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SECTION 1.0 INTRODUCTION AND SUMMARY

A problem of interest in many different disciplines is that of determining if there is
a measurable relationship (physical causality) between two or more time series. In addition,
one would often like to obtain a quantitative meaningful measure of the degree of that
relationship. This report describes one possible measure of such a relationship, the
coherence.

The most common measure of such a relationship is the pairwise or multiple corre-
lation coefficient. The nature of the correlation coefficient is well documented and will not
be discussed here other than to note that it is not a function of frequency and may be
affected by linear transformations of either of the time series.

The coherence function (magnitude-squared multiple or pairwise coherence
function) is defined as a frequency-dependent quantity that ranges between zero and one
(section 2 and references 2-9 and 16). This coherence function is zero if the Gaussian.,
ergodic time series are independent (uncorrelated) and equal to one at any frequency where
there is a linear transtormation between the one or more input time series and the output
or reference time series.

The situation of interest is shown in figure 1.1 where v; indicates the noise contami-
nating the signal u(i) in the it channel. In general, cach transmission channel is composed
of linear and nonlinear parts (figure 1.2). The sum of the output of the nonlinear system
(usually a small part of the total transmission). the measurement noise, and the background
noise is grouped into the effective noise term v;(t) (figure In.3).

We are interested in detecting the presence of a common signal u(t) in two or more
channels. The input-output relationship indicated in figure 1.3 can be written as

X1t = £1(7) vi(t)
XH(1) 3 gx(7) u(t - dt + vH(t)
w7 em™m vm(t) (1.1a)
or more conciscely as
2
0= [ gut-Tdr + v, (1.1b)

=0

Note that because of physical causality requirements., g(7) is zero for all 7 less than
sero. In fact, it will be zero for all 7 less than some positive time which is the time it takes
the signal to travel from the source to the sensor.

I'he true value of the coherence between time series is generally an unknown quan-
tity. In fact. any measure of the relationship between two or more time series generally
must be based on time traces of those series. The tunctional relationship between the time
series and the measure or estimate of coherence is called a sample statistic for coherence
(section 5). The assumption that any one infinite length sample of cach series will be
cnough to allow us to estimate the coherence is made implicitly. Thus for this report all
time series are assumed to be stationary and ergodic. Untfortunately. in practice, one is
given only a finite amount of data from cach of the time series. In this case the sample
statistic is a random variable distributed about the “true magnitude-squared coherence.™
I'he density function for the sample statistic defined insection § is desceribed and plotted in
section 6 of this report.,




Based on the density functions of section 6, receiver operation characteristic (ROC)
curves are also given in section 6. These curves define the probability of detection versus
probability of false alarm for a signal of a given true coherence. Also shown in this section
are curves of probability of detection versus true coherence for fixed levels of probability
of false alarm.

In sections 3 and 4 the relationship between input signal to noise levels and true
coherence for the two-channel and multichannel cases are discussed.

For a general discussion of the concept of coherence, the reader is directed to
reference 5 and sections 2 and 3 of this report. For a detailed derivation of the distribution
of the pairwise and multiple coherence function discussed in section 6 of this report, the
reader is referred to reference 7. The densities and derived performance curves in section 6
are particularly difficult to obtain for low coherence and high values of N (number of
samples of the time series), and based on the authors’ knowledge are not available elsewhere
in the literature.

Thus the results in this report describe one approach to obtaining a quantitative
measure of the degree of relationship between M-time series. This report precisely defines
the detection performance possible when a common signal exists in M-series in the form of
receiver operating curves. The precise performance expected is also given in terms of proba-
bility of detection versus true coherence for a number of different probabilities of false
alarm and for various numbers of time series M.

Calculation of the multiple coherence between various output signals, x ().

X5t . xy (D) allows the simultaneous use of data from M sensors and should have several
advantages over using simply pairwise coherence. First. it should allow improved detection
performance. i.c.. it should be possible under certain circumstances to detect the presence of
a mutual signal in all M channels when it is not quite possible to make such a detection using
any two pairs. Secondly. it provides a natural way to include additional sensor information.
It does not require the addition of a large number of new test statistics each time a new
sensor is introduced, a situation which may occur when all possible pairs are separately
inspected. Thirdly, detection can occur using this one statistic even when the signal-to-noise
ratio varies on the individual channels. This would allow signal-to-noise in one channel to go
down while another one came up. without reducing the detection performance and without
changing to a new statistic.
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Figure 1.1. One input-or-output system.
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Figure 1.2. Linear and nonlinear parts of a single channel.
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Figure 1.3. Effective noise with M linear transmission channels.




