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ABSTRACT

It is shown that the vocal tract impulse response magnitude should

be less variable for a given speaker than other acoustic measures of his

speech. Cepstrum analysis is used to deconvolve the vocal tract impulse

response and the glottal pressure wave of each of 1850 speech segments

taken from running English speech. Linear correlation coefficients

derived from pairs of impulse responses are shown to differ , depending

upon whether the two impulse responses were taken from the same speaker’s

utterances, from speakers of the same sex and/or vocal history, or from

altogether different speakers. A feasible method of speaker identifica-

tion which can in principle operate automatically is developed from this

approach and tested .
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CHAPTER 1

INTRODUCTI ON

1.1 History

Several methods have been developed for recording the amplitude

versus frequency distribution of the speech signal as a function of time.

The distinctive appearance of such a display leads to the conjecture

that such displays might form the basis of a method of speaker identif 1.—

cation.

Early researchers used several laborious methods to measure the 
if

spectra of successive parts of a speech signal. In one experiment,

segments of a sentence were graphed as a function of time and subjected

to manual Fourier analysis. The resulting spectra were combined into a

“three—dimensional” graph with time as the abscissa and frequency as the

ordinate; the relative intensity was indicated by the degree of darkness

of the various parts of the display [1]. In another experiment, a group

of ten bandpass filters was used to separate a sentence into components

within each of the frequency bands. The output of each filter was

recorded f or subsequent study [2].

In 1946 , Koenig, Dunn , and Lacey , working at the Bell Telephone

Laboratories , reported the development of a “sound spectrograph” [3).

In this device, a signal of 2.4 seconds duration was recorded on a

rotating drum which was in turn geared to a wave analyzer and a
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- recording device using electrosensitive paper. The compressed output of

the wave analyzer was used to control the darkness of the trace on the

paper. In this way, a vertical section of the trace represented the

instantaneous spectrum of the corresponding part of the signa l which was

recorded on the drum below it. The original device was sufficiently

rapid in response to be able to record the spectrum of each glottal wave

pulse. A series of commercial devices embodying this principle is

presently marketed by Kay—Bee Elemetrics under the generic name of

sonagraph. The display produced by the device is termed a sonagram.

Figure 1.1 is a sonagrain of the author saying , “Joe took father ’s

shoe bench out.” At the left end of the display is a calibration signal

which is generated by the sonagraph. It consists of a 500—Hertz ramp

wave, and the harmonics of the ramp appear as dark bars in the display.

The speech portion of the display clearly shows the distinction

between the voiced and unvoiced signals. The unvoiced segments have

broad—band frictional noise which is filtered by the vocal tract , as is

indicated by the varying darkness of “i” in father, “sh” in shoe, and

“ch” in bench. The voiced segments show vertical striations , each of

which displays the spectrum of a single cycle of the signal. The “j” of

Joe is a voiced consonant, and therefore shows both broad—band frictional

noise and the vertical striations characteristic of voiced sounds.

The dark bars in the display indicate the frequency bands of

maximum energy . These are termed formants , and the frequencies at which

they lie are called the formant frequencies. The first (i.e., the

lowest frequency) formant will be denoted by 
~l 

the second by f
2

- 

and so on. The voice fundamental frequency will be symbolized by f0
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f~~. tor man t structure is the primary ,~ lot ’ used by the aud i t o ry  sy s t  out in

iden t i f y i n g  a sound , whether it  is a ~poo& h segmen t ,  a mu sic~ 1 t one’ , or

any other noise. The formant structure is characteristic of the sound ;

compa r e , for  example , t he “no” of took , the “o” of shoe , and the last

par t  ot the “ou” of out . Each of these is very s i m il a r  in appearance .

and similar in sound to the ear.

Speaker identification experiments may he grouped fo r pur poses o f

dis cussion in the fol lowing way . We f i r s t  d is t inguish between “sor t i ng”

and “identification” tasks. In a sorting task, it is desired to determine

which of a set of samples of different speakers was uttered by each of

the speakers. In an identification task , It is desired to determine

which of a set of known speakers produced a given unknown utterance.

One next distinguishes between open and closed tasks. In a closed task ,

all samples required to complete the task are known to he inc luded in the

set of samples. In an open task , it is possible tha t some of the required

samples are not in the set.

I... C. Karate , in 1962 (4), reported the success of a method of

speaker identification utilizing a voice spectrograph. The technique

was dubbed “voiceprinting ,” by analogy with the established identifica-

F tion technique of fingerprinting . Kersta reported that female high

school sophomores, after one week of instruction and practice , were

highly successful in identifying speakers on the basis of their spectro-

grams of common English words. In a closed sorting experiment with five

F to twelve speakers , error rates of (1.8 percent were obtained for word s

taken in Isolation , and 1.0 percent for words taken from context in

running speech.
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Other researchers worked subsequently to verify and to extend

these results. Tosi , et a l.,  performe d a similar sorting task [5].

Their results were very like those reported by Kersta , but they note in

their conclusions “. . . that this group of trials does not fit any type

of forensic model. ” Their experiment also included tasks of other kinds .

By using open trials and varying the quality of the recording, the

— number of speakers , the number of clue words , and the lapse of time

between known and unknown utterances , the researchers estimated error

rates of 6 percent false identifications and 13 percent false eliminations.

In another identification experiment , Tosi studied the effect of

the number of speakers on the error rate [6]. With five speakers, the

error rate was one percent ; with fifty speakers, the error rate increased

to 5.7 percent. In the latter trial the operators were forced to decide

within fifteen minutes. If the operators were allowed to suspend

judgment in doubtful cases, 74 percent of the cases were resolved with

2 percent false identifications and 5 percent false eliminations.

Other researchers showed different results. In one instance, a

closed set of five speakers gave 21.6 percent errors for words spoken

in isolation and 62.7 percent errors for words taken from context [7).

In this experiment , the operators were Michigan state policemen trained

as operators according to the Voiceprint method.

Another experiment was conducted to compare visual and auditory

discrimination [8). In closed trials with eight speakers, 6 percent

errors were obtained by listening and 21.6 percent by spectrogram . If

the tr ials were made open by the inclusion of non—catalogued speakers,
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6 to 8 percent of the samples were falsely identif ied by l is tening and

31 to 47 percent were falsely identified by their spectrograms.

Procedures for speaker identification using digi ta l  comput er s

have also been developed. In one study , average spectral patterns for

each of ten speakers were measured and stored in a computer [9). New

utterances by one or another of the speakers were analyzed and a pattern

recognition type program was used to find the pattern most similar .

Another extensive and recent report [10], describes a method of

speaker identification which is semi—automatic ; that is, it requires a

minimum of operator expertise , and the decisions are made by the machine.

The exercises are also forensically suitable in that  d i f f e ren t  utterances

are compared by the computer and it is determined whether or not they

- were spoken by the same speaker. The system can resolve 25 percent of V

the test cases with no errors. The authors state that in 70 percent of

the cases, the probability of a fa lse  decision is less than 1 percent .

The remarkably good performance of this system is partly due to the

nature of the trials, which were closed and used words spoken in

isolation.

Broadly speaking, current methods of speaker identification are

deficient in two areas: accuracy and objectivity. The accuracy

requirement is self-explanatory —— we would like a method which always

gives the right answer! The objectivity requirement is intended to

make the system or method independent of the operator. This will be

done in the following study by reducing the function of the operator to

a very simple task. This function can , in principle , be performe d

automatically for many identification tasks, as will, be shown. The

H
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system need not be dependent on “ ac tua l  use ’ trails for justification ,

elnce the expected re l i ab i l i ty  of the system will be developed a pr ior i

on the basis of the statistical distribution of the identificati on

parameters .

In a review and comparison of speaker identifi cation methods

published in 1970, Tosi et al conclude :

I

I t  may be that , when we have learned much more about the
sound features that  character ize  individual speakers , it
will  be possible to design an instrument that can be a
powerful aid to the eye in voice iden t i f i ca t ion , or even
one that can operate automatically in a comp letely
objective manner [11).

Reference 10 cited above suggested areas in which “state-of-the-

art” computer—assisted iden ti f ication methods might be extended . Many

of these proposed areas of study are included in this work.

1.2 Statement of the Problem

The purpose of this research , briefly stated , is twofold. First ,

to determine under what conditions the parameterization of the speech

signal provides a method of identification with a given reliability, and ,

second , to determine how the reliability of the identification i~

affected by such variables as the number of samples compared , the time

between different samples , and other par~aeters to be defined later.

To complete this task, it is necessary to obtain a sufficient

number of speech samples of good quality , to design the analysis pro-

cedure which derives the identification parameters , and to model the

various kinds of identification tasks on the basis of the identification

il

~~ Ij



— ~~~~——- — — ,.- ,— —---—-----~.. ,, -., -,--~

—

.t.

I
,

pararnete’r distribut ions. flits thesis indicates satisfactory attainment

of each of these oh)ei-tivos . A number of suggestions for further work

are inherent in this procedure and are presented in Chapter V. Indica—

tfons of the manner in which the procedure may be automated or specialized

for certain tasks is also given.

The data base for this studs’ is approximately eighty minutes of

running English speech comprised of twenty—nine readings of the Rainbow

Passage, which is reproduced in Appendix A , by twenty—one speakers. A

system of computer programs was used to edit this data and to extract an

approximation to the vocal tract impulse response magnitude at selected

points , by the method of cepstrum deconvolution . It is shown on

physiological grounds that these measurements should exhibit greater

va r i a b i l i t y  between speakers than the va r i ab i l i ty  of d i f f e r e n t  utterances

by the same speaker. This theoretical conc lusion is justified empiricall y

by a further system o1 programs which use ~t correlation technique to

compare the vocal tract impulse response magnitudes at selected points

for the same and for different speakers. The set of correlation

coefficients so obtained has a dec idedly non—norma l distribut ion.

