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SECTION 1
INTRODUCTION
Investigation of VHF and UHF performance of thin wire structures in the

presence of a realistic ground environment is important in electromagnetic pulse
simulation as well as other antenna applications (ref.l). Since the earth
is not very conductive in these frequency ranges, effect of the ground
reflection can no longer be accounted for by the structure's mirror image. |
In some cases, wire structures large compared with the free-space wave-
length are actually placed on the top of a prepared ground surface such
as a nonreinforced concrete slab of finite thickness. The problem of
finding the scattered field is then further complicated by the fact that

the slab can now provide a physical mechanism for energy to spread out in

the lateral direction in the form of a lossy surface wave. :
As a first step leading to the better understanding of this problem,

we shall discuss in this report the development of a numerically efficient

scheme for computing electromagnetic fields produced by an arbitrarily

oriented electric dipole source located in air over a multilayered,

dissipative half-space. Typically, the medium consists of only two layers

with a top layer being a concrete slab of finite thickness and the bottom

layer, a homogeneous earth of infinite extent. To be able to obtain all

the electric and magnetic field components accurately and efficiently in
both the near-field and the far-field regions is important, due to the
fact that an integral equation formulation of a thin-wire structure can
usually be constructed once the field components produced by individual
dipole sources are known.

In what follows, we shall discuss first the spectral representation of

the scattered field due to a horizontally stratified half-space using an




approach similar to that of Wait's (ref. 2-3). We then proceed to discuss a
numerical scheme for the computation of the so-called Sommerfeld integrals.
Since all six field components are needed, a method is developed for
simultaneous integration of these components. Also investigated is the
choice of possible pathc of integration, with specific reference made to the
work of Lytle and Lager (ref. 4-5) which finds the field components of

a homogenous half-space. In addition to the numerical integration, we

shall also discuss the appropriate asymptotic and near-zone expansions of
each field component. They are then incorporated into the computer program
in order to improve the computational efficiency. A related work in this
case is that of Tsang and Kong (ref.6) where various asymptotic evaluations
of the longitudinal magnetic field were found for a horizontal dipole
placed on a lossy dielectric slab, having a thickness in the order of a

fow wavelengths. However, their computation was restricted to observation
on the slab surface. Also included in the report is a comparison of the

numerical results with various Kknown special cases.

v




SECTION I1

FORMULATION OF THE PROBLEM

Following Baum's notation (ref.7 ), the electromagnetic field generated

by a source in air above a stratified half-space can be written as

BEs) = - su BEF9); TE 80> 5
(1)

(F,s) = <V x i(i.f";S); 3(5'.S)>

e

the é and ; are the dyadic Green's function in the air region of a
current source above a multi-layered lossy media; J is the source electric
current density; s = Q-iw is the Laplace transform variable; Mo is the
permeability of free space. The operation <,> is a symmetric product v

defined as;

A F,F'); bE'D AE )5 EN or

SorVv dv
where the integration is over some surface S or a volume V.

The arrow -+ and the bar = over the quantities indicates a dyadic

and a vector form respectively. The comma separates quantities

with a common variable of integrations. The dot - or the cross x directly
above the separating comma, i.e. ; or  indicates respectively the multi-
plication sense as a dot product or a cross product.

~

The dyadic function G is defined as

-
~
S}

§iz,#'59) = (1o 17 Wl g ERs) ()

3
and g is then the basic dyadic we need to evaluate. Here, 1 designates

the identity dyad

<




and 5x’ ay and Ez are unit yectors in the x, y and z direction
respectively. ko = is/c 1is the free space propagation constant.

Provided that the surface of the stratified half-space is located A
in the x-y plane, E’ is a 3x3 matrix of which only five elements are

non-zero for fields of an arbitrarily oriented current source above a

stratified half-space;

i 0 0
E(r,r,s) = 0 Eyy 0
B2x gzy 822

In this report only the derivation leading to the expressions for

fields produced by a dipole placed in the x-z plane is demonstrated. This

implies finding the components g and g of a horizontal dipole source

XX ZX

placed in the x-direction and g,, of a vertical dipole source in the

z-direction. It is obvious that, by a simple coordinate rotation of

¢ +~ ¢ + 90° in the x-y plane, the x-directed dipole fields 8, and g

will yield the fields of the y-directed dipole fields gyy and gzy.
Figure 1 shows a tilted electric Hertzian dipole above a finitely

conducting stratified half-space. This dipole is placed at a height ho

from the layered media making an angle of 6' with respect to the vertical

z-axis; and ¢' with respect to the x-axis; the prime refers to the

source coordinate system. The dipole can be decomposed into three compo-

nents; one parallel to the earth surface along the x-axis with a dipole
momeiit Idx', another along the y-axis with a dipole moment I dy' and the
third one perpendicular to the earth along the z-direction with a dipole é

momentof Idz'.

Now we can write the current density of the dipole as follows:

10
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Je') = p (xS h) (3)

where & (u) 1is the Dirac delta tunction and p is the vector dipole

moment given as .
dx

p=oi(s) dy'
dz'

with the amplitude of the current denoted as f(s). Substituting for
the value of 3 in (3) into (1), then using (2) we can write the electro-

magnetic field components in the air region as tollows:

e -
B(r,s) = -s;b[T + ko'VV) g(r.ho;s) SN

B N (4a)
(r.e) = ¥ \glr.ho;s) - ¥ '
]
The vector Hertzian potential of the electric-type T is then related to ‘ #
the dyadic § by the following expression
Foaose )7t b 9) av)
o (s€ glr,h s P (4b

In what follows the derivation leading to the integral form of the
electric vector potential of a horizontal and a vertical dipole will be
given. This method of derivation uses a somewhat different approach than
the one derived by Wait (ref. 3) even though the two solutions are formally

the same.

For a horizontal Hertzian dipole, the scattered field in the mth-luyor

can be written in terms of gs and §i_ g which has the tollowing

XX, m g
form: y
D
u il \Q /nz) f "9 (Eymdexp(-y B+ 1(AX + nY) ] dn
TN, m o m / Xx,m+* ’ 00 - b
o (Sa)
. 8§ e 1%, . S dis . :
Sxz,m (lkoqo/"m)j | "¢:.ml“'")°‘p['\o"o"‘“\ * nY) Jdidn

«
-\ !

mel, 2,000 M




2] b
-

where (" + n° = l)i = -i(1-§

R
-

-n“)i : n; o T om/(SEO).

Nyt Eom and o, Aare the refractive index, relative permittivity

and conductivity of the layered media; Co is the permittivity of free
b |

space, Q° = kol(sﬂ') is the normalized dipole strength; X = kox.

B = ized distances.
Y koy and H0 koho are the normalized dis

~$ ~$ =
Sinc s jeneous
Since both components gxx.m and gxz,m satisfies a homog ;
wave equation of the kind:
4 3y 0 w= X or [
= - = ) 2
(V" « k)8, ;

expression for ¢
P X,m

and ¢ n are then readily Known

P = H -
@w.m(:) = rw,m{exp[ym(. *l%ﬂ]* Rw,m exp[-ym(- #Hm)]} (5b) v i

Ww X,2 3 m=1,2,... M

. 2 2. % .
i L AR R Re(y,) 20 ; z=k: and Hy =Ky (hyehyeo b )
are both normalized distances.

Thus, the values of Qw m(:) and its derivative with =, Q; . at
th

the top surface of the m = layer, i.e. I = '”m-l’ are related to the

values at the bottom, i.e. I = -Hm, by the matrix given as

- s -1 T )
ow,m.] ' n Ym % ‘ %.n |
= ) i (SC‘
' '
L QW-N Yo’m S L @w.mJ
Za-H *~ 2= -H
m-1 m

Here, the prime denotes derivative ; ¢ = cosh (Y H) and s = siak(y H).
m m m m mm

We now proceed to find ®w 1 in the tm-l)th-lnycr from a knowledge of

yM=

® in the mth-layer. The boundary conditions at the interface = --hm

w.m ‘l i

are




3

o

kmg}cw.m k km-lgxw,m-l M
b | 2

K2 9 ~ 2 B

m 3z8xx,m Kp-1 3z8xx,m-1

and
TR PR L e
xdo,m © Dz8kz,m T Sxfxx,m-1 T 028xz,m-1

By applying the above boundary conditions to (5a), (5b) and (5¢) we can

1 ]
establish a matrix expression for ®x,m-l’ Qx,m-l’ ¢z,m-1 and ®:,m-l at one
layer in terms of oxm' ox,m’ Qz,m and Qz.m at the adjacent layer as follows:
) N e Y°1s 0 0 '1 fe. 7
X,m-1 | m mm | | ox,m
k% [}
' Y S c 0 o R (R
¢x.m-l ! m m m ’ X,m i
o | N -1 0l
°:,m-l { 0 0 “m n >m Q-.m '
o) | ate (y.A ) ls A_s A_c !
z,m-1 m om Yolm’ *m Ym'm'm mm L_ Z,m |
—— J —
Z=-H i o
m-1 Z Hm
(6)

where
&

2
Am 2 nm-l/nm
Thus the field at any layer interface can be obtained in terms of the

field in the bottom layer, i.e. the Mth layer, by successive interation.

Let us now define a transverse coupling matrix as follows:

o i
%m ™ O R R
|

=g
™~
s
=
ER
5)‘
=

4

rapren




It is interesting to note that Nm’ Km can be considered as the transverse

. impedance of the TE and ™ mode, respectively, in each layer, \m and T

are the coupling coefficients of these two modes across the interface

h

between the (m-l)th and the u\t layer. After the substitution of (7) into

(6) and then equating like coefficients for Ox "

and ¢ , it is possible

to obtain a relationship between the transverse coupled impedances at the

(m-l)th in terms of the impedances at the mth layer as,

Npop ™ YulNp * Y tanh (v HO T/ [y, + N tanh(y H )] (8)
Km-l - sm[Km . sm tnnh(ymum)]/[sm + Km tanh(ymum)] (9
where in the above result Sm “ Ym/“; The cross coupling terms \m

and T, are given by

: wlio @0
A m AN+ Q-8 )/ T " TN (10)

m-1 m-1

where Am can be found in (6) and wm can be written as follows:

wm - [ym-va canh(ymﬂm)llsm# Km tanh(ymum)]cosh (Ym“m)/(Ymﬁm]
ma 1,2,cce M (11)

h

Since no reflection can occur at the bottom layer, i.e. the Mt faver,

H H
this implies Rx.M - R:.M =

NM " Yy kM “ YM/nM and Ty " \M = 0. Therefore by using (8)-(11) the

0 in (5a) then we.conclude that

following information can be obtained;

2
Nl * " K = W™

and (12)

Al b
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Up to now, the impedances in each of the M layered earth are
explicitly known via an iterative procedure based upon (8) - (12). To .
find the total field in the air region, we note that the electric vector
potential of a horizontal dipole in the air region can be written in terms

of a primary field plus a scattered one.

g = 3 W= X,z (13)

p and s refer to primary and scattered field, respectively, and the

subscript o refers to air region. §§ o and §: o are given by -~ -
~P o =1 e T ek
®, " Q fjvo exp[-Y,|Z-H | + 1(EX + n¥))dgdn (14)
5P = 15 i
Exz,0 0 i

The primary field given in (14) and (15) were obtained using the wave
equation in free space with a source excitation. The scattered Eiw 6

field can be written as in (5a) and (5b) with ¢w given by

»0

H
ow,o = Rw,o exp(-on) W= X,2 (16)

Now by applying the boundary conditions at the interface z=0 to (5a),
(14), (15) and (16),the following results for the reflection coefficients

in free space can be obtained:

H -1
Rx,o " Yo o © No)/(Yo"No) e
R e [N+ kY (18) i
z,0 ot ‘e o
16




where No’ K and Ao can be found from (8)-(12) by successive iterations

(\
depending on the number of the earth layers. It can be shown that solutions

for R2 o and RS o Aare consistent with an earlier work given by Wait (ref.3),
» ’

even though the concept associated with the coupling coefficient Ao is not

explicitly used in his work.
The derivation of the Hertz vector potential for a vertical dipole
is much simpler because only the z-component of the Hertz potential is

needed. Thus, following the same procedure previously described, we have

s (19)

where V refers to field due to a vertical dipole, and the primary field

2., & is given as
©
- p % ff ‘1 & = . r
b o Q )% exp[-y |2-H | + i(EX + nY)]d&dn (20)

and the scattered field nf o is given by

’

L
E:i,o = QOJF].W:’O(E.ﬂ)eXp[-YOHO + i(EX + nY)]d&dn (21)
R 2
wz,o *%z,0 exp(-yoh)
and

v =1 i £
R:'o "Ny Vi Ko)/(\(0 + K) (22

where Ko can be obtained from (9) by successive iterations.
’ Now if we write dx' = sin®'cos ¢'de, dy' =sin 8'sin ¢'de and

dz' = cos 9'd¢ and using the following identities:




"

Gy ® exp(iR“)/R11 = (iw)‘fj.Y;lexp[-rolZ-Hol*i(EX*nY)]dCdn
™ (23)

G,, = exp(iRu)/R12 = (4m) [J.Y;lexp[-yo(2§Ho)*i(Ex§nY)]dEdn

12

2,4

where R, = [(Z-H)? + oH)¥ ; R, = [(2+H)% o p? d Ee vt
1 o iRy = RESERY x pIC W b A S Y,

we can write from (4b) the three components of the Hertzian vector potential,

= C(Gy; - G, +V,) sin 8' cos ¢ (24)
iy * C(Gy, - Gy, * V,) sin 8' sin ¢' (25)
~ < - < \ = L = ]
LN C[(G11 = Gy * Vl) cos 8 + Visin 8 cos ¢
(] t (:6)
+ V4 sin 8 sin ¢ ]
where C = i:oldl/(Jﬂ); 20'- uo €, represents the free space intrinsic
impedance, and Vl’ Vg V3 and v, are given by
0
L Iw Fm(a) exP[-Yo(Z ‘Ho)] Jo(ao)adu me=1,2 27)
U
Vg - cos ¢\ .
= - ‘2 i ™ 28
g b J Fs(a) exp| yo(ﬁ*Ho)] Jl(mo)a da (28)
4! 0
where J and Jl are the Bessel functions of zero and first order
0
respectively and
F,o(@) = 2(y. + K )
Rl o o)
5 (29)
; 3
Fz(a) = -(Yo + No)
18
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and

N, |
Fela) = -2>\°[(7° * Nty + K1)

In getting Vl. Vz,.v3 and V.‘ given in (27) and (28) we have used the

following transformations:

X =71 COoS ¢ y = v sin ¢
g-ucos%; r~|-o‘sin¢ol

2 2 2 2 2, ¢
which implies £° + n” = a” and s (@™ - n))" ; Re ¥y 20 s

where m=0,1 ... M.

WNe have listed the field components (Ew’ H);, w=x, vy, orz, ofa

w

dipole arbitrarily oriented in the x -z plane (¢' = 0) in Table 1 and 2.

Table I gives the field due to the direct contribution of the dipole, desig-

nated as (Ewl' le) with w=X, y or 2, In order to obtain the field

due to the perfect image, designated as (Ew.,, Hw,), one just replaces R11
by Rl’ and (Z-HO) by (2 + Ho) in Table I. In Table 2, we have
written the remainder field as a sum of two parts; one contains a Bessel

function of zero order Jo and the other has the Bessel function of order

one le

1 ©
& -1 -
(E 3 st) 'Z f) (fs. x:) exp[-Yo(-*HO)]Jm(qp)ayo da (30)
m=Q  ©

m=0, or 1l

Y T : s
Thus the total field for each component LEW, Hw) is then given as

mt ot . _1m=1 ¢ . X,y,2 31)
E5, 1E) = (£ Zl CUME R e Ry (
m=

where

Ee i:ok;(ld\‘./w) and H = kokldﬁz-t‘n'),
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SECTION III

NUMERICAL SCHEME

In this section we discuss the numerical method used for the
computation of those integrals listed in table 2. Our primary concern is
to compute all six field components for a two-layer earth representing a
slab of lossy dielectric which has the electric constants of a nonreinforced
concrete and is located above a homogeneous earth having electric property of

a wet dirt. A typical integral form can be written as follows:
> 1
Q =[T(am da (52)
O 0
where T(a) 1is given by

T@) = Gﬁx)exp[-yo(: + Ho)]Jm(ap); m=0,1

and G(@) 1is a typical function listed in table 2 , which has poles and

other algebraic singularities in the complex a-plane. Typically the integrand
. - SR |
in (32) has branch cut singularities due to P (@"-1)° and another due to
é
Y, = (@ - ni i; : A and y, are the normalized propagation constants along
the z-direction for the two infinite layers 0<z<~ and -»<: <-h1,
respectively, where hl is the width of the slab in a two layered earth
media. The integration given in (32) can be split up into two parts.
x
: -1 33)

Q= + r ] T(a)dYo da (33)

o 4l

5
and by using the transformation t= (1l - a")i in the first term of (33)

and T = (az-l)& in the second term, Q can be reduced to the following
form: =
o 2.4 f » 2,4 ai )
Q=1i, T[l-t"]"dt + T([1+7"]%)dr (34
Jo Yo




The form of Q given in (34) is used in our computation algorithms

discussed in appendix C. We note that, in a similar work by Lytle and Lager

(ref. 4), a deformed path was used beneath the real axis as shown in figure 2.

