by specify ing array number, row
number, and column number. A process cannot access a value whose security level is
above that of the process, and any values created by a process inherit that process’s
security level.



- AD AObS 932 MASSACI4)SETTS INST O~ TECH cAMBR IDGE LAB FOR CO$ UTE—€TC FIG 9/2
L.ASCRATORY FOR COI UTER SCIENCE (FORJtRLY PROJECT MAC ) PROGRESS—ETC (U)

LWCLASSIFIW

I

a ______



RI



PROGRAMMING TECHNOLOGY GROUP 100 PROGRAMMING TECHNOLOGY GROUP

There is a’so an overall security level associated with each array. The kernel
will allow a process to access an array only if the security level of the user for which
that process is acting is at or above the overall securi ty level of the array. For
example, a process acting for an “unclassified” user is denied access to any part of a
“confidential” array, even to those values which are “unclassified.”

To sum up, then, there are four different security levels which are used by the
kernel; the level of the user, which remains constant throughout a DMS session; the
level of the process acting f~r the user, which level may change during the session;
the overall level of each array in the vault and the level associated with each value in
each array in the vault.

1 he second part of the kernel mediates access to data stored in the intelligent
display terminal , which is communicating with the user. Access to the terminal data is
structured along the same lines as access to vault data, and the same security rules
are enforced by the terminal kernel. The security level of individual values Is
indicated on the terminal’s screen by highlighted security tokens. The user can, by
interacting with the terminal kernel, modify both the contents and the security levels of
displayed values, as well as create new values and assign security levels to them.
There may be several distinct arrays displayed on different areas (called windows) of
the terminal’s screen at one time.

The design of the OMS security kernel convinced us that an additional facility
was required in the kernel in order to allow some of the most powerful capabilities of
OMS to be realized. In short, the kernel allows a process, which is operating at one
security level, to call a subroutine which, through the kernel s mediation, is run at a
lower level than that of the pe ocess calling it. Essentially, the kernel maintains a
separate pate map for each security level allowed to the user. When a process calls
a lower-~l6vel subroutine, the kernel substitutes the page map for the lower level,
copies the subroutine’s arguments into those pages, and calls the subroutine. The
process is then running at the lower level and can utilize whatever kernel primitives it
requires, subject to ~ny restrictions imposed by its current security level. It has no
access to any data other than its arguments and whatever it can access through the
kernel. Data in higher-level page maps is not accessible at all. When the subroutine
returns , the security kernel reinstates the higher-level page map, copies the
subroutine’s result (if any) into it, and returns control to the process, which is now
operating at the ;iigher bvel again. The only data being passec down to the lower—
level subroutine are the arguments to that subroutine. The kernel enforces the
restriction that these arguments must be integers, such as array, row, and column
numbers.

Given this subroutine facility, it is possible for a “Trojan Horse” process to leak
classitied inf,. rmation from one security level to a lower one, if there is deliberate
collusion between the higher-level process and a lower-level subroutine. However,

_ _ _ _ _ _ _ _ _ _ _ _  

___ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


PROGRAMMING TECHNOLOGY GROUP 101 PROGRAMMING TECHNOLOGY GROUP

we believe the chance is small that a program bug could inadvertently pass information
down in this way. The subroutine facility provides for a more natural human-machine
interface, but the risks involved in having it need to be studied more carefully and a
policy concerning its use developed.

We encountered a second problem concerning security, which we call the
“workspace problem.” Currently, any user of a computer system must indicate bef ore-
hand the security level of the information he or she is about to input. Failure to
indicate a sufficiently high security level can result in an automatic breach of security,
especially if a “Trojan Horse” process exists. This problem needs further study, and a
better analogue between traditional paper workspaces and computer workepaces
needs to be developed.

0. OTHER PROJECTS

During this year, the multi-purpose English sentence analyzer/parser was
brought to operational state (Banks), allowing its use with the keyword extractor and
thereby allowing automatic document or abstract classification [1].

1. English Sentence Parser

The main improvement to the English parser is the ability to analyze much more
complex clauses with nested conjunctions and several complement constructions.
Conjunction analysis is still a relatively weak area, however . The dictionary was
extended by adding more type information for the verbs; for example, a verb might be
the type that allows a noun complement but not an adjective: compare “they elected
her p~~sident” to “he painted the wall blue.” There are now about 18000 words in
the dictionary, counting all inflected forms as distinct. Many words have several
different meanings. The context-based disambiguator is now operational (Dill).
Disambiguation is another weak area at present, but the solution seems to be use of
case frame information. The main problem is the updating of the dictionary to
represent this information for each verb meaning.

2. Keyword Extraction

This project seeks to automatically extract keywords from English language text
by using a variety of heuristics--notabl y by performing a syntactic analysis of the
sentence and using the result of that analysis in a high-level key-phrase extractor.
(We use the term “keyword” to denote single words, multi-word phrases, and also the
result of transforming such keywords into new entities--for example, “blimp” into
“aircraft. ”) As an example, several newspaper articles about the Argo Merchant oil
tanker break—up have been analyzed automatically. Currently only the first paragraph
or two of each article were used--with a larger sample more keywords will be
selected. Following each sample text below are the keywords automatically extracted.

_ _ _ _ _ _ _ _ _ —.. ~~~~~~~~~~~~~~~ ~~ ,.

~ —~ - ——--.-.- .— .

