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ABSTRACT

It is shown that the vocal tract impulse response magnitude should
be less variable for a given speaker than other acoustic measures of his
speech. Cepstrum analysis is used to deconvolve the vocal tract impulse
response and the glottal pressure wave of each of 1850 speech segments
taken from running English speech. Linear correlation coefficients
derived from pairs of impulse responses are shown to differ, depending
upon whether the two impulse responses were taken from the same speaker's
utterances, from speakers of the same sex and/or vocal history, or from
altogether different speakers. A feasible method of speaker identifica-
tion which can in principle operate automatically is developed from this

approach and tested.
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CHAPTER I
INTRODUCTION
1.1 History

Several methods have been developed for recording the amplitude
versus frequency distribution of the speech signal as a function of time.
The distinctive appearance of such a display leads to the conjecture
that such displays might form the basis of a method of speaker identifi-
cation.

Early researchers used several laborious methods to measure the
spectra of successive parts of a speech signal. In one experiment,
segments of a sentence were graphed as a function of time and subjected
to manual Fourier analysis. The resulting spectra were combined into a
"three-dimensional" graph with time as the abscissa and frequency as the
ordinate; the relative intensity was indicated by the degree of darkness
of the various parts of the display [1]. In another experiment, a group
of ten bandpass filters was used to separate a sentence into components
within each of the frequency bands. The output of each filter was
recorded for subsequent study [2].

In 1946, Koenig, Dunn, and Lacey, working at the Bell Telephone
Laboratories, reported the development of a "sound spectrograph' [3].

In this device, a signal of 2.4 seconds duration was recorded on a

rotating drum which was in turn geared to a wave analyzer and a




recording device using electrosensitive paper. The compressed output of

the wave analyzer was used to control the darkness of the trace on the
paper. In this way, a vertical section of the trace represented the
instantaneous spectrum of the corresponding part of the signal which was
recorded on the drum below it. The original device was sufficiently
rapid in response to be able to record the spectrum of each glottal wave
pulse. A series of commercial devices embodying this principle is
presently marketed by Kay-Bee Elemetrics under the generic name of
sonagraph. The display produced by the device is termed a sonagram.

Figure 1.1 is a sonagram of the author saying, 'Joe took father's
shoe bench out." At the left end of the display is a calibration signal
which is generated by the sonagraph. It consists of a 500~Hertz ramp
wave, and the harmonics of the ramp appear as dark bars in the display.

The speech portion of the display clearly shows the distinction
between the voiced and unvoiced signals. The unvoiced segments have
broad-band frictional noise which is filtered by the vocal tract, as is
indicated by the varying darkness of "if'" in father, 'sh" in shoe, and
“"ch" in bench. The voiced segments show vertical striations, each of
which displays the spectrum of a single cycle of the signal. The "j" of
Joe is a voiced consonant, and therefore siiows both broad-band frictional
noise and the vertical striations characteristic of voiced sounds.

The dark bars in the display indicate the frequency bands of
maximum energy. These are termed formants, and the frequencies at which
they lie are called the formant frequencies. The first (i.e., the
lowest frequency) formant will be denoted by fl , the second by f2 ’

and so on. The voice fundamental frequency will be symbolized by fo .




The formant structure is the primary clue used by the auditory system in
identifying a sound, whether it is a speech segment, a musical tone, or
any other noise. The formant structure {s characteristic of the sound;
compare, for example, the "oo" of took, the "o" of shoe, and the last
part of the "ou" of out. Each of these is very similar in appearance,
and similar in sound to the ear.

Speaker identification experiments may be grouped for purposes of
discussion in the following way. We first distinguish between "sorting"
and "identification" tasks. 1In a sorting task, it is desired to determine
which of a set of samples of different speakers was uttered by each of
the speakers. In an identification task, it is desired to determine
which of a set of known speakers produced a given unknown utterance.

One next distinguishes between open and closed tasks. In a closed task,
all samples required to complete the task are known to be included in the
set of samples. In an open task, {t {s posaible that some of the required
samples are not in the set.

L. G. Kersta, in 1962 [4]), reported the success of a method of
speaker identification utilizing a voice spectrograph. The technique
was dubbed 'voiceprinting," by analogy with the established identiffica-
tion technique of fingerprinting. Kersta reported that female high
school sophomores, after one week of instruction and practice, were
highly successful in identifying speakers on the basis of their spectro-
grams of common English words. In a closed sorting experiment with five
to twelve speakers, error rates of 0.8 percent were obtained for words
taken in isolation, and 1.0 percent for words taken from context in

running speech.

|
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Other researchers worked subsequently to verify and to extend
these results. Tosi, et al., performed a similar sorting task [5].
Their results were very like those reported by Kersta, but they note in
their conclusions ". . . that this group of trials does not fit any type
of forensic model." Their experiment also included tasks of other kinds.
By using open trials and varying the quality of the recording, the
number of speakers, the number of clue words, and the lapse of time
between known and unknown utterances, the researchers estimated error
rates of 6 percent false identifications and 13 percent false eliminatioms.

In another identification experiment, Tosi studied the effect of
the number of speakers on the error rate [6]. With five speakers, the
error rate was one percent; with fifty speakers, the error rate increased
to 5.7 percent. In the latter trial the operators were forced to decide
within fifteen minutes. If the operators were allowed to suspend
judgment in doubtful cases, 74 percent of the cases were resolved with
2 percent false identifications and 5 percent false eliminations.

Other researchers showed different results. In one instance, a
closed set of five speakers gave 21.6 percent errors for words spoken
in isolation and 62.7 percent errors for words taken from context [7].
In this experiment, the operators were Michigan state policemen trained
as operators according to the Voiceprint method.

Another experiment was conducted to compare visual and auditory
discrimination [8]. In closed trials with eight speakers, & percent
errors were obtained by listening and 21.6 percent by spectrogram. If

the trials were made open by the inclusion of non~catalogued speakers,

o
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6 to 8 percent of the samples were falsely identified by listening and

31 to 47 percent were falsely identified by their spectrograms.
Procedures for speaker identification using digital computers
have also been developed. In one study, average spectral patterns for
each of ten speakers were measured and stored in a computer [9]. New
utterances by one or another of the speakers were analyzed and a pattern
recognition type program was used to find the pattern most similar.
Another extensive and recent report [10], describes a method of
speaker identification which is semi-automatic; that is, it requires a
minimum of operator expertise, and the decisions are made by the machine.
The exercises are also forensicdlly suitable in that different utterances
are compared by the computer and it is determined whether or not they }
were spoken by the same speaker. The system can resolve 25 percent of
the test cases with no errors. The authors state that in 70 percent of
the cases, the probability of a false decision is less than 1 percent.
The remarkably good performance of this system is partly due to the

nature of the trials, which were closed and used words spoken in

isolation.

Broadly speaking, current methods of speaker identification are

deficient in two areas: accuracy and objectivity. The accuracy

requirement is self-explanatory -- we would like a method which always

gives the right answer! The objectivity requirement is intended to
make the system or method independent of the operator. This will be
done in the following study by reducing the function of the operator to

a very simple task. This function can, in principle, be performed

automatically for many identification tasks, as will be shown. The




system need not be dependent on '"actual use' trails for justification,
since the expected reliability of the system will be developed a priori
on the basis of the statistical distribution of the identification
parameters.

In a review and comparison of speaker identification methods

published in 1970, Toai et al. conclude:

It may be that, when we have learned much more about the
sound features that characterize individual speakers, it
will be possible to design an instrument that can be a
powerful aid to the eye in voice identification, or even
one that can operate automatically in a completely

objective manner [11].

Reference 10 cited above suggested areas in which '"state-of-the-
art" computer—assisted identification methods might be extended. Many

of these proposed areas of study are included in this work.

1.2 Statement of the Problem

The purpose of this research, briefly stated, is twofold. First,
to determine under what conditions the parameterization of the speech
signal provides a method of identification with a given reliability, and,
second, to determine how the reliability of the identification is
affected by such variables as the number of samples compared, the time
between different samples, and other par2meters to be defined later.

To complete this task, it is necessary to obtain a sufficient
number of speech samples of good quality, to design the analysie pro-
cedure which derives the identification parameters, and to model the

various kinds of identification tasks on the basis of the identification

o
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parameter distributions. This thesis indicates satisfactory attainment

of each of these objectives. A number of suggestions for further work
are inherent in this procedure and are presented in Chapter V. Indica-
tions of the manner in which the procedure may be automated or specialized
for certain tasks is also given.