While such a deformation avoids the numerical difficulties
arising from possible poles and other discontinuities close to the real axis,
it necessitates the use of a Bessel function with complex argument. Since
the value of the Bessel function grows exponentially for a large but complex
argument, it appears such a deformation would not be a particularly efficient
one when the horizontal distance is substantially greater than the free space

wavelength unless it is very close to the real axis.

complex

a~-plane
a=n,

Figure 2: A path beneath the real axis avoiding the branch
point at o = 1 and pole singularities close to
the real axis.

Lytle and Lager (ref.4) pointed out that one way to avoid such a problem

is to use a deformed path formulation based upon a maximum decay and, or
minimum oscillation criteria. Actually, the use of the steepest-descent
path as a function of observation angle is another appropriate alternative
[Kong(ref. 6), Banos (ref.8)]. In any case, the extension of such an approach
to a multilayered earth would involve the inclusion of contribution from
possible singularities as a result of the deformation of the path.

(]
(72}




We next consider the pole locations of T(a) in the complex aq-plane
particularly those, if any, close to the path of integration on the real
axis in the range 1.§°&"” (with the choice of branch cuts shown in
Figure 3, pole(s) located in the range ¢( <o, < 1 is less significant
since it would have to be on the other side of the cut in the same Riemann
sheet and, hence, can influence the integrand value only indirectly through
the contribution around the branch point). The strategy that we have adopted
is first to determine possible existence of poles, then for each pole which
is close to the real axis, we would define a circle of influence within which
smaller partition of the integral is adopted to insure the accuracy of the
numerical integration.

By investigating the functional form of T(c) as tabulated in table 2,
it is easy to see that T(a) has poles whenever the denominator of F1 or

F, vanishes. The poles of F, can be determined from (29) as the root of

2
the following equation:

1

¥y Ko =0 B5)

and they are the TM-type modes. The poles of Fz, on the other hand, can

be found from

Y., *N, =0 (36)

corresponding to a set of TE-type modes. By using the relationships
given in (8) through (12) for a two-layer earth, a more explicit representa-

tion of (35) and (36) is

v D 2 2 o8 .
Ly v /ng - 2°] tan 2 + (Z/n])[Y H, + Y,H;/n3) = 0 (37)

24




COMPLEX a=-PLANE g

POLE LOCATION

N
-' \ | // a,

SATH Of

PATH Of INTEGR/ATI.ON

Figure 3 - Path of integration in the complex a-plane
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for the TM type modes and
[Y.y,H2 - 2%) tan Z + Z[y H, + y.H ] = 0 @8
Yo¥2"1 Allgy & Yot )

for the TE type modes, where Z = iY1H1 and H1 = koh1 is the normalized

slab width; YoHI and y2H1 are given by:

Yy = 122+ @ - e - ap2? - @l ped)?

and
YH, = 27 (n'f-ng)ﬂf]ir - -ifz® - (f - n%)uf]*

Thus, the problem reduces to finding the zeros of (37) and (38) in a complex Z-plane
Once found, the corresponding value in the complex a-plane is then obtained
from the relationship: a = [nf - [Z/Hl)z]* :

It is of interest to note that (35) would reduce to the Sommerfeld
pole of a half space problem whenever H1 + 0 or « and (36)
would have no zeros as expected since it reduces to (Yo + YZ) when
H, - 0 and to (Yo + Yl) for H, + «,

1 1

In the case of g, o or where the second earth layer is a perfect

conductor, equations (37) and (38) reduce to

-[(nf 4 I)Hi - 24 . (:/nf)*tan Z =0 (39)

for the TM-type modes and

=
i+ [(nf - 1)“; - 22]& tan 2 = 0 (40)

for the TE-type modes. Thus for a lossless slab where n, 1is a real quantity,

1
(39) and @0 ) represent a set of even TM-type and odd TE-type surface wave

modes, respectively. These real roots are then used as a starting value in

26




the search of the complex roots when the conductivities of earth and
slab are finite. The computational technique for finding these roots is
described in appendix C.

We have plotted in figure 4a location of the pole corresponding to
the TMl-mode over a frequency range from 100 to 370 MHz, for a cement slab
(erl =3 and o =0.002 mho/m) of width h1 =10 cm over a wet earth
(erz = 10, g = 0.01 mho/m). As frequency increases, the pole moves upward
and the branch cut moves downward. At about 400 MHz the pole disappears
in the next Riemann surface. If we now reduce the slab width gradually,
but fix the operating frequency at 400 MHz as shown in figure 4b, the pole
reappears in the proper sheet when the slab width is reduced to 9 cm, and
continuously moves downward as width decreases. At h1 =0, it reduces
to a Sommerfeld pole for a half space region. (The disappearance, followed
by a reappaerance, of a slab mode was also observed earlier in related work by
Shevchenko (ref.9)]. It is noteworthy that equation (38) presents no TE-type
of solution until the slab width is greater than 10 cm. In table 3, we have
tabulated the locations of both TE and T™M modes for h1 ranging from 10 cm
to 50 ecm. It is obvious that those poles which are far away from the real
axis should present no real problem for our numerical computation of the
Q-integrals.

Except for the region with the possible appearance of a simple pole,
the path of integration in (34) is subdivided basically according to the
extent of oscillation associated with the Bessel function and the rate of
decay of the exponential function in the integrand. The finite integral
is then truncated at a value of T where either the integral beyond that
point is negligible, or an analytical approximation to the remainder is

possible. Incorporation of this scheme is detailed in appendix C.
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SECTION 1V

COMPUTATION BASED UPON ASYMPTOTIC AND QUASI-STATIC EXPANSIONS

The numerical integration outlined in the previous section for the
functions given in table 2 and in the case of a two-layer earth is inefficient
for very large and a very small observation distances. To improve the efficiency
we need to incorporate into our numerical program an asymptotic solution for the
case of avery long distance, say over 10 free space wavelengths,and a quasi-static
solution for the case of a very short distance, say less than 0.01 wavelength.

1. Asymptotic method.

In this section we seek the asymptotic solution of a function

'(R) in the form of

X0
F'(R) = JrG(a)exp[-Yo(: #Ho)] Jm(ap)ow;1 da , m=0 or 1 (41) ?
0
- B2
where G(a) is a typical function listed in Table 2, R = [(Z +H°) + p7] .
We assume that G(a) has only one simple pole at « = ap sufficiently close
to the path of integration. By extending the integration in (41) over the
negative real axis of the complex a-plane one can transform [(R) into the
following form:
(L]
T (R) -f £(@) ") 4o (42)
-0

where ‘ ;

£@ = (@] /06@H @)e ™, m =0, (43)

gla) = =Y cos 8 + iasin § (44)
where we have replaced 2 ono =R cos 8; p=R sin 8; and R=[(2 *Ho\: + o“]i
P
' is the distance from the image source of a perfect conductor half-space to
the observation point and © is the angle that R has with the vertical z-axis.
—_—
In what follows, Rl‘ will be replaced by R.
30 .




Hil)(op) given in (43) is the Hankel function of the first kind of m
order. It has been assumed that G(a) is an even function of a whenever
the order of Bessel function Jm(ap) is even and odd function of

whenever the Bessel function order is odd.

In order to develop an appropriate asymptotic expansion, we now follow
the work of Brekhovskikh (ref.10) by deforming the contour of integration
from the real axis to the steepest descent path in the complex a-plane passing
through a saddle point a where g‘(as)-O. Assuming such a deformation
yields no additional residue contribution and defining a real variable s
along the steepest descent path so that s"1 = g(as) - g(a), we have the
following expression

Rg(a,) KE
I'(R) = e = [m O(s) e e ds

-0

where ¢(s) = f (a) g%u From (44), it is not difficult to show that

A o sin 8 so that g(us) = i, Now since we have assumed the existance of

a pair of poles at a = & “p in the complex a-plane, the expression &(s)
also possesses a pair of poles in the complex s-plane located correspondingly

at s = + 8 where
in/4 b

: % . T
B« [gag) - g(@)]" = e 71 - (1-a.%) cos8 - a sin 8]

Thus, we can rearrange the expression for I'(R) in the form of

S

IR iR e'Rs- d
) = e y(s) ‘I—gj $ (45)
§ =
-0

The term Y(s) = (s™-B7)¥(s) 1is then a smooth function near the saddle
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point s=0 and therefore can be expanded in Taylor series as

n
S

Y(s) = by

n=0 n!

Substitution of this expression into (45) and subsequent evaluation of the

individual integrals yield the following asymptotic expression

% iR -u” ® 2n
FR) =2 nte e 2 Q,. (u) (46)
n=0 4nn!Rn-g 2n
where jo 2
QZn(u) = [ %"5 dx
X
u

and u= tBvR and, again, R :Rlz, Typically, only two terms are used in our

computation. The coefficients C0 and C,, in this case, are known explicitly
in terms of f(a), g(a) and their derivatives [Brekhovskikh (ref.10) and

Felson and Marcuvitz (ref.l1)],

C, = ¥(0) = - 820 (0)

3C, = yn(0)/2 = - 280N gig) L £1(0)

£00) | gny ]
Vil ot l—f(mx
4 2 12 3 2
(8" ) (g") 8 J

Here, the primes denote derivatives with respect to ®. Now, since

g -2;i o 17/4 cosd
ds

s=0

along the steepest descent path we have from (44) and the definition that

f(a)(da/ds) = ¢(s) the following expression

C = - gd(e-in/d

o Cose)f(()) (47)

-4




cosf{3sin 9 £'(0) - cosze £ (0) + (3/4 + j/B)f(0)

(48)

Here we note that, because the function f typically behaves like (ao»n)‘

where Q is some slowly varying function around 16:0, its derivatives are

singular at a=1 even though the value of C, is finite. Thus, in order

to avoid the difficulty in numerical computation, we can define a new

variable a = sin w so that

>
s

&
ic, = - (1+j)8" {2 sine% - cosed—-f-
< ol dw” ' w=0

y )
+ (3/4 + j/B7)f(w=0) cos 6}
and f 1is given in (43).

2. Quasi-Static approximation

(49)

We have mentioned earlier that the typical numerical computation of

the field integral becomes very time consuming when an observation

distance is much smaller than a wavelcngth., Due to the slow convergence

of the exponential aud Bessel function the numerical computation of the

integral in (30) needs to be carried out for excessively large values of «.

Obviously, for a two layered earth, N0 and Ko as found in (8) and

(9) can be approximated by

for those values of « where

a > max (6/H,, 10|n1|)

Thus, the leading terms of F%Lm)(i =1,2,3) as given in (29) will behave as

33




L= 1,2

2 2 5 ps
= 2n° = = = 5 I
where Bl -nl/(nl + 1), B: 1 and B3 (nl l)/(nl + 1),

The subscript q refers to quasi-static.
We can now add and subtract these terms to the original integrals
given in (27) and (28) and write the Sommerfeld integrals as follows

@) , m

1 , .
v -vé)¢v£ &, (50)

L
where
-y.b
(1) f Yo ~1
v, = BQ e Jo(ap)ayo da

o0

2) [ “YoP
vl ol [Fi(“) -th(a)]e Jo(ao)ada

(o)
Q

o)
-\b
and AVt = £ [FQ(“) - FQq(a)]e < Jo(up)ada (s1)

where o = max (6/H, lo{nl[), b=2Z+H and ¢=1or2.

The leading integral Vél) is known explicitly from (24) in terms of GI’
as :
Gy L g &8 =
L L R (32

The integral AV integrating from 0 to a still needs to be evaluated

v"
numerically in the usual manner. However, the remaining integral Vé')
can be obtained analytically since now the integrand converges rapidly as

Fl(“) approaches Fiqfu) for large «. This integral is evaluated in

Appendix A with the result given as

v e (b tRed) -k Ty WnGa/D/0t e /ad v= 102 (53)




" R i ]
where C, = ZnI/(nI +1), C, = (nl-l)/4; and Y =0.57721566 is Euler's
constant.
Similarly, we can split up the expression for V3 given in (28) in

the following form

y o ylid ,(2) (3)
\3 V3 + \3 + V3 + AVS (54)
where
V(l) = B, cos e—é- &db we‘ obJ (ap) "1d
3 3 30 o \Gpjay, da
b o)
> = Y,
V(‘ = 83 cos eé%-f [—%— - —%—]e by Jo(ap)uda
o %%
()
© -y b
(3) = g «2, "o .
V3 By cos 880 [Fsta) - Bsyl le Jo(u)ada
a
0
and finally
: § A9 5
AV = By cos 655-[ [Fs(u) - BSYl Je Jo(ao)ada (55)
0

-

We note that in (54) an additional term BSY;' has been added and sub-
tracted instead of just adding and subtracting BSY;:. The reason for this
kind of arrangement is to avoid the singularity at a = 1 when we integrate
numerically from 0 to a along the real axis in the complex a-plane.
On the other hand, in the analytical evaluation of Véz), the path of
integration is to be understood as being indented into the lower halt plane
around the branch point at a = 1.

A similar technique as applied to V(:‘ can be applied to the different

terms of VS' Analytical expression for V§1) is derived in appendix B as

vila -p ocos 0 ([R(R+bY] ™" = 0.5)(R*D) - §(y-4-7i/2 - tn 2)) (50)
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Thus, the leading term of V3 behaves as 1/R, which is similar to the
leading terms of V1 and V,. On the other hand, analytical expressions

2 3 "
for V§ ) and V§ ) are known as (Appendix B).
2

@, 0V ) e .
Vi¥s —5— Bjpcos 9[b(R+D) +(Y-§-ﬂ1/2—‘ln-+ —
(n}-1)
+ Qn(R+b)] (57)
and
V§3)= -C40 cos ¢[n(b+R) +b(R-B)'1 + (Y-4-f2+ 2n )] (58)

2 -2 :
where C; = (Snf +1)(n1—1)2(n§ +1) °/8 and Y is Euler's constant. The
last term AV3 will be evaluated numerically. We note that, once all the
V's are found and then substitute in (25) and (26), expressions for the field

components are then carried out analytically according to (29a).




SECTION V
DISCUSSION OF RESULTS

A computer program was developed  for the computation of the
frequency-domain electromagnetic response of an electric dipole located
above a two-layer earth representing a non reinforced concrete slab on the
surface of a dissipative earth. The program computes all three components
of the electric and magnetic fields simultaneously for an arbitrarily oriented
dipole with a known dipole moment. Unless otherwise specified, the dipole
source is assumed to be always located along the vertical axis at a given
height ho. Geometry indicating relative positions of the source and
observation points is shown in figure 5. Also, relevant parameters for

the computations in this section are chosen as follows.

Frequency of operation = 300 MHz

Relative dielectric constant and conductivity in
1) Air, (Ero,oo) = (1.0, 0.00)
2) Cement slab, (erl,ol) = (3.0, 0.002)

) Earth, (& 2) = (10.0, 0.01)

r2’0

Slab width hl 0.1m

In order to check the numerical accuracy of the program, we have first
computed the vertical electric field component due to a vertical dipole
above a homogenous dissipative earth, for which the analytical solution as
well as the mumerical solution is available [Chang and Wait (ref.12), Chang and
Fisher (ref.lsﬂ. Accuracy to witain 5 digits is achieved for any given distance.
Next, asymptotic expansion of the exact Sommerfeld integrals for high-
angle observations is used to compare with results obtained numerically for
the case when the observation point is located on the slab surface at a fixed

observation angle 8= 5°. We vary the separation between the source and the

~3

(2]

R

e




Ru= [(z- ho)2+r2]|/2
Rip" [(z+hg)2+r2]"
d1'= [(dx")2+ (d22]""2

Air —T—_—/_

Observation Point
P(x,y,z)

(50. P.o. O'o=0)

Non-reinforced hg

Concrete Slab I

Earth

Fig. 5: A tilted dipole above a two layer half-space.




observation point and the resuit is shown in tables 4 through 9 togetherwith the

sky-wave (plane wave) solution for three different orientations of

sources, a vertical dipole (Case I1); a horizontal dipole ibserved in

the plane of the dipole (Case II); and a horizontal dipole observed in the
plane perpendicular to the dipole (Case I{I) OQur results from the exact evalu-
ation of the Sommerfeld integrals are all within a fraction of a percent for
distances about S5 meters or larger (in this case, a free-space wavelength

is 1 meter). Only when the distance drops to within 1 meter do the

two results show any significant difference.