~
. .

~~~~~~

PROGRAMMING TECHNOLOGY GROUP 102 PROGRAM?vIt’wG TECHNOLOGY GROUP

It should be noted that these keywords were automatically selected from a larger set
of keywords extracted and that, for different purposes, a different set of keywords
could have been chosen. For e; ample, in a high-recall application, the entire set of
keywords could be used at the expense of a lower precision. (Recall is that fraction
of relevant uocuments which are retrieved, and precision is the fraction of retrieved
documents wh ch are relevant.)

This is a sar.’~pIe paragraph (from the Boston Globe):

“The coast gcard yesterday stepped up its preparations for removing the oil tanker
Argo Merchant’s remaining cargo of no. 6 residual oil, but said that 1.5 million gallons
had already leaked into North Atlantic waters. Coast guard officials , who on Saturday
had estimated that 140,000 gallons had already leaked from the 18,743-ton, 641-foot
tanker, revisei their estimates yesterday morning after receivir~ reports from aboard
the ship which ran aground last week 27 miles southeast of Nantucket Winds and
currents tnus far have carried the oil away from land.”

These are the keywords automatically extracted from this sar1aple; (Upper-case words
are represented in the same way in both parser output and dictionary.)

Classifiers: “ 13,743-ton 641 —foot tanker ”, “coast guard offic al”, “coast guard”, “oil
tanker ”, “numoer 6 residual oil”, “atlantic water ”

Key nouns: “of dci at ”, “saturday ”, “estimate ”, “ship”, “mile”, “nantucket”, “land”,
“curr~ rt” , “wir ,~”, “wind and current”, “water ”, “gait on”, “oil”, “cargo”, “argo
merchant”, “tanker”, “remove”, “preparation”, “guard”, “report”

Key-nou’~ meanings; OFFICIAL, ESTiMATE, SHiP, LA ND, FLUID-CURRENT, WIND,
WATER, OIL

Key proper names: “ATLANTIC-OCEAN”
Key verbs: “estimate ”, “revise”, “receive”, “run AGROUND”, “carry”, “leak”, “say”,

“remove”, “step up”
Verb-object combinations: “revise estimate”, “receive rep~rt”, “carry oil”, “remove

tanker ”, “step up preparation”
Subject-verb combinations: “official estimate”, “official rev se”, “ship run AGROUND”,

“winci carry ”, “g~lIon leak”, “guard step up”
Transformations ; REPORT-VERB
Generalizat on~: PERSON, DAY-OF-WEEK , OFFER, TEM°ORAL-LOCATION-VALUE,

TIME-PERIOD , LENGTH, COMMODITY , GEOGRAPHIC-OBJECT , WE ATHER-
CONDITION-VALUE, BEVERAGE, PHYSICAL-SUBSTANCE, FUEL, BOAT, INCREASE-
VERB, WRITTEN-MATTER

Contexts ;  GOVERNMEN T, PUBLIC-ADMINISTRATION , ADMINISTRATION,
TRA NSPOR rATION, WATER-TRANSPORT ATION, WEAThER, GEOGRAPHY

Unknowns: “r~antucket”, “leak”, “argo merchant”, “cargo”, “gallon”
Quantities: “140000 gallon”, “27 mile”, “1500000.0 gallon”
Unresolved ambiguities; “remove”, “guard” 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


PROGRAMMING TECHNOLOGY GROUP 103 PROGRAMMING TECHNOLOGY GROUP

The above keywords were selected using the current version of keyword
extraction heuristics. It shouud be noted in the above example that the keyword
extractor was able to extract “coast guard” and several of the other combination key
phrases--even though it had no previous knowledge of the term “coast guard” in its
dictionary, and both “coast” and “guard” are in the dictionary with both noun and verb
meanings. Ako notable is the ability of the system to generalize many of the keywords
via a taxonomy; “oil” to “fuel,” “ship” to “boat,” etc. It is a simple matter to modify
some of the combined forms of keywords via such generalization. However, rather
than choosing to do this at keyword extraction time (it is a more expensive operation
than keyword extraction itself as currently implemented), we instead allow systems
which plan to use the keywords to do the generalizations, for example, the document
tagger described below. We haven’t yet implemented several trivial heuristics that
would eliminate such transformations as “official” to “person.”

By performing a syntactic analysis of the sentence, various combinations of
keywords can be formed. We have shown empirically that these combinations are
particularly good for retrieval applications. A basic feature different here from
previous work is the level of syntactic and semantic analysis. For example, the SMART
system [151 was unable to detect the similarity in “The chief executive visited
Brezhnev” and “Brezhnev was visited by the chief executive” even though it would
recognize the similarity in “oil removal” and “removal of oil.”

Another feature of our system is the disambiguation of various keywords. For
example, the word “jar ” has quite different meanings in the following two examples:

“The jar contained some money.”
“The impact jarred Boston.”

The keyword extractor can frequently disambiguate a meaning for such a word, giving
“jar” in the sense of “vessel,” or in the sense of “shake,” etc. To do this, it uses such
information as the part of speech required, general context (from one of the keyword
modules), and other information.

Here is another sample (from another newspaper);

“The captain of the Argo Merchant, the tanker that ran aground off Nantucket in the
early morning of Dec 15, testified yesterday that he was as much as 24 miles from
where he thought he was when the ship ran aground. He said the ship was being
steered by compass because the more accurate gyro compass had been malfunctioning
periodically during the voyage and the day before the grounding had become erratic,
showing an error of as much as 6 degrees on either side of the course.”

These are the keywords selected from the above sentences:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



PROGRAMMIr~G TEC~-fNOLOGY GROUP 104 PROG~Ah M NC~ TECHNOLOGY GROUP

Classifiers. •‘
~jr~. compass”

Key nouns: ‘compass ”, “voyage and day”, “voyage”, “er ratic ”, “show”, “error ”,
“degree”, “course”, “ship”, “mile”, “december”, “nantucket”, “tanker”, “captain”

Key-noun mei~~rgs: VOYAGE, COURSE, SHIP, CAPTAIN
Key proper names: “UNKNOWN-PROPER-NAME”
Key verbs: “say”, “steer ”, “malfunction”, “ground”, “become”, “show”, “side”, “run

AGROUND”, “be”, “think”, “testify”
Verb-o~ject corn~ .,ations; “say steer”, “steer ship”, “oecome show”, show side”
Subject-verb combinations: “compass malfunction”, “erratic’ become”, “error side”,

“ship run AGi~OUND”, “captain think”, “tanker run AGROUND”
Transformations: VOYAGE-VERB
Generalizations: PHYSICAL-EVENT, BOAT, LENGTH, MONTH, TEMPORAL-LOCATION-

VALUE, PEREDN
Contexts: WA Ek -TRANSPORTATION, TRANSPORTATION, LAW
Unknowns; ‘erratic ”, “compass”, “ground”, “malfunction”, “nantucket”
Quantities: “6 degree”, “24 mile”
Unresolved am biguities: “degree”, “day”, “become”

CIassifica~.ions on this document (see next section);

OIL-SP~i 1.4 0.116

Another sample;

“The lawyer f or the company that insured the oil carried y ~ e gr )unded tanker Argo
Merchant revea~eo h;s man contentio~i that the owners ha:; been negligent in
maintainirL tne ~nip to the point that they risked an acciue it. We have no quarrel
with the way th3 captain or the crew conducted themselves. We are trying to show
that the ow.iers were at fault, that they were negligent.”

Key nours. “c uarrel”, “way”, “captain or crew”, “captain”, ‘~crew ”~ “fault”, “accident”,
“point”, “sr, p~, “mai n~.ai n”, “negligent”, “owner”, “conteT ,t...”, “argo merchant”,
~.ariker ”, ~~~~~~~ “c~rnpany’~, “lawyer”

Key-noL.n n’eani ~s: CAPTAIN, CULPABILITY, SHIP, OIL
Key verbs: ‘~corc~jct”, “show”, “risk”, “maintain”, “reveal”, “g~~’urkf , “carry”, “insure”
Verb-object combinations: “show be”, “risk accident”, “maintain risk”, “reveal be”,

“grouno tanker”, “insure oil”
Subject-verb combinations: “captain conduct”, “ship risk”, “~awyer carry”, “Coinpefly

insure”
Generalizat ons: GROUP, PHYSICAL-EVENT, BOAT, PERSON, FUEL, ENTERPRISE
Contexts: LABCR, ‘RANSPORTATION, WATER-TRA NSPORTATIO~I, C&MMERCE, LAW
Unknowns: “quarrel”, “ground”, “argo merchant”, “contente”, ‘:iegligent”
Unresolved ambiguities; “way”, “conduct”, “reveal”, “mainta;n”, “point”



~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

..—.--.—.-—. —-—

PROGRAMMING TECHNOLOGY GROUP 105 PROGRAMMING TECHNOLOGY GROUP

Classifications on this document:

OIL-SPILL 2.35 0.194
DISASTER 0.6 0.034
LABOR 1.6 0.095

The following comment is pertinent mainly to the next section. Note, in the last
example, that DISASTER and LABOR were mildly tagged (the second number is the
degree of classification). Labor is probably an erroneous labeling due to the word
“crew”. At any rate, these tags are much less significant than OIL-SPILL. There were
about 1 5 models loaded at the time the document was classified. The reason
“contente” is misspelled is that it is not a known word to the system. In the process
of removing the “-ion” suffix, it opted for the “-te” spelling. Note that this would not
make a difference for most applications, as long as it is treated consistently.

3. The Model-based Document Tagger and Model Editor

The document tagger looks at the SELECTED-KEYWORDS output of the parsing,
and, based on that, tries to select “tags” or classifications for the document. It can
only select classifications for which a “model description” is loaded. In the case of the
first sample in the above section, the document tagger used “oil,” “ship,” “leak,” “oil
tanker,” and “argo merchant” as clues to determine that the correct classification of the
document should be OIL-SPILL.

The document tagger is not a particularly complex system itself: it basically
looks for a more-or-less exact match with the output of the keyword phase (described
above). The more interesting part of this work is the model editor. As a matter of
philosophy, it was deemed preferable to have a complex model and a simple tagger,
rather than a simple model with a more complex tagger. Thus the model editor must
work much harder to insure that a very general and complete model is created. The
model editor contains commands for creating, loading, editing, printing, and dumping
models.

The model editor accepts a model name from a user and steps through the
different keyword categories (CLASSIFIERS, KEY-NOUNS, CONTEXT S, etc.). First it
informs the user about any existing triggers, for example, that “labor relation” and
“strike fund” are existing keywords in the model. Then it asks for new ones. It makes
various syntactic checks--for example, classifiers must be at least two words. Then it
asks for a scaled rating of the importance of the keyword--5 means a very good
keyword, I very poor but still better than random chance, 0 means a negative weight.
(These numbers may eventually represent different types of classification such as
“supporting keyword,” etc.)

For some categories of keywords, the model editor will make various analyses 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ -~~~~~~ 
. .- . “

~~~~~
- - .



PROGRAMMING TECHNOLOGY GROUP 106 PROGRAMMING TECHNOLOGY GROUP

and perhaps ask if the user wants to add other items too. For example, if the user
gives “car” as a KEY-NOUN, it will ask if “vehicle” should also be added as a key noun.
It does this by checking the dictionary “kind tree” or hierarchy. Generalizations of a
key noun or verb are based on the word itself rather than on the word’s meaning.
Thus, the model editor may ask some very unusual questions about what to add as an
additional keyword; for example, if the user specifies “car” as a keyword, the model
editor may ask if “lisp function” should also be added as a key noun. The basic
philosophy is to generalize and specialize at model-building time rather than at
document-classification time. The trade-oft is higher speed versus smaller size for the
models. We believe we can easily keep a hundred models or so in primary storage.

When the user gives a keyword, it is looked up in the dictionary. If the word is
not there, the model editor puts it into the unknown-word category. If the word is
there, any CONTEXT indications in the dictionary definition are remembered, and the
user is given a chance to add these automatically to the CONTEXT category of keyword
at the appropriate time.

Currently we use about 15-20 models. It takes a person about two hours to
compose a model using the editor. These models range from OIL-SPILL to JIMMY—
CARTER to LABOR to SPORTS. We anticipate having about 100 models by the end of
the summer (Dill). Many of the models will overlap--indeed some will be covering
essentia!! y ~he same subject , but at different levels. The system allows multiple
authors to input their own versions of the same model topic and even to use the same
model name.

The model builder and editors are currently receiving much work. One type of
matching that has not been included is that of exactly matching a string specified in the
model to any position in the input sentence. The main reason for not doing this is that
we are much more interested in high-level matching techniques. On the other hand,
there have been several examples where such a simple technique would have proved
very beneficial as an additional method--often due to an inadequacy of the English
parser to disambiguate a word or recognize a special construction. We feel the proper
place for effort is at the high-level heuristics. Still, though, an exact—match feature
would be desirable for special applications, such as an inventory clerk who would be
looking for any document which refers to a part-number containing the sequence
“AB1 23,” for example. We have allowed a provision in the document tagger for this
type of technique and could easily add it.

