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necessary conditions rv = bk and )\ (v-l) = r(k-1) hold.
The technique in this proof is a simple version of Graver and

Jurkat (1973) concerning null t-design.

Q. Introduction.

Let v,b,r,k,A be positive integers related by the
equations rv = bk and A (v-1l) = r(k-1). Let ¥ denote the
set (1,2,...,v]. A 2-element subset of T shall be called
a pair and a k-element subset shall be called a block.

Let P denote the incidence matrix of pairs versus blocks,
which is a (g) by (K) zero-one matrix. A (:) dimensional
column vector D is called a BIB(v,b,r,k,\) design, or simply

a BIB(v,k,\) design, if
PD = X }_ ’

where 1 1is the vector with all entries equal to 1. Unless
otherwise mentioned, we require the entrtes in the design D

to be non negative. An entry in D represents the multiplicity
(frequency) that the corresponding block appears in the design.
An integer vector T of the same dimension is called a (v,k)
trade if

PT=9_-

The sum of all positive entries in a trade is called its volume.
Let D be a BIB(v,k,\) design. For every (v,k) trade

T, the vector D + T 1s another BIB(v,k,\) design provided

that all of its entries are non negative. Conversely every

BIB(v,k,\) design can be written in the form of D + T.




€
As explained in Foody and Hedayat (1977) and Hedayat

and ILi (1978) , it is desirable to search for different BIB
designs with identical parameters for the purpose of experi-
mental designing or controlled sampling. Given a design D

to start with, in order to search for designs with the same
parameters it suffices to investigate the trades. The pur-

pose of this article is to introduce a combinatorial topological
method for studying trades on blocks of size 3. We shall
demonstrate the convenience of this method in constructing trades
and then use this method to prove two theorems characterizing
the trades. Theorem 4.1 in Hedayat and Li (1978) asserts

that the volume of a trade can be any non negative integer ex-
cept 1,2,3, and 5. There the proof of nonexistence of trades

of volume 5 depends on a statement in Foody and Hedayat (1977)
which follows from an argument of exhaustive search. But this
argument was not presented, because it would be too long and
tedious. 1In Section 2, we shall give a topological proof of

the non existence of trades of volume 5. The smallest volume

of a trade is 4, and there exlists a unique trade with volume 4

up to isomorphism. 1In Section 3, we prove that every trade 1s
a linear combination of finitely many trades of this minimal
type. This fact is a speclal case of Theorem 5.1 in Graver

and Jurkat (1973) about t-designs.

1. The Compact Surface Assoclated With a Trade.

For convenience the block consisting of the unordered

This 1s

elements XysenesX k). |

will be denoted by (x1 .

K




3 .
equivalent to a (K) dimensional column vector with one of the
entries equal to 1 and all others 0. Similarly the typical

netation:for a pair will be (xy).

We now direct our attention to studying (v,3) trades.

Example 1.1. (125) + (146) + (234) + (356) - (124) - (156)

- (235) - (346) represents a trade. When this trade is added
to the design (124) + (137) + (156) + (235) + (267) + (346) +
(457), we obtailn another design (125) + (137) + (146) + (234)
+ (267) + (356) + (457). 1In other words, from the first design
the four blocks (124%), (156), (235), and (346) have been
traded for the blocks (12 ), (146), (234), and (356) to
obtain the second design.

Now we introduce a geometric representation of the (v,3)
trades. Given a trade T, construct a compact surface with-
out boundary as follows. First create two collections of 2-
simplexes (triangles) with their vertices labeled by elements
of V. The 2-simplexes in one collection will be called the

positive triangles and those in the other collection will be

called the negative triangles. For every term +(xyz) 4in T,

there corresponds a positive triangle with vertices labeled by
X, ¥y, and z. If the coefficient of (xyz) 4in T 1s m > 1,
then there are m copies of such a triangle. On the other
hand, for every term -(xyz) in T, there corresponds a

negative triangle in the similar manner. So every pair (xy)

appears on the same number of triangles in both collections.