SECTION 2.0 CROSS-POWER SPECTRAL DENSITY MATRIX !
AND MULTIPLE COHERENCE ‘

Multiple coherence can be most easily defined in terms of the cross spectral density
matrix Sy (W), where i

- B

S”(w) Slz(w) SIM(W)

SZ]("‘)) Szz(w) ok S:M(w) /3
qlz(w)= §

LSMI(W)SM?_(“‘) e SMM(W)_ (2.1

If iis not equal to j, Sij(w) represents the crosspower spectral density between the
signals x;(t) and xj(t):

A
Sij() = Sy x () = Sii(w). (2.22)

As indicated by equation 2.2, this crosspower spectral density is generally complex for real
siginals [x{(t) and x;(0)]. If i does equal j, the element S;;(w) represents the autopower
spectral density of the ith signal x;(t) which is real and positive:

The crosspower spectral density matrix is of course equivalent to the crosscorrelation %
matrix. Either of these together with the means of the M jointly Gaussian stationary process-
es. X (), xa(t). ... xp(t). completely specifies the joint distribution function of these e
processes.
Given M finite Iength time traces, there are well known techniques for obtaining
“sample estimates” of the cross- and autopower spectral elements. These estimates are used
to obtain sample estimates for the multiple coherence between the various time series. {
The sample estimate for the crosspower spectral density matrix is a function of the basic M
data x| (t), X5(t), ... xp(t) over some finite time record. It does not require knowledge of
any of the characteristics of the transmission channels or of the signal-to-noise ratios of the
received signals. The meaning of multiple coherence will be discussed in terms of these
quantities in later sections in an attempt to illuminate the subject. Here, however, we will
define multiple coherence simply in terms of the crosspower spectral density matrix and
its clements.
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The multiple coherence between xj(t) and x (1), xo(t), ... x; 1 (1),
xj_,_l(t), <o xy(0 is defined by (reference §)

Yin2. s, N =T 1sgesi) 63

where Sij(w) is the jeh diagonal element of the inverse of the S, , (w) matrix:

sl §12w) ... s!My]
Pl 2% ... 5y
S_zlx(‘“):
sMl,) sM2q,) . sMMml (2.4)

Again it can easily be seen that Sl(w)is real and that SU(w) is equal to S(w)™ The multiple
coherence of the jrh sensor with respect to the other sensors represents the proportion of
the variance (power) of sensor j that can be explained by a linear combination of the remain-
Ing sensors in a minimum mean square sense (reference 2).

By reducing this definition to the simple two-channel case we can write

S:z(u) = Sl z(w)

sl (wy = '
XX s e ; . 2 # ;
$11(WS73(w) 'lslz(w)[ S12(w) S} () (2.5)
so that
811 () = 8558 1 (IS 5w - ’s] :(u.))l 2. (2.6)

This gives
Y22 = 1 1isp s )
= =181 (8220 - [$ 218 S 22(0)
. ‘s] 2(w)|3/sl 1(@S55(w), Q.7
so that

IS ()]
S11(W)813(w)

~

(2.8)

5
Yy, ](w)"’ = IY] 3

Ilez(w)lz =

I'his is defined in section 3 as the mutual or pairwise coherence between channels one
and two.

6

e e 1y




In the three-channel case it is easily seen (writing Sij(w) or Sij) that S! l(w) is given by
M y=lo e 2 5
S*(w) 22533 523 /DET. (20

Here the determinant of the crosspower spectral matrix is given by

DET = 81852833 - Sy [S23° - $331521|% - 512

-
531|'
+2R,(512573531)- (2.10)

Using this expression for the first diagonal element of the inverse of the crosspower spectral
density matrix and the definition of the multiple coherence (equation 2.3) we find

2= 1-1/S1 @S W)

’Yl 2,3

_y S10522833 -S1fS23f - 33082117 - 2083117 + 2Re(S252382)

-
S11522533 - 811/S23|" (2.11)
or
% 3 |
"), 52 $33[S211~ +$22[S31[ - 2Re(51252383)
PR 3
$11522833-S11[S23]" (2.12)
Using the fact that pairwise coherence is defined by
D
S..|2
\x 2[5 : (2.13)
= i
we can write
9 (7 2 D4 i
b, 2o Mgl ey gl -2 Relinyrasnsy)
| 123.3\ i iR 5 = |
1-]va 5/ (2.14)

Note that if the crosspower spectral density of channels two and three is zero (S53 = 0). the
coherence between these two channels is zero and the multiple coherence of channel one.
given two and three, is

“

|Y1:3.3|3=;Y|.2

+v 3% (2.15)