-

~

--.

~

. - - - .—

~

--.

-~



r . -- .

~~~~~~~~~~~~~~~~~

- ——
~~~~~~~~~~~~~~~~~~~

-

~~~

-

~~~~~~~~~~~~~~

--- - .. - . -— -. . 

~~~~~~~

—

~~~~~~~~~~~~~~~~

---

~

- - - —

PROGRAMMING TECHNOLOGY GROUP 107 PROGRAMMING TECHNOLOGY GROUP

REFERENCES

Note: The form XXX.nn.nn denotes a Programming Technolr gy Group document

1. M.i.T. Laboratory for Computer Science. Progress Report XIII July 1 975-July
1976. Cambridge, Massachusetts.

2. Church, Ken W. A System for Understanding Morse Networks. M.I.T., UROP
Report, May 1 976.

3. Anderson, Timothy A. “Modelling Morse-code Senders.” S. M. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completion, May 1 977.

4. Eisenstadt, B. M.; Gold, B.; Nelson, 0. M.; Pitcher, T. S.; and Selfridge, 0. G.
MAUDE (Morse Automatic Decoder). M.I.T., Lincoln Laboratory Group Report 34-
57, December 1 958. -

5. Vezza, A. 1977 Proposal for Continuation of Research; Morse Code. M.I.T.,
Laboratory f or Computer Science, SYS.53.OZ expected date of completion, June
1977.

6. Van Trees, Harry 1. Detection, Estimation, and Modulation Theory; Part H:
Nonlinear Modulation Theory. New York: John Wiley and Sons, Inc., 1971.

7. Gardner, Floyd M. Phase Lock Techniques. New York; John Wiley and Sons, Inc.,
1966.

8. Vezza, A., and Broos, M. S. “An Electronic Message System: Where Does it Fit?”.
Proceedings of IEEE Symposium, Trends and Applications 1 976: Computer
Networks. New York, New York, November 1976.

9. Galley, S. W. Data-based Message Service User’s Manual. M.I.T., Laboratory for
Computer Science, Programming Technology Group, expected date of publication,
February 1977.

10. Martin, Bob; Oestreicher , Don; and Stotz , Rob. ~fJMME Application
Specification. University of Southern California, Information Sciences Institute,
preliminary working paper. May 1 976.

11. Galley, S. W. and Pfister, Greg. MDL Programming Language Primer and Manual.
M.I.T., Laboratory for Computer Science, Cambridge, Massachusetts, expected
date of publication, May 1977.



. . .
~~~— . . - . 

PROGRAMMING TECHNOLOGY GROUP 108 PROGRAMMING TECHNOLOGY GROUP

1 2. Myer, Theodore H., and Mooers, Charlotte 0. Hermes Users’ Guide (draft). Bolt,
Beranek and Newman, Inc., Cambridge, Ma., June 1976.

13. Heafner, John F.; Miller, Lawrence H.; and Zogby, Bonnie Arter. Sigma Message
Serv ice Reference Manual. University of Southern California, Information
Sciences Institute, Working Paper lSl/WP- 5, to appear.

14. Martin, James. “Computer Data Base Organization”. Englewood Cliffs, New
Jersey; Prentice-HaIl, 1975.

15. Salton, Gerard, editor. The SMART Retrieval System: Experiments in Automatic
Document Processing. Englewood Cliffs, New Jersey: Prentice-HaIl, 1971.

—~~ - - - ,~~~

PROGRAMMING TECHNOLOGY GROUP 109 PROGRAMMiNG TECHNOLOGY GROUP

Publications

1. Vezza, A., and Broos, M. S. “An Electronic Message System: Where Does it Fit?”.
Proceedings of IEEE Symposium1 Trends and Applications 1 976: Computer
Networks. New York, New York, November 1 976.

Talks

1. Vezza, A., and Broos, M.S. “An Electronic Message System: Where Does it Fit?”
National Computer Conference, New York, June 1 976.

Theses Completed

1. Cutler, Scott E. Microcomputer Networks in Control Applications, unpublished
Ph.D. thesis, M.I.T., Department of Electrical Engineering and Computer Science,
April 1 976.

Theses in Progress

1. Anderson, T. A. “Modelling Morse-code Senders.” unpublished M. S. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expected date
of completion, May 1 977.

2. Berez, Joel M. “A Dynamic Debugging System for MDL” unpublished S. B. Thesis,
M.I.T., Departmer ’ of Electrical Engineering and Computer Science, expected date
of completion, January 1977.

To be Published

1. Galley, SW. and Pfister, Greg. MDL Programming Language Primer and Manual.
M.I.T., Laboratory for Computer Science, Cambridge, Massachusetts, expected
date of publication, May 1 977.

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . .



-~__ _ _ _ _ _  

. .—-

~~~~~~~

-—----— -- -

PUBLICATIONS 111 PUBLICATIONS

LABORATORY FOR COMPUTER SCIENCE

7 PUBLICATIONS

. . -. .~~~~~. ..~
._

~
__. __. - —~ — — —~ . A.- .rT ~~ _.:.i: ,n!r.~~ft~~.My)1-~~. ~~~

——~~~- -- -
_

PUBLICATIONS 113 PUBLICATIONS

TECHNICAL MEMORANDA

TM-1O Jackson, James N.
Interactive Design Coordination

for the Building Industry
June 1970

AD 708-400

sTM- 1 1 Ward, Philip W.
Description and Flow Chart of the

POP- 7/9 Communications Package
July 1970

AD 711-379

*TM- 12 Graham, Robert M.
File Management and Related Topics

(Formerly Programming Linguistics
Group Memo No. 6, June 12, 1970)

September 1970
AD 712-068

*TM- 13 Graham, Robert M.
Use of High Level Languages

for Systems Programming
(Formerly Programming Linguistics
Group Memo No. 2, November 20, 1969)

September 1970
AD 711-965

*TM-14 Vogt, Car la M.
Suspension of Processes in a Multi-

processing Computer System
(Based on M.S. Thesis, EE Dept.,

February 1970)
September 1 970

AD 713-989

TMs 1-9 were never issued

- ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
~ T~i:== ~=j:.~~~~ ~~~~~~~~~~ 71..

PUBLICATIONS 114 PUBLICATIONS

*TM-15 Zilles, Stephen N.
An Expansion of the Data Structuring

Capabilities of PAL
(Based on M.S. Thesis, EE Dept.,
June 1970)

October 1970
AD 720-761

*TM- 16 Bruere-Dawson, Gerard
Pseudo-Random Sequences

(Based on M.S. Thesis, EE Dept,
June 1970)

October 1970
AD 713-852

*TM- 1 7 Goodman, Leonard I.
Complexity Measures for Programming

Languages (Based on MS. Thesis, EE Dept,
September 1971)

September 1971
AD 729-011

*TM-18 Reprinted as TR-85

*TM-19 Fenichel, Robert R.
A New List-Tracing Algorithm
October 1970

AD 714-522

*TM-20 Jones, Thomas L.
A Computer Model of Simple Forms

of Learning (Based on Ph.D. Thesis,
EE Dept., September 1970)

January 1971
AD 720-337

*TM.-21 Goldstein, Robert, C.
The Substantive Use of Computers

for Intellectual Activities
April 1971

AD 721-618

_ _ _ _ , -~~~~~~~- ~~~~~~~~ ----- --——~~-——- -

____________________________ - . -~-—— - -~~~-~ -.-~- , -- ----~~ -— . .— ---- --- .. - —.- -‘- —----—. - — - ---
‘I’

PUBLICATIONS 115 PUBLICATIONS

*TM-22 Wells, Douglas M.
Transmission of Information Between

a Man-Machine Decision System
and Its Environment

April 1971
AD 722-83 7

TM-23 Strnad, Alois J.
The Relational Approach to the

Management of Data Bases
April 1971

AD 721-619

*TM-24 Goldstein, Robert C., and Alois J. Strnad
The MacAIMS Data Management System
April 1971