A by—product of this study Is a set of highly accurate quantitative

measures of the speech spectrum and the speaker fundamental voice

frequency. These measurements are presented In Appendix B.
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CHAPTER II

DEVELOP MENT

2.1 Physiological Background

The speech signal contains information pertaining to the content

of the speech, and gives information that is characteristic of the

speaker. If it lacked the former , we would not understand the speaker;

lacking the latter , we would not recognize him. Heuristically , this is

obvious; a vocoder is intelligible but unrecognizable (except as a

vocoder), while one might easily recognize a familiar voice speaking if

unintelligibly or in a foreign language and not understand it al all.

It is shown in this chapter that it is important to separate the two

kinds of information in the interest of enhanced reliability of identifi-

cation , and that it is possible to do so. The manner of separating the

identification parameters uses a signal processing technique which has

not heretofore been employed in speaker identification.

The difficulties in extracting the speaker identification para-

meters are inherent in the nature of the speech generator and in the

speech process itself. First, we will examine the speech generator at a

physiological level —— the vocal mechanism.

The vocal mechanism may
’ be divided into two parts: an acoustic

source and an acoustic formant filter. In voiced sounds , the source is

a quasiperiodic glottal pulse generated at the larynx. In unvoiced

sounds , the source is frictiona l noise generated by turbulence as the
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breath is forced past a constriction in the larynx , pharynx , or oral

cavity; or transient signals generated by a stop in the articulatory

system. In either case, the acoustic generator is powered by the

pressurized air contained in the lungs.

This study is limited to vowel sounds f o r  two reasons : f i r s t ,

since the glottal source is the most efficient and powerful source. The

second reason depends upon certain observed features of speech signal

and wil l  be developed subsequently .

A schematic diagram of the vocal mechanism is presented in

Figure 2.1. It shows the principal parts of the apparatus and outlines

the functions which each performs in the speech task.

A prosodic variable is one which depends upon the manner of

speech. The most important prosodic variables are intensity (which is

related to the acoustic power output) and pitch (which is related to the

fundamenal frequency). It is desirable to remove the effect of prosodic

variables from the speech signal before an identification is attempted .

The intensity and pitch of the speech also show intra—speaker variations

due to physiological causes. The system of identification should be

isolated from these effects as well. The following paragraphs discuss

the ways in which such changes manifest themselves in the measured

acoustic signal.

The glottal pressure waveform was indirectly measured by Timcke,

von Leden , and Moore , who measured motion pictures of the vocal folds

during phonation [1). They plotted the distance between the vocal folds ,

as a function of time. Systematic variations were found as a function

of pitch and intensity for normal speakers. In the range of pitches
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used in normal speech , th e hig her int ens i t i e s  were associated with

pu l se—l ike  opening curves and the lower intensities with triangular

opening curves. It is reasonable to expect wide variations in the

glottal pressure waveform since the shape of the glot ta l opening curve

varies widely . Schematic indications c’f the vocal tract opening f~ r

different conditions of phonation are shown in Figure ~.2.

Stevens (2] writes concerning the glottal pressure waveform

itself:

if the glottal vibration is periodic , the spectrum
amplitude of the volume flow is, of course , a line spectrum

The shape of each glottal pulse varies somewhat with
fundamental frequency and vocal effort for a given talker.

Figu re 2.3  shows an approximate “ typ ica l ”  g l o t t a l  pressure—wave

spectrum derived from wo r k by Ste vens .

Normal speakers show pitch fluctuations on a cycle—to—cycle basis.

Liberman (3) defines the “perturbation factor ” as the percent of a large

number of cycles of phonat ion which d i f f e r  from one cycle to the next b y

0.5 millisecond or more . A nonpathologic speaker with an f
0 

of 250 Hz

would typically have a perturbation factor of 5 pe rcent ;  one w i th  an

of 100 Hz would normally  have a per tu rba t ion  f a c t o r  of 25 per cent .

The vocal t ract  acts as the acous t ic f i l t e r  or formant  generator

in voiced speech. Interest in parameterizacion of the vocal tract first

arose from studies in speech bandwidth compression. If one could encode

the speech signal into a small number of slowly varying parameters , one

could t ransmit them on a narrower band than could he done with the

original signal. The pitch signal is band limited to about 300 Hz , and

- 

•1
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the vocal tract changes during articulation occur on a time scale con-

siderably longer than the pitch period.

Stevens and House have done several studies of vocal tract modeling.

In 1955, they reported a three—parameter model that “ . . . produces

idealized vocal tract configurations which are descriptive of human vowel

articulation” (4]. They later designed an electrical analog of the vocal

tract to test the performance on their model —— with excellent results.

Steinberg and French employed the term “hub” to describe formant

positions [51. The hub was defined as “ . . . the visible or hidden

position of bar (formant) 2 of any sound when the sound is made alone.”

Two facts were recognized : first , that the hub must in some cases be

deduced from its effect on adjacent regions , as no visible feature is

present ; and second , that a large part of the speech signal consists of

“transitional patterns ” whose fo rman ts are disp laced by various amounts

in different directions , depending upon the nature of the contiguous

sounds.

The behavior of the formants is of considerable importance in the

detection of consonants. Indeed , it is possible to remove the consonant

from a speech segment , leaving only the transition , which will itself

cue a listener to hear the missing consonant [6]. S. Ohman, the author

of this study notes , however , “ . . . that the cost of removing a final
segment from a VC utterance or an initial segment from a CV utterance

will depend very much on the particular acoustic properties of the

sounds that enter into the ut terance. ” (Symbolic notations such as CV

are defined in the list of symbols.) The term coarticulatlon was

introduced to name the variation of articulation from values obtained in 
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neutral contexts or in isolation , which are dependent upon the context

in which the articulation is measured.

S. C. Ohman studies VCV form utterances in English speech (7].

He stated that consonant and vowel generation in English involve

different uses of different parts of the articulatory mechanism. The

VCV utterance is neurally coded as a V—V transition on which is superim-

posed a command to generate a consonant. He observed that both the

stationary portion of the vowels and the t ransi t ion regions on each side

of the consonant were affected by the vowel on the other side of the

consonant. This finding is a variance with the older “locus” theory of

Libermann et al., in which it was hypothesized that the transition region

will tend toward a locus which is characteristic of the interposed

consonant. O)~ ‘ct of loci to be associated with each

consonant, one for eve~ ir of surrounding vowels.

Stevens and House in 1963 published a study of formant frequency

perturbation by consonantal context [8]. They found certain contexts to

have a minimal effect on the articulation . These contexts were termed

“null” contexts.  They conclude :

the /h——d/ context has a negligible effect on the
articulation during the central portion of the vowel.
That is , the vowe l in the context /h——d/ is generated
with essentially the same art iculatory configurat ion as
the vowel in isolation .

In an effort to secure maximum isolation for running speech , all

vowels employed in this study are isolated on each side by voiceless

consonants. An example is the work “path ,” which is taken from the
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context “its path high .” Here the desired vowel is isolated on one side

b y two voiceless consonants and on the other side by three voiceless

consonants.

Stevens and House also measured values of f
1 

and f
2 

in four-

teen different contexts. The values of f
1 

were little affected by

context except in the vowel I/ti. This observation , and other anomalies

concerning I/ti, were claimed by the authors to be due to atypical data

from one of the talkers , whose pronunciation of f/ti differed markedly

f rom one context to another. The value of f
2 

was nearly systematically

affected , with front vowels having f
2 

lowered and back vowels having

raised. The authors conclude “ . . . the consonantal context has the

effect of shifting f
2 

from a value appropriate for the null environment

toward a more central  position .”

In summation , fundamental frequency shows perturbations in

isolated speech segments due to imperfections in the speech mechanism,

or to disorder in the organic or neurologic functions. The glottal

pressure wave and the fundamental frequency are also strongly affected

by prosodic elements in speech. These changes may occur from one glottal

cycle to the next .

Isolated speech tasks, when repeated , show stable articulatory

configurations. In context , articulation shows transitional features

or coarticulation as well as superposition of different vocal tasks which

do not require simultaneous use of the same articulators. Articulatory

adjustments are made on a time scale considerably longer than the pitch

period .
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2.2 Model and Hypothesis in Speaker Identification

It has been shown that the vocal tract configuration is less

likely to undergo short term fluctuations than other articulators con-

tributing to the speech signal. Indeed , though the glottal pressure wave

varies the driving function , it is the vocal—tract resonances which

determine the formants and therefore the vowel which is heard . The

following hypothesis is the basis of the proposed method of speaker

identification and classification .

First , tha t contexts in which a vowel is isolated in each side by

voiceless consonants protect the vowel from coarticulation by nearby

vowels , though allowing coarticulation by the adjacent consonants, and

that such contexts are easy to locate by inspection of the speech signal.

Second , that the approximate vocal trac t impulse response magni— 4

tudes derived from these contexts are sufficiently invariant for a given

speaker, and different enough for different speakers , that they serve

as speaker identification parameters which may be used to distinguish

between speakers in a s ta t is t ical ly  significant manner.

Since the perceived pressure signal is the convolution of two

time functions, the glottal pressure wave and the vocal tract impulse

response (and also a “system function” including radiation effects and

the recording and analysis process, which for purposes of discussion is

ignored), it is difficult to determine directly from the spectrum of the

speech signal which parts or features are due to the glottal pressure

wave and which to the vocal—tract impulse response. Since the glottal

wave is known to vary as a function of the rate of speech , intensity ,

L
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and pitch , the difficulty of extracting the vocal—tract impulse response

from the speech spectrum , by inspection , is considerable.