The data base for this study is approximately eighty minutes of
running English speech comprised of twenty-nine readings of the Rainbow
Passage, which is reproduced in Appendix A, by twenty-one speakers. A
system of computer programs was used to edit this data and to extract an
approximation to the vocal tract impulse response magnitude at selected

points, by the method of cepstrum deconvolution. It is shown on 4

physiological grounds that these measurements should exhibit greater

variability between speakers than the variability of different utterances ?
by the same speaker. This theoretical conclusion is justified empirically

by a further system of programs which use a correlation technique to

compare the vocal tract impulse response magnitudes at selected points

for the same and for different speakers. The set of correlation

coefficients so obtained has a decidedly non-normal distribution.

A by-product of this study is a set of highly accurate quantitative
measures of the speech spectrum and the speaker fundamental voice

frequency. These measurements are presented in Appendix B.




CHAPTER 11

DEVELOPMENT

2.1 Physiological Background

The speech signal contains information pertaining to the content
of the speech, and gives information that is characteristic of the
speaker. If it lacked the former, we would not understand the speaker;
lacking the latter, we would not recognize him. Heuristically, this is
obvious; a vocoder is intelligible but unrecognizable (except as a
vocoder), while one might easily recognize a familiar voice speaking
unintelligibly or in a foreign language and not understand it al all.
It is shown in this chapter that it is important to separate the two
kinds of information in the interest of enhanced reliability of identifi-
cation, and that it is possible to do so. The manner of separating the
identification parameters uses a signal processing technique which has
not heretofore been employed in speaker identification.

The difficulties in extracting the speaker identification para-
meters are inherent in the nature of the speech generator and in the
speech process itself. First, we will examine the speech generator at a
physiological level -- the vocal mechanism.

The vocal mechanism may'be divided into two parts: an acoustic
source and an acoustic formant filter. In voiced sounds, the source is
a quasiperiodic glottal pulse generated at the larynx. In unvoiced

sounds, the source is frictional noise generated by turbulence as the




breath is forced past a constriction in the larynx, pharynx, or oral
cavity; or transient signals generated by a stop in the articulatory
system. In either case, the acoustic generator is powered by the
pressurized air contained in the lungs.

This study is limited to vowel sounds for two reasons: first,
since the glottal source is the most efficient and powerful source. The
second reason depends upon certain observed features of speech signal
and will be developed subsequently.

A schematic diagram of the vocal mechanism is presented in
Figure 2.1. It shows the principal parts of the apparatus and outlines
the functions which each performs in the speech task.

A prosodic variable is one which depends upon the manner of
speech. The most important prosodic variables are intensity (which is
related to the acoustic power output) and pitch (which is related to the
fundamenal frequency). It is desirable to remove the effect of prosodic
variables from the speech signal before an identification is attempted.
The intensity and pitch of the speech also show intra-speaker variations
due to physiological causes. The system of identification should be
isolated from these effects as well. The following paragraphs discuss
the ways in which such changes manifest themselves in the measured
acoustic signal.

The glottal pressure waveform was indirectly measured by Timcke,
von Leden, and Moore, who measured motion pictures of the vocal folds
during phonation [1]. They plotted the distance between the vocal folds,
as a function of time. Systematic variations were found as a function

of pitch and intensity for normal speakers. In the range of pitches
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used in normal speech, the higher intensities were assoclated with
pulse-like opening curves and the lower intensities with triangular
opening curves. It is reasonable to expect wide variations in the
glottal pressure waveform since the shape of the glottal opening curve
varies widely. Schematic indications cof the vocal tract opening for
different conditions of phonation are shown in Figure 2.2.

Stevens [2] writes concerning the glottal pressure waveform

itself:

. « . 1f the glottal vibration is periodic, the spectrum

amplitude of the volume flow is, of course, a line spectrum
. . The shape of each glottal pulse varies somewhat with |
fundamental frequency and vocal effort for a given talker. |

Figure 2.3 shows an approximate “typical’ glottal pressure-wave
spectrum derived from work by Stevens.

Normal speakers show pitch fluctuations on a cycle-to-cycle basis.

Liberman [3] defines the "perturbation factor" as the percent of a large
number of cycles of phonation which differ from one cycle to the next by <
0.5 mill{second or more. A nonpathologic speaker with an fO of 250 Rz
would typically have a perturbation factor of 5 percent; one with an fo
of 100 Hz would normally have a perturbation factor of 25 percent.

The vocal tract acts as the acoustic filter or formant generator
in voiced speech., Interest in parameterization of the vocal tract first
arose from studies in speech bandwidth compression. If one could encode
the speech signal into a small number of slowly varying parameters, one

could transmit them on a narrower band than could be done with the

original signal. The pitch signal is band limited to about 300 Hz, and
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the vocal tract changes during articulation occur on a time scale con-
siderably longer than the pitch period.
Stevens and House have done several studies of vocal tract modeling.

In 1955, they reported a three-parameter model that . produces
idealized vocal tract configurations which are descriptive of human vowel
articulation" [4]. They later designed an electrical analog of the vocal
tract to test the performance on their model -- with excellent results.

Steinberg and French employed the term "hub" to describe formant
positions (5]. The hub was defined as ". . . the visible or hidden
position of bar (formant) 2 of any sound when the sound is made alone."
Two facts were recognized: first, that the hub must in some cases be
deduced from its effect on adjacent regions, as no visible feature is
present; and second, that a large part of the speech signal consists of
"“transitional patterns' whose formants are displaced by various amounts
in different directions, depending upon the nature of the contiguous
sounds.

The behavior of the formants is of considerable importance in the
detection of consonants. Indeed, it is possible to remove the consonant
from a speech segment, leaving only the transition, which will itself
cue a listener to hear the missing consonant [6]. S. Ohman, the author
of this study notes, however, '". . . that the cost of removing a final
segment from a VC utterance or an initial segment from a CV utterance
will depend very much on the particular acoustic properties of the
sounds that enter into the utterance.'" (Symbolic notatiomns such as CV
are defined in the list of symbols.) The term coarticulation was

introduced to name the variation of articulation from values obtained in

——
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neutral contexts or in isolation, which are dependent upon the context
in which the articulation is measured.

S. G. Ohman studies VCV form utterances in English speech [7].
He stated that consonant and vowel generation in English involve
different uses of different parts of the articulatory mechanism. The
VCV utterance is neurally coded as a V-V transition on which 1is superim-
posed a command to generate a consonant. He observed that both the
stationary poscion of the vowels and the transition regions on each side
of the consonant were affected by the vowel on the other side of the
consonant. This finding is a variance with the older '"locus" theory of
Libermann et al., in which it was hypothesized that the transition region
will tend toward a locus which is characteristic of the interposed
consonant. Ok et of locl to be associated with each
consonant, one for eve.  ir of surrounding vowels.

Stevens and House in 1963 published a study of formant frequency
perturbation by consonantal context [8]. They found certain contexts to
have a minimal effect on the articulation. These contexts were termed

"null" contexts. They conclude:

the /h--d/ context has a negligible effect on the
articulation during the central portion of the vowel.
That is, the vowel in the context /h--d/ is generated
with essentially the same articulatory configuration as
the vowel in isolation.

In an effort to secure maximum isolation for running speech, all
vowels employed in this study are isolated on each side by voiceless

consonants. An example is the work '"path,'" which is taken from the
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context "its path high." Here the desired vowel is isolated on one side
by two voiceless consonants and on the other side by three voiceless
consonants.

Stevens and House also measured values of fl and f2 in four-

teen different contexts. The values of fl were little affected by

context except in the vowel /A/. This observation, and other anomalies
concerning /A/, were claimed by the authors to be due to atypical data
from one of the talkers, whose pronunciation of /A/ differed markedly

from one context to another. The value of f2 was nearly systematically

affected, with front vowels having fz lowered and back vowels having

f raised. The authors conclude . the consonantal context has the

2

effect of shifting f2 from a value appropriate for the null environment

toward a more central position."

In summation, fundamental frequency shows perturbations in
isolated speech segments due to imperfections in the speech mechanism,
or to disorder in the organic or neurologic functions. The glottal
pressure wave and the fundamental frequency are also strongly affected
by prosodic elements in speech. These changes may occur from one glottal
cycle to the next.

