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To study an asymptotically stable equilibrium point at x — 0 of a

differential equation

~~+ 8~~+ f(x) — 0  (8 > 0)

one first writes

x —

(1)
— —By — f (x) .

Under reasonable restrictions on f(x), the “standard” (cf. 1] Liapunov function

2 rX
V(x, y) — y + 2 j f (x)dx

0

yields a domain of attraction of the origin for (1).

In (2) it is shown that the Liapunov function

2
(2) V(x, y) — (k — x) + (k — x)f(x)dx,

with a suitable choice of the constant k yields an appreciably larger domain

of attraction. It is then shown that a still larger domain may be obtained

using the Liapunov function

V(x , ~ ) ~~~~ 
2 

+ IX e~~xf (x ) d x ,2 nOC kS kCUSI L i .
fl

for a suitable choice of the constant ct . JISII ICATIOI 

Next consider the differential system
D~!~I$ITIII , *V*ILAIItItY COOES

(r Cx) y ’ I ‘ + Ap (x) y — 0 , 
~~~~ *HIL. s~: x $~-1~~A L

ctyCa) + 8y ’( a) 0,

yy( b) + 6y ’ (b) — 0 , 
________________

where r(x), p(x) are continuous and positive on (a , b I ,  and + ~
2 

> o ,

+ ~2 
~~• Let 0 < A 1 < < ... ~ + ~ be the characteristic numbers and

(y~(x)) the corresponding characteristic functions of this system. It is well

known that the functions form an orthogonal sequence on (a , bi with rospect

to the weight function p (x ) .
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In (3), it is shown that the functions y1
’(x), y2

1 (x), ... form an orthogonal

sequence on (a, bi with weight function r(x).

Consider a pair of seif—adjoint differential equations

(r ( x)y ’] ’ + p (x )y  — 0 ,
(3)

(r1(x)y ’) ’  + p1( x ) z  — 0,

where p(x), p
1
(x) are continuous and r

1
(x) and r(x) are positive and of class

C” on an interval I of the x-axis.

It is shown in (31 that if nonnul]. solutions y (x) and z(x) of (3) are

such that

z(a) — z(b) — 0 (a < b),

y (a )  — 0,

and if

(
~~I)2 — 

~~~~~~~~~~ ~~ � (&‘)2 - 2~i +  4~~ (a~~~x � b ) ,

with strict inequality holding for at least one point of f a, bi, then

y ( c)  — 0 (a ( c ‘. b ) .

This comparison theorem leads to a comparison theorem for the zeros of the

derivatives of a solution. Specifically , let 6(x) be the conjugacy function

(cf. 4] for the differential equation

(4) (r(x)y ’]’ + p (x )y  — 0.

Hera r(x), p(x) are continuous and positive on an interval I of the x-axis.

The conjugacy function 6(x), it will be recalled, is the (positive) distance

from a point x C I to its first conjugate point. The minimax function 6
1
(x)

associated with (4) is the (positive) distance from a point x C I where tho

derivative of a solution of (4) vanishes to the derivative’s next greater zero.

~ 1 A
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The result then is this. If

(5) 
(r ’)2 + 

(
~~I)2 > 2(2. +

with strict inequality holding at at least one point,

6(x) < 61(x) .

When the inequality (5) is reversed ,

61
(x) < 6(x).

Work was begun on two other projects, but there is nothing ye~ ready to

report. One project has to do with the detection of singularities of holomorphic

functions, and the other involves an attempt to determine new general methods

of constructing Liapunov functions . The Principal Investigator hopes to re-

examine these problems and others at some time in the future .
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