We know that l\(] 5 3l' should be found between zero and one. However, this is not
immediately clear from equation 2.14. @ particular, when qu 312 goes to one the denom-
inator in equation 2.14 goes to zero. This can be investigated by considering the case when
X5(1) is generated as in figure 2.1

&

0= [ x3@has(t- eda +u(t), (2.16)
.

where w(t) is a zero mean stochastic process uncorrelated with X (t) and x3(t). In this
system the auto- and crosspower spectral densities of channel two can be written as

sz(w) = |H23(w)lzs33(w) + W(w)
S] :(w) = H23(V)Sl 3(w)

Note that it W(w) goes to zero the coherence le 3l goes to one, which means that the
denominator in equation 2.14 g,ocs to zero. To investigate this, we can use these relation-
ships (equation 2.17) in equation 2.14 to give
D5 ) £y ) ) )
g o = 333,,|,H3_3(f”?|iliélil‘_|§33(“’)|~533 +WIS31° - 28y 3]° S33]Ha3t)”
2z vks > S

CISalPwW o Isis]?
S35 W SyS33

v 3% (2.18)

Thus, if X5(t) can be generated by passing x3(t) through an arbitrary linear system and
adding uncorrelated noise, then no new information is gained by processing the time
series XH(1):

=V, 3

Szl ot (2.19)

This result is independent of W(w) and }Y3_3

X5 A
3
hyal ) w P )(2(1)

23

Figure 2.1. Generation of x5(t).




SECTION 3.0 PAIRWISE COHERENCE AND SIGNAL-TO-NOISE RATIOS

In reference 5 the ordinary magnitude-squared coherence of the signals xj(t), xj(t) is
discussed and defined as

5
ly. |2 ﬁl(w_”__. (3:1)
LJ S”(w) S_]J(w)

From the definition of coherence, it is obvious that the coherence of channel i given j is the
same as that of channel j given i.

If x (1) and X5(t) are generated as indicated in figure 1.3, equation 1.1 can be
written in the frequency domain by Fourier transform as

X1(w) = G(wU(w) + Vi(w)

X2(w) = Ga(wU(w) + Va(w).

Again assuming the noise terms V| and V> are independent, the cross- and autopower
spectral densities can be written as

S11(@) = [G1@)]2 Sy(w) + Sy ) (3.4)
SHra(w) = 'Gg(w)|2 Su(w) + Sy (w) (3.5)
[S12]2 = |G1@)] 2 [Ga(w) |2 S0 (3.0)

. Y “ A -
Noting that IG](w)l' Sy(w) and l(n:(w) I- Sy(w) are the output signal power spectra at the
receiver in channels one and two, we write the magnitude-squared coherence as

‘Gl(w) ‘2 |(}3(w) , 2 Su(w)z

“Gl(w) Iz S“(w) + Svl (w)] “(]:(u) ' 2 Suw) + Sv,(w)]

S

'YI,?_

| ,
(EESIEIE Sul@)] |1+ Seater/ G| 28,

Defining the signal-to-noise power in the jth channel as




_[Gj@)|? sy

(S/N); (3.9)
] Sy.(w)
]
and the similar noise-to-signal ratio as
(N/S)J- = 1/(S/N)j, (3.10)
we can write
N, K
N N
i 2| = ' R T (3.11)
[1+(N/S)p] [1+(N/S)] 1+(S) |+(S)
N/ N/

Certain general statements concerning this pairwise magnitude-squared coherence, or
just “‘coherence,” can now be made.
The coherence is bounded between zero and one:

S

=l (3.12)

0 =|¥) 2

If the noise-to-signal power goes to infinity in either channel, the coherence will go
to zero. This will happen if the signal power in that channel fades to zero. Also, the noise-
to-signal power ratio in both channels must go to zero for the coherence to go to one.

An interesting and informative interpretation of the coherence between these two
channels can be made in the following manner. Assume one of the channels is noise free:

Sy, (@) =0. (3.13)

This channel then becomes tie input signal. The coherence between channels one and two
is now given by

|G Psy@ SNy S
G| ?Sy() + Sy () FFES/Nyy s v

(3.14)

['iis magnitude-squared coherence is the fraction of the power of the output x(t)
which comes from the signal input passed through a linear system.