Isolated speech tasks, when repeated, show stable articulatory
configurations. In context, articulation shows transitional features
or coarticulation as well as superposition of different vocal tasks which
do not require simultaneous use of the same articulators. Articulatory
adjustments are made on a time scale considerably longer than the pitch

period.
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2.2 Model and Hypothesis in Speaker Identification

It has been shown that the vocal tract configuration is less
likely to undergo short term fluctuations than other articulators con-
tributing to the speech signal. Indeed, though the glottal pressure wave
varies the driving function, it is the vocal-tract resonances which
determine the formants and therefore the vowel which is heard. The
following hypothesis is the basis of the proposed method of speaker
identification and classification.

First, that contexts in which a vowel is isolated in each side by
voiceless consonants protect the vowel from coarticulation by nearby
vowels, though allowing coarticulation by the adjacent consonants, and

that such contexts are easy to locate by inspection of the speech signal.

Second, that the approximate vocal tract impulse response magni-
tudes derived from these contexts are sufficiently invariant for a given
speaker, and different enough for different speakers, that they serve
as speaker identification parameters which may be used to distinguish
between speakers in a statistically significant manner.

Since the perceived pressure signal is the convolution of two
time functions, the glottal pressure wave and the vocal tract impulse
response (and also a '"system function' including radiation effects and
the recording and analysis process, which for purposes of discussion is
ignored), it is difficult to determine directly from the spectrum of the
speech signal which parts or features are due to the glottal pressure
wave and which to the vocal-tract impulse response. Since the glottal

wave is known to vary as a function of the rate of speech, intensity,




and pitch, the difficulty of extracting the vocal-tract impulse response

from the speech spectrum, by inspection, is considerable.

4

Under certain conditions, which are fairly well satisfied in the i
speech signal, the operation of deconvolution may be performed by

cepstrum analysis. i

2+3 Computation of the Cepstrum

The cepstrum of a signal is defined as the Fourier transform of
the log magnitude spectrum of the signal. Its desirable properties are
inherent in the nature of the Fourier transform and in linear-system
theory. The following is a partially heuristic development of the
cepstrum and its uses.

Let the lower-case letters denote time functions and the uppercase

letters the corresponding frequency functions which are Fourier transform

pairs:

S(f) = Ff[s(t)] and s(t) = F:[S(f)] .

Consider a signal s(t) which is the convolution of two time

functions, g(t) and h(t)
s(t) = g(t) * h(t) = g(t) h(t - 1) dT .

The spectrum of s(t) will be a product:

S(f) = Fglg(t) * h(r)) = G(f) H(f)
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and the log magnitude spectrum of s(t) will be a sum:
log|S(f)| = log|G(f)| + log|H(E)]| .
The inverse transform of this sum of functions is also a sum:
F (log|s()[) = F (logla(f)[) + F (log|R(D)])
and defines the cepstrum. The cepstrum, as defined, is a complex function.
It is unnecessary to preserve the complex nature of the cepstrum, however,

since it is derived by the Fourier transform of a real quantity. The jog

magnitude spectrum is real by definition, and the symmetry of its Fourier

tra:sform, the cepstrum, is therefore known. It is possible, but un-
necessary for the purposes of this research, to define a complex cepstrum
on the basis of a complex logarithm of the spectrum. This approach is
useful where the object is reconstruction of the time waveform, as in
echo removal.

The essential nature of the cepstrum is in the Fourier transform

of the logarithmic spectrum. This replaces a time domain convolution i
with a time~like domain summation. The author of this thesis is not
aware of any single standard definition of the cepstrum; each writer in
signal processing preferring his own. In this thesis, the unqualified
term "cepstrum" will refer to the magnitude of the Fourier transform of

the log magnitude spectrum of a signal: that is,

cepstrum(s(t)] = |Ft(log|Ff[s(t)]|)| & | !
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Where it {s not intended that the magnitude of the cepstrum be taken, the
term “complex cepstrum” will be used. The complex cepstrum derived from
the complex logarithm, though not used in the thesis, will be explicitly
described where it is mentioned.

Suppose that s(t) 1s periodic. Then S(f) will be a line
spectrum and will have peaks spaced at equal intervals in frequency. The
function S(f) {s therefore periodic in frequency, and its cepstrum will
be a line cepstrum.

The cepstrum of a voiced speech segment will be the sum of a
continuous function of time represented by Ftlloglﬂ(f)l] , since the

vocal tract frequency response H(f) varies slowly and aperiodically

with frequency, and a line cepstrum represented by Ft[log G(f)l] s

since the glottal pressure wave spectrum G(f) varies rapidly and
periodically with frequency. Therefore, under the above-stated restric-
tions on h(t) and g(t) , their respective contributfons to the
cepstrum of s(t) may be readily distinguished. The sharp peaks
representing the voice harmonics in the linear spectrum are smoothed by
the log magnitude operation to an approximately sinusoidal form. The
contribution of g(t) to the cepstrum will therefore be seen principally

as a few peaks spaced at intervals of the pitch period in the cepstrum

domain.

Figure 2.4 presents the time waveform of a 50-millisecond segment
of voiced speech, comprising 512 samples. The pitch period is indicated

by 1T , and is the interval between successive glottal pressure-wave

cycles.,
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The Fourier transform or linear spectrum magnitude of the speech
segment is shown in Figure 2.5a and the log magnitude spectrum is shown
in Figure 2.5b. 1In each case, only 256 points are shown and they
correspond to the positive frequencies. It 1s apparent that the log
magnitude operator has smoothed the peaks which represent the voice
harmonics to an approximately sinusoidal form. The voice harmonics are
positioned at intervals of fo = 1/T in the frequency domain since the
glottal pressure wave is quasi-periodic. The particular form of the
discrete Fourier transform which was used in this analysis gives frequency
points at 10, 30, 50, . . ., 5110 Hz.

The cepstrum, or inverse transform of the log magnitude spectrum,
is shown in Figure 2.6. The periodicity of the log magnitude spectrum
is telescoped in the cepstrum into the pitch peak. The total length of
the cepstrum corresponds to a pitch period of 25 msec. Since the cepstrum
is the inverse transform of a frequency function, its domain is a time-
like domain. The cepstrum is related to the autocorrelation function,
which is the inverse transform of the square of the spectrum, in that it
tends to emphasize periodicity in the spectrum of a signal. The original
pitch period of the speech signal under discussion was T . The primary
pitch peak occurs at T = 10 msec in the cepstrum. It is not unusual
for a smaller pitch peak to be seen at 2T = 20 msec , as is shown in
Figure 2.6. The successive pitch peaks in the cepstrum have been termed
"rahmonics" of the signal.

The position of the pitch peak may therefore be related to the
fundamental frequency of the speaker. For the particular analysis used

in this study, the fundamental frequency corresponding to a pitch peak

A
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in cell N 1is 10240/N Hz. Choosing N = 41 gives an fO of 250 Hz,
which is above any fundamental frequency likely to be used by an adult
speaker. Since the pitched components of the speech signal are tele-
scoped into the pitch peak, and its rahmonics into the cepstrum, the
portion of the cepstrum from the origin to the 4lst point may be
considered as an approximation to the Fourier transform of the vocal
tract frequency response. This is not strictly accurate. The low
""quefrency" part of the cepstrum, as the cepstrum independent variable
is called, is the Fourier transform of the vocal tract frequency
response multiplied by the glottal pressure wave; therefore, the term
"approximate vocal tract impulse response' is used to name the low-~
quefrency part of the cepstrum. If the pitch peak is suppressed and the
remainder of the cepstrum is Fourier transformed, a curve similar to
Figure 2.7 is obtained. This curve is the vocal tract frequency response
multiplied by the glottal pressure wave spectrum. The use of the
cepstrum is to remove the rapid oscillations in the spectrum which are
due to the quasi-periodic nature of the driving function.

Appendix B contains mean cepstral pitch determinations and mean

vowel spectra which were derived by the technique outlined above.

2.4 Derivation of the Performance Prediction

The identification or classification task may be modeled as a
random process that may respond to an input condition a or an input
¢ , wherein it is desired to determine whether the input is a or ¢
from an examination of the output. The decision-making process is

shown schematically in Figure 2.8.
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It is assumed that the mean output in the presence of condition

a 1s greater than that in the presence of condition ¢ , and that the

distributions of responses to the possible a and ¢ 1inputs are known.
In essence, a threshold T is chosen, and it is assumed that if the

output is greater than T , the input is a , and if the output is less

than T , the input is ¢ .

In the discussions to follow, condition ¢ will be associated

with the cross-ccrrelations, i.e., with the absence of the desired
speaker characteristic, and condition a will be associated with the
autocorrelations, in which the desired speaker characteristic is present.
Though reference is made to speaker characteristics, the approach is
perfectly suited to identification as well as classification and will be
so applied -- for surely the identity of a speaker is one of his most

important characteristics.