Under certain conditions , which are fairly well satisfied in the

speech signal, the operation of deconvolution may be performed by

cepstrurn analysis.

2.3 Computation of the Cepstrum

The cepstrum of a signal is defined as the Fourier transform of

the log magnitude spectrum of the signal. Its desirable properties are

inherent in the nature of the Fourier transform and in linear—system

theory. The following is a partially heuristic development of the

cepstrum and its uses.

Let the lower—case letters denote time functions and the uppercase

letters the corresponding frequency functions which are Fourier transform

pairs:

S(f) = F~ [s(t)] and s(t) F
~
[S(f)J

Consider a signal s(t) which is the convolution of two time

functions, g(t) and h(t)

s(t) g(t) * h(t) g(t) h(t — T) cIT

The spectrum of s(t) will be a product:

S( f )  F
f[g(t) * h(t)] = G(f) 11(f)
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and the log magnitude spectrum of s(t) will be a sum :

log~S ( f )~ — logIC (f)I + logjH (f)I

The inverse transform of this sum of functions is also a sum :

F~ (logIS(f)J) — F~ (1og(G(f)~ ) + F
~
(log(H(f)

~
)

and defines the cepstrum . The cepatrum , as defined , is a comp lex funct ion .

It is unnecessary to preserve the comp lex nature of the cepatrum , however,

since it is derived by the Fourier transform of a real quantity. Th~ ~og

magnitude spectrum is real by definition , and the symmetry of its Fourier

tra~sform , the cepstrum , is therefore known. It is possible , but un—

necessary for the purposes of this research , to define a complex cepstrum

on the basis of a comp lex logari thm of the spectrum . This approach is

useful where the object is reconstruction of the time waveform , as in

echo removal.

The essential nature of the cepstrum is in the Fourier transform

of the logarithmic spectrum . This replaces a t ime domain convolution

with a t ime—like  domain summation . The author of this thesis is not

aware of any single standard definition of the cepstrum ; each writer in

signal processing preferring his own. In this thesis, the unqualified

term “cepstrum ” will refer to the magnitude of the Fourier transform of V

the log magnitude spectrum of a signal:  that is ,

cepstrutn (s(t)1 — f F t(1og~
F f ( s ( t ) ] j ) ~
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4here it is not intended that the inagn i tude ut the cepst rum be t .ikeu • the

t erni ‘‘comp lex cepst rum’’ wi LI be used . The comp I cx ce’ps t rum de r I Ved I FOflI

the comp lex logarithm , though not used In the thesis , will be exp lic i tl y

described where it is mentioned .

Suppose that s(t) is periodic. Then 5(1) will be a lin e

spectrum and wil l have peaks spaced at equal m t  crv.I I ~~ in I reqtiencv . The

ui~ t ion S( 1) is therefore  per iodic  in frequency, and its cepst runi will

be .i line cepstrum .

The cepstrum of a voiced speech segment will he the sum ol  a

continuous function of time represented by F
~~

L 1 og
~
H( I )t j , since the

vocal tract frequency response 11(f) varies slowly and aperiod icall y

with frequency, and a line cepstrum represented by F’~ [log~G(f) jJ
if

since the glottal pressure wave spectrum G (f) varies rapidl y and

periodicaI1~’ with frequency. Therefore , under the above—stated restric-

tions on h(t) and g(t) , their respective contributions to the

cepstrum of s(t) may be readily distinguished. The sharp peaks

representing the voice harmonics in the l inear spectrum are smoothed by

the log magnitude operation to an approximatel y sinusoidal form. The

contribution of g(t) to the cepstrum will therefore be seen principall y

as a few peaks spaced at intervals of the pitch period in the cepstrum

doma in.

F i g u re 2.4 presents the time waveform of a 50—millisecond segment

ol  voiced speech, comprising 512 samples. The Pitch period Is Ind irat ed

by , and is the interval between successive glott al pressure—wave

e v ~ I ( ‘5

- V__
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The Fourier transform or linear spectrum magnitude of the speech

segment is shown in Figure 2.5a and the log magnitude spectrum is shown

in Figure 2.5b. In each case, only 256 points are shown and they

correspond to the positive frequencies. It is apparent that the log

magnitude operator has smoothed the peaks which represent the voice

harmonics to an approximately sinusoidal form. The voice harmonics are

positioned at intervals of f
0 

a l/T in the frequency doma in since the

glottal pressure wave is quasi—periodic . The particular form of the

discrete Fourier transform which was used In this analysis gives frequency

points at 10, 30, 50, . . ., 5110 Hz.

The cepstrum , or inverse transform of the log magnitude spectrum,

Is shown in Figure 2.6. The periodicity of the log magnitude spectrum

is telescoped in the cepstrum into the pitch peak. The total length of

the cepstrum corresponds to a pi tch period of 25 msec. Since the cepstrum

is the inverse transform of a frequency function, its domain is a time—

like domain. The cepstrum is related to the autocorrelation function ,

which is the inverse transform of the square of the spectrum, in that it

tends to emphasize periodicity in the spectrum of a signal. The original

pitch period of the speech signal under discussion was T . The primary

pitch peak occurs at T a 10 msec in the cepstrum . It is not unusual

for a smaller pitch peak to be seen at 2T 20 msec , as is shown in

Figure 2.6. The successive pitch peaks in the cepstrum have been termed

“rahmonics” of the signal.

The position of the pitch peak may therefore be related to the

fundamental frequency of the speaker. For the particular analysis used

in this study , the fundamental frequency corresponding to a pitch peak 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~- —V-- -r . - — V - 
-
~~~ V_•__ ~V~~~~~~~ - - 

~~~~~~~~~~~

19

in cell N is 10240/N Hz. Choosing N a 41 gives an f
0 

of 250 Hz ,

which is above any fundamental frequency likely to be used by an adult

speaker. Since the pitched components of the speech signal are tele-

scoped into the pitch peak, and its rahmonics into the cepstrum, the

portion of the cepstrum from the origin to the 41st point may be

considered as an approximation to the Fourier transform of the vocal

tract frequency response. This is not strictly accurate. The low

“quefrency” part of the cepstrum , as the cepstrum independent variable

is called , is the Fourier transform of the vocal tract frequency

response multiplied by the glottal pressure wave; therefore, the term

“approximate vocal tract impulse response” is used to name the low—

quefrency part of the cepatrum . If the pitch peak is suppressed and the
if

V remainder of the cepstrum is Fourier tran8formed , a curve similar to

Figure 2.7 is obtained. This curve Is the vocal tract frequency response 
V

multiplied by the glottal pressure wave spectrum. The use of the

cepstrum is to remove the rapid oscillations in the spectrum which are

due to the quasi—periodic nature of the driving function.

Appendix B contains mean cepstral. pitch determinations and mean

vowel spectra which were derived by the technique outlined above.

2.4 DerivatIon of the Performance Prediction

The identification or classification task may be modeled as a

random process that may respond to an input condition a or an input

c , wherein It is desired to determine whether the input is a or e

from an examination of the output. The decision—making process is

shown schematically in Figure 2.8.

I- ~~~~~~~~~

V - V .  : V
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It is assumed that the mean output in the presence of condition

a is greater than that in the presence of condition c , and that the

distributions of responses to the possible a and c inputs are known.

In essence, a threshold T is chosen , and it is assumed that if the

output is greater than T , the input is a , and if the output is less

than T , the input is c

In the discussions to follow , condition c will be associated

with the cross—cerrelations , i.e., with the absence of the desired

speaker characteristic , and condition a will be associated with the

autocorrelations, in which the desired speaker characteristic is present.

Though reference is made to speaker characteristics , the approach is

perfectly suited to identification as well as classification and will be

so applied —— for surely the identity of a speaker is one of his most 
V

important characteristics.

A threshold T may be selected that gives any desired probability

of detecting either of the conditions at the expense of the likelihood of

detecting the other , for a pair of distributions such as are shown in

Figure 5.1. For example, if the threshold were set at the mode of the

c distribution , the probability of detecting a would be o’,ite high ;

but the probability of detecting c would be only 50 percent , or chance

level.

Area (a) is termed the false identification region ; that is, the

area in which a cross—correlation coeff ic ient  is above the threshold .

Area (c) is termed the false elimination region , in which an auto—

correlation coefficient is below the threshold.
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Let the probability of a true decision be Pt and that of a false

decision be Pf . Val ues of Pt 
and Pf 

may be derived from the actual

coefficient distributions. Assuming that the coefficient distribution

obtained by the use of the programs SPKTST or GRPTST is a fair representa-

tion of the universe and that selection from the universe occurs randomly,

then the probability of obtaining a coefficient between certain limits is

the ratio of the area under the coefficient distribution between those

limits , to the area under the entire curve. This function is tabulated

for normal distributions ; however, it will be shown that the means and

standard deviations derived from the correlation coefficient distributions

in this thesis do not adequately represent the actual distributions.

A reasonable choice for the threshold location is to place it

between the distribution means in such a way that the probability of

false identification equals the probability of false elimination. This

choice allows a single value of Pt 
to give the probability of correct

identification or elimination , and a single value of Pf to give the 
V

probability of false elimination or identification. tinder the above

definition , Pt 
+ Pf 

a always.

It is assumed that the identification or classification task

consists of n independent experiments , each of which is the compar ison

of a unique pair  of utterances . The theoretical probability of success

in one experiment is Pt 
where success Is defined as the corr ect

identification or elimination of a sample , and the theoretical probability

of failure in one experiment is therefore Pf . The critcrion for a

decision on the basis of n experiments should be set on the basis of

the number of experimental results greater than T (which indicate
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identity of speakers for the two utterances) and the number of results

less than T (which indicate difference of speakers for the two utter-

ances). The most stringent criterion is to require n result. greater

than T for identification and n results less than T for elimination.