Since the trasmitted signal is generally not available, it is useful to look at this
physical interpretation of coherence from a different point of view. Let us simply take
signal x>(t) as our basic signal and calculate the coherence between x(t) and our given
signal x~(t). From equation 3.1, our definition, this will be the same result as if we took
signal x |~(t) as our “given " signal. Thus Uw) in equation 3.2 is replaced by XH(w):

|
1
|
.4;

e




Xj(w) = Hlj_(w)Xz(.a.)'i'Ve],,(w). (3.15)

Hys(w) is the effective linear transfer function between output x,(t) and output x ().
L ’(t) is the effective noise on the transmission channel. It must be noted that le(w) is

no longer necessarily a causal system. Now the coherence between channels one and two
can be written as in equation 3.14:

(3.16)

'Y] (W) 2 Ile(w)PSz:(w) |
: I|H13(w)|2322(w) * Syey )

This two-channel magnitude-squared coherence is the ratio of the power at output x(t),
which is caused by the “input x2(t),” transmitted over the effective linear transmission
channel [H}2(w)] to the total power in output x. Consideration of this effective linear
transmission channel allows this physical interpretation of the coherence to be easily carried
over to multiple coherence.




SECTION 4.0 MULTIPLE COHERENCE AND SIGNAL-TO-NOISE RATIOS

In the case of M channels, a relationship between the input signal-to-noise ratios and
the multiple coherence, similar to the one in the last section for two channels, can be derived.
The output power spectral density can again be written in terms of this input signal spectral
density, the unknown channel transfer functions, and the effective channel noise as

Sii(©) = |Gi@)[2S () + Sy (@) (4.1

[Siit@)|? = [Gi@)|? |Giw)|2S @2, i #] (4.2)

It should be noted that |(}i(w)l35u(w) is the signal power density in the output of the ith
channel and Sy.(w) is the noise power spectral density in that channel. The general power
spectral density function can then be written as

I(l](w)l'sll(w)+svl(w) ()l(w)(Jz(‘w)Su(w’ .« e (ll(w)(lM(w)Su(w)
" g h) Y
GHWIG | (@)S () |Gy S @) +5, @) L GGy IS )
S\',\'(w):
]
;
GG ((@)S(w) G(@IGA@)S (@) o |Gu] s+ s |
(4.3)
Or iN a4 MOre Concise manner as 1
i
\
e i
S_\i)-\,w):Su(w)(; (W)G N (w) + D(w), (4.4)

where




(4.5)

GT(w) = [G)@Gs(®) . . . Gy)]. (4.6)

The inverse required to calculate the multiple coherence from equation 2.3 can now be cal-
culated by using the following matrix inversion lemma:

[A + x*xT]'I =At_aAlx® (1 +XTa! x*)" xTal, 4.7

Using this lemma, the inverse of the spectral density matrix can be written (assuming
all required inverses exist) as

Six(@ = D) (4.8)
1
S, D @G @) [1 +8,@GT@D @G @) 16T ).
The structure of this inverse can be seen more clearly by noting that

B
Gy(w)| =S, (w)
S, @G TWD @G @) = Lﬁ‘_u_~

Svl(w)
i o (@ |2
Sy,(©) Sy

This term is the sum of all output signal-to-noise power ratios. Therefore, if, as in the two-
channel case, we define

: 2
Gi()] 38 @)/S, (@) (4.10)
the inverse of the bracketed term in equation 4.8 can be written as

M
|1+ sy@cT@p@c | =171+ 2 syl (@.11)
=1

14




With this, the ith diagonal element of S;(]X(w) is given by

|Gi)[*8e)/s5 @)

-1 Agifn_ 1
{Sﬁé(w)}“ = S”(w) =

Sy.(w) M
i
1+ (S/N);

=1

(S/N).
=1 fj_ N, (4.12)
Sy.(w) M
' 1+2° (SIN);
=1

or

M
1+ 2 (S/N); - (S/N);
| =1
Sv_(w) M
1
I +J§i (S/N);

St =

(4.13)

Using this and substituting equation 4.1 into equation 2.3, we find

Vi e M =115 siie)

M

|+E<S/N)j
:]_ Iz:

. ,
[l +(5/N)i][| + 2 (S/N); —(S/N)i]
=1 '

M |
(S/N)i[/z: (S/N)>-(S/N>i]
L=l : -

(4.14)

M
| Hsm| | +<Z (S/N)J~>—(S/N)i]
L =l

Several special cases are of interest.

First consider the situation in which the signal-to-noise ratios in all channels are the
same:

(S/N); = (S/N); = (S/N). (4.15)




This gives the coherence of channel i with respect to the other M-1 channels as

Yii1,2

gimge o e

L g _ (S/N)2 (M-1) SaE
-Litl. Mt reenemr

Note that for M equal to two as in section 3 the coherence is given by

R
|Y1:2]=172:1] L) R (4.17)
[1+(S/N)] 2

However, it M becomes very large, the coherence goes to

: Ry 2_.__SN
Yi2,...i-1Li+ 1, M T el (4.18)

The formal requirement for this to be valid is for the signal-to-noise ratio and number of
channels to satisfy the following inequality:

(M- 1)S/N)>>1. (4.19)

However, based on data from section 3. equation 4.18 is identical to the coherence of two
channels when one has an infinite signal-to-noise ratio and the other has a signal-to-noise
ratio {at frequency w) of (S/N). In this sense, a large enough number of weak channels
[signal-to-noise ratio of (S/N)]is equivalent to the sum of one noise-free channel and one
weak channel.