AD 721-620

TM-25 Goldstein, Robert C.
Helping People Think
April 1971

AD 721-998

TM-26 lazeolla, Giuseppe G.
Modeling and Decomposition of

Information Systems for Performance
Evaluation

June 1971
AD 733-965

*TM-27 Bagchi, Amitava
Economy of Descriptions and

Minimal Indices
January 1972

AD 736-960

TM-28 Wong, Richard
Construction Heuristics for Geometry

and a Vector Algebra Representation
of Geometry

June 1972
AD 743-487

L
~~~~~.. 



. -
~~

-
~~

— . --
~

- -

PUBLICATIONS 116 PUBLICATIONS

sTM-29 Hossley, Robert and Charles Rackoff
Tho Emptiness Problem for Automata

on Infinite Trees
Spring 1 972

AD 747-250

*TM-30 McCray, William A.
SIM36O; A S/360 Simulator
(Based on B.S. Thesis, ME Dept., May 1972)
October 1972

AD 749-365

TM-31 Bonneau, Richard J.
A Class of Finite Computation Structures

Supporting the Fast Fourier Transform
March 1973

AD 757-787

TM-32 Moll, Robert
An Operator Embedding Theorem for Complexity

Classes of Recursive Functions
May 1973

AD 759-999

*TM-33 Ferrante, Jeanne and Charles Rackoff
A Decision Procedure for the First Order

Theory of Real Addition with Order
May 1973

AD 760-000

sTM-34 Bonneau, Richard J.
Polynomial Exponentiation: The Fast

Fourier Transform Revisited
June 1973

PB 221-742

TM-35 Bonneau, Richard J.
An Interactive Implementation of the Todd-

Coxeter Algorithm
December 1973

AD 770-565



_____________________________ 
- - -

PUBLICATIONS 117 PUBLICATIONS

TM-36 Geiger, Steven P.
A User’s Guide to the Macro Control Language
December 1973

AD 771-435

*TM-37 Schoenhage, A.
Real -Ti me Simulation of Multidimensional

Turing Machines by Storage Modification
Machines

December 1973
PB 226-103/AS

*TM-38 Meyer , Al bert R.
Weak Monadic Second Order Theory of

Succesor is not Elementary-Recursive
December 1973

PB 226-5 1 4/AS

TM-39 Meyer, Albert R.
Discrete Computation: Theory and Open

Problems
January 1974

PB 226-836/AS

TM- 40 Paterson, Michael S., Michael J. Fischer
and Albert R. Meyer

An Improved Overlap Argument for On-Line
Multiplication

January 1974
AD 773-137

TM—41 Fischer, Michael J., and Michael S. Paterson
String-Matching and Other Products
January 1974

AD 773- 138

*TM-42 Rackoff , Charles
On the Complexity of the Theories of Weak

Direct Products
January 1974

PB 228-459/AS

_ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~



~~W ~~~~~~~~~~ -aT:~~~~~ ~~~~~~~ 
- — - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~

PUBLICATIONS 118 PUBLICATIONS

TM-43 Fischer, Michael J., and Michael 0. Rabin
Super-Exponential Complexity of Presburger

Arithmetic
February 1 974

AD 775-004

TM-44 Pless, Vera
Symmetry Codes and their Invariant Subcodes
May 1974

AD 780-243

*TM-45 Fischer, Michael J., and Larry J. Stockmeyer
Fast On-Line Integer Multiplication
May 1974

AD 779-889

*TM-46 Kedeni, Zvi M.
Combining Dimensionality and Rate of Growth

Arguments for Establishing Lower Bounds
on the Number of Multiplications

June 1974
- PB 232-969/AS

TM-47 Pless, Vera
Mathematical Foundations of Flip-Flops
June 1974

AD 780-901

TM-48 Kedem, Zvi M.
The Reduction Method for Establishing

Lower Bounds on the Number of Additions
June 1974

PB 233-538/AS

TM-49 Pless, Vera
Comp’ete Classification of (24,12) and (22,11)

Self-Dual Codes
June 1974

AD 781-335

--~~~~~~~~~--.~~~~~~~~~~~~~~~~~~~~~ -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- _ __

PUBLICATIONS 119 PUBLICATIONS

TM-5O Benedict, G. Gordon
An Enciphering Module for Multics
B.S. Thesis, EE Dept
July 1974

AD 782-658

*TM-51 Aiello, Jack M.
An Investigation of Current Language Support for

the Data Requirements of Structured Programming
MS. & E.E. Theses, EE Dept.
September 1974

PB 236-815/AS

TM-52 Lind, John C.
Computing in Logarithmic Space
September 1974

PB 236-167/AS

TM-53 Bengelloun, Safwan A.
MDC-Programmer: A Muddle-to Datalanguage

Translator for Information Retrieval
B.S. Thesis, EE Dept.
October 1974

AD 786-754

*TM-54 Meyer, Albert. R.
The Inherent Computation Complexity of Theories

of Ordered Sets: A Brief Survey
October 1974

°B 237-200/AS

TM-55 Hsieh, Wen N., Larry H Harper and John E. Savage
A Class of Boolean Functions with Linear

Combinatorial Complexity
October 1974

PB 237-206/AS

TM-56 Gorry, G. Anthony
Research on Expert Systems
December 1974

-

-~



PUBLICATIONS 120 PUBLICATIONS

TM-57 Levin, Michael
On Bateson’s Logical Levels of Learning
February 1 975

TM-58 Qualitz, Joseph E.
Decidability of Equivalence for a Class

ef Data Flow Schemas
March 1 975

PB 237-033/AS

*TM-59 Hack, Michel
Decision Problems for Petri Nets and Vector

Addition Systems
March 1975

PB 231-916/AS

TM-60 Weiss , Randell B.
CAMAC; Group Manipulation System
March 1 975

PB 240-495/AS

TM-Si Dennis, Jack B.
First Version of a Data -Flow Procedure Language
‘,lay 1975

TM-62 PaUl , Suhas S.
An Asynchronous Logic Array
May 1975

TM-63 Pless , Vera
Encryption Schemes for Computer Confidentiality
May 1975

AD AO10-217

*TM-64 Weiss , Randell B.
Finding lsomorph Classes for Combinatorial Structures
MS. Thesis, EE Dept.
June 1975

TM-65 Fischer , Michael J.
The Complexity Negation-Limited Networks -

A Brief Survey
June 1975

_ _ _ _ _ _ _ _



- - -
~~~~~~~~~~~~~~~~~~~~~~~ -~~- __________

PUBLICATIONS 121 - PUBLICATIONS

sTM-66 Leung, Clement
Formal Properties of Well-Formed Data

Flow Schemas
B.S., M.S. & E.E. Theses, EE Dept
June 1975

*TML67 Cardoza, Edward E.
Computational Complexity of the Word Problem

f or Commutative Semigroups
M.S. Thesis, EE & CS Dept
October 1975

TM-68 Weng, Kung-Song
Stream-Oriented Computation in Recursive Data Flow Schemes
M.S. Thesis, EE & CS Dept.
October 1975

*TM-69 Bayer, Paul J.
Improved Bounds on the Costs of Optimal and

Balanced Binary Search Trees
M.S. Thesis, EE & CS Dept
November 1975

TM— 70 Ruth, Gregory R.
Automatic Design of Data Processing Systems
February 1 976

AD AO23-451

*TM- 71 Rivest, Ronald
On the Worst-Case of Behavior of String-Searching Algorithms
April 1 976

*TM-72 Ruth, Gregory R.
Protosystem I: An Automatic Programming System Prototype
July 1976

AD A026—912
TM- 73 Rivest , Ronald

Optimal Arrangement of Keys in a Hash Table
July 1976

r- _ _ _

PUBLICATIONS 122 PUBLICATIONS

TM- 74 Malvania, Nikhil
The Design of a Modular Laboratory for Control Robotics
M.S. Thesis, EE & CS Dept.
September 1976

AD A030-418

TM-75 Yao, Andrew C., and Ronald I. Rivest
K+1 Heads are Better than K
September 1976

AD A030-008

sTM-. 76 Bloniaz, Peter A., Michael J. Fischer and Albert R. Meyer
A Note on the Average Time to Compute Transitive Closures
September 1976

TM-77 Mok, Aloysius K.
Task Scheduling in the Control Robotics Environment
M.S. Thesis, EE & CS Dept.
September 1976

AD A030-402

*TM—78 Benjamin, Arthur J.
Improving Information Storage Reliability

Using a Data Network
MS. Thesis, EE & CS Dept
October 1976

AD A033-394

TM-79 Brown, Gretchen P.
A System to Process Dialogue; A Progress Report
October 1976

AD A033-276

TM-SO Even, Shimon
The Max Flow Algorithm of Dinic and Karzanov;

An Exposition
December 1 976

L ..-_ ~~~~~~~-~~~~~~~~~—--- -- _-~~~~ - - --

r~~’r

PUBLICATIONS 123 PUBLCATIONS

TECHNICAL REPORTS

*TR- 1 Bobrow, Daniel G.
Natural Language Input for a Computer

Problem Solving System,
Ph.D. Thesis, Math. Dept
September 1964

AD 604-730

*TR-2 Raphael, Bertram
SIR: A Computer Program for Semantic

Information Retrieval,
Ph.D. Thesis, Math. Dept.
June 1964

AD 608-499

*TR-3 Corbato, Fernando J.
System Requirements for Multiple-Access,

Time-Shared Computers
May 1964

AD 608-501

*TR-4 Ross, Douglas T., and Clarence G. Feldman
Verbal and Graphical Language for the