In general, the predicted results will be the terms of the binomial

expansion ,

V P(ni,r) • (~~~~)
in (1 — ~~)r — ( p ) in (~~ ) r

wherein P(m ,r) is the probability of obtaining in true responses and

r false responses in in + r experiments , where in + r n . Only the

end terms, P(n,0) and P(0,n) , will be considered determinate results.

Any task in which some experiments have results greater than T
if

(identify) and some have results less than T (eliminate) will be

considered indeterminate. The predicted probabilittee for different

kinds of decisions based on n experiments may accordingly be written :

correct identification or elimination — — P
~
(n)

false identification or elimination — (~
f
)fl — Pf

(n)

and the 
V

indeterminate resul t — 1 — — (p f
)i~ — P~ (n)

wher e , Pf (fl) , and denote the probabilities of true ,

false, and indeterminate results, respectively , of an identification

task consisting of n trials.

While it would be desirable to design a system that resolves

nearly all of the identification or classification tasks correctly , it
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is important to determine what proportion of the determinate tasks are

• correct. The quantity R(n) , defined by,

R(n)  — 
n/ ( n 

+ )

indicates the reliability with which determinations are made by this

method . The value of R(n) gives the ratio of correct determinations

to all determinations as a function of Pt Pf 
and the number of

experiments, n

riTh

- 

V
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CHAPTER III

EXPERIMENTAL PROCEDURE

3.1 Data Collection

The primary data used in this thesis consists of magnetic tape

recordings of different speakers reading the Rainbow Passage. Three

one—week recording sessions were held in 1973, 1974, and 1975.

The exact equipment configuration which was used in the 1973

recording session was not under the author ’s control and cannot now be

determined ; however, the following three items include all equipment
if

which was employed : tape recorder——audio , Nagra Mod el II S/N PH067l0602,

used in 1973, 1974, and 1975; sound isolation booth——ISA Model 40 S/N

328, used in 1973 and 1974, and a field—modified telephone booth , used

in 1975 (a report on the properties of the booth is included in this

thesis as Appendix C); and microphone——Electrovoice Model 664, used in

1973, Sennheiser Model MD421U , used in 1974 and 1975.

Over 200 recordings were obtained , including multiple readings

by the same speaker. All of the data were transferred from individual

reels of 1/4—inch audio tape to a 1/2—inch , seven—track instrumentation

recorder format. The Nagra recorder was used for playback and an Ampex

Model FR 1300, S/N 6480126 , was used for re—recording. Channel 1 of

J
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the Instrumentation tape was devoted to a master timing signal which

allows the desired speech signal to be accurately located . This tape is

referred to as the Voice Analysis Master tape (VAN).

The data group used in this thesis is a subset of the recordings.

Nine male and twelve female speakers were chosen who had made a total of

twenty—nine readings. The pertinent data concerning these subjects was

obtained by questionnaire at the time of the recording (see Table 111.1).

The selected readings were transferred from the VAN to digital magnetic

tape in a format suitable for input to a digital computer. The timing

signal was used to control an Identification channel on the digital tape

so that the digital and analog tapes could be synchronized .

The analog—to—digital recording procedure is diagrammed in Figure
if

3.1. The VAN is positioned to the desired sample reading. The speech

signal is low—pass f i l te red  (5.0 kHz) and an analog—to—digital converter

(operating at 10.24 kHz) generates a digital representation of the

filtered speech signal. The timing marks on the VAN occur at one—second

intervals and are used to advance the identification counter, whose

value is recorded on the digital tape simultaneously with the data.

The upper—frequency cut—off of 5.0 kHz was chosen to limit the

bandwidth of the data to a reasonable representation of the speech

signal. The sample rate of 10.24 kllz was chosen so that 512 real samples

represent a time interval of 50 insec, which places the frequency domain

samples at intervals of 20 Hz for computational convenience.

Twenty—nine readings were transferred to digital tape in this

manner. The repeated readings were made at time intervals ranging from
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a few minutes to two years . This data was used to determine the

stability of the identification parameters .

3.2 Generation of Speech Cepstra

The second step in the identification process is the selection

of certain speech segments and the computation of theh pstra. The

selection in this instance was made by manual comparison of transcripts

and computer output , but there is no theoretical reason that the

selection cannot be controlled by a computer with the appropriate

program and peripheral equipment.

An analog recorder was used to convert each speech signal to a

chart recording . Figure 3.2 is a chart recording of speaker ill reading

a part of the “Rainbow Passage.” When the recording was made , index
if

marks were made on the lower edge of the chart to show breaks in the

phrasing; those on the upper edge mark the speech segments of interest.

In this thesis , only vowels separated on each side by voiceless conson-

ants were studied . The spaces isolating “take” and “shape” can be seen.

Once the desired speech segment is located , the cepstra are V

obtained in the following way . A block of 512 real samples, which I.

considered to be the first recognizable glottal cycle , is chosen at the

beginning of the segment. This block is Ranning weighted , the window V

function being defined by

W(n) — 0.54 — 0.46 cos(2rn/512)

The Hanning window was chosen to minimize the side—lobe level. The

Fourier transform of the windowed time function contains 256 complex
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frequency points. The log magnitude operation gives the spectrum at 256

real frequencies , and this spectrum is inverse Fourier transformed to

yield the complex cepstrum . It is possible to define the cepetrum on the

basis of complex logarithms of the spectrum , but this is not considered

necessary for this work . The magnitude of the cepstrum is retained for

use in identification and simulation tasks, and the complex cepstrum is

retained for use in deriving voice pitch and spectral information .

Successive Hanning—weig hted blocks of a signal are statistically

independent if they are separated by one—half the block length. Accord—

ingly, successive blocks of 512 real samples , each 50 mccc in length ,

are taken at intervals of 25 msec after the first sample until the entire

segment has been processed . Thus , the number of cepstra derived from a

single utterance will depend upon the length of the utterance. Cepstra

from within the same utterance by a given speaker have not been found to

be significantly more similar than cepstra from different utterances by

the same speaker. Consequently, the average cepstrum for each utterance

is considered by the subsequent analysis to be representative of the

ut te rance •

The first computer program (EDITVA) allows the operator to

examine data from the digital tape and to obtain a permanent record of

the waveform at any point. This program was used to check the quality

of the digital recording and to locate the speech segments of interest

for further processing.

Once the desired speech segments were located , a work sheet

(Figure 3.3) was prepared . This sheet gives the digital ID number for
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locating each segment to be analyzed . Once the working sheet has been

prepared , the second analysis program (EXTRAC) m a y  be started .

The second program allows data to be selected from the digital

tape , and the cepstra of the selected segments to be recorded on another

digital tape, called the “cepstrum tape .”

The EXTRAC program generates two forms of output. The first out-

put form Is shown in Figure 3.4. The program requests the operator to

enter the time (in milliseconds) within a given ID number at which each

speech segment of interest begins. These requests appear along the left

edge of the display . For the second output form (Figure 3.5), the

program computes and displays the log magnitude spectrum and the cepstrum

of each of the requested segments. After each cepstrunm is computed and

displayed , the operator may choose either to have it Ignored by the

• program , or to have It labeled and included on the cepstrum tape.

The cepstrum tape generated by EXTRAC contains cepstra and their

associated indexing information : the subject number , vowel number , the

digital data tape ID number , the start time within the ID, and an index

number which allows the actual program listing to be determined . Each

time the second analysis program (EXTRAC) Is started , the index number

is reset to 1, and each operation is assigned a unique index number

within the run of the program. A part of the reference listing of the

cepstrum tape is shown in Figure 3.6.

3.3 Classification and Identification Programs

The term auto—correlation refers to a correlation coefficient

between cepstra which share any common characteristic . For example, in

an identification experiment , coefficients derived from different

J
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utterances by the same speaker would be considered auto—correlation

coefficients. In a classification by sex experiment , all coefficients

derived from subjects of the same sex would be considered auto—correlation

coefficients. The term cross—correlation refers to correlation coef I I—

cients between cepstra which do not share the common characteristic of

interest.

The correlation coefficients are derived in the following way.

The user f i r s t  selects as many groups of cepstra as are desired , each of

which may contain one or more cepstra. The mean value of each group is

reduced to unity. All groups are summed and the sum is reduced to unity

mean. This produces the average cepstruin for the experiment. The

average cepstrum is subtracted from each of the individual group cepstra,

thus converting the group cepstra to the deviations of each group

cepstruxn from the mean cepstrum. Finally , the correlation coefficient

for each pair of group cepstrum deviations is computed . If the two

group cepstrum deviations share the common characteristic of interest,

the resulting correlation coefficient is regarded by the program as an

auto—correlation coefficient ; if they do not share the common character-

istic , the coefficient is regarded as a cross—correlation coefficient.

The group cepstrum deviations from the mean cepstrum are correlated ,

rather than the group cepstra themselves, in order to emphasize most 
V

strongly the differences between the cepstra. The group cepstra them—

selves correlate with one another with coefficients almost always greater

than 0.95, whether or not they were uttered by the same speaker or by

members of the same group.

J
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Various kinds of classification and identification tasks may be

• simulated by the computer programs SPKTST and GRVPTST. Each of these

programs accepts the cepatrum tape generated by EXTRAC as input and

requests instructions from the operator via a graphics display terminal

V concerning the operations to be performed. The programs perform

identical processing and generate output of the same form. They differ

in the degree of flexibility given the operator in choosing the nature

of the experiment .