A threshold T may be selected that gives any desired probability

of detecting either of the conditions at the expense of the likelihood of

detecting the other, for a pair of distributions such as are shown in
Figure 5.1. For example, if the threshold were set at the mode of the
¢ distribution, the probability of detecting a would be cnite high;
would be only 50 percent, or chance

but the probability of detecting ¢

level.

Area (a) is termed the false identification region; that is, the
area in which a cross-correlation coefficient is above the threshold.
Area (c) is termed the false elimination region, in which an auto-

correlation coefficient is below the threshold.

or!
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Let the probability of a true decision be P, and that of a false
decision be Pe Values of P, and P may be derived from the actual
coefficient distributions. Assuming that the coefficient distribution
obtained by the use of the programs SPKTST or GRPTST is a fair representa-
tion of the universe and that selection from the universe occurs randomly,
then the probability of obtaining a coefficient between certain limits is
the ratio of the area under the coefficient distribution between those
limits, to the area under the entire curve. This function is tabulated
for normal distributions; however, it will be shown that the means and
standard deviations derived from the correlation coefficient distributions

in this thesis do not adequately represent the actual distributions.

A reasonable choice for the threshold location is to place it
between the distribution means in such a way that the probability of
false identification equals the probability of false elimination. This

choice allows a single value of p to give the probability of correct

t
identification or elimination, and a single value of Py to give the
probability of false elimination or identification. Under the above
definition, P + P = 1 , always.

It is assumed that the identification or classification task
consists of n independent experiments, each of which is the comparison
of a unique pair of utterances. The theoretical probability of success

in one experiment is p,_  , where success is defined as the correct

t
identification or elimination of a sample, and the theoretical probability
of failure in one experiment is therefore Pg - The criterion for a

decision on the basis of n experiments should be set on the basis of

the number of experimental results greater than T (which indicate
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identity of speakers for the two utterances) and the number of results
less than T (which indicate difference of speakers for the two utter-
ances). The most stringent criterion is to require n results greater
than T for identification and n results less than T for elimination.
In general, the predicted results will be the terms of the binomial

expansion,
Pm,r) = ()" (1-p)" = ()" (0"

wherein P(m,r) 1s the probability of obtaining m true responses and
r false responses in m + r experiments, where m+ r = n . Only the
end terms, P(n,0) and P(O,n) , will be considered determinate results.
Any task in which some experiments have results greater than T
(identify) and some have results less than T (eliminate) will be
congidered indeterminate. The predicted probabilities for different
kinds of decisions based on n experiments may accordingly be written:

)n

correct identification or elimination = (pt

- Pt(n) ’
false identification or elimination = (pf)n = Pf(n) S
and the

indeterminate result = 1 - (pt)n - (pf)n = Pi(“) 5

where Pt(n) 5 Pf(n) , and Pi(n) denote the probabilities of true,
false, and indeterminate results, respectively, of an identification
task consisting of n trials.

While it would be desirable to design a system that resolves

nearly all of the identification or classification tasks correctly, it
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is important to determine what proportion of the determinate tasks are

correct. The quantity R(n) , defined by,

R(n) = ptn/(pt“+pf") ’

indicates the reliability with which determinations are made by this

method. The value of R(n) gives the ratio of correct determinations

to all determinations as a function of B, Pe > and the number of

experiments, n .

&
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CHAPTER III

EXPERIMENTAL PROCEDURE

3.1 Data Collection

The primary data used in this thesis consists of magnetic tape
recordings of different speakers reading the Rainbow Passage. Three
one-week recording sessions were held in 1973, 1974, and 1975.

The exact equipment configuration which was used in the 1973
recording session was not under the author's control and cannot now be

determined; however, the following three items include all equipment

which was employed: tape recorder--audio, Nagra Model II S/N PH06710602,
used in 1973, 1974, and 1975; sound isolation booth~-ISA Model 40 S/N
328, used in 1973 and 1974, and a field-modified telephone booth, used
in 1975 (a report on the properties of the booth is included in this

thesis as Appendix C); and microphone--Electrovoice Model 664, used in

1973, Sennheiser Model MD421U, used in 1974 and 1975.

Over 200 recordings were obtained, including multiple readings
by the same speaker. All of the data were transferred from individual
reels of 1/4-inch audio tape to a 1/2-inch, seven-track instrumentation
recorder format. The Nagra recorder was used for playback and an Ampex

Model FR 1300, S/N 6480126, was used for re-recording. Channel 1 of
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the instrumentation tape was devoted to a master timing signal which
allows the desired speech signal to be accurately located. This tape is
referred to as the Voice Analysis Master tape (VAM).

The data group used in this thesis is a subset of the recordings.
Nine male and twelve female speakers were chosen who had made a total of
twenty-nine readings. The pertinent data concerning these subjects was
obtained by questionnaire at the time of the recording (see Table III.1).
The selected readings were transferred from the VAM to digital magnetic
tape in a format suitable for input to a digital computer. The timing
signal was used to control an identification channel on the digital tape
so that the digital and analog tapes could be synchronized.

The analog-to-digital recording procedure is diagrammed in Figure
3.1. The VAM is positioned to the desired sample reading. The speech
signal is low-pass filtered (5.0 kHz) and an analog-to-digital converter
(operating at 10.24 kHz) generates a digital representation of the
filtered speech signal. The timing marks on the VAM occur at one-second
intervals and are used to advance the identification counter, whose
value is recorded on the digital tape simultaneously with the data.

The upper-frequency cut-off of 5.0 kHz was chosen to limit the
bandwidth of the data to a reasonable representation of the speech
signal. The sample rate of 10.24 kHz was chosen so that 512 real samples
represent a time interval of 50 msec, which places the frequency domain
samples at intervals of 20 Hz for computational convenience.

Twenty-nine readings were transferred to digital tape in this

manner. The repeated readings were made at time intervals ranging from
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a few minutes to two years. This data was used to determine the

stability of the identification parameters.

3.2 Generation of Speech Cepstra

The second step in the identification process is the selection
of certain speech segments and the computation of thei. pstra. The
selection in this instance was made by manual comparison of transcripts
and computer output, but there is no theoretical reason that the
selection cannot be controlled by a computer with the appropriate
program and peripheral equipment.

An analog recorder was used to convert each speech signal to a
chart recording. Figure 3.2 is a chart recording of speaker 111 reading

a part of the "Rainbow Passage.” When the recording was made, index
marks were made on the lower edge of the chart to show breaks in the
phrasing; those on the upper edge mark the speech segments of interest.
In this thesis, only vowels separated on each side by voiceless conson-
ants were studied. The spaces isolating ''take'" and 'shape'" can be seen.
Once the desired speech segment is located, the cepstra are
obtained in the following way. A block of 512 real samples, which is
considered to be the first recognizable glottal cycle, is chosen at the

beginning of the segment. This block is Hanning weighted, the window

function being defined by

W(n) = 0.54 - 0.46 cos(2mn/512) .

The Hanning window was chosen to minimize the side-lobe level. The

Fourier transform of the windowed time function contains 256 complex
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frequency points. The log magnitude operation gives the spectrum at 256
real frequencies, and this spectrum is inverse Fourier transformed to
yleld the complex cepstrum. It is possible to define the cepstrum on the
basis of complex logarithms of the spectrum, but this is not considered
necessary for this work. The magnitude of the cepstrum is retained for
use in identification and simulation tasks, and the complex cepstrum is
retained for use in deriving voice pitch and spectral information.

Successive Hanning-weighted blocks of a signal are statistically
independent if they are separated by one-half the block length. Accord-
ingly, successive blocks of 512 real samples, each 50 msec in length,
are taken at intervals of 25 msec after the first sample until the entire
segment has been processed. Thus, the number of cepstra derived from a
single utterance will depend upon the length of the utterance. Cepstra
from within the same utterance by a given speaker have not been found to
be significantly more similar than cepstra from different utterances by
the same speaker. Consequently, the average cepstrum for each utterance
is considered by the subsequent analysis to be representative of the
utterance.

The first computer program (EDITVA) allows the operator to
examine data from the digital tape and to obtain a permanent record of
the waveform at any point. This program was used to check the quality
of the digital recording and to locate the speech segments of interest
for further processing.

Once the desired speech segments were located, a work sheet

(Figure 3.3) was prepared. This sheet gives the digital ID number for
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locating each segment to be analyzed. Once the working sheet has been
prepared, the second analysis program (EXTRAC) may be started.