A ED System: A Progress Report
May 1964 -

AD 604-678

*TR—6 Biggs, John M., and Robert D. Logcher
STRESS; A Problem-Oriented Language

for Structural Engineering
May 1964

AD 604-679

TRs 5, 9, 10, 15 were never issued

_ _ _ _ _ _ _ _____________ ~~— -~~~~~~~—~~~~---~~~ - -—— -~

.r ..-., ~~~~.._ —.-~- -

PUBLICATIONS 124 PUBLICATIONS

sIR- 7 Weizenbaum, Joseph
OPL- 1: An Open Ended Programming

System within CTSS
April 1964

AD 604-680

*TR-8 Greenberger, Martin
The OPS- 1 Manual
May 1964

AD 604-681

*TR- 1 1 Dennis, Jack B.
Program Structure in a Multi-Access

Computer
May 1964

AD 608-500

*TR- 12 Fano, Robert M.
The MAC System: A Progress Report - -

October 1964
AD 609-296

*TR- 13 Greenberger, Martin
A New Methodology for Computer Simulation
October 1964

AD 609-288

*TR-14 Roos, Daniel C

Use of CTSS in a Teaching Environment
November 1964

AD 661-807

sTR- 16 Saltzer , Jerome H.
CTSS Technical Notes
March 1955 -

AD 612-702

*TR- 1 7 Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer
March 1965

AD 462-158

______ _______ —-—-- . * ,*fl- + ,~~~~~~~~ *Sè .

- - — -. -

PUBLICATIONS 125 PUBLICATIONS

sTR-18 Scherr, Allan Lee
An Analysis of Time-Shared CompUter Systems,
Ph.D. Thesis, EE Dept.
June 1965

AD 470-715

*TR—19 Russo, Francis John
A Heuristic Approach to Alternate Routing in a Job Shop,
B.S. & M.S. Theses, Sloan School
June 1965

AD 474-018

*TR-20 Wantman, Mayer Elihu
CA LCULAID: An On-Line System for

Algebraic Computation and Analysis,
M.S. Thesis, Sloan School
September 1965

AD 474-019

*TR-21 Denning, Peter James
Queueing Models for File Memory Operation,
M.S. Thesis, EE Dept.
October 1965

-

AD 624-943

*TR-22 Greenberger, Martin
The Priority Problem
November 1965

AD 625-728

sTR-23 Dennis, Jack B., and Earl C. Van Horn
Programming Semantics for Multi-

programmed Computations
December 1965

AD 627-537

*TR-24 Kaplow, Roy, Stephen Strong and John Brackett
MAP: A System f or On-Line Mathematical

Analysis
January 1966

AD 476-443

- ~~~
- -

~~
--

~~~~~ ~~~~—~~~~~~~~~~~~~~~~
-

~~~~~~~~~~
—- -

~~~~ -- ~ --_- — —-——

PUBLICATIONS 126 PUBLICATIONS

*TR-25 Stratton, William David
Investi gation of an Analog Technique

to Decrease Pen-Tracking Time in
Computer Displays,

M.S. Thesis, EE Dept.
March 1 966

AD 631-396

sTR-26 Cheek, Thomas Burrell
Des gn of a Low-Cost Character

Generator for Remote Computer Displays,
M.S. Thesis, EE Dept.
March 1966

AD 631-269

*TR-27 Edwards, Daniel James
OCAS - On-Line Cryptanalytic Aid

system,
M.S. Thesis, EE Dept.
May 1966

AD 633-678

*TR-28 Smith, Arthur Anshel
Input/Output in Time-Shared, Segmented,

Multiprocessor Systems,
M S. Thesis, EE Dept.
June 1966

AD 637-215

*TR-29 Ivie, Evan Leon
Search Procedures Based on Measures

of Relatedness between Documents,
Ph.D. Thesis, EE Dept.
June 1966

AD 636-275

TR-30 Saltzer , Jerome Howard
Traffic Control in a Multiplexed -

Computer System,
Sc.O. Thesis, EE Dept
July 1966

AD 635-966

_______________________________________



_ _  

-

PUBLICATIONS 127 PUBLICATIONS

*TR—3 1 Smith, Donald 1.
Models and Data Structures for Digital

Logic Simulation,
M.S. Thesis, EE Dept.
August 1 966

AD 637- 192

*TR-32 Teitelman, Warren
PILOT: A Step Toward Man-Computer

Symbiosis,
Ph.D. Thesis, Math. Dept
September 1966

C 

AD 638-446
sTR-33 Norton, Lewis M.

ADEPT - A Heuristic Program for
Proving Theorems of Group Theory,

Ph.D. Thesis, Math. Dept.
October 1966

AD 645-660

*TR-34 Van Horn, Earl C., Jr.
Computer Design for Asynchronously

Reproducible Multiprocessing,
Ph.D. Thesis, EE Dept.
November 1966

AD 650-407

*TR-35 Fenichel, Robert R.
An On-Line System for Algebraic Manipulation,
Ph.D. Thesis, Apol. Math. (Harvard)
December 1 966

AD 657~282

*TR-36 Martin, William A.
Symbolic Mathematical Laboratory,
Ph.D. Thesis, EE Dept
January 196 7

AD 657-283

- — ___



r 
-

~~~

PUBLICATIONS 128 PUBLICATIONS

sTR-37 Guzman-Arenas, Adolfo
Some Aspects of Pattern Recognition

by Computer,
M.S. Thesis, EE Dept.
February 1967

AD 656-04 1

*TR-38 Rosenberg, Ronald C., Daniel W. Kennedy
and Roger A. Humphrey

A Low-Cost Output Terminal For Time-
Shared Computers

March 1967
AD 662-027

*TR-39 Forte, Allen
Syntax-Based Analytic Reading of

Musical Scores
April 1967

AD 661-806

*TR-40 Miller, James R.
On-Une Analysis for Social Scientists
May 1967

AD 668-009

*TR-4 1 Coons, Steven A.
Surfaces for Computer-Aided Design

of Space Forms
June 1967

AD 663-504

*TR-42 Liu, Chung L., Gabriel D. Chang
and Richard E. Marks

De~- i gn and Implementation of a Table-
Driven Compiler System

July 1967
AD 668-960

*TR-43 Wilde, Daniel U.
Program Analysis by Digital Computer,
Ph.D. Thesis, EE Dept.
August 1967

AD 662-224

L. - - — ~~~ ~~~~~~

- - ~~

--
~~

- - —

~~~~~~ - -

PUBLICATIONS 129 PUBLICATIONS

*TR-44 Gorry, G. Anthony
A System for Computer-Aided Diagnosis,
Ph.D. Thesis, Sloan School
September 1967

AD 662-665

*TR-45 Leal-Cantu, Nestor
On the Simulation of Dynamic Systems

with Lumped Parameters and Time Delays,
MS. Thesis, ME Dept.
October 1967

AD 663-502

*TR-46 Alsop, Joseph W.
A Canonic Translator,
B.S. Thesis, EE Dept.
November 1967

AD 663-503

*TR-47 Moses, Joel
Symbolic Integration,
Ph.D. Thesis, Math. Dept
December 1967

AD 662-666

*TR-48 Jones, Malcolm M.
Incremental Simulation on a Time-

Shared Computer,
Ph.D. Thesis, Sloan School
January 1968

AD 662-225

*TR-49 Luconi, Fred L.
A synchronous Computational Structures,
Ph.D Thesis, EE Dept.
February 1968

AD 667-602

*TR-5O Denning, Peter J.
Resource Allocation in Multiprocess

Computer Systems,
Ph.D. Thesis, EE Dept.
May 1968

AD 675-554

~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PUBLICATIONS 130 PUBLICATIONS

sTR-5 1 Charniak, Eugene
CARPS, A Program which Solves

Calculus Word Problems,
M.S. Thesis, EE Dept.
July 1968

AD 673-670

*TR-52 Oeitei, Harvey M.
Absentee Computations in a Multiple-Access

Computer System,
MS. Thesis, EE Dept
August 1 968

AD 684-738

xTR-53 Slutz, D~na~d R.
The Flow Graph Schemata Model of

Parallel Computation,
Ph.D. ~ hesis, EE Dept.
September 1968

AD 683-393

*TR-54 Grochow , Jerrold M.
The Graph c Display as an Aid in the

Monitoring of a Time-Shared Computer
System,

M.S. Thesis, EE Dept.
October 1968

AD 689-468
-

‘ *TR-55 Rap~aport , Robert L.
lmp~ err enting Multi-Process Primitives

in a Multip exed Computer System,
M.S. Thesis, EE Dept.
November 1968

AD 689-469

sTR-56 Thornhiu, Daniel E., Robert H. Stotz, Douglas T. Ross
and John E. War d (ESL-R-356)
An Integrated Hardware-Software System

for Computer Graphics in Time-Sharing
December 1968

AD 685-202



5- . . - ~~.—~~~
——.---.---.-.---.,---.- -.—-—--- — - . - —5--- _-- --—-— .---- - - - —-.-- --

~ 
5——5------~ - --- .——-——--- .- — —-- —---5-- -- ——5- -- .- — - - -5 

—I’