Comparison is also made for a fixed observation distance R =40 meters,

(R -Rlz), and a varying observation angle ranging from 5° to 80° (tables 10
through 12). The agreement is again excellent until the observation angle 1s
near grazing (i.e. the case when 6 = 80°). This is obviously due to the
limitation of the sky-wave solution near the slab surface.

The electromagnetic field components as obtained by a two-term
asymptotic expansion with the inclusion of the contribution from the ground
wave correction (see Section IV.)]) are tabulated in table 13 for angles
0 = 30°, 45° and 80° and R = 40 meters. Clearly, these results with
ground wave corrections are now in good agreement with the exact numerical
results given in tables 10 through 12. We note, however, that computation
time for the asymptotic result is much less than the time spent in evaluating
the exact Sommerfeld integrals.

Comparison of the quasi-static and exact results is shown in Table 14
for R =0.005 meter and © = 4.5°. As a rule of thumb, the time consumed
in computing the quasi-static result is less than one third the time spent

in getting the exact answer.
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To further demonstrate the range of validity of the approximate
methods, we show in figure 6 the magnitude of Ez on the slab surface
versus the distance R (R'-Rlz) for a fixed observation angle 6= 5°,

The solid curve represents the exact field calculation for the two differ-
ent orientations of the dipole source (vertical and horizontal) observed
in the plane of the dipole (8 =0°). The long dash line represents the
asymptotic results while the long dash-short dash line represents the
quasi~static result. Similar comparison can be made for other components

of the field.

As pointed out by Lytle, et al.(ref.l14) a convenient way to display -~ -
the electromagnetic field structure near the dipole source involves the |
use of the power flux or the time-average Poynting vector P defined as
$Re (E xH*). It is well-known that in the far-zone the power flux ﬁo
of an isolated dipole in free space can be given as

-2

5 ‘e e 2. = )
Po arPo sin"0; Po no(“x R..)

11

where " 120w ohm is the free~space characteristic impedance and )\ is

the free~space wavelength. Thus, the power flux density in this case

-2

11 ° The

points radially outward, while decaying with the rate of R
magnitude of the power flux on the other hand vanishes along the dipole
axis at © = 0° but is at maximum in the broadside direction, i.e. 8= 90°.
The power flux of a vertical dipole source, normalized to Po above
a two-layer earth surface, is plotted in figure 7. It is seen that the
direction of the power flux , as indicated by the direction of the arrow,

Jeparts significantly from the radial direction near the slab surface.

Magnitude of the normalized power flux (1 cm of the thick arrow corresponds
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to a unity) also decays faster than Rzi. This situation can be attributed
partly to the rapid decay of the inductive field near the source region
and partly to the dissipation of the electromagnetic field underneath

the slab surface. On the slab surface the power flux, or the Poynting
vector, is generally tiled into the surface.

A similar plot of the power flux for a horizontal dipole source shows
some remarkably different features. As seen in figure 8 and for observation
in the plane of the dipole, the power flux no longer vanishes along the
dipole axis. Furthermore, in the region close to the dipole on the slab
the direction of the vector also does not always point toward the slab surface. .
Since the dipole field in the absence of the two-layer earth is known to
be small in this direction, the phenomenon undoubtedly is caused by the
scattered field in the source region near the slab surface. For observa-
tion points in the plane perpendicular to the dipole (8 = 90°), figure 9
shows that the power flux now behaves in a more predictable manner.

To further investigate the field behavior on the slab surface, figures
10 and 11 show, respectively, the magnitude and the tilt angle of the
normalized power flux as a function of observation distances. It is seen
that, except for the region close to the source, the tilt angle, or the
direction of the Poynting vector of a horizontal dipole observed in the
plane of the dipole, approaches to that of the vertical dipole, while

the tilt angle observed in the perpendicular plane approaches to a

different limit. As is well known in the theory of ground wave propa-
gation (ref. 2), the tilt angle depends, in addition to the
refractive indices of the different media, mainly upon the tvpe of

polarization of the impinging wave, rather than the exact orientation
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of the dipole source. Thus, the tilt angle of both the vertical and the
horizontal dipoles observed in the plane of the dipole should approach to
the wave tilt of a TM-~wave, while the other approaches to the wave tilt
of a TE-wave.
As shown in figure 10, the change in the magnitude of the power flux
along the slab surface for the three dipole arrangements as a function of
observation distance also differs significantly. In the case of a horizon-
tal dipoie, a minimum and then a maximum are observed as one moves away in
the plane of the dipole. The tip occurs at §-= 0.45 or for an observation
angle of 77.5°. However, no such tip is observed in the other two arrange- s

ments. To examine the occurrence of this tip in detail, included in

figure 12 is themagnitude of the power flux versus observation distance for
several slab thicknesses, including h1 =0 which corresponds exactly to the
case of a homogenous earth in the absence of the slab. It is shown in

this case, the tip occurs at = 0.65. As the slab thickness increases

PO

the location of the tip moves toward the source until h,= 03 m; thereafter,

1
a second tip emerges. Figures 13 and 14 show the change in the magnitude

of the power flux for the other two dipole arrangements. However, no

drastic change in the magnitude of the power flux is observed as one moves

away on the slab surface in these cases.
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SECTION VI

CONCLUSION

F In this report a numerical program is devised which computes all g
E components of the electromagnetic field simultaneously by integrating an

ﬁ array of functions along the real axis in the complex a-plane. Increased
efficiency is obtained with the incorporation of the quasi-static and
asymptotic approximations. The inclusion of a root finder in the program

also makes it possible to integrate efficiently for the case when a pole is

close to the path of integration. It should be noted, however, for the
typical parameters we have studied, the poles were sufficiently away from the
real axis so that no particular effort is needed. In principle, we can also
extend the method to treat the case involving more than one pole.

The computer program is also capable of finding the field for a semi-
infinite half-space problem. In this case, the slab width h1 will be
either zero or infinity. However, if quasi-static approximation is used, the
the case wherelilapproaches infinity should be chosen. The reason for
this restriction is that the approximations we have used assume a finite hl

so that beyond a certain value of a analytical expression for the integral

can be obtained.
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APPENDIX A

QUASI-STATIC APPROXIMATIONS OF vl(z) and v{?)

In this appendix, the analytical expression for ng), £=1,2 given
in (50) is derived.
o -y.b
2) . /' < Yo .
Ve [Fz(u) ng(a)]e J, (ap)ada (A-1)

9
Now, if we use the choice of a4 to be large such that tanh[Y1H1| =1,

then the expressions for No and Ko in (8) and (9) will reduce to Y

and Yl/nf, respectively. Therefore V{z)

1

-
and VS‘) can be written as

2n Y b
2) = jp 1 1 0 x
\% = [ 2 - ] e J (ap)ada (A-2)
1 Y.+ Y,/n 2 )
LR o 1 (n1 +1)Yo
and
[s2] -Y b
(2) jr 1 1 0 R
\'4 > [ bl o .__._] e J (ap)ada (A-J)
2 uo Yo . Yl Yo .

By expanding in the inverse power of Yo’ Véz), % = 1,2 can be

approximated to the following form:

vi? = ¢y 2= 1,2 (A-4)
X ¢ 52 A
where
Yo -3 -2
V= fe I @ay:® [1eo(rI?) + ... Jao (A-5)
0-0

The constants C1 and C2 are given by

3 &gl 2
C1 = —an/(nl + 1)
and

C, = (nf o 13k

2

Thus if we just keep the leading terms of (A-5)and the assumption that

a >> 1 then
o




o
V=I S Jo(ap)%‘
Gy o
The above integral can be evaluated by taking the derivatives with respect
to p and then splitting up the integral into two parts; one has the limit
of 0 to infinity and the other from 0 to .
%o

aV _ [ .-ob da -ab do,
3% ° -{f e J1(ap)a - e Jl(ozp) = }
(o)

The first integral can be found exactly [Gradshteyn and Ryzhik (ref. 15)]

b 2 2 Vv
[emox J, Bx) ‘-i;f- = JA +\,B =1

Jo VB (A-G)

Re v > 0, Re o> |Im8B|

therefore

[ e® a0 L= ®o)t = o)
]

However the second integral has been evaluated approximately by using

Taylor expansion of two variables b and p around b, o =0

®

]

0

a

-ab da, . O 2

e Jl(up)-&- = —>p + OR")

After substituting the values of the first and second term in (A-6), we can
integrate back with respect to p which will lead to

%

V= R+ b tn(Red) + = 2 . o)

where C(b) is a function of b only and is given by
E,(a_b)
-C=b-b9,n2b+—-2——-°——

o

Here E2 is the exponential integral of order 2 and is given by [ Abramowitz

and Stegun (ref. 16)],
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-a b a D" m"
Ez(aob) = e + Y(aob) + aob ln(aob) + “ob nzl ——

where Yy 1is Euler's constant 0.5772.

2
Since R << 1, terms of the order R” or greater will be ignored.

Also, it should be noted that we have assumed that c%b and ap are
1

small compared to the leading terms that are of the order R™ . Thus V
can be written in a simpler form as
-aob
V= R+LE[y+ tn(a/)] + S — +b W +R) (A-7)
)

The substituion of (A-7) into (A-4) then gives the analytical expression

2
for the correction terms Vé“) L =1,2 as indicated in (50).
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APPENDIX B

QUAST-STATIC APPROXTMATIONS OF V"), v(?) and 7

(3)

In this appendix, approximate solutions for VS , (3J=1,2 and 3) is

obtained as R approaches zero. As in appendix A, we assume that a, is

large compared to H, so that tanh|Y1H1| = 1 can be used. However, the

1

product of QOR is still assumed to be small compared to 1l as R+ 0. The

leading term Vgl) in (54) is written here as

o
-Yb
), 0 0 -1
Vy"’= Bscos ¢ 3% 5 db oe Jo(ap)ayo do (B-1)
B2
The integral with respect to @ is known as G, =e ““/R;,. If we

now split up the integration over b into two parts, one runs from 0 to «

and the other from 0 to b, the first integral then reduces to the Hankel

function form %} Hglkp). However, for the second integral, Taylor

expansion of G will be used since R is very small. After integrating

12 12
the first three terms of the expansions, it is easy to show that Vél) can
be given as
(1) . T (1) B R I 9
Vs Bscos ¢ {- 5 H) (p) + Rt 3 sinh~ " (b/P)} (B-2)

It should be noted that in obtaining the above result the differentiation

with respect to @ is applied after the integration over b is performed.

Expression for V§1) can be further simplified if we replace “"he Hankel

function by its small argument expansion to yield

V§U= - B, pcos ¢ ([R®R+>)]™! 0.5 tR+b) ~ ¥(Y-%-Ti/2-% 2)} (B-3)

where Y = 0,5772 1is Euler's constant.

The second term from (54) that needs to be evaluated analytically

is V§2) and is given by




Sarm i = e .
r | ~ v -'W i - - - . -

0

-y b

@ , g e Bl
v =5 cos ¢ 2 L>[§f"’ Lo 0 3, olad (8-4)
o

Again, the integral can be divided into two parts, one runs from 0 to %y
and the other from a, to = and approximation techniques similar to the
ones given in appendix A can be applied here. It should be noted that

the outcome of the integration should be independent of % Now Véz) can

be written as

2) _ (2) (2) =
a0t N B Ve (B-5)
where
Qo
=0 .
v . B cos 6 pL e [_l. " —l—qe % J (ap)ada (B-6)
31 3 ap 2 Y2 (o)
< Yl o]
and v
@), ol ‘
Vs2 = Bs(n1 - I cos ¢ (B-7)
o] (8]
-y b -y b
L TN e 0 ada
I = 30 f e Jo(ap) : )2 g J e Jo(@p)=3
OLO YOY]. (10 YO
(B-8)
In writing Vgg) above, we have replaced (—%—-- —%—J by [(nf -l)/(yoyl)z].
b 9
1 o)

Then, we have used the assumption that o is large so that Y, would be
replaced by p A Thus, the differentiation of I with respect to b is
known as - %% , Where V is given by (A-5) and known explicitly in (A-7).

Hence, %% can be written as

Qo

LB B R
b R o a-g)

Integrating the above expression to get the value of I as

I = [p sinh 2(b/p) +bo R + )L - K(0)] (B-9)

ot
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is determined from the condition at

do
3
Y0

and the integration constant K(p)

b=0 =
2
K(p) = J chao)a

%

«Q
da
% J J, (@) =5
a o
o]
It is then not difficult to show that K(p) satisfies the first order

differential equation

(o]
K do
s J N C )y
%

2z

The integral on the right side of the differential equation can be replaced
by a two term expansion, ignoring the series terms which are of the order ! |
02 or greater [Abramowitz (ref.16) page 481, Eq.11.1.20]. Thus the

differential equation reduces to the following form

]
Tty =Y n(@p/2) !

which has a known solution of the form
KP) = - S [y + tn(@ /2) - 4] - $enop |
2 (o] 2 {

where Y here is Euler's constant. The substitution of the above value of

K() into (B-9) and then the value of I into (B-7) will give Vgg) as
2 i
'+ s Wilbus s o ;
V32 g 1 83 cos ¢ [An(b+R) + b(R+*b) ~ + (Y -%-%n 2 + Un ao)] (B-10)

Clearly, the result we have obtained for Vég) is dependent on ao, and this

term should cancel out with the contribution from ng) up to the order of |
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X

RZ. Since h and p are both small a two variable Taylor expansion

R ———

around b, p = 0 gives approximate expression of Vgi) and is given by
3 2 3
i 7 Vgl) * B, pcos ¢ f a [—12- - —l-z-lda (B-11)

The evaluation of the integral can be readily carried out, provided the

integration path is understood as being indented into the lower half-plane

; at g = 1.
2 2
: -N
- ) 2. (%™ 2 2
i V31 -~ 1}83 cos p [nlzn 5 + (n1 - l)JLn(CLo -1)
a_ -1
[o]
5 nf en nf . ni(nf -1} (B-12) i

Thus, with the assumption that ay >> |n1| we finally have the resultant

expression in the form of

; 2 2
- (n -1) n 3
't (2)_ 1 g ks S _ i "
! Vil 3 Bipcos ¢ [- eno  + (nz By n ny 5] (B-13)
i} 1

Substitution of the expressions for V:Ef) in (B-13) and Vég) in (B-10)

into (B-5) now yields the result
2

o W et -1
VS" cBeser s B; pcos ¢ {an(b+R) + b(R + b)
2
1
+ (y-%-mi/2-m2)+ — n nl} (B-14)
(nl e 1)

which is then independent of the parameter R that we somewhat arbitrarily 1
have chosen. ﬁ

The last integral that needs tobe evaluatedis V§°)in (54). Since a
is large such that tanhlylﬂll =~ 1, then No and Ko will be replaced

by Y1 and yl/nf, respectively. Thus, V§3) can be written here as
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2

1) (n] =1) -Y b

V§3)- Bscos ¢ gL [l ; 5—|® 8 Jo(ap)udu
o Iafar, « o /) @l DY

(B-15)

If we now approximate Y, S %- : , the leading term of V§3) in

(B-17) can be shown to be associated with the integral I given in (B-8) which

is evaluated in (B-9). Consequently, we have

v§3) = - C40 cos ¢ [Ln(b+R) + bR+b) L + (Y-%-2n 2-tn )]

(B-16)
where

= Gn? + D@ - /@] + DIYS
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APPENDIX C
PROGRAMMING PROCEDURE

A computer program was developed to find the electromagnetic field
response of a tilteddipole above a finitely conducting two layered earth
according to the numerical scheme described inSection III, with provision for
the asymptotic and quasi-static calculation as explained in section IV. A flow
chart of the program is shown in figure C-1. The program mainly consists of
three subroutines called QSTATC, RESULT and ASMPT, each of which is capable
of calculating field components for different ranges of observations in
space.