The second special case for equation 4.14 is when the ith channel has a very large
signal-to-noise ratio. Letting (S/N); become large in equation 4.14 and keeping all other
signal-to-noise ratios equal to (S/N) we find that

) 2 (M-1)(S/N) 3
i i1 4 . (4.20)
2oLt MG [T+ (M-S

Note that for low signal-to-noise ratios, i.¢.,
(M=1)(S/N) << 1, (4.21)

the coherence goes up lincarly with the number of channels. Each new channel added is
also considered to have the same signal-to-noise ratio as all others, i.c., (S/N). As M becomes
larger or as

M(S/N) >> 1, (4.22)

this coherence goes to one as it would in the case of two noise-free channels.

16
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The relationships between signal-to-noise ratios and coherence for these two cases
are in table 4.1, Note that as expected the signal-to-noise ratio required in each channel to
obtain a given coherence declines with an increasing number of channels and increases with
an increased level in the specitied coherence.

Table 4.1. Signal-to-Noise Power Ratios.

Iy (M)i: Sigiwl-lo-Noisc Power Ratios Required to Yield Indicated
[yl= Value When All Input Channels Have Equal Signal-to-
M= Namber Noise Ratios
; of Channels 0.01 0.65 0.1 0.3 0.5 0.9
3 M= 2 0.111 0.288 0.462 1.21 241 18.5
, -95dB [-54dB |-3.3dB |0.83dB [3.8dB [12.6dB
i M= 3 0.079 0.206 0.333 0.885 1.78 13.8
I -11.0dB|-6.9dB |49dB |-0.5dB [25dB [11.4dB
| M= 4 0.065 0.172 0.280 0.760 1.55 12.2
[ -119dB|-7.6dB |-5.5dB |-1.2dB |19dB 10.9 dB
E M= 5 0.057 [0.152 [0.250 [0.691 [1.42 1.4
-12.4dB|-8.18 dB|[-6.0dB [-1.6 dB [1.52dB [10.6 dB
M= 10 0.040 0.111 0.189 0.561 1.20 10.1
-14.0 dB|-9.55 dB|-7.2dB |-2.5dB [0.79 dB [10.0 dB
M =100 0.016 0.060 0.121 0.443 1.02 9.10
-18.0dB|-12.2dB[-9.17 dB|-3.5dB [0.09 dB | 9.6 dB
v (M ”1 Signul-t()-l\‘()i.sc Power Ratios chuircd_to Yield Indicated mz
Value When it Channel Has Infinite Signal-to-Noise Ratio and
Other (M-1) Channels Have Indicated Signal-to-Noise Ratios
M = Number
of Channels 0.01 0.05 0.1 0.3 0.5 0.9
M= 2 0.010 0.053 0.111 0.429 1.00 9.00
-200dB[-128dB|-9.6dB |-3.7dB |0.0dB |9.5dB |
M= 3 0.005 0.026 0.056 0.214 0.5 4.5 ]
-23.0dB[-15.9 dB[-12.5 dB{-6.7dB |-3.0dB [6.5 dB
M= 4 0.003 0.017 0.037 0.143 0.333 300 1
-25.2dB|-17.7dB|-14.3 dB|-8.5 dB |-4.8 dB |4.8 dB
M= 5§ 0.002 0.013 0.028 0.107 0.25 2.25
, -27.0dB|-18.9 dB[-15.5 dB[-9.7dB |-6.0dB |3.5dB
' M= 10 0.001 0.006 0.012 0.048 0.111 1.00 {
L -30.0 dB[-22.2 dB|-19.2 dB|-13.2 dB|-9.8 dB [0.0 dB {
‘,_ M =100 0.0001 [0.0005 |0.0011 [0.0043 [0.0101 {0.091 ,
| ~40.0 dB|-33.0 dB[-29.6 dB| -23.7 dB[-20.0 dB|-10.4 dB '
Next consider the case where one channel other than the irh channel has a very high
signal-to-noisc ratio relative to the others: ;
M |
(S/N) »21 (SIN); = (S/N); = (S/N).. (4.23) \&
1= f
17 |y
I