PUBLICATIONS 131 PUBLICATIONS

*TR-57 Morris, James H.
Lambda-Calculus Models of Programming

Languages,
Ph.D. Thesis, Sloan School
December 1 968

AD 683-3 94

*TR-58 Greenbaum, Howard J.
A Simulator of- Multiple Interactive

Users to Drive a Time-Shared
Computer System,

MS. Thesis, EE Dept.
January 1969

AD 686-988

*TR--59 Guzman, Adolfo
Computer Recognition of Three-

Dimensional Objects in a Visual
Scene,

Ph.D. Thesis, EE Dept.
December 1968

AD 692-200

*TR-60 Ledgard, Henry F.
A Formal System for Defining the

Syntax and Semantics of Computer
Languages,

Ph.D. Thesis, EE Dept.
April 1969

AD 689-305

*TR-6 I Baecker, Ronald M.
Interactive Computer-Mediated Animation,
Ph.D. Thesis, EE Dept.
June 1969

AD 690-887

*TR-62 Tillman, Coyt C., Jr. (ESL-R-395)
EPS: An Interactive System for

Solving Elliptic Boundary-Value
Problems with Facilities for Data
Manipulation and General-Purpose
Computation

June 1969
AD 692-462

~~~~~~~ 
-—- —-~~~ ———-~-----5 5.4-5- - . —- --- —-5- --- ------ 5- . --— --5- —-5-- -5--- -- — -- —---________“ - 5 - — - -

r~~
1

PUBLICATIONS 132 PUBLICATIONS

*TR—63 Brackrtt , John W., Michael Hammer and Daniel
E. ThornhiI~Case Study in Interactive Graphics

Programming: A Circuit Drawing
and Editing Program for Use with
a Storage-Tube Display Terminal

October 1969
AD 699-930

sTR-64 Rodriguez, Jorge E. (ESL-R-398)
A Graph Model for Parallel Computations,
Sc.D. Thesis, LE Dept.
September 1969

AD 697-759

*TR—65 DeRemEr , Franklin L.
Practical Translators for LR(k)

Languages,
Ph.D. Thesis, EE Dept.
October 1969

AD 699 501

*TR-66 Beyer, Wendell 1.
Recognition of Topological Invariants

by Iterative Arrays,
Ph.D. Thesis, Math. Dept.
October 1969

AD 699-502

*TR-67 Vanderbilt, Dean H.
Controlled Information Sharing in

a Computer Utility,
Ph.D. Thesis, EE Dept.
October 1969

AD 699-503

*TR-68 Selwyn, Lee L.
Economies of Scale in Computer Use:

Initial Tests and Implications for
The Computer Utility,

Ph.D. Thesis, Sloan School
June 1970

AD 710-011

- ———- —~~~~~~~~~ - - —- -——— — -— ——-5--— — — ~~~~~~~~~~~~~~ — -- S
~~~~~~~~~~~~ -



PUBLICATIONS 133 PUBLICATIONS

*TR-69 Gertz, Jeffrey L.
Hierarchical Associative Memories

f or Parallel Computation,
Ph.D. Thesis, EE Dept.
June 1970

AD 711-091

*TR-70 Fillat, Andrew I., and Leslie A. Kraning
Generalized Organization of Large

Data-Bases: A Set-Theoretic
Approach to Relations,

B.S. & M.S. Theses, EE Dept
June 1970

AD 711-060

*TR— 71 Fiasconaro, James G.
A Computer-Controlled Graphical

Display Processor,
M.S. Thesis, EE Dept.
June 1970

AD 710-479

TR- 72 Patil, Suhas S.
Coordination of Asynchronous Events,
Sc.D. Thesis, EE Dept
June 1970

AD 711-763

*TR—73 Griffith, Arnold K.
Computer Recognition of Prismatic

Solids,
Ph.D. Thesis, Math. Dept.
August 1970

AD 71 2-069

TR- 74 Edelberg, Murray
Integral Convex Polyhedra and an

Approach to lntegralization,
Ph.D. Thesis, EE Dept
August 1970

AD 71 2-070

L



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .LT . - -
~~

- - - - — — - —

PUBLICATIONS 134 PUBLICATIONS

sTR-75 Hebalkar , Prakash G.
Deadlock-Free Sharing of Resources

in Asynchronous Systems,
Sc.O. Thesis, EE Dept.
September 1970 —

AD 713-139

*TR—76 Winston, Patrick H.
Learning Structural Descriptions

from Examples,
Ph.D. Thesis, EE Dept
September 1970

AD 713-988

TR-77 Haggerty, Joseph P.
Complexity Measures for Language

Recognition by Canonic Systems,
M.S. Thesis, EE Dept.
October 1970

AD 715-134

*TR-78 Madnick, Stuart E.
Design Strategies for File Systems,
M.S. Thesis, EE Dept & Sloan School
October 1970

AD 714-269

TR-79 Horn, Berthold K.
Shape from Shading: A Method for

Obtaining the Shape of a Smooth
Opaque Object from One View,

Ph.D. Thesis, EE Dept.
November 1970

AD 71 7-336

TR-80 Clark, David D., Robert M. Graham,
Jerome H. Saltzer and Michael D. Schroeder

The Classroom Information and Computing
Service

January 1971
AD 71 7-857

- -_-

~

-—- - . - -- -- -- . - ---- -- -
_

PUBLICATIONS 135 PUBLICATIONS

TR-81 Banks, Edwin R.
Information Processing and Transmission

in Cellular Automata,
Ph.D. Thesis, ME Dept.
January 1971

AD 717-951

*TR-82 Krakauer, Lawrence J.
Computer Analysis of Visual Properties

of Curved Objects,
Ph.D. Thesis, LE Dept.
May 1971

AD 723-647

*TR-83 Lewin, Donald E.
In—Process Manufacturing Quality

Control,
Ph.D. Thesis, Sloan School
January 1971

AD 720-098

*TR-84 Winograd, Terry
Procedures as a Representation for

Data in a Computer Program for
Understanding Natural Language,

Ph.D. Thesis, Math. Dept.
February 1971

AD 721-399

TR-85 Miller, Perry L.
Automatic Creation of a Code Generator

from a Machine Description,
E.E. Thesis, EE Dept.
May 1971

AD 724-730

*TR-86 Schell, Roger R.
Dynamic Reconfiguration in a Modular

Computer System,
Ph.D. Thesis, EE Dept
June 1971

AD 725-859

~

- --— ---—--- -—— S — -- -5- -—-

- _ 5-~~~~- ~——~~.--~~~.~---._

PUBLICATIONS 136 PUBLICATIONS

TR-8 7 Thomas, Robert H.
A Model for Process Representation

and Synthesis,
Ph.D. Thesis, EE Dept.
June 1971

AD 726-049

TR-88 Welch, Terry A.
Bounds on Information Retrieval

Efficienc y in Static File Structures,
Ph.D. Thesis, EE Dept.
June 1971

AD 725-429

TR-89 Owens, Richard C., Jr.
Primary Access Control in Large-

Scale Time-Shared Decision Systems,
M.S. Thesis, Sloan School
July 1971

AD 728-036

TR- 90 Lester, Bruce P.
Cost Analysis of Debugging Systems,
B.S. & M.S. Theses, EE Dept -

September 1971
AD 730-52 1

*TR-91 Smoliar, Stephen W.
A Parallel Processing Model of

Musical Structures,
Ph.D. Thesis, Math. Dept
September 1 971

AD 731-690

TR-92 Wang, Paul S.
Evaluation of Definite Integrals

by Symbolic Manipulation
Ph.D. Thesis, Math. Dept.
October 1971

AD 732-005

~

5-5--5

~

5-

~

-

~

- —-S-- —- -~~~~ ——--~~~---- - -—.—- .—---— .
5-5-5- -5 -— _ _ _ _ _ _ _ _ _ _ _ _ _ _

~
~~ . ~~—~—~~~~~~~~~~~~~~

-——-——,.-.---.—---- - ---- - -

PUBLICATIONS 137 PUBLICATIONS

TR-93 Greif, Irene Gloria
Induction in Proofs about Programs,
MS. Thesis, EE Dept.
February 1 972

AD 737-701

TR-94 Hack, Michel Henri Theodore
Analysis of Production Schemata

by Petri Nets,
M.S. Thesis, EE Dept.
February 1972

AD 740-320

TR-95 Fateman, RIchard J.
Essays in Algebraic Simplification
(A revision of a Harvard Ph.D. Thesis)
April 1972

AD 740-132

TR-96 Manning, Frank
Autonomous, Synchronous Counters Constructed Only of

J-K Flip-Flops,
M.S. Thesis, EE Dept.
May 19 72

AD 744-030

TR-97 Vilfan, Bostjan
The Complexity of Finite Functions
Ph.D. Thesis, EE Dept.
March 1972

AD 739-678

TR-98 Stockmeyer, Larry Joseph
Bounds on Polynomial Evaluation Algorithms
M.S. Thesis, EE Dept.
April 1972

AD 740-328

TR-99 Lynch, Nancy Ann
Relat ivize tion of the Theory of Computational Complexity
Ph.D. Thesis, Math. Dept
June 1972

AD 744-032

—---—— -5- - . - - -- 5 5 - 5 - . —-- .