The subroutine RESULT is used to integrate along the real axis of the
complex a-plane for a given integrand. It follows the same steps given in
Section ITI, where the integration has been split up into two different regions
as given in (34). As mentioned before, a provision is made when the location
of the pole is close to the path of integration. By drawing a circle of
influence with a radius o4 = Iap-l] and centered at ap, we can integrate
separately the interval within this circle in order to insure good numerical
accuracy. Thus, oy determines how the integration path should be split up,
for example if ag > 1 then the integration will proceed exactly accord-
ing to (34). But if ag < 1 then the path of integration will be subdivided.
Obviously our path of integration is taken beneath the branch cut for «
between 0 and 1 and the pole could have stronger influence if it is close to
or beyond the branch point at a= 1. Usually the situation where the pole is
close to the branch point at a = 1, occurs when we have a two region conducting
half-space (such as air and earth). For a typical application of a concrete
slab above a homogenous earth and for the frequency range (100 to 1000 MHz), the

poles are actually not very close to the path of integration as shown in table 3.




b —_

LARGR FIELD DIPOLE PROOT
Plane Wave Free space Finds roots
Solution Green's of eqs. (35,36)
Function
IQIA = 3 IQIA =1
IQIA =2
RESULT
ARG Follows Sec- QSTATC
Follows sec- .
tion IV-1 tion JII Follows Sec-
tion IV-2
IQIA =1 ap > 50
CORREC ASYMP |
INTEGR =
Romberg Qv3
Integration
a > 1 a <1 1
GGRT1 GLES1
Second First
term in term in
eq.(34) eq.(34)
SUBG |
FACTOR BEJY 1
™ Calculates 1
Jo’Jl’Yo’Yl
uv .
Calculates ]
Functions listed
in Table 2
Function
W(2)
FVALUE
Calculates
£10F9:Fy
FINDZY
Calculates
N_,K , #@tc.
(SR
Figure C-1.A tlow chart eof the computer program
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However, we have left these subdivision criteria in the program so that

the program can be a general purpose one. Our program without further
modification cannot handle the cases where the poles are directly on the
real axis which corresponds to lossless slab above a perfectly conducting
sheet. But in most of the cases which involve losses in both media, the
poles usually move upward away from the real axis. A root finder called
PROOT was developed which uses the poles of a lossless slab above a perfectly
conducting sheet as a basis to march toward the roots for a lossy slab and
earth. A combination of bisectional and Newton's methods is: used to search
the complex roots of (35) and (36). Figure C-2 is a flow chart of the

root finder, where the subroutine ROOT will first search

the real roots of the lossless slab above a perfectly conducting sheet; then these
roots (if any) will be used in IROOT to search for the complex roots of a
lossy slab above a finitely conducting earth.

Except for the region nearby the pole | the two integrals in (34) are
further broken up into segments where numerical integration based upon a
modified Romberg scheme is performed. Segment interval is determined either
from the nature cycle of the Bessel functions, i.e. Ada = 2w/p, or from
the decay rate of the exponential function, i.e. Jda ¥ 3/(:+H0). Obviously ,
the number of integrations and the computation time increase when p and
(Z + Ho) are either very small or very large. In such cases, the program
is then switched to the quasi-static and asymptotic routines even though the
normal integration method can be performed.

We now discuss the type of convergence criteria adopted for the
truncation of the infinite integral in (34). Judging from the expression
for the integrand as given in (30), it is obvious that one can simply

integrate until the argument of the exponential function Yo(:+HQ) is large
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ZROOT
Complex
functions
root
finder

I

CROOT
Searches for
complex root
by using both
Newton's and

PROQT

bisection
method
¥ 3
Function Function
CY(2) CX(2)
given in eq. given in eq.
(35) (36)

ROOT

Real

functions
root finder
bisection
method only

o A

3

Function
FY(Z)
given in eq.

(39)

Function
FX(2)
given in eq.

(40)

Figure C-2.A flow chart of the root finder




enough, say 12, so that the remainder of the integration will be of the order
10'7 or smaller. However, this criterion becomes less effective for obser-
vation near the surface when (Z +H°) is small. In that case, we switch the
truncation criterion to one that depends on the argument of the Bessel function ]
ap, where p = kor and r 1is the horizontal distance from the source to
the observation point. When «qp reaches a certain large number, say 50 or
more, we can replace the Bessel function byits asymptotic form [Abramowitz

(ref.16)]. Then the remainder of the integral can be evaluated analytically by

an asymptotic series. Since each term of the series decreases by the factor
(0:;))'l from its previous term, we used a two term expression and estimate
the error bound. The truncation is then determined by a specified accuracy
of five digits. These remainder terms can be deduced from (30) and typically

given as follows:

Tm(gt) = JfF(a)[cos X - P(a) sin x]do m=90,1 (C-1)
2
where x = (ap - ﬂ; - % ), P(a) = 4:Q:1 and at is the limit where

the Bessel function can be replaced by its asymptotic form. F(a) is
given by

3

F(uw) = (2/map) aGLa)/YO

and G(a) is a typical function listed in table 2. Now, if we twice perform

the integration by parts in C-1, Tm(at) will reduce to approximately

sin ¥ cos
o o dF
2 - a - —— —
Tm(at) 5 F( t) pz da @
2 cosy
- (4m”-1) % -3 (C-2)
% 5= Fla) +0(0)
o 0
¢ 31X,
where Xo Qe P 2

The result given in (C-2) will be added to the truncated integral if the

| i ; :
| truncation was made on the Bessel function argument. The subroutine that




handles the evaluation of Tmﬁlt) is called ASYMP. In the case of the
quasi-static method,we have added a third criterion for the truncation of
the integration,and that depends on ao according to the method discussed
in section IV-2.

As we mentioned before,numerical integration of individual segment along
the real axis is performed by a modified quadrature Romberg scheme. The
subroutine that performs the integration is called INTEGR, which is known to
be a fast convergent one unless there is a discontinuity in the function
within the integrated limits. INTEGR has been developed to integrate an
array of functions. Thus,all six integrations of the EM field components
in the space region can be performed at once. The usual criterion

the integration is by checking if either the absolute or relative error of

the integration has reached the needed tolerance. More specifically in
figure C-1, theintegration routine calls two functions, GLES1 and GGRTI,
which represent the functions of the first and second integral in
(34), respectively. SUBG gives the value of T(x) for any x as required in
(34). SUBG calls two other subroutines; One, BEJY calculates
the Bessel function Jo and Jl; the other, UV computes the
values of the functions (E:,)ﬂ&), ¢ =0,1 and w = Xx,y,z, listed in
table 2. Two other subroutines EVALUE and FINDZY,are used in UV for the
purpose of calculating the functions FQGJ), £ =1,2,3, and No’ Ko, etc.,
as given respectively by (29) and (8) for a single slab.

As we have noted earlier the usual method of integration becomes a
time consuming one for large R. For sucha case, we switch the program to a
subroutine called ASMPT, based upon the asymptotic solution derived in
section IV.1. For computing efficiently, this part of the program is further

split up into a sky-wave region and a ground-wave region. This means we use
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a two term sky-wave solution where the observation is made away from the
ground (subroutine LARGR) and a two-term ground wave solution as described

in section IV.l1 (subroutine FACTOR).

The subroutine QSTATC serves the purpose of finding the fields for a
very small value of R, where R = koR12 is the normalized distance from
the dipole image to the observation point, R12 = [(z + ho)2 + rZ]& . This
subroutine follows exactly the procedure described under section IV-2 except

Maxwell equations have to be used first to find the electromagnetic field

components. The finite integration from 0 to ay for sz (£=1,2,3) in (51)

and (55) was performed by calling the subroutine RESULT . However, analytical

expression has been used to replace the integration from a to infinity, i.e.

(2)
Vl

built in subroutine CORREC which is called from RESULT automatically

(¥=1,2) in (53) and V§3) in (58). This analytical result has been

when the integration has reached the upper limit a,- The leading terms,
(1)
\3
calling two other subroutines, FIELD and QV3 , the first calculates

p ST Vél) (=1,2) in (52) and in (56), are calculated in QSTATC by
the free space Greens functions given in (24) and the second calculates the

leading term of the cross coupling field V; given by (56).

Finally, we emphasize that the subroutines QSTATC and ASMPT
are built to speed up the program. They are auxiliary routines to the main
program, which provide adequate approximate answers as an alternative to

the exact but time consuming results available from the subroutine RESULT.
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APPENDIX D

LIST OF THE COMPUTER PROGRAM




AOOOOIOAOONNNNNTONOATQAONTOIDI IV OOO DO

SUBROUTINE OIPOLE (FREQN(EPSRISIGMA¢MLoHO 9Ky THePHy THP yNOROOT A0
1 ACCINTTOTFLD s IFLAG)

SUBROUTINE DIPOLE WAS DESIGNED T0 FIND THE EM FIELD DUE TO AN
ARBITRARY=ORIENTATED DIPOLE SOURCE ABOVE a TWO LAYER CONDUCTING
EARTH o THE INPUTS TO THE POQLKAM aRE!

FREQNSFREQUENCY OF QPERATION,

(EPSR) AND (SIGMA) EACH OF wWHICM SHUULD MAVE Tmt OIMENSION OF 3

REPRESENTING THE DIELECTRIC CONSTANT AND CONDQUCTIVITY (MNO/M)

IN THE TrRREE MEDIASAIReSLAB HKEGICN ANOD GRUUND RESPECTIVELY.

H1SSLAB WIDTH,

HOSHLIGHT QF THE OIPOLE FeOM THE SLAB SURFACE.

RETHE OISTANCE OF TwE DIPOLE IMaGE ABOVE A PERFECTLY CONDUCTING
GRQUND TO THE OBSERVATIAN PQINT, RISQRT((Zerp)o®2e (SR)®02) §
WHERE SRZSMALL R +1S THF PRQUECTION OF R INTQ THE XeY PLANE,

THETHETA IS ThE IMAGE ANGLE (IN DEGREES) wHICH Twt OBSERVATON
POINT MAKES WITH TME 2=aXIS (REFEK TQ FI1G-5 OF THE REPOKT),

pn;:nl IS THE OBSERVATICN ANGLE (IN ULEGREES) MEASURED IN THE x=Y

LANE .
THPSTHETA<PRIME IS THE aNGLE (IN CEGREES) THAT THE DIPQLE MAKES
WwITH THE VERTICAL AxIS. IF THE=0 THE OIPOLE IS VERTICAL aND
IF THP290 THEN TRE CIQOLE IS FORIZONTAL,
NOROOTZIS A LOGICAL STATEMENT wrEN IT IS TRUE NO SEARCH wllLL BE
MADE FOR THE PULES (P~YSICALLY ¢SURFACE wAVE MODES) IN THE
SLAY REGION ALSO NO CALCULATON OF TrE SOMMERFELD POLE WILL
BE MAQE IN TME MALFASPACE CASE.IF (NORUOT) IS FALSE THEN
A SEARCH FOR POLES wILL BE MADE.

G0ZIS THE POLE CLOSEST 710 TwE REAL=-AALS IN THE COMPLEX ALPHAPLANE
.sl; SHOULD BE SPECIFIED ARRITRARILY IF THE ROOT FINDER 1S NOT
usSeD,

ACCINTZIS THE ERQCR TOLERANCE OF THE NUMERICAL INTEGRATION

TOTFLDZARE TRE CALCLLATED vaLyuES CF ALL TmE EM FlZlLD CCHMPCMENTS.

IT SHOULD BE VIMENSIONED AS TOTFLO(3,2), Tht FIRST COLUMN
ARE THE E=FIELD COMPUNENTS (EA'EY AND EZ!e AND THE SECOND
COLUMN ARE THE HMeFTELDS (KX MY AND H2)e
1FLAGEIS A LOGICAL STATEMENT wWICK IF IT IS TRUE GUASI=STATIC AND
ASYMPTOTIC APPROX, wlILL BE LSkDe. IF (IFLAG) IS FALSE THEN
USuUAL NUMERICAL INTFGRATION METFOD wl_L BE PLRFCRMED ON
THE SO CALLED SOMMEQFELD INTEGRALS.

COMMON /MAINL/N(3) 9r9EPSR (3) 9QK0¢K Qs ZNM, TOL
COMMON /MAIN2/BPHI+THETADWCT19ST14CPLeSPLloCPE SHR
COMMON /MAIN3/SS(3) +EE () HHIOM
COMMON /TYRE/TQIA
LOGICAL NOROOTWIFLAG
COMPLEX NesAOsJeFAA
COMPLEX DI ,0SySOMFLOYTOTFLOeNAVEPZSsPXSIPZTPXI
REAL K0+MUQ
DIMENSION a(5)¢SIGMa(3)

DIMENSION 0I(342)¢0S(3¢2) SOMFLD(242)9P25(3,2)4PXS(342)
1oPZI(312) ePXI(I342) +nAVE (342)9TOTFLDI(342)
TOL3ACCINT
Jl(On'lo)
P123,1641592653
C=22.99793E+08
EPS028.856E=12 s M10=4 ;0P [#) ,0E=0Q7
EGZI=SQRT (MUO/EPSO)
CONV2PI/180e
OMEGA=2 ,#p [*FREGN
K0=0MEGA/C
HEN]®KQ
FB2K0®K0/a,/P] $ FASJ®EGZ2]eFB
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OHO0 OO

a0

DOOOOO o0

[z Xzl Ll

D0 12 L=1,3
12 N(L)SCSGRT (EPSR(L)*(0ev14)®SIGMA (L) /OMEGA/EPSD)
S1 THETASTHeCONV
2xReCOS(THETA)=HO § ROSReSIN(THETA)
ZnaZenQ $ 2rMaZeni
gm=ZHeKp (3 RKQaRO®K0
PRINT BBsFREQAN (N(L) vEPSR (L) oSIGMA (L) sLmle3)

88 FORMAT (1n)*FREQUENCY=2@ES 2v1x°C/Se/11XeREFRACTIVE INDICES OF AlR.
1CEMENT AND EARTH RESPECTIVELY®/IXON(US®*FQeur®e ab G by 10XPEPSRO=®ES,
2193A®SIGMAQZ®E [0¢3/1XA*N[20FGaqe®e_ oFYeb, lOXaEPSR]ISHER, | ¢ IA®SIGMALE
30€1063/11XON23®F 9,424 J0Fq 40 0XPEPSRE=EB, ) 93X *SIGMA229EL0,3/)

PRINT 14e2¢n0ernleReTH

14 FORMAT  (1x99289E]10,3+2Xx0m®Ix@0BSERVATION HEIGHT®/1XoH0=®E]10,301X
JeM® ¢ 3XSQIPQLE MEIGRT®/1X®N1B®E],2y1AYM@3XaSLAY WIDTR®/L1X®R2eELQ,
2302X®M@® 3x*SOURCE TO OBSERVATION CISTANCE®/1A®THETAz4FS,le1xeDEG®,
33IX®ANGLE OF INCIDENCE®/)

NO SEARCH FOR PQLES wlLL BE AVAILABLE wWhREN NOROOT IS TRUE.THUS THE
POLE LOCATION AQ SHOULD BE SPECIFIED «lF THESE POLES ARE FAR AWAY
FROM THE REAL AXIS+ASSIGN ANY ARBITRARY PQOLE IN THE FIRST QUADRANT
OF THE COMPLEX ALPHA=PLANE. THIS PQLE SHOULD NOT BE CLOSE TO THE
PATH OF INTEGRATION,

1F (NORQOT) GQ TO 22
CHECK IF WE WAVE A TWC=LAYER EARTH MODELIF SO CaLL RROOT
IF (HeGTel UE=05e0R el To1.,0E«05) GO TO 26

IF NOTy wE MAVE A SINGLE LAYER EARTH HENCE WE NEED TO FIND THE
SOMMERFELD POLETC

IF (HeLE.),0E=05) AQ=EN(3)/CSART(N(I)®N(3)*1,)
IF (HeGE+]1,0E«0S) AQ=N(Z)/CSART (N(2)N(2)*1,)
60 T0 22

SUBROUTINE RROOT wWAS DESIGNEO To FIND THE SURFACE WAVE MODES THAT
EXIST IN a OIELECTRIC SLAS ABOVE A CISSIPATIVE EaRTH.