Under these conditions, equation 4.14 is approximately given by

S/N):(S/N
PR TS LR OO il . (4.24)
[T+ (S/N) T[T + (S/N) ]
or
7 9,
”i:].z,...i-l,i+1,...M|“~‘”i;k|"» (4.25)

as if all other channels were not used. If (S/N)i is approximately equal to (S/N)k, this means
that all weaker channels could be neglected and only the two-channel coherence between
the two stronger channels could be used. Also consider the case when ail channels including
the irh have a much lower signal-to-noise ratio than the krh channel, i.c.,

(S/N) > (8/N); = (S/N) all i#k (4.26)

Then, while the coherence of the ith channel given the others is provided by equation 4.24,
the coherence of the kth channel given the others is

(M-1)(S/N) (S/N)
S e , 2= k . (4.27)
Giving for this case
Yk:1.2.... k-1.k+1,...M|?
_(M=D)[1 +(S/N)]| 2)
—[] +()]£4_|)(5/N)I hi:],:,...,i—].i‘*‘l....M (4.28)

For the case of weak signals in the other channels (from equation 4.25):

2 _ (M=D(I48/N) 2
Vi = AR 4.29
K12, kel kL M| 0 +(M_])(S/N)]l‘7l.k‘ e

Further simplifying equation 4.29 to the special case of

(M=1)(S/N) << 1, (4.30)

we have




5 %
L T R M|'~(M“”|‘7i:k|'- (4.31)

The coherence between the strong signal and the weaker ones goes up lincarly with the num-
ber of weaker channels. This means that the largest of the M multiple coherence values will
be the one in which the largest signal-to-noise ratio channel is used as the reicrence, which is
as expected.




SECTION 5.0 A SAMPLE STATISTIC FOR MULTIPLE COHERENCE

As in the case of pairwise coherence discussed in section 3, the true multiple
coherence of a set of time series is a function of the underlying statistics of these processes.
These statistics are generally unknown and must be estimated from sample realizations of
the processes. The estimates of the basic statistics can then be used to provide estimates of
the multiple coherence of the M underlying stochastic processes.

The method of obtaining estimates for true multiple coherence is as follows. Using
well documented techniques (see references 3, 4, S, and 6), obtain sample estimates for each
element of the crosspower spectral density matrix (equation 2.1). From these sample
estimates

— =)
A A
A P
Sﬁ)_((w) = : : . (5.1)
A A A |
SM 1 (w) SMz(w) St SMM(w)

one calculates the sample estimate for multiple coherence in the following manner
- 9 A Az
Yisl2, Lt M| =T - 1SS @), (5.2)

where é:'(w) is the ith diagonal element of the inverse of the M-by-M sample spectral density '
matrix Sx x(@). Details of how to form such estimates are discussed at length in the litera- '
ture. Since these estimates are random variables there has been considerable study of their
distribution. The distributions of these cross- and autopower spectral estimates are known
in closed form and are given in reference 7.




SECTION 6.0 DISTRIBUTION OF SAMPLE STATISTICS

; As it is for the pairwise coherence discussed in reference 8. the closed-form expres-
sion for the multiple-coherence statistic described in the last section is available (references

F 7, 8, and 9). This represents the range of values of the multiple-coherence test statistic and
the relative probability of its being in a particular band. All values are of course bounded by
zero and one. The density function is conditioned on the total number of different time

. records, or different stochastic processes, available (p). It is also conditioned on the number
| of independent complex samples available from cach of the time records (N) at a given fre-

" quency w. Thus from reference 9 the density function of the sample estimate for coherence

given the true coherence is given by
| %
:l P (v/N, ph[%)
| ik
; r B i | __‘3 i
= (N) (l—lﬁ‘l“)r\yp 2(1 -yN-p
I [(p - DIXN = p+1)
, k|
k Bl
! - 9F 1 (NNp-1 1 ylyl0) 3
| £ 1
: Ryl
! O=sy=<1
|
|

P |
E P ﬁ(y/N.p.,‘y,')=() y>1ory<Oo. (6.1)
i ME
| In cquation 6.1, 5F () is the hypergeometric function (reference 10).
| This cxpression for the density function of multiple coherence is both expensive to |
‘ calculate and gencrally numerically i1l conditioned. Thus to evaluate the density numerically. !
| additional manipulations are required. Great difficulty can be encountered in attempting to
, use computer library expressions for the hypergeometric function. )
r For low values of N and p we can use a transformation given in reference 12: ‘
| X 2
, SF (NN, p-1:]v[2y) |
[ F t
" B ) o Al
| = (1 -[y|2yp-1-2N T (p=T=NL p=1-N_p=1:lyl=y). (6.2)
| For the cases of interest, (p=1-N) is a negative integer so that a finite series expan- B
J ston for this latter hypergeometric function is available:
)
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2F1(N‘ N, p-1: M:y)