-_-~~~—

PUBLICATIONS 138 PUBLICATIONS

TR- 100 Mandi, Robert
Further Results on Hierarchies of Canonic Systems
M.S. Thesis, EE Dept.
Juno 1972

AD 744-206

TR-1O1 Dennis, Jack B.
On the Design and Specification of a Common Base Language
June 1972 -

-

AD 744-207

TR-102 Hoss ey, Robert F.
Finite Iree A tomata and w-Automata
M.S. Thesis, EE Dept.
September 1972

AD 749-36 7

*TR- 103 Sekino , Akira
Performance Evaluation of Multiprogrammed Time-Shared

Computer Systems
Ph.D Thesis, EE Dept
September 1 972

AD 749-949

TR- 104 Schroeder , Michael D.
Cooperation of Mutually Suspicious Subsystems

in a Computer Utility
Ph.D. Thesis, EE Dept.
September 1 972

AD 750-173

TR-105 Smith, Burton J.
An Analysis of Sorting Networks
Sc.O. Thesis, EE Dept.
October 1972

AD 751 -614

TR-106 Rackoff , Charles W.
The Emptiness and Complementation Problems

for Automata on Infinite Trees
M.S. Thesis, EE Dept.
January 1973

AD 756-248

PUBLICATIONS 139 ’ PUBLICATIONS

TR-107 Madnick, Stuart E.
Storage Hierarchy Systems
Ph.D. Thesis, EE Dept.
April 1973

AD 760-001

TR- 108 Wand, Mitchell
Mathematical Foundations of Formal Language Theory
Ph.D. Thesis, Math. Dept
December 1973

TR-109 Johnson, David S.
Near—Optimal Bin Packing Algorithms
Ph.D. Thesis, Math. Dept
June 1973

PB 222-090
TR-1 10 MoIl, Robert

Complexity Classes of Recursive Functions
Ph.D. Thesis, Math. Dept.
June 1973

AD 767-730
TR— 111 Linderman, John P.

Productivity in Parallel Computation Schemata
Ph.D. Thesis, EE Dept.
December 1 973

PB 226-159/AS
TR- 112 Hawryszkiewycz, Igor 1.

Semantics of Data Base Systems
Ph.D. Thesis, EE Dept.
December 1973

PB 226-061/AS
TR- 113 Herrmann, Paul P.

On Reducibility Among Combinatorial Problems
M.S. Thesis, Math. Dept.
Decertiber 1973

PB 226-157/AS

- .5- ’~~~~ 2~~
T 5

~~~~”
- ..- ——,- .-- .—-.—— 5 - 5 - 5-’~~ ’~ - - 5- 5 -~~~~~~~~~” ’

PUBLiCATIONS 140 PUBLICATIONS

F TR- 1 14 Metcalfe, Robert M.
Packet Communication
Pn.D. Thesis, Applied Math., Harvard University
December 1 973

AD 771-430

TR- 11 5 Rote nberg, Leo
Making Computers Keep Secrets
Ph.D Thesis, EE Dept.
February 1974

PB 229-352/AS

TR~- 116 Stern,~~ei ry A.
Bac~cup and Recovery of On-Line Information

in a Computer Utility
M.S. & E.E. Theses, EE Dept.
January 1974

AD 774-141

TR- 11 7 Clark, David D.
An Input/Output Architec ture for

Virtual Memory Computer Systems
Ph.D. Thesis, EE Dept.
January 1 974

AD 774-738

TR— 118 Briabrin, Victor
An Ab~,tract Model of a Research Institute;

Simple Automatic Programming Approach
March 1 974

PB 231-505/AS

TR- 11 9 Hammer, Michael M.
A New Grammatical Transformation into

Deterministic Top-Down Form
Ph.D. Thesis, EE Dept.
February 1974

AD 775-545

TR- 1 20 Ramchandani, Chander
Analysis of Asynchronous Concurrent Systems

- by Timed Petri Nets
Ph.D. Thesis, EE Dept
February 1974

AD 775-618

_  - -



- ‘ 5 -  

—---5-.--

I

PUBLICATIONS 141 PUBL’CATIONS

TR-121 Yao, Foong F.
On Lower Bounds for Selection Problems
Ph.D. Thesis, Math. Dept
March 1974

PB 230-950/AS

TR-122 Scherf, John A.
Computer and Data Security: A Comprehensive

Annotated Bibliography
M.S. Thesis, Sloan School
January 1974

AD 775-546

TR— 1 23 Introduction to Multics
February 1974

AD 91 8-562

TR— 124 Laventhal, Mark S.
Verificat ion of Programs Operating on Structured Data
B.S. & M.S. Theses, EE Dept
March 1974

PB 231-365/AS

TR- 125 Mark, William S.
A Model-Debugging System
B.S. & MS. Theses, EE Dept.
April 1974

AD 778-688

TR- 126 Altman, Vernon E.
A Language Implementation System
B.S. & M.S. Theses, Sloan School
May 1974

AD 780-6 72

TR- 1 27 Greenberg, Bernard S.
An Experimental Analysis of Program Reference

Patterns in the Multics Virtual Memory
M.S. Thesis, EE Dept.
May 1974

AD 780-40 7

.----- - - ._  ~~~~~~~~~~~~~~~~ .~~~~:. ~
- . -.

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - -~~~~~~~~~

PUBLICATIONS 142 PUBLICATIONS

TR- 128 Frankston, Robert M.
The Computer Utility as a Marketplace for Computer

Services
M.S. & E.E. Theses, EE Dept.
May 1974

AD 780-436

TR-1 29 We lssberg. Richard W.
Using Interactive Graphics in Simulating the Hospital

Emergency Room
MS. Thesis, EE Dept.
May 1974

AD 780-437

TR-130 Ruth, Gregory R.
Analysis of Algorithm Implementations
Ph.D. Thesis, EE Dept
May 1974

AD 780-408

TR—13 1 Levin, Michael
Mathematical Logic for Computer Scientists
June 1974

TR-132 Janson, Philippe A.
Removing the Dynamic Linker from the Security

Kernel of a Computing Utility
M.S. Thesis, EE Dept.
June 1974

AD 781-305

TR- 133 Stockmeyer, Larry J.
The Complexity of Decision Problems in

Automata Theory and Logic
Ph.D. Thesis, EE Dept. -

July 1974
PB 235-283/AS

TR- 134 Ellis, David J.
Semantics of Data Structures and References
M S. & E.E. Theses, EE Dept
August 1974

PB 236-594/AS

- - ---- -- - -~~~- - 5-~~~~~~~~~~~~~~~~~~ ”~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

__5-. __5.._ _ -.
- - -

‘-

~

-

~1~~~

PUBLICATIONS 143 PUBLICATIONS

TR-. 135 Pfister , Gregory F.
The Computer Control of Changing Pictures
Ph.D. Thesis, EE Dept
September 1974

AD 787-795

TR- 136 Ward, Stephen A.
Functional Domains of Applicative Languages
Ph.D. Thesis, EE Dept.
September 1974

AD 787-796

TR— 137 Seiferas, Joel I.
Nondeterministic Time and Space Complexity

Classes
Ph.O Thesis, Math. Dept
September 1974

PB 236-777/AS

TR- 138 Yun, David Y. V.
The Hensel Lemma in Algebraic Manipulation
Ph.D. Thesis, Math. Dept
November 1974

AD A002-737

TR- 139 Ferrante, Jeanne
Some Upper and Lower Bounds on Decision

Procedures in Logic
Ph.D. Thesis, Math. Dept
November 1 974

PB 238-121/AS

TR- 140 Redell, David D.
Naming and Protection in Extendible

Operating Systems
Ph.D. Thesis, EE Dept.
November 1974

AD AOO1-721

TR-~ 141 Richards, Martin, A. Evans and R. Mabee
-

. The BCPL Reference Manual
December 1974

AD A003-599

5- ’ — ._ _______ -

PUBLICATIONS 144
-

PUBLICATIONS

TR- 142 Brown, Gretchen P.
Some Problems in German to English

Machine Tr~i ~Iation
MS. & E.E. Theses, EE Dept.
December 1974

AD A003-002

TR- 143 Silverman, Howard
A Digitalis Therapy Advisor
M.S. Thesis, EE Dept.
January 1975

TR- 144 Rackoff , Charles
The Computational Complexity of Some

Logical Theories
Ph.D. Thesis, EE Dept.
February 1 975

*TR- 145 Henderson, D. Austin
The Binding Model; A Semantic Base

for Modular Programming Systems
Ph.D. Thesis, EE Dept.
February 1 975

AD A006-961

sTR— 1 46 Malhotra, Ashok
Design Criteria for a Knowledge-Based

English Larguage System for Management:
An Experimental Analysis

Ph.D. Thesis, EE Dept.
February 1 975

TR- 147 Van De Vanter , Michael L.
A Formalization and Correctness Proof

of the CGOL Language System
M.S. Thesis, EE Dept.
March 1975

TR- 148 Johnson, Jerry
Program Restructuring for Virtual Memory Systems
Ph.D. Thesis, EE Dept.
March 1 975

AD A009-218