Thus, there exists a one-to-one matching between the edges of
positive triangles and the edges of negative triangles so that
every matched pair share the same two labels. When we identify
every matched pair of edges in the natural way, we obtaln a
compact surface without boundary. Here we emphasize the possible

nonuniqueness of the matching. Different matchings may lead

to different geometric configurations. (See Examples 1.4 and 1.6

below). Also the labels on the vertices are not necessarily

all distinct.

Example 1.2, The trade in Example 1.1 18 represented by the

dlamond-shaped topological sphere

Here in the picture the shaded regions are the negative triangles.

In general, a trade give rise to a cempact surface that 1s
partitioned into positive triangles and negative triangles with
the following two properties.

(1) Any two positive triangles can not intersect each other

. “SR—
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except possibly at their vertices. Nelther can any two
negative triangles. 4

(2) The intersection of a positive triangle with a negative

akake

triangle is vaccum, or one vertex, or two vertices, or
an edge. ]
We shall refer to such a partition of surfaces, with or with-

out boundary, as an Eulerian triangulation, although it is not

quite a triangulation in the usual sense of algebralc topology.

The edges of the triangles form an Eulerian graph* on the sur-

face, i.e., a graph such that the degree (valency) of every

vertex is an even integer. Also no vertex can have degree egual

to two, because then there would be two triangles sharing two
common edges.

The following example of trade is also obtained by tri-
angulating a sphere.

Example 1l.3:

* A more precise terminology would be Eulerian multigraph than
Eulerian graph according to Harary (1969).
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This figure represents the trade (13%) + (156) + (178)
+ (238) + (245) + (267) - (138) - (145) - (167) - (234) - (256)
- (278). Again the shaded regions are the negative triangles.

W, S

It 1s well-known that a compact connected surface is either

~
e i i M Ot AL .

e sphere, or a connected sum of tori, or a connected sum of

projective planes (see, for example, Theorem 5.1 in Massey (1967)).

The standard presentation of the connected sum of n tori is

by identifying edges of a 4n-gon 1in pairs.

'n




Using these standard presentation of surfaces, we can

easlily construct more trades.

Example 1.4.
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the same trade.

Example 1.7.
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2. Nonexistence of Trades of Volume 5.

We have seen the convenience in constructing trades from
the concept of Eulerian triangulation. In the proof of Theorem
2.1 below, we shall also find the same concept useful in est-
ablishing negative results. Filrst we state a couple of self-

evident lemmas.

Lemma 2.1. For every Eulerian triangulation of a compact sur-

face with boundary, the number of boundary edges that are on

positive triangles differs from the number of those on nega-

tive triangles by a multiple of 3.

Lemma 2.2. There exlst no trades of volume 1, 2 or 3; therefore

the minimum trade volume is 4.

Lemma 2.3. If a disc is Eulerian triangulated with exactly 2

boundary edges, then

{1) exactly one boundary edge is on & positive triangle

and the other is on a negative triangle, and

(11) there are at least 4 positive and 4 negative triangles.

Proof: Statement (1) follows directly from Lemma 2.1. From
this, we know the Eulerilan triangulation represents a trade,
even though the surface has a boundary. The second statement

now follows from Lemma 2.2.

Theorem 2.1. There exist no trades of volume 5.

Proof: Assuming there exists compact surface without boundary

that has been FEulerian triangulated by exactly 5 positive and
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5 negative triangles, we want to derive a contradiction.

First, we know that the triangulation on every connected com-
ponent of the surface represents a trade. So the surface must

be connected by Lemma 2.2. There are 10 triangles in total, so

there are 15 edges. Let n be the number of vertices. The

Fuler characteristic of this surface is

n- 15 + 10

2
]

=n—5

£ 2

The inequality has been due to the connectedness. We label the
vertices by 1,2,...,n, respectively. There are three cases

to examine.