26 DO 23 I=1,3
EE(I)SEPSR(I)

23 sS(1)=SIGMall)
oMsOMEGA S HHap
CALL RROOT (AvaA0)

a0 WILL BE THE POLE CLOSEST YO THE PATR OF INTEGRATION,

{A) WILL BE THE POLES THAT ARE FOUNC « PLACLS wHERE RROOT FAILS A
MESSAGE wILL BE PRINTED anD THE AKAITRARY PULE (,95+415) wILL BE
ASSIGNED, UP TO & POLES WILL BE SEARCHED WITH THE EXISTING OIMENSION
OF a(S)e IF MORE EXIST +TRE DIMENSICN OF (a) [N DIPOLE AND (ZERO)

IN RROOT SHOULD BE INCREASED.

22 PHI=PHSCONYV s TRETAP=THP*CONY

CT1=COS I THETAR) S STI=SIN(TRETAP)
CP1=COS(PHI) 8 SP1=SIN(PRI)
CP22COS (2,4PN1) $  SP2ESIN(2,ePNI)

1IF (IFLAG,LE«0) GO TO 165

THE FOLLOWING THREE RQUTINES WILL BE USED FOR TME EVALUATION OF
THE SOMMERFELD INTEGRaLS

(1) QUASI=STATIC APPROX.

(2)_NORMAL INTEGRATIOQON ALQONG _THE REAL _AAIS IN THE COMPLEX ALPHA=




oo

PLANE .
(3) ASYMPTOTIC TECHNIQUES (USING STEEPEST DESCENT METHOD )

QN-ROKQ
1F (RN GT,5¢0E=02.0ReRN,LT¢3+0E*Q1) GO TO 165
IF (RNJGE.3.0E+01) GO TO 77

QUASI=STATIC APPROX, wILL Bt PERFQRNMED .

1QI1A=]

CALL QSTATC(AQIWAVE392+1014)
60 TOo 33

ASYMPTOTIC APPROX. wILL BE PERFORMED o

77 10IA=3
CALL ASMPT (AQ¢THETA WAVE3+2)
60 TO 33

IN REREY JUST REGULAR INTEGRATION METROO wILL BE USED TO FIND THE
SOMMERFELD INTEGRALS .

165 CALL FIELD(DS+X09ZHMIROsP2S9PXS93,42)
CALL FIELD (DI sKO92ZHoROWPZIoPXL0342)
1QIA=2
CALL RESULT(AQ+SOMFLDv342,1Q14)

DO 6 JJU=l,2
D0 6 II=1,3
6 WAVE(IIoJJ)BDS(IToJdy)=0I(T110Jy)*eSOMFLD(ITIVJY)
33 p0 2 JYusle2
DO 4 Il=1,:3
1IF (JJekQe2) GO TO S6
TOTFLO(II4uJ) aFASWAVE (110 9J)
GO TO &
66 TOTFLO(IIsuJ)=FBeWAVE (IIegJ)
4 CONTINUE
2 CONTINUE
RETURN
END




DO ODOOOOOOO0

SUBROUTINE FIELD (DsKeZHOoROsXsY oL sM)

THIS SUBRQUTINE EVALUATES aLL THE ELECTROMAGNETIC FIELD COMPONENTS
DUE TO AN ELECTRIC VECTOR POTENTIAL OF THE FORM Gl1=ExP(J®Ryl)/R11l
OR Gl2=EXP(J¥R12)/R]12 +wHERE R]1=SQRT((Z=H0)@®2+RHQu®2) AND
R123SGRT ((ZeHQ) ©#2+RH092) 4Z9yH0 AND RHMQ ARE NORMALIZED TO THE FREE
SPACE WAVELENGTH K0, THWE [NPUTS ARE ¢

t1) K 1S FREE SPACE WAVELENGTH,
(2) RO IS A RADIAL DISTANCE. 3
t3) ZM0 REPRESENTS THE NON=NORMALIZED DISTANCE (Z=HO) OR (ZeHO0)e

THE QUTPUTS aRg 3

22

t2)

(1) O REPRESENTS THE FIELD DVE TO Gll OR Gl2.
X aND Y REPRESENT THE FIELD OUE TO A VERTIGAL AND A MORIZONTAL

OIPOLE RESPECTIVELY.

COMMON /MAIN2/BB«PsToCTyST

COMPLEX GllsJsFoeDeXoeY

REAL x

OIMENSION X(3+2)sY(3+2)4D0(302)
2(0e0le)
eSGRT (ROWROZHO®ZHO)

A= .’(K.R,

Glla CEXP(JoKsR)eA

BmA®A

‘XR=RQ#COS (P) /R S YR=RO®SIN(P) /R

ZRsZHO/R
Felee3,®JoA=3, 0B

X(le]l)s=FeXReZR®G119CT § Y(lol)me(FOXRO®XR=],~J®A¢B) @Gl ]1eST
X(29])z=FeYRaGl]0ZReCT S Y(2¢])S=F®YROG])@XROST
X(3s])3=(FOZROZR=] = ®44B8)9G1]1°CT S  Y(3,1)3-FexRaZReG]]eST
X(1s12)3(J=A)aYREG]]9CT 3 Y(1e2)2(0600e)
X(212)2(A=J)#Gl]1oXReCT S Y(2¢2)3(J=A)2Gl]1#IReST
X(392)=(0,00,) S Y(312)=(A=J)?YROG11eST

00 22 JJ=l+2
00 22 11s1,3
D(ITodd)=X(ITedd)eY(IT4JJ)

RETURN
END
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SUBROUTINE LARGR (THETA,FLO s 1T oMM)

THIS SUBROUTINE EVALUATES THE EM FIELD COMPONENTS IN THE AlR REGION
ASSUMING A PLANE WAVE INCIDENCE ON THE AIR AND SLAB INTERFACE (SKYe
WAVE ASYMPTOTIC APPROXIMATION OF THE SOMMERFELD INTEGRALS)«THE INPUT
IS THETA3IARCTAN(RO/ (Z+H0) ) THE QUTPUT IS FLO. I1 AND MM ARE VARIABLE
DIMENSICONS,

COMMON /MAIN1/N(3) ¢sHeE (3) sRK¢K0yZHM

COMMON /MAIN2/8+PeTP«CTiSTCP

COMMON /2ZYY/YZ(3)

COMMON /FUV/AL,GG0»G6Gl +GG2

REAL x0

COMPLEX GG0vGG19GG29P2SPXS*PZIsPXIeYZIREFLLIVREFL2
1,0140SsFLDINyyY

DIMENSION DI(3+2)+0St3+2)9FLD(ITIMM) 4PZS(392) +PXS(3,2)

1ePZ1(392)0PX1(3402)
JE(Qesle)
AL=SIN(THETA) § GG0=«J®COS(THETA)
GG1=CSQRT (ALeAL=N(2)eN(2))
GG23CSQRT (ALeaL=N(3)eN(3))
ZH=B/K0 $ ROsRK/KO
CALL FINOD2Y

PARALLEL POLARIZATION REFLECTION COEFFICIENT.
REFL1=3(GGO0=YZ(1))/(GG0O+YZ (1))

PERPENDICULAR POLARIZATION REFLECTION COEFFICIENT.
REFL2=(GGO=YZ(2))/(560+YZ(2))

EM FIELD DUE TO Gl1=EXP(I®Rl1)/R1]
CALL FIELD(DS¢KOyZHMsROyPZISsPXSeII4MM)

EM FIELD OVE TO Gl2=EXP(I®Rl2)/R12
CALL FIELD(DIKOeZHIROGPZIPXI¢I]¢MM)
DO 5 M=l MM
DO S5 1=1,1]1

S FLO(I«M)SPZS(IsM)SREFLI®PZTI(IsM)ePXS(I M)
1(=REFL1%CP+REFL29(1.=CP) ) *PXI (I M)

RETURN
END




SUBROUTINE RESULT(ALPHAOYVALUE sKKyLL11Q)

TH1S SUBROUTINE CALCULATES THE SOMMERFELD INTEGRALS GIVEN IN EQ.
(39) OF THE REPORTyMOWEVER WHEN 1Q31,THEN IT CALCULATES THE
INTEGRALS OF (S1) AND (55),

INPUT Z(ALPHAO) IS PCLE LCCATION IN COMPLEX ALPHA PLANE,

OUTPUT =(VALUE) KK AND LL ARE VARIABLE DIMENSIONS.

OO0 MO

COMMON /MAIN1/N(3) sHIEPSR (3) sRKsFKyZMe TOLKNS
COMMUN /MAIN2/B+PH]I,THETAP

COMPLEX NoalLPHAQsVALUE

COMPLEX SUMySAVE

DIMENSION SUM(3+2) 9SAVE (342) 9VALUE (KKoLL)
EXTERNAL GLES1+GGRT]

LOGICAL TEST

PI=3.141592653

Nl=2048

EE=]1,0E=~Q6

c CRITERIA FOR THE SUBDIVISION OF THE INTEGRATION.

CR=6.0/(RK+EE) § CZ=3,0/(B*EE) s CHI1 40/ (HeEE)
FACT1 =AMINL(CRyCZyCH) , :
C CRITERION FOR UPPER LIMIT TRUNCATION IN THE QUASI=STATIC CASE
C SEE SECTION #¢2 OF THE REPORT.

EN=CABS (N(2)) s EN1=10,°EN
HC=SQRT(50,09CH®CHEN®EN) s CCHaAMAX] (MCEN])
00 1 LIslsL
no 1 KlslyxK

1 SAVE(KIsLI)=(0e00,)
ACC=TOLRNS

(> HEREswE CETERMINE THE CIRCLE OF INFLUENCE CUE TO THeE PO MOTICN
c AS DISCUSSED IN SECTION 3.

AR=REAL (ALPHAQ) H AISAIMAG (ALPRAQ)
RRESQRT( (AR=1,)®®2.p]®e3)
IF (AR.GT.1+) GO TO 33
DIF=1le=4,#RR 3 ADD3),*4,*RR
60 TO 36
33 plF=AR=4,%RK S ADD=AR+ . *RR
36 tF (DIF) 15915416

c THE POLE HAS NO INFLUENCE ON THE PATH OF INTEGRATION +THUS THE
¢ PATH WILL BE SUBDIVIOED AS GIVEN BY EQ. (34) QF THE REPOQRT

1S T11=0. $ T2=1.
1J=1 S GO TO 27
16 IF (DIF.LE.ls) GO TO l0S
c THE POLE HAS AN INFLUENCE BFYOND THE BRANCH PQINT AT ALPHA=].

EPS1=SQRT (DIF*DIF=1,) < EPSZaSURT (ALDeADD=14)

Ti=0. s T2=],
tu=3 s I1=]
EPS=EPS])

R2=AMIN1(CR9C2)
1F (EPS1+GE«RZ) EPS=RZ
G0 TO 27

c MEREy THE POLE HAS AN INFLUENCE IN THE REGIOUN FOR ALPHA BETWEEN
Cc 0 AND 1.
105 gPS1=SQRT(1+=01F*0IF) N EPSsSQRT (ADD®ADD=14T
Ti=0. $ T2=2£FS]

1J=2 s [1=0
EPS2=AMIN] (EPSyCR.C2Z)
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FIRST INTEGRATION FOR ALPrA BETWEEN 0 AND 1 AS GIVEN IN THE FIRST
TERM OF (3e), GLESLIZREPRESENTS THE FUNCTIONS TO BE INTEGRATED IN
THIS REGION,

27 CALL INTEGR(T19T2+ACCONIsGLES) 9SUMoKKoLL 9+ X9 XREL 'NUSEDTEST)
pO 3 LIs]l,L
00 3 KI=l,KkK

3 SAVE(KIsLI)SSAVE(KI LIV e(A,0l,)oSUM(KILLT)
IF (TEST) PRINT 2004AoXRELosT1oT20((SUM(KIoLI) 9SAVE (KIsL])
LoKIZLoKK) oL I=1 oLl ) 9AUSED
1F (1J.EQ.1) GO TO 235
IF (11.EQ.1) GO TO 20

TisT2 S T2=1,0
ti=1 $ ACCaTOLRNS £ Go 70 27
30 NIslgeé § IF (1J.EQ.2 GO TQ §9
Ti=0. ) T2=ERPSZ S 1I1=2
ACC=TOLRNS/3.0
60 TO 40
90 T1=0. S T2=ERS] S Ilsl
60 TO 40 .
4S T1s=T2 s T22EPS2
ACCETOLRNS $ I1r=2
60 TO &0
35 11=0, 3 T22T2+FACT]

SECOND INTEGRATION IS FOR TWE REGION BEYOND THE BRANCM POINY AT
ALPHA=]+ GGRTIZREPRESENTS TkE FUNCTIONS TO BE INTEGRATEOD.

40 CALL INTEGR(T19T24ACCINIsGGRT]oSUNyRKoLL o XoXREL INUSEDWTEST)
DO S5 LIslyLL .
DO 5 KI=1l,.KK
S SAVE(KI LI)SSAVE(KI LI)eSUM(KTIoL])
IF (TEST! PRINT 200¢XeXREL oT1,T20((SUM(KIsL]I)9sSAVE(KIWL])
1¢KIZ)oKK) oL I=)oLL) 9sNUSED
IF (1JeEQGe3eaNDellegQel) a0 TO 45
ACC=TOLRNS/3.0
A=SQRT (1eeT2°T2)
FACT2sA®RK

CHECK IF THE ARGUMENT OF THE BESSEL FUNCTION HAD REACHED THE VALVE
OF 509 IF SO ¢USE ASYMPTOTIc APPROX, FUR THE REGIUN BEYOND THIS
POINT AS DESCRIBED IN APPENDIX=C EQ, C=2 OF THE REPURT,

IF (FACT2.GE«50.0.AND«T2,GE.EPS; GO TO 39
CHECK 1F WE MAVE A QUASI=STATIC CASE.IF SO+ PERFORM THME INTEGRATION
GIVEN IN EQ, (S1) AND (55) AND +THEN,ADU THE CORRECTION TERMS
WHICH REPRESENTS ANALYTICAL AFPROX. OF THE INTEGRe FROM ALPRAT
YO INFINITY AS OESCRIBED [N APPENDICES A AND 8.

IF (JQ.EQ,) eANDsT2.GECCH) GO TO 115

202 TT=BeT2

CHECK IF THE EXPONENTIAL FUNCTION EXP(=GAMMAQ®B) nAS REACRED
THE VALUE OF EXP(~121 «IF SUe STOF ThE INTEGRATION.

I1F (TT«GT,12.) GO TO lo00
T1=T2 $ T2=T2¢+FACT1
G0 TO 40

115 cALL CORREC (AsSUMeKKoLL)

60 TOo 110
39 CALL ASYMP (AySUMsKK,LL)

110 00 7 LIsleL

00 7 KI=1,KkK
7 SAVE(KIsLI)SSAVE(KI LI)eSUM(KTWLD)

100 DO 9 LI=1, L

00 9 Klsl,xx
9 VALUE (KIsL]I)aSAVE(KIsLI)

200 FORMAT (/SXx9®ABSssRELe ERRS«302(2XE1Je6) 03X L=%E1I,S93X®ULRE]3,5

1/71X%SUM MATRIX®/1Xe6(2E13,5¢5X92E1357)¢2AONUMBe UF [TER«2®[6/)
RE TURN
END
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SUBROUTINE INTEGR (A¢BeEPSsNSTER,FsVALUE L +MoXsXRELTV K sG)

THIS SUBROUTINE PERFORMS AN (L+M) ARRAY OF COMPLEX FUCTIONS
INTEGRITION USING MODIFIED ROMBEZRG TECHNIQUE.
ASLOWER LIMIT , RSUPPER LIMIT OF THE INTEGRATION
EPSSREQUIRED TOLERANCE,
NSTEPZ MAXe NUMBER OF ITERATION TO BE USED FOR PERFORMIG THE
INTEGRATION.
FS A _SUBROUTINE WAS AN (LsM) ARRAY OF FUNCTIONS (INTEGRANDS).
VALUES QUTPUT OF THE INTEGRATION ,(LsM) ARRAYS OF VALLES.
XS RETURNED ABSOLUTE ERROR o XRELTVS RETURNED RELATIVE ERRORs
KSNUMBER OF ITERATION USEOQ IN PERFORMING THE INTEGRATION,
GSLOGICAL STATEMENT IF [T IS FALSE +THEN ,THE INTEGRATION waS
PERFORMED WITHIN THE REGQUIRED TOLERANCE (EPS) AND THE ITERATION

SI2E (NESTEP), OTERWISE IF [T IS TRUE +THEN X ,XRELTV AND K
wILL BE RETURNED.