Program SPKTST assumes that cepatra are to be distinguished on

the basis of subject number. This allows speaker identification tasks

to be simulated . This program also generates two forms of output : the

first (Figure 3.7) gives a condensed listing of the contents of each V

cepstrum group ; the second (Figure 3.8) lists the statistical parameters

derived from the distribution of the correlation corfficlents , and a

histogram of their distribution. The operator may request more detailed

-• information for any of the output forms , including a listing of all the

correlation coefficients as they are generated . Cumulative statistical

information is also stored by the program and is displayed at the end of

the run or upon operator request.

Program CRPTST allows cepatra to be grouped for study in an

arbitrary manner . This program Is used to obtain the coefficient dis—

tributlons for speaker classification experiments. The output of GRPTST

is Identical to that o SPKTST, and the input protocol differs only In

that the program allows the user to specify a code to be used in

classif y ing each cepstrum as an auto—correlation or cross—correlation .
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CHAPTER IV

RESULTS

4. 1 Speaker Ident i f icat ion

Program SPKTST was used to obtain the distribution of correlation

coefficients and associated statistics for use in speaker identificatIon

simulation. Each of the four classes of speakers, which are male smokers,

male nonsmokers, female smokers, and female nonsmokers, had seven vowels

processed .

For each vowel within each class, the sum of all cepstra derived if

from each utterance and reduced to unity mean was used as the representa-

tive cepstrum for that utterance. Therefore , the auto—correlation

coefficients give correlations between different utterances of the same

vowel by the same speaker , and the cross—correlation coefficients give

correlations between utterances of the same vowel by different speakers.

For each class of speaker there is one pair of correlation coefficient

• distributions and associated statistics for each of the vowels.

Table IV .1 shows summary information about the Identification

experiments , and lists for each vowel within each class the number of

samples , the distribut ion mean , and the standard deviation for each of

the coefficient distributions.

The data presented in Table IV.1 show that certain vowels have

the auto correlation mean, significantly greater than 
~~ 

the

cross correlation mean for each of the four speaker groups, and are in
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this sense good identification parameters. Other have ~m and p too

close together or fluctuate from one group to the next and are relatively

poo r iden t i f ica t ion  parameters . It Is reasonable to expect that  certain

of the vowels should fail consistently. Vowels 2 and 12 are often

embedded within an utterance where they are very difficult to locate

accurately. It is also probable that many cepstra identified by either

of these vowel numbers are labeled in error. Vowel 102 is a diphthong,

occurring in the words “type” and “sky .” Unlike the other diphthong used

in this study (number 32 taken from “take”, “shape”, and “cate”), vowel

102 changes its spectrum radically during the course of the vowel. It

is a very obvious diphthong , and samples from one part of an utterance

correlate poorly with other utterances. For these reasons, only four of

the vowels, 4, 5, 8, and 32, are considered acceptable for identification

purposes. They are discussed in the following paragraphs .

Table IV.2 lists the statistical parameters of the summed distri—

butions for each of t!-me speaker classes. Each of the distributions

includes all four of the “good” vowels. A X—square test was employed to

test the likelihood that  the observed coe f f i c i en t  d is t r ibut ions are

drawn from a normally distributed universe. In general , the fit is very

poor; therefore , the use of the standard deviation is not strictl y

defensible.

For each of the speaker groups , and separately for the auto—

correlation and the cross correlation distributions , Table IV.2 shows

the number of samples , the distribution mean , the standard deviation ,

and the X—square probability of normalcy of the sample universe. 

- - - 
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The data presented in Table TV.2 are derived in the following way.

Each vowel or speaker is processed separately,  and the dis t r ibut ions  and

statistical parameters are summed to give the accumulated values. In the

test for vowel 4, for example , each of the groups, 1 through 4, was run

separately ; the resulting distributions were summed to give the distribu-

tions shown in Figure 4.1, and the values of Ex and Ex2 for each

group were added together to give the totals used in deriving the

accumulated mean and standard deviation . Figure 4.1 shows the auto—

correlation and cross—correlation coefficient distributions for vowel 4.

To study identifiability by group, each of the four vowels was run

separately , and the resulting distributions were summed to give the

overall performance. Figure 4.2 shows the auto—correlation and cross—

correlation coeff ic ients  for Group 1. Figures 4.1 and 4.2 are typical

of vowel and group Identifications , respectively .

4.2 Speaker Classification

Program GRPTST was used to obtain correlation coefficient dis-

tributions and associated statistics for use in the simulation of speaker

classification tasks. This program allows very flexible grouping of the

cepstra into various classes. The computations performed by the program

are the same as those performed by SPKTST. The set of speakers used in

this analysis was chosen so that the effects of smoking, sex, and t ime

lapse between readings could be individually studied . The results

obtained from the operation of program GRPTST are presented in this

chapter.  In Chapter V these results  wil l  be interpreted and used to

predict the reliability and accuracy of the proposed method of

classification .

—~~~~~~~~~—~~—~~~
.
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Several modes of classification were studied . First, the program

was set to include all samples of a given vowel by male speakers in one

group , and all samples by female speakers in another group. The auto—

correlation coefficients thus produced represent the correlation between

speakers of the same sex (but not necessarily the same speaker). The

cross—correlations represent samples of speakers of different sexes. A

histogram showing the resulting coefficient distributions is shown in

Figure 4.3. This histogram is typical of those obtained in classification

experiments.

Next, the program included smokers of one sex in one group and

nonsmokers of the same sex in another. In these tests, the auto—correla-

tions are between two smokers or two nonsmokers, and the cross—correlations

if
are between one smoker and one nonsmoker.

Data Group S included six readings of the “Rainbow Passage” by

speakers who had previously recorded the passage one year or more prior

to that included in Group 5. The program was directed to include

contemporaneous readings in one group and widely—separated readings in

another. Thus, the auto—correlations in this test are between samples

recorded by the same speaker at essentially the same time, and the

cross—correlations are between samples recorded by the same speaker at

very different times.

In all of the above classification tests, the histograms for the

four vowels 4, 5, 6, and 32 were determined separately. They were then

added and their statistical parameters were grouped to form the

distributions.

The X—square probability of sampling from a normal universe was

computed for each of the preceding test cases. The resulting P values,

ij
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along with the number of samples, the mean , and the standard deviation ,

for both the auto—correlation and cross—correlation distributions, are

summarized in Table [V.3.

4.3 Normal Versus Actual Coefficient Distributions

There is slight justification for applying normal statistics to

the speaker identification and speaker classification problems. Out of

24 tests on which X—square was evaluated , 13 have P < .001 , three have

a “poor” fit with P < 0.05 , and eight have a “goodt’ fit with P > 0.05

sometimes much greater.

Table IV.4 gives the number of samples and the type of correlation

with the corresponding P values. The auto—correlation distributions

seem to be more nearly normal than the cross—correlation distributions , if

Better results in this sense are also associated with smaller numbers 
V

of samples.

An attempt was made to match each side of the coefficient

distributions with half of a normal distribution . Values of X—square

were computed for these distributions ; however , no better fit was

obtained than for the single symmetrical normal distribution. For this

reason, the actual coefficient distributions were integrated to give

empirical probability density functions. These functions were then used

in place of the normal approximations to obtain the probabilities of

true and false decisions in identification and classification tasks.

- V •
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CHAPTER V

CONCLUSIONS

5.1 Speaker Identification

The correlation coefficient distributions obtained by use of the

program SPKTST were used to derive values for Pt 
and Pf in simulated

identification tasks. The values of p and Pf for each vowel were

obtained from the gums of the correlation coefficient distributions of

each of the four speaker groups for the given vowel, and the values of

and P f for each group were obtained from the sums of the correla-

tion coefficient distributions of each of the four vowels for the given if

speaker group . These are shown in Table V.1. For n — 1, 2, and 3

and based on the given values of Pt 
and Pf 

values f or P
~
(n)

P1(n) , and Pf(fl) are shown in Table V .2, and values for R(n) are

shown in Table V.3. V

The identification by vowel is seen to be more reliable than the

identification by group. This is not unreasonable , as di f ferent  ut ter—

ances of the same vowel might be expected to be more similar than

utterances of different vowels , whether the utterances were by the same

or by different speakers.

For tests involving three utterances , in identification within a

group over all vowels, 29 to 50 percent of the test cases are determinate

and correct; they comprise 88 to 98 percent of all determinations. For

tests involving three utterances for a given vowel, including samples
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fr om all groups , 36 to 46 percent of the test cases are determinate

and correct , these comprise 94 to 98 percent of all determinations.

It is seen that , on running Eng lish speech , the sys tem operates

to give identifications with an accuracy comparable to that obtained

by other methods, some of which use isolated clue words rather than

running text , whether the identification was based on a visual,

auditory , or computer—matched method .

5.2 Speaker Classification

The correlation coefficient distributions obtained by the use of

program GRPTST were used to derive values for Pt and Pf in simulated

classification tasks. Values of Pt 
and Pf 

derived from the distri-

butions, are shown in Table V.4. Values for , P1
(n) and if

Pf(fl) are shown in Table V.5, and R(n) in Table V.6, for n — 1, 2,

and 3 .

The classification tasks attempted were the determination of sex,

distinguishing between smokers and nonsmokers, and distinguishing between

contemporaneous recordings and those separated by more than one year. *

There i~ little doubt of the significance of the difference

between the means of the classification idstributiona . The estimated

standard deviations of the means are orders of magnitude less than their

differences. The system does not , however, allow an acceptable

probability of a correct decision while suppressing false decisions.

For the sex determination , and distinguishing between smokers and

nonsmokers, 16 to 25 percent of the tests are determinate and correct ,

p
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which comprise 64 to 84 percent of the determinations . The distinction

between female smokers and nonsmokers is particularly unclear.

The distinction between contemporaneous recordings and those

separated by more than one year was performed separately f or each vowel ,

and the resulting distributions were summed to give the distributions

that were used in measuring the probability of true and false decisions.