The second program allows data to be selected from the digital
tape, and the cepstra of the selected segments to be recorded on another
digital tape, called the 'cepstrum tape."

The EXTRAC program generates two forms of output. The first out-
put form is shown in Figure 3.4. The program requests the operator to
enter the time (in milliseconds) within a given ID number at which each
speech segment of interest begins. These requests appear along the left
edge of the display. For the second output form (Figure 3.5), the
program computes and displays the log magnitude spectrum and the cepstrum
of each of the requested segments. After each cepstrum is computed and
displayed, the operator may choose either to have it ignored by the
program, or to have it labeled and included on the cepstrum tape.

The cepstrum tape generated by EXTRAC contains cepstra and their
associated indexing information: the subject number, vowel number, the
digital data tape ID number, the start time within the ID, and an index
number ;hich allows the actual program listing to be determined. Each
time the second analysis program (EXTRAC) is started, the index number
is reset to 1, and each operation is assigned a unique index number
within the run of the program. A part of the reference listing of the

cepstrum tape is shown in Figure 3.6.

3.3 Classification and Identification Programs

The term auto-correlation refers to a correlation coefficient
between cepstra which share any common characteristic. For example, in

an identification experiment, coefficients derived from different

b
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utterances by the same speaker would be considered auto-~correlation
coefficients. In a classification by sex experiment, all coefficients
derived from subjects of the same sex would be considered auto-correlation
coefficients. The term cross-correlation refers to correlation coeffi-
cients between cepstra which do not share the common characteristic of
interest.

The correlation coefficients are derived in the following way.
The user first selects as many groups of cepstra as are desired, each of

which may contain one or more cepstra. The mean value of each group is

reduced to unity. All groups are summed and the sum is reduced to unity
mean. This produces the average cepstrum for the experiment. The
average cepstrum is subtracted from each of the individual group cepstra,
thus converting the group cepstra to the deviations of each group
cepstrum from the mean cepstrum. Finally, the correlation coefficient
for each pair of group cepstrum deviations is computed. If the two
group cepstrum deviations share the common characteristic of interest,
the resulting correlation coefficient is regarded by the program as an
auto-correlation coefficient; if they do not share the common character-
istic, the coefficient is regarded as a cross-correlation coefficient.
The group cepstrum deviations from the mean cepstrum are correlated,
rather than the group cepstra themselves, in order to emphasize most
strongly the differences between the cepstra. The group cepstra them-
selves correlate with one another with coefficients almost always greater
than 0.95, whether or not they were uttered by the same speaker or by

members of the same group.
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Various kinds of classification and identification tasks may be

simulated by the computer programs SPKTST and GRPTST. Each of these
programs accepts the cepstrum tape generated by EXTRAC as input and
requests instructions from the operator via a graphics display terminal
concerning the operations to be performed. The programs perform
identical processing and generate output of the same form. They differ
in the degree of flexibility given the operator in choosing the nature
of the experiment.

Program SPKTST assumes that cepstra are to be distinguished on
the basis of subject number. This allows speaker identification tasks
to be simulated. This program also generates two forms of output: the
first (Figure 3.7) gives a condensed listing of the contents of each 3
cepstrum group; the second (Figure 3.8) lists the statistical parameters ‘
derived from the distribution of the correlation coefficients, and a
histogram of their distribution. The operator may request more detailed
information for any of the output forms, including a listing of all the 3

correlation coefficients as they are generated. Cumulative statistical

information is also stored by the program and is displayed at the end of
the run or upon operator request.

Program GRPTST allows cepstra to be grouped for study in an

arbitrary manner. This program is used to obtain the coefficient dis-

tributions for speaker classification experiments. The output of GRPTST

is identical to that of SPKTST, and the input protocol differs only in
that the program allows the user to specify a code to be used in

classifying each cepstrum as an auto-correlation or cross-correlation.




CHAPTER IV

RESULTS

4.1 Speaker Identification

Program SPKTST was used to obtain the distribution of correlation
coefficients and associated statistics for use in speaker identification
simulation. Each of the four classes of speakers, which are male smokers,
male nonsmokers, female smokers, and female nonsmokers, had seven vowels
processed.

For each vowel within each class, the sum of all cepstra derived v
from each utterance and reduced to unity mean was used as the representa-
tive cepstrum for that utterance. Therefore, the auto-correlation
coefficients give correlations between different utterances of the same
vowel by the same speaker, and the cross-correlation coefficients give
correlations between utterances of the same vowel by different speakers.
For each class of speaker there is one pair of correlation coefficient
distributions and associated statistics for each of the vowels.

Table IV,1 shows summary information about the identification
experiments, and lists for each vowel within each class the number of

samples, the distribution mean, and the standard deviation for each of

the coefficient distributions.
The data presented in Table IV.1 show that certain vowels have
ua , the auto correlation mean, significantly greater than uc , the

cross cerrelation mean for each of the four speaker groups, and are in
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this sense good identification parameters. Other have My and M, too
close together or fluctuate from one group to the next and are relatively
poor identification parameters. It is reasonable to expect that certain
of the vowels should fail consistently. Vowels 2 and 12 are often
embedded within an utterance where they are very difficult to locate
accurately. It is also probable that many cepstra identified by either
of these vowel numbers are labeled in error. Vowel 102 is a diphthong,
occurring in the words "type" and '"sky.'" Unlike the other diphthong used
in this study (number 32 taken from "take", '"shape'", and '"cate"), vowel
102 changes its spectrum radically during the course of the vowel, It

is a very obvious diphthong, and samples from one part of an utterance
correlate poorly with other utterances. For these reasons, only four of
the vowels, 4, 5, 8, and 32, are considered acceptable for identification
purposes. They are discussed in the following paragraphs.

Table IV.2 lists the statistical parameters of the summed distri-
butions for each of the speaker classes. Each of the distributions
includes all four of the '"'good" vowels. A X-square test was employed to
test the likelihood that the observed coefficient distributions are
drawn from a normally distributed universe. In general, the fit is very
poor; therefore, the use of the standard deviation is not strictly
defensible.

For each of the speaker groups, and separately for the auto-
correlation and the cross correlation distributions, Table IV,2 shows

the number of samples, the distribution mean, the standard deviation,

and the X-square probability of normalcy of the sample universe.
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The data presented in Table 1V.2 are derived in the following way.
Each vowel or speaker is processed separately, and the distributions and
statistical parameters are summed to give the accumulated values. In the
test for vowel 4, for example, each of the groups, 1 through 4, was run
separately; the resulting distributions were summed to give the distribu-
tions shown in Figure 4.1, and the values of Zx and sz for each
group were added together to give the totals used in deriving the
accumulated mean and standard deviation. Figure 4.1 shows the auto-
correlation and cross-correlation coefficient distributions for vowel 4.
To study identifiability by group, each of the four vowels was run
separately, and the resulting distributions were summed to give the
overall performance. Figure 4.2 shows the auto-correlation and cross-
correlation coefficients for Group 1. Figures 4.1 and 4.2 are typical

of vowel and group identifications, respectively.

4.2 Speaker Classification

Program GRPTST was used to c¢btain correlation coefficient dis-
tributions and associated statistics for use in the simulation of speaker
classification tasks. This program allows very flexible grouping of the
cepstra into various classes. The computations performed by the program
are the same as those performed by SPKTST. The set of speakers used in
this analysis was chosen so that the effects of smoking, sex, and time
lapse between readings could be individually studied. The results
obtained from the operation of program GRPTST are presented in this
chapter. In Chapter V these results will be interpreted and used to
predict the reliability and accuracy of the proposed method of

classification.

i il
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Several modes of classification were studied. First, the program
was set to include all samples of a given vowel by male speakers in one
group, and all samples by female speakers in another group. The auto-
correlation coefficients thus produced represent the correlation between
speakers of the same sex (but not necessarily the same speaker). The
cross-correlations represent samples of speakers of different sexes. A
histogram showing the resulting coefficient distributions is shown in
Figure 4.3. This histogram is typical of those obtained in classification
experiments.

Next, the program included smokers of one sex in one group and
nonsmokers of the same sex in another. In these tests, the auto-correla-
tions are between two smokers or two nonsmokers, and the cross-correlations
are between one smoker and one nonsmoker.

Data Group 5 included six readings of the "Rainbow Passage' by
speakers who had previously recorded the passage one year or more prior
to that included in Group 5. The program was directed to include
contemporaneous readings in one group and widely-separated readings in
another. Thus, the auto-correlations in this test are between samples
recorded by the same speaker at essentially the same time, and the
cross~correlations are between samples recorded by the same speaker at
very different times.