COMPLEX FCNAFCNB+FCNXI9ToSUMQX19QAX2¢VALUEQ
DIMENSION SUM(342) ¢FCNA(392) «FCNB(3+2)9T(3+2)FCNXI(3+2)
1GX](342)9QX2(392) o VALUE (L9M) 9Q(1643+2)

LOGICAL G

HaB=A

CALL F(AsFCNA,L M) $ CALL F(B+FCNBosL M)

D0 67 Mysl¢M

D0 67 LJ=1sL

67 TILJIMJ) S (FCNA(LJIMJI) ¢FCNB (LJIMJ) ) *H/2.

Nxsl
Nsl

1 Kz2eay

Hl“/z.
DO 22 MJzl M
00 22 LJ=1sL

22 SUM(LJMJ)I=(0,00.)

DO 2 1=lsNX
X1=22,9FLOAT(]) =],
XAsAexIoH

CALL F (XA FCNXIsL M)
00 2% MJ=] M

00 26 LJ=1sL

24 SUMILJWMJ) =SUMILIIMJ) oFCNXT (LUsMY)
2 CONTINUE

D0 26 MJsl M
D0 26 LJ=lsL
TILJoMI)I BT (LUsMJI) 724 ¢ HOSUM (LI MJ)

26 QINILJIIMI) S (T (LJeMJ) oHeSUM(LJIIMY) )1 #2,/3,

IF (N=2) 10+3,3

3 Fs4,

00 & Ja2yN
[aNel =y
'.’.‘.

00 27 MJsleM
00 27 LJslsL

27 Q(ToLIMIIZQ (TelelJoMU) ¢ (O (Tel ol deMI)=Q(T4LIIMII) Z(F=10)
4 CONTINUE

IF (N=3) 9¢5,5

S x=0. S XRELTV=0,

00 29 MJzlM

00 29 LJ=lvL

XREAL=ABS (REAL(Q(1oLJeMJ)=QX2(LJsMJ) ) ) *ABS(REAL (QX2(LJ M)
1=QX1(LJeMI))

XIMAG=ABS (AIMAG(Q(1eLJoMJI) =QX2(LJIeMJ) ) ) «ABSATMAGIAX2(LJIIMY)
1=QX1(LJeMI))) -

CR=2CABS(Q(lsLJsMU))

IF (CR.EQ.0.,0) GO TO 33

XR=AMAX] (XREAL » XIMAG) /CR $ GO TO 107

sl e

i




c

c
C
c

33 xR=0.0
107 xRELTvsAMAX] (XRsXRELTV)
29 XsAMAX)] (XoXREAL+XIMAG)
COMPAmX=3,%ERS
COMPRzXRELTV=3,%EPRS
X‘ (co“pAGLEQOQOQORQCOMPQ'LEQOOO’ lloﬂ
8 IF (NSTEP=K) 1141149
9 00 37 MJusleM
00 37 LJ=l,L
37 QXL{LJUsMI) 3QX2 (LI M)
10 00 39 MJ=1M
DO 39 LJ=lsL
39 QX2(LJeMJI)2Q(19LIMI)
12 NXsNXe2
. NaNe)
GO TO 1}
11 00 A1 MU= M
00 &1 LJs)yL
a1 VALUVE (LJoMJI =@l el doMy)
GENSTEP.LT.K
RETURN
END

SUBROUTINE GLES1tTsGLeIvJ)

HERE, WE EVALUATE THE FIRST INTEGRAND OF EQ. (34) OF THE REPORT
THE REGION 1S FOR ALPHA SETWEEN 0 AND 1,
T IS THE INPUT ,OUTPUTEGG IS AN ARRAY OF (lsJ) FUCTIONS,

COMPLEX G»GL
DIMENSION GL(I+Jd)eG(302)
XaSQRT (1 e=TeT)
CALL SUBG(XeGoelel)
0O 10 N=l,J
DO 10 mM=l1,l
10 GL(MsN)=G(MyN)
RETURN
END

SUBROUTINE GGRT1(T+GGe1,J)

THIS SUBROUTINE EVALUATES THE SECOND INTEGRAND OF EQe (36) OF THE
REPORT. THIS REGION IS FOR ALPHA GREATER THAN 1.
T IS THg INPUT ,QUTPUT2GG 1S AN ARRAY OF (IsJ) FUCTIONS,.

COMPLEX GoGG
DIMENSION GG (I1+J)eG(342)
XaSQRT (1eeToT,
CALL SUBG(Xe4Golvy)
00 10 N=lvy
00 10 mal,1
10 GG (MsN) =G (MyN)
RETURN
END
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SUBROUTINE SUBG (ALPHA+Gs1lsdd)

HEREs WE CALCULATES THE FUNCTIONS GIVEN IN EQ. t30) OF THE REPORT.
INPUTZALPHA o OQUTPUTZG IS AN ARRAY OF (IlsJJd) FUCTIONS,

10
20
30

49

COMMON /MAIN1/N(3) sHeEPS (J) 4RKO

COMMON /MAIN2,8

OIMENSION BESSJU(2) +BESSY (2)9Y(302)92(392)9G(11vJJ)
COMPLEX NyCXyGAMAO Y eZvJ0rJlsG

AsALPKHA

(Xele0) 10,2030

GAMAQ= (0se=],)@SORT (1l ewXeX) H GO TO 40
GAMAO= (0e90.4) s 60 TO &0

GAMAQ=SQRT (XeX=1,)

RAZX®RK0

CX=CEXP (=GAMA0®B)

A CALL wILL BE MADE TO SUBROUTINE (UV) TO EVALUATE THE FUNCTIONS

LISTED IN TABLE=2 OF THE REPORT,

CALL UV(XsGAMAOsYeZ91IlsJy)

THE OTHER CALL wILL BE MADE TO BEJY YO EVALUATE THE BESSEL
FUQTIONS JO AND JI o

22

CALL BEJY(RA+BESSJIBESSY240)
JO=BESSJ(1) $ J1sBESSJ(2)

00 22 uUM=l,.Jy

DO 22 IM=1,It

GIIMIJM) ICXO (Y (IMgJMI®J0eZ (IMoJIM) @J])
RE TURN

SUBROUTINE UV (ALPHA9GO UV 1JsIK)

SUSROUTINE UV CALCULATES THE FUNCTIONS LISTED IN TABLE=2.INPUTS ARE}

ALPHA WHICH IS REAL SINCE THE INTEGRATION IS ALONG THE REAL=-
AX1S IN THE COMPLEX ALPHA=PLANE.

(2) GOaSQRT((ALPHA)®e2=]1) +HERE GO IS COMPLEX AND THE CHOICE OF

THE BRANCH CUT IS G0==J®SQRT(1=(ALPHA)##2) FOR A_PHAC],

THE QUTPUTS ARE

U AND V REPRESENT THE VALUES OF THE LEFT AND THE RIGHT COLUMNS
OF TABLE=2 RESPECTIVELY., IJ AND IK ARE VARIABLE DIMENSIONS,

COMMON /MAIN1/N(3) ¢HeEPSR(3) +RKO
COMMON /MAIN2/84P,THsCT+STICPySPICP2ySP2
COMMON /FINOF/F(3)

COMMON /FUV/A,GAMAQ 61,62
COMPLEX N4G0,4Gl¢G2,GAMAQ

COMPLEX FyFG,UyV

DIMENSION U(342)0V(3¢2)

AzALPHA

GAMAO2GO

Gl=CSART (A®ALN(2)oN(2))

G2=2CSQRT (A®A=N(3)eN(3))

RK=RK(Q

A2sAep
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FIND THE VALUES OF (GO@F1)+(GO®F2) aAND (GO®F3),WHERE Fl+F2 aND F3
ARE GIVEN IN EQ. (29) OF THWE REPORT,

CALL FVALUE
FGaF (2)=GQ®F (3)

Ullel)=(F(2)=FGeA2eCPOCR) *ST

VI1v 1) S (FGUCR29ST/RK*GQoF (1)1 @CPeCT] #a
U(211l)==A20FGaSP20ST/2, '
V(211)349 (FGOSP2oST/NKeGO®F (1) ®*SPaCT)
U(3sl)=a20F (1)8CT

VI391)2A®(GOOFG=F (3))9CPaST
U(ls213=A29F (3)aSp2o5T /2,

Vile2)3A® (F (3)8SP2eST/RK=F (1) @SPaCT)
V(24213 (=GO®F (2)+a2%F (3) aCPOCP)aST
V(292)22® (=F (3)*CP2®ST/RK*F (1) @CPaCT)
U(342)3(0,,0,)

V(3:2)3A0F (2)eS5PasST

RETURN
ENOD

SUBROUTINE FVALUE

THIS SUBROUTINE EVALUATES DIFFERENT TYPES OF FUNCTIONS OEPENDING
QN THE VALUE OF (I) IN THE COMMON BLOCK (TYPE)., (I) DETERMINE THE
FOLLOWING CASES

(1) IF I=19 THEN oIT CALCULATES TWE QUASI=STATIC FUNCTIONS LISTED

IN EQe (5)) AND (55) OF THE REPORT.

(2) FOR 12, FVALUE CALCULATES (GO®F1)s(GO®F2) AND (GO®F3) WHERE
F1sF2y AND F3 ARE GIVEN IN (29) OF THE REPORT AND
GO=SART ( (ALPHA) 2e2~1,) o

(3) WHEN 123, (FVALUE) CALCULATES Fl,F2 AND F3 AND THEY WILL BE
USED IN THE ASYMPTOTIC FORM FOR THE EM FIELD COMPONENTS.

THE QUTPUT OF TWIS SUBROUTINE IS THE COMMON BLOCK /FINOF/

THE INPUTS ARE THRU THE FOLLOWING COMMON BLOCXS

/MAINL/ N(3) AND EPSR!(3) aRE THE REFRACTIVE INDICES AND RELATIVE

DIELECTRIC CONSTANTS OF THE THREE MEDIA.

/FUV/Z ta) =(ALPHA) o (60)=(GAMMAD) , (Gl)=(GAMMAL) ,(G2)=(GaMMA2) .

H IS THE NORMALIZED SLAB WIDTH.

/7YY7 ZY(l) 3(KO) o« ZY(2)s(NO) , ZY(3)=1/wl AS GIVEN IN EQ. (8)+.

(9) AND (1]) OF THE REPORT.

COMMON /MAIN1/N(3) +HeEPSR(3}
COMMON /F INOF /F (3)

COMMON /FUV/A,G0,6l+62
COMMON /2YY/2Y(3)

COMMON /TYPE/I

COMPLEX Fo2Y,LAMDAL, L AMDAZ
COMPLEX N¢GO+Glos62+E1+E2
CALL FINDZY

ElaN(2)9N(2) S E2=N(3)*N(3)
LAMDAZ =l ./EZ-I o /E1

LAMDA) sLAMDAZ082Y3)«1,01,/E]

Fll)=2.,9G0/(GO0+ZY (1))

F(2)82,9G0/(G0eZY(2))
F(I)sLAMDAL® (F(2)=F (1)) /(2Y(2)=2Y (1))

9l
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IF (1«2) 10+20430

10 FUL)BF (1) =2.2EL/ (ELlel.)
Ft2)aF(2)=1,
F(I1aF (3)m(El=l,10G0/((El*l,.)9Glenl)

RETURN

30 Fll)s 2./7(GQe2Y(1))
F(2)8 2,/(G0e2Y(2))
F(3)s LAMDALe (F(2)«F (1)) /(2Y(2)=2Y (1))

20 RETURN
END

SUBROUTINE FINDZY

THIS SUBROUTINE CALCULATES THE VALUES OF KO+NOs AND 1l,w]l AS GIVEN IN
(8)¢(9) AND (11) OF THE REPORT , THE QUTPUT 1S THRU THE COMMON
BLOCK /2YY/

COMMON /MAIN1/N(3) +H.ERPS(3)

COMMON /FUV/A,G0,G1,62

COMMON /2YY/2Y (3)

COMPLEX N¢GO0,Gl 4G2,224Y24Z+2Y¢ToE14E2,CT9DENYDENZ

El1aN (210N (2) s g22N (3) eN ()
22(0e0le)*G] s TeZoM

Y2262 s 22av2/€E2
21sAIMAG(2.2T)

IF (ABS(Z1)«GE+60.0) GO TO 10
CT=CSIN(TIZCCOS(T)

DENY=ZaY20(T s DENZ=2/Eles220CT

ZY(3) 2222/ (E1eDENZODENY®0e5®(1.¢CCOS(2e2T)))
20 ZY(1.2(Z/EL1)19(22=2Z%CT/E1) /DENZ
ZY(2)wZ®(Y2=24CT) /DENY

RETURN

10 2Y(3)12(0es04) s CT=2(0e0l.)
DENY=ZeY2eCT (3 DENZ=Z/E1Z22eCT
GO TOo 20
END
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SUBROUTINE BEJY (XyBJeBYsMIN)
OIMENSION BJ(2148Y(2)

BEJY CALCULATES THE BESSEL FUNCTIONS JOsJlsY0 AND Y1.INPUTS ARE}
{1) X WHICH IS THE ARGUMENT OF THE BESSEL FUNCTIONS.
(2) M AND N DETERMINES WhICH TYPE OF BESSEL FUNCTIONS IS NEEDED»
EXAMPLE WHEN (MyNy3(140) JO WwILL BE CALCULATED.
THE QUTRUTS ARE 3y aND B8Y REPRESENTING BESSEL aND NEUMANN FUNCTION
RESPECTIVELY.

TsX/3,
YaTeT
283./%
IF(X.GE.3,) GO TO 10
BJ(l)al ,=Y®(2,2699997ye(]l,2656208Y0(,3163866=-y0(, 0644479
1Y®(,0039444+Y02,0002100)))))
GO TO 11
10 wsSQRTI(X)
AF=,79788456-2#(,000000772%(,005527402%(,00009512~28¢+00137237
1=2%(+00072805+22,00014476)))))
THETA=X=¢78539816=2%(.04166397+2%(,00003954~24(,00262573
1=2%0400054125+42°1,00029333-2%,00013558)))))
BJ(1)=AF®COS(THETA) /W
11 IF(NeGT.0) GO TO 20
IF (MeEQ.2) GO TO 40
RETURN
20 IF(X.GE.3.) GO TO 30
BY(1)22.,/3,16159265440G6(%X/2,)28J(1)e,36766681ey0(,60559366.
1Y®(,76350386y0(,25300117=Y#(,0426121%~Y®(,00427916-Y0,00024848)))
2N
GO To 31
30 BY(1)=AF®SINITHETA) /W
31 IF(M.EQe2) GO TO 0
RETURN
40 [F(X.GEe3.) GO TO SO
B8U(2)20¢5=Y0(,56269985=y0(,21093573y0(,0395428%ay0(,00643319
1eY®(,00031761«Y2,00001109)))))
BJ(2)=8J(2)8X
GO TQ Sl
S0 AF=.797884564Z2(.00000156°2%(401659667+29(,00017105=2%(+00249511
1=20(,00113653.2+,00020033)))))
THETAZX=2,35619449¢28(,12499512425(+00005650=2%(,00637879
122%(,0007636842%,00079824=2",00029166)))))
8J(2)=AF®COS(THETA) /W
51 IF(N.EQ.2) GO TO 60
RETURN
60 IF(XeGEs3.) GO TO 70
BY(2)22¢/734141592650xX0AL0G(X/2.)98J(2)=,63661098+Y0(,2212091ev0(
1261682709=Y5(1,3164827=y8(,7123951=Y0(40400976=Y2,0027873)))))
BY(2)=BY (2) /X
G0 TO 71
70 BY(2)=AF®SIN(THETA) /W
71 RETURN
END




#“‘ AD=A061 864 AIR FORCE WEAPONS LAB KIRTLAND AFB N MEX F/6 8/14
DYADIC GREEN'S FUNCTION FOR A TWO=LAYERED EARTH.(U)
NOV 77 H A HADDAD: D C CHAN6

UNCLASSIFIED AFWL=TR=77-69 SBIE=AD=-E200 091
. IIIIII|IIIII\|IIIII\|IIIII||IIIII|IIIII|IIII|I|IIII|||IIIII|IIII|||IIIII||IIIII
HL’ 31664

END
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SUBROUTINE ASYMP(X92ZellyJV)

THIS SUBROUTINE CALCULATES THE TRUNCATED INTEGRALS FROM ALPMAT
TO INFINITY AS SHOWN IN Ce=2 OF THE REPORT,INPUT (X) RFPRESENTS
THE LOWER LIMIT OF THE INTEGRAL, (2) IS THE OUTPUT WHICH IS THE
CALCULATED ANALYTICAL APPROX. oIl AND JJ ARE JUST VARIABLE DIMENS.