Cage 1. ¥ = 2. Then n = 7 and the surface is a topological

sphere. The edges in the triangulation form a planar graph and
its degree sequence 1is
(6) u! u! u, u! u’ u )'

With a suitable relabeling, the neighborhood around the vertex

of degree 6 is as in either graph below.

)
{
o R A & o
o 3_}‘| {
: y |
J or
2\

o
N/
>
/7\ -
N
P
)
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In the first graph, the six arrows are supposed to be linked
in pairs to form a planar graph, but this is obviously im-
possible. After identifying the two points labeled as 2,

the second graph lead to the following configuration.

Again the arrows can not be linked in pairs to form a planar
graph.

Case 2, % = 1. Then n =6 and the surface is a projective

plane. The degree sequence has to be one of the following
three:
(65 B4 65 4, 4, &)

or (8, 6, 4, 4, 4, 4)

or (10, 4, 4, &, %, 4}.
Since in any case some vertex has degree at least 6, we
may assume that there are two edges a and B joining be- i
tween vertices 1 and 2. These two edges form a cycle. Since

the fundamental group of a projective plane is /27, this

cycle is either trivial or is the generator of the fundamental

group.




First we assume that the cycle generates the fundamental
group. Then the projective plane can be drawn as a square

with edges identifled in pairs as in below.

A
o_/ f
/// i \

2¢ 2
4
r \1 //
~
So we have an Eulerian triangulation of the square disc based

on the following picture. 1

Here w, X, y, z € (3,4,5,6) and w+ x, wiz, x4y, vy % z.
From Lemma 2.3, we also have w ¢+ y and x %+ z. 'So w,

X, ¥, and 2z are all distinct. By symmetry, let w = 3,

X =4, y=5, and z = 6. Observe that vertex 1 must have
degree more than 6 and vertex 2 has degree at least ©. There-

fore the degree sequence is
(8! 6] “l u’ ~“” 4)!

and the arrows in the following graph should be linked in pairs

to form the triangulation.




We now assume that
The cycle then cuts the

disc and a Mabius band.

i lation on the disc part
So the

tive triangles.

by at most 1 positive and 1 negative trilangles.

g v \\
Ao
!’ d \\‘,\\‘\\ 13 .
5 21
L
Lo e 4

But this is obviously impossible.

a and B form a trivial cycle.
projective plane into two parts: a
From Lemma 2.3.the Eulerian triangu-
takes at least 4 positive and 4 nega-
Mgbius band is Eulerian triangulated

This is a

contradiction.

Case 3. v < 0. Then n < 5. We need to show the nonexistence

of a trade T of volume 5 on 5 or less symbols. First we may

assume that T 1s of the form
(123) ~ (124) ~ (134) = (23X) 4 = «e.,

where x = 4 or 5. Then the coefficient of the block (145)

in T must be at least 2. Thus

T = (123) + 2(185) - (128) - (13%) - (23x)

- (1y5) - (1z5) - (u¥5) - (v45) + - ...
But this implies that T has volume at least 7, a contra-
diction.

The theorem 1s proved.
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3. Decomposition of a Trade into Minimal Trades.

The minimum volume of a trade is 4. One observes the

following two easy factse.

Proposition 3.1. If v <5, there exists no nontrivial trade.

Proposition 3.2. If v > 6, there exists a unique trade of

volume 4 up to isomorphism. Thils trade is represented by a

diamond-shaped topological sphere as in Example 1.2.

Let an Eulerian triangulated compact surface without
boundary be given. We shall prove that by properly attaching
diamond-~sheped topological spheres to the surface one can obtain
an Eulerian triangulation which represents the trivial trade.

This is equivalent to the following.

Theorem 3.1. Every (v,3) trade is a linear combination of

trades of volume 4.