There is a significant difference between utterances of the same vowel

at different times by the same speaker, but it is much smaller than the

difference between utterances of the same vowel by different speakers.

Twenty four percent of the determinations of time lapse between

recordings , comprising 81 percent of the total determinations , are correct.

5.3 An Entirely Automatic Identification System V

if V

It has been shown that the present system is capable of identify-

ing speakers, but not capable of classifying them. One design for an

automatic speaker Identification system would be a digital computer with

a conversational input/output device such as a teletype, and an

analog—to—digital converter with a bandwidth of 5 kRz connected to a

microphone. It is assumed that the computer would be programmed with

a data base of known speakers which includes all legitimate candidates

for identification . An identification exercise would then be conducted

in the following manner.

The computer would design a test sentence containing three vowels

suitable for identification by a random selection of words in an arbitrary

order. This would serve to protect the system from deception by a

previously prepared recording. A short list of words suitab le for the
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sentence f ramework “verb the adject ive noun” could include all four

suitable vowels in the verb , adjective , and noun lists. Different

sentence frameworks could be stored and one chosen randomly for each

test for further deception—proofing.

The computer would then display the test utterance and request

the subject to read it aloud . It is in the interest of the subject to

read it carefully, to prevent identification failure. The perceived

signal would be recorded in the computer ’s memory and parsed into the

speech segments of interest. It Is relatively easy to distinguish

voiced from voiceless speech segments, and the computer begins with the

knowledge of what to look for in the sentence.

Once the vowels have been located , the computer would extract

cepstra from each utterance and compare them with those stored in its

memory. Should all three samples match the cepstra of a known speaker,

a posit ive identification would be confirmed. Should there be fewer than

three matches or a match with more than one speaker, the identification

would be denied.

5.4 Suggestions for Further Research

It is possible to work in two directions within the framework of

the present system design. On the one hand , it is likely that the

system performance can be enhanced by modifications in the computations

which are performed and, on the other hand , the available data base is

much greater than that used in this thesis, and additional results or

different kinds of results might be derived from a larger sample.

One area to examine would be the effect of prewhitening the

speech signal before cepstrum extraction . Since the cepstrum is large

j
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for only a small range of values, this operation could also be effectively

performed by multiplying the test cepstra by some weighting function

before obtaining the correlation coefficients.  The present correlation

programs , SPKTST and GRPTST , are capable of performing this operation

on the data. The correlation programs are also capable of handling any

number of inverse frequency points in the cepstrum . The present cutoff

of 41 points was chosen so as to eliminate all pitch peaks from the

cepstra before correlation , as 41 points in the cepstrum domain

corresponds to an f
0 

of 250 Hz.

In the data base from which the samples for this thesis were taken,

there are recordings which were made by individuals who were attempting

to disguise or change their voices. It would be interesting to see if

their identifiability is affected by such attempts at voice modification. 
P

The data—base logs include the age, state of vocal training, and place V

of origin of each speaker. Any combination of these could be studied

for classif lability , or at least for a significant observable difference.
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BRAIN VOCAL
CAVITIES

ARTICULATOR S NASAl.
TONGUE ORAL
LIPS 
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VOCAL _—~~~~~~~~~~~~~~~~~
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~~~~~~~~~~~~~~~~~~~~~~~~ DiAP~~AGM

Figure 2.1. Schematic Diagram of the Vocal Mechanism.
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Figure 2.2. Vocal Fold Opening Curves .
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Figure 2.3. Typical Glottal Pressure Wave Spectrum.
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P ITCH
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Figure 2.4. Time Waveform of 50—Millisecond Speech Segment .
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Figure 2.5a. Linear Spectrum.
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Figure 2.6. Cepstrutu.
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Figure 2.7. Approximate Vocal Tract Frequency Response.
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Figure 2.8. Decision—Making System Schematic.
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AMPEX ANALOG TAPE PERTEC DIGITA L TAPE
RECORDER IREPRODUCER RECORDER I REPRODUCER

VOICE ANALYSIS DIGITIZED DATA TAPE
MASTER IS HERE GENERATE D.
TAPE IS MOUNTED INCLUDING BOTH DATA

AND TIMING INFORMATION

ANALOG CH CH 1 TIMING SIGNAL
SPEECH 2-7
DATA __

l
LEVEL I 10 COUNT IN
DETECTOR 

~~~~~~~AND ID CONTROL AND
COUNTER ENCODING 

_____

LOG IC DIGITAL
1 OUTPUT5 kHz AiD I[.0W PASS CONVERTERF’ 

DATA IN

10.24 kHz
SAMPLE
RATE
OSC ILLATOR

Figure 3.1. Analog—to-Digital Tape Transfer .
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SPEAKER_______ JOB ID
_ _ _ _ _ _ _ _ _ _  

TAPE_ _ _ _ _ _ _  
DATE

_ _ _ _ _ _ _ _  
TIME

NOTES:

LINE ~~~ EL NUMBER ID ENVIR- NOTES
— ONMENT
3 Z’ (I) 2 lit

4 EI (.I ) 32 
— 

tslk

4 EI(.i) 32 leIp 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

5 A(m ) 5 p~ 8 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

8 UN (A ) 12 /Ak 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

9 AN ( S) 8 p31 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I I  [I N C A )  1 2 
— 

b*t
13 EI(eI) 32 selh

13 A” ( 3 )  8 
— 

p31

IS E ( e)  4 sep 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

17 I ’ ( l )  2 
— 

sit

19 A (*) 5 p~ s
— 

20 A’I(at) 102 
— 

kGl

22 AN ( 3)  8 
— 

t~t

22 A
N

( 3 )  8 
— 

b3t

24 I’ (I) 2 
— 

sis

24 I’ (I) 2 fit

25 U” (A) 12 bAt

26 El (.1) 32 keit

29 E ( e )  4 
— 

fek

3l E (g) 4 sek

34 A’l( a I )  102 (cu p

Figure 3.3. Analysis Work Sheet.

I
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RUN ID: 20
ms~ : 1;
msec: 26. ;
msec: 51.;
ms~ : 76.;
ms~ : 101.;

1 3 4 5

Figure 3.4. EXTRAC Program Output , Form 1.
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

VOWEL: 8;

Figure 3.5. EXTRVAC Program Output , Form 2. 
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CEPS1RUM FILE LISTING

COUNT INDEX ID STR T SPKR VOWEL

1 2 16 5480 100 2
3 6 18 4410 100 32
5 8 18 8970 100 32
7 10 18 100 32
9 13 21 7760 100 5

11 15 21 8570 100 5
13 21 30 1120 100 8
15 24 32 2710 100 1
17 30 38 2’~X) 100 32
19 33 38 2610 100 32
21 36 39 3800 100 8
23 39 47 6690 100 4
25 43 53 2640 100 97
27 60 9110 100 9
29 5 4 40 100 5
31 7 4 550 100 5
33 10 5 9280 100 102
35 14 11 7720 100 8
37 16 11 8390 100 8
39 21 12 1690 100 8
41 25 21 3260 100 12
43 32 36 7840 100 4
45 4 16 30 101 32
41 6 16 3230 101 32
49 8 16 3730 101 32

Figure 3.6. Partial Cepstrum Tape Reference Listing.
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V.

ALL VOWE L 4

GROUP 1 CONTAINS 23

GROUP 2 CONTAINS 43 44

GROUP 3 CONTAINS 76

V GROUP 4 CONTAINS 95 % 97 98

GROUP 5 CONTAINS 99 100 101 102 103 104

GROUP 6 CONTAINS 143

GROUP 7 CONTAINS 144 V

GROUP 8 CO~~AINS 173 174 175

GROUP 9 CONTAINS 176

GROUP 10 CONTAINS 213 214 215 V

GROUP 11 CONTAINS 247 248 249

GROUP 12 CONTAINS 286

GROUP 13 CONTAINS 382

Figure 3.7. SPKTST Program Output, Form 1.
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_
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SAMPLE 1

ACC UMULATOR STATUS: 0.88807 0.40404 0.19301 0.02161

- AUTO 2 -0.44404 0.09852

AUTO HIST 0 0 0 0 0 0 0 0 Ii 1 0 0 1 0 0 0 0 0 0 0

AUTO HIST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CROSS 4 -0.04825 0.06402

CROSS HIST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2

-
- 

CROSS H I S T 1 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.8. SPKTST Program Output, Form 2.



.~~~~~~~,
_ —.

~~~~~~ V.V.~~VV.~~~~~ ~~~V•
_ _ _  V 

_ _ _  - 
-.

59

~: 
075 

n
AUTO-CORRELATION COEFFICIENT

Vt 
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CROSS-CORRELATION CO€FFIC’ENT

Figure 4.1. Vowel 4 Correlation Coefficient Hi.togra~a.
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Figure 4.2. Group 1 Correlation Coefficient Histograms .
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Figure 4.3. Sex Determination Correlation Coefficient
Histograms.
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TABLE 111.1

• 
SUBJECT SPEAKER DATA

SUBJECT GROUP AGE SEX YEARS SINGER1 ALCOHOL2

SMOKING

100 1 32 H 3 N 0
101 1 52 H 15 N 0
102 1 55 M 40 N 0

• 103 1 18 H 0 N 0
104 1 48 M 0 T 0

105 2 28 H 0 S 0
111 2 22 H 8 N N
1.20 2 37 M 20 N 0
179 2 23 H 0 T 0

108 3 40 P 20 S 0
228 3 20 F 5 N F
173 3 25 F 5 N 0
232 3 21. F 4 N 0
238 3 21 F 5 S F
213 3 20 F 10 N 0

133 4 47 F 0 S 0
162 4 21 F 0 T 0
116 4 18 F 0 N 0
119 4 21 F 0 N 0
263 4 25 F 0 S 0
124 4 23 F 0 S 0

It was originally intended that Group 1 should include male smokers,

Group 2 male nonsmokers, Group 3 female smokers , and Group 4 female

nonsmokers.