10

37
39

20

COMMON /MAIN1/N(3) ¢sH4EPS (3) oRK

COMMON /MAIN2/8

COMPLEX FoGGoFFsYYsZZsYXeZX9oNyGAMAO2Z+G11G290YZsDFYsDFZePFRF
OIMENSION YY (392)¢2Z(3¢2)9YX(302)¢ZX(392)9G1(302)+62(3¢2),2(110JJ)
1ePF(3,302)9RF(3+3¢2) ¢DFY(3+2)¢DFZ13+2)

FF{XXeGGrRR) XXPSQRT(2+/(341415926539RR) ) *CEXP (=GG*B) /66
Pls3.141592653

GAMAO=SQRT (XoXe],)

RAsXeRK 4 PPaRA=Pl/6.

CALL UV(X9GAMAQ oYY oZZ0ITeJJ)

SIsSIN(PP) $ ClIscOs(PP)

FaFF(XeGAMAQO+RA)

00 10 Jsl,JJ

00 10 I=l,II

PF(lelsd)sFayy(l.y) § RF(1s1.D)=2F%22(1s0)
Gl(IsJ)B(=PF(101eJ)®(STI=CI/(B,*RA))I*RF(191sJ)®(CI=3,9S1/(8.%RA)))

1/RK

9-1.05-0‘

00 39 M=2,3

XD=Xe (M=]) D s RD=x0 eRK

GAMAQSSQRT (XDeXD=1,)

CALL UVI(XDoGAMADsYXe2ZXe110JJ)

OYZ=FF (XDyGAMAOYRD)

00 37 J=l,JJd

00 37 Isisll

PF(MoIoJ)SOYZoYX(IsJ)

RF(Mo10J)=0YZ@ZX(10J)

CONTINUE

R2sRK®RK

00 20 Jsl,JJ

D0 20 I=l,II
OFY(1oJ)3(=3,0PF (19oleJ)ebe®PF (29010J)=PF (3010J))/(2%0)
OFZ(1oJ)B(=3,8RF(191sJ)ebe®RF(291¢J)=RF(3¢l0J))/ (2,00}
G2(leJ)=(=CI®DFY(14J)=SI®0FZ(1+d))/R2
2(19J1261(19J)+G2(2sJ)

RETURN

END




SUBROUTINE QSTATC (AQTATLeLlsddrl@)

QUASI=STATIC APPROX, wiLL AE EVALVATED IN THIS SUBRQUTINE.

tA0) REPRESENTS TWE POLE _OCATION IN THE COMPLEX ALPHA=PLANE,

tTOTL) IS THE QUTPUT OF TwIS SUMGROUTINE whICHN 1§ THE CALCULATED
ARRAY OF FlELD COMPONENTS, Il AND JJU ARE VARIARLE OIMFNSIONS,

(1Q) IS A FLAQ AND IT SWOULD BE 1 IF QUASI=STATIC APPROX, IS§ NEEDED,

OO000

COMMON /MAINL/N(I) smeE () tRK oKD ZHM

COMMON /MAIN2/8+PHLsTWCT,.ST

REAL x0

COMPLEX NyDS DIoPZSP21¢PASPXTQ,TOTLSOMCVADEL

OIMENSION 03()03)30‘I)tl}l’li()ollo?ll()OI)o’ll()nllo'll(loli
L]

LoTOTL (I 0JJ) o SOM (3421 4Q(3+2)
ElaN(2)N(2)
In®B/x0 [} RO®RX/ K0

CALL FIELD(DSoKO2ZHMIRQ,P2SPXSIIT v IJ)

CALL FIELDID] ¢XK0e2ZMeROPZIPXI LT UV}

CALL QV3I(QelTeudl

CALL RESULTI(AOeSOMeITeyJelQ)

Cal,egl/(Elel,)

00 10 Jsl,Jy

00 10 I=l,Il .
10 TOTLUTeU m0S o) =DI(1sJ)*COPZI(102)ePR]I(1s0)e01]sJ)@STeSOM(T,J)

RETURN

END

SUBROUTINE QVIINEsIs)) |
COMMON /MAINY/N(3) sHeEPSR(I) +RK |
COMMON /MAIN2/84P ToCT,STCP,SP,CP24SP2 |
OIMENSION HE(302)0T1(30219T2(302!) |
COMPLEX NyCoME»T1oT24KEsELrd |
Plel,14159288) S Julleole) |
ElaN(2)*N(2) |
Ko (€L/(Elmle))@(=e6189318L~e50U0PTeCLOG(N(2))) |
Ca(N(2)eN(2) ) )2 INI2)ON(R)0),)
En(Elal, )0Cr2,
ReSQRT (BeBeRK®RK)
AAALOG (ReB)
R3al,./Ree)} § RSal,/reeS $ RBlal./(R«B)
RB2uRBleRB] § RR=RB) /R $ RBm(2,%R+B)¥RI®RA2
Tltle1)m CO(RI=I ORSw (RKeCP) ®020e,80( (g CP/R)®a2eSpau) /R)
T1(21])neCoRKaRKOSP20 (], 8%RSe,250R))
T1(30))a=CORKOCP® (RRe I AYRASe 5% (ROR3=A4))
Tl(le2)aCoORKARKOSP2® ¢ ,S0RD.25%RR)
T1(212)8Co(RRRBC (RKOCP)0U2a 5@ (AARR® (RKUCP)0eQ))
T1(3¢2)9(0000,)
T2(1e))aEoRB e (BuCPeCP /RSPOSA)
T2(2+1)8=E*SP2® (RK*RAL) »e2/R
T2(Je))2EWAKUCPO (w2, 2RReAACBORA] oK)
T2(1+2)00,50EegP2% (RK*RA|) 082
T2(212)8=E¢ (AACRA)L® (ROCPaCPegeSPUSP) oK)
T2(302)10(0e00,)
00 20 Jyual.y
00 20 llalel

20 HME(I1e0U)mTL (110l *TR(I10JV)
RETURN
ENO

95 i
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SUBRQUTINE CORREC(XeFollsdd)

THIS SUBRQUTINE IS USED wwENEVER A QUASI=STATIC CALCULATION IS
NEEQED. AFTER ThE INTEARATION =aD REACMED CEATAIN LIMIT

AS DESCRISED IN SUARQUTINE (RESULT) THIS SUBROUTINE wiLL 9E EXCUTED

(ALPmAD)

TO GET TwE REMAINDFR OF TWE INTEQRATION IN AN aPPROX, FQRM,

TMESE APPROX. WAVE BEEN SMOWN IN SECTION #.2 o EQS,

OF ThE REPQJRT,

10

COMMON /MAINL/N(Y) o MeEPSR (D) o RK

COMMON /MAIN2/B4P ToCT STICP,SP,CPR1S92
OIMENSION F(3,21eT1(30214T2¢3¢21472¢342}
COMPLER NoELloFoJdoeX)ox2.T10T2,73,x)3

(501

ElaN(2)eN(d) $  Ju(leele $ Plud,1419926%)

K2u(l1=l4) /0, $ Klued,oC€l/(Ele],) %02
l).‘(:c.(“lu‘.( ((1“0"(“".' 1002/8.
RuaSQRT (8%°8¢RK*RK)

8Rel./(ReB) [ RR=BR/R
Co=0+11993191AL00(2)
AL®ALO0 (Red) L] EuEXP (=Keg)

Tltlel)aK)®RKWCPACT#RR

T2t1v]1) K28 (]l e(le=B/R)*CPOCP)eqR GO (AL eC)wR*E/X) oS8T

TI(1e1)m2.OKJe (BOCPOCPR/ReSPESP) agREST
Tl(2s1)aK]leSPaCTeRK AR

T2(2e1) @0, 50x2085P20 (R:3) 0ARST
TI(2s))n=KIeSP2eSTe (A egR) @e2 /R
TL(Jel)mK1® (), /Re(Xe)l /X)®EeB® (AL+C)=R)®CT
T2(3¢))aK2eRKeCPesTeRQ
TI(JellandeCPaSTORK® (=2,0RR A +B®ARC)
Title2)u=K]eRKeSPecTeaR
T2(le2)1w(0,400,)
TI(1e2)u,5exkIesP205Te (RXOdR) 00l
T1(212)8K] @RKeCP LT8R
T212+12)8K28 (AL eCoF) ST
TI(202)m=KIeSTO (AL+Co (RECPOCPAOSPOSP) *3R)
TI(Je2)8(0es04)

T2(3+12)uK2¢RKeSPeSTegR

T3(Iv2)m(0e004)

00 10 UNsl,

00 10 INal4d

FUINGUN) BT (INoJUN) o T2 UINGINI o T3 ( INsIN)
RETURN

END

26

AND

(3e)

it s e i
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SUBRQUTINE ASMPT (POLE«T EM¢ILodd)

TMIS SURROUTINE PERFORMS TME ASYMPTOTIC EVALUATION OF TME EM FIELD
COMPONENTS USING STEEPEST QESCENT METHOO. SKY WAVE aPPROXs I§
PERFQORMED 8Y SUBROUTINE (LANGR) AND GROUND WAVE SOLUTION IS
CALCULATED USING SUBROUTINE (FACTOR)s THE INPUTS ARE 1

t1) POLE wHICH IS THE POLE LOCATION IN THE ALPMWA PLANE,

(2) T IS TRETA wHICH IS THE ANGLE GIVEN BY ARCTAN(ROZ (Z+M0)),
EM IS TWE RETURNED ASYMPTOTIC FIELD.II AND JJ ARE VARIABLE DIMENS.

COMMON /MAIN1/N(3) oHeE(3) sRRoKO ¢ ZHM
COMMON /MAIN2/8¢PMIsTP :
gg:zgc: POLEIEMISMR+S]1 952905901 sPISIPXSIPZIPXIINIGeGReIJWP
X
OIMENSION EM(I1eJJ) 9SMR(3¢2)
1008(342)000(302)eP25¢340214P22(342)ePX11(302)+PXS(3,2)
1J2(0e0l0)
GPa=1 ®CSQRT (POLE®POLE=],)
20 XaSIN(T) s CaCosS(T)
ReSGAT (RReRR.BeB)
ROsRR /X0 ] ZH=B /X0
Pa(leealJ)®CSQRT (1] ,=GPec=RePOLE)*R/2,)
CP=CARS (P)
Ir (CO.GEJ.S) GO TO 2%

CALL FACTOR(T¢XsCoPOLEWRSMR I JJ)

CALL FIELD(DS KO0 «2ZHMROPZSePXSeIT9JY)
CALL FIELOD(DI+XKO0sZHIRQIPZIPXIvILvJU)

00 10 J=loJJ
00 10 1al,Il
10 ER(Ie0)a0S(IeU)=0T(Led)eSMR(I0J)
GO TO 30
25 CALL LARGRITEMeIIVIY)
30 RETURN
ENOD

SUBROUTINE FACTOR(TTeA1GOvAPyRIHEIKKILL)

THIS SUBROUTINE CALCULATES THE ASYMPTOTIC FORM OF THE EM FILELD
IN THE AIR REGION TAKING INTO CONSIDERATICN THE GROUND wAVE
SOLUTION.TWO TERM APPROX, HAS BEEN USED QUT OF THE ASYMPTOTIC
SERIES,FORWARDCENTRAL AND HACKWARD DIFFEQENCE METHOO mAS BEEN
USED TO REPLACE THE DERIVATIVES IN THE SECOND TERM,

COMMON /MAIN1/N(3) ¢HeE (3) 9RO
OIMENSION BESJU(2) oBESY (21 ¢U13¢2) 9V (392)+S0(843021e51(80302)
1 TR (3¢2)sTR2(342) 9008 (3+2)¢00S(302)955(3+2) HEIXK,HLL)
COMPLEX WB1iWB2+1GGeU¢V4S0sS1sCFeTRLITR2,0S400S+SSHE
COMPLEX NoAP ¢ JoBeG12¢GPFRIHIJINILIFsFOeFLeNeP o)
Ja(Qsale) [ 1 Ple3, 141592683
RAPaREAL (AP®AP)
IF (RaP.LTel.0) GO TO 17
GPueJeCSQRT (AP®AP=] 4} [ 60 T0 Je
17 GPeCSQRT () «=ADeAD)
34 B9 (1eeJ) ®CSART ( () ,=GPag0=AP®A) /20
FB=l,.0
ABSAIMAG(8)
t' “..LT‘OOO) FBl-l.O
PeFBeReSQART (R)




6l2aCEXP ( y*R)
wlsw(P)eFp

Clenuccmncnnaccccncecccceccncccarccaccncne

W(P)ZEXP (=PaR) aERFC (= oP)

Crecescccnccaccccnccccccccecccncescnsccae

wdlawl /3 S WA2aBe(JewleFR/ (PeSQRT(PL)))
CFaPletl.=J)eBedeg]2
QaS.0E=06
AD1®TT*D s AD2%TT=0
DO 39 M=l,é
IF (AD14GEe1.570796,0R,402.LE.0.0) GO TO &2
IF (M.GEes) GO TO 20
ADSSIN(TTFLOAT (M=2) D)
10=0Q
GO TO a8
42 IF (AD1.GE.1.0) 6O TO 72
10s=l S  ADaSIN(TTWFLOAT (M=1)eD) 3 GO TO @88
72 1032 §  ADaSIN(TT<FLOAT (M=])eD)
88 GA=SQRT (1.=ADeAD) $ GGs=JegA
40 X=AD®RO
FeAQ®CEXP (=JoX) /SQAT ((1.+GA®GOeAD®A) @2,)
CALL BEJY(X+BESJ.BESY.2,2)
H103B8ESJ(1)eJeBESY (1) $ H1lsBESJ(2)*J*BESY(2)
FOsHlOeF S Flau])er
CALL UV(AD®GGeUsVIKKLL)
DO 22 Ls=l,lL
00 22 Ks] (KK
SO (Mool )sFOOU (KoL)
22 SliMexsliaFlev (KoL)
39 CONTINUE
201 CONTINUE
If (I0.GE.1) GO TO as
CENTRAL OIFFERENCE
00 83 L=l L
00 83 k=] ,.XK
OS (KoL) ®(SQ(IeKoL)=SO0t1eKoL)eS1(IeKILI=SI(L1oKoL))/(2.90)

DOS(K.L)'lSO(JcKoL)'?.’SOl?!KtL)'SO‘l'KcL)OSl(30K0L)-20'51120K’L)

1eS1()eKol)) /0002
83 SS(KL)®=J®G0@(SO(2+KsL)eS1(20KoL))
G0 TO 106
8S IF (10.,EQ.2) D==D
FORWARD OR BACKWARD DIFFERENCE
00 93 LslilL
00 93 Ks) KK
DS (KoL) ®(=3,0S0 () sKoL)o4,%S0(20KeL)=SO(31KsL)=Ia®S)(]sKIL)
104,98] (29K )=S1(I*KsL))/(2:90)
DOS(K.L)'(I-'SO(IoKoL)os.'SOIZOKQL)0‘.°SO(JoKoL)-SO(‘|K'L)
1024981 (LoKol)1 5,981 (20Ko)e4,05) (3eKol)=S1(4eKobl))/D0O2
93 SSIKL)Ia=J%G0% (SO(1okrL)eSL(1oKIL))
106 00 S7 Lasl,lL
00 57 Kk=l.kKk
TRI (KoL) uCFoWB] 0SS (KoL)
TR2(KsL)8CFOWR2® (2, % A0S (KoL) 4 Je00®0DS (K'L) ¢ (J/B*92e,75) @
1SS (Kel))
S7 ME (KoL) STRY (KoL) eTR2 (KoL)
. RETURN
END




c.---

C U]

10

S
100

122
124
120
226

COMPLEX FUNCTION w(2)
(Z)ZERP (=20 ) eERFC(=102)

COMPLEX 102020022025:53,8%:P) PI KeK]1 FR
18(0asls)

