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ABSTRACT

A brief introduction to optimal design theory is given for those
who are not familiar with the subject. A list of 312 selected
articles on the theory of optimal design is provided. The bibli~
ography should be sufficiently thorough to be of use to researchers

in the field.

1. INTRODUCTION

An experimenter is faced with a collection of possible con-
ditions under which to run an experiment. N observations will be made
with the goal of clarifying the relatiouship between the controllable
conditions of the experiment and the mean value of the experimental
outcome. The set of possible conditions is called the factor space,
the domain, or the domain of interest. A specification for
i g

|

each point x in the domain as to how many n, or equivalently w

fraction p of the observations are to be taken at x is called a
X

design. Sometimes there are certain restraints on how the




observations can be allocated (e.g., no more than kt of them can be

run under condition x). The collection of all allocations which

meet these restraints is called the design setting. For a design

1]
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to be implementable n Np‘ must be an integer. Any design with\
this feature is called an exact design (with N observations).

From a theor~tical point of view, there are advantages to be gained
from considering a broader class of ﬁesigns, where N is no.longer |
explicitly present, given as probability measures on the domain of
interest. Formally, we define an approximate design, §, to be any
probability measure on the domain. It turns out that we may re-
strict our attention to discrete measuresé with support on a small
number of points. For such measures and reasonably large N, an
approximate design § is closely approximated by an exact design

with N observations where each n is taken as an integer close to -

pr. It is known that exact designs which are thus close to best
approximate designs have only slightly reduced optimality perform-
ance.

For fixed assuwptions about the underlying situation, the
variability associated with any estimates that are made depeuds
only on the design. Best designs are those which in some seuse
minimize the errors associated with making the set of estimates
which is the goal of the experiment. Since we cannct expect to
simultaneously minimize all errors, we may decide, for instance,
to minimize the worst expected error or, perhaps, the average
expected error. Which of these is more appropriate depends on
the experimental situation. There is no hope for a canonical
notion of design optimality. In Section 2, we present and briefly
discuss several of the most common criteria of optimality.

Throughout we are assuming that a random variable y, called

the response variable, is related to a controllable variable x by

a relation of the form

SRS



E(y|x) = f(x), or

vix = 1" .) + W = k
[ = (x. €0 here E(cx) 0

That is, the observed value of y when an experiment is run under
conditions set at x is a random variable y|x whose expectation is
functionally related to x. The fumction f may be called the re-

spense surface, the response function or the regression function.

Usually we assume that f is partially known; say f(x) = f(x;€),
where 8 is a vector of unknown parameters whose specification would
completely determine f.

Choosing a model means accepting the hyvpothesis that f has a

certain functional form and that the set of errors for distinct
runs of the experiment has a given covariance matrix. A linear

model postulates that f is linear in the components of 6: f(x,8) =
K

T f,(x)0., although the functions f. may well be nonlinear. When

j=1 -

we also take V, the covariance matrix for the errors, to be of the

form ole we call this the standard lincar model.

Some results are available for nonlinear models. A review
of this literature can be found in St. John and Draper (1975),
Section 4. If V is not o“IN, but isqkncwn, then the Y variables
can be transformed to a set 2 = V-l/hY whose error covariance matrix
is the identity. 1In a similar way, variable cost associated with
running the experiment under different conditions x can be incor-
porated into the design problem through a weighting factor, A(x),
called the efficiency of the expeviment at x. (See, for example,
Fedorov (1972), Section 1.5). Other techniques for dealing with
the presence of corrvelated errors in regression problems have
been developed by facks and Ylvisker (1966, 1968).

Sometimes the apparent existence of correlated errors can be
practically resolved by introducing additional parameters into the
response model; e.g., by postulating the existence of residual
effects insituations where repeated measurements are taken on the
same individual. [See Hedayat and Afsarinejad (1975, 1978) for

this topic and related references].




Most of the literature concerns the standard linear model. We

discuss that situation in the next section, but close in this one

with an important preliminary consideration: the choice of medel)

Atkinson and Fedorov (1974, 1975) have discussed designs for distin-

guishing be:ween rival models, but in general the problem of

optimal designs to aid in such model building remains open. Work

is needed to develop methodologies and measures of a methodology's

effectiveness in enabling a researcher to arrive at a model through

experimentation. L
The problem becomes slightly more tractable if we have a model

which we believe is adequate, but we are not entirely sure of it.

We would like a design which simultanecusly provides accurate esti-
mates under our assumed model while providing for protection against
model inadequacy. The better the design for one purpose, the worse
it is for the other. Box and Draper (1959) initiated discussion of
this problem in a regressibn setting where a polynomial function of
fixed degree is fitted although the true response function is a
polynomial of higher degree. Essentially, they seek designs which
minimize integrated mean square error over the domain of the re-
sponse function. Further work on this topic has been done, for
example, by Karson, Manson and Hader (1969) and Kiefer (1973). A
nice review of the work prior to 1971 is given in Stigler (1971).
Another approach has been taken by Srivastava (1975) and
Srivastava and Ghosh (1977) in the fractional factorial setting,
where they have found families of designs with cptimality prop-
erties for the assumed model which simultaneously allow investi-

'

gators to "search" for one or more parameters which should have

been included in the model.
2. DESIGN OPTIMALITY FOR THE STANDARD LINFAR MODEL
We assume that f(x) = (fl(x),...,fk(x))' is a known function
and 6 = (01....,0k)' a vector of unknown parameters such that
plx = TE (R)}E, < s ELE = ‘ ¢ =
v|x rj(w) j €, h(cx) 0, \ar(nx) 0,

s for distinct runs are all 0.

and the covariances between €y




Our primary interest may center on either of two types of goals:
estimation of some subset (perhaps all) of the parameters {€.}, or
estimation of the response function on some region, usually the ‘
domain of allowable x's for the design setting. (When the region
of estimation contains points outside this domain, the problem

becomes one of extrapolation.)