N-pHl (N4p-1)2 |y |2,
= (1-|7|2y)p-1-2N P-Df (v [2yy

= I (6.3)

where
(p-1); = (p+i=DY/(p=1)! = (PFi=2)(p+j=3) . .. (p=1) (6.4)
(-N+p- l) = (-N+p-1)(=N+p) . . . (-N+p-2+j). Gy

Using these expressions for the hypergeometric function we can write for y between zero
and one:

P (y/Np.ly[?) = LO0=[YN

NE D(p-HI(N-p+1)
o N«p-1) [_N+(p=1)] 2 '
20N NED NH-DIF (fy 2y (6.6)
DT i = 1 it
(1=|7[2¥)2N=(p-1) = (p-1); it

An alternative expression can be derived by using the relationship between hypergeometric
functions and Jacobi polynomials. Thus,

, n
Pﬁ*"(x)=(n+o)(]+x) ’Fl(_" -n-po+l; X l) (6.7)
3 2

) +]

-

(from reference 12). Using this identity and letting

p=0

o = p

n =N-p-1)

(=D = [YPy or x = (1+ |v[20)/(1= ¥y, (6.8)

we have

AF(p-N-1, p-N-1,p-1: I‘Ylly)

N~(p-1) :
LU= DT 20 e YRy - vy, (6.9)
(N-(P—l))




Using the general expansion for the Jacobi polynomial

s 3 . n - m
G =
p .P(x,: [Ma+n+]) 2 (n )1 (oz+§3+n+m+l)(x l) ‘ (6.10)
' n n!Ce+p+ntl) m Cle+m+l) 2
m=

we find that

pp-l()] Lol |Y|3y>’<1 = M:ybl

N-p+
N=(p=1) 7,
£ | Zl (N~(p—l i) ["(N+m) |\'|‘y ! 6.11)
N -(p-1)]! m Dimtp-1) |y [v[2. ‘
l . ! m=0 . 1- |Y| y
so that another general expression tor this conditional density of the coherence is
12 AN _p-2 N-
= - P==(1-v)}NP
Pty [N Y2 = M= |7 yP -y
}y'l ]_'\,lyll (N-p)!
N-(p=1)
: (N—p+l)(N+m—l)?[ (|Y|:_\) ]m (6.12)
+p-2)" 12 ' T
o m /{m+p-2) (l_l\l V)
When true coherence is zero this reduces to
D=2 o N=P N
P ‘.VINJ).lYI::(“:'\ (1=y)N"P(N=1)! (6.13)
,YIZ (p=2)!(N=p)!
and for two channels to
P (yINp=2. [Y[2 = 0y = (N=1)(1-y)N2, (6.14)

y|2

Fo calculate receiver operating characteristics it is necessary to evaluate integrals of these
Ve o = . |
densitios. To do this analytically, we expand the term (1-y)N=p

.
2\N
Py N[V = [U=lYIDR i
IVP (N=p)!
N~(£-I , ( N-ptl ) (N+m-1)! Iy llm rjip (-1} (N—p) ym+j+h-2_‘
m =0 o s 1=0 1 fehs |Y|:_v yN+m




It is casily seen that

~F
»/0 yMia1 - v [2y)Llay

M .
= (/ly[HMH! z(-lﬂ(?”)[(1-[v|2r)M'L'J“-1] J(M-L+1)  (6.16)
=0

so that the distribution function of the estimate for the coherence can be written as

2y
Fm—,(yIN.p.]\'[l):/ (r[Np. [Y[)dr (6.17)
- 0

P
[v]2

N-(p- N-
_(-ly»N E ”(N-P-I) ZP(-I )j( N"p)————]
- ; ST
(N-p)! = m = ] |'Y|‘.(_|+D 1)
: m+j+p-~2
m+jtp-2 S ( ! ) | i
b (-I)_s__ [( 1- ’\’?Zy)_r\H’Jﬂ)"I“‘c "l] ) (6.18)
(-N+j+p-1-5)

S=

which will be numerically well behaved for (large) values of | Y/ = greater than one-half.
Interchanging the order of summation, this can be written as

, o2y 2 [1= 2 N 1
F (y|Np. |¥]) = [ ] ,
[I* | SN RO E
x ((_llj'_:s |(1- NMENEIRNMETLE (6.19)
s=p-N .
N=(p-1)

N-p :
- N-(p-1) N—p)( m+A|+p—2)( v|2yi
RN i > . oy

m=MAX(0,1-5) F=MAX(O.st1-p)

ol o " 3 g :
where for given values of N, p, and |Y'“ the last two sums can be evaluat °d independently of
y. These values can then be stored to greatly reduce the computation required to evaluate
additional integral values for the same values of N, p,and |Y/|=.
. . o .y 3 .