The proof is by induction on v. When v <5, the
Eulerian triangulation to start with is representing the trivial
trade because of Proposition 3.1. So we shall assume that
v > 6 and at least one vertex on the surface is labeled by v.
It suffices to show that the total degree of all vertices labeled
by v can be reduced when a diamond~shaped topological sphere

is properly attached to the surface. Consider two cases.

Case 1: There exists a vertex of dégree 4 which is labeled by
v. Say, the neighborhood around this vertex is as in the follow-

ing picture.




Choose u << v such that u 4 w, x, y, z. Take the diamond-
shaped topological sphere in Example 1.2. Replace the ver-

tices 1; 2, 3, 4, 5, 6 In it by 3, v, %, ¥, W, U, respec-
tively, and then attach it to the surface by identifying the

four triangles on the surface around the vertex v with

the corresponding four triangles on the topological sphere.
The result is a surface with the same Eulerian triangulation
except that the vertex originally labeled by Vv receives the

new label u.

Case 2: There exists a vertex of degree more than 4 which

is labeled by v. We may modify the triangulation according
to the following picture, and the resulting triangulation re-

presents the same trade.
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This creates a vertex of degree 4 which is labeled by v.

The procedure in the previous case now applies and reduces the
total degree of vertices which have the label v. The proof
is now completed by induction.

In an algebraic setting Graver and Jurkat (1973) proved

that every (v,k) trade is a linear combination of trades of

volume 4, where k 2 3 1s arbitrary.
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4, BIB Designs with Possibly Negative Frequency of Blocks

Graver and Jurkat (1973) and Wilson (1973) showed that
t-designs, with prescribed parameters satisfying standard
necessary conditions, always exist if negative frequencies of

blocks in the design are allowed. For 2-designs, i.e., BIB

designs, the standard necessary conditions on the parameters are

the equations rv = bk and \(v-1) = r(k-1).

Assuming these are true we shall in the following para-
graphs, give a short proof the existence of a BIB(v,k,\)
design when negative frequency of blocks are allowed. From
this one can construct BIB(v,k,\.) designs for a sufficiently
large A Dby super imposing coplies of complete designs to small
designs (see Wilson (1973)).

Given parameters v, b, r, k, A satisfying the two stand-
ard necessary condition, we want to construct a BIB design
with possibly negative frequencies of blocks. First we take a
collection of b blocks so that every variety is repeated r
times in the collection. Represent this collection by a (:)
dimensional column vector V. As before let P be the incid-
ence matrix of pairs versus blocks. Also let @Q be the incid-
ence matrix of varieties versus pairs. Then K%TQP is the

incidence matrix of varieties versus blocks. Therefore

(k=1)r 1,

% (v=1) lv

ALy o
\2)

QPV

"

b e —

T .

Sl
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Here are the v- and (%) ~dimensional

lV and l(v)
2
vectors with all entries egual to 1. Thus PV and ll(v\
2)
represent two collections of pairs, each of them covering

every variety \(v-1) times. 1In other words, PV = x/v\

N2/
is a trade off between l-designs. We may assume that

A
(2)

(x95¥9) = (vys%p) + (x55¥5) = (¥p,%5) + —eewt(xpy ) - (y,%))

PV - is a linear combination of alternating sums of the form

Moreover one may assume that n 1s equal to 2 1in every
alternating sum because of further decomposition in the straight-
forward manner.

To avoid trivial cases, let us assume that v > k + 2.

Let W Dbe the (K) dimensional vector representing

(xl Yy xj...xk) « £¥y X5 xj...xx) 4 (x2 Yo x}...xk) -

(y2 X) Xq ...xk), where Xj, X5, see X, ¥y, ¥, are distinct
varieties. Then the vector PW represents (xl yl) - (yl x2)
+ (x2 yz) - (y2 xl). By summing vectors of the type of W,

we obtain a vector U such that PU = PV - )\ l'v)' The vector

2
V-U is a BIB(v,b,r,k,\) design. Some entries in V - U

may be negative.
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