The pioneering work of Smith in 1918 introduced a first formal
definition of design optimality. It was a response function cri-
terion. Essentially, if ff;) is our estimate for f(x), she con-
structed designs which minimized max var f?;) for x in the region
of definition. Kiefer has called designs with this property G-
optimal (for generalized variance); Fedorov calls them minimax.
Another measure of design goodness in the presence of possiblebias is
integrated mean squared error, as introduced by Box and Draper
(1959), although this criterion has its problems, as Kiefer points
out (1973). Papers by G. E. P. Box and colleagues provide more
recent references for design optimality questions oriented toward
response function estimation.

Almost all of the literature on design optimality, however,
has concerned criteria which are more directly related to parameter
estimation.. Wald's inaugurui paper in this area (1943) still makes
good introductory reading. Kiefer's 1974 "Lectureson Design Theory"
provides a more recent, excellent overview.

If & is estimable, then so 1s £, and a best linear unbiased
estimate for 0 is

o = (:\"X)'lx'\',

. : ~E s : 208
where X is the Nxk matrix whose i—row is t(xi)' s the value of f at

: g s . - s Vi
the x used in runpring the i— experiment. Then X'X is called

he

2 -1
the information matrix of the design, and o“(X'X) is the kxk co-
8. 1In some settingswe may not hbe

variance matrix for the estimate
interested in estimating all the unknown parameters; inothers, it may
not even be possible to do so. In general, however, we will assume

that (Ol,.-..ﬁ ), the unknown vector of interest, is a possibly

k

restricted or transformed subset of the original set of unknown




parameters which is estimable, and we will designate the covariance
- 9
matrix for the best linear unbiased estimator for 8 as M "¢, where

;
M is the information matrix of the design (for the possibly re-
stricted parameter set 8). When we wish to emphasize M's depend-
ence on the design d, we will write it as M(d).

It is natural to want to call a design d "optimal" when the
matrix M d)-l is as small as possiﬁle. The most common measures
of the size of a matrix have generated the most popular measures
of a design's goodness. Thus we say a design d* is D-, A- or
E-optimal, if (respectively) the determinant, trace or modulus of

the largest eigenvalue of M

is minimized at d*. ("A-" stands
for average, since i trace (M-l) = average variance among(él....,gk).)
Linear functionals L, defined and non-negacive on the kxk non-
negative definite matrices, can also be used to define plausible
alternative criteria (see Fedorov (1972), Section 2.9). Best
designs of this type are called L-optimal. ¥
The Kiefer-Wolfowitz equivalence theorem (1960) has bridged
the apparent gap between considerations of design optimality based
on parameters versus response surface considerations. It shows
that if § is an approximate design (a probability measure), then

N

= ; = . N .
§ is D-optimal +» G-optimal +» — max var f(x) = k, the number of

g
unknown parameters being estimated. The third criterion provides a

valuable tool for checking that a design is D- or G-cptimal, as
well as for developing algorithms for construction of such designs
[see, for example, Atwood (1973, 1976); Wyan (1970, 1972, 1973)].

In (1975) Kiefer introduced a "minimal" set of properties
which any optimality functional, ¢, on the kxk non-negative definite
matrices should have. Roughly, we call such a function ¢ an

ontimalitv functional if (1) it is comvex; (2) ¢(cM) decreases as

positive ¢ increases; and (3) ¢ is dnsensitive to a relabelling of
the unknown parameters. This broad class contains all the above
optimality functionals. A design d* is said to be universally
optimal if ¢(M(d)-l) is minimized at d* for every optimality

functional ¢. Although many of the classical designs

(=1

o
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can be shown to be universally optimal, perhaps surprisingly this

is nct alwvays true for all such highly balanced structures [see,

for example, Kiefer (1975)].

3. FINAL REMARKS AND PREFACE TO THE BIBLIOGRAPHY

Limitations of space and time; exacerabated undoubtedly by
ignorance, have caused many interesting and important lines of
research to be treated here too lightly or not at all. What we
have attempted is to offer a kind of smorgasbord in which you can
find a taste of each of the kinds of problems that arise in de-

sign optimality. The bibliography that follows represents a more

serious attempt at comprehensiveness, but still in a limited
sense. We have striven to be thorough encugh to ensure that
any important article can be found in at most a depth-one search;
i.e., through the bibliography of an articl: that can be found
in our listing.

One entire atea of research which we have neither touched
on here, nor referenced in the bibliography, is that of combina-~
torial design. This subject concerns the construction and com-
binatorial properties of designs apart from considerations of
statiétical optimality. Those wishing to investigate this
subject may want to begin with Raghavarao (1971).

As a deeper introduction to optimal design for those familiar
with the theory of linear models, we recommend Kiefer (1974b);
those with some knowledge of combinatorial design may also try

Kiefer (1978b).

We are grateful to Fedorov for making his bibliography of
Russian and Bulgar’ an design articles available to us. Space
limitations caused us to include only a small fraction of those
articles which, from their titles, appeared most relevant to

this listing. Fedorov's book is the first and so far, only
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