An expression which can be used for small values of | Y= can be obtained by expand-
& 4 . . .
ing the term (1- M—y)‘L in cquation 6.16 to obtain
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-r +] . .
m; e (L4j-1)! 2 (m+1) -
(1-|Y[-y)tdy = , (hyl=ry 20770, (6.20)
é ¥ I | ¥ : m+l _()J!(l,—l)! ¥ (m+1+j)
J:

Using this in cquation 6.15 we obtain

‘ |\'|3> = (= [¥]FINON=p#1)

e (N+m-1)! |Y|2m i (N p) k+m+p—l
2 mHN=-p-m+1)! (m+p-2)! Z k+m+p-1
m=0 k=0

2, (N+mtj-1)! ( | I i (ktmtp-1) 6.21)
. ZO I'(N+m-1)! T (jtk+tmp-1)°
&

or by rearranging orders of summation and simplifying we find

Foy [Nop. [Y]3) = 1.0 - 1= Y[2)N é) [v|r (N+rr") (i’;}f_‘_‘ ) (N=p+1)

+(p-2

B A VU BT .32
_z(:) i JEN=-p+1 ) B
=

FFor truc coherence equal to zero this gives
L D
Iy lN.p. |V|' =0.0)

= h(p—lb( )2 \'.-L}H (‘,:)11—) peptity, (6.23)
‘ =P i

e
and for p equal to 2 the distribution function for lyl= is

Iy \N.p:_

V[F=00m=1 —(1-yN-t (6.24)




The density runctions of the sample statistic for coherence when the true
coherence is zero, the Hp hypothesis case, are shown in figure 6.1 for a number of degrees
of freedom (N) from | to 2048. For N greater than 8, densities for the number of sensors
(p) equal to 2. 3.4, S, and 10 are indicated.

Figures 6.2 through 6.12 show density functions for a given number of degrees
of freedom (N) and a given number of channels (p). The density functions of the sample
statistic for coherence for the stated values of N and p and for true coherence of 0.0, 0.0S.
0.1. 0.3 and 0.9 are given.

Based on these data it is possible to calculate the performance curves for the
multiple-coherence statistic as a detection test statistic. This procedure is well documented
in a number of textbooks (references 13, 14, and 15). Basically. these performance curves
are developed in the following manner. For a given level of true multiple coherence ('y|3‘
number of degrees of freedom. and number of channels, one defines two hypotheses, Hg
and Hj. Hypothesis Hg is that there is no causality between the referenced channel and the
other channels and thus the coherence is zero. Hypothesis Hj is that there is a causal rela-
tionship between the channels (time series) and thus the true multiple coherence is (7[3.
For a given threshold («), hypothesis Hy is chosen if the sample value of the multiple-
coherence statistic is below a and Hj is chosen if the sample value of the statistic is above a.
The probability that Hy is selected when Hg is true is the probability of false alarm (Pg A ):

1
P[:A(C()= P|7|31y/17|2=0. N. p) dy.

The probability that Hy is selected when Hy is valid is the probability of detection (Ppypp):

|
PI)F']'(O() = P‘ i’ ('\'("I'ﬂ:. N. p) dy.
: N
«

For each value of N and p we can plot Ppgr(a) as a function of PgA(«). since
aruns from O to 1. These curves are in figures 6.13 through 6.18 for N ot 32. 64, 128. 512,
and 1024 parts a through ¢ correspond to the number of channels. Curves for several values ‘
of true coherence are indicated.

The difficulty with these classical performance curves is that they are linear in
probability of false alarm and therefore do not properly illustrate low values for this param-
cter. This is alleviated by plotting the same data with a log scale used as the probability of
false alarm (figures 6.19 through 6.24).

In using multiple coherence as a detection test statistic. the value for true
coherence is not generally known. Thus it is of interest to determine how the probability
of detection varies for a fixed value for probability of false alarm. This can be determined
from figures 6.19 through 6.24 by selecting a given probability of false alarm and drawing a
vertical line from which the probability of detection as a function of true coherence can be
determined.

Plots for probability of detection as a function of true coherence for values for
probability of false alarm (10=1 to 10-0) are in figures 6.25 through 6.30.
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Figure 6.25. Probability of detection as a function of 10 log; g (true coherence) for the
multiple-coherence test statistic. Number of degrees of freedom (N) = 32.
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