V ‘This is the coded response to a question: T—trained , S—singer, N—no.

2
Use of alcoholic beverages: F—frequent , 0—occasional, N—never .

L
1 
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TABLE IV.1

SPEAKER IDENTIFICATION SUMMARY

VOWEL n a n 14 0 SPEAKER
NUMBER a a a c c GROUP

102 9 .193 .317 57 — .095 .255 1
32 65 .263 .307 244 — .048 .290 1
8 40 .279 .350 131 — .122 .286 1
12 20 .047 .436 85 — .065 .290 1

5 7 .244 .450 48 .003 .260 1
4 18 .196 .434 102 — .044 .329 1
2 1. — .647 .000 2 — .357 .100 1

102 5 — .008 .101. 16 — .106 .278 2
32 27 .297 .286 93 — .090 .280 2
12 24 .136 .314 54 — .146 .260 2 V

8 30 .242 .294 61 — .212 .227 2
5 5 .401 .256 23 — .155 .215 2
4 17 .393 .230 38 — .268 .314 2
2 9 — .045 .388 12 — .145 .162 2

102 8 — .137 .334 70 — .000 .360 3
32 33 .341 .280 220 .070 .286 3
12 4 — .215 .454 41. — .076 .349 3
8 36 .161. .287 240 — .029 .337 3 

V

5 6 .476 .138 60 — .057 .342 3
4 18 .439 .230 135 — .090 .319 3 V

2 2 — .116 .431 26 — .108 .402 3

102 6 .053 .375 60 — .057 .342 4
32 30 .480 .256 201 .011 .377 4
8 30 .184 .357 201 — .036 .298 4
5 8 .433 .249 70 .028 .350 4
4 18 .344 .295 135 — .092 .298 4

I
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TABLE IV.2

SPEAKER IDENTIFICATION GROUPED STATISTICS

* *IDENT n a P n 14 0 P
a a a a c C C C

vowel 4 155 .459 .280 .09 3005 — .030 .348

vowel 5 59 .396 .270 .65 1481 .013 .329 .03

vowel 8 238 .375 .318 .15 47 12 — .023 .350

vowel 32 223 .467 .253 — — — 4727 .019 .349

— group 1 120 .253 .345 .30 525 — .064 .292 .01

group 2 84 .285 .281 — — — 215 — .159 .274 .13

group 3 92 .265 .314 .05 656 — .009 .324

group 4 86 .325 .333 ——— 607 — .028 .335 .035

*The value of 
~a and P is evaluated by determining k—squared ,

defined by

2 (ff )2

x C

a

and determining the probability that the sample distribution is randomly

selected from a normally—distributed universe.
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TABLE IV.3

SPEAKER CLASSIFICATION GROUPED STATISTICS

V 
TYPE OF TEST p 0 P n Ii 0 P

a a a a C C C C

Sex Determination 7192 .132 .347 ——— 7408 — .104 .334

Female Smoking 1440 .073 .336 ——— 1537 — .008 .318

Male Smoking 396 .052 .309 ——— 424 — .015 .310

tong/Short Lapses 236 .066 .314 .50 272 — .090 .310 .07

I,

I
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1

TABLE IV.4

X—SQUARE VALUES

NUMBER TYPE X-SQUARED PROBABILITY

155 auto vowel .09
59 auto vowel .65
238 auto vowel .15
223 auto vowel
120 auto group .30
84 auto group
92 auto group .05
86 auto group

7192 auto class —— — V -

1440 auto class ——— V

396 auto class — — —
236 auto class .50

3005 cross vowel
1481 cross vowel .03
4712 cross vowel
4727 cross vowel —— — V

525 cross group .01
215 cross group .13 V

656 cross group
607 cross group .035
7408 cross class
1537 cross class
424 cross class
272 cross class .07

“auto” refers to an auto—correlation distribution , “cross” to a cross—

correlation distribution. The term “vowel” refers to an accumulated

vowel distribution , “group” to an accumulated group distribution , both

of which are identification type exercises. The term “class” refers to

a speaker classification test , for example, on the basis of sex or

smoking. 
V

I--
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TABLE V.1

IDENTIFICATION PROBABILITY TABLE

TYPE Pt Pf

Vowel 4 .770 .230

Vowel 5 .709 .291

Vowel 8 .723 .277

Vowel 32 .773 .227

GrOup 1 .682 318 
V

Group 2 .796 .204

Group 3 .658 .342

Group 4 .686 .314

•1
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TABLE V.2

SPEAKER IDENTIFICAT ION PREDICTED PERFORMANCE

TYPE 
~~~~ 

Pf (l) P (2) P f (2) P~ (2) p (3) Pf (3) P~ (3)

Vowel 4 .770 .230 .592 .053 .355 .456 .012 .532

Vowel 5 .709 .291 .503 .085 .412 .357 .025 .618

Vowel 8 .723 .277 .523 .075 .402 .381 .020 .599

V Vowel 32 .773 .227 .597 .052 .351 .462 .012 .526

Group 1 .682 .318 .466 .101 .433 .318 .032 .650
— 

Group 2 .796 .204 .633 .042 .325 .504 .009 .487

Group 3 .658 .342 .433 .117 .450 .285 .040 .675

Group 4 .686 .314 .471 .098 .431 .323 .031 .646
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TABLE V.3

SPEAKE R IDENTIFICAT ION RELIABILITY TABLE

TYPE R(l) R (2 )  R( 3)

Vowel 4 . .770 .918 .974

Vowel 5 .709 .855 .935

Vowel 8 .723 .874 .950

Vowel 32 .773 .920 .975

Group 1 .682 .822 .908 . V

Group 2 .796 .938 .982 V

Group 3 .658 .787 .877

Group 4 .686 .828 .912 
V

~-V-V - - - 

-_
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TABLE V .4

SPEAKER CLASSIFICATION PROBABILITY TABLE

TYPE P
t 

P
f

Sex DeterminatiOn .633 .367

Female Smoking .546 .454

Male Smoking .626 .374

Long/Short Lapse Between Readings .620 .380

V 
- - -V ______ V - 

j
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TABLE V .5

SPEAKER CLASSIFICATION PREDICTED PERFORMANCE

TYPE 
~~~~ 

P
f
(1) 

~~~~ 
P
f

(2) P
1

(2) P (3) P
f
(3) P

1
(3)

Sex Det. .633 .367 .400 .135 .465 .254 .049 .697

F/Smoking .546 .454 .298 .206 .496 .163 .093 .744

N/Smoking .626 .374 .391 .140 .469 .245 .052 .703

L/S Lapse .620 .380 .384 .145 .471 .238 .055 .707 V
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TABLE V.6

SPEAKER CLASSIFICATION RELIABILITY TABLE

TYPE R(l) R (2)  R(3)

Sex Det . .633 .748 .838

F/Smoking .546 .591 .637

H/Smoking .626 .736 .825

L/S Lapse .620 .726 .812

_
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APPENDIX A

THE RAINBOW PASSAGE

This is a standard text passage for phonetic tests. Readings of

this passage by a number of speakers constitute the data base for this

thesis. Two criteria were applied to select vowels for inclusion in the

study : first , that they must be immediately surrounded by voiceless

V 
consonants, and second, that they must cccur more than once in the passage.

The following vowels were selected :

VOWEL NUMBER CONTEXT

/1/ 2 beautiful

1 /  32 take

32 sh!pe

5 path

1W 12 . . .according 
V

/3/ 8 pot

12 but

~e~i 32 s~~ he

/3/ 8 pot

4 acc!pted

/1/ 2 that It

/ ~ / 5 passed

/81/ 102 sk~ ...

I..
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VOWEL NUMBER CONTEXT

8 Aristotle

8 thought

/ 1/ 2 physicists

/1/ 2 that it

/A/ 12 but

/ei / 32 complicated

/~/ 4 the effect

Ic! 4 the second

102 common tZpe

THE RAINBOW PASSAGE

When the sunlight strikes raindrops in the air they act like a

prism and form a rainbow. The rainbow is a division of white light into

many beautiful colors. These take the shape of a long round arch, with

its path high above, and its two ends apparently beyond the horizon.

There is, according to legend, a boiling pot of gold at one end. People

look, but no one ever finds it. When a man looks for something beyond

his reach, his friends say he is looking for the pot of gold at the end . 
V

of the rainbow.

Throughout the centuries, men have explained the rainbow in various

ways. Some have accepted it as a miracle without physical explanation.

To the Hebrews, it was a token that there would be no more universal

floods. The Greeks used to imagine that it was sign f rom the gods to

foretell war or heavy rain. The Norseinen considered the rainbow as a

bridge over which the gods passed from the earth to their home in the sky.
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Other men have tried to explain the phenomenon physically.

Aristotle thought that the rainbow was caused by reflection of the sun’s

rays by the rain. Since then, physicists have found that it is not

reflection, but refraction by the raindrops which causes the rainbow.

Many complicated ideas about the rainbow have been formed . The

difference in the rainbow depends considerably upon the size of the

water drops, and the width of the colored band increases as the size of

the drops increases. The actual primary rainbow observed is said to be

the effect of superposition of a number of bows . When the red of the

second bow falls upon the green of the first, the result is to give a

bow with an abnormally wide yellow band , since red and green lights,

when mixed, form yellow. This is a very common type of bow, one showing

mainly red and yellow, with little or no green or blue.



APPENDIX B

MEAN VOWEL SPECTRA AND FUNDAME NTAL FREQUENCIES

It is easy to determine the pitch from an examination of the

cepstrum. Indeed , one researcher has compared the old view of speech

encoding, in which most of the attention is directed to the spectrum

determination and the pitch determination is a little black box, to the

use of cepstrum pitch determination which produces the spectrum as a

by—product!

The fundamental frequency is derived from each of the cepstra for

a given vowel and speaker. It is shown as the average value for each

of the speaker classes. These numbers are presented in Table B.l.

The part of the cepstrum near the origin may be regarded as an

approximation to the vocal tract impulse response. It is therefore

possible to derive the vocal tract spectrum from the cepatrum . To obtain

the figures presented in this appendix, the following procedure was used.

The complex cepstra from each utterance were summed to give the

average cepstrum of each utterance. The average cepstra were reduced to

unity mean , and separately accumulated for each class of speakers and

over all classes. A cutoff in the cepstrum domain corresponding to a

speaker fundamental frequency of 250 Hertz was used so as to preserve as

much of the spectrum fine structure as possible while removing the pitch—

frequency fluctuations. Vowel spectra are shown for two vowels

accumulated for all male and all female speakers. The differences in

L -~~~ — 
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the quality of the vowels is quite noticeable in the spectrum, and the

difference between male and female utterances shown by the spectra is

typical of that observed in all vowels.

The operation of convolution of the glottal pressure wave with

the vocal tract impulse response in the time domain, appears in the

frequency domain as multiplication of the vocal tract frequency response

with the glottal pressure wave spectrum . One may estimate the observed

spectrum by multiplying the given vocal tract frequency response by a

glottal pressure wave spectrum such as is shown in Figure 2.3.

J
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Figure B.l. Vowel 4, Male Speakers.
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Figure B.4. Vowel 32, Female Speakers.
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TABLE B.5

FUNDAMENTAL FREQUENC IES

TYPE NUMBER fo
Vowel 4 Group 1 35 114.2
Vowel 4 Group 2 24 136.8
Vowel 4 Group 3 43 202.4
Vowel 4 Group 4 44 207.8

Vowel 5 Group 1 59 108.0

Vowel 5 Group 2 41 118.2

Vowel 5 Group 3 64 198.7

Vowel 5 Group 4 58 189.5

Vowel 8 Group 1 54 107.1 
V

Vowel 8 Group 2 4]. 120.8

L Vowel 8 Group 3 85 195.3

r Vowel 8 Group 4 93 202.1

Vowel 32 Group 1 79 113.2
Vowel 32 Group 2 53 124.6
Vowel 32 Group 3 98 196.0
Vowel 32 Group 4 86 203.7

All Group 1 226 110.5

All Group 2 159 123.6

All Group 3 290 197.3

All Group 4 281 200.7

All Male 385 115.3

All Female 571 199.0

p