~~~~~~~~~ .- -- — —~~~~~~~~~~~~~~~~~ -- -- _ -~~~~ .—- —~~~~~~--- -~~~~~~ --



-5-- -=- —~~~~~~~~~~~~~~ _ —~~~~ -— - - —  --

PUBLICATIONS 145 PUBLICATIONS

*TR-149 Snyder, Alan
A Portable Compiler f or the Language C
B.S. & M.S. Theses, EE Dept
May 1975

AD AO10-218

*TR- 150 Rumbaugh, James E.
A Parallel Asynchronous Computer Architecture

for Data Flow Programs
Ph.D. Thesis, EE Dept.
May 1975

AD AO1O-918

TR-151 Manning, Frank B.
Automatic Test, Configuration, and Repair

of Cellular Arrays
Ph.D. Thesis, EE Oept.
June 1975

AD A012-822

TR- 152 Qualitz, Joseph E.
Equivalence Problems for Monadic Schemas
Ph.D. Thesis, EE Dept
June 1975

AD AOl 2-823

TR- 153 Miller, Peter B.
Strategy Selection in Medical Diagnosis
M.S. Thesis, EE & CS Dept.
September 1975

TR- 154 Greif, Irene
Semantics of Communicating Parallel Processes
Ph.D. Thesis, EE & CS Dept.
September 1975

AD AOl 6-302

TR-155 Kahn, Kenneth M.
Mechanization of Temporal Knowledge
MS. Thesis, EE & CS Dept
September 1975

. - .-~~~~ —-5--



PUBLICATIONS 146 PUBLICATIONS

TR- 156 Bratt , Richar d G.
Mriimizing the Naming Facilities Requiring -~ 

-

Protection in a Computer Utility
M.S Thesis, EE & CS Dept.
September 1 975

*TR-157 Meldman, Jeffrey A.
A Preliminary Study in Computer-Aided Legal Analysis
Ph.D. Thesis, E~ & CS Dept
November 1975

AD AO18-997

TR- 158 Grossmar~ Richard W.
Some Data-base Applications of Constraint Expressions
MS. Thesit , EE & CS Dept.
r ebruary 1976

AD AO24-149

IR— 1 59 Hack, Michei
Petri Net Languages
March 1976

TR- 1 60 Bosyj, M~chael
,~~ Program for the Design of Procurement Systems
M.S. Thesis, EE & CS Dept
May 1976

AD A026-688

TR- 161 Hack, Michel
Decidability Questions
Ph.D. Thesis, EE & CS Dept.
June 1976

TR-162 Kent , Stephen T.
Encrypti on-Based Protection Protocols for

Interactive User-Computer Communication
M.S. Thesis, EE & CS Dept
June 1976

AD A026-911

____________________ 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~


____________ ___________ ___________
- ~~~~~~~~~~~~ --------— ‘ - -~~~ :TT~

PUBLICATIONS 147 PUBLICATIONS

TR- 163 Montgomery, Warren A.
A Secure and Flexible Model of Process Initiation

for a Computer Utility
M.S. & E.E. Theses~ EE & CS Dept
June 1976

TR-164 Reed, David P.
Processor Multiplexing in a Layered Operating System
M.S. Thesis, EE & CS Dept.
July 1976

TR-165 McLeod, Dennis J.
High Level Expression of Semantic Integrity

Specifications in a Relational Data Base System
M.S. Thesis, EE & CS Dept.
September 1 976

AD A034-184

TR-166 Chan, Arvola V.
Index Selection in a Self-Adaptive Relational
Data Base Management System

M.S. Thesis, EE & CS Dept.
September 1976

AD A034-185

TR-167 Janson, Philippe A.
Using Type Extension to Organize Virtual Memory

Mechanisms
Ph.D. Thesis, EE & CS Dept
September 1976

TR- 168 Pratt, Vaughan R.
Semantical Considerations on Floyd-Hoare Logic
September 1 976

TR-169 Safran, Charles, James F. Desforges and Philip N. Tsichlis
Diagnostic Planning and Cancer Management
September 1 976

TR- 1 70 Furtek, Frederick C.
The Logic of Systems
Ph.D. Thesis, EE & CS Dept.
December 1976

-- -~~~~~-~~~~~~~~~ ~~~~~~~~~~~~ —- 5-—- -~~~~- --- ~~~ - — -5- — —-———~~~~~~~ —~~--——-- ~~~

— . -

~~~~~~



- ___________________________________________________________________ - . - - ____________

PUBLICATIONS 148 PUBUCATIOf~S

TR- 1 71 Huber, Afldrew R.
A Multi-Process Design of a Paging System
M.S. & E.E. Theses, EE & CS Dept
December 1 976

TR- 1 72 Mark, William S.
The Reformulation Model of Expertise
Ph.D. Thesis, EE & CS Dept.
December 1976

AD A035-397

TR- 1 73 Goodman, Nathan
Coordination of ParaHel Processes in the Actor

Model of Computation
M.S. Thesis, EE & CS Dept
December 1976

TR- 1 74 Hunt, Douglas H.
A Case Study of lntermodule Dependencies iii a

Virtual Memory Subsystem
M.S. & E.E. Theses, EE & CS Dept.
December 1976



- 
-- --

PUBLICATIONS 149 PUBLICATIONS

- PROGRESS REPORTS

*Project MAC Progress Report I
to July 1 964

AD 465-088

sProject MAC Progress Report II
July 1 964-July 1 965

AD 629-494

*Project MAC Progress Report Ill
July 1965-July 1966

AD 648-346

*Project MAC Progress Report IV
July 1966-July 1967

AD 681-342

*Project MAC Progress Report V
July 1967-July 1968

AD 687-770

*Project MAC Progress Report VI
July 1 968-July 1969

AD 705-434

sProject MAC Progress Report VII
July 1 969-July 1970

AD 732-767

sProject MAC Progress Report VIII
July 1970-July 1971

AD 735-148

sProject MAC Progress Report IX
July 1971-July 1972

AD 756-689

sProject MAC Progress Report X
July 1972-July 1973

- AD 771-428



- w.-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PUBLICATIONS 150 PUBLICATIONS

sProject MAC Progress Report XI
July 1 973-July 1 974

AD A004-966
sLaboratory for Computer Science Progress Report XIIJuly 1974-July 1975

AD A024-527
sLaboratory for Computer Science Progress Report XIII

July 1 975-July 1 976

Copies of all reports with AD and PB numbers lis tec~ in Publications may be securedfrom the National Technical lnfot matj on Service, Operations Division, Springfield,Virginia, 22151. Prices vary. The AD or PB number must be supplied with therequest. 
.

* Out of Print reports may be obtained from NTIS if the AD number is supplied (seeabove). Out of Print reports without an AD or PB number are unobtainable.

—  ‘5-~~_ ~~_‘_~ ~~~~~~~~~ ‘ —5--—— - -- — — -~~~__ - 
- ~ 5-’~~” ~~~ .*. —Th~..,:]flt_rir,r5-Ct?*5-.fl.~~5-.,5-,5-__,. ’~~~~~~~~~~~~~~~~~~~~~~~~~~



c_ r5- ~~~~~~~‘
. 

~~~~~~~~~~~ 
-_ . , .5-—’—. —.- - .5- 5-

~~~
5- —.-.’ - -..-. - _ 5-5- _ 5-., ,~~

5- —-—- .- -—---— _.--— -

OFFICIAL DISTRIBUTION LIST

Defense Documentation Center Dr. A. L. Slatk osky
Cameron Sta t ion  Scientific Advisor
Alexandr ia, VA 22314 Commandant of the Marine Corps

12 cop ies (Code RD-i)
Washington , D. C. 20380

Off ice of Naval Research 1 copy
Information Systems Program
Code 437 Office of Naval Research
Arlington , VA 22217 Code 458

2 copies Arl ington , VA 22217
I copy

Off ice of Naval Research
Branch Office/Boston Naval Electronics Lab Center
495 Summer Street Advanced Software Technology
Boston , MA 02210 Division — Code 5200

1 copy San Diego , CA 92152
1 copy

Office of Naval Research
Branch Office/Chicago Mr. E. H. Gle issner
536 South Clark Street Naval Ship Research & Development Cent&’r
Chicago , IL 60605 Computation & “ath Department

1 copy Bethesda , MD 20084
1 copy

Office of Naval Research
Branch Office/Pasadena Captain Grace M. Hopper
1030 East Green Street NAICOM/MIS Planning Branch
Pasadena , CA 91106 (OP—916D)

1 copy Office of Chief of Naval Operation s
Washington, D. C. 20350

New York Area Off ice 1 copy
715 Broadway — 5th floor
New York , N. V. 10003 Mr. Kin B. Thompson

1 copy Technical Director
Information Systems Division

Naval Research Laboratory (OP—91T)
Technical Information Division Office of Chief of Naval Operations
Code 2627 Washington , D. C. 20350
Washing ton, D. C. 20375 1 copy

6 copies
Cap tain Ric~ ard L. Mar tin , IJSN

Assistant Chief for Technology Commanding Officer
Office of Naval Research USS Francis Marion (LPA—249)
Code 200 FPO New York , N. Y.  09501
Arl ington, VA 22217 1 copy

1 copy

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

- -


