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To study an asymptotically stable equilibrium point at x = 0 of a

differential equation

X+ Bx+ f(x) =0 (B>0)

one first writes

(1)
y = =By - £(x).

Under reasonable restrictions on f(x), the "standard" [cf. 1] Liapunov function

2 X
Vix, y) =y + 2 f f (x)dx
0

yields a domain of attraction of the origin for (1).

In [2] it is shown that the Liapunov function

v x
(2) Vix, y) = (k - x) % + [ (k - x)f(x)dx,
0

with a suitable choice of the constant k yields an appreciably larger domain

of attraction. It is then shown that a still larger domain may be obtained

using the Liapunov function

2 X
vix, y) = e‘axg- + J e'axf(x)dx,
0

for a suitable choice of the constant a.
Next consider the differential system
[r(x)y']l' + Ap(x)y = O,

ay(a) + By'(a) = O,
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Yy(b) + 8y'(b) = O,

where r(x), p(x) are continuous and positive on [a, b], and a2 +

y2+62>o. Leto<)\l<7\2
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<eee * + ® be the characteristic numbers and

o0
{yn (x)} the corresponding characteristic functions of this system. It is well

known that the functions yn(x) form an orthogonal sequence on (a, b] with rospect

to the weight function p(x),
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In (3], it is shown that the functions yl'(x), yz'(x), +.. form an orthogonal
sequence on [a, b] with weight function r(x).
Consider a pair of self-adjoint differential equations
(r(x)y']l’ + p(x)y = 0,
(3)
"y -
[rl(x)y 1' + pl(x)z 0,
where p(x), pl(x) are continuous and rl(x) and r(x) are positive and of class
C" on an interval I of the x-axis,
It is shown in [3] that if nonnull solutions y(x) and z(x) of (3) are
such that
z(a) = z(b) =0 (a <b),
y(a) = 0,

and if

(s')2 IR o T (5‘)2 o s &8 tatxEni,
- r ¥, r, r,

with strict inequality holding for at least one point of [a, b], then
y(c) =0 (a¢cebd),

This comparison theorem leads to a comparison theorem for the zeros of the
derivatives of a solution. Specifically, let §(x) be the conjugacy function
[cf. 4] for the differential equation
(4) [r{x)y']' + p(x)y = O.

Here r(x), p(x) are continuous and positive on an interval I of the x-axis.
The conjugacy function §(x), it will be recalled, is the (positive) distance
from a point x € I to its first conjugate point. The minimax function Gl(x)
associated with (4) is the (positive) distance from a point x € I where the

derivative of a solution of (4) vanishes to the derivative's next greater zero.
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The result then is this, If
L] [ " "
(5) (_z_)2+3(2)2)2(2 A _z;)'
r P < \p r
with strict inequality holding at at least one point,
§(x) < Gl(x).
When the inequality (5) is reversed,
8, (x) < &(x).
1l
Work was begun on two other projects, but there is nothing ye% ready to
report, One project has to do with the detection of singularities of holomorphic
functions, and the other involves an attempt to determine new general methods
of constructing Liapunov functions. The Principal Investigator hopes toc re-

examine these problems and others at some time in the future.
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