~~~~~~~~~~~~~~~~~ V V V
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APPENDIX C

FIELD-MODIFIED TELEPHONE BOOTH SOUND ISOL4TION CHARACTERISTICS

The sound isolation characteristics of the field-modified

telephone booth were measured on April 21, 1976. The booth was

installed in the north—west corner of the Hammond Building Museum room

at The Pennsylvania State University . An ILG noise source , Serial

17—05—066AS , and a General Radio sound level meter , Model GR1558A S/N

344, were used in the measurements. The physical configuration used in

the teat was the same as that used during the speech recording session.

The telephone booth is constructed of metal and plexiglass with

some internal acoustical damping material. A batten was constructed ,

consisting of two sections , each four feet by eight feet. These were

covered with six inches of fiberglass , and a layer of thin muslin to

prevent raveling . A heavy carpet was placed on the floor under the 
V

booth , and a cloth drape was used to close the entrance. The physical

setup is shown in Figure C.l.

Table C.2 shows the measured octave—band sound pressure levels

undtV.r various conditions. “Booth” denotes the conditions shown in

Figure C.1; “Batten” indicates that the batten and carpet are present

but booth is removed; and “Bare Wall” indicates that all of the sound

isolation apparatus is removed .

The conclusions of this study indicate that the ILG source is

p
responsible for most of the noise when it is on. The ambient noise was

H

—---- V--V
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unmeasurable at 9600—19200 Hz, but this is well above the range of

interest. The sound booth is ineffective in the 37.5—150 Hz range,

marginal from 150 to 300 Hz, and effective from 300 to 9600 Hz.

—
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TABLE C.2

SOUND LEVEL MEASUREMENTS

FREQUENCY ——-—BARE WALL---- BATTEN BOOTH 
BAND ILG off ILG on ILG on ILG off ILG on

37.5— 75 70 77 76 68 79

75—150 62 68 69 60 67

150—300 52 69 69 52 61

300—600 50 68 69 * 57

600—1200 * 71 70 * 54

1200—2400 * 72 70 * 51

2400—4800 * 70 68 * 49

4800—9600 * 63 63 * *
9600—19200 * 47 47 * *

*Sound pressure level less than 46 dB in indicated octave band , which

was the lover limit of measurement in this meter.

S

—.
~ A



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
— -

— 

~~~~~~~~~

87 -
~~~

REFERENCES

CHAPTER 1

1. J. C. Steinberg, J. Acoust. Soc . Am. ~~~, 16—24 (1934) .

2. R. K. Potter , Proc. Inst. of Radio Engineers , 581—648 (1930) .

3. W. Koeing, H. K. Dunn, and L. Y. Lacey , J. Acoust. Soc. Am. ~~~~~~

19—49 (1946) .

4. L. C. Ketsta, Nature 196, 1253—1257 (1962).

5. 0. Toil, H. Oyer, W. Lashbrook , C. Pedrey, J. Nicol, and E. Nash ,
J. Acouit. Soc. Am. 51, 2030—2043 (1972).

6. 0. Tosi, paper presented at XIV International Congress on
Logopedics and Phoniatrics, Paris, September 1968.

7. H. A. Young and R. A. Campbell, J. Acoust. Soc. Am. 42, 1250—1254
( 1967) . V

8. K. N. Stevens, C. E. Williams , J. P. Carhonell, and B. Woods,
J. Acoust. Soc. Am. 44, 1496—1607 (1968).

9. S. Pruzansky, J. Acoust. Soc. Am. ~~~~~~ 354—358 (1963) .

10. “A Semi—Automatic Speaker Identification System ,” U.S. Dept. of
Justice Grant ni—71—078—g, R. Becker, F. Clarke, F. Poza, and
J. Young, October 1973.

Il. R. H. Bolt, et al., J. Acoust. Soc. Am . 47, 597— 612 (p. 607)(1970).

CHAPTER II

1. R. Timcke, H. von Leden, and P. Moore, Am. Med. Assoc. Arch .
Otol. 68, 1—19 and 26—45 (1958).

2. K. N. Stevens, “Acoustical Aspects of Speech Production,” Chapter 9
of Handbook of Physiology.

3. P. Liberman, J. Acoust. Soc. Am. ~~~~~~, 344—353 (1962).

4. K. N. Stevens and A. S. House, J. Acoust. Soc. Am. 27, 484—493

• 

(1955).



-
~~~~~~~~~~

- -
~~~~~~~

.-
~~~~~~~ 

-
~~~~~~~~~~~~~~~~~~~~~~~~~

-

- _ _ _

88

S. J. C. Steinberg and N. R. French , J. Acoust. Soc. Am. j~, 4—18 
(1946).

6. S. E. C. Obman , J. Acoust. Soc. Am. ~~ 
979~988 (1966).

7. S. E. C. Ohman, J. Acoust. Soc. Am . 39, 151—168 (1966).

8. K. N. Stevens and A. S. House , J. Speech and Hearing Rep . ~~~,

111— 128 (1963) .

V



-
~

- — - _-—-
~~w,’— .2r ’ r ’— ’— ’-  -

* - -4 ~
-—--- -

~ 
-
~
--

~~~~~~~~~~
- 

~~ —!
-

89

BIBLIOGRAPHY

“An Acoustical Theory of Vowel Production and Some of Its Implication.,”
K. N. Stevens and A. S. House, J. Speech and Hearing Res. 4,
75— 92 (1961) .

Applied General Statistic., Croxton and Cowden (New York: Prentice—Hall ,
1939).

“Cep.trum Pitch Determination,” A. M. Noll, J. Acoust. Soc. Am. 41,
293—309 (1967).

“On the Predictability of Formant Levels and Spectrum Envelopes from
Formant Frequencies,” C. G. H. Fant , from l~oman Jakob.on(The Hague: Mouton, 1956).

“Short—Term Spectrum and ‘Cep.trum ’ Techniques for Vocal Pitch
Determination,” A. H. Noll, J. Acoust. Soc. Am . 36, 296—302 (1964).

“Speech Analyai./Syntheais System Based on Homomorphic Filtering ,”
A. V. Oppenheim, J. Acoust. Soc. Am. 45, 458—465 (1969). V

“Toward the Specification of Speech ,” R. K. Potter and J. C. Steinberg,
J. Acoust. Soc. Am. 22, 807—820 (1950).

The preceding have provided valuable background information but

were either not directly quoted in the thesis or so often used that

their inclusion in the references was impractical.



—
~~~~~~~~~~~ -—

r - —_ — - —  
~~~~~~~~~~~~~~~~~~~~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

.-1

DISTRIBUTION

Commander (NSEA 09G32)
Naval Sea Systems Command
Department of the Navy
Washington , DC 20362 Cop ies 1 and 2

Commander (NSEA 0342)
Naval Sea Systems Command
Department of the Navy
Washington , DC 20362 Cop ies 3 and 4

Defense Documentation Center
5010 Duke Street
Cameron Station
Alexandria , VA 22314 Copies 5 through 16

V