In all of the above classification tests, the histograms for the
four vowels 4, 5, 6, and 32 were determined separately. They were then
added and their statistical parameters were grouped to form the
distributions.

The X-square probability of sampling from a normal universe was

computed for each of the preceding test cases. The resulting P values,

| —
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along with the number of samples, the mean, and the standard deviation,
for both the auto-correlation and cross-correlation distributions, are

summarized in Table IV.3.

4.3 Normal Versus Actual Coefficient Distributions

There is slight justification for applying normal statistics to
the speaker identification and speaker classification problems. Out of
24 tests on which X-square was evaluated, 13 have P < .001 , three have
a "poor" fit with P < 0.05 , and eight have a 'good" fit with P > 0,05 , |
sometimes much greater.

Table IV.4 gives the number of samples and the type of correlation

with the corresponding P values. The auto-correlation distributions

seem to be more nearly normal than the cross-correlation distributions. v
Better results in this sense are also associated with smaller numbers
of samples.
An attempt was made to match each side of the coefficient
distributions with half of a normal distribution. Values of X-square
were computed for these distributions; however, no better fit was
obtained than for the single symmetrical normal distribution. For this

reason, the actual coefficient distributions were integrated to give

empirical probability density functions. These functions were then used
in place of the normal approximations to obtain the probabilities of

true and false decisions in identification and classification tasks.




CHAPTER V

CONCLUSIONS

5.1 Speaker Identification

The correlation coefficient distributions obtained by use of the
program SPKTST were used to derive values for Py and P in simulated
identification tasks. The values of e, and P for each vowel were
obtained from the sums of the correlation coefficient distributions of
each of the four speaker groups for the given vowel, and the values of

p, and Ps for each group were obtained from the sums of the correla-

t
tion coefficient distributions of each of the four vowels for the given
speaker group. These are shown in Table V.1l. For n =1, 2, and 3 ,
and based on the given values of P and P o values for Pc(n) s
Pi(n) , and Pf(n) are gshown in Table V.2, and values for R(n) are
shown in Table V.3.

The identification by vowel is seen to be more reliable than the
identification by group. This is not unreasonable, as different utter-
ances of the same vowel might be expected to be more similar than
utterances of different vowels, whether the utterances were by the same
or by different speakers.

For tests involving three utterances, in identification within a
group over all vowels, 29 to 50 percent of the test cases are determinate

and correct; they comprise 88 to 98 percent of all determinations. For

tests involving three utterances for a given vowel, including samples
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from all groups, 36 to 46 percent of the test cases are determinate
and correct, these comprise 94 to 98 percent of all determinations.

It is seen that, on running English speech, the system operates

to give identifications with an accuracy comparable to that obtained
by other methods, some of which use isolated clue words rather than
running text, whether the identification was based on a visual,

auditory, or computer-matched method.

5.2 Speaker Classification

The correlation coefficient distributions obtained by the use of
program GRPTST were used to derive values for P, and Ps in simulated
classification tasks. Values of Py and Ps » derived from the distri-
butions, are shown in Table V.4. Values for Pt(n) 5 Pi(n) , and
Pf(n) are shown in Table V.5, and R(n) 1in Table V.6, for n = 1, 2,

E and 3 .

The classification tasks attempted were the determination of sex,

distinguishing between smokers and nonsmokers, and distinguishing between

contemporaneous recordings and those separated by more than one year.

There is little doubt of the significance of the difference
between the means of the classification idstributions. The eatimated
| standard deviations of the means are orders of magnitude less than their
differences. The system does not, however, allow an acceptable
probability of a correct decision while suppressing false decisions.

For the sex determination, and distinguishing between smokers and

nonsmokers, 16 to 25 percent of the tests are determinate and correct,

o
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which comprise 64 to 84 percent of the determinations. The distinction
between female smokers and nonsmokers is particularly unclear.

The distinction between contemporaneous recordings and those
separated by more than one year was performed separately for each vowel,
and the resulting distributions were summed to give the distributions
that were used in measuring the probability of true and false decisions.
There is a significant difference between utterances of the same vowel
at different times by the same speaker, but it is much smaller than the
difference between utterances of the same vowel by different speakers.
Twenty four percent of the determinations of time lapse between

recordings, comprising 81 percent of the total determinations, are correct.

5.3 An Entirely Automatic Identification System

It has been shown that the present system is capable of identify-
ing speakers, but not capable of classifying them. One design for an
automatic speaker identification system would be a digital computer with
a conversational input/output device such as a teletype, and an
analog~to-digital converter with a bandwidth of 5 kHz connected to a
microphone. It is assumed that the computer would be programmed with
a data base of known speakers which includes all legitimate candidates
for identification. An identification exercise would then be conducted
in the following manner.

The computer would design a test sentence containing three vowels
guitable for identification by a random selection of words in an arbitrary
order. This would serve to protect the system from deception by a

previously prepared recording. A short list of words suitable for the

T
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sentence framework "verb the adjective noun' could include all four

suitable vowels in the verb, adjective, and noun lists. Different
sentence frameworks could be stored and one chosen randomly for each
test for further deception-proofing.

The computer would then display the test utterance and request
the subject to read it aloud. It is in the interest of the subject to
read it carefully, to prevent identification failure. The perceived
signal would be recorded in the computer's memory and parsed into the
speech segments of interest. It is relatively easy to distinguish

voiced from voiceless speech segments, and the computer begins with the

knowledge of what to look for in the sentence.

Once the vowels have been located, the computer would extract
cepstra from each utterance and compare them with those stored in its
memory. Should all three samples match the cepstra of a known speaker,

a positive identification would be confirmed. Should there be fewer than
three matches or a match with more than one speaker, the identification

would be denied.

5.4 Suggestions for Further Research

It is possible to work in two directions within the framework of
the present system design. On the one hand, it is likely that the
system performance can be enhanced by modifications in the computations
which are performed and, on the other hand, the available data base is
much greater than that used in this thesis, and additional results or
different kinds of results might be derived from a larger sample.

One area to examine would be the effect of prewhitening the

speech signal before cepstrum extraction. Since the cepstrum is large
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for only a small range of values, this operation could also be effectively
performed by multiplying the test cepstra by some weighting function
before obtaining the correlation coefficients. The present correlation
programs, SPKTST and GRPTST, are capable of performing this operation

on the data. The correlation programs are also capable of handling any
number of inverse frequency points in the cepstrum. The present cutoff

of 41 points was chosen so as to eliminate all pitch peaks from the

T

cepstra before correlation, as 41 points in the cepstrum domain

corresponds to an f of 250 Hz.

0

In the data base from which the samples for this thesis were taken,

there are recordings which were made by individuals who were attempting
to disguise or change their voices. It would be interesting to see if
their identifiability is affected by such attempts at voice modification.
The data-base logs include the age, state of vocal training, and place
of origin of each speaker. Any combination of these could be studied

for classifiability, or at least for a significant observable difference.
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Figure 1.1. Voice Spectrogram.
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Figure 2.1. Schematic Diagram of the Vocal Mechanism.
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VOICE ANALYSIS
MASTER
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o LOGIC DIGITAL
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Figure 3.1.

Analog-to-Digital Tape Transfer.
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SPEAKER JOB ID TAPE DATE TIME
NOTES:
LINE VOWEL NUMBER ID ENVIR- NOTES
[ [ [ ONMENT [
3 |1'(1) 2 txf
4 EI (el) 32 telk
4 EI(ei) 32 leip
S A () 5 p&d
8 U | 12 /Ak
9 [A"(9) 8 pot
(LR [V O I I T bat
13 EI(ei) | 32 seih
13 A" (2) 8 paot
15 E (¢) sEp
17 I'(1) txt
19 A (=) 5 pas
20 |A'I(ai)| 102 kal
22 |A"(2) 8 tot
22 |A"(9) 3ot
24 |I'(I) sIs
24 |I'(I) txt
25 u*(a) 12 bAt
26 El (el) 32 keit
29 E (e) 4 fek
31 € (e) 4 s€k
34 |A'I(ai)| 102 taip

Figure 3.3. Analysis Work Sheet.




RUN ID: 20
msec: 1;

msec: 26.;
msec: 5S1.;
msec: 76.;

msec: 101.;

12345

54

Figure 3.4.

EXTRAC Program Output, Form 1.




Figure 3.5.

T LJ o) Al

VOWEL: 8;

EXTRAC Program Output, Form 2.