RsREAL(2) {3 v-iquo(z:
IF (XeBTe3e9.0ReYGT,3,0) 104100
Plajez $ 280207

IF (lo@?O‘IOQOn"oaraﬁoo) G0 T0 S
weP1e(,4613135/(25=41901635)¢.09999216/ (25=],7804927)
1900028083894/ 128-5.52%34637))

RETURN

wWEPLl®( 5124242/ (28-027525851)¢,05176536/(25-2,724748))
RETURN

Pe2./S0RT(J.1415926%))

Il u=l02

$3=?) s s4as) s I2u2)0eQ

00 120 Jsl.200

NaJe=)

AJeFLOAT (29Ne)) s AQuF L OAT (2ON®®2e5aNe))
Pla§le22eAl /A2

$3=P) $ PSaCABS (P))

IF ((N/2°2) «NE.N) GO TO 122

SenSe-P) s 60 TO 12¢

SeaSee.pP)

IF (PS,.LE,1.0E-09) G0 YO 226

CONTINUE

Ks(legle) Klutlesels)

FRaKegaeP,2,

WBCEAP (=202) 8] =K]*FR)

RETURN

ENO
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SUBRQUTINE RRQOT(2EROAP)

THIS SUBRQUTINE SEARCHES FOR THE SURFACE MODES THAT ExXISTS WwITHWIN

A LOSSY DIELECTRIC SLAA A30VE a FINTELY CONDUCTING GRAUND (REFER TO
SECTIONY QOF TWE RFPQRT) AT FIRST,TWE REAL WOOTS OF & LOSSLESS
OIELECTRIC SLAB ABOVE A PERFECTLY CONDUCTING SWEET,wILL B9E SZARCMED.
TRESE RQOTS ARE QF TWwO TYPES OF POLARIZATION,TM (EVEN) AND TE (00D)
AS GIVEN Sy EQS (39) AND (40) QOF TWF REPUORT,THE ROOTS ARE TWEN.
PLUGGED IN EQS (37) aNO (38) RESPECTIVELY To SeaRCH FOR TWE COMPLEX
OF A (OSSY SLA@ 4BOVE 4 FINITELY CONOUCTING EARTN, UP TO S RQOTS ARE
SEARCHED ANDoTHEN SEND 8ACK TO TME MAIN PROGRAM VIA THME VARIABLE
(ZERQ) o IF MORE ROQTS EXISTS THE OIMENSION OF (ZERO) SWOULD RE
INCREASED, THE ROOT CLOSEST TO THE REAL AXIS IN THE COMPLEX ALPWAe
PLANE wILL BE SENT THMRU TWE VARIABLE (AP). IF TWE PROGRAM FaILS TO
FINO ANY ROOT WITHIN A GIVEN INTERVAL AN ARBITRARY POLE LOCATION
(e950018) WILL RE ASSIGNED FOR ALPMA. THE INPUTS ARE THRU THE
COMMON BLOCK /MAINY/, SI0()) AND EPSR(I) REPRESENTS THE
CONDUCTIVITIES AND RELATIVE DIELECTRIC CONSTANTS IN TWE THREE MEODIA
STARTING WwITH REGIONS (1) AIRs (2) SLAB AND (3) EARTN,

H3SLAB wIOTW « OMEGAS ANGULAR FREQ. IN RADIANS,

QUTPUTS ARE,

2EROF ZEROES FOUND,

APE THE ROOT CLOSEST TO THE REAL AXIS IN THE COMPLEX ALPNA=PLANE.

COMMON /MAINI/SIG(I) ¢EPSR(I) ¢HeOMEGA
DIMENSION ZERO(S)
COMPLEX ZERQ42Z+4P
LogrcCaL 6
EXTERNAL FX.FY
Plud,.1415926%)
F2uneSQRT (EPSR(2)=1.)
INSINT(2,°F2/P]) )
IlalN
XeFLOAT(IN) /2, $ YaFLOAT (IN/2)
1F (X.£Q.Y) GO TO S8
62 TlaFLOAT(IN=l)oP1/2,01,0E=08
TT2aF QAT (IN)#P1/2,=\,0E=08
T2aaMIN] (F2,7T2)
PRIN: &S
65 FORMAT (1Xe*ROQOT OF T™ TYPE MQDESe/)
CALL ROOT(T1aT20FYoX1010001¢0€E=054100419G)
1F (6) 60 TO 08
RALPHASSQRTIEPSRI2) =X1® X1/ W/ N)
PRINT 7S¢xl,RALPHA
IMe
CALL ZROOT(IMuXx142240)
IF (G) GO0 TO &
ZERO(IN) 222 s G0 TO 101
4 PRINT 79,22 h
ZERO(IN)®(49%,.19%)
105 PRINT 724IN
101 INalNel
IF (INJLELO) a0 TO 1S
S TIwFLOAT(IN=1)0P1/2.41,0E=05
TT2eFLOAT(IN) Pl /2,=1,0E<05
T2uAMINL (F2,TT2)
PRINT &9
69 FORMAT (1X+®ROOT OF TE TYPE MODESe/)
CALL ROOT(T14T24FXoX101000140€=0541004+G)
IF (G) 60 TO 107
RALPHASSQRT(EPSRIQ) «X1®X1/H/N)
PRINT 7Sexl,RALPNA
IMs)
CALL ZROOT(IMeX1422+0)
IF (G) GO TO &
2ERO(IN) =22 $ G0 TO 109
6 PRINT 79,22




107
109
14 ]
72

2ERQIINI3(e95,.15)

PRINT 724IN

INs[Ne] S 60 TO

FORMAT (llooeAMAl nx--:l:.s.axongnnA REAL=*E13.5//)

FORMAT (1Xs9oREGION®I3«SxeNO REAL ROOTS HAVE REEN FOUIND®/)
FORMAT (1XeNO ROOTS ARE BEING FOUND OR IT DIONT CONVERGE®,1X

79
102202 (2XE13.5) /)

15

IF (IT.LE.l) GO T0 9
AAsAIMAG (ZERO(L )

D0 12 1s2,1}
AlsAIMAG(ZERO (1))

IF (AALLE.AD) 60 TO 12

IKs] s AAsAl
12 CONTINUE

APsZERO (IK) ] 60 To 16
9 AP=ZERO(])
16 RETURN

END

T —

e
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10

20

30
a0

$0

SUBROUTINE ROOT(A+1BeF X JMAXIEVE)L Q)

THIS SUBROUTINE USES THE BISECTION METHOD TO SOLVE FOR ONE QDO
RQOT QF F(X) w 0 ON TWE INTERVAL (Aw8)s THE FUNCTION PASSED
THROUGM F MUST BF DECLARED EXTERNAL IN aLL CALLING PROGRAMS, € IS
INTERVAL OF UNCERTAINTY DESIRED FOR Twe RQQT. AND MUST BZ SMALLER
THAN THE STAATING INTERVAL. W = 8ed, TWwE NUMRER OF BISECTIONS IS
QETERMINED BY NMAX & [ N(W/E)/LN(2)s AFTER BISECTINAR, TWE FUNCTION
VALUE IS COMPARED TO €1 IF a8S(F(XQ)! > €] THEN TwE SUBRQUTINE
PRINTST OISCONTINULITY AT X ® X0, A RANDOM SEARCHM QCCURING JMAX
TIMES 1S USED TO LOOX FOR A CNANGE OF SIGN IF SIGN(F(A)) @
SIGN(F(8)).

DISCONTINUITY AT X » « A RANDOM SEARCH OCCURING JUMAX TIMES IS
USED TO LOOK FOR A CHANGE OF SIGN IF SIGN(F(a)) « STGN(FI(B)),

A PLOT OPTION IS AVAILABLE THROUGH ENTRY POINTY PLOT

THAT WILL PLOT TWE FUNCTION F ON THE INTERVAL (A.8) AT JMaX
EQUALLY SPACED POINTS. WHEN USING THE PLOT ENTRY, JUMAX MysST 8E

$ 100, AND THME FOLLOWING SUBROUTINES ARE NEEDED: XPXNYNs xPRINT,
AND xSC120.

L0alcaL @
REAL N2
OIMENSION Y(3)

QUESTION! OQQES FtA) = 0.

YiaF (a)

IF(Yl ,NELDQ.) GOTO 10
} 1)
aoro 8o

QUESTIONI DOES F(B) » 0,

Y2=F (B)

IF(Y2.NE.O.) GOTO 20
A=l
60TO 80

QUESTION! ARE THE SIGNS OF F(A) AND F(8) OIFFERENT.

IleSIaN(LlaeY])
12aSIGN(la0Y2)

waled

IF (Il NELI2) gOTO 60

SEARCH FOR A CMANGE IN SION.

0C 30 J=mle.JMax

XeAeRANF (0,) oy

13asioNtleoF (X))

IFtI3.NE.IL) GOTO SO

JMey

CONTINUE

"‘N' &0 .
FORMAT (1 XoNQ CMANGE OF SIGN FOUND®/
GuUMEQ.UNAX

RETURN

daX

QETERMINE NUMBER OF RISECTIONS
LN2®0. 8931471381

NMAX®ALOG (W/E) /LN2e1,
Yi2ell)mA




Y(2=11)88 ]
BEGIN BISECTION

00 70 Na)],NMax |
AZB{Y(])eY(IN) /20
YIsF(X) 1
IF(Y3,.EQ.0.) GOTO 80
I13aSIGN(Ll,eYY)

70 Y(2013)ax

80 [F(ABS(F(X)).LE.E1) GOTO B85S

e

CONVERGENCE TO A OISCONTINUITY

PRINT 82+
82 FORMAT(1X®DISCONTINUITY AT X = ®E)1244/)

G=ABS (F(X))«GT.EL
RETURN

CONVERGENCE TO A ROOT

8S PRINT 904X

90 FORMAT (1X®ONE 00D ROOT AT X = ®E12.4/)
G=aBS (F (X)) ,G6T.E1
RETURN

ENOD

FUNCTION FX1(2)

€Q. (40) +SECTION 3 OF THE REPORT. TE (000! TYPE ROOTS wilLL 8E
SEARCHED.

COMMON /MAIN3/S(3)4E(3) M
FXRZOTAN(Z)*SQRTI(E(2) =], ) ®HOH=Z97)
RETURN

END

FUNCTION FY(2)

EQe (39) +SECTION 3 OF THE REPQRT. T™M (EVEN) TYPE ROOTS WILL BE
SEARCHED,

COMMON /MAINI/S(3)sE(3) 9N

El=€(2)
FYS(Z/E1)®TAN(2)=SGRT((E]1=]10+) ®HON=207)
RETURN

END
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SUBRQUTINE ZROOT(ITX+Z13GG)

THIS SUBROUTINE wILL SEARCHM FOR THE COMPLEX ROOT OF A LOSSY SLAB
ABQVE 4 FINITELY CONQUCTIANG EARTH, 3Y USING THE REAL ROOT FOUND FROM
THE SUBROUTINE (RQOT) AND SENT THRU TmE VARIABLE (X) TO THIS PROGRAM
FROM THE SUBRQUTINE (PROOT) o A COMPLEX SQOT WwILL B SEARCHED FOR
THE  SITUATION OF A LOSSY SLAB ABOVE GROUND , TWE VARIABLE (IT)
QETERMINE IF THE RCOT IS IN TRE TM QR TE CATAGORIES. (2) IS TWE
RETURNED COMPLEX ROOT .(GGG! IS & LOGICAL STATEMENT +IF 1T S TRUE
NO COMPLEX ROOT IS FOUND OR PROSABELY FAILED Tn CONVERGE TO A ROQOT.
OTHERWISEs (GGG) IS FaLSE aNO +TMUSs A COMPLEX ROOT IS FOUNp.

COMMON Z22ZI/NI(3) emeEPSR(I)

COMMON /MAINI/S(3) €¢I} +nN ONEGA

COMPLEX NeCX,CENTRyZERQ,ZCY ALPHA

EXTERNAL CX,CY

DIMENSION SIGMA (3)

LOGICAL GGGGG

Plad, 14592653

EPSQ0s8.854E-12

FREQN®QMEGA/2./PY

L LL]}

00 99 JJysl,d

SIGMA(JJ)aStYY)
99 EPSR(JJISE(JY)
00 12 J=l,3
12 N(J)BCSURT (EPSR(J)*(0esls) ®SIGMA (J) 7/OMEGR/EPST
CENTRaX
IF (IT«EQ.2) GQ TO 115
CALL CROOTI(CX(CENTRyZERQ,TT+GG)
IF (GG) GO TO &6
GO YO S0

115 CALL CROCTI(CY CENTRVZERSTTGG)

IF (GG) GO TO &6
90 PRINT 88,FREQN, (N(J) eJuled)
88 FORMAT (IX1oFREQ.5*E11,3/20XON0meFT7 3,00 0F9, 4/,
120XON 1 BeF 743,00 0F9,a/,20X0N2R0F T Jv0e ®FF,a//)
ALP AaCSART («2ERQCZERO/H/HeN(2)ON2))
PRINT 18,ALPNA
18 FORMAT (1XseALPHAR®EL] 5,0 0E13,5/)
109 Z=ALPwWA
030'77.07-100:‘5
RETURN
(1) IaCSQRT («2ERQCZERQ/M/MeN () ON(2))
PRINT 67,2,7T
67 FORMAT (1Xe®1T FAILED TO CONVERGE®4XeZERQu®E]13.5.0¢J2E13,5,
1eReTESTReE]3,8/)
GGG=TT«GTele0E™S
RETURN
ENO
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IN THIS SUBRQUTINE A4 NEWTONS METHCD PLUS a4 HALVING TECHNINUE wlLL

SUBROUTINE CROOT(CFoZ0.ROQTVTEST 4!

BE USED TO SEARCH FOR COMPLEX ROOTS,.

2s
30

100

COMMON /PRIME/OCF
COMPLEX CF.OCF
COMPLEX ROQT,F,0F420.21+201

LoGgIcaL 6

JaQ

I1=0

FaCF (20 s OFs0CF

TESTOuCABS(F)

1F 172370.07.1.22-05) 60 TO 25

TEST1aTESTO GO TO 100

21s20-F/0F

FaCF(21) s DF=0CF

TEST1aCABS(F) $ 201s1-20 s 20=2]

IF (TEST1.LE.1.0E=-08) GO TO 100
IF (J.GE.50) GO 10 100

Jugel

IF (TEST1.LE,TESTO) 60 TO 25
CABaCaBsS (201)

1F (CaB.LE.L,0E=05) GO TO 100
21=s20-201,2, s Inlel
IF (1.GE.10) GO TO 100

G0 TO 30

ROQT=20

TESTSTEST!

GeTEST.GT,1,0€E-08

RETURN

END

COMPLEX FUNCTION CX(2)

€Q. (38) +SECTION 3 OF THE REPQRT.

COMMON /PRIME/OCX

COMMON /ZZ2ZZ/N(3) 4HEPSR(3)
COMPLEX DCX

COMPLEX NoZoE1vE2¢GN2 U NN
COMPLEX G0+G240G0+0G2+C5,CCy02
rE LI S ElasN(2)eN(2) $ E2=N(3)eN(])
UR=2®2+E1°H2

mNsE2en2

G0=CSQRT (U=H2)

G2=CSART (U=nN)

CS=aCSIN(2) ] CC=cCOS( )
060=-z,G0 s D62=-2/G2
022000G62/2-2

CX2GZeCS/CCeG0G2

DCX=GZ/CC/CC+(DG0®G2/2+0G2%G0/2-G0%G2/2Z/2=1.)*CS/CC+DGO*0G2

RETURN
END
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COMPLEX FUNCTION CY ()

EQe (37) +SECTION ) OF THE REPORT,

67

COMMON /PRIME/OCY

COMMON /2Z22/N(3) sHeEPSR ()

COMPLEX OCY

COMPLEX NoZ+E1E2,GN2+sUsZZ NN

COMPLEX GQ096G2,060,0G2+CS5.CCyvG2Z

H2sHoN $ ElsN(2)eN(2) $ E2sN(3)eN(3)
Us=Z®7.E1°H2

HNsE2emM2

GO0=CSQRT (U=H2)

G2sCSQRT (U=KHN)

22s7/g) s GN2=G2/E2

CSsCSIN(2) S CC=cCO0S(2)

06o==2,/G0 s 0G2%=2/G2

G23G0#GN2/22-22

CYaGZeCS/CCeGOGN2

DCY= (=GO®GN2/22/2+ (DG0*GN2+G0®DG2/E2)/722~=1./E)1)*CS/CC
14GZ/CCc/CC+DGO+DG2/E2

RETURN

END