CEPSTRUM FILE LISTING

COUNT INDEX 1) STRT SPKR VOWEL
1 2 16 5480 100 2
3 6 18 4410 100 3R
5 8 18 8970 100 3R
7 10 18 9640 100 3
9 13 21 7760 100 5

11 15 21 8570 100 5
13 21 30 1120 100 8
15 24 32 2710 100 1
17 30 38 2400 100 R
19 33 38 210 100 R
21 3% 39 3800 100 8
23 39 47 6690 100 4
25 43 53 2640 100 97
27 46 60 9110 100 9
29 5 4 L 100 5
31 1 4 550 100 5
3 10 5 9280 100 102
35 14 11 1720 100 8
n 16 11 8390 100 8
39 21 12 1690 100 8
4 25 21 3260 100 12
48 32 36 1840 100 4
45 4 16 30 101 32
4 6 16 3230 101 32
49 8 16 3730 101 32

Figure 3.6. Partial Cepstrum Tape Reference Listing.
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ALL VOWEL 4
GROUP 1 CONTAINS 23
GROUP 2 CONTAINS 43 4
GROUP 3 CONTAINS 76
GROUP 4 CONTAINS 95 % 97 98
L GROUP 5 CONTAINS 99 100 101 102 103 104
GROUP 6 CONTAINS 143
GROUP 7 CONTAINS 144
GROUP 8 CONTAINS 173 174 175
GROUP 9 CONTAINS 176
GROUP 10 CONTAINS 213 214 215
GROUP 11 CONTAINS 247 248 249
GROUP 12 CONTAINS 286
GROUP 13 CONTAINS 382
Figure 3.7. SPKTST Program Output, Form 1.
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SAMPLE 1

ACCUMULATOR STATUS: -0.88807  0.40404 -0.19301 0.02161

AUTO 2 -0.44404 0.09852

AUTOHIST 0 0 0 0 0 0 0 0 A 1 0 0 1 0 O 0 0 0 O0 O
AUTOHIST 0 0 0 0 0 0 0 0O O 0 0 O 0 0 O O 0 O O O
CROSS 4 -0.04825 0.06402

CROSSHIST O 0 0 0 0 0 0 0 0 0 0 0 0 0 O O OO 1 2
CROSSHIST1 0 0 0 0 0 0 0 0 O 0 0 O O O

Figure 3.8. SPKTST Program Output, Form 2.
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TABLE III.1

SUBJECT SPEAKER DATA

SUBJECT GROUP AGE SEX YEARS SINGER1 ALCOHOL2
SMOKING
100 1 32 M 3 N 0 |
101 1 52 M 15 N 0
102 1 55 M 40 N 0
103 1 18 M 0 N 0
104 1 48 M 0 T 0
105 2 28 M 0 S 0
111 2 22 M 8 N N
120 7 37 M 20 N 0 :
179 2 23 M 0 T 0
108 3 40 F 20 S 0
228 3 20 F 5 N F
173 3 25 F 5 N 0
232 3 21 F 4 N 0
238 3 21 F 5 S F
213 3 20 F 10 N 0
133 4 47 F 0 S 0 3
162 4 21 F 0 T 0
116 4 18 F 0 N 0
119 4 21 F 0 N 0
263 4 25 F 0 S 0
124 4 23 F 0 S 0

It was originally intended that Group 1 should include male smokers,
Group 2 male nonsmokers, Group 3 female smokers, and Group 4 female

nonsmokers.

; 1This is the coded response to a question: T-~trained, S-singer, N-no.

2Use of alcoholic beverages: F-frequent, O-occasional, N-never.




TABLE IV.1

SPEAKER IDENTIFICATION SUMMARY

VOWEL na M o n %)
NUMBER a a c c
102 9 .193 .317 57 ~.095
32 65 .263 . 307 244 ~.048
8 40 .279 .350 131 ~.122
12 20 .047 .436 85 ~.065
5 7 244 450 48 .003
4 18 .196 434 102 -.044
2 1 -.647 .000 2 -.357
102 5 -.008 .101 16 -.106
32 27 .297 .286 93 -.090
12 24 .136 .314 54 -.146
8 30 242 .294 61 -.212
5 5 401 .256 23 -.155
4 17 .393 .230 38 -.268
2 9 -.045 .388 12 -.145
102 8 -.137 .334 70 -.000
32 33 . 341 .280 220 .070
12 4 -.215 454 41 -.076
8 36 .161 .287 240 -.029
5 6 476 .138 60 -.057
4 18 .439 .230 135 -.090
2 & -.116 431 26 -.108
102 6 .053 .375 60 -.057
32 30 .480 .256 201 .011
8 30 .184 .357 201 -.036
5 8 433 .249 70 .028
4 18 . 344 .295 135 -.092

.255
.290
.286
.290
.260
.329
.100

.278
.280
.260
.227
.215
.314
.162

.360
.286
<349
<337
.342
<319
.402

. 342
<377
.298
.350
.298

]

1
1
1
1 |
1
1
1

63

SPEAKER
GROUP

LWWwWwwwww NN NN

PR




r— Iy

.
64 r
TABLE 1IV.2
SPEAKER IDENTIFICATION GROUPED STATISTICS
IDENT p* p "
"a Y Fs a e e % c ;
vowel 4 155 .459 .280 .09 3005 -.030 . 348 -—
vowel 5 59 .396 .270 .65 1481 .013 .329 .03
vowel 8 238 .375 .318 .15 4712 -.023 .350 —-—
vowel 32 223 467 .253 —— 4727 .019 . 349 -
v
group 1 120 .253 . 345 .30 525 -.064 .292 .01
group 2 84 .285 .281 - 215 -.159 274 .13
group 3 92 «265 . 314 .05 656 -.009 .324 -
group 4 86 .325 .333 ——- 607 -.028 .335 .035
*
The value of Pa and Pc is evaluated by determining x-squared,
defined by
R " % ﬂ
X w ok /fC }
A i

i and determining the probability that the sample distribution is randomly

selected from a normally-distributed universe.
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SPEAKER CLASSIFICATION GROUPED STATISTICS

TYPE OF TEST

Sex Determination
Female Smoking
Male Smoking

Long/Short Lapses

7192
1440
396

236

TABLE IV.3

.132
.073
.052

.066

<347
.336
. 309
.314

7408
1537
424

272

-.104
-.008
-.015

-.090

65

.334
.318
.310

.310
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TABLE 1IV.4

X-SQUARE VALUES :

NUMBER TYPE X-SQUARED PROBABILITY
155 auto vowel .09
59 auto vowel .65
238 auto vowel .15
223 auto vowel ===
120 auto group .30
84 auto group —
92 auto group .05
86 auto group —
7192 auto class S—=
1440 auto class s
396 auto class ——
236 auto class .50
3005 cross vowel -
1481 cross vowel .03
4712 cross vowel -——
4727 cross vowel ——
525 cross group .01
215 cross group «13
656 cross group ==
607 cross group .035
7408 cross class ——
1537 cross class —-—
424 cross class —-——
272 cross class .07

"auto' refers to anauto-correlation distribution, '"cross'" to a cross-

correlation distribution. The term "vowel" refers to an accumulated

vowel distribution, "group" to an accumulated group distribution, both
| of which are identification type exercises. The term 'class' refers to
a speaker classification test, for example, on the basis of sex or

smoking.
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TABLE V.1

IDENTIFICATION PROBABILITY TABLE

TYPE P, Pe
Vowel 4 .770 .230
Vowel 5 .709 .291
Vowel 8 .723 .277
Vowel 32 .773 .227
v
Group 1 .682 .318 :
Group 2 .796 .204
Group 3 .658 . 342

Group & .686 .314




TABLE V.2
SPEAKER IDENTIFICATION PREDICTED PERFORMANCE

TYPE P (1) P.(1) Pt(Z) P.(2) P (2) Pt(3) P.(3)

Vowel 4 .770 .230 .592 .053 .355 .456 .012
Vowel 5 .709 .291 .503 .085 <412 . 357 .025
Vowel 8 .723 .277 .523 .075 .402 .381 .020

Vowel 32 .773 .227 .597 .052 .351 462 .012

P1(3)

.532
.618
.599

.526

.650
487
675

.646




TYPE

Vowel
Vowel
Vowel

Vowel

Group
Group
Group

Group

SPEAKER IDENTIFICATION RELIABILITY TABLE

32

TABLE V.3

R(1)

..770
.709
.723

.173

.682
. 796
.658

.686

R(2)

.918
.855
.874

.920

.822
.938
.787

.828

R(3)

.974
.935
.950

.975

.908
.982
.877

.912
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SPEAKER CLASSIFICATION

TYPE

Sex Determination
Female Smoking
Male Smoking

Long/Short Lapse Between Readings

TABLE V.4

PROBABILITY TABLE

.633
.546
.626

.620

.367
.454
.374

.380




TYPE
Sex Det.
F/Smoking
M/Smoking

L/S Lapse

TABLE V.5
SPEAKER CLASSIFICATION PREDICTED PERFORMANCE

Pt(l) Pf(l) pt(z) Pf(2) Pi(Z) Pc(3) Pf(3)
.633 .367 .400 .135 .465 .254 .049
.546 .454 .298 .206 .496 .163 .093
.626 .374 .391 .140 .469 .245 .052

.620 . 380 .384 .145 471 .238 .055

71

P, (3)
.697
744
.703

.707
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TABLE V.6

SPEAKER CLASSIFICATION RELIABILITY TABLE

TYPE R(1) R(2) R(3)
Sex Det. .633 748 .838
F/Smoking . 546 .591 .637
M/Smoking .626 .736 .825

L/S Lapse .620 .726 .812




APPENDIX A

THE RAINBOW PASSAGE

This is a standard text passage for phonetic tests. Readings of
this passage by a number of speakers constitute the data base for this
thesis. Two criteria were applied to select vowels for inclusion in the
study: first, that they must be immediately surrounded by voiceless
consonants, and second, that they must cccur more than once in the passage.

The following vowels were selected:

v
VOWEL NUMBER CONTEXT S
/1/ 2 beautiful ﬂ
/eil 32 take
/el/ 32 shape
&/ 5 path 4
IN 12 ...according
19/ 8 pot
IN/ 12 but
/ei/ 32 say he
/a/ 8 pot
/el 4 accepted
/1/ 2 that it
18/ 5 passed
/at/ 102 sky. ..
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VOWEL NUMBER CONTEXT
/o] 8 Aristotle
/3/ 8 thought
/1/ 2 physicists
/1/ 2 that it
/N 12 but
/et / 32 complicated
/el 4 the effect
/el 4 the second é
/ai/ 102 common type j
THE RAINBOW PASSAGE

When the sunlight strikes raindrops in the air, they act like a ¥
prism and form a rainbow. The rainbow is a division of white light into
many beautiful colors. These take the shape of a long round arch, with

its path high above, and its two ends apparently beyond the horizon.

There is, according to legend, a boiling pot of gold at one end. People

———

look, but no one ever finds it. When a man looks for something beyond
his reach, his friends say he is looking for the pot of gold at the end
of the rainbow.
Throughout the centuries, men have explained the rainbow in various

ways. Some have accepted it as a miracle without physical explanation.

To the Hebrews, it was a token that there would be no more universal

floods. The Greeks used to imagine that it was sign from the gods to

foretell war or heavy rain. The Norsemen considered the rainbow as a

bridge over which the gods passed from the earth to their home in the sky.
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Other men have tried to explain the phenomenon physically.
Aristotle thought that the rainbow was caused by reflection of the sun's
rays by the rain. Since then, physicists have found that it is not
reflection, but refraction by the raindrops which causes the rainbow.

Many complicated ideas about the rainbow have been formed. The
difference in the rainbow depends considerably upon the size of the
water drops, and the width of the colored band increases as the size of
the drops increases. The actual primary rainbow observed is said to be
the effect of superposition of a number of bows. When the red of the
second bow falls upon the green of the first, the result is to give a
bow with an abnormally wide yellow band, since red and green lights,
when mixed, form yellow. This is a very common type of bow, one showing

mainly red and yellow, with little or no green or blue.




APPENDIX B

MEAN VOWEL SPECTRA AND FUNDAMENTAL FREQUENCIES

It is easy to determine the pitch from an examination of the
cepstrum. Indeed, one researcher has compared the old view of speech
encoding, in which most of the attention is directed to the spectrum
determination and the pitch determination is a little black box, to the
use of cepstrum pitch determination which produces the spectrum as a
by-product!

The fundamental frequency is derived from each of the cepstra for I
a given vowel and speaker. It i1s shown as the average value for each
of the speaker classes. These numbers are presented in Table B.l.

The paft of the cepstrum near the origin may be regarded as an
approximation to the vocal tract impulse response. It is therefore
possible to derive the vocal tract spectrum from the cepstrum. To obtain

the figures presented in this appendix, the following procedure was used.

The complex cepstra from each utterance were summed to give the
average cepstrum of each utterance. The average cepstra were reduced to
unity mean, and separately accumulated for each class of speakers and 1
over all classes. A cutoff in the cepstrum domain corresponding to a
speaker fundamental frequency of 250 Hertz was used so as to preserve as

much of the spectrum fine structure as possible while removing the pitch-

frequency fluctuations. Vowel spectra are shown for two vowels

accumulated for all male and all female speakers. The differences in
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the quality of the vowels is quite noticeable in the spectrum, and the
difference between male and female utterances shown by the spectra is
typical of that observed in all vowels.

The operation of convolution of the glottal pressure wave with
the vocal tract impulse response in the time domain, appears in the
frequency domain as multiplication of the vocal tract frequency response
with the glottal pressure wave spectrum. One may estimate the observed
spectrum by multiplying the given vocal tract frequency response by a

glottal pressure wave spectrum such as is shown in Figure 2.3.
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FUNDAMENTAL FREQUENCIES

TYPE

Vowel
Vowel
Vowel
Vowel

Vowel
Vowel
Vowel
Vowel

Vowel
Vowel
Vowel
Vowel

Vowel
Vowel
Vowel
Vowel
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8
8
8
8

32 Group 1
32 Group 2
32 Group 3
32 Group 4

Group
Group
Group
Group

Group
Group
Group
Group

Group
Group
Group
Group

All Group 1

All Group 2

All Group 3

All Group 4

All Male

All Female
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TABLE B.5

NUMBER
35

43
44

59
41
64
58
54
41
85
93
79
53
98
86
226
159
290
281
385

571

114.2
136.8
202.4
207.8

108.0
118.2
198.7
189.5
107.1
120.8
195.3
202.1
113.2
124.6
196.0
203.7
110.5
123.6
197.3
200.7
115.3

199.0

i 2
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APPENDIX C

FIELD-MODIFIED TELEPHONE BOOTH SOUND ISOLATION CHARACTERISTICS

The sound isolation characteristics of the field-modified
telephone booth were measured on April 21, 1976. The booth was
installed in the north-west corner of the Hammond Building Museum room
at The Pennsylvania State University. An ILG noise source, Serial
17-05-066AS, and a General Radio sound level meter, Model GR1558A S/N
344, were used in the measurements. The physical configuration used in
the test was the same as that used during the speech recording session.

The telephone booth is constructed of metal and plexiglass with
some internal acoustical damping material. A batten was constructed,
consisting of two sections, each four feet by eight feet. These were
covered with six inches of fiberglass, and a layer of thin muslin to
prevent raveling. A heavy carpet was placed on the floor under the

booth, and a cloth drape was used to close the entrance. The physical

setup is shown in Figure C.1l.

Table C.2 shows the measured octave-band sound pressure levels
undcr various conditions. ''Booth' denotes the conditions shown in
Figure C.1; "Batten" indicates that the batten and carpet are present
but booth 1s removed; and '"'Bare Wall" indicates that all of the sound
isolation apparatus is removed.

The conclusions of this study indicate that the ILG source is

responsible for most of the noise when it is on. The ambient noise was
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unmeasurable at 9600-19200 Hz, but this is well above the range of

interest. The sound booth is ineffective in the 37.5-150 Hz range,

marginal from 150 to 300 Hz, and effective from 300 to 9600 Hz.
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.
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TABLE C.2
SOUND LEVEL MEASUREMENTS
FREQUENCY ~-=-BARE WALL-~--- BATTEN BOOTH
BAND ILG off ILG on ILG on ILG off ILG on
37.5-75 70 77 76 68 79
75-150 62 68 69 60 67
150-300 52 69 69 52 61
300-600 50 68 69 * 57
600-1200 * 7 70 * 54 v
1200~2400 * 72 70 * 51 :
2400~4800 * 70 68 * 49
4800~9600 * 63 63 * * f
9600-19200 * 47 47 * * 3

*
Sound pressure level less than 46 dB in indicated octave band, which

was the lower limit of measurement in this meter. i

e el s e M e
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